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Gapitulo 1
Introducéo

Nesse texto procuramos sintetizar, através de uma coletanea de artigos
publicados em revistas cientificas, nossas atividades principais na area de fisica de
sistemas semicondutores de baixa dimensionalidade. Esses trabalhos foram
realizados durante os anos de 1994 a 2001, periodo que trabalhei no Instituto de
Fisica de S&o Carlos da USP e no Departamento de Fisica da UFSCar. Tive

também durante este periodo colaboragio com varios grupos de pesquisa.

Nas ultimas duas décadas, temos testemunhado um expressivo crescimento
na area de fisica de nanoestruturas semicondutoras. Com as novas tecnologias de
crescimento de cristais e litografias modernas, € possivel controlar as estruturas
cristalinas no nivel atdmico, bem como produzir linhas litograficas na escala
nanométrica, produzindo assim po¢os e fios quanticos, super-redes e pontos
quénticos. Estas estruturas dao origem a novos dispositivos eletrénicos quanticos e
também abrem caminho para o estudo de novos efeitos fisicos. Nossos trabalhos
tedricos estdo centrados no estudo dos efeitos de muitos corpos nos espectros
opticos e na mobilidade eletrOnica destes sistemas.

No segundo capitulo trataremos as excitacbes coletivas e os processos de
relaxamento de elétrons em fios e pogos quéanticos acoplados. As excitagbes
coletivas (ou plasmons) devido a flutuagcdo de densidade de cargas em um gas de
elétrons sdo excitagbes dindmicas fundamentais em cristais, estando relacionadas
com as propriedades eletrénicas dos materiais. Nosso estudo sobre os efeitos de
tunelamento nas excitagbes coletivas de fios quanticos paralelos indicou um novo
tipo de interago entre as excitagdes coletivas e de particula independente (single-
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particle excitation — SPE). Também estudamos os magnétoplasmons nos fios

quéanticos acoplados sob campo magnético transversal. Ademais, estendemos a

teoria de aproximagdo GW para sistemas de muitisubbandas e estudamos os

processos de relaxamento dos elétrons quentes injetados nos fios e pogos quanticos
acoplados. O tempo de relaxacgéo de elétrons é uma quantidade fisica critica para os
dispositivos opto-eletrénicos baseados nessas estruturas, como os ‘“infrared

quantum well cascade lasers” e “quantum well photodectors”.

No terceiro capitulo, apresentamos os trabalhos relacionados a propriedades
de transporte eletronico em sistemas quase bidimensionais de multisubbandas,

como sistemas com dopagens planares. As estruturas semicondutoras com
camadas de impurezas altamente confinadas podem ser construidas nos
laboratérios desde a década de 80. As espessuras destas camadas variam desde
uma unica monocamada até uns poucos parametros de rede. Tais perfis de
dopagens muito estreitos podem ser descritos matematicamente por uma fungéo
delta de Dirac. Semicondutores com estes perfis de dopagens sdo denominados
dopagens planares ou tipo-delta. Estas incorporacdes de dopantes ionizados em
poucas monocamadas levam a um confinamento de cargas espaciais de elétrons
em um pog¢o de potencial, onde se observam varias subbandas de energias
ocupadas, com o movimento perpendicular as camadas de dopantes quantizado.
Elas apresentam um sistema semicondutor quase bidimensional (Q2D), com altas
densidades eletrénicas e com novas propriedades opticas e de transporie. Nossas
contribuicGes sobre este assunto séo: (i) pela primeira vez obtemos teoricamente as
mobilidades de sistemas quase bidimensionais de multisubbandas, onde
destacamos a importancia de mecanismos de acoplamento intersubbandas no
transporte eletrénico; (ii) em colaboragdo com um grupo experimental, concluimos
que a teoria de RPA pode descrever corretamente a blindagem de gas de elétrons
no espalhamento de impureza ionizadas no sistema de multisubbandas; (iii)
esclarecemos varios pontos interessantes para experimentalistas, como os efeitos
de “background acceptors”, mobilidades nos sistemas de duas camadas de

dopagem delta, efeitos de confinamento extra e etc.

No capitulo seguinte, apresentamos dois artigos sobre acoplamento entre
plasmons e fénons opticos nos sistemas Q2D de multisubbandas. Apresentamos a
teoria de acoplamento plasmon-fonon de sistemas multisubbandas. Também
calculamos os espectros de espalhamento inelastico de luz (espectro de Raman) e
mostramos os efeitos de espalhamento de impurezas nos espectros de Raman

neste sistema.



No capitulo 5, estudamos interagéo elétron-fonon em pogos quanticos. Os
trabalhos deste capitulo sdo uma continuidade do meu trabalho de doutorado
motivado pela observagdo experimental do grupo do Prof. B. D. Macombe na Stafe
University of New York at Buffalo. Um dos nossos resultados anteriores mostrou que
elétrons em pocos quanticos de GaAs-AlAs se acoplam fortemente com os modos
de fonons interfaciais. Em campos magnéticos fortes, a ressonancia polardnica
acontece devido a fonons interfaciais neste sistema (G.Q. Hai, F.M. Peeters, and
J.T. Devreese, Phys. Rev. B 47, 13058 (1993)). Este efeito foi observado em
experimentos de ressonancia ciclotrbnica em multipios pog¢os quanticos de GaAs-
AlysGag7sAs em 1996. Em colaboracdo com o grupo experimental, estendemos
nossa teoria para o sistema de GaAs-Alp3GagsAs e conseguimos um acordo
excelente entre os resultados teédricos e experimentais. Além disso, estudamos os
harménicos assistidos por fonons, objeto de estudo por varios anos de nossos
colaboradores em Buffalo, Nova York. Nossos calculos numéricos de espectros de
absorgdo indicaram, quantitativamente, que os harménicos sdo muito fracos e
dificilmente observados experimentalimente. Entretanto, nossos estudos mostram
que os harménicos assistidos por fénons podem ser observados em sistemas
dopados de super-rede de GaAs-Aly3Gag;As devido aos estados ligados de

impurezas rasas.



Capitulo 2

Excitacées coletivas e processos de relaxamento de

elétrons em sistemas de baixa dimensionalidade

Nossos trabalhos apresentados neste capitulo estdo focados nos efeitos de
tunelamento nas excitagdes coletivas e também no processo de relaxamento dos
elétrons em sistemas de dois fios e dois pogos quanticos acoplados. E oportuno
dizer que o primeiro dos artigos listados abaixo (artigo 2.1) poderia resumir todo o
capitulo, bem como os artigos subsequentes. Tal artigo é resultado de uma palestra
apresentada por mim no “Workshop on physics of semiconductor nanoc-systems”
(Beijing, julho 2002).

No artigo 2.2, a relacdo de dispersdo dos modos de excitagdes coletivas foi
obtida, dentro da aproximacgdo de fases aleatorias (RPA), para um sistema de fios
quanticos acoplados. De maneira original, mostramos um efeito oriundo da
ressonancia entre os plasmons acusticos e as excitagdes de particula independente.
Esta ressonancia é assistida pelo tunelamento que pode ocorrer entre os fios

quéanticos.

O artigo seguinte mostrou o efeito do campo magnético na disperséo de
plasmons (magnétoplasmons). A dificuidade no estudo teorico deste problema se
deu na convergéncia da matriz de fungdo dielétrica. Resolvemos este problema
através de uma transformacdo na fungdo de onda dos elétrons e,

consequentemente, no potencial de interag&o elétron-elétron.



Nos uitimos dois artigos os espalhamentos inelasticos elétron-elétron foram
estudados para os sistemas de fios e pogos quéanticos acoplados. Analisamos
detaihadamente os efeitos do acoplamento intersubbanda na taxa de espalhamento
inelastico dos elétrons que s&o injetados na banda de condugéo desta estrutura. Tal
taxa & inversamente proporcional ao tempo de vida dos elétrons. Dentro deste

contexto, verificamos também a importancia do tunelamento entre os fios e pogos.

2.1.  Collective excitations and fast electron relaxation in coupled low-
dimensional electron systems
G. Q. Hai
Proceedings of the Workshop on “Physics of Semiconductor Nano-systems”
(2002).

2.2. Tunneling-assisted acoustic plasmon-quasiparticle excitation
resonances in coupled Q1D electron gases
G. Q. Hai and M. R. S. Tavares,
Phys. Rev. B 61, 1704-1707 (2000).

2.3. Collective and single-particle excitation spectra in coupled quantum
wires in magnetic fields
J.-B. Xia and G. Q. Hai,
Phys. Rev. B 65, (24)5326 (2002).

2.4. Inelastic Coulomb scattering rates due to acoustic and optical plasmon
modes in coupled quantum wires
M. R. S. Tavares and G. Q. Hai
Phys. Rev. B 61, 7564-7570 (2000).

2.5. Carrier relaxation due to electron-electron interaction in coupied double
quantum well structures
M. R. S. Tavares, G. Q. Hai, and S. Das Sarma,
Phys. Rev. B 64, (04)5325 (2001).



Collective excitations and fast electron relaxation in
coupled low-dimensional electron systems

G.-Q. Hai
Instituto de Fisica de Sdo Carlos, Universidade de Sdo Paulo,
13560-970, Sao Carlos, SP, Brazil

1. Introduction

Over the past decades it has become possible to fabricate semiconductor nano-
structures that exhibit reduced dimensionality. Electrons in such structures subject to an
extra confinement. When the confinement in one direction becomes comparable or
smaller than the electron Fermi wavelength the motion in that direction becomes
quantized, resulting in changes in energy spectrum and physical properties of the system.
When only in one dimension the electrons are confined in a space less than Fermi
wavelength, a two-dimensional (2D) electron system is reached. If the electrons are
confined in two dimensions, we obtain a one-dimensional (1D) electron system or a
quantum wire.

The confinement of the electrons can be realized in many ways. In most
semiconductor nano-structures, it is due to the compositional confinement arises from the
barrier to carrier motion imposed by an abrupt change in chemical composition. The well-
known two-dimensional systems are the Si-MOS structure and the GaAs/AlGaAs
heterojunction.[1,2] The Si-MOS was one of the first structures used to create a 2D
electron system. A positive voltage applied in the gate attracts electrons to the p-Si/Si0,
interface. The electrostatic potential together with the barrier (~ 3eV) at Si/Si0, interface
creates a potential well to form an inversion electron layer whose effective thickness is
typically a few nanometers. The electron density in the inversion layer can be easily
varied in the range 10"'-10'? cm™ by changing the applied gate voltage. The electrostatic
potential in GaAs/AlGaAs heterojection is due to modulated doped ionized impurities. By
controlled growth technique, one can realize layered semiconductor structures to form the
so-called quantum wells and superlattices.[2] In these systems, the low-temperature
electron mobility 1s very high as reflected by the small effective mass (m =0.068m, in
GaAs in contrast to m =0.19m, in Si-MOS structure) and the modulation doping which
separates the electrons from their parent donors. The typical density in GaAs/AlGaAs
heterojunctions and quantum wells is of order 10"-10" cm™. Selective growth combining
with the modem lithographic and etching techniques produce confinement potentials in
two or three dimensions leading to the one- or even zero-dimensional semiconductor
systems.

Another important two-dimensional electron system is realized on the surface of
liquid helium.[3] Electrons are subject to their own image force near the surface of liquid
helium which acts as a dielectric. The surface of liquid helium presents a barrier of more
than 1 eV to electrons. On the other hand, the image potential attracts the electrons



towards the liquid leading to the confinement of the electrons in a 2D plane. In
comparison with the 2D system in semiconductors there is no impurity on liquid He so
that a very pure 2D system can be realized. Typical electron density in this system is 10°
2
cm’™.
A dimensionless parameter r, to indicate the density of one electron system is
defined by the average space occupied by one electron measured by the effective Bohr

radius a, =h’g,/m’e* with &, being the dielectric constant of the material and m" the
electron effective mass. The parameter . decreases as the density # increases given by
r, =(4mn/3)™"" /ay for 3D, r, =(nn)"'*/a,, for 2D, and r, =n"'/a,, for 1D system,
where 7 is the electron density in the respective dimension. If we use the effective Bohr

radius and effective Rydberg as the units of length and energy, respectively, the
Hamiltonian of an electron system can be written as

H=(@1/r} )[Zin +r, Z#;l/ |7, -, |J It is clear that 7, is the key parameter to express

the ground state energy. We also see that r; is proportional to the ratio of the potential to
kinetic energy of the electrons at low-temperatures. For small r, the Coulomb potential
can be considered as a perturbation to the first term of kinetic energy which represents an
ideal electron gas. However, r; is not necessarily small in actual materials. For instance,
in alkali metals, r; is of order of 2 to 6. In two dimensional semiconductor systems of

GaAs heterojunction and quantum wells (aj, =9.8 nm), the electron density #=10"> cm™

corresponds to r,=0.56. In Si-MOS structure (a; =2.1nm), the same density gives
re=2.7.

Plasmons are the fundamental dynamical excitations of an electron gas to
describe the collective oscillations of the electrons in crystal.[4-6] Considering a
uniformly distributed electron gas against an equal density positively charged
homogeneous background ionized atoms of crystal, we introduce an additional negative
point charge. At the first moment, free electrons are driven away immediately by
Coulomb repulsion from the vicinity of the negative point charge leading to a positive
charge-cloud around it relative to the average charge density of the electron gas
(screening effects). On the other hand, the long-range of the Coulomb potential push
initially the electrons too far away. They will flow back. In this process, the collective
oscillations appear corresponding to compressive waves of charge density of the electron
gas. Plasmons are the quantum mechanical quasi-particles to describe such collective
motions of the electron gas just as the phonons for lattice vibrations in crystal. The 3D

plasmon is of a constant finite frequency w,=v4me’/m" at long wavelength limit q —>

0. It depends only on the electron density » of the system and the effective mass m" of
the electrons. Typical plasmon frequencies of 3D electron gases are several eV up to
about 15 eV in metals and less than 1 eV in doped semiconductors.

The 2D electron gas with quantized subband was first confirmed experimentally
in the inversion layers in Si-MOS structure by Fowler et al. in 1966.[7] However, the first
experiment that directly probed the two-dimensional plasmons was realized in the 2D
electron systems on the liquid helium surface in 1976{8]. Later, 2D plasmons were also



observed in Si inversion layer[9] and in GaAs/AlGaAs heterostructures[10] An essential
difference of the 2D plasmon mode from its 3D counterpart is that the plasmon frequency
approaches to zero at long wavelength limit. The difference stems from the fact that the
electron-electron Coulomb electric fields remain 3D character while the induced charge
density attends a 2D behavior. Furthermore, the plasmon frequency at low dimension is
in general depends on the shape of the confinement potential and the dielectric properties
of the host materials. Properties of the collective excitations and their dispersion relations
in 3D and 2D systems are well understood based on the Fermi liquid theory, which
assumes that the energy states of the electrons near the Fermi surface are not qualitatively
altered by Coulomb interactions. The plasmon dispersions obtained within the random-
phase approximation (RPA) and its improvement including the exchange-correlation
effects are in excellent agreement with the experimental observations.

In a semiconductor quantum wire structure, the electrons confined in two
dimensions are allowed free motion only in one dimension. An early motivation behind
the proposal of the semiconductor quantum wire structure was that the impurity scattering
would be severely reduced and, consequently, the low-temperature electron mobility
could be substantially enhanced. However, realization of the quantum wire structure also
provides an ideal platform to study the many-body electron effects and the 1D Fermi
liquid. In 1D systems, even weak Coulomb interactions cause strong perturbations. It has
long been expected that the properties of a 1D electron gas are dramatically different
from its 2D and 3D counterparts. Much of the fundamental theoretical understanding of
the dynamical properties of the 1D electron systems has been gained from the Luttinger
liquid model.[11] The Luttinger mode with a simplified linearized band structure has
been claimed to prevail in 1D where exchange-correlation cannot longer be treated
perturbatively. Any electron-electron interaction destroys the Fermi surface (i. e., no
discontinuity in the momentum distribution function) and consequently, there not exist
single-particle excitations in 1D.

However, the theory within the RPA based the Fermi liquid theory agrees
remarkably well with the experimental measured plasmon dispersions of semiconductor
quantum wires.[12,13] It is argued that the distinct difference at a fundamental theoretical
level of the two models are rather irrelevant to the understanding of the collective mode
spectra and their experimental realization in semiconductor quantum wire structures. The
quantitative agreement between the RPA plasmon dispersion and the Raman scattering
experimental results was explained that the RPA and the Luttinger theory for the
collective excitations of the 1D electron liquid are equivalent at long wavelengths.[14,15]
Theoretical calculations also showed that in the presence of the impurities in
semiconductor quantum wire structures, even a slight impurity scattering restores the
Fermi surface and the Fermi liquid behavior remains. The actual semiconductor quantum
wire structure with slight impurities or defects is probably impure enough to suppress the
Luttinger-liquid behavior{16]. Luttinger-liquid behavior has been confirmed in the 1D
electron systems in carbon nanotubes[17] and in one-dimensional metallic chains.{18]
Experiments on 1D semiconductor quantum wires have also been interpreted by using
Luttinger liquid theory[19], but an unequivocal verification of the theoretical predictions
has not yet been obtained. Theoretical calculations of the inelastic light scattering spectra
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with the Luttinger liquid theory cannot quantitatively explain the experimental data
mdicating the 1D electron systems in semiconductor quantum wire structures are not in
the regime where the Luttinger liquid effects are important.[14] The collective excitations
of 1D electron gas are presently described with two competing theoretical models.

In a 1D system, the electron-electron interaction is much stronger than that in
higher dimensional ones. For an ideal 1D system with zero thickness, the Fourier
transform of the Coulomb potential is divergent. It becomes non-singular at finite g only
when the finite thickness of the wire is considered. Another important aspect of the 1D
electron gas is that the energy and momentum conservation in 1D restriction opens a gap
in the single-particle continuum at low frequency where no Landau damping is possible.
This is very different from the 2D and 3D case where there is a continuous Landau
damping region in the energy-momentum space.

2. Dielectric function

The simplest and successful theoretical model to obtain the plasmon dispersion is
the random-phase approximation[1,20]. Within a one band (or subband for low-
dimensional systems) model, the RPA dielectric function can be written as[21]

dog)=1-V@Q M), O

Where V(q) is the Fourier transform of the electron Coulomb potential, 77°(w,q) is the free
patticle polanization function, and g is the wavevector in the respective dimensions.

V(q)=4ne®/e,q" for 3D; V(q) = 2re’ / £,q for 2D; and V(q) = —(2¢€*/&,) f.(qW)

for 1D with the Coulomb form factor f.(q#) depending on the confinement potential (W
stands for the effective thickness of the wire)[22]. The polarization function is given by

2 < flEWk+3)- AlEW
M(w,q)== A ~ , 2
(@.4) Q;E +q)-EWk )+ o +is @

where E(k)=h"k>/2m’ is the kinetic energy of the electron with momentum &, f(E)

is the Fermi distribution function, and /$ represents a small imaginary number.
The plasmon dispersions are obtained by the zeros of the dielectric function. At
long wavelength limit the plasmon dispersion relations within the RPA are written as

o(@)=w,+a(h/m’)g’ for 3D, w(q)=[2zne*q/e,m"1"* for 2D, and
a(q) =[-2zne*q* In(gW)/e;m’]"* for 1D, where a=3E,/5hw, is a constant

describing the leading wavevector dependence of the 3D plasmon mode. The region in
the @ —gplane where Im/I’(w,q) #0 defines the single-particle (electron-hole pair)

excitation continuum. In the single-particle excitation (SPE) continuum, one electron



below the Fermi surface can be excited above it and leaves a “hole” in the Fermi sea. As a
consequence, the plasmon excitations are damped (Landau damping).

The RPA dielectric function which is exact at high electron density limit (7, —0)
becomes poor at low density. Most obvious defect is that the RPA leads the pair
distribution function g(r) to become negative at small r. The first attempt to improve the
RPA was proposed by Hubbard{23] who suggested a dielectric function in the following
form '

/@) 1*(0.9) o
1+V(9)5(9) 1° (@,9)
where G(q) = q*/[2(q* +k})] is introduced to account for the effects of the exchange

interaction. This modification on the dielectric function is called static local field
correction. The most important improvement on the RPA is the STLS approximation.[24]
The STLS dielectric function is of the same form as the Hubbard dielectric function.
However it explicitly incorporates the exchange and correlation effects through a self-
consistent function G(q) give by

s(a),q):l—

S E
6@)=— T LFsg-Fp-u. @

Where the static structure factor of the electron gas S(g) can be obtained through
dielectric function £(®,q). In this scheme, the functions G(g), S(g), and £(®,q) have to
be calculated self-consistently. Many different form have been proposed to improve the
function G(g). Generally, it may also depends on frequency w. Here, we will not discuss
more. One of them is that, with the Monte Carlo simulation results, the static structure
factor S(g) can be obtained directly from the Fourier transform of the pair distribution
function.

For low-dimensional electron systems of multisubbands, the dielectric function
becomes a tensor due to the quantized subbands. For a 2D system, the electron
eigenenergy can be written as £, (k)=E, +h’k*/ 2m" where E, (n=12,3,..) is the
quantized energy levels due to confinement. The corresponding electron wave function
(for a confinement in the z-direction and electrons being free in the xy-plane) is given by

v i 7, z)=q/ VA4 )e";'?l/ln (z) where 7 and k are position and wavevector in the 2D

plane. As a consequence, the dielectric function becomes a tensor with subband indices #,
n’, m, and m’. Within the RPA it is written as a matrix form[25]

gnn',mm'(w’ q) = 5nm5n'm' - Vnn‘,mm'(q) H?nm' (a)? q) > (5)
with the matrix element of the Coulomb potential
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and the polarization function

iy ek +3)- 12, ) -

E,\k +q)—Em(l€)+a)+i5 '
In a multisubband 1D system the dlelectnc function is of the similar form. The plasmon
dispersions can be obtained by the determinant equation of the dielectric matrix

det I gnn',mm' ((1), q) l: 0

In a multisubband system, new plasmon modes appear due to interactions of the
electrons between different subbands. These intersubband plasmon modes represent
oscillations of the electrons in the transverse direction. The frequency of the intersubband
plasmons at long wavelength is finite because of the energy spacing between two
subbands. But the plasmon frequency does not depend only on the spacing of two
subbands. Electron-electron Coulomb interactions lead to two effects on the intersubband
plasmon frequency: the depolarization shift[26,27] and the excitonic shift.[28,29] The
depolarization shift arises from the resonant screening of the microscopic one-particle
dipole excitation by the collective effect of all other electrons. This collective influence is
usually calculated within the RPA leading to an increase of the intersubband plasmon
frequency. The excitonic shift, due to exchange-correlation effects, results from the
energy renormalization when an electron is transferred from one subband to another and
leaving a “hole” behind. This effect shifts the intersubband plasma resonance to lower
frequency. At low (high) electron density the excitonic (depolarization) shift dominates
and the plasmon frequency becomes smaller (larger) than the subband separation.

3. Plasmons in deuble layer electron systems

Coupled double 2D electron layer system promises to afford interesting new
physics. This system is realized in double quantum well structures in which two 2D
electron gases are established parallel to each other separated by a potential barrier. In
such systems many-body correlations due to Coulomb interaction are the crucial
ingredients of the detailed description of their behavior because the interlayer Coulomb
interaction can counterbalance the kinetic energy of the electrons leading to many-body
effects to dominate. The Coulomb correlation in double quantum wells leads to
interesting phenomena such as new states in fractional quantum Hall regime. Coupled
double electron and hole layer systems provide a new platform to study the Bose-Einstein
condensation in which the carriers of opposite charge in different layers attract each
other. They may form excitons and condense into a superfluid. The Coulomb drag effects
between two layers of electrons have provided an elegant and sensitive probe to study the
electron-electron scattering rate and correlation effects. Plasmons in coupled quantum



wells represent another significant area for the study of many-body effects in low
dimensions. Many-body effects and collective excitations have also been studied
extensively in multilayer systems in the presence and absence magnetic fields in last two
decades. Here we are going to discuss the collective excitations in double electron layers
at zero magnetic field.

-The RPA was generalized in calculation of the plasmon dispersion in bilayer
systems.[30-32] It is shown that, besides the usual plasmon mode of the 2D electron gas,
another new lower-lying mode appears whose frequency is of a linear dependence on the
wavevector g at long wavelength limit called acoustic mode. The acoustic plasmon mode
represents the out-of-phase oscillations of the charge-density waves in different layers of

electrons. While the usual 2D plasmon mode, proportional to J(} representing the in-

phase oscillation of the electrons in different layers, is called optical mode. Raman
spectroscopy has been used to probe the plasmon dispersions in GaAs/AlGaAs double
quantum well structures.[33-34] Both the optical and acoustic plasmon modes were
observed in experiments. Figure 1 shows the plasmon dispersion observed in the Raman
scattering spectra from GaAs/Aly;;Gag7As double quantum wells of width Wqw separated
by a barrier of width W,

The acoustic mode is of particular interesting because it is sensitive to the
correlation effects. The acoustic behavior is originated from screening of the long-range
part of the Coulomb potential by charges in the opposite layer. It 1s also predicted to
enhance the electron-electron inter-layer interaction responsible for the Coulomb drag
between electron layers and maybe involve in mechanisms for high temperature
superconductivity.
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Fig. 1. Dispersion of the optical (OP) and acoustic plasmon (AP) modes in GaAs/Aly;3Gag7As double quantum
wells. (#): Wow =200 A and Wy=600 A; (e): Wow=180 A and Wy=125 A. The curves are the theoretical
fitting (STLS) with the electron density as a parameter. The shaded region indicates the SPE continuum.[34]



The exchange and correlation effects that become even more important in
coupled bilayer systems are not considered within the RPA. For instance, the calculations
based on the RPA underestimate the transresistance of the interlayer Coulomb drag
effects by one order of magnitude. Only the theory including the local field correction due
to exchange and correlation effects within the STLS approach gives a reasonable
explanation to the experimental data.[35-36] The correlation effects on the plasmon
dispersions in coupled 2D electron gases have been studied exhaustedly within the STLS
self-consistent scheme. The dispersion of the acoustic mode is strongly affected by
correlations. Much work has been focused on the Landau damping effects on the acoustic
plasmons. It is expected that this mode is more susceptible to the Landau damping.
Although the RPA theory indicates a stable out-of-phase acoustic plasmon mode in
couple two identical electron layer system for any distance between them[31], further
calculations with correlation effects (STLS with static local field correction) showed that
there exists a critical separation between the layers.[37,38] Below this critical distance,
correlation pushes the acoustic mode merging entirely with the single-particle excitation
continuum and, consequently, being damped out. For two coupled layers with different
densities, however, the acoustic mode survives in the single-particle excitation region of
the higher density layer where the Landau damping is found very weak.[37] The Landau
damping on the acoustic plasmon mode in two coupled charge layers with different
effective masses is of similar character.[39] The theory with a frequency-dependent local
field function to consider the dynamical correlation effects yields qualitatively similar
results as those of the static approximation. Fig. 2 shows the optical and acoustic plasmon
dispersion within the RPA, static and dynamical STLS schemes. It is found that both the
optical and acoustic plasmon dispersions lie between the RPA and static STLS curves.
But it indicates the plasmon modes acquire damping even outside the single-particle
excitation region where the RPA and static STLS predict zero damping.[40] Temperature
effects on the plasmon modes have also been studied both theoretically and
experimentally in bilayer systems. A finite temperature tends to increase the both the
acoustic and optical plasmon frequencies in contrast to that the correlations depress the
plasmon modes to lower frequencies. Moreover the Landau damping at finite temperature
leads to asymmetry in the Raman line-shape of the acoustic plasmons.[33,41] It was also
found that the local fields do not change much with temperature for ksT< Ef.

The theoretical study on the plasmon excitations in strongly coupled bilayer
systems with the STLS framework was criticized[42,43] based the calculation of the
plasmon dispersion relations within the quasilocalized charge approximation (QLCA).
The theoretical results with this approach indicate that an energy gap exists in the out-of-
phase plasmon mode at long wavelength limit instead a linear (acoustic) dispersion. It is
believed that the STLS theory is inappropriate for the analysis of the long wavelength
behavior of the plasmon modes in strongly coupled bilayer systems. The discrepancy
between the STLS and QLCA may be due to the role played by the third frequency-
moment sum rule. On the other hand, Ortner analyzed different theoretical approaches
and argued that within the QLCA the neglect of the damping process overestimates the
correlations and the correct account of damping yields an acoustic mode without gap. In
view of the contradiction of the different theoretical predictions[44], further detail experi-
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Fig. 2. The plasmon dispersions for a double-layer system of electrons at r,=2 and d=200 A: The acoustic
(lower curves) and optical (upper curves) plasmons are depicted for the RPA (dotted lines), static STLS
(dashed lines), and dynamic STLS (solid lines). The shaded area indicates the single-particle excitation
region.[40]

mental study on the collective modes in bilayer system would be interesting, especially
the plasmon dispersion at long wavelength limit.

In a real bilayer system, when the two quantum wells are closed enough,
tunneling between the two layers occurs. Tunneling introduces qualitatively new physics
and new energy scale (i.e. the interlayer tunneling energy) in addition to the Coulomb
energy and the interlayer kinetic energy. Effects of tunneling between the two layers on

" (a) 150/30/150

Energy [meV]
a

Fig. 3. Plasmon dispersions in two coupled GaAs/Al;3GagsAs quantum wells of widths Wi=W2=150 A
separated by a barrier of width W,=30 A. The tunneling between the wells is considered. The modes (1,1) and
(1,2) correspond to the OP and AP modes when tunneling is absent. The shadow areas present the SPE
continua. Total electron density N,=2x10"! cm™>.[46]



the collective excitations are of great interesting. Theoretical calculations within the RPA
and Hubbard approximation show the interlayer tunneling introduces an energy gap on
the out-of-phase plasmon mode while the in-phase mode is not affected qualitatively. The
appearance of the energy gap in the out-of-phase mode is not a surprise in the bilayer
system with tunneling. Tunneling results in the bilayers evolving to a 2D systems with
two subbands. In this situation, the out-of-phase mode is actually an intersubband-like
plasmon mode[46,47] as shown in Fig. 3.

4. Plasmons in quantum wires

The crucial first step in developing the theory of plasmon dispersion in quasi-1D
electron gas was taken by Williams and Bloch using the RPA in 1974.[48] Subsequently,
a lot of theoretical studies have been carrier out within the RPA and the STLS self-
consistent approach. Most experimental work on the semiconductor quantum wires
during eighties was involved with the fabrication and characterization of electronic states
in wires. A clear signature of the 1D plasmon behavior of an electron gas was observed
by resonant Raman spectroscopy in GaAs/AlGaAs quantum wire structures in 1991.[12]
The observed plasmon dispersion is of almost a linear g dependence as predicted by the
RPA as shown in Fig. 4. Among the important research milestones in semiconductor
quantum wires are the observation of the 1D plasmons via ielastic light scattering
spectroscopy and the verification of the predicted acoustic linear plasmon dispersion
relation[12,49], the observation of pronounced 1D Fermi edge singularity in optical
spectra[50], and the quantum wire excitonic laser operation.[51]

Collective excitations and exchange-correlation effects in multisubband quasi-1D
electron gases in both isolated quantum wires[12,49,52-60] and multiwire superlattices
[61-65] have been extensively studied in the last decade. In contrast to higher
dimensional electron gas systems, the SPE are suppressed in 1D electron gas due to the
energy—momentum conservation leading to a gap in the SPE continuum at low energies.
In a quantum wire with two occupied subbands, the intrasubband plasmon mode due to
the second subband lies in the gap between the two intrasubband SPE continua and is
undamped. This feature is different from its counterpart in a 2D system where only one
intrasubband plasmon mode is undamped. It has also been shown that the higher
frequency intrasubband plasmon mode in the Q1D system (due to the lowest subband) is

of an energy proportional to g./In(gWW) at the long wavelength limit, whereas the lower

frequency one has a linear ¢ dependence. Furthermore, a large depolarization shift has
been found for the intersubband plasmon mode in single wires.

In a similar way to coupled two-dimensional electron gases[33,45,66], optical
and acoustic plasmon modes[67-69] were found in two coupled quantum wires. However,
the acoustic plasmon mode in coupled quantum wires is of relatively strong spectral
weight (comparable to the optical one) because of the non-existence of the low-energy 1D
single-particle excitations. These modes were also studied in multiwire
superlattices[54,61]. Theoretical work has been done on plasmon dispersions[68,69],
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Fig. 4. Collective and SPE spectrum of a 1D electron gas in the quantum limit. Solid dots represent the
intrasubband collective charge-density (CDE) and spin-density (SDE) excitations. Open circles display the
position of the peak at hqv  of intrasubband SPEs. Squares correspond to data of Q1D intersubband CDEs
measured in VV polarization. The shaded areas indicate SPE regime given by ImII(w,q) = 0. Inset:
comparison of the 1D intrasubband plasmon frequencies with those of a 2D electron gas with Ex =3.8 meV as
a function of g2, (Goili et al.[12])

electron—electron correlations[70,71], Coulomb drag[72], and tunneling effects in these
systems[73,74]. Tunneling effects have provided new devices formed by coupled
semiconductor quantum wires[74] and have attracted considerable theoretical interest. A
weak resonant tunneling in coupled wires leads to a finite energy value for the acoustic
mode at zero wavevector[68,75] as shown in Fig. 5(a). This is similar as that in coupled
quantum wells. Furthermore, it was predicted that, in a very weak non-resonance
tunneling condition in two coupled asymmetric quantum wires, the acoustic plasmon
mode presents two gaps at finite ¢ as indicated in Fig. 5(b).[75] Such acoustic mode
splitting indicates a resonant coupling between the acoustic plasmon and the single-
patticle excitations. Figure 6 shows the calculated Raman spectra due to the plasmon
scattering of the corresponding modes in Fig. 5(b) around (a) the lower and (b) the higher
energy gap. We see a strong Raman scattering peak at high frequencies due to the optical
plasmons. Besides, there are two split peaks due to the acoustic plasmons. With
increasing g, the spectral weight transfers from the lower to the higher frequency one.
When tunneling between two asymmetric quantum wires is strong in mode mixing occurs
among the different intrasubband- and intersubband-like plasmon modes. Calculated
Raman spectra indicate such a mixting leading to the intrasubband-like plasmon mode
partially Landau damped in the intersubband SPE continua.[47]
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Fig. 5. Plasmon dispersions in two coupled GaAs quantum wires of widths (a) W; = W,= 150 A and (b) W, =
150 A and W, =145 A separated by an Aly3Ga,-As barrier of width W, = 70 A. The total electron density
Ne=10° cm™". The solid (dash) curves present the plasmon dispersions with (without) tunneling. The thin and
thick curves indicate the in-phase (».) and out-of-phase (®. ) plasmon modes, respectively. The shadow area
presents the single-particle excitation regions.[75]

Fig. 6. Raman scattering spectra in the coupled quantum wires corresponding to Fig. 5(b) at different g: (a)
from 2 to 5x10* cm™ with equivalent difference Ag = 0.25 x10* cm™ and (b) from 0.4 to 1.4x10° cm™ with
Ag = 0.05 x10°> cm™. The intensity in (a) is enlarged 4 times as compared to (b). The different curves are
offset for clarity.[75]

5. Inelastic Coulomb scattering in coupled quantum wells and wires

Electron-electron interaction induced carrier relaxation is an important inelastic
scattering process in low-dimensional semiconductor nanostructures. It is often
(particularly in situations where LO phonon emission is energetically prohibited because
the excited electrons do not have enough energy) the most dominant relaxation process in
semiconductor quantum wells and wires, and is therefore of considerable fundamental
and practical importance. Band gap engineering has led to the possibility of fabricating
tunable far infrared quantum well cascade lasers (QCL’s) and efficient quantum well
infrared photodetectors (QWIP’s), where inelastic carrier relaxation via electron-electron
interaction is a crucial (perhaps even decisive) process in determining device operation
and feasibility. For QCL and QWIP operations it is the intersubband inelastic relaxation
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that turns out to be the primary rate-limiting scattering process. For other proposed
devices, such as the planar hot electron transistors or related 2D high-speed devices,
intrasubband relaxation is the important process. A thorough quantitative understanding
of intra- and intersubband relaxation due to electron-electron interaction is therefore
important for the successful realization of these devices.

With improving materials growth and nanostructure fabrication techniques one
expects a wide range of 1D experimental phenomena and projected applications in
semiconductor quantum wire systems. Many of the projected applications such as
ballistic electron transistors, quantum wire-based infrared photodetectors and lasers, and
quantum wire THZ oscillators and modulators will utilize fast carriers (injected or
excited) in doped quantum wires as the active device element. Effective control and
manipulation of these fast electrons in doped quantum wire systems are therefore
essential in projected quantum wire optoelectronic applications.

One of the most crucial physical processes that will limit the quantum well and
quantum wire optoelectronic applications is the relaxation of these fast electrons. The
main ultrafast mechanism controlling the relaxation process is the electron-electron
interaction. In addition to this practical technological motivation arising from the band-
gap-engineered quantum nanostructure devices, there is also an obvious fundamental
reason for studying inelastic Coulomb scattering in 2D and 1D electronic systems.
Inelastic electron-electron scattering determines the quasi-particle spectral width, as
determined, for example, in tunneling measurements, through the imaginary part of the
electron self-energy function.[76,77]

The central quantity to study the inelastic electron-electron scattering is the
imaginary part of the self-energy function. Within the leading-order dynamically screened
Coulomb interaction expansion (the so-called GW approximation in the multisubband
situation), it is the imaginary part of electronic on-shell self-energy matrix, M, in the
quantum well or wire subband mdex (i, j, etc.). The subband self-energy in the
multisubband situation is, in general, off-diagonal, reflecting the breaking of the
translational invariance along the confinement direction. The off-diagonal self-energy,
Im(M;), incorporates in an intrinsic many-body manner the possibility of electron-
electron-interaction-induced intersubband scattering (both virtual and real) of carriers. In
the doped situation of our interest the many-body self-energy approach is also a
reasonable technique in calculating the inelastic carrier relaxation rate in spite of the
Boltzman equation approach, where the scattering rates are usually calculated using
Fermi’s golden rule.[78] The dynamical screening inherent in the many-electron system,
which affects the calculated inelastic scattering rates in profound and highly nontrivial
way, is automatically incorporated in the many-body G# expansion, whereas inclusion of
dynamical screening in Fermi’s golden rule type formula is done by replacing the bare
interaction by a screened interaction in an ad soc manner.

The theory, as mentioned above, is based on the so-called GW self-energy
approximation[79-82] where the electron self-energy A is obtained in a leading order

expansion of the dynamically screened Coulomb interaction W=V’ where the
superscript s denotes dynamical screening of the bare electron-electron interaction matrix
V in the multisubband situation. We use the RPA to obtain the dynamically screened
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Fig. 7. Total inelastic Coulomb scattering rate of electrons as a function of electron momentum k in coupled
two (a) symmetric quantum wells of widths W= W,=150 A and (b) asymmetric wells of W;=150 A and
W,=140 A structures separated by a barrier of width W,=30 A. (Figure (b) corresponds to figure 3). The thick
solid and thick dashed lines denote the total scattering rate o, (k) for n=1 and 2, respectively. The symbols on
the thin lines represent each contribution to the total calculated scattering: diamonds standing for the SPE,;
contribution, the filled squares stand for the intrasubband (1,1) plasmon contribution, triangles stand for the
SPE,, contribution, and opaque squares stand for the intersubband (1,2) plasmon contribution. Total electron
density N,=2x10" cm™.[46]

interaction V'~ , ie., V° =& 'V . We also approximate the electron Green’s function G by
the noninteracting Green’s function G°, making our formal expression for the self-energy
matrix to be

M= J' GV*, ®)
where the integral involves integrating over all internal momentum and energy variables

as well as summing over all internal subband indices (and spin). Putting the subband
(matrix) indices explicitly in Eq. (8), we get

mM, =Im Y [Go i - ©

We note, however, that G°, being the noninteracting Green’s function, is necessarily
diagonal in subband indices (i.e., an electron cannot undergo intersubband scattering in
the absence of interaction):

w~ Gyl (10)

Im Im >
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Fig. 8. The inelastic Coulomb scattering rates in two coupled quantum wires of W;= W, = 150 A separated by
a barrier W, =30 A (long-dash line), 70 A (dashed line), 300 A (dotted line), and oo (thin-solid line). No
tunneling occurs between the wires and electron density in each wire is 7. =0.5x10° cm™®. The inset shows the
acoustic and optical modes (thick dashed lines) for #»=30 A, and the intrawire energy- vs momentum-loss
curves at the onset of the optical (thin solid line) and acoustic (thin dashed line) plasmon scattering.[82]

Then, Eq. (9) becomes

mM, =Y [Im[G}V;;1, (11
I

with V. =(&7'V),, . Equations (9) and (10) are the central formal equations to obtain

the inelastic relaxation time 7. The scattering rate o and the relaxation time 7 are
connected by 7 = /(20) where o =|ImM |.

We emphasize that the inelastic relaxation time 7 defined above is an energy
relaxation time (and not a momentum relaxation time, as, for example, will enter the
calculation of the mobility of the system). The inelastic relaxation time defines the
lifetime of a single-particle energy eigenstate in the system. Due to Coulomb scattering
among the electrons the single-particle stationary states are well-defined only over a
limited time scale and our calculated 7 is a measure of this lifetime arising from electron-
electron interaction.

The total inelastic Coulomb scattering rate o,(k) (thick solid line) and o2(k)
(thick dashed line) of fast electrons in the subband n=1 and 2 as a function of wavevector
k in two symmetric and two asymmetric GaAs/Aly3Gag7As quantum well structures are
shown in Figure 7(a) and 7(b), respectively. The symbols on the thin lines identify the
contributions to oi(k) and o,(k) coming from the emission of single-particle and
collective excitations individually. Single-particle excitations contribute for all values of
wavevectors k. However, neither intra- nor intersubband plasmon mode contributes to the
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scattering rates close to the subband Fermi wavevectors. (k7 =0.88 x10° cm™ and

k2, =0.69 x10° cm™ for the symmetric case). These collective modes provide excitation
channels for inelastic relaxation only above some threshold wavevectors.

The inelastic Coulomb scattering rate 6,(k) in two coupled symmetric quantum
wires with no tunneling is shown in Fig. 8. Two sharp peaks are result from the scattering
due to the optical and acoustic plasmons, respectively.

6. Summary

We have discussed the collective excitations (plasmons) in low-dimensional
electron systems. We describe especially the plasmon dispersion in coupled bilayer
electron gases and in coupled quantum wires. In both coupled bilayer and biwire systems,
acoustic plasmon mode appears result from the Coulomb interaction between them. This
mode is susceptible to electron correlations and is of particular interesting. Effects of
electron correations, Landau damping, and tunneling are studied in different systems. We
have also studied the electron-electron interaction induced fast electron relaxation. The
GW approximation is extended to multisubband low-dimensional systems to calculate the
inelastic Coulomb scattering rate. The contributions of different scattering channels due
to collective and single-particle excitations are analyzed. In comparison to the 2D case,
the scattering due to single-particle excitations is suppressed in coupled biwires, but the
optical and acoustic plasmons induce two sharp peaks in the scattering rate. Quantitative
understanding of such relaxation processes in multisubband low-dimensional systems are
meaningful for the successful realization of photoelectronic semiconductor nanodevices.
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We show that a weak nonresonant tunneling between two quantum wires leads to splitting of the acoustic
plasmon mode at finite wave vector. Two gaps open up in the dipersion of the acoustic plasmon mode when
its frequency is close to the frequencies of the quasiparticle excitations. In contrast to the Laudau damping of
the collective excitations, these gaps are attributed to tunneling-assisted acoustic plasmon—quasiparticle exci-
tation resonances. We predict that such a resonance can be observed in inelastic light scattering spectrum.

The plasmons of coupled low-dimensional electron gas
systems provide a valuable platform to study the electronic
many-body effects. In coupled double one-dimensional (1D)
electron quantum wires, similarly to coupled two-
dimensional electron systems,' optical and acoustic plasmon
modes® * were found. They were interpreted, respectively, as
in-phase and out-of-phase oscillations of the electron charge
density in the two wires. Theoretical studies’!” have been
done on the plasmon dispersions, electron-electron correla-
tion, far-infrared absorption, Coulomb drag, and tunneling
effects in these systems. Correlation induced instability®? of
the collective modes were predicted in coupled low-density
quantum wires. Experimentally, far-infrared spectroscopy
and Raman scattering were used to detect the collective
excitations.>!! Very recently, it was shown that a weak reso-
nant tunneling in the coupled two 1D electron gases leads to
a plasmon gap in the acoustic mode at zero wave vector.’

In this paper, we report a theoretical study of the effects
of weak tunneling on the collective excitations in coupled
quasi-1D electron gases. Tunneling between quantum wires
can modify the collective behavior of the electron systems in
several aspects. Interwire charge transfer and intersubband
scattering become possible through the tunneling. As a con-
sequence, new plasmon modes and coupling between differ-
ent modes appear. On the other hand, intersubband interac-
tion leads to intersubband quasiparticle excitations. We
expect the tunneling will mainly affect the acoustic plasmon
mode because its polarization field is localized in the space
between the two wires where the tunneling occurs. Our nu-
merical results of paramount importance show that a weak
nonresonant tunneling between the wires produces two gaps
in the acoustic plasmon mode at finite wave vector g. These
gaps are attributed to the tunneling-assisted acoustic
plasmon—quasiparticle excitation resonances. It means that,
in contrast to the Landau damping of plasmon modes, a reso-
nant scattering occurs between the collective plasmon exci-
tation and the intersubband quasiparticle excitation through
tunneling. Such a resonance leads to splitting of the acoustic
plasmon mode around the quasiparticle excitation region
and, consequently, a double-peak structure in the corre-
sponding inelastic light-scattering spectrum.

We consider a two-dimensional system in the xy plane
subjected to an additional confinement in the y direction,
which forms two quantum wires parallel to each other in the
x direction. The confinement potential in the y direction is
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taken to be of square well type of height ¥, and widths W,
and W, representing the first and the second wire, respec-
tively. The potential barrier between the two wires is of
width #, . The subband energies £, and the wave functions
¢.(y) are obtained from the numerical solution of the one-
dimensional Schrodinger equation in the y direction. We re-
strict ourselves to the case where n=1,2 and define w,
=FE,—E, as being the gap between the two subbands. The
interpretation of the index n depends on tunneling between
the two wires. When there is no tunneling, # is wire index.
On the opposite, when the wires are in resonant tunneling
condition, # is subband index.

The dispersions of the plasmon modes are obtained by the
poles of the density-density correlation function, or equiva-
lently by the zeros of the determinant of the dielectric matrix
det|e(w,q)|=0 within the random-phase approximation
(RPA). The RPA has been proved a successful approxima-
tion in studying the collective charge excitations of Q1D
electron gas by virtue of the vanishing of all vertex correc-
tions to the 1D irreducible polarizability.’ Figure 1 shows the
plasmon dispersions of the coupled GaAs/Aly;Gay,As (V,
=228 meV) quantum wires in (a) resonant tunneling and
(b) nonresonant tunneling. The numerical results, with tun-
neling effects, of the in-phase (optical) w, and out-of-phase
(acoustic) w_ modes are presented by the thin-solid and
thick-solid curves, respectively. For a comparison, the in-
phase (out-of-phase) plasmon modes without tunneling are
plotted in the thin-dashed (thick-dashed) curves. In Fig. 1(a),
we observe that, in resonant tunneling, the out-of-phase
mode losses its acoustic characteristic at small ¢ replaced by
two intersubband modes. In Fig. 1(b), for the two wires out
of resonant tunneling, we find that 99.4% of the electrons in
the lowest (second) subband are localized in the wide (nar-
row) quantum wire. In other words, each quantum wire of
the 1D electron gas only has a small edge in the other. How-
ever, such an edge affects significantly the acoustic plasmon
mode. Two gaps open up around the intersubband quasipar-
ticle excitation region.

The dynamical dielectric function is given by
Snn’,mm’(w’q) = 5nm5n’m' - Vrm’,mm’(q)nrm’(qaw), where
8,m is the Kronecker & function, V,,’ ..'(q) the bare
electron-electron Coulomb interaction potential, and
I,,(w,g) the 1D polarizability.>'? Within the RPA,
I1,,/(w.,q) is taken as the non-interacting irreducible polar-

1704 ©2000 The American Physical Society
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FIG. 1. Plasmon dispersions in two conpled GaAs/Al, Ga,,As
(V=228 meV) quantum wires separated by a barrier of width
Wy=70 A of (a) W,=W,=150 A and (b) W,=150 A and W,
=145 A. The total electron density N,=10° cm™!. The solid
(dash) curves present the plasmon dispersions with (without) tun-
neling. The thin and thick curves indicate the in-phase (w,) and
out-of-phase (w_) plasmon modes, respectively. The shadow area
presents the quasiparticle excitation regions QPE,, .

izability function for a clean system free from any impurity
scattering. In the presence of impurity scattering, we use
Mermin’s formula™ including the effect of level broadening
through a phenomenological damping constant vy, The
electron-clectron interaction potential ¥, .+ (g) describes
two-particle scattering events.''* There are different scatter-
ing processes in the coupled quantum wires: (i) Intrawire
(intrasubband) interactions ¥ 1,(¢)=V,,V2n(q)=V3,
and V' 1(q) =V5 11(q) =V representing the scattering in
which the electrons keep in their original wires (subbands);
(i) Interwire (intersubband) interactions ¥;12(q)
=Va2109) =V1221(q) = V31,12(q) =Vp  representing - the
scattering in which both electrons change their wire (sub-
band) indices; and (iii) Intra-interwire (subband) interac-
tions Vi 1o(@)=V12(9)=Via11(g)=Van(g)=V, and
Vaa,1204) = V221(q) = V1222(q) = V21 22(q) =V indicating
the scattering in which only one of the electrons suffers the
interwire (intersubband) transition. Notice that, when there is
no tunneling, V= V=V ,=0. Clearly, they are responsible
for tunneling effects on the collective excitations.

When the tunneling is considered, the plasmon disper-
sions of two coupled quantum wires are determined by the
equation,

F\Fy=[(1=V 01, ) Vil + (1= VIl V3L,
=2V ¥V VIl (I, + IT,,) =0, 1)

where Fy=(1~VI1,)(1~VIl,)— V2l |l and F,
=1=Vp(11 5 +1II,)). This equation consists of two terms:
F|F, and the rest. We know that tunneling introduces the
Coulomb scattering potential ¥V, and V. However, for
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two symmietric quantum wires in resonant tunneling, ¥, and
Vy vanish and, consequently, the second term in Eq. (1) is
zero. So, the plasmon modes are determined by equations
F1=0 and F,=0. The latter carries the information of tun-
neling effects resulting in two out-of-phase (intersubband)
modes as shown in Fig. 1(a). To reveal the relative impor-
tance of the different plasmon modes, we performed a nu-
merical calculation of the oscillator strength defined by
w{|#(det|&})/ éw| -, }~'. It was found that the higher fre-

quency out-of-phase plasmon mode is of finite oscillator
strength at ¢ =0. But the lower one has a very small oscil-
lator strength and is unimportant.*

When the two wires are out of resonant tunneling, the
out-of-phase plasmon mode changes dramatically at small ¢
as shown in Fig. 1(b). It restores the acoustic behavior at g
—0 but develops two gaps at finite g. The splitting of the
acoustic plasmon mode occurs when its frequency is close to
the frequencies of the infersubband quasiparticle excitations
QPE),. In this case, the small overlap between the wave
functions of the two subbands leads to V,,Vp, and V¢
>Vp,V; and V. It means that the F| in Eq. (1) is now
responsible for the main features of both the optical and
acoustic plasmon modes. A numerical test indicates that the
roots of the equation ;=0 can almost recover the optical
and acoustic plasmon dispersions of which tunneling is not
considered. Whereas, the part F, relating to possible inter-
subband plasmon becomes less important. We also notice
that ¥, does not appear in the coupling term in Eq. (1). So,
the potentials V; and Vy are responsible for the splitting of
the acoustic plasmon mode. These interactions represent the
electron-electron scattering during which only one of them
experiences intersubband transition. When the momentum
and energy transfer between the two electrons occur in the
region QPE,,, only this electron creates an intersubband
electron-hole pair. From this point of view, the momentum
and energy conservation in the scattering leads to such a
transition getting rid of the Landau damping. In other words,
the intra-intersubband scattering ¥, and ¥, produce a reso-
nance between the collective excitation and the quasiparticle
excitation. From another point of view, the scattering ¥, and
Vy result in a net charge transfer between the wires. Thus,
they produce a local electric field between the two wires and
disturb the polarization field of the acoustic plasmon mode.
The energy gaps in the acoustic plasmon mode are dependent

0.8
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FIG. 2. The normalized gap energies as a function of the total
electron density in the coupled GaAs/Al,;Ga, ;As quantum wires of
(a) W,=150 A, W,=145 A, and W,=70 A (solid circles with
w,=0.94 meV); and (b) W,=150 A, W,=140 A, and W,
=50 A (solid squares with w,=2.01 meV).
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FIG. 3. Raman scattering spectra in the coupled quantum wires
with W,=150 A, W,=145 A, and W,=70 A at different g: (a)
from 2 to 5X10* cm™! with equivalent difference Ag=0.25
*x10* ¢cm™!, and (b) from 0.4 to 1.4X10° cm™' with Ag=0.05
x10° em™'. N,=10° cm™! and ¥=0.05 meV. The intensity in
(a) is enlarged 4 times as compared to (b). The different curves are
offset for clarity.

on the electron density and tunneling strength. We can define
the gap as the frequency difference between the lower and
upper branch of the split mode at the ¢ where the unper-
turbed acoustic plasmon frequency is in the center of the
quasiparticle excitation region. In Fig. 2, we show the elec-
tron density dependence of the two gaps normalized by @, in
different structures. The energies of the two gaps decrease
with increasing the total electron density. One also sees that,
for smaller barrier width, the plasmon gaps become larger.
The plasmon modes in the coupled quantum wires can be
observed in the Raman spectroscopy. The intensity of the
Raman scattering is proportional to the imaginary part of the
screened density-density correlation function with a weight
reflecting the coupling between the light and different plas-
mon modes.'*!* Figure 3 shows the calculated Raman spec-
tra due to the plasmon scattering of the corresponding modes
in Fig. 1(b) around (a) the lower and (b) the higher energy
gap. In the calculation, we took the damping constant y
=0.05 meV corresponding to a sample with electron mobil-
ity in order of 5X10° cm?/Vs. We see a strong Raman scat-
tering peak at high frequencies due to the optical plasmons.

tic Coulomb scattering rate was obtained by the imaginary
part of the electron self-energy within the GW
approximation.'*! In Fig. 4, we plot ¢,(k) of an electron in
the narrower quantum wire (#=2) of the coupled wire sys-
tem corresponding to Fig. 1(b). When the tunneling is not
included, the lower and higher scattering peaks are resulted
from the emission of the acoustic and optical plasmons, re-
spectively. The weak tunneling influences its k-dependent
behavior and leads to a splitting of the lower scattering peak
in o,(k), corresponding to the splitting of the acoustic plas-
mon mode.

In summary, we have studied the effects of weak tunnel-
ing on the collective excitations in two coupled quantum
wires. We show that a weak nonresonant tunneling between
the wires leads to the splitting of the acoustic plasmon mode.
Two gaps open up in the dispersion of the acoustic plasmon
mode. In contrast to the Landau-damping mechanism of the
collective excitations, our result gives an evidence that the
resonant coupling between the collective excitations and the
quasiparticle excitations occurs in coupled quantum wires
through tunneling. Furthermore, we predict that such a reso-
nance can be observed in the inelastic light-scattering spec-
trum. Besides the optical plasmon scattering, a double peak
structure appears around the quasiparticle excitation regime
due to the split acoustic plasmon modes. The splitting of the
acoustic plasmon mode also influences other electronic prop-
erties of the system, for instance, the Coulomb inelastic-
scattering rate.
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'D.S. Kainth, D. Richards, H.P. Hughes, M.Y. Simmons, and D.A.
Ritchie, Phys. Rev. B 57, R2065 (1998); S. Das Sarma and E.H.
Hwang, Phys. Rev. Lett. 81, 4216 (1998), and references
therein; D. Grecu, Phys. Rev. B 8, 1958 (1973).

2T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. B
38, 12732 (1988).

*3. Das. Sarma and E.H. Hwang, Phys. Rev. B 59, 10 730 (1999);
Q.P. Li and S.Das Sarma, ibid. 43, 11768 (1991); C. Steine-



PRB 61

bach, D. Heitmann, and V. Gudmundsson, ibid. 58, 13 944
(1998).

4y, Shikin, T. Demel, and D. Heitmann, Phys. Rev. B 46, 3971
(1992); W. Que and G. Kirczcenow, ibid. 37, 7153 (1988).

3].S. Thakur and D. Neilson, Phys. Rev. B 56, 4671 (1997).

ST.V. Shahbazyan and S.E. Ulloa, Phys. Rev. B 54, 16 749 (1996).

"B. Tanatar, Solid State Commun. 99, 1 (1996).

$A. Gold, Philos. Mag. Lett. 66, 163 (1992).

7. Wu and P.P. Ruden, J. Appl. Phys. 74, 6234 (1993); 71, 1318
(1992).

t0C. Steinebach, D. Heitmann, and V. Gudmundsson, Phys. Rev. B

BRIEF REPORTS 1707

56, 6742 (1997).

1 ¢, Schilller ef al., Phys. Rev. B 54, R17304 (1996).

12F. Prengel and E. Scholl, Phys. Rev. B 59, 5806 (1999); G.-Q.
Hai, F.M. Peeters, J.T. Devreese, and L. Wendler, ibid. 48,
12016 (1993).

®N.D. Mermin, Phys. Rev. B 1, 2362 (1970),

“Marcos R. S. Tavares and G.-Q. Hai (unpublished).

'*G.-Q. Hai, N. Studart, and G.E. Marques, Phys. Rev. B 57, 2276
(1998).

683 Y.-K. Hu and S. Das Sarma, Phys. Rev. B 48, 5469 (1993); P.
Sotirelis, P. von Allmen, and K. Hess, ibid. 47, 12 744 (1993).



PHYSICAL REVIEW B, VOLUME &35, 245326

Collective and single-particle excitations in conpled quantum wires in magnetic fields

I.-B. Xia
Instifuto de Fisica de Sao Carios, Universidade de Sao Paule, Sao Carlos. SP 13560-970, Brazil
and National Laboratory for Superlatiices and Microstruciures, Instituie of Semiconduciors, Chinese Academy of Sciences,
Beijing 100083, China

G.-Q. Hai
Instituio de Fisica de Sao Carlos, Universidade de Sao Puulo, Sao Carlos, SP 13560-970, Brazil
(Received [3 March 2002; published 24 June 2002}

The full spectra of magnetoplasmons and single-particie excitations are obtained of coupled one-dimensional
electron gases in paralle]l semiconductor qnantum wires with tunneling. We show the effects of the interwire
Coulomb interaction and the tunneling, as well as the magnetic-field-induced localization on the elementary
excitations in symmetric and asymmetric coulped quantum wire structures. The interacton and resonance
between the plasmon and the intersubband single-particie excitations are found in magnetic ficlds.

DOI: 10.1103/PhysRevB.65.245326

L INTRODUCTION

In coupled quantum wires, the Coulomb interaction be-
tween one-dimensional electron gases leads to the so-called
optical and acoustic plasmon modes.' Tunneling between the
wires modifies these plasmon modes, especially the acoustic
one.”™* When an asymmetry is introduced between the two
wires, a very weak nonresonant tunneling opens up gaps in
the acoustic plasmon mode resulting from a resonance be-
tween the acoustic plasmon and single-particle excitations. A
transverse magnetic field in such systems affects the tunnel-
ing strength and also the single-particle and collective
excitations,”® In Refs. 5 and 6 the far-infrared absorption
spectra due to the intersubband (transverse) magnetoplasmon
modes are calculated with and without tunneling between the
wires. In such a spectrum, only the plasmon excitations at
long wavelength limit (¢g—0) contribute to the absorption.
To observe the absorption peaks result from the so-called
intersubband plasmon modes, a four-subband model was
used in their calculations (two subbands originated from
cach wire). The enhancement due to interwire exchange in-
teraction of the tunneling gap between the symmetric and
antisymmetric states was included in the calculation in Ref.
5, and three peaks were found in the absorption spectrum.
They were attributed to the intersubband optical and acoustic
plasmon modes {from the lowest symmetric state to first ex-
cited symunetric and antisymmetric states, respectively).
However, no information was given for the intersubband
plasmon mode due to tunneling induced two lowest sub-
bands (the lowest symmetric and antisymmetric states). In
Ref. 6 the tunneling effect was considered only for the two
higher subbands, and the calculation was performed in the
small-magnetic-ficld limit. One intersubband magnetoplas-
mon absorption peak from the ground state (no tunneling
effect) to the higher empty states were found. It was also
shown that a small magnetic field could induce a Landau
damping of this plasmon mode. However, a clear overall
picture of the single-particle and magnetoplasmon excita-
tions 1 the system of coupled quantum wires has not been
obtained so far. A siinilar situation occurs for these excita-
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tions in coupled quantum wells in a parallel magnetic field.
Magnetoplasmons were studied in double quantum wells in a
paraliel magnetic field where the tunneling was included
within only the lowest order of perturbation.”

The presence of a (ransverse magnetic field in couple
quantum wires leads to the motion of the electrons in the
wire direction being coupled to that in the lateral direction,
The single-electron wave function in the lateral direction de-
pends on the wave vector & in the wire direction. If we pro-
ceed in the standard manner of linear-response theory to de-
rive the dispersion relation of the magnetoplasmons, we
would have to solve a secular equation with infinite dimen-
sions according to the wave vector k. This leads to difficul-
ties in the calculations even within the random-phase ap-
proximation (RPA). In this work, the magnetoplasmon
dispersions are obtained by projecting the electron states of
the coupled wires to a basis constructed by the states of
corresponding single wires. We show the effects of the tun-
neling sirength and the magnetic-field-induced localization
on the plasmon modes in such systems. We find a strong
interaction between the collective modes and the single-
particle excitations induced by transverse magnetic ficlds and
tunneling,

I THEORETICAL FORMALISM

We consider two coupled parallel quantum wires in the xv
plane subjected a transverse magnetic field B in the
z-direction, The quantum wires are of zero thickness in the =
direction. The confinement potential ¥(y) in the » direction
forms two quantum wires parallel to each other in the x di-
rection, Tt is taken as square well type of widths /7, and ¥,
and barrier height V7, . The potential barrier between the two
wires is of width ¥, . The numerical calculation is applied to
GaAs/Aly Ga, -As structures with ¥,=228 meV.

The plasmon modes in such a sysiem in the absence of
magnetic field were studied in our previous work.”” How-
ever, 2 magnetic field in the z divection strongly affects the

€2002 The American Physical Society
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single-particle and collective excitations, as will be shown
below. The single-electron Hamiltonian in the present system
can be wrillen as

chiki?

+V(»), (D

&

1
H’:ﬁ!f)d—p + -—-—J l)'— }

where & is the electron wavevector in the x direction, m™ the
clectron effective mass, and e the electron charge. The above
equation indicates that the effect of an external magnetic
field is equivalent to an additional parabolic potential in the v
direction, whose origin depends on the wave vector k£ and the
magnetic field B. The cigenenergy and wave function in the y
direction are functions of & noted by £,(k) and i, (v} We
consider symmetric and also asymmetric two coupled wires
with tunneling. The asymmeltry is introduced by the different
wire widths 77, # W, and the tunneling strength is controlled
by the barrier thickness between the wires. For the consid-
ered structures the excited states are much higher than the
ground states of the two coupled wires. We restrict ourselves
to the case of two ground states n=1 and 2. For two sym-
melric quantum wires, the wave functions o, ((v) at k=0
are symmetric (n=1) and antisymmetric (#=2) functions
of y. For nonzero k, the wave function ¢, () shifts to one
wire, while ¢, ((v) to the other.

The screened Coulomb potential within the RPA is deter-
mined by the following self-consistent equation,

Vi pe(9:@)= Vet ak'(‘?)+2 Ve k(4

XTI G0 Vi gl o), ()

with the bare Coulomb potential
C 22 .
Vi pe )= o f dy j A U 3V g g(3)

XKO(G’[)'“."' E ) wm'k' +q(."'! ) d’ml;’(,‘:’ J (3)

and

_ ”_Em’(l‘)]_—/]—};m(l‘—q)]
CE (0 —E,,,(k—q) +i(w+i07)

(U)(

)

where the indices a={n.a'}, B={m.m’'}, and y={11'}
represent pairs of the quantum numbers, and f(E) is the
Fermi distribution function.

In principle, the dispersion relation of the collective exci-
tations can be obtained by the secular equation of the
screened Coulomb potential defined by Eq. (2). However, it
depends not only on the indices o and S but also on the
wave vectors & and £’ leading to a dielectric matrix of infi-
nite dimensions which is not “properly” convergent in that a
truncated submatrix with a finite dimension. For a system
with a parabolic confinement potential, such as a single para-
bolic quantum well (wire) in a parallel (transverse) magnetic
field, this difficulty was overcome by expanding the
A-dependent wave function as a series of harmonic function
so that the dielectric function is projected in a finite
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FIG. 1. The coefficients C,;(k) (n,i=1 and 2) at B=1 T for
the symmetric (asymmetric) coupled quantum wires of W ,=W,
=150 A (W,;=150 A, W,=140 A) and W,=30 A are plotted
by the solid (dahsed) curves. The dispersion relations of a single-
electron in the symmetric (asymmetric) structure are indicated in
the left (low) inset.

submatrix.®? In this work, however, we choose another basis
for our system of the coupled quantum wires. We consider
the two quantum wires independently, and find the electron
states in the single wires as a basis ¢;()). The wave function
¥,{v) of the coupled wires is expanded in this basis accord-
ing 1o the & states. As will be shown below, we find it is
enough to include only the ground states of the two single
wires,

""’n’\ 2 Cm(; )¢:(J) (S)

where i=1 and 2 represent the ground states of the single
wires W, and H,, respectively, The coefficients C,;(k) are
shown as the solid curves in Fig. 1 for symmetric structures
of W= W,=150 A and W,=30 A at B=1 T. The dis-
persion relations of the two subbands are schematically indi-
cated in the inset on the lefi. At £=0, the expansion coeffi-
cients cross and their absolute values are 172, ie., the
electrons are distributed equally in the two wires. For large
|k|, their absolute values approach to 1 or 0, indicating a
magnetic-field-induced localization. The magnetic field
pushes the electrons with k<(0 in the n=1 (n=2) sub-
band to the lefi wire W, (the right wire 7). For those elec-
trons with £>(, the magnetic field has the opposite effect.
The expansion coefficients satisfy approximately the equa-
tion ,-,,C2(k)=1 within a numeric error <0.5%, indi-
cating that the basis functions ¢,()) and ¢,{y') are orthogo-
nal and almost complete. For the asymmetric structure with
W,=150 A, W,=140 A, and W,=30 A at B=1 T, the
coefficients C,;(k) are given by the dashed curves. They
cross at £=6.6%10° c¢m™!, where the anticrossing of the
two subbands occurs as indicated by the lower inset in the
figure.
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With such an expansion, both the Coulomb potential
C . S

La'/f,ﬂ/\"(({) and the screened potential I,ak,/;?k’(q”(")) can be
written in the form

Vo, pr = ; Sk, eSp 7V €
&

where §={i,i"} and p={j,j'} indicate pairs of the quantum
numbers in our basis, and S, ;=C,{k—g)C, (k). As a
consequence, Eq. (2) reduces to

\

/ Y

| C : oy

{ 05”7'~2; vﬁ-é’(q)nf’sﬂ'(q’w’ u;,_v(q,w)
1y £ o

=u£,,(q).

The dispersion relations of the magnetoplasmon excitations
can be obtained by the equation

Det| 8, ,~ 2, vg'g,(q)flf:‘,,(q,w)1=0, (6)
g ) j
where
¢ 2¢2 i
0§ 0= [ av [ @y’ @01 0t)
XKolqly—¥" [V, ) (") (7)
and
Ilé',n(q*w): E (:nl’i(\k+q)cmi’(k)
mm’ &
Xij(k)cm'j’(k+q)ng)/3(q-,w)- 8

IH. NUMERICAL RESULTS AND DISCUSSIONS

Figure 2 shows the magnetoplasmon and the single-
particle excitation (SPE) specira of the two coupled symmet-
ric quantum wires of W, =W,=150 A with a total electron
density N,=10% cm~!. The intrasubband ({intersubband)
SPL continua are indicated by the dark (light) shadow areas.
Figures 2{a), 2(b), and 2(c) show structures of #,=30 A
with different transverse magnetic fields 8=0, 1, and 2 T,
respectively. In this structure, the tunneling-induced energy
gap between the two subbands at zero magnetic field is A
=1.7 meV. Figure 2{d) is for the structure of #,=70 A at
magnetic field B=1 T. Tn this case, A=0.14 meV at zero
magnetic field indicating a much weaker tunneling.

The plasmon and SPE spectra al zero magnetic field as
shown in Fig. 2(a) are similar to those of a single symmetric
quantum wire with two occupied subbands. Two intrasub-
band (solid curves) and two intersubband plasmon modes
(dash curves) are found, as discussed in Ref. 3. The symme-
try of the system and the parabolicity of the subbands ensure
that the intrasubband modes do not couple to the intersub-
band ones.

The transverse magnetic ficld pushes the electrons with
k<Q (k>0)inthe n=1 and 2 (n=2 and 1) subbands to the
W, and ¥, wires, respectively, affecting the tunneling
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FIG. 2. The plasmon dispersions (thick curves), the intrasub-
band SPE (dark shadow), and the intersubband SPE (light shadow)
continna in the symmetric coupled quantum wire structures of ¥,
=W,=150 A and B,=30 A at different magnetic fields (a) B
=0, (Y B=1 T and (c) B=2 T. The results for the structure of
W,=W,=150 A and W,=70 A at B=1 T are presented in (d).
The total electron density A, =10% cm™".

strength between the wires. In & space, the magnetic field
leads to the two original parabolic subbands at B=0 shifting
to the opposite directions and the tunneling leads to an anti-
crossing in the dispersion of the two subbands which is sche-
matically shown in the left inset in Fig. 1. As a consequence,
the intersubband SPE region is expanded, developing a band
at ¢=0. The magnetic field and tunneling-induced nonpara-
bolicity in the subband dispersion results in interactions be-
tween the single-particle and the collective excitations. Such
interactions are represented by the electron-electron scatter-
ing events during which only one of the electrons experi-
ences an intersubband transition. When the momentum and
energy transfer between the two electrons occurs in the in-
tersubband SPE region, only one of the electrons creates an
intersubband electron-hole pair, leading to charge tunneling
between the wires due to the fact that the transverse magnetic
field pushes the electron and the hole to opposite directions.
On the other hand, the momentum and energy conservation
guarantiee the collective excitation due to such transitions,
eliminating the so-called “Landau damping.” A resonance
between the plasmon and the single-particle excitations oc-
curs, Note that the interaction strength depends on the mo-
mentum- transfer ¢. Figures 2(b) and 2{(c) show the effects of
these interactions on the magnetoplasmon modes at B=1
and 2 T, respectively. At B=1 T (corresponding to a cyclo-
tron frequency ,=1.65 meV being close 1o A
=1.7 meV), tunneling is relatively strong, and so is the in-
teraction between
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the plasmon modes and the intersubband single-particle ex-
citations. Figure 2(b) demonstrates this interaction, leading
to (i) the high branch of the plasmon mode (above the inter-
subband SPE region and originally from the intersubband
mode) keeping a distance from the SPE and (ii) a breaking at
a cerlain energy of the plasmon mode in the intersubband
SPE region. A larger transverse magnetic field leads to a
strong localization of the electrons in each wire. The plas-
mon excitations restore their dispersion relation of two dif-
ferent modes, i.e., the optical and acoustic modes. Such a
behavior is clearly seen in Figs. 2(c) and 2(d). In Fig. 2{c)
the lower branch plasmon mode, i.e., the acoustic one, is still
strongly modificd due to its interaction with the intersubband
SPE, showing a splitting when it approaches the SPE region
at low frequencies. A magnetic ficld of | T for the structure
with the larger barrier thickness of 70 A is strong enough to
suppress intersubband transitions completely, as indicated in
Fig. 2(d), where the overlap of the electron wavefunctions of
different subbands vanishes and so does the strength of the
intersubband SPE.

Figure 3 shows the magnetoplasmon modes and the SPE
spectra in two coupled asymumetric quantum wires. Compar-
ing to Fig. 2(a), both the intersubband SPE and the plasmons
in Fig. 3(a) shift to higher frequencies at small g because the
energy gap between the two subbands increases to £, —F)
=2.6 meV by reducing the wire width ¥, to 140 A, Al-
though, at zero magnetic field, the asymmetry of the electron
wave functions in real space leads to an anticrossing of the
two high-frequency plasmon modes, as shown in Fig. 3(a),
the electron siates are symmetric in & space. However, a
transverse magnetic field breaks the symmetry of the single-
electron states in the & space, as indicated in the lower inset
in Fig. L. The electron gas has different Fermi wave vectors

q(1 Oscm"’)

=140 A.

for k>0 and k<Q. Consequently, the plasmon dispersions
and the SPE spectra are no longer symmetric functions of g.
The asymmetric and nonparabolic subband structures leading
to a strong coupling between the intersubband SPE and the
plasmon modes are shown in Figs. 3(b) and 3(¢c). Figure 3(b)
shows basically three plasmon modes in a V shape, but the
electron-electron interaction results in an anticrossing and an
even breaking up of these modes. The two branches with
minima at ¢=0.95X10° and —0.97X10> ecm™!, respec-
tively, are essentially intersubband modes. The one with @
={ at ¢g=0 is an intrasubband (optical) plasmon mode.
However, for g>1X% 10° cm™ ', the plasmon modes are
strongly coupled to each other and also strongly interact with
the intersubband SPE’s, An anticrossing appears between the
two higher branches. Moreover, the two lower branches
break up at around g=1.2X10° cm™!. At a larger magnetic
field, the highest intersubband plasmon mode disappears, as
shown in Fig. 3(c) but a lower-frequency intrasubband mode
appears at small ¢ which will eventually evolve into the so-
called acoustic plasmon mode at large magnetic fields. Fig-
ure 3{d) shows the plasmon dispersions and the SPE spectra
for the two coupled asymmetric quantum wires with W,
=70 A . In this case, the electrons in two different subbands
are completely localized in different wires with a vanishing
tunneling strength. An external magnetic field of 1 T almost
does not affect the plasmon dispersion, which keeps its sym-
metry with respect to g=0 as it is at zero magnetic field.
Note that the intersubband SPE in this case is of a vanishing
strength which has no effects on the plasmon modes.

IV, SUMMARY

In conclusion, the effects of a transverse magnetic field on
single-particle and collective excitations are studied in
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coupled quantum wires with tunneling. The magnetoplasmon
spectra are obtained by an expansion of the clectron states in
a basis of the cotresponding single quantum wires. The mag-
netic field modifies the electron subband structures and also
the localization of the electron states, leading to a strong
coupling between the collective and intersubband single-
particle excitations. In two asymmetric quantum wires, the
magnetic field results in the asymmetry of the plasmon and
single-particle spectrum, increasing the Hexibility to medu-
late the SPE and plasmon excitations, which may have some

PHYSICAL REVIEW B 65 245326

applications in opiical or magnetic switches, Our results also
show that a larger transverse magnetic field leads to electron
localization and completely suppresses the tunneling effects,
leading to a recovery of the optical and acoustic plasion
modes.
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We report a theoretical study of the inelastic Coulomb scattering rate of an injected electron in two coupled
quantum wires in quasi-one-dimensional doped semiconductors. Two peaks appear in the scattering spectrum
due to optical and acoustic plasmon scattering in the system. We find that the scattering rate due to the optical
plasmon mode is similar to that in a single wire, but the acoustic plasmon scattering depends crucially on its
dispersion relation at small ¢. Furthermore, the effects of tunneling between the two wires are studied on the
inelastic Coulomb scattering rate. We show that a weak tunneling can strongly affect the acoustic plasmon

scattering.

1. INTRODUCTION

Recently, single-particle properties of electrons in quasi-
one-dimensional (Q1D) electron systems have attracted con-
siderable interest. With theoretical calculations of the single-
particle renormalization factor' and the momentum
distribution function around the Fermi surface, Hu and Das
Sarma? clarified that a clean 1D electron system shows
Luttinger-liquid behavior, but even the slightest amount of
impurities restores the Fermi surface and the Fermi-liquid
behavior remains. Within a one-subband model, they evalu-
ated the self-energy due to electron-electron Coulomb inter-
action in unclean Q1D systems by using the leading-order
GW dynamical screening approximation.'” Within such an
approximation, Hwang and Das Sarma* obtained band-gap
renormalization in a photoexcited doped-semiconductor
quantum wire in the presence of plasmon-phonon coupling.
In particular, the inelastic Coulomb scattering rate plays an
important role in relaxation processes of an injected electron
in the conduction band. The lifetime of the injected electron,
determined by this scattering rate, can be measured by fem-
tosecond time-resolved photoemission spectroscopy.” The
relaxation processes of an injected electron occur through the
scattering channels due to different excitations in the system,
such as single-particle excitations, plasmons, and phonons.®’
Its lifetime provides information on the interactions between
the electron and the different excitations. The relaxation
mechanism is important because of its technological rel-
evance, as most semiconductor-based devices operate under
high-field and hot-electron conditions.®

On the other hand, coupling between two parallel quan-
tum wires leads to so-called optical and acoustic plasmon
modes in the system.’ The ground-state properties and the
far-infrared absorption in two coupled quantum wires were
studied recently.'® Mode mixing among different plasmon
modes is demonstrated due to the asymmetric confinement of
the two wires. It is also found that the dynamic depopulation
effect in coupled quantum wires results in bistability in elec-
tron transport.!! Tunneling effects have provided devices
formed by coupled semiconductor quantum wires,'? and at-
tracted considerable theoretical interest because of their fun-
damental applicability.

0163-1829/2000/61(11)/7564(7)/$15.00

In this work we present a theoretical study on inelastic
Coulomb scattering rates in coupled biwire electron-gas sys-
tems. Particular attention will be devoted to the effects of
weak resonant tunneling. We find that weak resonant tunnel-
ing can introduce a strong intersubband inelastic Coulomb
scattering by emitting an acoustic plasmon. The emission of
optical plasmon, on the other hand, is provided by intrasub-
band scattering of injected electrons.

The rest of the paper is organized as follows. In Sec. II,
we present the theoretical formalism of inelastic Coulomb
scattering rates in a multisubband Q1D system of coupled
quantum wires. Section III is devoted to an analysis of the
inelastic-scattering rates for a biwire system in the absence
of tunneling between the wires. As an extension of such
calculations, in Sec. IV we show the numerical results in the
presence of weak resonant tunneling. Finally, we summarize
our results in Sec. V.

II. THEORETICAL FORMULATION

We consider a two-dimensional system in the xy plane
subjected to additional confinement in the y direction, which
forms two quantum wires parallel to each other in the x di-
rection. The confinement potential in the y direction is taken
to be of square well type, of barrier height ¥,, and well
widths W, and W, represent the first and second wires, re-
spectively. The potential barrier between the two wires is of
width W, . The subband energies £, and the wave functions
&,(y) are obtained from a numerical solution of the one-
dimensional Schrodinger equation in the y direction. We re-
strict ourselves to the case where n=1 and 2, and define
wo=FE,—FE| as being the gap between the two subbands.
The interpretation of the index n depends on tunneling be-
tween the two wires. When there is no tunneling, the wave
function ¢,(y) of the subband E, is localized in quantum
wire n. Clearly, it is a wire index. For two symmetric quan-
tum wires, i.e., W,=W,, one has E,=E, or wy;=0. When
tunneling oceurs, the wave function of each subband spreads
in two quantum wires. In this case, n is interpreted as a
subband index. For two symmetric quantum wires with tun-
neling, the wave functions of the two lowest eigenstates are
symmetric and antisymmetric. In this case, the two wires are

7564 ©2000 The American Physical Society
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in the resonant tunneling condition, and the gap between the
two subbands is denoted by Ag, = w,.

In a multisubband Q1D system, the inelastic Coulomb
scattering rate for an injected electron in subband n with
momentum k can be obtained by the imaginary part of the
screened exchange self-energy 2 ,[k,£,(k)],! where, &,(k)
=h%k*2m* +E,— E. is the electron energy with respect to
the Fermi energy E and m™ the electron effective mass. We
use the GW approximation to calculate this self-energy. As
can be seen in Ref. 10, it is given by

; .
qufdw’z Viwin (90
g

(2)*
XGV(k+q,§,(k) - "), (1)

2 [k, &u(K)]=

where foi’(k,w) is the Green’s function of noninteracting

electrons, and V° (g9,w) is the dynamically screened

nn |Il 1 n
electron-electron Coulomb potential. The screened Coulomb
potential is related to the dielectric function €, ,,,(4,®)
and the bare electron-electron interaction potential

Von' mm (q) through the equation

E Ell’nn’(q,w)V;['mm'(qsw)':Vnn’mm’(q)' (2)
"

Similarly to the one-band model,” the self-energy in Eq. ( 1)
can be separated into a frequency-independent exchange part
and a correlation  part, 2k, E(BD)1=27(k)
+32:°Tk,£,(k)]. The exchange part is given by

1
350~ 3= | 44T Vapn@fo [0 k), O
ny

where /,,(€) is the Fermi-Dirac distribution function. Notice
that 2 7*(k) is real because the bare electron-electron Cou-
lomb potential V,,,,I,, (4) is totally real. Therefore, one only
needs to analyze the imaginary part of 3.”'[k,£,(k)], since
it gives rise to the imaginary part of the self-energy in which
we are interested. After some algebra, we find that the Cou-
lomb inelastic-scattering rate for an electron in a subband n
with momentum £ is given by

(k)= ~1m 2k E(R)]=2 ok, (4)
with
1 s
an,,,'(k>=5;f dq m{V, ., [0.E(k+q) = £(0)T)

X{o[fn(k)‘fn'(k‘“}')]" 0[—5;1’(k+q)]}(5)

where #(x) is the standard step function. In the above equa-
tion, the frequency integration has already been carried out,
since the bare Green’s function fo:) can be written as a

Dirac & function of w.'>

For the present coupled quantum wire systems with two
occupied subbands, the multisubband dielectric function
within the random-phase approximation is given by

Hnn'(q’w) Vrm’mm'(Q)- (6)

Enn'mm'(q’w) = 5nmon‘m' -
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The function I1,,,,(¢,w) is the 1D noninteracting irreducible
polarizability at zero temperature for a system free from any
impurity scattering. In the presence of impurity scattering,
we use Mermin’s formula'*

{wt+iy)Il,, (g,0+iy)
w+ly[Hnn’(q,w-i.lY)/Hnn'(q’o)]

I, (g,0)=

to obtain the polarizability, including the effect of level
broadening through a phenomenological damping constant
. The Coulomb potential

2¢?
Vnn’mm’(q)=_€;-f dyJ’dy,(rbn(y)‘ﬁn'(y)

XKo(qly=3' )by dm (¥")

is calculated by using the numerical solution of the electron
wave function ¢,(y). Here € is the static lattice dielectric
constant, e is the electron charge, and Ky(gly —y’|) is the
zeroth-order modified Bessel function of the second order.
The electron-electron Coulomb interaction describes two-
particle scattering events. We observe the following charac-
teristics of the electron-electron Coulomb interaction in
coupled quantum wires representing different physical scat-
tering processes: V1 1(9)=V,, Vom(g)=Vy, and
Vi122(q) =V1311(q) =V represent the scattering in which
the electrons keep in their original wires or subbands;
V121209) = V2121(9) = V1221(q) = V2112(q) = Vp represent the
scattering in which both electrons change their wire or sub-
band indices; V112(¢)=V1120(9) =V 121(q) =Vo11(@) =V,
and Vy15(9) = V221(9) = Vi222(9) = Vaunn(q) =V indicate
the scattering in which only one of the electrons suffers an
interwire or intersubband transition. When there is no tunnel-
ing, Vp=Vy=V,=0. Clearly, these are responsible for tun-
neling effects. We also note that, for two symmetric quantum
wires, ¥, and ¥V} would vanish on account of symmetry
along with or without tunneling.

HI. BIWIRES WITHOUT TUNNELING

In the following, we will analyze the inelastic Coulomb
scattering rate of electrons in two coupled symmetric quan-
tum wires (W, = W, = W) in the absence of tunneling. As we
discussed above, when there is no tunneling between two
quantum wires, Vp=V;=V,;=0. Only the Coulomb inter-
actions ¥V, Vg, and ¥V, contribute to the electron-electron
interaction. Furthermore, the potentials ¥, and Vj are re-
sponsible for the intrawire interaction and ¥, = V' due to the
symmetry properties of the two wires. The potential Vi is
responsible for the interwire Coulomb interaction. If we as-
sume that the two wires have an identical electron density
ny=n,=n,, the total electron density in the system is N,
=2n,. In this case, the two quantum wires have the same
Fermi level Er, so that II,;=II,,=I1;. Therefore, from
Egs. (2) and (6), we obtain the screened intrawire Coulomb
potential V{,,,= V35y,=V* given by

_ Vi (Vi VeV —Voll,
[1 ‘(VA+ VC)H()][I —(VA— VC)HO] ’

Ve (8)
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FIG. 1. Dispersions of the collective excitations of two coupled
quantum wires of (a) n,=0.5%X10% em™! and (b) #,=10° cm™’,
with W, =W,=150 A and W,=300 A (dotted curves), 70 A
(dashed curves), and 30 A (long-dashed curves). The plasmon
mode of the corresponding single wire ( #,=2c) is presented by the
thin solid curves. The shadowed areas indicate the single-particle

continua.

The denominator in the above equation is the determinant of
the dielectric matrix det|e(g,w)|. The equation det|e(g,w)|
=0 yields the plasmon dispersions of the electron-gas sys-
tem. The plasmons result in singularities in the screened
Coulomb potential which are of the most important contri-
bution to the inelastic Coulomb scattering rate.

According to Eq. (5), the intrawire scattering rate of the
symmetric biwires with identical electron density becomes

1
O (k)= ﬁf dq{Im[V*(q.2kq +4*)1}

X{6(—2kq—q*)~ 0(Ep,—k*—q>—2kq)}
)

for n=1 and 2, where Ep,=Ep—E, is the subband Fermi
energy. Notice that £,=FE, for two symmetric quantum
wires. It is obvious that o (k)= 0 ,(k). In the absence of
tunneling, interwire scattering rates o (k) and o, ,(k) are
zero because the transition of an electron from one wire to
the other is impossible. Therefore, we have a(k) =0 (k)
= 0,(k)=0,,(k). But the interwire Coulomb interaction ¥
influences the collective excitations in the system, leading to
two different plasmon modes, i.e., optical and acoustic
modes. Subsequently, it affects the inelastic-scattering rates.
We know that the zeros of the two parts 1 —(V,+ V),
and 1 —(V,— V), in the denominator in Eq. (8) yield
optical and acoustic plasmon mode dispersions, respectively.
To understand the scattering mechanism better, in Fig. 1 we
show the collective excitation dispersion relations of the two
coupled symmetric GaAs quantum wires of width =150 A
with different barrier widths. In the calculations, we consider
the barrier height Vy=cc, which does not permit tunneling
between the wires. The plasmon modes in Fig. I correspond
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FIG. 2. The inelastic Coulomb scattering rates corresponding to
Fig. 1(a) with n,=0.5X10% cm™!. The inset shows the acoustic
and optical modes (thick dashed lines) for W,=30 A, and the in-
trawire energy- vs momentum-loss curves at the onset of the optical
(thin solid line) and acoustic (thin dashed line) plasmon scattering.

to the different scattering channels through which the in-
jected electron can lose energy. We find a higher- (lower-)
frequency plasmon branch which represents the optical
(acoustic) plasmon mode @, (w@.). The intrawire single-
particle excitation continuum SPE (shadow region) is also
indicated in the figure. The thin solid curve is the plasmon
dispersion of a single quantum wire with electron density
n,. It corresponds to the situation in which the distance be-
tween the two wires is infinity (W,=co) or V=0. In this
case, the plasmon mode is of dispersion relation w(q)
~\n,g|lngW'? at q—0.2 As the distance between the
wires decreases, the potential V- increases. A finite V- leads
to a gap between the two plasmon modes. When the two
wires are close enough, the acoustic mode develops a linear
wave-vector dependence. For ¢—0, w_(q)=vg with v
=[vp+4V _(g=0)/7], where v is the Fermi velocity and
V_(g)=V,(q)—Vq), whereas the optical plasmon still
keeps its well-known 1D dispersion relation w (gq)
~N,q|IngW|'? *'5 Note that the interwire Coulomb inter-
action V-, depending on the distance between the two wires,
is responsible for the behavior of the wave-vector depen-
dence of the acoustic mode. As we will see, this significantly
affects the inelastic Coulomb scattering rate due to the
acoustic plasmons.

Figure 2 shows the numerical results of inelastic plasmon
scattering rate in the coupled wires corresponding to Fig.
1(a) with a very small broadening constant y=10"* meV.
We observe two scattering peaks. The lower (higher) one is
due to the acoustic (optical) plasmon scattering. The abrupt
increase of the scattering rate at threshold electron momenta
k. and k| correspond to the onset of scattering of the acous-
tic and optical plasmon modes, respectively. The higher scat-
tering peak due to the optical plasmon mode is always diver-
gent at the onset k=+k_ and a'lxl(k)OC(k—k:)"m, similarly
to that in the single wire. But the behavior of the lower
scattering peak is dependent on the distance between the two
wires, which is directly related to the dispersion relation of
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FIG. 3. The same as Fig. 2, but now with n,=10° c¢m™'.

the acoustic plasmon mode at small g. For small W, the
acoustic mode is of a linear wave-vector dependence, leading
to a finite scattering rate at the onset k=& . With increasing
W, , the acoustic mode loses its linear ¢ dependence, result-
ing in a divergency at the onset of the scattering. In order to
clarify such a behavior, in the inset we show the energy- vs
momentum-loss curve

wi(q)=2kqg—q° (10)

for k=k=2.13%X10° cm~! (thin solid curve) and k,
=1.65X10° cm™! (thin dashed curve) in the system with
W,=30 A . Along these curves, momentum and energy con-
servations are obeyed and electron relaxation is allowed. The
dispersions of the optical and acoustic plasmon modes
w.(q) and w_(gq) are also given by thick long dashed
curves in the same figure. At k=k (k) the thin solid (thin
dashed) curve intersects the optical (acoustic) mode disper-
sion curve at =g (). This means that the injected elec-
tron with momentum &, (k) can emit one optical (acous-
tic) plasmon of frequency w,(¢)) [w_(g.)]. Note that the
slopes of the curves mk;(q) [wkc—(q)] and 0 (q) [0_(g)]

are equal at g =q: (g. ). For the optical plasmon mode, the
intersection always occurs at finite g, because the optical
plasmon goes as w, (¢)~q|IngW|'"* for small 4. The diver-
gency due to the optical plasmon scattering is similar to that
in the single quantum wire,? which results from the coupling
of the initial and final states via plasmon emission at &
=k, . However, for the acoustic plasmon mode with a linear
g dependence, g, =0, because w(qg)—2kq at g—0. In this
case, one can obtain k, =v/2. Due to the fact that the plas-
mon mode is of vanishing oscillator strength at ¢=0, the
emission of the acoustic plasmon of the wave vector ¢
=g, cannot produce a divergency in the inelastic-scattering
rate. As the distance between the two wires is increased, the
acoustic plasmon mode loses its linear ¢ dependence and
approaches the dispersion of the optical plasmon mode. Con-
sequently, g, becomes finite, and the scattering rate is diver-
gent at the threshold momentum 4, . In Fig. 3, we show the
scattering rates in the same structures as in Fig. 2, but with a
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FIG. 4. The inelastic-scattering rate in coupled wires of n,
=10° ecm™!, W, =W,=150 A, and W,=70 A for different values
of the broadening constant y=10"* (thin line), 0.01 (dotted line),
0.1 (dashed line), and 1 meV (long dashed line).

higher electron density n,=10° ecm™'. We see that, in sys-
tems of higher electron density, the scattering threshold
shifts to a larger momentum and the scattering is enhanced.

In Figs. 2 and 3, we do not show the inelastic-scattering
rate due to virtual emission of single-particle excitations
which would occur below the threshold wave vector. It is
known that, in a one-subband quantum wire, the contribution
of single-particle excitations to the inelastic Coulomb scat-
tering rate is completely suppressed due to the restrictions of
the energy and momentum conservations. Consequently, the
scattering rate is zero until the onset of the plasmon scatter-
ing at a threshold k,>ky.? Single-particle excitations con-
tribute to the inelastic scattering only when the level broad-
ening is introduced. These contributions are negligible when
the broadening constant is small. Although, in the present
case, we are dealing with two coupled quantum wires, the
Coulomb  interaction does not influence the single-particle
excitations or as their contributions to the inelastic scattering.

At this point we should emphasize the importance of
acoustic plasmon scattering in double-wire systems in com-
parison to double-layer (coupled 2D electron gases) systems.
Contrary to their double-wire counterparts, single-particle
excitations in double-layer systems contribute essentially at
all values of wave vectors in inelastic Coulomb scattering,
which is much more important than the plasmon scattering at
a small wave vector.'® The contribution of the acoustic plas-
mon peaks within a narrow window of wave vectors before
the onset optical plasmon scattering, where the single-
particle scattering also makes a significant contribution. In
double-wire systems, however, inelastic Coulomb scattering
is dominated by acoustic plasmon scattering before the onset
of optical plasmon scattering due to the surpression of
single-particle scattering in the 1D system. So the acoustic
plasmon mode in the present system is much more important
than that in 2D systems.

As far as the effect of the phenomenological broadening
constant vy is concerned, in Fig. 4, we show the dependence
of the inelastic-scattering rate for different y’s. Finite broad-
ening values of vy in the system give rise to broken transla-
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tional invariance due to the presence of an impurity. This
fact is responsible for relaxing the momentum conservation
permitting inelastic scattering via single-particle and plas-
mon excitations for k<<k. . We show such a contribution in
the inset of Fig. 4. For k=kz=1.6X10° cm™!, conservation
of energy and momentum does not permit the opening of any
excitation channels. This means that the injected electron has
an infinite lifetime at the Fermi surface which has been re-
stored by impurity effects.

1IV. WEAK TUNNELING EFFECTS

In this section, we discuss the effect of weak tunneling on
inelastic Coulomb scattering rates in two coupled symmetric
quantum wires, as shown in Sec, III. When tunneling occurs,
an energy gap Ag,s opens up between the two lowest sub-
bands which have symmetric and antisymmetric wave func-
tions in the y direction about the center of the barrier. In this
case, only the subband index is a good quantum number. As
we saw in Sec. II, ¥; and ¥y vanish in two symmetric quan-
tum wires in resonant tunneling. However, V), is finite and
responsible for tunneling effects on the Coulomb scattering.
In a weak resonant tunneling condition, one finds V=~ ¥,
=V ~=U. After some algebra, we obtain

s 1+ UL~ 1T,)

WS TG, 71,y (an

. 1-U(TL;,— 1)
Vo= T, 4 11,y O (12)

1+ Vp(I1,—1y)

V1221=1—VD(H12+H21) Vb (13)
and
" - VD(HlZ—HZI)
VT T, Ty (14

From the above equations and Eq. (5), we can obtain the
inelastic Coulomb scattering rates in the presence of tunnel-
ing. We also note that the zeros of the denominators in Egs.
(11) and (12) yield optical plasmon dispersion, and those in
Egs. (13) and (14) yield acoustic plasmon dispersion. This
indicates that the optical plasmons only contribute to the
intrasubband scatterings ¢, and g5,, and the acoustic plas-
mons to the intersubband scatterings o, and o5, .

We consider two coupled GaAs/Al,4Gag,As (V,=228
meV) quantum wires of widths W, =W, =150 A separated
by a barrier of W,=70 A . In this case, we find Ag,g
=0.14 meV indicating a very weak resonant tunneling. In
Fig. 5(a) we show both intersubband and intrasubband scat-
tering rates. The intrasubband scattering rates o, and oy,
induced by the emission of optical plasmons, is very similar
to that in the absence of tunneling. It is also not difficult to
understand that oy, = g5, because, above the threshold of the
optical plasmon emission, the plasmon frequency is much
larger than A, and, consequently, IT,,=IT,,. On the other
hand, tunneling introduces the intersubband scattering rates
oy, and o,,, and strongly modifies the mechanism of the
acoustic plasmon emission, In order to clarify such results,

S E'=1.59%10° em™!.
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FIG. 5. (a) The intrasubband and intersubband inelastic-

sacattering rates in two coupled GaAs/Aly;Gag,As quantum wires
with tunneling. W, =W,=150 A, w,=70 A, and N,=10° cm™'.
The solid curves present o ;(k) and o, 5(k). The dashed and dotted
curves present o 5(k) and o;,(k), respectively. (b) The acoustic
plasmon dispersion w _(g) (thick dashed curve) in the system. The
thin dashed line indicates the w,*(g) curve for k2=1.79
X10°% cm™', and the thin dotted line indicates the w?'(g) curve for
n;=051x10° cm™! and 1n,=049
X10% cm™ .

we plot the corresponding acoustic plasmon dispersion rela-
tion by the thick dashed curve in Fig. 5(b). The acoustic
mode develops a plasmon gap at zero g due to the tunneling
effect.’® The thin lines indicate the intersubband energy- vs
momentum-loss curves at the onset of the acoustic plasmon
scattering. They are determined by conservations of energy
and momentum, given by

w/lfz(Q):2qk‘q2_ASAs (15)
for k=k)? (thin dashed curve), and
@' (q)=2qk—q*+ Agus (16)

for k=4k2" (thin dotted curve), where k% and k2' are thresh-
old wave vectors above which the injected electron can be
transferred to a different subband by emitting an acoustic
plasmon. a),%l(q) (thin dotted curve) intersects the acoustic
plasmon dispersion at small wave vector g=g>'=0.05
X 10° cm™!. The scattering process is similar to acoustic
plasmon scattering in the absence of tunneling, as we dis-
cussed in Sec. III. But now, the acoustic plasmon mode is of
a finite frequency, with a finite oscillator strength at g—0
resulting in a small divergency at #*'. On the other hand, the
intersection between w,’(g) (thin-dashed curve) and the
acoustic plasmon dispersion occurs at quite a larger wave
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FIG. 6. Total inelastic-scattering rate o,(k) of the biwire system
(a) without (Vy=cc) and (b) with tunneling (V=228 meV). W,
=W,=150 A, W,=70 A, and N,=10° cm™'.

vector g=¢!*=0.18X10° cm™' . The scattering, mecha-
nism is more similar to that of the intrasubband scattering
and produces a pronounceable divergence at k.2,

Finally, we would like to show the tunneling effects on
the total inelastic Coulomb scattering rates a,(k)
=210, (k). Figure 6 gives the total scattering rates in (a)
the absence and (b) the presence of tunneling between two
quantum wires with =150 A and W,=70 A . We observe
that weak resonant tunneling does not influence the optical
plasmon scattering very much, but it does strongly affect
acoustic plasmon scattering. The acoustic plasmon scattering
for the injected electron in the lowest subband is enhanced
significantly, and quite a strong scattering peak appears. For
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the injected electron in the second subband, tunneling intro-
duces a small divergency in the scattering rate, and shifts the
scattering threshold to the lower wave vector.

V. SUMMARY

We have calculated the inelastic Coulomb scattering rates
of two coupled Q1D electron-gas systems within the GW
approximation. The screened Coulomb potential was ob-
tained within the random-phase approximation. The Cou-
lomb interaction between the two quantum wires leads to
optical and acoustic plasmon modes and, consequently, two
scattering peaks appear due to the scattering of the two
modes. We found that the scattering of the optical plasmons
in two coupled quantum wires is very similar to plasmon
scattering in a single wire because both plasmon modes have
similar dispersion relations at small g. The scattering rate is
divergent at the onset of the optical plasmon scatiering.
However, the acoustic plasmon mode does not produce such
a divergency when it is of a linear g dependence at small g.
This happens when two wires are close enough. Further-
more, we studied tunneling effects on inelastic scattering. A
weak resonant tunneling was introduced between the wires.
Such a tunneling lifts the degeneracy of the two subbands
that originates from two quantum wires, and also produces a
small plasmon gap on the acoustic mode at ¢ =0. Moreover,
intersubband scattering appears. We show that, in this case,
the optical plasmons are responsible only for intrasubband
scattering, and the acoustic plasmons for intersubband scat-
tering. A weak tunneling significantly enhances acoustic
plasmon scattering for an injected electron in the lowest sub-
band.

As far as we know, there have been no experimental stud-
ies reporting intersubband scattering of Q1D electrons in two
coupled quantum wires. For two-dimensional systems, how-
ever, theoretical calculations on the intersubband relaxation
times'” motivated tunneling spectroscopy experiments to
measure electron lifetimes'® in a strong-coupling situation.
We believe that our work can be useful to understand scat-
tering mechanisms which could be observed in double-wire
tunneling spectroscopy.
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Carrier relaxation due to electron-electron interaction in coupled double quantum well structures
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We calculate the electron-electron interaction induced energy-dependent inelastic carrier relaxation rate in
doped semiconductor coupled double quantum well nanostructares within the two-subband approximation at
zero temperature. In particular, we calculate, using many-body theory, the imaginary part of the full self-energy
matrix by expanding in the dynamically random-phase approximation screened Coulomb interaction, obtaining
the intrasubband and intersubband electron relaxation rates in the ground and excited subbands as a function of
clectron energy. We separate out the single-particle and the callective excitation contributions, and comment
on the effects of structural asymmetry in the quantum well on the relaxation rate. Effects of dynamical
screening and Fermi statistics are auntomatically included in onr many-body formalism rather than being

incorporated in an ad hoc manner as one must do in the Boltzmann theary.

DOI: 10.1103/PhysRevB.64.045325

L. INTRODUCTION

Electron-clectron interaction induced carrier relaxation is
an important inclastic scattering process in low-dimensional
semiconductor nanostructures. It is often {(particularly in situ-
ations where LO phonon emission is energetically prohibited
because the excited electrons do not have enough energy) the
most dominant relaxation process in semiconductor quantum
wells and wires, and is therefore of considerable fundamental
and practical unportance. Band gap engincering has led to
the possibility of fabricating tunable far infrared quantum
well cascade lasers (QCL’s) and efficient quantum well in-
frared photodetectors (QWIP’s), where inelastic carrier re-
laxation via electron-electron interaction is a crucial (perhaps
even decisive) process in determining device operation and
feasibility.! For QCL and QWIP operations it is the intersub-
band inelastic relaxation that turns out to be the primary
rate-limiting scattering process. For other proposed devices,
such as the planar hot electron transistors or related two-
dimensional (2D) high-speed devices, intrasubband relax-
ation is the important process. A thorough quantitative un-
derstanding of intra- and intersubband relaxation due to
electron-electron interaction is therefore important for the
successful realization of these devices. In addition fo this
practical technological motivation arising from QCL, QWIP,
and other proposed band-gap-engineered quantum well de-
vices, there is also an obvious fundamental reason for study-
ing inclastic Coulomb scattering in 2D quantum well sys-
tems. Inelastic elecuron-electron scattering determines the 2D
quasiparticle spectral width, as determined, for example, in
wnneling measurements, through the imaginary part of the
clectron sclf-encrgy function.?

Tn this article we use a many-body approach in calculating
the ineclastic relaxation rate of 2D electrons confined in
Gads-AlGa, As semiconductor guantum well structures.
Our work is a multisubband generalization of the earlier
work™ by Jalabert and Das Sarma, who considered only in-
trasubband relaxatinon within a single subband model. We
consider both intra- and intersubband relaxation in the two
lowest subbands, and consider both single-well and coupled
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64 045325-1

PACS number(s): 73.61.—r, 73.50.Gr, 72.10.Di

double-well structures. An additional important issue ad-
dressed in our work is the effect of structural asymmetry in
the quantum well on the relaxation rate. This is in fact a
potentially significant factor in the fabrication of QCL and
QWIP structures since asymmetry could lead to the opening
of new electron-electron interaction channels in the inelastic
intersubband relaxation as we discuss below in this article.

The central quantity we calculate in this work, within the
leading-order dynamically screened Coulomb interaction ex-
pansion (the so-called GW approximation in the multisub-
band situation), is the imaginary part of electronic on-shell
self-energy matrix, M, in the quantum well subband index
{i,/, etc.). The subband self-energy in the multisubband situ-
ation is, in general, off-diagonal, reflecting the breaking of
the translational invariance along the growth (z) direction
{we take the x-y plane to be the 2D plane with all wave
vectors in this paper being 2D wave vectors in the x-v plane).
The off-diagonal self-energy. Im(3,;), incorporates in an
intrinsic many-body manner the possibility of electron-
electron-interaction-induced  intersubband scattering (both
virtual and real) of carriers. We believe that in the doped
situation of our interest, where the quantum well subbands
ate occupied by many electrons, the many-body self-energy
approach is alsc a reasonable technique in calculating the
inelastic carrier relaxation rate in spite of the Boltzman equa-
tion approach, where the scattering rates are usually calcu-
lated using Fermi’s golden rule. The dynamical screening
inherent in the many-electron system, which affects the cal-
culated inelastic scattering rates in prafound and highly non-
trivial way, is automatically incorporated in our many-body
G W expansion, whereas inclusion of dynamical screening in
Fermi's golden rule type formula is done by replacing the
bare interaction by a screened interaction in an ad hoc man-
ner.

Qur theory, as mentioned above, is based on the so-called
GW self-energy approximation®” where the clectron self-
energy M is oblained in a leading order expansion of the
dyvnamicaily screcned Coulomb interaction H'=}", where
the superscript s denotes dynamical screening of the bare
electron-electron interaction matrix ¥ in the multisubband
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situation. We use the RPA to obtain the dynamical screened
interaction V7, i.e., FF=¢ 'V, with e=1—FII, where IT is
the leading-order (i.e., noninteracting) electron polarizability
matrix. We also approximate the electron Green's function G
by the noninteracting Green’s function G, making our for-
mal expression for the self-energy matrix 1o be

M~ J G, (1)

where the integral involves integrating over all internal mo-
mentum and cnergy variables as well as summing over all
internal subband indices (and spin). Putting the subband (ma-
trix) indices explicitly in Eq. (1), we get

- -0 18 *
m My=Im 2, | G5, 2
T
We note, however, that G, being the noninteracting Green’s
function, is necessarily diagonal in subband indices (i.e., an
electron cannot undergo intersubband scattering in the ab-
sence of teraction):

G?m - G;)IEZHI 4 (3)
Then, Eq. (2) becomes
lm M= Z[ f Im [ GV, {4)
with
=ET ! Pl &)

Equations (4) and {5) are the central formal equations we use
in our theory to obtain the inelastic relaxation time 7, re-
membering that the scattering rate I and the relaxation time
7 are connected by

3 fi
T=5F (6)
where
I'=|bn M|. (7)

We emphasize that the inelastic relaxation time 7 defined
by Eq. (6} and calculated in this paper is an energy relaxation
time (and not a momentum relaxation time, as, for example,
will enter the calculation of the mobility of the system). The
inelastic relaxation time calculated in this paper defines the
lifetime of a single-particle energy eigenstate in the systen.
Due 1o Coulomb scattering among the electrons the single-
particle stationary states are well-defined only over a lunited
time scale and our calculated 7 is a measure of this lifetime
arising from cicctron-clectron interaction.

In Egs. (6} and (7), I"={Im 4| is calculated on-shell, i.c,,
the quasiparticle self-energy defines I'. To demonstrate how
Eq. (4) may. in principle, differ from the Fermi golden rule
approach we consider the specific two-subband model of in-
terest ta us in this paper. Then i,/,/=1.2 with only subband
1. the ground subband, and the subband 2, the first excited
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subband being considered in the theory assuming all other
subbands to be substantially higher in energy, making negli-
gible contributions (o the self-energies of the lowest two sub-
bands. We also assume the square well structure to be sym-
metric, so that parity is a good quantum number in the
problem which makes all “‘off-diagonal” interaction matrix
elements vanish® by virtue of parity conservation with the
only nonzero elements of V¥ being 17,,,,F350, Flap2, and
Vi (note that Pioy =13, and ¥ p,= 3, by symme-
try). In this situation Eq. (4) implies that

Im M ,=Im M,,=0 &

and

Im My~ J L [G(l)[ Vanz+ ng Vil 9

We note that the dynamically screened interaction matrix
element )5, is not explicitly present in Eq. (9). On the
other hand, a Fermi golden rule approach® will explicitly
include such a ¥, term, because it seems to arise from the
direct Coulomb interaction V', ,, between an electron in sub-
band 1 and an clectron in subband 2 without any intersub-
band scattering. We mention, however, that dynamical
screening of Viyy, produces an effective Fyyp, term in our
theory since dynamical screening proceeds through virtual
creation of electron-hole pairs.

We have calculated the energy-dependent inclastic relax-
ation rate at 7=0 for a two-subband (1 and 2)
GaAs-Al,Ga, _  As quantum well system with a total elec-
tron density N,=2x10'"' em~? for the following five dis-
tinct situations. (i) Two coupled symmetric quantum wells of
width 150 A each with interwell unneling induced by a tun-
neling barrier of height 228 meV and width 30 A. Here the
lowest two subbands are the so-called symmetric (bonding)
and antisymmetric (antibonding) levels with energies £,
=15.35 meV and £,=17.03 meV, respectively. The third
level E£,=60.53 meV is sufficiently high to be ignored
(Epi=Ep—E;=4,28 meV: Ep=Ep—E,=2.61 meV),
with both subbands 1 and 2 occupied by carriers. These re-
sults are presented in Sec. IIT A below. (i) Two coupled
asymmetric quantum wells with interwell tunneling [the
same as in (i) above], with one well of width 150 A and the
other of width 140 A, leading to E,=15.93 meV and E,
=18.55 meV (Ep =E;—E, =475 meV: Em=E;—E,
=213 meV). Again, the next excited subband £,=62.86
meV is high enough to be ignored. These results are pre-
sented in Sec. 1 A below. (iif) Two coupled identical sym-
meiric quantum wells of width 150 A each with no interwell
tunneling (i.c., the interwell barrier is taken to be infinity)
and with a barrier width of 30 A . Here, £, =£,=23.87 meV
(this degeneracy arises because the two wells are identical
and there is no tumneling), Ep =L =Ly — L\ =FE—E,
=3.44 meV, and the next subband £;=96 meV is suffi-
ciently high in energy to be neglected. These results are pre-
sented in Sec. LI B below. (iv) The same as in the last case
with no interwell tuaneling but an asymmetric situation with
the two wells being different. One has a width of 150 A and
the other a width of 142.4 A so that the subband Fermi
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energies Fpy=Ep—FE,=475meV and Ep=Fp—FE;
=213 meV, which are the same as in (i1) above. In this
situation £ =23.87 meV, E,=26.49 meV (again £, can be
neglected). Futthermore, to keep the average distance be-
tween the lwo electron layers the same as in (ii), we choose
a barrier of width 28.8 A. These results are presented in Sec.
NI B below in comparison with those in (ii). (v) A single
symmetric quantum well of width 300 A and a bariier height
228 meV, which leads to the lowest two subbands at |
=488 meV, F,=1951 meV, and the Fermi energy Er
=[Lp—FE; =688 meV (with E <[, so that the second sub-
band is empty). In this situation, the next exciled subband,
E;=43.74 meV, is high enough in energy to be neglected.
These results are present in Sec. H1 C below. Our reason for
studying the five different classes of systems described
above is that we are Interested in understanding the effects of
interwell tunneling and structural asymmetry on the electron
relaxation rate. In particular, asymmetry breaks parity con-
servation, making the off-diagonal matrix elements of
Coulomb interaction {(e.g., ¥ip12.¥1120.F1011. 2111 V22215
Varga.¥9193,¥ 1220 all of which are zero in the symmetric
situation) nonxero, leading 10 new inelastic relaxation chan-
nels not present in symmetric structures, For the sake of
brevity we present results for a single representative carrier
density and well parameters in each of the five cases. Our
theory could be easily generalized to obtain finite tempera-
ture relaxation rates. Note that our goal here is to provide a
qualitative understanding of how various physical param-
cters affect Coulomb scattering rates in 2D quantum wells.

The plan of this article is the following. In Sec. II we
present a brief theory with working formulas; in Sec. 11 we
provide our numerical results and discussions; we conclude
in Sec. 1V with a4 summary.

1. THEORY

Our basic theory is outlined in the Introduction, where the
formal expression for the sel{-energies to be calculated were
siven. Qur central G random-phase approximation (RPA)
expression” for the self-energy can be explicitly written out
by using the noninteracting subband Green’s function

Gilw.k)=8,[o~E(o+EF]"", (10)
where w is a complex frequency (=1}, and Efk)=E,;
+4k2/2m* is the noninteracting subband one-electron energy
dispersion. Using Eq. (10) in Egs. (4) and (5). and carrying

out the internal frequency integration, and taking the imagi-
nary part afler the on-shell analytic continuation, we get

3 |

X h‘ﬂ[ l’);ll/'r(qs S:[(k+ q)).— g:(k\}]

Tm M (k)= —
(\'.77')‘

X{€(§,(k) — &k q\,}

= &(— ¢kt @)}, an
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where the on-shell subband energy £;(k) is given by

&) =L;(k)— Ly, (12)

and #(x}=0(1), for x<Q{>>0), is the Heaviside step func-
tion. The dynamically screened Coulomb interaction is given
by [see Eq. (5)]

[,;,Y

ijlm

(13)

= (8 ! V)ij!'m >
with the multisubband RPA approximation’ defined by the
dielectric matrix

— 7 [
8ij.l'm_(1 - I(ii,i/rnﬂ{_[‘ }

tm)s (14)
where V', is the bare Coulomb interaction matrix element
in the subband representation, and U?p the noninteracting
polarizability, is given by

d’q  [ik+tq)—/fi(k)

0 (k,w) = —3[ (13)

where f,(K) is the Fermi distribution function in ihe ith sub-
band. In this paper, we take the Impurity-scattering-induced
background broadening y as being a small phenomenologi-
cal damping parameter which equivalent to be working in the
clean limit. We are therefore restricting ourselves to high
mobility quantum wells with small impurity-scatiering-
induced level broadening.

Using Egs. (11)~(15) it is straightforward to calculate the
imaginary part of the on-shell self-energy. For the sake of
completeness, we show below the detailed expressions for
Im M; in the GH approximation for the two-subband
model:

Im .5"1”(/‘{):()'”“(/()+(I'}221(k), (16)
Im ;’1’1’[2(’\'):()',”2(1\')"*‘0'!22-2(’\'), (17)
Tm My (kY= 051 (k) T 7392, (k) (18)
and
Im M (k)= 03y 2 &) + a3 (k). (19)
Here,
. 1 ) .
aynlk)= -~ -2[ d*q{Im[ V},,(q,4)]
(27)
X[ 6(—A4)—8(— & (k+ )}, 20)
l 2 15
aink)= JEPE | d'a{lm[¥73,(q.4 + )]
X[8(—A4—wg) - 8(— EHk+@)]}. (21
— i { 2 f 5
ayplk)= .y d q{Im[1715(q,4)]
<O —4)— 6(— £, {k+q))1}. {22)
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1 .
Tinlk)=—— d*q{Im [ V,5( 4.4 + wg)]

(27)
X{B(—d=wo)— (= &(k+a)]}),  (23)

i
ayntk)= B

ZT

7J T [V3),,(q.4 —wg)]

X[O(—A+wy)— 6(— & {k+q))]}, (24

1 .
oa{k) = puy f A qfIm [V (g.4)]
miT .

X[6(—A4) = 6(— & k+ag))]} (25)

1 5 By .
oo plh)= (')__ﬂ-—)—z—f d q{Im [V3,5(4.4 — @()]

X[O(—A+we)— (—E(k+q))]},  (26)

1 \ ) .
Trp( k)= )Zj dq{im [V, q.4)]

(2
X[6(—4)— 6(— &(k+q)1}, 27

where wy=£,—E, is the subband energy difference, 4
=A4(q,k)=(2kq cosn+g*)/2m* with 5 being the angle be-
tween k and q; and m* =0.07m,, being the GaAs conduction
band electron effective mass. Now, we define the fofal in-
clastic Coulomb scattering rate for an electron with wave
vector k (i.e., an energy of k%/2m* with respect to the sub-
band bottom) in the subband 1 and 2 as

o (k) =Tm M, (k) +Tm M (k) (28)

and

o (k) =1m My (k) + Lm M (k). (29)

It is important to realize that the screened potentials V7, for

j#1 do not appear in Egs. (20)-(27) and, counsequently, do
not explicitly contribute to scattering rate. They are implic-
itly induced in the theory through dynamical screening® as
discussed before. Furthermore, all screened interactions ¥y,
involved in Egs. (20)—(27) are obtained from the relation

between the bare electron-clectron potential’

2 et
v = 2| dz' gz =
Ulm(q,) ge0 fd f z (b[( )(?b./\ )

xe“'ﬂ:“: §'«’!)I‘(Z/)(zbl_r1(\2!)

and the inverse matrix of the dynamical dielectric function
&m(g.m) |see Eqs. (13) and (14), where the indices i./,/,
m=12]. These bare Coulomb potentials Viim(q) are caleu-
fated here by using both the onc-electron wave function
¢ (=) and the subband energy E; oblained through the nu-
merical solution of the Schrodinger cquation in the z direc-
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tion for the specific quanium well confinement potential.
Furthermore, the potential V,;;,,(g) can be separated into
intra- and intersubband terms, and understood as follows: {i)
imtralayer  (intrasubband) interactions ¥, (g)=F,,
Vamalq)=VF5, and ¥,125(g) = V311(¢) = V- represent those
scattering events which the electrons remain in their original
well (subband); (i) interlayer (intersubband) interactions
Pion@)=Volg@) =V (@) =V, () =¥ represent
scattering in which both elecirons change their well (sub-
band) indices; and (iil) intrawell-interwell (subband) interac-
tions Vi) = Vi @)=Via(q)=¥a(g) =V, and
Van2(9) = ¥Von(q) = Vil q) = Va1p(q) = ¥y indicate the
scattering in which only one of the electrons suffers the in-
terwell {intersubband) transition.

For each wave vector £, the two-dimensional q integrals
in Egs. {20)-(27) are performed within the planes deter-
mined through the variables q and A4 in the screened interac-
tions ¥7;,, . The integration domains of ¢ and » (in 4) vari-
ables are restricted by the two # functions appearing in the
integrals in Egs. (20)--(27). The integrals involving F{,,; and
V1)1, are performed within the planes formed by those te-
gions in the ¢ space where

o —A)— 6(— £{k+ ¢))#0, (30)

while the integrals involving ¥y, and ¥7,,, are calculated
within the planes defined by

H—A4—wy)— 0(— & (k+q))#0. (3D

In the same way, the integrals involving ¥3,,, and V5, are
performed within the planes defined by

6(—A4)~ 0(— é(k+q))#0, {32)

and, finally, for ¥3,,, and ¥5,,, the integrating planc is de-
X 2112 2111 £ gp
fined by

B(—A+wy)— 68(— &, (k+g))#0. (33)

The inelastic scattering rates in LEgs. (20)--(27) vanish out-
side each corresponding integrating plane, which means that
the momentum and energy conservation cannot be simuita-
neously obeyed for such values of (k,k+q), and therefore
no Coulomb scattering is allowed there. It is casy to see that
these integrals are nonvanishing only if the corresponding
integrating plane contains cither some part of the single-
particle excitation continuum or some branch representing
the collective cxcitations (plasmons) in the 2D ¢ plane. This
is of course expectled since a finite scattering rate must in-
volve real excitations, which in this case are single-particle
and collective plasmon excitations.

1. NUMERICAL RESULTS AND DISCUSSIONS
A. Coulomb coupled bilayers with interwell tunneling

We consider first two coupled symmetric identical quan-
tum wells of same width A, = ;=150 A with an interwell
tunneling induced by a barrier of height 228 meV and width
30 A . The total clectron density N.=n;+n;
=2x10" em™? in all structures studied in this paper, with
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n; and #1, being the density in the subband 1 and 2, respec-
tively. For these sample parameters, the Fermi wave vectors
in the first and second subband are £, =0.88X 10° cm ™!
and £3,=0.69X 10° cm ™!, respectively (the superscript sy
stands for symmetric)., Here, both subbands 1 and 2 (sym-
metric and antisymumnetric, respectively) are occupied by car-
riers with #,=123% 10" cm™? and n,~0.77X 10*! em™2.

The plasmon dispersion relation is determined by the
roots of the determinantal cquation det|e; j,m(q,w)] =90,
which, after some algebra, can be rewriiten as

€intra€inter — [(1 - 11411(]‘1) ;/12!‘[1(2)2+ ‘\1 - 1/01132) Vzl”“(l)l
= 2P VI 18,10+ 18] =0, (34)
where
Eime=1 =V TN =PI, — VAN TS, (39)
and
Einter— - VD(H()’Z—\LH'(E)]) . (36\]

For notational simplicity, we do not explicitly wrile the en-
ergy and wave vector dependence in Egs. (34)-(36). For the
present symimetric situation, the unscreened Coulomb poten-
tial F,;=Vy,;=0 by virtue of parity symmetry, because the
wave functions ¢,(2) and ¢»(z) are symmetric and antisym-
metric functions of z, respectively. According o Eq. (34),
therefore, the plasmons dispersion relation in our symmetric
bilayer structure is determined by the roots of the equation
€iuteaf imer = 0, 1.€,, either &;,,,=0 corresponding to the 2D
intrasubband plasmons, or &£,,=0 corresponding to the in-
tersubband plasmons.

There are four roots of &4,,=0. Two of them are shown
in Fig. 1{a) by the solid lines indicating the intrasubband
plasmon modes (1,1) and (2,2). Notice that, for each solid
line, there is a corresponding dashed line that is also the root
of the same equation always lying in the corresponding
single-particle excitation continuum. Tt is well known that
the plasmon modes indicated by the dashed lines inside the
single-particle continua are strongly Landau damped by
single-particle excitations and will be ignored in the follow-
ing discussion. Furthermore, the intersubband plasmon mode
(1.2) comes from the roots of g;,,..=0. The wave functions
#,(z) and @,(z) are schematically shown in the inset by the
solid and dot lines, respectively. Notice that, one is always
able to separate the intra and inter-subband plasmon modes
in structures that are invariant under space inversion, In ad-
dition, the intrasubband plasimons are not Landau damped by
intersubband single-particle excitations (SPE’s) and vice
versa in symmetric bilayer systems. The single-particle con-
tinua SPE,, (intrasubband SPE) and SPE,, (intersubband
SPE) in Fig. 1(a) are those regions where Tm{I1{,(¢,w)}
=0 and Im{I1},(q,w}} #0, respectively. For the sake of
simplicity, we will not indicate the continuum SPE,; in this
paper because it lies totally inside the continuum SPE, ;.
Moreover, we claim that the plasmon mode (2.2) should be
strongly damped by single-particle excitations in the SPE},
continuum and will also be ignored in the following qualita-
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FIG. 1. Plasmon dispersions in two coupled GaAs/Aly:Gag,As
quantum wells of widths (a) W, =W,=150 A (symmetric) and (b}
Wi=150 A and W,=140 A (asymmetric); and separated by a
barrier of width 30 A . For the symmetric (asymmetric) situation the
energy separation between the two subbands is wy==1.68 meV
{0,=2.02 meV). The shadow areas present the single-particle ex-
citation regions SPE,,,. where Im{ﬂgn.( g,w)} #0. Bach structure
is shown in the inset where ¢,(z) and é,(z) are schematically
shown by the solid and dot lines, respectively.

tive scatlering rate discussion. Qur numerical results of
course include all contributions as obtained by evaluating the
2D integrals in Egs. (20)—(27).

Figure 1(b) shows the same plasmon dispersion relation
as in Fig. 1{a) but now in two coupled asymmerric quanium
wells with interwell tunneling. Here, one well is of width
150 A and the other is of width 140 A. For these paramelers,
the Fermi wave vector in the subband 1 and 2 are k%,
=0.93%10° cm ! and k¥,=0.62X10° cm™ ', respectively
(the superscript a stands for asymmetric). Both subbands are
occupied  with  a;=137X10" em™?  and A,
=0.63x 10! em™ 2. In this asymmetric situation. the plas-
mon modes are obtained directly from the roots of Eq. (34).
We show in Fig, 1(b) all these roots. We mention that it does
not make sensc naming the solid lines as pure intra- or mter-
subband plasmon modes because the structural asymmetry
lcads 10 a strong coupling (or mixing) between them, and this
intrasubband-iniersubband mode coupling eliminates the
simplicity of Fig. 1(a}. The solid line that is of finite fre-
quency as ¢ — 0 in Fig, 1{(b) is the intersubbandlike plasmon
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mode (1,2). This mode enters the continuum SPE; at ¢
=0.42X 10° cm™' and should be, in principle, Landau
damped. For small values of ¢, we find the same number of
rools as in the symmetric situation. The interactions ¥, and
Vi are finite in the asyminetric case and are responsible for
the strong mixing between the intrasubbandlike plasmon
mode (1,1) and the intersubbandlike mode (1,2) around ¢
=0,18X10° em ™. Moreover, when the asymmetry is intro-
duced, the depolarization shift (i.e., the shift of the intersub-
band plasmon from the subband energy separation £5;) in
the intersubbandlike plasmon (1.2) at ¢ =0 decreases. We
point out that these roots of Eq. (34) do not provide a com-
plete description of the plasmon modes in asymmetric bi-
layer structures, A detailed theoretical caleulation of the dy-
namical structure factor giving the plasmon spectral weight
provides a complete picture of the collective mode spectra
and can be obtained using our multisubband theory.

Having studied the plasmon dispersion relations we now
investigate in Fig. 2(a) the corresponding total inelastic Cou-
lomb scattering rate o (k) (thick solid line) and o,(k) (thick
dashed line) of fast electrons in the subband | and 2, respec-
tively, as a function of wave vector & in our symmeltric bi-
layer structure. The symbols on the thin lines identify the
contributions to o { k) and g;(k) coming from the emission
of single-particle and collective excitations individually. The
dynamically screened Coulomb interaction components en-
tering in Eqs. (20)—(27) can be calculated from Egs. (13) and
(14). After some algebra, we get

V(1= VI10,) + VIS,

l/.i' - , (37)

i €intra

V(1 -V, 005+ VoI,

Vom= R (38)

€ intea

and
. ] Vp

o= V= (39)

inter

For the symumetric well case the off-diagonal components of
the Coulomb potential all vanish by parity: ¥7{,,,= ¥}
== K301 Vo221 = Va2 = Vg = Fign =0 because V,
=V,=0 for symmetric systems. Therefore, according to
Egs.(20} (29), the total inelastic scattering rates in the sub-
band 1 and 2 are

aq{k)=o it o {40)
and

a3 ( k)= 02093+ 73412 (41

respectively. The terms ayyqy. Ti991, Oz, atd a9yy0 -
volve integrations of the interactions ¥}, ,,, V., Fiysp and
3113 respectively, in Egs. (20), (21), (27}, and (26). The
self-encrgy components in Egs. (22)-(25) are zero in the
symmetric case. /ntrasubband contributions to the scattering
rates arise from the terms oy, and 5y, while fniersub-
hand contrthutions are dye 1o the terms oy, and 053 . The
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FIG. 2. Total inelastic Coulomb scattering rate of electrons in
our coupled bilayer (a) symmetric and (b) asymmetric structures.
The thick solid and thick dashed lines denote the total scattering
rate o,(k) for n=1 and 2, respectively. The symbols on the thin
lines represent each contribution to the total calculated scattering:
diamonds standing for the SPE;; contribution, the filled squares
stand for the intrasubband (1,1) plasmon contribution, triangles
stand for the SPE,, contribution, and opaque squares stand for the
intersubband (1,2) plasmon contribution.

contributions coming from the plasmon modes (filled-square
lines) are obtained separately by excluding the continua
SPE,, and SPE,, from the numerical intcgrations, whereas
contributions coming only from the single-particle continua
are obtained by numerically evaluating Eqs. (21) and (26)
only for the region representing each continuum. Single-
particle excitations contribute for all values of wave vectors
k. However, neither intra- nor intersubband plasmon mode
contributes to the scattering rates close to &%) or &, . These
collective modes provide excitation channels for inelastic re-
laxation only above some threshold wave vectors. The intra-
subband plasmon mode (1,1) begins to contribute to cither
o (&) or ay(k) when the wave vector is larger than the same
threshold A3}==1.65% 10% em™'. On the other hand, the con-
tribution coming from the plasmon mode (1,2} has a differ-
ent threshold for each scaltering rate. This mode begins con-
tributing to o (k) and a,(k) when the wave vector 1s larger
than the thresholds A7y=125X10%em ' and &),
=2.0X10° em ™!, respectively (notice that A% <A@ <k
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Y -

<kp< 7‘2) Obviously, these thresholds depend on the par-
ticular choice of sample parameters. In the present paper,
they are smooth (instead of being a very sharp threshold)
because we are considering the impurity-induced constant
vy=0.2 meV in our numerical evaluation. These thresholds
become much sharper for smaller values of y without any
other substantive changes in our numerical results.

Figure 2(b) shows the same resulls as in Fig. 2(a) but for
the asymmetric bilayer system of Fig. 1(b}. In conirast to the
symmetric case, where we were able to separately obtain the
inter- and intrasubband plasmon modes through the roots of
&imer=0 and &;,,= 0, respectively; the coupled plasmon dis-
persion in the asyminetric system is obtained directly from
the numerical roots of Eq. (34) in which the bare off-
diagonal Coulomb interactions ¥, and ¥V are now nonvan-
ishing. The terms in Eq. (34) involving ¥, and ¥y are re-
sponsible for the mixing between the inter- and intrasubband
plasmon modes and for not allowing the contributions com-
ing from the intra- and intersubbandlike plasmon modes
(1,1) and (1,2) to be picked up completely separated from
each other in the scattering rate. Notice that the dynamically
screened Coulomb potential ¥, is a full 16X 16 matrix
(for the two-subband model—in general, it is an a* X n* ma-
trix for an n-subband problem) in the present situation and is
obtained from Eq. (13), which involves the dielectric matrix
€ijim(g,) and the bare Coulomb interactions
Vi ¥p, Ve, Fp, ¥y, and V), (all of which are finite in
this strongly coupled asymmeiric bilayer structure).® There-
fore, both inelastic scattering rates o (k) and o,(k) in the
asymmetric case contain all terms shown in Egs. (20)-(27),
which are finite in this situation. For the sake of clarity and
to understand Fig. 2(b) in the same way as done for Fig. 2(a),
we choose to show three contributions to the inelastic scat-
tering rates o;(k) and o,(k) in Fig. 2(b) scparately: the
single-particie excitations in the continua (i) SPE;, {up tri-
angles) and (i1) SPE,;; (diamonds); and (iii) the plasmon
mode segment outside these continua (filled squares). The
filled squares in Fig. 2(b) represent contributions coming
from those scgments of the plasmon modes that lie outside
any single-particle excitation continua [see Fig. 1(b)]. Con-
tributions coming from the plasmon segments lying inside
each continuum have been kept in our numerical work along
with the single-particle excitation contributions because it is
essentially numerically impossible to separate the two in this
regime. We should mention that, due to the fact that one is
not able wo eliminate the contributions coming from the over-
damped plasmon modes lying inside the Landau continua,
the thin lines in Fig. 2(b) only serve as a qualitative
illustration. '

B. Coulomb coupled bilayers with no interwell tunneling

Now we investigate the two Coulomb coupled identical
synimetric quantum wells of width #;=HW,=150 A each
with #o interwell wnneling (i.e., the interwell barrier is taken
to be infinity) and with a barrier width of 30 A. Here, the

ermi wave vectors in the two wells are of the same value,
i, kpp=kp =k =0.79%10° cm ™' (or, equivalently, #,
=ns=10" em ?). Notice that the indices 1 and 2 should
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FIG. 3. Plasmon dispersions in two coupled with no interwell
tunneling GaAs/Al,;Gag7As quantum wells of widths (a) ¥,
=W,=150 A and (b) W,=150 A (symmetric) and #,=142.4
(asymunetric) A, and separated by an infinity barrier of width 28 87
A. The shadow areas present the single-particle excitation regions
SPE;;. where mm{l‘l‘,’l.(q,m)}#o. Each structure is shown in the
inset where ¢,{z) and ¢,(c) are schematically shown by the solid
and dotted lines, respectively.

now be treated as well indices since there is no tunneling-
induced bonding-antibonding states. As we mentioned in the
Introduction, an energy degeneracy arises in this case, i.e.,
E | =E, because the two wells are identical with no interwell
tunneling. If there is no tunneling, the bare Coulomb poten-
tial components ¥,;=¥ =V p,=0 and the polarizability TTY,
=I19,=0 independent of whether the bilayer structure is
symmetric or nol. Besides, for this symmetric no-tunneling
bilayer structure, the bare Coulomb potential ¥ ,=V; by
symumetry and the polarizability 117,=115,=11, due to the
fact that the densities in each well are identical.
According to Egs. (34)~(36), therefore, the plasmon dis-
persion relation should be obtained only from the roots of
e¥=(1— ¥ )2 - FLlii=0. (42)
Here, the subscript (superscript) nt (sy) stands for no tunmel-
ing (synmmetric). As shown in Fig, 3(a), we find four roots of
Lq. (42). The solid curves correspond to the in-phase optical,
w (4), and the out-of-phase acoustic, w_{(g¢), plasmon
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modes in the bilayer structure.!! These w . (g) modes have
been observed'? in multilayer semiconductor systems via in-
elastic light scattering spectroscopic experiments. They rep-
resent in-phase and out-of-phase interlayer density fluctua-
tion modes: the out-of-phase acoustic mode, w_{g—0)
~O(q) represents densities in the two layers fluctuating out
of phase with a lincar wave vector dispersion and the in-
phase optical mode, w , (§—0)~ N,g, represents densitics
in the two layers fluctuating in phase with the usual 2D
plasma dispersion. The dashed lines represent the collective
modes that should be strongly Landau damped by the single-
particle cxcitation continuum SPE, i.c., the region where
Im {Hy(g,w)}#0. '

Figure 3(b) shows the same quantities as in Fig. 3(a) but
for an asymmeltric no-tunneling situation with the two wells
being different, one with a width of F; =150 A and the
other a width of W,=1424 A, In this case, our no-tunneling
bilayer structure is no longer invariant under space inversion
and, consequently, the energy level degeneracy is broken,
leading to the cnergy E[<E,. Besides, the bare Coulomb
potential ', is now different from ¥,. As we discussed
before, the two wells now have different charge densities but
we consider the whole system still being in equilibrium. Fur-
thermore, the Fermi wave vector in the first and second sub-
bands is the same as indicated before, ic., &5, and k¥,
respectively. Because of the densities in the two wells being
different from each other, the polarizability I15,#I19,. The
shadow area in Fig, 3(b) is the single-particle excitation con-
tinuum in the wider quantum well, ie., the region where
Im{fT ?l(q,w)};&O. The plasma dispersion relation is now
given by the roots of the Eq. (35). Note that all plasma
modes in the zero tunncling system are by definition intra-
subband plasmons in our model where higher subbands are
neglected.

As shown in Fig. 3(b), we again find four roots of such an
equation and consider that the dashed lines should be
strongly Landau damped modes since they are inside the
single-particle continua. [Furthermore, it does not make
sense, in principle, w define the solid lines in Fig. 3(b) as
pure acoustic or optical plasmon modes because the asym-
metry leads to a difference between the electron densities in
cach layer. Now, the wider well has 30% more clectrons than
the narrower one, and, consequently, the densities in the two
layers are not fluctuating exactly cither in phase or out of
phase. The solid lines in Fig. 3(b) are the approximate
acoustic- and optical-like plasmon modes with the strict dis-
tinction meaningful only in the long-wavelength limit. Due
to the structural asymmetry the acousticlike plasmon mode
enters the SPE continuum at a smaller wave vector, leading
to significant Landau damping of the acoustic plasmon mode
by single-particle excitations in the asymunetric bilayer sys-
tent. In the single-particle continuum of the layer 2 (the nar-
rower well) the acousticlike plasmon mode is completely
suppressed and we find no acousticlike mode in the
Im{I5(q.@)} =0 regime. In general the acousticlike plas-
mon mode is found to be much more sensitive to small
asymmelry effects than the optical-like plasmon mode.
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This is physically reasonable and should be experimentally
tested vis inelastic light scattering experiments.

Now we concentrate on the investigation of the scattering
rates o((k) and o,(k) in the symmetric bilayer structure
with no tunneling. As the bare Coulomb potential ¥V ,=Vy
=V,=90, it is straightforward te see that only ¥, and
700, are finite in the screened Coulomb interaction matrix
F* for a bilayer structure without any tunneling. Therefore
the scattering rates in Eqs, (21)-(26) all vanish by symmetry
in this case. The only nonvanishing terms to be calculated
are ay);; and 0499, in Egs. ( 20) and (27), respectively. Fur-
thermore, as we discussed before, we have the polarizability
H ?12H32=H(, and the bare potential ¥, =V, for identical
(i.e., symmetric case) quantum wells. According to Egs. (37)
and (38), therefore, the screened Coulomb potential is given
by

. .V (=y I+ vt
= V= {43)

oS8
Canr

in the present situation of a symmetric bilayer system with
no interwell tunmeling, In fact, the total inelastic Coulomb
scatlering o (k) and o,(k) are identical because the two
wells are identical with the same density. The thick line
shown in Fig, 4{a) represents the total inelastic scattering
rate, which is equal [o(k)=0 ;= 02(k) =G, | in both
subbands, as a function of the wave vector &. To show sepa-
rately the contributions coming from the emission of plas-
mons (squares) and single-particle excitations (diamonds),
we again exclude the region where Im[I1(¢.w)]#0 from
the numerical calculations to obtain the plasmon contribu-
tion. Single-particle excitations again contribute at all values
of the wave vector, whereas the plasmons begin contributing
to the scattering rate for wave vectors k larger than the Fermi
wave vector krg. There are clearly two thresholds wave vec-
tors in the plasmon contribution (squares), one at k=&,
=1.25X10° em™! and other at k=k%=1.65X10° cm™",
These are the thresholds for the emission of the acoustic and
the optical plasmon, respectively. The substantial difference
between Figs. 4(a) and 2(a) demonstrates the strong effect of
tunneling on the inelastic scattering rates in bilayer siruc-
tures. This is onec of the important qualitative results i our
paper.

Figure 4(b) shows the same results as in Fig. 4(a) but for
the asymmetric bilayer structure without tunneling. As we
discussed before, the asymmetry leads to T19,# [1{, . Further-
more, the bare Coulomb potential ¥ ,# Vp and, therefore ac-
cording to Egs. (37) and (38), the screened Coulomb poten-
tial ¥, # Vs, in the asymmetric case, In this situation,
a (k=0 (thick solid line) and (k)= 09y, {thick
dashed line) represent the total inelastic Coulomb scattering
rates in the wider and narrower layer, respectively. They are
different from each other because the two wells have differ-
ent widths and densities in the asymmetric situation. Again,
we separate the different contributions (by plasmons and by
SPE) by excluding the single-patticle excitation continuum
SPE from the numerical calculations to obtain the plasmon
coniribution. Tt is important 10 point out again that the
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FIG. 4. Total inelastic Coulomb scattering rate of electrons in
our coupled bilayer (a) symmetric and (b) asymmetric structures
with no tunneling. In (b), the thick solid and thick dashed lines
denote the total scattering rate o,(k) for n=1 and 2, respectively.
The symbols on the thin lines represent each contribution to the
total scattering: diamonds stand for the SPE contributions, and the
filled squares stand for the plasmon contributions.

squares in Fig. 4(b) represent contributions coming from the
emission of undamped plasmon modes whose frequency
a(g) les outside the continuum SPE [see Fig, 3(b)]. There is
only one threshold wave vector 4521.71X10% em™ ' in the
thin solid line (squares) corresponding the plasmon contribu-
tion to o (4). This threshold is due to the emission of the
optical-like plasmon mode shown in Fig. 3(b). We also find
that the thin solid line {diamonds) corresponding to the SPE
contribution o o (k) does not contain any contribution com-
ing from the acousticlike plasimon mode. As a matter of fact,
there is no contribution to &,(k) in Fig. 4(b) coming from
the emission of the acousticlike plasmon mode at all because
the integral in o (&) does not contain any segment represent-
ing the acousticlike plasmon mode which is heavily Landau
damped in the asymmetric situation under consideration. On
the other hand, the thin dashed line (squares), corresponding
to the plasmon contribution to a»(k), clearly has two
threshold  wave  vectors A=1.I5X10° cm ! and &
=1.76X 10° cm ™!, which characterizes the emission of the
acoustic- and optical-like plasmon mode, respectively. Thus,
in the asymmetric case, the acoustic-like plasmon modes
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coniribule to carrier scattering o,(k) in the narrower well
but not to (k) in the wider well by virtue of strong Landau
damping. The difference between Figs. 2(b) and 4(b) repre-
sents the strong effect of tunneling on the second component
of the inelastic scatteting rates o5(k) in bilayer asymmetric
structures.

C. Single symmetric quantum well

We now consider {for the sake of comparison) a single
symmetric GaAs-Al,Ga, . As quantum well of width 300 A,
barrier height 228 meV, and with the same total electron
density N,=2X10'! em™? as used before. These sample pa-
rameters lead to the Fermi wave vector in the first subband
Kinge 1 .13% 10° e ™! with only one subband occupancy.
Here, the second subband is empty, which leads to H,,——O
As we discussed before, only the bare Coulomb potential
Vi, ¥y, Ve, and ¥ are finite because V= ¥, =0 in sym-
metric structure. According to Egs. (35) and (36), therefore,
the intra- and intersubband plasmon modes are obtained
from the roots of the equations

bl.n!ﬂk__(l_I n()l)_

H\t( 1
and

xmlJe — 1
inter

Vol +115)=0.

Taking I15,=0 (unoccupied excited subband) in Egs. (37),
(38), and (39) we get

V.'i

7S — {
b 1T e (44)
intra
g1 =V, 10 ) + V2T,
o Vs —Valli+ 45
2227 single ? “5)
mtra
and
Vp
ry — s
Vi =V hin=—r (46)

* inter

Again in this case, the screened Coulomb potential ¥y,
== Vo= Vo= Vo = V= V™ =0 by
symmelry because ¥ ,= F;=0. Therefore, as we discussed
in the Sec. 1 A, the total inelastic scattering rates in the first
and the second subband are given by Egs. (40) and (41),
respectively. In the same way as done for the bilayer struc-
tures, we present the scattering rates o (k) and o»(&) in Fig.
5 in the thick solid and thick-dashed lines, respectively. The
symmetric nature of the single-well system enables us to
separate out the different contributions to the scattering rates
as discussed before. We find that contributions to (k)
come mainly from the emission of both the intrasubband
plasmons (1,1) and the intrasubband single-particle excita-
tions SPE,;. The emission of intersubband excitations turn
out to make negligible contributions to the scattering because
of the sufficiently large energy gap between the two sub-
bands {wo=£,,=14.63 meV). For this particular choice of

ol
L ll')')
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FIG. 5. Total inelastic Coulomb scattering rate of electrons in a
single quantum well. The thick solid and thick dashed lines denote
the total scattering rate o, (k) for n=1 and 2, respectively. The
symbols on the thin lines stand for the same as indicated in Fig.
2(a).

the sample parameters, oy, turns out to be much larger than
O, implying that the carrier relaxation process in the
ground subband is almost entirely via intrasubband scatter-
ing. Another important point in Fig. S is that inter- and in-
trasubband plasmon modes as well as intra- and intersubband
single-particle excitations contribute to the total inelastic
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scattering rate o,(k) in the second subband. Notice that, in
contrast to the behavior of (%), the total inelastic scatter-
ing rate in the second subband o, (k) does not vanish for any
wave vectors k. This 1s due the fact that there is no Fermi
surface in the second subband. This should lead to qualita-
tively different effects in the measured carrier injected in the
second subband compared with that in the ground subband.'
This [ifetime, which is inversely proportional to the total
inelastic scatiering rate (%), should be finite for all finite
wave vectors in the excited empty subband.

1V. CONCLUSIONS

We have developed a theory for calculating the inelastic
relaxation rate for Coulomb scattering in coupled bilayer
structures in semiconductor double quantum well systems.
We use a many-body theory based on a multisubband gen-
eralized GW approximation with the inelastic scattering rate
defined by the magnitude of the imaginary part of the on-
shell electron self-energy. Effects of dynamical screening,
mode coupling, and Fermi statistics are naturally included in
our many-body theory. We demonstrate the usefulness of our
theory by obtaining results for general representative two-
subband model systems: Coulomb coupled bilayer
GaAs-Al,Ga; _, As double quantum well structures both with
and without interwell tunoeling and also with and without
interwell asymmetry in the systemn. Our theory naturally al-
lows for distinguishing various physical mechanisms con-
tributing to the inelastic scattering rate: intra- and intersub-
band contributions. We provide a critical qualitative
discussion of these various contributions to scattering and
comment on the effect of interwell tunneling and structural
asymunetry in bilayer quantum wells.
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Capitulo 3

Propriedades de transporte e espalhamento de impurezas
ionizadas em estruturas semicondutoras com dopagem

do tipo-delta

Um grande numero de investigacbes experimentais foi realizado com
respeito as propriedades de transporte e propriedades Opticas destas estruturas.
Estes sistemas s&o interessantes para estudo dos mecanismos fisicos fundamentais
envolvidos em sistemas com altas densidades de portadores € com estruturas
eletronicas com um carater de multisubbandas (varias subbandas ocupadas).
Estas altas doses de dopagem com impurezas constituem ainda um novo sistema
onde é possivel estudar os mecanismos de espalhamento. Além do mais, novos

dispositivos semicondutores estdo sendo fabricados a partir destas estruturas tipo-

delta.

Em sistemas semicondutores Q2D com alta dopagem, tais como
semicondutores com dopagem planar, a distancia média entre as impurezas é
menor que o raio de Bohr efetivo. Geralmente, acredita-se que as correlagdes
espaciais entre as impurezas tornam-se muito importantes para as propriedades de
transporte. Por outro lado, o efeito de blindagem do gas de elétrons Q2D nos
potenciais de espalhamento de impurezas ionizadas é o fator mais importante que
modifica o potencial de espalhamento de impurezas ionizadas. Varias aproximagoes



de blindagens do gas de elétrons s&o usadas em sistemas Q2D. Os mecanismos de

blindagem nao foram ainda bem entendidos.

Em um dos nossos projetos, que comegou em 1993, tratamos das
propriedades de transporte eletronico neste sistema em colaboragéo com o grupo
experimental de Eindhoven University of Technology. Estudamos o transporte de
elétrons e as mobilidades das subbandas em estruturas semicondutoras Q2D a
baixas temperaturas. Os nossos caiculos descrevem de maneira correta e
quantitativa os resultados experimentais para as mobilidades quanticas. No nosso
trabalho, os mecanismos de espalhamento por impurezas ionizadas e os efeitos de

blindagem foram estudados. Conseguimos os seguinte resultados principais:

1) Mostramos os acoplamentos intersubbandas tem um papel crucial nos
espalhamentos por impurezas ionizadas e no transporte deste sistema de varias
subbandas. As mobilidades das subbandas de maior energia sdo dominadas por tal
acoplamento. Embora existam altas concentragbes de impurezas nas estruturas
tipo-delta, o espalhamento por impurezas ionizadas ainda pode ser descrito pelo
potencial de Coulomb com blindagem. As correlagdes entre as impurezas podem ser
introduzidas pelo fator de estrutura das distribuicbes de impurezas, que ndo deve
levar a um aumento significativo da mobilidade no GaAs com estruturas planares

dopadas com Si.

2) A aproximagdo de Thomas-Fermi e a aproximag&o onde sdo considerados
apenas os elementos diagonais da matriz dielétrica de RPA (que s&o
frequientemente usados para sistemas Q2D e Q1D), ndo sdo capazes de descrever
os efeitos de blindagens nestes sistemas com multisubbandas. Entretanto, a RPA
com a completa dependéncia no vetor de onda q fomece uma razoavel descricdo

dos resultados experimentais.

3) Mostramos também que as concentracdes de aceitadores de fundo (background)
modificam fortemente as mobilidades das subbandas mais altas e a mobilidade
média de arrasto em GaAs com estruturas planares dopadas com Si. Tal efeito
reflete a caracteristica especifica dos sistemas com dopagem tipo-deita onde o
confinamento de elétrons é determinado simplesmente pelo potencial auto-
consistente. Mostramos também os efeitos de acoplamento entre duas camadas de
dopantes na mobilidade, bem como os efeitos do confinamento extra devido ao pogo

quantico (QW). Estes efeitos tém grande interesse experimental.
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The electron transport properties in §-doped semiconductor systems are studied. The subband
electronic structure of the §-doped system is obtained by solving the coupled Schrédinger and
Poisson equations. The screening of the quasi-two-dimensional electron gas is taken into account
for the ionized impurity scattering through the matrix dielectric function within the random-phase
approximation. The quantum and transport mobilities are calculated numerically as a function of
the total electron density and the width of the doped layer at zero temperature. The intersubband
scattering and the effect of empty subbands above the Fermi level on the electron mobilities are
investigated. The calculated mobilities are in reasonable agreement with the available experimental

results.

I. INTRODUCTION

In recent years, there has been increasing interest in
the study of the electron transport properties in §-doped
semiconductor systems. The d-doped systems are, in gen-
eral, characterized by a rather high electron concentra-
tion, which makes them different from the other quasi-
two-dimensional (Q2D) systems, such as heterojunctions
and quantum wells. Typically, several subbands are oc-
cupied in a §-doped system and the effects resulting from
the occupation of several subbands are very important.
An advantage of the actual system is that no interfaces
are present to confine the electrons and ionized impurity
scattering is by far the most important scattering mech-
anism.

A large number of experimental investigations! '3 have
been carried out on the electron transport properties in
é layers. However, the theoretical studies on the electron
transport properties of §-doped systems are limited in
some way. Gillman et al.?2 reported the calculation re-
sults of temperature dependence of the average electron
drift mobility in §-doped GaAs and they found the same
trends as found experimentally for the Hall mobility. But
they did not give details about the calculation and the
electron subband mobility at low temperature was not
obtained. However, in 6-doped systems, the electrons in
different subbands have very different mobilities. Gold et
al.'* studied theoretically the electron transport in struc-
tures with low doping concentration such that only the
lowest subband is populated. They included the influ-
ence of the disorder in the doping layer on the density
of states and screening effects. The mobility was cal-
culated by using a multiple-scattering theory. Mezrin
and Shik!® calculated the electron mobility in heavily
doped ¢ layers using screened Coulomb potential within
the Thomas-Fermi approximation (TFA). Very recently,
Gonzélez, Krupski, and Szwacka!® calculated the elec-
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tron subband transport mobilities due to the ionized im-
purity scattering. The screening on the Coulomb scatter-
ing potential was taken into account within the random-
phase approximation (RPA). In Refs. 15 and 16, the cal-
culations for electron mobility were based on the elec-
tronic subband structure obtained within the semiclassi-
cal Thomas-Fermi approximation,'”-'® which yields ana-
lytical expressions for the effective confinement potential
and subband wave functions. In doing so, they had as-
sumed the impurity layer with zero thickness. Further-
more, the condition of a vanishing background acceptor
concentration was used in Ref. 15. In order to introduce
a finite background acceptor concentration, a variational
approach was employed and the electron subband wave
function and the transport mobilities were obtained up
to three subbands in Ref. 16.

In this work, we study the electron subband mobil-
ities in heavily doped 4 layers. To describe the sys-
tem more realistically in such a way that the results ob-
tained can reflect the experimental situation, we calcu-
late the electronic structure of the ¢ layer by solving self-
consistently the coupled Schrodinger and Poisson equa-
tions. Although the calculation of the electron transport
properties. becomes more laborious using the numerical
self-consistent results for the subband energies and wave
functions, the distribution of the donors and acceptors
and the exchange-correlation contribution of the 2D elec-
tron gas can be easily introduced. As a result, the influ-
ences of the doping concentration and the thickness of
the doped layer on the electron subband mobility can
be studied in contrast with previous works. In our cal-
culation, the screening effects of the 2D electron gas on
the scattering potential of the ionized impurity are in-
cluded and the effect of the empty subbands above the
Fermi level on the electron mobility is also investigated
through the dielectric matrix within the RPA. The the-
ory is applied to Si d-doped GaAs structures.

8363 © 1995 The American Physical Society
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The paper is organized as follows. The electronic struc-
ture of the system is presented in Sec. IL. In Sec. III, the
scattering potential and screening effects on it are de-
scribed. The transport mobility obtained from the Boltz-
mann transport equations within the relaxation time ap-
proximation and the quantum mobility coming from the
linear response theory are exhibited in Sec. IV. The nu-
merical results for the electron mobilities and the com-
parison with experiments are discussed in Sec. V. We
present our concluding remarks in Sec. VI.

II. ELECTRONIC STRUCTURE OF THE
SYSTEM

We consider the following impurity distribution for a
Si 4-doped GaAs structure,

np(z) = { g’[D/WD’

where Np is the areal impurity concentration, Wp is
the width of the doped layer, which is taken in the
zy plane. For typical experimental conditions, we have
Np Z 10*?/ecm? and Wp < 100 A. At such a high
doping level, the average distance between impurities is
smaller than the effective Bohr radius ag = k%eq/m”e?®
(ap =~ 100 A for GaAs) and the electron wave function
of the individual Si donors overlaps strongly with each
other. As a consequence, the donors no longer act as iso-
lated trapping centers and an impurity band is formed
just below the conduction band of GaAs. The electrons
are free to move in the doping plane and they do not
freeze out on the donors at low temperature. Due to
the interaction between the ionized impurities and the
delocalized electrons, an effective attractive potential is
formed in the z direction, which confines the electrons
close to the § layer. The electron energy in this direc-
tion is quantized into discrete levels and a Q2D electron
system is formed. In GaAs, a critical n-type doping con-
centration is about 0.3 x 10!? cm™2.1* In the low doping
concentration regime below this critical Mott density, the
electron wave functions of the individual donors do not
have an important overlap with each other. No impu-
rity band is formed and the conduction takes place by
electrons that hop from one donor site to another. In
this case, the electric conductivity vanishes at zero tem-
perature. In the present work, we are interested in the
electron transport in the §-doped systems in the high
doping concentration regime.

The conventional way to determine the electronic
structure of the § -doped system is to employ the so-
called self-consistent calculation within the Hartree-Fock
approximation.’®72%11 It amounts to replace the ex-
act many-particle potential by an average onme. FEach
electron is assumed to move in a self-consistent poten-
tial V,.(z) and the coupled one-dimensional Poisson and
Schrodinger equations have to be solved self-consistently.
In such a calculation, the impurity distribution, the
exchange-correlation potential of the 2D electron gas,
and the nonparabolicity of the conduction band can be

zl < Wp/2
|z]>Wlo/2<, v/ (1)

HAI STUDART, AND PEETERS 52

included. In another way, the electron subband energy
and wave functions of the é-doped system can be ob-
tained within the semiclassical TFA. It has been proven
that for a system with zero-thickness doping layer and
vanishing background acceptor concentration, such an
approximation yields the results that are equivalent to
those obtained from the self-consistent approximation.!”
The advantage of the TFA is that it gives an analyti-
cal expression for the effective confinement potential and
subband wave functions. However, it is difficult to take
into account the thickness of the doped layer and the
acceptor background.

In this work, the subband wave functions are obtained
from a self-consistent solution of the one-dimensional
Schrodinger and Poisson equations. The total electron
energy and wave function can be written as

E‘n(l—c'”) =FE, + E(E”) (2)
and
¥, 5 (2y,2) = 1/’"(2)—\/17 exp(iky - 7)), 3)

where n =1, 2,..., is the subband index, 7 (EH) is the
electron position (wave vector) in the zy plane, E,, is the
subband energy, ¥,(z) is the electron wave function in
the z direction, e(k) = R?kjt/2m* is the electron kinetic
energy, m* the electron effective mass, and A is the area
of the sample.

The Schrodinger equation in the z direction is given by

_ R 2y, (z)
2m* dz?

+ Vsc(z)'ﬁn(z) = End’n(z)’ (4)

where Vic(2) = Vg (z)+Vac(z) is the effective confinement
potential, which is composed as a sum of the Hartree po-
tential Vz(z) and exchange-correlation potential Vi, (=)-
The Hartree potential, due to the electrostatic interac-
tion of the electrons with themselves and with ionized
impurities, is determined by the following Poisson equa-
tion:
d?Vy  4me?

Tz = o me(2) —mp(2) +na), (5)

where n.(z) is the electron concentration distribution and
n4 is the ionized background acceptor concentration. In
Eq. (5), we assumed that all the donors in the doping
layer are ionized. At zero temperature, the electron dis-
tribution is obtained by

N Ep
ne(z) = 3 [m(2)? /E p(E)dE, O)
n=1 "
where N is the number of the occupied subbands, p(E)
is the electron density of states of the system, and Eg
is the Fermi energy. For a parabolic conduction band,
p(E) = m*/7h? is a constant for the 2D system. The ef-
fect of the nonparabolicity of the conduction band on the
electronic subband structures can be included through
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electron density of states (or the effective mass m*).
In the numerical calculations, we found that using the
usual formalism for Q2D systems,?’ the nonparabolic-
ity modifies the self-consistent solution slightly. So, we
will not give the details here. The total electron den-
sity Ne = f*°_n.(z)dz is determined by the difference
between Np and N4, where N4 is the areal ionized
acceptor concentration and can be estimated from the
thickness of the depletion layer. For ng = 10'¥/cm?,
Ny ~10* fem?.

The exchange-correlation potential V. (z) is a function
of electron density and can be evaluated within the local-

density approximation??
e? 2 11.4
Vic(z) = — 1+ 0.05451n (1 + ,
8megapg anT, Ts

(7

where a = (4/97)1/% and r, = [47mn.(2)/3]"/%/ap.
We performed a self-consistent calculation for the sub-
band electronic structures of a Si 4-doped GaAs system.
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In the calculation, we took the parameters m* = 0.07maq,
€g = 13.18, and n4 = 10 /cm® . The electron exchange-
correlation energy and the band nonparabolicity were in-
cluded. We input the donor concentration Np and the
width of the doped layer Wp. The effective confining po-
tential profile V;.(z), the subband energy E,, the wave
function ¥y, (z), the Fermi energy Er , and the subband
electron population were obtained. We confirmed that
the subband electron population density from our calcu-
lation is in good agreement with the electron densities ob-
tained from Shubnikov-de Haas (SdH) experiments.113

Figure 1 shows the subband energy E, as a func-
tion of (a) the total electron density N, for Wp = 20
A and (b) the thickness of the doped layer Wp for
Np = 5.5 x 10*2/cm?. In the figure, the energy level
E,, is measured from the Fermi energy Ep, which is in-
dicated by the dotted line. In Fig. .1(a) for Wp = 20
A, only the lowest subband is populated at low electron
density (low doping concentration). With increasing N,
(or Np), the effective confinement potential becomes nar-
row and deep. The distance between two levels increases
and more subbands are populated. The n=2, 3, and 4
subbands begin to be occupied at N, = 0.58, 1.62, and
4.76x10'% /cm?, respectively. With increasing Wp, we
also find that more subbands are populated as shown
in Fig. 1(b). In this case, however, the total electron
density is fixed. Wide doped layers lead to a broad and
shallow confinement potential.

III. SCATTERING POTENTIAL
AND SCREENING

In the following, we will consider only the ionized donor
scattering because it is the most important scattering
mechanism for the considered system. The ionized im-
purities scattering potential is given by

ez 1

i g'f‘_ﬁir

V() = - (8)

where R; is the position of the impurity, the sum runs
over all the impurities in the system which are distributed
randomly in the doped layer. The two-dimensional
Fourier transform of the scattering potential is given by

27e? g lz—zil ia By

where R', = (ﬁliiyzi)‘

In the calculation of the electron transport properties,
we assume a parabolic conduction band. Using the Fermi
golden rule, the electron transition probability from state
|n, E||) to |n’, Ef') for electron-impurity scattering is given
by

oy 27 -
Wn,n’ (k”y k“) = T(un,n'(q”)'zafél’l-lz" i
x8[Erns (k) — Enlky)]s (10)



8366

where u, n/(g)) is the transition matrix element due to
the scattering.

The present system has a rather high electron density
and consequently the screening of the scattering potential
due to the electron gas will be significant. The screened
ionized impurity potential can be obtained in terms of
the static dielectric response function within RPA. Be-
cause of the occupation of several subbands, the dielec-
tric function has a tensor character given by €4 5(q)) =
€nn',mm(Q)), where a = (n,n’), 8 = (m,m’). If we as-
sume that the impurities are uniformly distributed in the
doped layer and are uncorrelated, the square of the tran-
sition matrix element due to the screened Coulomb scat-
tering potential is given by

2
Ve ()% = (2’“32) Mo f e
' €q) ) Wb J wy/2

xdzi | ) e, 5(4)Cplay, z) (11a)
B
and
Gplqy, 2) =/ A2t (2) Y (2)[e =T 12 =1
o
+(—1)mHm emauletad), (11b)

with the change in electron momentum due to scattering

2m
q) = [(En = En )

2m*

+2k|2| — Zk" COSO\ﬂEn - Env) 7z

1/2
+ kﬁ] (11¢)

and 6 is the angle between Eﬂ and E;I

In the above equations, e;la((f") is the element of the
inverse matrix of the dielectric response function, and the
sum § = (m,m') runs over all the subbands of the sys-
tem. In actual calculations, however, we have to limit the
B sum. In most previous works, only the matrix elements
of the dielectric function associated with the occupied
subbands were considered. Consequently for a system of
N occupied subbands, the dielectric function €q g(g)) is
approximated by a N? x N2 matrix. Following this ap-
proach, the subband mobilities in heterojunctions with
two occupied subbands were studied in Refs. 23-25. And
those in a 4-doped system with three occupied subbands
were calculated in Ref. 16.

The dielectric function within the RPA is given by

2
€a,8(q)) = Sa,p + ;B—q"Fa.ﬁ(QII)Xg(‘III)’ (122)
where
Foplm) = [ debu(ehbu(2)
X /m d2'$m (2 )Y (2 )e~ W= (12b)
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is the Coulomb form factor and xg(gj) is the static
electron density-density correlation function23.24,26728
without the electron-electron interaction. Notice that
X%.m: (@) = 0 only when both the subbands m and m'
are empty, and x5, (§) # 0 as long as one of the them is
populated. It means that the unoccupied subbands have
contributions to the intersubband interaction of the Q2D
electron gases.2® They could also influence the intrasub-
band interaction of the occupied subbands through the
mode coupling between the intrasubband and intersub-
band excitations. Such an effect in the collective excita-
tions of the Q1D electron system with a three-band model
(one of them was empty), was investigated in Ref. 30.

IV. TRANSPORT EQUATIONS

Considering only the ionized impurity scattering, we
calculate the electron subband quantum and transport
mobilities. These are determined from the different scat-
tering times connected to the average time between the
scattering events. The quantum lifetime or the single
particle relaxation time is the averaged elastic scattering
time. On the other hand, in the transport lifetime or the
momentum relaxation time, every scattering event is av-
eraged over its projection of the outgoing wave vector on
the incident direction.!® The Boltzmann equation of the
d-doped system for steady-state transport can be written
as

€ 4 = 3fn
bk - Eu—*—
Oe(k))

> Wone (ky, k)

l [
o

X[ fur (B}) = Fuly)],

mt
(13)

(10), and f.(ky)

where W, . (E“’EIII) is given by Eq.
Notice that

1s the _electron djstnbutlon function.
,n(k”rkll) = Wp,ne (kllv ||)
Within the relaxation time approximation, the distri-
bution function can be written as?9:12

FO R
( u) -t

Fn(Ry) = Eu

where f,(.o) is the Fermi-Dirac distribution function and
7% (€) is the so-called subband transport lifetime (momen-
tum relaxation time). The Boltzmann equation can be
reduced to a coupled linear equation about 7£(e).2? At
T =0, only the electrons on the Fermi surface contribute
to electric transport and we have 1t = 72(Epn), where
Epn, = Er — E,. For asystem of N subbands populated,
the electron subband transport lifetime is determined by
the equations

N
Z K,.mt=1 forn=1,2,..,N (14a)

n'=1

with
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m* .
Knp = — / dblun n(g))1*(1 — cos 6)
0 8000
N x .
+ z / d0|u,l'n,(q|’])|2}, (14b) 2 6000
nl#n 0 NZ
5
and, for n/ # n, iyt 4000
m* [Epp [7 a2 2000
Ky = 7\ o [} d0|un,ne ()| cos 8, (14c)
i 0
where
;  2m* 1/2
9= "5 [EFn + Epnt — 2V/ EpnEpy COSO] . (144d)
15000
The quantum mobility or the single-particle mobility 77
is determined by the average scattering time. Within the 12500 |

linear response theory, the subband quantum lifetime is
given by?2*

1 m
™ qh3

N n
[ Bl (15)

n'=1

From the transport and quantum lifetime, the electron
subband transport mobility and quantum mobility can
be obtained easily, ’

pi = ol (16)
Notice that the empty subbands n > N do not appear in
the transport equations (14) and (15) which determine
the electron mobilities. They are not involved in the
scattering processes directly. However, the empty sub-
bands influence the impurity scattering potential through
screening effects, which is taken into account by the di-
electric function.

V. NUMERICAL RESULTS AND DISCUSSION

Using the previous results for the transport proper-
ties, we calculated the electron transport mobility and
the quantum mobility in the § layer. In Fig. 2, the elec-
tron subband (a) quantum mobility and (b) transport
mobility for the Si §-doped GaAs structures of Wp = 20

are plotted as a function of the total electron den-
sity. The solid curves indicate the results considering
only the IV occupied subbands in the dielectric function,
which is approximated by a N2 x N2 matrix. The dashed
and dotted curves present the results including one and
two empty subbands, respectively, in the dielectric func-
tion, which is given by a (N + 1)? x (¥ + 1)? and a
(N + 2)2 x (N + 2)? matrix. It is seen that the empty
subbands above the Fermi level indeed influence the elec-
tron mobility through the effect of the screening on the
Coulomb scattering in the present multisubband system.
Such an influence on the mobility of the electrons in the
higher subband is stronger than in the lower ones. Both
the quantum and transport mobilities coming from the

6
N, (10"/cm’)

FIG. 2. The subband (a) quantum mobility and (b) trans-
port mobility as a function of the total electron demsity for
Wp = 20 A. The solid, dashed, and dotted curves present the
results including 0, 1, and 2 empty subbands in the dielectric
matrix, respectively.

highest occupied subband are depressed due to the ef-
fects related to the empty subbands. However, such an
influence on the mobilities from the lower subbands is
not pronounced.

We found that the quantum mobility, as shown in Fig

' 2(a), increases with increasing subband index and de-

creases with increasing total electron density (or donor
concentration). At the onset of occupation of a new
subband, the theoretical subband mobility exhibits an
abrupt jump. Such a discontinuity is due to the inter-
subband scattering and has been discussed in Refs. 16,
23, and 24 for the multisubband transport in Q2D sys-
tems. However, for the transport mobility, as shown in
Fig. 2(b), 4§ > p% when only three subbands are pop-
ulated, which is qualitatively in agreement with the re-
sults in Ref. 16. This is mainly due to the fact that the
wave function 2(z) is antisymmetric and has a node at z
= 0. For a narrow doped layer, electrons in this subband
have a smaller overlap with the impurities than those in
the third subband and, consequently, the scattering is
weaker. After the onset of occupation of the n = 4 sub-
band, uf becomes smaller than pf. This is because 12(z)
and 94(z) have the same parity, and the intersubband
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FIG. 4. The same as Fig. 3 but now for the quantum
mobility.

5(a) and 5(b), respectively. In this figure, the calculated
mobilities of the first two subbands for Wy = 20 & are
given by the solid (n = 1) and dashed (n = 2) curves.
The experimental results of a Si §-doped GaAs are in-
dicated by solid circles (n = 1) and squares (n = 2).
For the transport mobility in Fig. 5(a), our calculation
shows the correct qualitative behavior as found experi-
mentally. Quantitatively, the calculated transport mo-
bility of n = 1 subband has a better agreement with
experimental measurements than that of n = 2 subband,
which is about a factor of 2 larger than observed exper-
imentally for N, > 3.0 x 10'%/cm?. At the onset of the
population of a new subband, the theoretical subband
mobility exhibits an abrupt decrease, which is not seen
experimentally. This is probably due to the fact that
in real systems there exist thickness fluctuations in the
doped layer, which lead to fluctuations in E,. However,
in Fig. 5(b), the calculated quantum mobility shows a
quite good agreement with the experimental results.

In Fig. 6, the quantum mobility is given as a function
of the width of doped layer Wy for Si §-doped GaAs of
Np = 5.5 x 10'2/cm?. The theoretical (experimental)
quantum mobilities are presented by solid curve (circles)
for n = 1, dashed curve (squares) for n = 2, and dotted
curve (triangles) for n = 3. We found that for the first
two subbands, the calculated mobility is in good agree-
ment with the experimental results. By increasing Wp,
1 increases slowly and uj tends to uf at Wp > 120

FIG. 5. The electron density dependence of {a) the trans-
port mobility and (b) the quantum mobility in Si J-doped
GaAs. The solid and dashed curves present the calculated mo-
bilities of the n =1 and 2 subbands, respectively, for Wp = 20
A. The experimental results are indicated by the solid circles
(n = 1) and squares (n = 2). The experimental results are
from Refs. 5 and 11, but the results at N. = 7.2 x 10'?/cm?
are from Ref. 4 and the results of transport mobilities at
N. = 4.0 x 10**/cm? are from Ref. 7.
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FIG. 6. The dependence of quantum mobility on the width
of the layer for Si d-doped GaAs with Np = 5.5 x 10'? /em?®.
The solid, dashed, and dotted curves present the calculated
results of the n =1, 2 and 3, respectively. The experimental
results are indicated by the solid circles (n = 1), squares
(n = 2), and triangles (n = 3) (Refs. 11 and 13).
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A. For the higher subband n =3, the calculated mobil-
ity shows qualitatively similar Wp dependence as found
experimentally.

We also found that the ratio of the transport mobility
to the quantum mobility from our calculation increases
with increasing the doping concentration. But it is al-
most not influenced by the thickness of the doped layer.
In the range of the doping concentration considered, it
increases from three to six_for the lowest two subbands
and from one to three for the third one. Experimentally,
this ratio was found to be in the range 1.3 — 2.9 for the
d-layer structure!!*!3 and it is about two for the J-doped
quantum wells.® The ratio of the transport to the quan-
tum mobility reflects the nature of the scattering mecha-
nism, i.e., long-range versus short-range scattering. It is
seen that the present calculation yields a higher transport
mobility than the experimental result. It seems that the
model of the screened Coulomb scattering potential with
static RPA describes the short-range scattering more ex-
actly than the long-range scattering.

In the present calculation, only the scattering of ion-
ized domnors is considered. Even though ionized impurity
scattering dominates the electron mobility in §-doped
systems, there are several unknown factors, which can
modify the electron transport properties. For instance,
from an experimental point of view, the profile of the im-
purity layer and the effective thickness of the doping layer
are not always exactly known. In heavily doped semicon-
ductor systems, the random distribution of the impurities
induces a band tail and creates localized states. Then
the density of states of the é-doped system is no longer a
steplike function. Because of the localized states and the
deep level centers, the electron density becomes much
lower than the intended doping concentration at high
doping level. For the present system, this is expected
to be relevant for Np > 6 x 10*2 ¢cm—2. Other scat-
tering mechanisms will also influence the electron mo-
bility slightly, such as scattering with ionized acceptors,
neutral impurities, and the electron-electron interaction.
Deep level centers and the presence of possible impurity
clusters may also play a role. Because of the high impu-
rity concentration, the correlation among the impurities
becomes important and should be considered. Besides,
the screening is an important factor that influences the
electron-impurity scattering. In the theoretical study of
the electron transport properties in Q2D systems, the
static RPA screening is often used. In principle, all the
energy states in the system, including the screening ef-
fects, and the full energy spectrum should be considered
in the dielectric function within RPA for a multisubband
system. In the present calculation, we included all the
occupied subbands and two empty subbands above Er
in the dielectric function. In such a case, the numeri-
cal calculation was already very difficult for four or five
populated subbands.

In our calculation, we assumed a steplike electron den-
sity of states for each subband of the Q2D systems. This
is justified when the subbands are well separated in en-
ergy and are much larger than the band tail of localiza-
tion states. This is the case for the first few subbands.
When there is a band tail at the onset of subband occu-
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pation, the Fermi level will cross the mobility edge of the
subband leading to a different scattering rate.

VI. CONCLUSIONS

In summary, the electron transport properties in §-
doped semiconductor systems have been studied. Our
mobility calculations were based on the self-consistent so-
lution of the subband electronic structure and wave func-
tions. The influences of the doping concentration and
the thickness of the doped layer on the electron subband
transport and quantum mobilities were investigated. The
ionized donor scattering was considered and the screening
was included within the static RPA for the multisubband
2D system. To the best of our knowledge, this is the first
work where the self-consistent electronic structure of é-
layers has been used to investigate the subband quantum
and transport mobilities. The effects due to the thickness
of the doped layer on the subband mobility and due to
use of empty subbands in the screening of 2D electron
gas were also studied.

Our calculation shows that the electrons in the lowest
subband have a low mobility, which is not much influ-
enced by the doping concentration and the thickness of
the doped layer. The mobilities due to the occupation of
higher subbands are much bigger than those of the lowest
one for small Wp, and they are strongly dependent on
the different parameters. We demonstrated that inter-
subband scattering is also important, as we have seen at
the onset of the occupation of a new subband. Although
the empty subbands are not involved in the solution of
the Boltzmann transport equation at zero temperature,
they affect the electron mobility through screening effects
on the scattering potential. The result of our calculation
shows that the empty subbands modify the subband mo-
bility, especially for the highest occupied subband. So, in
this way our calculation includes the important effect of
the mode coupling between the intrasubband and inter-
subband excitations that has been shown to be relevant
in multisubband models of plasmon excitations. We also
observed that is very important to obtain an accurate
electronic structure for the mobility calculations. For in-
stance, the position of the onset of the population of a
new subband determines where a new scattering channel
is introduced, which leads to the discontinuity in mobil-
ity.

Our calculated quantum mobilities of the lowest two
subbands, both for N, dependence and W dependence,
are in quite good agreement with experimental results
from Shubnikov-de Haas measurements.!1-13 The trans-
port mobilities and the quantum mobilities of higher sub-
bands have the same behavior as observed experimentally
but, quantitatively, they are larger than experimental re-
sults.
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The effect of the background acceptor concentration on the electron mobility in Si §-doped GaAs has been
investigated. The subband electronic structure of the -doped system was obtained by solving self-consistently
the coupled Schrodinger and Poisson equations. The screened ionized impurity potential is considered by
taking the dielectric matrix of the multisubband system within the random-phase approximation. We found that
the background acceptor concentration in the present system strongly modifies both the mobilities of electrons
in higher subbands and the average drift mobility. Our results may provide useful information for the inter-
pretation of experimental mobility data in 5-doped semiconductors and related devices.

The quasi-two-dimensional (Q2D) electron gas system in
a &-doped semiconductor structure is realized by producing a
very thin doping layer with high impurity concentration.
Typically, the thickness of the doping layer W;<<100 A and
the areal concentration Np= 10'¥/cm?. In contrast with other
Q2D semiconductor systems, such as heterojunctions and
quantum wells, no interface is present in a §-doped structure.
The confinement potential is simply formed by the interac-
tion between the ionized impurities in the doping layer and
the delocalized electrons around it. Usually, several subbands
are populated in S-doped systems because of high electron
density, and the ionized impurity scattering is by far the most
important scattering mechanism at low temperature.

In recent years, an appreciable amount of experimental
work has been carried out on the electron transport properties
in & layers.’ The effects of the doping concentration, thick-
ness of the doping layer and temperature, on the electron
mobility have been studied.’™* However, the influence of the
background acceptors is not considered. In general, such an
effect is not well pronounced on the electronic properties of
a Q2D system. However, in é-doped structures, the quantum
confinement is a result of the self-consistent bound potential.
The electronic subband structure of the system is mainly
determined by the doping concentration, the profile of the
doped impurities, and also the background acceptor concen-
tration. In this paper, we will show that the background ac-
ceptor concentration in a Si §-doped GaAs strongly influ-
ences the mobilities of electrons in the higher subbands and
the average drift mobility.

In the system here considered, the impurity layer is placed
in the xy plane with thickness Wp=20 A and areal donor
concentration N, . The background acceptors are distributed
uniformly in the sample. The electronic structure of the sys-
tem is determined by employing the so-called self-consistent
calculation within the local density approximation.*~ In
such a calculation, impurity distribution, the exchange-
correlation potential of the 2D electron gas, and the nonpa-
rabolicity of the conduction band can be included. The sub-
band energy £, and wave function ¢,(z) are then obtained
from the numerical self-consistent solution of the one-
dimensional Poisson and Schrodinger equations. The totai

electron energy is given by E,,(/Z,;)zEn+e(/E,,), where

0163-1829/95/52(4)/2245(4)/$06.00 52

n=1,2,... is the subband index, e(IZ”)=ﬁ2kf/2m* is the
electron kinetic energy, and Eu is the electron wave vector
in the xy plane. The effective confinement potential
V(2) =Vy(2) + V,(z) is composed as a sum of the Hartree
potential Vy(z) and exchange-correlation potential V,(z).
The Hartree potential is determined by the Poisson equation.
In the calculation, we assumed that all the donors in the
doping layer are ionized. The subband nonparabolicity is in-
cluded through the electron density of states.” The ionized
acceptor distribution can be written as

n,(z)=n,8(W,—|z]), 1)

where n, is the background acceptor concentration which is
about 10*-10'%/cm® in the experimental situation, ®@(x) is
the step function. W, is determined by Eg=FE,+E, for
|z|=W, , where E, is the binding energy of the acceptors
measured from the top of the valence band E,,. Then, we
have V(W )=Er+E,—E,, because in the depletion layer
n, is much larger than the electron concentration. The
thickness of the depletion layer can be estimated by
Woep= Veo(E,—E,)/2me*n, , where E,=1.52 eV is the en-
ergy gap of GaAs and we took E,=30 meV which is a
typical binding energy for shallow acceptors in GaAs. W, is
determined self-consistently from the requirements of charge
neutrality and Fermi energy lineup by using the initial value
of Wy,. The total areal electron density is given by
NE=ND—2nAWA .
The exchange-correlation potential as a function of elec-
tron density n.(z) is given by®
11.4
I @
rS

where a=(4/9m)'?, r,=[47n.(z)/3] ¥lag, and ay is the
effective Bohr radius.

In Fig. 1, we give the self-consistent solutions of the con-
finement potential profile V (z), the first five quantized lev-
els E,,, and the electron distributions for two different accep-
tor concentrations n, =10 and 10%cm’ of Si S-doped
GaAs with Np=8X10"%cm?. The shadow indicates the
doping layer. We found that W,=4.674 and 1.478 um for
n,=10" and 10%/cm?, respectively. In the figure, the en-
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FIG. 1. The effective confinement potential profile V (z) and
the electron density distribution n.(z) in Si J-doped GaAs of
Wp=20 A and Nj,=8X 10"%/cm?. The thick solid and thick dashed
curves indicate V,(z) for n, = 10'* and 10'%/cm?, respectively. The
corresponding n.(z) is presented by the thin solid and thin dotted
curves, The shadow indicates the doping layer and E, are given by
the thin solid and thin dashed lines.

ergy is measured from the Fermi energy E which is indi-
cated by the dotted line. Figure 2 shows the influence of the
ny on the subband energy E, in the structure of
Np=8%10%cm? It is seen that, at n,=10"%cm?,
E,<Erp for the first four subbands (n=<4) which are popu-
lated. With increasing n,, E, almost does not change, and
the other levels shift to higher energy. The distance between
the different levels also increases. E4 crosses the Fermi en-
ergy at n,=9x10"cm® and becomes depopulated for
higher acceptor concentrations. We also found that the frac-
tional electron density of the lowest subband increases with
increasing n, , while those of the higher subbands decrease.
When we calculated the electron subband mobility, only
the ionized donor scattering was considered because it is the
most important scattering mechanism in the S-doped sys-
tems. The ionized donor scattering potential is given by

40.0
6 5
/ 4
0.0 1
-
= 3
% -400 | ]
E 2
uf
' -80.0 r 1
mf:
-120.0 + 1
n=1
-160.0 S
10" 10" 10"
n, (cm™)

FIG. 2. Subband epergy as a function of background acceptor
concentration for Si S-doped GaAs of Wj,=20 A and
Np=8X%10%/cm?.
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V(I-:)—_—"' d g (3)

where R; is the position of the impurity and the sum runs
over all the impurities which are distributed randomly in the
doping layer. In the calculation of the electron transport
properties, we assumed a parabolic conduction band. Using
the Fermi golden rule, the electron tramsition probability
from state |n,k)) to |n’,lzﬁ) for electron-impurity scattering
is given by

oo, 2W - ,
Wn,n'(k” vk“ )= ';»l“lun,n'(%[)lzﬁl?ﬁ —I;“ ,5“5(En'(k|])—En(k||))7
4)

where u,,.,l:(c;") is the transition matrix element. If we ignore
the correlation between impurities, the square of the transi-
tion matrix element due to the screened ionized donor scat-
tering is given by

Znez)zNDJWD/Z

> 2 HNp | , 12
lun.n’(qll)l ( €0 W, /Zdzl[Gn,n (QM 1Zl)] s (5)

—_ WD
where
Gan(@2)= 2 €3 () jo Az () Y1 (2)

X[e—qu|z~z,-|+(__ 1)m+m'e—qu|z+z,-]]’ (6)

with the change in electron momentum due to scattering
written as

2m* )
9)=|(Ex—Ep) 7 +2kj
2m* 1/2
—2kjcos@ \ﬂE,,—E,,,) 7+ K| 7

In Eq. (7), 6 is the angle between ic'" and I-c."’ . E;,,l,,mm,(t;”) is
the element of the inverse matrix of the dielectric response
function, and the sum (m,m’) runs aver all the subbands of
the system. In this work, the dielectric function is calculated
within random-phase approximation.®® In practical calcula-
tions, we have to limit the (m,m') sum. In most previous
works, only the matrix elements of the dielectric function
associated with the occupied subbands were considered.
Consequently for a system of N occupied subbands the di-

electric function e,,,,:,,,,,,,r(c;") is approximated by an
N2XN? matrix.>%!! In our calculation, we included all the
occupied subbands and two empty subbands above Ef in the
dielectric response function which is approximated by an
(N+2)?>X (N + 2)? matrix.*

The electron mobility has been calculated by solving the
Boltzmann equation within relaxation time approximation
for the multisubband system at zero temperature.'®'"* The
transport mobility is shown as a function of the total electron
density in Fig. 3 for n,=10'%cm?>. It is seen that the trans-
port mobilities of the n=2 and n=3 subbands are close to

each other and much higher than that of the lowest subband.
The abrupt decrease of the mobility at N,=4.76> 10'%/cm®
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FIG. 3. The transport mobilities of the lowest three subbands as
a function of the total electron denmsity for W,=20 A and
n,=10"%cm? The solid, dashed, and dotted curves show the re-
sults of #=1, 2, and 3 subbands, respectively.

is due to the onset of the occupation of the n=4 subband,
where the intersubband scattering related to the fourth sub-
band starts to be included in the scattering processes.

Now, we proceed to a discussion on the main contribution
of our paper, i.e., the influence of the background acceptor
concentration on the subband electron mobilities. In Fig. 4,
the transport mobility is plotted as a function of the acceptor
concentration for Si s-doped GaAs with (a) Np=2X10'%/

@)
\\\\\/\
10000 t ~.
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[ TTe e
I \\\\
e 1
. 6000 p—— e e ';\
< S .3
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FIG. 4. The transport mobility as a function of the acceptor
concentration for (a) Np=2X10%cm? and (b) Np=8X10'%
cm’. W,=20 A

n, (cm”)

FIG. 5. The average drift mobility as a function of the acceptor
concentration for & layers of Wp=20 A and different Nj: a,
2X10%em?; b, 4X10%cm?; ¢, 6X10%cm?; d, 8x10%cm?;
and e, 1X10%/cm?.

cm? and (b) Np=8X10'%cm?. It is seen that, when n, var-
ies from 10 to 5 X 10'*/cm?, the mobility of electrons in the
lowest subband does not change in an appreciable way. How-
ever, the mobilities of higher subbands change significantly.
The abrupt increase of the mobility at n, =2.5X 10%%/cm? in
Fig. 4(a) and at n,=9X10"%cm’ in Fig. 4(b) is due to the
depopulation of the n=3 and n=4 subbands, respectively.
Except for this increasing jump, the mobility decreases with
increasing n4 . Figure 4(a) shows that u, is about four times
larger than uf at ngs=10"%cm’®. But, when n,>2.7
x10%/em3, u) becomes smaller than u} . For a higher dop-
ing concentration N, the influence of n, on the mobility
becomes weaker but still significant as shown in Fig. 4(b).
Notice that we did not take into account the ionized acceptor
scattering in the calculation because it is much smaller than
the ionized donor scattering. The effect of the background
acceptor concentration on the subband mobility can be un-
derstood as follows. By increasing n,, the thickness of the
depletion layer decreases and the profile of the effective con-
finement potential becomes narrower and deeper. On one
hand, this leads to a strong interaction between the conduc-
tion electrons and the ionized donors because they become
closer. As a consequence the impurity scattering increases. If
the acceptor scattering is included, such an increase of the
impurity scattering on the electrons will be enhanced
slightly. On the other hand, the separation between the sub-
bands increases and more electrons are transferred to the
lowest subband from the higher ones. At some 7n, , the high-
est occupied subband becomes depopulated and the intersub-
band scattering related to this subband disappears.

The average drift mobility u, of the electrons is obtained
from the subband mobility and electron population as
w,=32N_Lu!N¢/N, . Figure 5 shows the dependence of the
electron drift mobility on the acceptor concentration. The
solid, dashed, dotted, dotted-dashed, and thick-dashed curves
present the results for (a) Np = 2X 102, (b) Np =
4x10", (¢) Np = 6X10%, (d) Ny =8x10'% and (e)
Np =10" /em?. It is seen that the electron drift mobility is
also strongly influenced by the background acceptor concen-
tration. For instance, for the donor concentration of
Np=2X%10"%/cm?, the mobility u,=4654 cm®/Vs at
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na=1x10"%cm® and decreases to 2397 cm?Vs at
n,=5x10%cm? The abrupt change of the mobility in
curves a and b is due to the depopulation of n=3 subband,
and that in curves ¢, d, and e is induced by the depopulation
of n=4 subband. We observe that, in Si d-doped GaAs of
Np=10"2-10"%cm? and n,=10"-5x10"/cm?®, which is
the usuval experimental situation, there are two up to four
populated subbands. The onset of the occupation of the
fourth subband depresses strongly the drift mobility.

In the present calculation, only the scattering of ionized
donors was considered. Although several other scattering
mechanisms, such as ionized acceptors, neutral impurities,
deep level centers, and electron-electron interaction, can
modify the electron transport properties, the main feature of
the effect of the background acceptors on the electron mo-
bilities in this work will not change. If including ionized
acceptor scattering, this effect will be enhanced slightly.

In a &-doped system, high donor concentration leads to an
impurity band just below the conduction band. The disorder
of the impurity distribution could create localization states
and a band tail. The thickness fluctuations in the doping layer
may also broaden the energy level E,,. When there is a band
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tail at the onset of subband occupation, the Fermi level will
cross the mobility edge of the subband leading to a different
scattering rate. In experiments, the change of the mobility at
the onset (or depopulation) of a higher subband will not be
abrupt. In the calculation, we assumed a steplike electron
density of states for each subband of the Q2D systems. This
is justified when the separation between subbands is much
larger than the band tail of localization states. This is the case
for the first few subbands.

In conclusion, we have studied theoretically the electron
mobility in Si &-doped GaAs. We found that the background
acceptor concentration strongly influences the mobilities of
electrons in high subbands and the average drift mobility.
Such an effect reflects the specific characteristics of Q2D
system in a & layer which is simply determined by the self-
consistent potential. We hope our calculation can provide
useful information for experimentalists to optimize the
samples and the related devices.

One of us (G.Q.H.) was supported by Conselho Nacional
de Desenvolvimento Cientifico e Tecnologico (CNPg), Bra-
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The low-temperature transport properties are studied for electrons confined in é-doped semi-
conductor structures with two sheets in parallel. The subband quantum mobility and transport
mobility are calculated numerically for the Si J-doped GaAs systems. The effect of coupling of the
two ¢ layers on the electron transport is investigated. Our calculations are in good agreement with

experimental results.

I. INTRODUCTION

In recent years, an appreciable amount of work
has been devoted to the electron tramsport properties
in d-doped semiconductor systems.'™® The quasi-two-
dimensjonal electron system in §-doped semiconductors
is realized, typically, by a very thin doped layer (Wp < 20
A) of high doping concentration (Np 2 10'2 cm~2). On
one hand, a high concentration of impurities leads to a
high electron density in the system and several subbands
are populated. On the other hand, as a consequence,
this results in a very strong scattering on the electrons
and, consequently, a low electron mobility. In order
to fabricate high-mobility é-doped devices, some works
are focused in improving doping and material growth
techniques.245 An alternative way to improve the elec-
tron mobility in the J-doped semiconductors, which has
been proposed recently, is to make a structure with dou-
ble & layers.2®73 It is expected that the coupling between
the two layers leads to an increase of the average distance
of the electrons from the doped layers. The impurity
scattering is then reduced and the electron mobility is
enhanced. It was shown that the electron mobility is in-
creased by two to five times over that of a single §-doped
case.'?

In previous works,”® we studied theoretically the elec-
iron transport properties in single d-layer systems. The
effects of the doping concentration, thickness of the
doped layer, as well as the background acceptor concen-
iration on the electron subband mobility were investi-
gated. The screening of the electron gas on the impu-
rity scattering potential was included within the static
random-phase approximation (RPA). In this paper, we
report a theoretical study of the electron transport prop-
eriies in double § layer systems. We calculate the elec-

np(z) = {é\ID/WD’
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(Ws — Wp)/2 < ]z} < (WS + Wp)/2 “
otherwise ,
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tron subband mobility for two interacting Si §-doped lay-
ers in GaAs based on the self-consistent calculation of
the electronic structure and wave functions in such a
systemn. The electron subband quantum and transport
mobilities are determined from the different scattering
times connected to the average time between the scatter-
ing events. The quantum lifetime or the single particle
relaxation time is the averaged elastic scattering time.
On the other hand, in order to obtain the transport life-
time or the momentum relaxation time, every scattering
event is averaged over its projection of the outgoing wave
vector on the incident direction.? For a discussion from
a theoretical point of view, see Ref. 14, Experimentaily,
the quantum mobility is obtained by Shubnikov—de Haas
(SdH) measurements and the transport mobility is deter-
mined by the so-called mobility spectrum technique or by
Hall measurements combined with the subband electron
density obtained from SdH measurements.?1* We show
the effect of the coupling between the two § layers on the
quantum and transport mobility of electrons in different
subbands. In Sec. II, the self-consistent electronic struc-
ture of the coupled 4 wells is determined and in Sec. II1,
the electron mobilities are numerically calculated and the
theoretical results are compared with the available exper-
imental ones.

I1. SELF-CONSISTENT ELECTRONIC
STRUCTURE

We consider the Si d-doped GaAs structure with dou-
bly doped layers in parallel. We assume that the two
doped layers are symmetric, i.e., they have the same

_thickness and doping concentration. If we take the doped

layers in the zy plane, the donor impurity distribution
can be written as

St

©1995 The American Physical Society
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where Np is the donor areal concentration of each layer,
Wp the thickness of the doped layer, and Wy the sep-
aration between the two layers. In Eq. (1), we bave
assumed Ws > Wp. For W < Wp, the two doped
layers become overlapped. In this case, we deal with
the system as single doped layer.” The electron energy
and wave function in the system can be written as
E,,(ic‘") =E, + s(lz:'"), where n =1, 2, 3,... is the sub-
band index, e(ky) = 2k} /2m* is the electron kinetic

energy, and El! the electron wave vector in the plane.
The subband energies E, and wave functions v, (z) are
obtained from the self-consistent solution of the coupled
one-dimensional Schrédinger and Poisson equations. In
the calculation, we assume that all the impurities in the
doping layers are ionized and the conduction band is
parabolic. We took the parameters m* = 0.067m,, € =
13.18, and the energy gap of GaAs E; = 1.52 eV. The
exchange-correlation potential of the electron gas was in-
cluded within the local-demsity approximation.!57% In
Fig. 1, the effective confinement potential V,.(z), the
subband energies, and the probability distributions of
the electrons in different subbands are depicted in the
case of a structure with Ws = 160 A, Wp = 10 A,
Np = 2.5 x 10'2 /cm?, and background acceptor concen-
tration n4 = 101% /cm3. The shadow indicates the impu-
rity sheets. In this figure V,.(2) is given by the thick curve
and the thin curves indicate the subband electron distri-
butions. It is seén that the lowest two levels are closed
to each other and their respective electron distributions,
which strongly overlap with the impurity layers, are very
similar. Furthermore, the electron wave functions in the
higher levels spread out in a much wider region as com-
pared with those of the lowest subbands. Notice that the
wave functions of the lowest two subbands have differ-
ent parity. One (n = 1) is symmetric and the other one
{n = 2) is antisymmetric. In the case of E; = Ej, the
two levels become degenerate and the wave function can

50 F
5
5 o0 =1
o =
E -
ur‘ -z
m -50 HE:
E,
-100 | . ) .
-500 -250 0 250 500
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FIG. 1. The results of the self-consistent calculation of
the effective confinement potential {thick-solid curve), the
energy levels E,, and the electron probability distribution
{thin-solid curves) for a double § layer structure of Ws = 160.
A, Wp =10 A, Np = 2.5 x 10" /cm® for each layer, and
na = 10'®/cm®. The epergy is measured frem the Fermi
energy (thin-dotted line), and the shadow indicates the Si
d-doped layers.
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FIG. 2. The subband energy as a function of the separation
between the two doped layers with Np = 2.5 x 10**/cmm? and
Wp = 10 A for each layer. The dash curve indicates the
barrier at z = 0 between the two coupled quantum wells.
n4 = 10'%/cm®.

also be expressed as Y. (2z) = [¢h1(2) & ¥2(2)]/V2, where
9. (2) and 3_(z) present the electron states in the right
and the left quantum well, respectively. In Fig. 2, the
subband energy E,, is depicted as a function of the sep-
aration of the two sheets Wy for Np = 2.5 x 10'%/cm?,
Wp = 10 A, and nyq = 10'5/cm®. The dashed curve
presents the barrier (at z = 0) between the two quan-
tum wells. For small Wg, where the barrier V,(0) is
much smaller than the lowest subband epergy, the sys-
tem is similar to the single § layer. When Ws < Wp, the
system becomes a single doped layer with doping con-
ceniration 2Np. With increasing Wg, the barrier V,.(0)
increases rapidly. We find that E; = V,.(0) at Ws = 89.4
A, and E; = V,.(0) at W5 = 132.5 A. For Ws = 200 A,
the first two subbands become almost degenerate. At
amall Wg, the lowest three subbands are populated by
electrons. The n = 4 and 5 subbands become populated
for Ws > 46 A and 196 A, respectively. When Wg — o0,
the system behaves like two independent single § layers
and the energy level Ej corresponds to the second level
of the independent § layer.

III. ELECTRON MOBILITIES

Based on the above self-consistent solution of the elec-

tronic structure and the wave functions, we study the

electron transport properties of the system. In the calcu-
lation, only the scattering by ionized donors in the doped
layers are considered, because it is the most important
scattering mechanism at low temperature. We consider
the Coulomb scattering potential due to ionized impuri-
ties, distributed randomly in the doped layer at positions
R;, whose two-dimensional Fourier transform is given by

2we? . .
: E ‘el = i By (2

€oqgy,

"(q",?-') ==
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Using the Fermi goldeli rule, the electron transition
probability from state |n, ky) to |r', k) for the electron-
impurity scattering is given by

= = 27 —
Wa (R k) = [t (@)*85; 5,01 Bos (K1)
~En(kp)l, 3)

where u",n:(zj'") is the transition matrix element. Be-
cause of the high electron density in the present system,
the screening effects of the electron gas on the scatter-
ing potential has to be taken into account properly. The
screened ionized impurity potential can be obtained in
terms of the static dielectric response function within
the RPA.71671® The dielectric function in the present
multisubband system has a temsor character given by
€nn’,mm(gj))- For the present double § layer system, the
transition matrix elements, due to the screened scatter-
ing potential, is written as

3} ame?\* Np [(Ws+Wo)/2
i"’n,n’ (QIl)Iz = ) W’/
€oqy D J(Ws—Wp)/2
xdz{|GE, (a1, %) + |G (gp, 2:) P},
(4a)
where
GE (g z) = D (E)™ ™ (GG (g, %),
mm!
(4b)

where the overlapping function Gf: L,(q", z;) is written as

{o o]

GO (g, 2) = / dztpn(2)thes (2)e ===, (4c)

with the change in electron momentum, due to scattering
given by

2m*
Q= [(En — o) 55 + 2k

1/2
—2ky cos 0\/(71:'7,, —~Ey) 2% + lﬂ , (5)

and @ is the angle between Ell and I_élll ;

‘We have performed the numerical calculation for the
electron subband transport and quantum mobility, us-
ing the self-consistent subband wave function to evaluate
the transition matrix elements. In practical calculations,
we have to limit the sum over (m,m’) in Eq. (4b). For
a system with IV populated subbands, we include N+2
subbands in the matrix of the dieleciric function, i.e., we
consider all the occupied subbands and two empty ones.
Within such an approximation, the dielectric function
€nnt,mm(@)) is approximated by an (IV + 2)? x (N + 2)?
maitrix. The thick curves in Fig. 3 show the quantum
mobility, as a function of Ws for Np = 2.5 x 10'%/cm?,
Wp = 10 A, and ng = 10'%/cm®. We found that the
quantum mobility of the lowest subband u] increases
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slightly with increasing Wg until Wg = 130 A and
then turns out to be a decreasing function. The p3 de-
creases monotonously as a function of Wgs. For small
Ws, p3 > pd. When Ws > 82 A, ud becomes smaller
than u{ and they are very close to each other. The mo-
bility p§ is about a factor of 3 larger than pd. puf is
close to pf and it increases slowly with increasing Ws.
At Ws = 46 and 196 A, due to the onset of the oc-
cupation of the subbands n = 4 and 5, the calculated
subband mobility exhibits an abrupt jump as a conse-
quence of the intersubband interaction. We also notice
that, at the onset of the occupation of n = 4 subband,
p? and p? have small decreasing jumps, due to the con-
tribution of the intersubband scattering related to the
n = 4 subband. However, u3 increases abruptly. Such
a result reflects the screening effect in the intersubband
interaction. At the onset of the occupation of n = 5 sub-
band, the changes of the quantum mobilities of the lower
subbands, are not pronounced. The experimental results
of the quantum mobility!! are presented by the different
symbols in Fig. 3: circles (n = 1), squares (n = 2), tri-
angles (n = 3), and diamonds (n = 4). Our calculation
is in quite good agreement with the experimental results
for the four subbands. The thick curves in Fig. 4 give the
transport mobility as a function of Wg. It is seen that
the subband transport mobility has a similar behavior as
the quantum mobilities. But the transport mobilities of
the lowest two subbands are about a factor 4 larger than
the corresponding quantum mobilities. Such a factor is
about 2-3 for the n =3 and 4 subbands. Besides, the
transport mobility is different from the quantum mobil-
ity in the following ways. (i) u! ~ ub for Ws > 80 A,
i > ub for W < 18 A, and uf ~ uf for W > 150
A. (ii) At the onset of the occupation of the n = 4 sub-
band, % is about a factor of 2 smaller than pf, but it
increases rapidly and approaches to p at larger Ws. (iii)

0 50 100 150 200
W, A)

FIG. 3. The subband quantum mobility as a function of the
separation of the two 4 layers for Np = 2.5 x 10'%/cm® and
Wp =10 A in Si é~-doped GaAs. The thick and thin curves
indicate the calculation results of na = 10'® and 10** cm ™3,
respectively. The solid, dashed, detted, and dotted-dashed
curves present the results of the n =1, 2, 3, and 4 subbands,
respectively. The experimental results are indicated by the
circles, squares, triangles, and diamonds, which correspond

to n =1, 2, 3, and 4, respectively (see Ref. 11).
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FIG. 4. The same as Fig. 3, but for the subband transport
- mobilities.

At the onset of the occupation of a higher subband, the
transport mobilities of all the lower subbands exhibit an
abrupt decrease. (iv) Intersubband scattering is stronger

for the transport mobility. Unfortunately, as far as we .

know, there are no available low-temperature measure-
ments of the transport mobility for our structure, except
theoexpetimental results for the Hall mobility for T > 77
K.2

We also examined the influence of the background ac-
ceptor concentration on the electron transport proper-
ties. The calculated quantum mobility and the trans-
port mobility with 10 /cm® (Np = 2.5 x 10'?/cm? and
Wp =10 A) are given in thin curves in Fig. 3 and Fig. 4,
respectively. It is seen that n, strongly influences the
.mobility of the electrons in the higher subbands in such
a system. The mobilities of the n = 3 and 4 subbands
are enhanced pronouncedly, due to the reduction of the

HAI STUDART, AND PEETERS 52

background acceptor concentration. This is a rather indi-
rect effect: the background acceptor concentration influ-
ences the band bending (e.g., higher concentration leads
to a narrower confinement potential), which influences
the distribution of electrons in real space and between the
subbands (e.g., the conduction electrons become closer to
the doped layers), and this in turn affects the mobility.
We demonstrated explicitly this effect in the case of a
single § layer.®

In conclusion, we have presented a theoretical study
of the electron subband mobility in double § layer struc-

" tures. The electron subband quantum and transport mo-

bilities are calculated for the Si d-doped GaAs systems.
We found that, for Ws > 50 A, the mobilities of the low-
est two subbands are very close to each other and much
smaller than those of the higher subbands. For Ws > 120
A, the influence of the separation of the two doping layers
on the subband quantum mobilities is not pronounced.
Furthermore, the transport mobilities of the n = 3 and
4 subbands increase with increasing Ws. We also found
that the background acceptor concentration modify the
electron mobility of the higher subbands. Such an influ-
ence is very pronounced in the transport mobility. Our

_calculation of the electron quantum mobility is in good

agreement with the experimental results of Refs. 11 and
2.
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Capitulo 4

Acoplamento plasmon-fénon em sistemas quase

bidimensionais de multisubbandas

Em sistemas de gas de elétrons, as excitacbes coletivas e de particula
independente s&o frequentemente observadas. Nos semicondutores polares, as
excitagbes coletivas podem ser fortemente modificadas devido ao acoplamento com
féonons LO. Assim, o espalhamento de luz fornece importantes informagbes sobre

estes fenomenos.

Estudamos teoricamente o espectro de excitagbes coletivas e o
espaihamento inelastico de luz (Raman) devidos aos modos acoplados de plasmon-
fonons em estruturas planares com multisubbandas ocupadas. Nossos calculos
mostraram um forte acoplamento entre os modos de plasmons intra e
intersubbandas com os fénons LO e suas ressonancias. Devido ao alargamento das
subbandas induzido pelo espalhamento por impurezas, somente uns poucos picos
principais sd@o mantidos nos espectros de Raman. Mas a influéncia do
amortecimento ndo & tdo importante para aqueles picos com modos do tipo fonon, e
que estdo proximos da freqiéncia dos fénons TO do sistema. Nossos calculos

permitem uma clara explicag&o para aiguns resuitados experimentais publicados.

4.1. Plasmon-phonon coupiing in s-doped polar semiconductors
G. Q. Hai, N. Studart, and G. E. Margues,
Phys. Rev. B 55, 1554-1562 (1997).
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Level broadening effecis on inelastic light scattering due to coupied
plasmon-phonon modes in 5-doped Semiconductors

G. Q. Hai, N. Studart, and G. E. Marques,

Phys. Rev. B 57, 2276-2279 (1998).
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The collective excitations and their coupling to optical phonons have been studied for a two-dimensional
electron gas in d-doped polar semiconductors within the random-phase approximation. Our calculation shows
that, due to the high electron density in these systems in which several subbands are occupied, both intrasub-

band and intersubband plasmon modes are
[S0163-1829(97)06204-8]

I. INTRODUCTION

The quasi-two-dimensional (Q2D) electron gas system in
S-doped semiconductor structure is realized by producing a
very thin doping layer with high impurity concentration. Be-
cause the dopants are confined to a single or few monolayers
of the semiconductor lattice, the doping profile can be math-
ematically described by Dirac’s & function. Semiconductors
with such dopant distributions are referred to as S-doped
semiconductors.! The incorporation of dopants within a few
monolayers leads to electron confinement in the space-
charge potential well and thus to a set of subbands where the
electron motion perpendicular to the doping layer is quan-
tized. It presents an important Q2D semiconductor system in
which high electron densities are attained and several sub-
bands are occupied leading to a new multisubband system.
The electron confinement in §-doped semiconductors is sim-
ply realized by a space-charge potential well. So, the sub-
band energy E, and the wave function ¢,(z) are obtained
from the numerical solution of the coupled one-dimensional
Poisson and Schrodinger equations. If we take the doping
layer in the xy plane located at z=0, the confinement poten-
tial of the system is symmetric about the z=0 plane. The
total electron energy and wave function are given by

E(K)=E,+8(k) 1)

and

. 1 S o
\I’,,,;(r,z)=1//,,(2)——exp(ik-r), (2)

V4

where n=1, 2,... is the subband index, r (k) the electron
position {(wave vector) in the xy plane, e(k)=h2k22m* the
electron kinetic energy, m* the electron effective mass, and
A the area of sample.

Since the pioneering experimental work by Bass,> Wood
et al.,> and Schubert et al.,* highly spatially confined impu-
rity doping layers have been achieved in semiconductors by
the molecular-beam epitaxy techmique. A large number of
experimental investigations™ ! have been carried out on the
electron transport and optical properties in 8-doped semicon-
ductors. Furthermore, novel and improved semiconductor
devices have been fabricated from §-doped structures, such
as o-doped doping-superiattice light-emitting diodes, '
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strongly coupled to

the optical-phonon modes.

lasers,’? and modulators,' high-transconductance selectively
S-doped heterostructure transistors,'® planar-doped barrier
diodes, 16 negative differential conductance oscillators,!”etc.

Plasma excitations in low-dimensional electron systems
have been studied extensively.!® As proposed by Burnstein
etal,” resonant inelastic light scattering is a sensitive
method for the investigation of the elementary excitations in
2D electron systems. It yields separate spectra of single-
particle and collective excitations, which leads to the deter-
mination of the energy states and collective electron-electron
interaction. This yields substantial information on different
2D semiconductor systems. Plasmons in semiconductor su-
perlattices have also attracted much attention.?’~2¢ Novel
collective modes have been found in artificially structured
superlattices. Das Sarma’’ presented a generalized many-
body dielectric theory to study the spectrum of collective
excitations in Q2D electron systems realized in semiconduc-
tor heterostructures. The intersubband plasmon modes and
their coupling to the intrasubband plasmon modes also were
investigated.?’~?° It was shown that the resonant mode cou-
pling of intersubband and intrasubband plasmons takes place
in an asymmetric quantum well at high electron densities and
small energy separation between the subbands. Backes
et al® investigated the effects of confinement on the plas-
mon modes in the Q2D system. By including all the energy
levels in an infinite quantum well, they recovered the results
of the ideal 2D and 3D electron systems by varying the width
of the quantum well from zero to infinity.

Collective excitations and their coupling to the
longitudinal-optical (L.O) phonons in doped polar semicon-
ductor structures are the basic physical phenomena which
affect the different aspects of the electronic and optical prop-
erties of the systc:ms.18 Wu, Peecters, and Devreese’! studied
the plasmon-phonon coupling of 2D electron electron gas in
GaAs/Al,Gay_,As heterojunctions. They showed that the
intrasubband plasmon mode in GaAs heterostructures is
strongly coupled to the LO phonon modes at high electron
densities. When the unperturbed plasmon frequency is close
to the LO-phonon frequency, a resonant coupling takes place
and there is a splitting of the plasmon frequency. Wendler
and Pechstedt®® investigated interface effects on the phonon
modes and the plasmon-phonon coupling in a semiconductor
quantum well. They found that the Landau damping of the
intersubband plasmon modes depends strongly on the width
of the quantum well and the electron density. The &§-doped
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polar semiconductors, e.g., Si d-doped GaAs, have also sev-
eral advantages to study the collective excitations and their
coupling to LO phonons. The electron density in &-doped
semiconductors is much higher than the other Q2D systems,
such as heterojunctions and quantum wells, in which
electron-electron interactions play a substantial role. It could
be a good system to investigate the electron-electron interac-
tion for a deeper understanding of the many-body effects.
Typically, several subbands are occupied in §-doped semi-
conductors, so the intersubband interaction is strong. Fur-
thermore, the separation between the different subbands is
close to the optical phonon energy in such a way that the
electron L.O-phonon coupling is strong-and easier to be de-
tected experimentally. On the other hand, the host semicon-
ductor is uniform in such a way that there is no material
interface present. The phonon modes in §-doped systems
have, therefore, a three-dimensional character. The electron-
phonon interaction can be described by the Frohlich Hamil-
tonian. This is different from other Q2D systems, such as
GaAs/Al,Ga;_,As heterostructures, where the interface
modifies the phonon modes, and consequently, the electron-
phonon interaction. In this case, the Frohlich Hamiltonian is
only a good approximation to describe the electron-phonon
interaction when the interface effects are not pronounced.*

In our previous works,** 3¢ we studied the electron trans-
port properties in d-doped semiconductors. The effects due
to intersubband coupling and screening of the Q2D electron
gas on the ionized impurity scattering were investigated
theoretically. The subband transport and quantum mobilities
coming from ionized impurity scattering were analyzed. We
found that not only the intersubband scattering by itself, but
also the intersubband coupling through the screening of the
Q2D electron gas plays an essential role in the electron trans-
port in this multisubband system.

In this paper, we study the spectrum of collective excita-
tions of a Q2D electron gas in S-doped polar semiconduc-
tors. Our model consists of a multisubband 2D electron gas
system coupled to 3D bulk optical phonons at zero tempera-
ture. The intrasubband and intersubband plasmon modes and
their coupling to the optical phonons are investigated. Our
calculation is based on the dielectric function in the random-
phase approximation (RPA) and is applied to Si §-doped
GaAs structure of an impurity layer in the xy plane with
thickness W, =10 A. The electronic structure is determined
by employing a self-consistent method within the local den-
sity approximation.*> We assumed that all the donors in the
doping layer are ionized and the background acceptor con-
centration, which is supposed to be uniformly distributed in
the sample, is n = 10" cm . We found that in the present
system the n=2, 3, and 4 subbands begin to be occupied at
the total electron density N,=0.93, 2.67, and 8.33x 10712
em ™2, respectively.

Experimentally, Miayah et al’ investigated the intersub-
band plasmon-phonon coupling in Si §-doped GaAs. The
signature of the coupled modes was pointed out by means of
Raman scattering measurements. They found that the
phononlike mode, due to the coupling of the intersubband
plasmon of the lowest two subbands to the LO phonons, is
located between LO and TO phonon frequencies. Influences
of the doping concentration and thickness of the doping layer
on these phononlike modes were discussed.

1555

According to the experimental accessible electron densi-
ties, we consider a realistic four-subband model, and in order
to make our discussion clearer, we analyze first the case
where ope subband is occupied and the other three are
empty. Second, we discuss the results when electrons occupy
two subbands and the other ones are empty, and finally the
case where three subbands are occupied. Our calculation
shows that both the intersubband plasmon modes and their
coupling to the LO phonons are much more pronounced in
&-doped polar semiconductors than those in other Q2D semi-
conductor systems. In a wide range of electron densities (do-
nor concentrations), the frequencies of the phononlike
branches of the intersubband plasmon-phonon modes due to
the first four subbands are in the reststrahlen region of GaAs.

We do not consider impurity scattering effects on the
plasmon excitation spectrum. Such scattering should be
strong in the 8-doped system and soften the plasmon spec-
trum. It may also lead to a mixture of different plasmon
modes when they are close to each other. But the main fea-
tures shown in this work will not be modified essentially. As
far as we know, this is the first theoretical work studying the
collective excitations and their coupling to LO phonons in
d-doped semiconductors.

. PLASMON-PHONON COUPLING

For an electron gas embedded in a polar semiconductor,
the optical phonons interact with the electrons. Since the host
material of the 2D electron gas in the 6-doped system is
homogeneous, which is different from the other 2D systems
such as heterojunctions and quantuin wells where interfaces
between different materials are present, the electron-phonon
interaction can be described by the well-known Frohlich
Hamiltonian. The electrons interact among themselves
through the Coulomb interaction and through the virtual LO
phonons via the Frohlich interaction. In this way, both the
electron-electron interaction and the electron-phonon interac-
tion play significant roles and affect substantially the elec-
tron and the phonon systems.’’ Especially, the electron-
phonon coupling may be strong because the intersubband
plasmon frequencies in Si d-doped GaAs are close to the
optical phonon frequency.

In a Q2D system, the screened interaction potential

| 780 .(¢,w) within the RPA is determined by the Dyson

nn' .mm

equation’’

VSC

nn’,mm’((}’w): Vzm',mm’(qa,w)
+2 Vnn',ll’(&aw)

i’

0 > > a
XH][I(‘{:“’)V?;/,,,‘,,,/(‘I,W), ('))

where Vynr mm (4 0) =050 0ni(q)+ v‘n’}:‘,,mm,(q,w) is the
bare interaction potential which is composed by the electron-
electron Coulomb potential and the electron-phonon interac-
tion determined by the Frohlich Hamiltonian, and
H?m,(c;, w) is the polarizability function of the noninteract-
ing 2D electron gas. The well-known bare electron-electron

potential is*8



1556

2

we
Uppe .mm’ (q)— €4 an ,mm' (Q) (4)

with the Coulomb form factor
an’,mm’(q):f— lel’,,(Z)l//,,l(Z)

X f T e (@ Ve (28 )

Due to the spatial symmetry of the potential about the z=
plane, which is a characteristic of the §-doped system, we
have

an’,mm’(q):Fn'u,mm'(q):an’,m'm(q):Fn’n,m’m(q)'

Furthermore, the Coulomb form factor F,,;+ 5+ (q) vanishes
if nt+n'+m+m’ is an odd number. Notice that
Fontomm(0)=1 for n=n’'" and m=m’', and
Font mm(0)=0 otherwise.

The bare electron-phonon interaction coming from the
Frohlich Hamiltonian is given by

N 2(1)L0 >
vii',mm’(q3w):m; M, (4.9,)
XM:m'(_‘;aqz): (6)

where M,/ ((; »q) is the matrix element representing the in-
teraction between the 2D electron gas and 3D phonons,
which is defined by

Mnn (q qz) J’ leﬁ‘"(Z)Pq q, e‘qzzlpn'(z): (7)

where 23 a is the coefficient of the Fourier transform of the
Frohlich Hamiltonian,

v 'ﬁ B 1 )”4 4ra <
e, "Mool w00 ) Nagirgy  ©

«a is the Frohlich coupling constant, and () is the volume of
the sample. After some algebra, we obtain

.?,'n'e2 wfo— w%o
N Fun am(q).
€xq ( 2 nn',mm (Q) ( )

Unn mm’ (q’ w _wLO

The free polarizability function of the Q2D electron gas in
the multisubband system, at zero temperature, is given by

0 St [E (k@)1= ol E ()]
11 w)= 22

mm' En(k+q)—E (B)+fi(w+iy)
(10)

where f(E) is the Fermi-Dirac distribution function, and vy is
broadening of the energy level related to impurity scattering.
When y—0, we obtain®%2832

6rlrt’,lrllvl'(q7('))= Eb(w)arzm&n'm'_v
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0 - Tﬂ* v);m' 1 _
Rell , .(q,®) = e —=sgn(v,,,.+)

2, \/;q

XRe(e,,,, ~Exn) | O(E pn)
+
me' 1
— —sgn(v )
28 \/;q mm
XRS(S”"”, EFm )L‘ ®(EFm )}
(11)
and
il (G.0)= — / 12
mm'(q’m)—'—;’.?{Re[‘q’EFm’sq ( Yom! /Sq) ]

—Re[4Epy le,— (v, /6?12, (12)
wheri: s,=h’q*2m*, V:m, =ho+E, —E,*s,, sim,
:(v;m,)2/4eq, Epn=Ep—E,, and O(E) is the step func-
tion.

The dielectric function €, ;1:(¢,®) is deﬁned through
the equation U,m ,mm’ (‘I) 2Il'enn’ ll'(q:w) u' .mm’ (g, @).
When both the electron-electron and the electron-phonon in-
teractions are included in the dielectric function, we obtain
within RPA (Ref. 37)

;n’,mm'(q)H?nm'(qaw),
(13)

with
(@) =(0* = wi o)/ (0= wdy). (14)

Note that the dielectric function of a 2D electron gas without
taking the electron-phonon interaction into account is easily
recovered by substituting 1 for €,(w) m Eq. (13).

The spectrum of collective excitations of the system is
given by the zeros of the generalized dielectric function

detlfrm’,mm’(qaw)lzo- (15)

In principle, all the subbands in the system should be con-
sidered in the above equation. If we keep N subbands for
numerical calculations, Eq. (15) will be reduced to an
NEX N? determinantal equation. In the region where the di-
electric function has an imaginary part, i.e., Im IT ?n =0, the
plasmon modes are Landau damped. We found that, in the
- q plane, it corresponds to w:,!,>w> w,.. , with

(D= 2m* (g k)’ —kp, ], where  ky,

\/2m E../h is the Fermi wave vector of each subband.
Notice that the intrasubband plasmon is not damped inside
the regime of intersubband single-particle excitations be-
cause a charge-density wave parallel to the xy plane cannot
excite particles across the subbands.*®
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II. NUMERICAL RESULTS AND DISCUSSIONS

We restrict ourselves to a four-subband model by consid-
ering the cases where one, two, or three subbands are occu-
pied by the electrons and we neglect the effect of higher
empty subbands.

To begin with, we consider the situation in which only
one subband is occupied by the electrons and the other three
are empty. There exist plasmon modes denoted by (1,7),
where (1,1) is the single intrasubband plasmon mode and
those with n’=2 represent the intersubband plasmon modes.
Within the four-subband model, the intrasubband mode (1,1)
and the intersubband mode (1,3) are coupled. The modes are
determined by the following dispersion equation (see the Ap-
pendix for details):

Les(w)— v (Dx(q, @) L ex(w) — v 15(@) x13(¢, )]

_U§1%13(4))((1)1(4aa’)X¥3(q70))=0, (16)
where  xpu(4,0)=Tlp,(q,0)  and X, ,.(q,0)
-‘—Hgm,(q,w)+ﬂgl,m(q,w) for m#m’. On the other hand,
the intersubband modes (1,2) and (1,4) are coupled to each

other and are given by the solution of

[ex(@) = v5512(a) X1 0) L € @) — 054 14(0) X34 g5 @) ]

="U?22,14((1))(?2(%‘l’),\’?z:({laf‘-'):0~ a7

The dispersion relations of the coupled plasmon-phonon
modes in a Si d-doped GaAs system with electron density
N,=0.7X10'"2 ¢cm~? are depicted in Fig. 1. In the calcula-
tion, we took w;=36.25 meV and w1o=33.29 meV. For
this density, only the lowest subband is occupied by elec-
trons. The subband Fermi energy Er;=22.45 meV and the
subband Fermi wave vector kj; =2.03X10% cm~!. The dis-
persion relations of the unperturbed plasmon modes without
electron-phonon interaction are given by the dashed curves
in the figure. Figure 1(a) shows the dispersions of the intra-
subband mode (1,1) and the intersubband modes (1,3). The
spectrum of the other two modes (1,2) and (1,4) is given in
Fig. 1(b). The shadow area corresponds to the single-particle
continuum region where Im H?m, # 0. The results of Fig. 1(a)
indicate that the dispersion of the unperturbed intrasubband
plasmon mode (1,1) develops a loop in the w-g plane and
has an acoustical-like behavior, since w approaches zero
when ¢—0. The maximum frequency appears at
(w,9)=(35.57,1.23) on the edge of the region where Im
11‘1{1:0. Hereafter, @ is in energy units meV and ¢ is in
units of 10° cm ™!, In between, there are two frequencies for
a given ¢. The upper branch is located in the region with Im
I, ;=0 whereas the lower one is in the region where Im
11, ;#0 and the collective excitations are strongly Landau
damped and are not significant. The above results in the re-
gion where the dielectric function has an imaginary part do
not exactly correspond to the frequency of the plasmon,
which should be determined from the position of the peak in
the electron energy-loss function defined as the imaginary
part of the inverse of the dielectric function. Nevertheless, it
was shown in Ref. 31 that for the plasmon-phonon modes in
2D electron systems, the zeros of the dielectric function cor-
respond to peaks in the energy-loss spectrum. It is seen that

{©ef.er

T
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FIG. 1. Dispersions of the collective (a) intrasubband mode
(1,1) and the intersubband mode (1,3) and (b) the intersubband
modes (1,2) and (1,4) for Si S-doped GaAs of N,=0.7x10%2
cm ™2, The dispersions of the coupled plasmon-phonon modes and
the unperturbed plasmon modes are shown by the thick-solid and
the thick-dashed curves, respectively. The thin-solid curves (w:n,)
are the boundaries of the 2D single-particle excitation continuum.

The shadow indicates the region where Imﬂgn,#(). The dotted
lines indicate the optical-phonon frequencies wy o and wrg-

the plasmon-phonon coupling is strong for both the intrasub-
band and the intersubband modes and this shows up at wave
vectors far from the resonance where the unperturbed plas-
mon frequency is close to the LO phonon frequency wig-
We observe in Fig. 1(a) that the frequency of the unper-

i~
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turbed intrasubband plasmon mode (1,1) is smaller than
wy o for all g. When the electron-phonon interaction is con-
sidered, the coupled intrasubband plasmon-phonon modes
show two branches in the region where Im ITJ,=0. The
lower branch is shrunk in comparison with the unperturbed
plasmon mode, which penetrates into the continuum at
{(w,9)=1(27.20, 0.99). The upper one is above the LO-
phonon frequency. It is very close to wyg at g=0. By con-
sidering the intersubband mode (1,3), we see that the energy
difference E;; between the two subbands is 39.48 meV,
which is greater than w; . However, the unperturbed inter-
subband plasmon frequency is 41.46 meV at ¢ =0, which is
larger than E3 due to the depolarization shift coming from
many-body effects. The electron-phonon coupling shifis this
mtersubband mode to higher frequency. In addition, a
phononlike mode appears in the reststrahlen region of GaAs.
Figure 1(b) shows the dispersion relations of the intersub-
band modes (1,2) and (1,4) in the four-subband model when
only one subband is occupied. It is seen now that the unper-
turbed plasmon mode (1,2) crosses the LO-phonon fre-
quency. We observe that the electron-phonon interaction
leads to a large splitting of this mode.

Now, we analyze the case where N,=2.0X102 cm
and two subbands of the four-subband model are occupied.
The dispersion equations are given by Egs. (A6) and (A7) in
the Appendix. In Fig. 2, we plot the dispersion relations of
the coupled plasmon-phonon modes. The subband Fermi en-
ergies are Ep)=50.41 meV and Ep,=11.24 meV, respec-
tively. Consequently, k,,=3.04X10° c¢cm~! and ki
=1.42X10° cm™!. Figure 2(a) shows the dispersion of the
coupled modes (1,1), (2,2), (1,3), and (2,4). The dashed
curves in the figure indicate the dispersion relations of the
plasmon modes without the electron-phonon interaction. By
comparing with the results shown in Fig. 1(a), we observe
that two extra plasmon modes (2,2) and (2,4) arise due to the
occupation of the n=2 subband. Furthermore, the increase
of the total electron density (doping concentration) leads to
higher subband electron density and larger separation in en-
ergy between two subbands. Due to the higher electron den-
sity (larger Fermi wave vector) in the lowest subband, the
unperturbed intrasubband plasmon mode (1,1) crosses over
the L.O-phonon frequency, and the electron-phonon interac-
tion leads to the splitting of this mode. We see that the in-
trasubband mode (2,2) is not so pronounced and it is located
within the single-particle continuum of the lowest subband.
The intersubband mode (2,4) is close to, but smaller than, the
phonon frequency w;g. The shrink of this mode is pro-
nounced due to the electron-phonon coupling. Contrary to
the situation shown i Fig. 1(a), the effect of the electron-
phonon coupling on the intersubband mode (1,3) is not sig-
nificant since its frequency is much larger than wpg in the
present case. In Fig. 2(b) the most significant effect of the
electron-phonon interaction is shown on the intersubband
plasmon mode (1,2). The electron-phonon coupling leads to
a shift of this mode to higher frequency and another phonon-
like mode appears in the reststrahlen region. This phononlike
mode is almost flat.

Finally, we analyze the case where the electron density
N,=5.0x10" em~? which corresponds to three occupied
subbands. Here, the subband Fermi energies (Fermi wave
vectors) are Ep;=100.89 meV (kp;=431x10% cm™'),
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FIG. 2. The same as Fig. 1 but now for N,=2X10'? ¢m 2.
Four plasmon modes (1,1), (2,2), (1,3), and (24) appear in (a) and
three plasmon modes (1,2), (2,3), and (1,4) in (b).

E;p=33.23 meV (k,=247X10° cm™), and E,;=8.82
meV (ku3=1.27X10° cm ™), respectively. Figure 3 shows
the dispersion relations of the coupled plasmon-phonon
modes. Two additional plasmon modes are found: the intra-
subband mede (3,3) shown in Fig. 3(a) and the intersubband
mode (3,4) in Fig. 3(b). The intrasubband mode (1,1) in Fig.
3(a) is strongly coupled to the LO-phonon modes. The cou-

pling of the intersubband mode (2,4) to the LO-phonon leads
to a phononlike mode in the reststrahlen region starting from

©w=35.11 meV at ¢=0. In Fig. 3(b), the electron-phonon
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FIG. 3. The same as Fig. 1 but now for N, =5%x10% cm™2.

Five plasmon modes (1,1), (2,2), (3,3), (1,3), and (2,4) appear in (a)

and four plasmon modes (1,2), (1,4), (2,3), and (3,4) in (b).

coupling results in a pronounced splitting of the intersubband
mode (2,3}

In Fig. 4, the unperturbed intersubband plasmon frequen-
cies at g=1x10% cm ! are plotted as a function of the total
electron density in the d-doped system. The dotted curves
represent the energy difference E, —E, between the two
subbands. We see that, at the onset of the occupation of a
subband, the intersubband plasmon frequency is equal to the
energy ditference. By increasing the total electron density,
and the subband electron density, the intersubband plasmon
frequency becomes larger than the energy difference. This
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FIG. 4. The unperturbed intersubband plasmon frequencies at
g=10* ¢cm™! as a function of the total electron density in Si
d-doped GaAs. The dotted curves indicate the energy differences
between the subbands.

results in a depolarization shift due to many-body effects.
The shift is more pronounced for adjacent subbands, i.e., the
intersubband modes (1,2) and (2,3). When the electron-
phonon interaction is included, the intersubband plasmon
frequency splits around the L.O-phonon frequency. The fre-
quencies of the coupled plasmon-phonon modes at
¢=1%10% cm ™!, as a function of the total electron density,
are depicted in Fig. 5(a) for the (1,2) and (1,3) intersubband
modes and in Fig. 5(b) for the (2,3) and (2,4) modes. The
thin curves represent the corresponding intersubband plas-
mon frequencies without the electron-phonon interaction.
We see that the intersubband plasmon modes are strongly
coupled to the optical-phonon modes. When the unperturbed
intersubband frequency is equal to wy g, the splitting is 9.29
meV for the (1,2) mode and 9.73 meV and 5.45 meV for
(2,3) and (2,4) modes, respectively. At low electron densi-
ties, the lower branch is close to the unperturbed plasmon
frequency and it is much smaller than w;g, while the fre-
quencies of the upper branch are close to wy . However, the
lower branch approaches the wy g at high densities whereas
the upper one becomes close to the unperturbed plasmon
frequency. For a wide range of electron densities, the fre-
quencies of the lower branch of the intersubband plasmon-
phonon modes (1,3), (1,2), and (2,4) lie in the reststrahlen
region of GaAs.

The coupled plasmon-phonon mode in the reststrahlen re-
gion was observed experimentally for the Si §-doped GaAs
system by Mlayah er al.° They found in the Raman spectrum
that the phononlike mode appears at w=234.97 meV (282
em™') for the sample with donor concentration
Np=2.7X10'? ¢cm 2 and W,=20 A. By fitting the Raman
spectrum, they obtained the depolarization shift about
26.67 meV (215 cm™!) for the unperturbed intersubband
mode (1,2). From our calculation with the same donor con-
centration, we obtained for the intersubband mode (1,2)
(E,=42.09 meV), the unperturbed plasmon frequency
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FIG. 5. The frequencies of the coupled intersubband plasmon-
phonon modes (a) (1,2) (solid curves) and (1,3) (dashed curves) and
(b) (2,3) (sotid curves) and (2,4) (dashed curves) at g=10% cm ™! as
a function of electron density. The thin curves indicate the unper-
turbed plasmon frequency.

equals to 54.21 meV, a depolarization shift of 34.08 meV,
and frequencies of the coupled plasmon-phonon modes with
values 34.28 meV and 55.54 meV. So, our results are in
reasonable agreement with the experimental results of Ref. 9.
However, we also observed that, for higher electron densi-
ties, there are two or more intersubband plasmon-phonon
modes in the reststrahlen region such as (1,2), (1,3), and
(2,4) modes. At N,>8X10'? cm ~Z, the intersubband mode
(2,3) would play an important role in this region.

IV. CONCLUSIONS

We have calculated the spectrum of the coupled plasmon-
phonon modes for a multisubband electron system realized
in Si §-doped GaAs. The numerical results show that the

electron-phonon interaction alters the unperturbed plasmon-
excitation spectrumn considerably. Due to its high electron
density, the plasmon-phonon coupling is substantially stron-
ger than that in other 2D systems, such as semiconductor
quantum wells and heterojunctions. Since several subbands
are occupied by the electrons, the intersubband plasmon
modes have be shown to be essential to the physical descrip-
tion of the system.

Our results show that the high electron density leads to a
large depolarization shift of the intersubband plasmon fre-
quencies between adjacent subbands. Furthermore, both in-
trasubband plasmon and intersubband plasmon modes are
strongly coupled to the optical-phonon modes. The frequen-
cies of the coupled intrasubband plasmon-phonon modes do
not enter in the reststrahlen region of GaAs. However, the
frequencies of the coupled intersubband plasmon-phonon
modes split around the LO-phonon frequency wig. In a
wide range of electron density (donor concentration), the fre-
quencies of the phononlike branch of the intersubband
plasmon-phonon modes (1,2), (1,3), (2,3), and (2,4) are in
the reststrahlen region of GaAs.
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APPENDIX

In this appendix, we show in detail how the determinantal
equation for the dielectric matrix, Eq. (15), was solved nu-
merically. Due to the symmetry of the confinement potential
in the &-doped systern which results in the vanishing of the
form factor F, mni(q), given by Eq. (5), when
ntn'+m+m’ is an odd number, and the corresponding
matrix elements of the dielectric function, given by Eq. (13),
we find that there are two groups of plasmon modes. One of
them includes all the intrasubband modes as well as the in-
tersubband modes whose wave functions have the same par-
ity. All plasmon modes in this group are coupled to each
other. The other group is formed by the intersubband modes
of two subbands with different parities and the plasmon
modes in this group are also coupled to each other but they
do not interact with the modes of the former one.

In the four-subband model, the 16X 16 determinantal
equation is reduced to the following two groups of equations:

K Knzz Knss Knaa Koz Kripg

Kxnun Kz K23z Kozda K213 K224

K311 K33p2 K3333 K3zgq K3313 K334 0

Kaq11  Ka422 Kaa33z  Kagaq Kagaz  Kagog

Ki3i Kizza K333z Kisgq K3z Kisng

K411 K427 K433 Kpza4 K2413 K424 (A1)
Al

and
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K12 K24 Kppzs K234
Kig12 Kiaea Kiazz  Kiaag
=0, (A2)
Kas02 K214 K233 K334
Kign Kigia K3423  Kagsg

where

: 0
Knn',mm’(‘l:w): eb(w) SpmCpt _U:m',,,,m'((I)Xmml(qa"))a
(A3)

. 0o 0
With Xp(¢,0)=113,,(¢,0) and X, (g,0) =11, (g,0)
+Hg,,m(q,w) for m#m’.

In the case of only one occupied subband, Eqs. (A1) and
(A2) reduce to

K Kis
=0 (A4)
Kizn K313
and
K122 Ki2,14
=0. (A5)
Kia12 Kis14

It is seen that the intrasubband mode (1,1) couples to the
intersubband mode (1,3) determined by Eq. (A4). The other
two intersubband modes (1,2) and (1,4) are coupled to each
other.

In the case of two occupied subbands within the four-
subband model, the determinantal equations, given by Egs.
(A1) and (A2), are now written in terms of 4 X4 and 3X3

determinants. There are two intrasubband modes (1,1) and
(2,2). These two modes are coupled to each other and also
coupled to the intersubband modes (1,3) and (2,4). They are
determined by the dispersion equation

K Knze K Kipog
Ko K202 K223 Kooos
=0, (A6)
Kz K322 K133 K134
Kaan1 Kaaze Koa1z Kys0

The remaining coupled intersubband modes (1,2), (2,3), and
(1,4) can be calculated from

K212 K24 Kio2s
Kig12 Kuas Kiaps| =0. (A7)
K312 K314 K323

In the case of three occupied subbands, Eq. (A1) reduces

to
K1l K2 Kz Kz Kigod
Kyppir K22 K233 K13 K224
Kizil K33z K333 Kszgs Kaoe) =0, (A8)
13,11 K322 K133z Kizz K34
Kaanr Kaazz Koaszs Kogps K24

while Eq. (A2) keeps the same form.
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The Raman scattering intensity of §-doped semiconductors is evaluated. The dynamical response of the
multisubband two-dimensional electron system which is coupled to optical phonons is calculated within the
random-phase approximation. Qur calculation shows that both intrasubband and intersubband plasmon maodes
are strongly coupled to optical-phonon modes. Level broadening due to high impunty concentration modifies
the inelastic light scattering spectram significantly. However, a few scattering peaks corresponding to phonon-
like modes can be observed even at large broadening. [S0163-1829(98)04304-5]

I. INTRODUCTION

Inelastic light (Raman) scattering has been used exten-
sively to investigate novel aspects of the electronic structure
and collective excitations in low-dimensional semiconductor
systems.'™ In semiconductors with simple band extrema,
collective excitations due to charge-density fluctuations and
single-particle excitations related to spin density fluctuations
have been observed.® In polar semiconductors, the collective
excitations due to charge-density fluctuations of the electron
gas can be modified by their coupling to longitudinal-optical
(LO) phonons as shown in light scattering experiments. ¢

In S-doped polar semiconductors, such as Si d-doped
GaAs, the plasmon-phonon coupling is quite pronounced and
essentially important because the electron density is high and
also because the energy separation between different sub-
bands is close to the optical-phonon energy.? The quasi-two-
dimensional electron gas (Q2DEG) in a &-doped semicon-
ductor is formed by a highly doped impurity layer. Since the
electrons share the same spatial region with the ionized do-
nors, they are strongly scattered by the impurities. Conse-
quently, the scattering reduces not only the electron
mobility’® but also broadens the optical spectrum. The
present work is intended to describe theoretically the light
scattering spectrum due to coupled plasmon-phonon modes
in the Si & -doped GaAs system based on a self-consistent
calculation of the subband structure and the dielectric many-
body theory within the random-phase approximation (RPA).
This paper stresses the broadening effects on the light spec-
trum and predicts the scattering peaks which can be detected
experimentally. In Sec. II, we develop the dielectric formal-
ism that is used to evaluate the plasmon-phonon spectrum
and the inelastic light-scattering intensity. Section I is de-
voted to a discussion of the calculation results and in Sec. IV
we summarize our main conclusions.

. THEORETICAL FORMALISM

We have derived the inelastic light scattering cross sec-
tion due to coupled plasmon-phonon modes in a multisub-
band Q2DEG embedded into a polar semiconductor. The
inelastic light scattering intensity is related to the dynamical
structure factor and can be written as

0163-1829/98/57(4)/2276(4)/$15.00 57

k0= [ d [ azreie=s

X[~ Im{ey(w)x(q,@,2,2)}]), (1)

where £, is the z component of wave vector of the incident
light and g is the electron wave vector transfer in the xy
plane. In Eq. (1), the polarization of the background polar
semiconductor is modeled by a frequency-dependent dielec-
tric function €,(w) determined by the longitudinal (wg)
and transversal (wyg) optical-phonon frequencies, with the
following simplified form:

2 2
W™ Wi @)

2

G/,((U)=l+ 2 . 2
W' ~wptioy

where we have introduced a phenomenological parameter 7,
to incorporate the phonon damping associated to possible
defects in the crystalline structure.

The density-density correlation x(g,®,z,z’) of the
Q2DEQG is calculated as an expansion in single-particle wave
functions ¢,(z), as

X(qvw’z’zl)z 2 Xnn’,mm'(q’w)lpn(z)

nn' mm'
X'/’n'(z)(/,m(zl)wm’(zlx (3)
where n,m=123,..., are the subband indices. The

density-density correlation function x,,¢ »,.'(g,®) is related
to the dielectric function €, ,,m'(g,w) through the equation

E GII’,nn’(q’w)XII’,mm’(q’w)=Hnn’(qaw)5nm§n'm’7
1"

4)
with the polarizability of the noninteracting electron gas
given by

n' En’ i("f' ‘.) _f En(lz)]
Hfl"’(q7w):22 f [9 *)(\ q ]—> n[ , .
i E(k+g)—E (kK)+h(ot+iy)

Here f,(E) is the Fermi-Dirac function, the electron energy
is given by E, (k)=E,+h%*k*/2m*, m™ being the electron

2276 © 1998 The American Physical Society
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effective mass, and v is a phenomenological damping con-
stant which takes into account the level broadening mainly
induced by seattering of electrons by impurity centers. In the
case y=0, Stern'' was the first to give an analytical expres-
sion for I1,,/(q,®). In general, the damping constant 7 for
the phonon system is much smaller that the damping con-
stant of electrons and, due to the high impurity concentration
in the &-doped system, we can safely take 7 as a positive
infinitesimal in reliable calculations.

It is well known that the polarizabilities from both elec-
tron and phonon systems are additive in the RPA so that
when both the electron-electron and the electron-phonon in-
teractions are included we can write the total dielectric func-
tion as

Gnn',mm’(q5w): Ely(a’)anmé‘n’m’
—qunn’,mm'(q)Hmm'(qsw)a (6)

where v, =2me?/€..q is the 2D Fourier transform of the bare
electron-clectron interaction, with €, being the high-
frequency dielectric constant of the background. Finally
Font mm(g) is the Coulomb form factor which results from
the spreading of the electron wave in the z direction and is
given by!?

an’,mm’(q) = ffxdzwrz(z)¢n’(z)

XJ-GC‘ dz,wm(zl)(//m’(Z’)e‘qlz—z".

Note that by setting €,(w)=1 in Eq. (6), the dielectric func-
tion of the Q2DEG in the RPA, without considering the
electron-phonon interaction, is easily recovered.

Equations (1)—(6) describe the inelastic light scattering by
charge density fluctuations of the coupled plasmon LO-
phonon modes in a multisubband system. It is worth noticing
that the light scattering intensity, given by Eq. (1), is propor-
tional to the product of y(g¢,,z,z") and €,(®). As a conse-
quence, one important feature is that the scattering intensity
is zero at w=wyg. This is a signature of a charge-density
fluctuation mechanism because, at w=wyg, there are no
free-electron density fluctuations in the coupled plasmon
LO-phonon system.

ill. NUMERICAL RESULTS AND DISCUSSION

As in our previous works,”"® we consider a Si §-doped
GaAs structure with a doping layer in the xy plane with
thickness W,=10 A. The background acceptor concentra-
tion in the sample is taken to be n,=10" cm ™. In Fig. 1,
the inelastic light intensity is indicated by solid curves, for
different ¢’s, ranging from 10* to 1.4X10° ecm ™!, in the
system where the electron density N,=2X10'? ¢cm ~? and
¥=0.5 meV. In this situation, two subbands whose subband
Fermi energies are Ep=50.41 meV and Epy,=11.24 meV
are occupied. The energy separations between subband pairs
(E,, =E, —E,)) are £;,=39.17 meV, E;;=55.38 meV,
and E,;=16.19 meV. In the calculation, we have included a
third unoccupied subband. The thin solid curves show the
scattering intensity due to plasmon modes of the Q2DEG,
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FIG. 1. The inelastic light scattering intensity due to plasmon
(thin solid curves) and coupled plasmon-phonon modes at g=0.1,
1,3, 6, 10, and 14X10° cm™' in Si 6-doped GaAs with N,=
2x10'2 cm ™2, The thick solid and dotted curves indicate the re-
sults with y=0.5 and 6 meV, wspectively. The scattering peaks due
to different plasmon modes are labeled by (n,m). Note the change
in spectra scales: the intensity for y=6 meV is enlarged 3 times.

without phonons, and the thick solid curves are the results
with the inclusion of the plasmon-phonon coupling. The ver-
tical dotted lines indicate the frequencies of TO and LO
phonons, fi w;o=36.25 meV and #i wyg=33.29 meV, respec-
tively.

The Raman spectrum in the absence of plasmon-phonon
coupling exhibits a rich peak structure corresponding to ex-
citation modes which are denoted by (n,m) . We can ob-
serve in the thin curves of Fig. 1, the peaks at small wave
vectors related to the intrasubband modes (2,2) and (1,1),
with very weak intensity, and the intersubband modes (2,3),
(1,2), and (1,3). With increasing g, the peaks of the modes
(2.2) and (1,3) disappear, while the peak corresponding to
the (1,1) mode becomes pronounced and survives at large g.
When the plasmon-phonon coupling is considered, a com-
parison of the two scattering spectra shows that the reso-
nance frequencies below wpg are redshifted while those
above w, are blueshifted. More essentially, new coupled
modes, which are denoted by (n,m)’, arise around wr g due
to the plasmon-phonon coupling. At smali ¢, we can see
clearly a phononlike mode in the reststrahlen region of GaAs
which comes from the phonon-coupling of the intersubband
mode (1,2). At large g, the intrasubband mode (1,1) is

strongly coupled to the phonons.
Now, we investigate the effect of the impurity scattering
on the light spectrum, which is described by the broadening
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1.0
q (106 cm")

FIG. 2. The dispersion relations of the plasmon (thick dotted
curves) and coupled plasmon-phonon (thick-salid curves) modes
with y=0 in the system of N,=2% 102 ¢cm~2. The open and solid
circles indicate the peak positions in the scattering spectrum due to
coupled plasmon-phonon modes with ¥=0.5 and 6 meV, respec-
tively. The shaded area comesponds to the pair-excitation region
(Landau damping).

width vy related to the electron subband quantum lifetime or
the single-particle relaxation time. From our previous
works,'? the subband quantum mobility varies from about
500 cm?/Vs (the lowest subband with energy of 24 meV) to
4000 cm 2/Vs (the third subband with energy of 3 meV). The
dotted curves in Fig. 1 represent the scattering intensity with
y=6 meV. As expected, some of the peaks are merged. The
scattering peak of the intrasubband mode (1,1)’ cannot be
observed at small g. Also, those peaks corresponding to the
intrasubband mode (2,2) and to the intersubband (1,3) dis-
appear. However, the broadening does not affect consider-
ably the phononlike modes, €.g., the peak (1,2)" located at a
little higher than wq.

In order to clarify the scattering spectra, we have calcu-
lated the dispersion relations of the plasmon and coupled
plasmon-phonon modes. For y=0, the dispersion relation of
the collective excitations can be obtained from®

de"lenn’,mm’(q’w)lza (7)

Figure 2 shows the plasmon dispersion (thick-dotted curves)
and coupled plasmon-phonon modes (thick-solid curves)
within the three-band model. The shaded area shows the
single-particle  spin-density excitation regime where
Im I1,,,#0. It can be seen that the dispersion of the unper-
turbed plasmon modes (1,1) and (2,2) develops a loop in the
w— g plane. There are two frequencies, for a given g, but the
lower branch is in the region where Imll, ,#0 and the cor-
responding modes are strongly Landau damped. Due to the
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FIG. 3. The scattering spectra with y=1.5 meV (thin curves)
and y=10 meV (thick curves) at (a) g=5%X10* cm ™! and (b) ¢
=5%X10° em™"' for the systems of different electron densities N,
=2, 4,6, 8, and 10X 10'? cm %, The scattering peaks due to dif-
ferent plasmon-phonon modes are labeled by a and a’ (1,1); a; and
ay: (1,2); az: (1,2); a3: (1,4); b, and b, : (2,3); b, and b;: (2,4);
Ccyl (3,4).

high electron density in the lowest subband, the unperturbed
plasmon mode (1,1) crosses over the LO-phonon frequency
and the electron-phonon interaction leads to a splitting of this
mode. The electron-phonon coupling also alters the intersub-
band mode (1,2) by inducing a shift to higher frequency and
another phononlike mode (1,2)’ arises between wyo and
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wro. The results obtained from the peak positions of the
scattering spectrum with y=0.5 and 6 meV are indicated by
open and solid circles in Fig. 2, respectively. From the spec-
trum with y=0.5 meV, we observe all the plasmon-phonon
modes in the region where Imil, ,=0. From the above re-
sults, we conclude that (i) each mode (n,m) is Landau
damped only in the region where Im II, , #0, (i) the scat-
tering peak coming from the intrasubband or intersubband
mode vanishes slowly when it enters into its own single-
particle continuum region, and (iii) the scattering intensity of
the intrasubband modes is almost zero at small ¢ and it in-
creases with increasing q. Conversely, the intersubband
modes exhibit the most intensity at small ¢, and it decreases
with increasing g. For larger broadening, y=6 meV, only
three peaks can be observed at small g. These are related to
the plasmonlike mode (2,3) and the coupled plasmon-phonon
modes (1,2) and (1.2)’. At large g, these peaks disappear,
but the intrasubband plasmon-phonon mode (1,1) becomes
relevant. When we further increase 7, the calculated scatter-
ing spectrum remains similar to the structure for y=6 meV.

Finally we discuss the electron density dependence of the
light scattering spectrum for two wave vectors and two level-
broadening widths. Figure 3 shows the Raman intensities at
(@8 ¢g=5X%X10* em™! and (b) ¢=5%X10° em™! for N,
=2,4,6,8, and 10X 10'2 cm 2 . The thin and thick curves are
the results for y=1.5 and y=10 meV, respectively. With
increasing electron density, the n=2, 3, and 4 subbands be-
gin to be occupied at N,=0.93, 2.67, and 8.33X 10" cm "2,
respectively. For N,=10"> cm 2, four subbands are occu-
pied. Then the contribution from the n=4 subband becomes
prominent. In the calculation, we now have to consider a
four-subband model. In Fig. 3(a), we see that the intrasub-
band scattering is very weak. For y=1.5 meV, we can ob-
serve the scattering peaks due to the coupled intersubband
plasmon-phonon modes labeled by a: (1,2); a;: (1,2)'; ay:
(1,3); a3: (1,4); b,:(2,3); 51 (2,3)"; b,: (2,4); b= (2,4);
and c;: (3,4). The scattering due to intersubband modes
from two adjacent subbands, such as (1,2) and (2,3), is sig-
nificant. For high electron density N,=10"> cm ~2, the inter-
subband mode (3,4) also becomes pronounced. When y
=10 meV, most scattering peaks merge together and the
scattering spectrum assumes a simple structure with a few
broad peaks. However, the scattering peaks duc to the
phononlike modes, which are close to @, are not strongly
affected. For g=35X10° cm ™!, the peak from the intrasub-
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band mode (1,1) becomes the most important one, as is
shown in Fig, 3(b). For the lower electron density N,=
2X 10" ¢m 2, we can see two peaks @ and a’ correspond-
ing to the coupled intrasubband plasmon-phonon mode (1,1).
For intermediate densities, the peak a from the (1,1) mode
mixes with the peak b; from the (2,3) mode which domi-
nates the scattering around this frequency. Also, the (2,3)
and (3,4) modes merge into the lower peak (1,1). For the
higher electron density, the peak below w; is mainly due to
the (1,1) mode, while the other one above w;; comes from
the (2,3) mode.

IV. CONCLUSIONS

We have investigated the inelastic light scattering due to
coupled plasmon-phonon modes in a multisubband Q2DEG
realized in &-doped semiconductors. Our study stressed the
broadening effects (induced by impurity scattering) on the
Raman spectrum and we have calculated the overall features
of the spectrum which could be observed in realistic experi-
mental situations. For small broadening, we have found a
very rich structure in the light scattering spectrum. All the
peaks due to different intra- and intersubband modes can be
observed. At small ¢, the intersubband modes have the larg-
est scattering strength. But the scattering due to the intrasub-
band modes of the lowest subband becomes very pronounced
for large g. For large broadening widths, which corresponds
closely to the experimental situation, most of the modes are
strongly damped. Only a few scattering peaks clearly observ-
able with a large full width at half maximum. However, the
influence of the damping is not very pronounced for the
phononlike modes which are close to the LO-phonon fre-
quency. For N,=2X 10" cra ™2, the phononlike mode from
the intersubband (1,2) can be seen clearly at small ¢g. For
large ¢, only the intrasubband mode (1,1) is relevant. For
high electron density systems, the phonon-like mode from
intersubband (2,3) becomes important at small g. We hope
our results will provide useful information and stimulate fur-
ther experimental study.’?
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Capitulo 5

Interacéo elétron-fobnon em pogos quanticos

semicondutores sob campos magnéticos

Desde a década de 80, a interac&o elétron-fénon e os efeitos de interface em
heteroestruturas semicondutoras tém sido bastante estudados. Estudos teéricos
mostraram que, considerando apenas o confinamento de elétrons e tratando os
fénons como 3D ou bulk-like", as propriedades polarénicas no sistema eletronico
2D s&o qualitativamente semelhantes ao caso 3D. Ainda que um grande numero de
trabalhos tenham se dedicado ao acoplamento elétron-fonon devido aos efeitos
interfaciais nas estruturas 2D, ndo existia evidéncia experimental que confirmasse
ou desmistificasse esta aproximacgao até recentemente. Nos trabalhos anteriores,
investigamos os efeitos de acoplamento devidos ao fonons-LO interfaciais, fonons-
LO confinados numa camada e fonons-LO com modos para o semi-espago, em
estruturas GaAs-AlGaAs.

Um dos nossos resultados mostrou que os elétrons em pogos quanticos de
GaAs-AlAs, acoplam-se muito fortemente com os modos de fonons interfaciais. Em
campos magnéticos fortes, a ressonancia polarénica acontece muito proximo das
freqliéncias de fonons interfaciais de GaAs e de AlAs. Este efeito foi observado em
experimentos de ressonancia ciclotronica em multiplos pogos quanticos de GaAs-
Alo3Gaog7As com dimensdes, 120A/240A e 240A/240A, pelo grupo do Prof. B. D.
McCombe (State University of New York at Buffallo) indicando que mesmo nos
poc¢os quanticos muito largos (~200A) os modos de fénons do material das barreiras
ainda interagiam com elétrons dentro do pogo quéntico através dos efeitos de

interface. Parte do trabatho mostrado em seguida foi motivado por esta observagéo.



Nos primeiro dois artigos neste capitulo, estudamos os efeitos no espectro
ciclotrénico devido aos fénons interfaciais de pogos quanticos de GaAs- AlgsGap7AS.
Estendemos nossa teoria do sistema GaAs-AsAl para o GaAs-AlGaAs. Neste
contexto, o espectro de absor¢cio magneto-optico foi determinado, e foram ainda
investigados detalhadamente os harménicos assistidos por fénons. Confirmamos os
resultados experimentais que relatam os efeitos devido aos magnefo-polarons
ressonantes. Em colaboragdo com os autores de tais experimentos, mostramos a
importancia dos efeitos de interface nos magneto-polarons sujeitos a campos
magnéticos intensos. Como uma extensdo deste trabalho teédrico, estudamos
quantitativamente os espectros de absorcéo dos harménicos assistidos por fonons.
Ao contrario de algumas previsbes anteriores concluimos que os harménicos séo

dificilmente observados experimentalmente.

No artigo 5.3, estudamos os estados de alta energia das impurezas rasas em
super-redes GaAs-AlGaAs em campo magnético. Obtemos as energias de
transicdes, os espectros de absor¢do, e os efeitos de magneto-polarons.
Confirmamos as observagdes experimentais dos harmdnicos assistidos por fonons

dos estados ligados de impurezas rasas no super-redes de GaAs-AlGaAs.

No ultimo artigo mostramos que as ressonancias magneto-fonon, que séo
bastante estudadas em experimentos de transporte, também podem ser detectadas
opticamente (optically detected magnet-phonon resonances) em semicondutores

polares volumétricos.

5.1. Interface effects on magnetopolarons in GaAs/AixGa1-xAs quantum
wells at high magnetic fields '
G. Q. Hai, F. M. Peeters, N. Studart, Y. J. Wang, and B. D. McCombe,
Phys. Rev. B 58, 7822-7828 (1998).

5.2 Resonant magnetopolaron effects due to interface phonons in
GaAs/AlGaAs multiple quantum wells
Y. J. Wang, H. A. Nickel, B. D. McCombe, F. M. Peeters, J. M. Shi,
G. Q. Hai, X-G. Wu, T. J. Eustis, and W. Schaff,
Phys. Rev. Lett. 79, 3226-3229 (1997).

5.2. High energy transitions of shallow magneto-donors in a GaAs/AlGaAs
multiple quantum well
A. Bruno-Alfonso, G. Q. Hai, F. M. Peeters, T. Yeo, S. R. Ryu,
and B. D. McCombe,
J. Phys.: Condensed Matter 13, 9761-9772 (2001).

5.4. Optically detected magnetophonon resonances in GaAs
G. Q. Hai and F. M. Peeters,
Phys. Rev. B 60, 16513-16518 (1999).
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Effects due to interface optical-phonon modes on the cyclotron resonance in high magnetic field are inves-
tigated for GaAs/Al Ga,_,As quantum wells with the inclusion of band nonparabolicity. The polaron cyclo-
tron resonant frequencies are obtained from the magneto-optical absorption spectrum which exhibits magne-
topolaron resonances near the GaAs and AlAs-like phonon frequencies. Our theoretical resuits are in good
agreement with recent cyclotron resonance experiments. Furthermore, we present calculations of inferface-
phonon-assisted harmonics at high frequency whose positions are determined by the resonant phonon frequen-

cies. [S0163-1829(98)04936-4]

1. INTRODUCTION

The effects of interface phonons on magnetopolarons in
quasi-two-dimensional {Q2D) systems of semiconductor het-
erostructures have received considerable attention in the last
decade. In quantum wells (QW’s), the electron motion is
confined in one direction, which leads to an increased local-
ization of the electron wave function. This results in an in-
crease of single polaron effects. A second effect of the con-
finement is the modification of the phonon modes. The
confinement is a result of the sandwiching of the electron
between different dielectric materials, which will also
modify the phonons resulting in confined slab phonons, in-
terface phonons, and barrier bulk phonons.'™

For zero magnetic field, there exists a sum rule® indicating
that the polarization due to different modes is practically the
same as for bulk phonon modes. This makes it difficult to
discriminate the relative importance of the interaction of the
various phonon modes from the result one would obtain from
a calculation using only bulk-phonon modes. But increasing
the magnetic field allows one to bring the cyclotron fre-
quency into resonance with the different confined phonon
modes, resulting in magnetopolaron effects which are mark-
edly different from those found using only the bulk phonons.
Such a study provides information on the frequency of the
confined phonons and on the strength of their interaction
with the electrons.

Although a large amount of theoretical work has been
done'™* concerning the effects of interface phonons on the
position of the cyclotron resonance (CR) peak, only recently
has the magnetopolaron resonance due to interface phonon
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modes been observed experimentally.’ In Ref. 5, a detailed
experimental and theoretical study of the polaron cyclotron
resonance in modulation-doped GaAs/Al, 3Ga,,As multiple
quantum wells was carried out in magnetic fields up to 30 T.
Resonant magnetopolaron effects due to the interaction be-
tween the electrons and the interface optical phonon modes
were observed for the first time. Splitting of the polaron CR
frequency was found in the region of the AlAs-like optical-
phonon modes. Our calculation confirmed that this resonance
resulted from the AlAs-like interface optical phonons in the
quantum wells.

In this paper, we present a detailed theoretical calculation
of the magnetopolaron CR spectrum with interface effects in
GaAs/Al,Ga, _  As quantum wells based on our previous
work of polaron cyclotron resonance in GaAs/AlAs
systems.' The calculation is improved by taking into account
the nonparabolicity of the conduction band, and we extend
our theory to GaAs/Al Ga, - As structures for x# 1, where
the GaAs- and AlAs-like phonon modes appear in the barrier
material. The QW width dependence of the resonance mag-
netopolaron effect due to interface phonons is studied in de-
tail and compared to experimental results. The oscillator
strength of the different peaks in the CR spectrum are inves-
tigated as a function of the magnetic field. Furthermore, we
investigate the interface and slab-phonon-assisted harmonics
which occur above the optical-phonon frequencies. Such
phonon-assisted harmonics have been studied in three-
dimensional (3D) systems® and were observed in InSb (Ref.
7) and Hg,Cd, _,Te.® Here we generalized this to lower di-
mensional systems.

7822 © 1998 The American Physical Society



1I. MAGNETOPOLARON RESONANCE

In the presence of a magnetic field B applied in the z
direction perpendicular to the interface, the energy levels of
an electron are given by

E, =Ej+ho(n+102), (1)

where £7 is the level (/=12,...) due to the QW confine-
ment corresponding to the motion in the z direction, w,
=eB/mu is the unperturbed cyclotron frequency, n is the

Landau-level index, and m is the electron band mass in the

xy plane given by

l7l m
eb
m= @
Pwme,,+P,,me

where P, (P,) is the probability to find the electron inside
(outside) the quantum well, and m* and m, are the electron
effective mass in the well and in the barrier, respectively.
Equation (2) includes the penetration of the electron wave
function into the barrier resulting in a renormalization of the
effective electron mass. This leads to an increase of the elec-
tron mass because mX,>m} , which is appreciable for nar-
row quantum wells. Here we are interested in the Landau
levels Ey \=E;+#hw,(n+1/2) associated with the lowest
electric subband E7 .

To compare theoretical results for the cyclotron resonant
frequency with the experimental results, it is necessary to
include the band nonparabolicity of the conduction band in
the calculation. The electronic structure of III-V compound
semiconductors in the presence of external magnetic fields
can be described very well within the framework of k-p
theory.”"*! Ruf and Cardona’® studied the electronic structure
of GaAs by the technique of resopant Raman scattering in
magnetic fields. They showed that the nonparabolicity of the
bulk GaAs conduction band can accurately be described by

the expression
%\ 2 * ok 12
(Eg) +(l~m“’ —-”LE-C*)E*E?,}
my My &

B)

w1th the fitting parameter C*=—2.3, and E; =E,+Ay/3,
—1520 meV, E,+Ay/3=1631 meV, E,= ﬁwc(n+l/2)
and m¥*=0. O665m0 Here we generalized this expression to
the quasi—two-dimensional case by (1) replacing the bulk
mass m” by the effective electron mass in the 2D plane m,
and (2) by including the confinement energy in the band gap
energy EF=FE,+A/3+E]. The CR frequency including
the correction due to band nonparabolicity is now obtained
from
Wl =(E,—Ey)/h. 4)
The present calculation of the magneto-optical absorption
spectrum is similar to the one described in Ref. 1 for GaAs/

AlAs quantum wells, except that we additionally include
band nonparabolicity and consider the different effective
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phonon modes of the GaAs/Al,Ga, _,As system. Within the
linear-response theory, the polaron magneto-optical absorp-
tion is proportional to"'?

—Im 2(w)
—Re 3(w)*+[Im 3(w)]?’

(5)

[o—lF

where Z(w) is the so-called memory function and w?’ is the
unperturbed CR frequency. In the absence of Landau-level
broadening we have Im2 (@) =0, and the position of the CR
peak is determined by the equation w— w!f ~ReZ (w)=0.
When we calculated the CR frequency of the polarons in the
GaAs/AlAs quantum well,' the memory function could be
decomposed into

S{w) =2 (@) +35 () + 35 (w), 6)

which is a sum of the contribution from the slab phonon
modes, the S+ interface mode (supported by the AlAs
phonons), and the S— interface mode (supported by the
GaAs phonons).

In GaAs/Al Ga, _ As quantum-well structures, the barrier
material is the Al.Ga,__As alloy which has two LO- and
two TO-phonon modes. They are the GaAs- and AlAs-like
modes, respectively. In the small-magnetic-field regime, it is
possible to replace, in an approximate way, the two TO- and
LO-phonon modes by single effective TO and LO modes as
introduced in Ref. 13 and used, e.g., in Ref. 2, in the study of
the electron-phonon renormalization of the electron energy
and mass. However, for magnetopolaron effects in high mag-
netic fields, this approximation is no longer valid because
resonant polaron effects occur and the electron energy can be
comparable to the energy of the different TO- and LO-
phonon modes. In principle, we should consider all the TO-
and LO-phonon modes in the different materials in order to
obtain the ‘‘exact’” interface phonon modes.

For the GaAs/Al Ga, . As structures, frequencies of the
AlAs-like phonon modes in the A1, Ga, _ As alloy are given
by Qf4"=360+70.8x—26.8x> cm~' and Q45*=360
+4.4x—2.4x? cm™'. Those of the GaAs-like phonon modes
are Q75" =296—52.8x+14.4x> cm™' and QZ5%°=270
—52x—9.4x% cm™!. Typically, one uses x 0.3, and we
have Qf4=379 cm™!, Q4 =361 cm™!, Q44 =281
em™!, and Q93%°=268 cm™'. In this work, we are inter-
ested in the magnetopolaron resonance close to the GaAs
phonon frequencies and the AlAs-like phonon frequencies.
Notice that the frequencies of the GaAs-like phonons are
close to those of bulk GaAs, which are w;o(Gads)=296
em ™! and w;o(Gads)=270 cm~!. In a full theory one
should calculate the interface phonon modes of the
GaAs/Al,Ga, _,As interface which for x# 0 leads to six dif-
ferent modes of which two are AlAs like and the four others
GaAs like. Two of these four GaAs-like interface modes are
supported by the GaAs in the quantum well (corresponding
to the S— modes) and the two others are from the GaAs-like
modes (with weight 1 —x) in the barrier material whose fre-
quencies are between the TO and LO GaAs-like phonon fre-
quencies. In order to avoid this extra complication, it is
physically more transparant to weight the different interface
phonon modes of the GaAs/AlAs system by the concentra-
tion of Al or Ga in the Al,Ga;_ As alloy. Therefore, as in
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Ref. 1, in the present paper we approximate the memory
function of the S+ interface phonon mode as

S5 @)= x5 () +(1-x)25 (w). (7
Then Eq. (6) becomes
SH{o)=3""w) +xZ5 (0)+(2-x)25 (0). (8)

We see that Eq. (8) reduces to Eg. (6) for x=1. On the other
hand, for x—0 we also have the correct limit because
25 (@) and 35 (w) approach each other and vanish. The
approximation in Eq. (7) indicates that we have separated the
contribution of the barrier material Al,Ga,_,As to the inter-
fcace polaron effect into two parts. The first part is from the
AlAs-like phonons and is weighted by x, and the second part
is from the GaAs-like phonons and is weighted by 1—x.
Furthermore, the momery function of the second part is ap-
proximated by that of the S— mode.

In the calculation of the magneto-optical-absorption spec-
trum in GaAs/Aly;Gag,As quantum  wells, we take
a=0.068, €,=12.85, and €,=11.00 in GaAs; and
€,=11.91 and €,=10.18 in Al;;Gay-As in Egs. (59) and
{60} of Ref. 1. The CR frequency is determined by the posi-
tion of the peaks in the magneto-optical-absorption spec-
trum. Figure 1 shows the polaron CR frequency as a function
of magnetic field in GaAs/Aly3Gay,As quantum wells of
widths (a) 120 A and (b) 240 A. The thin-dashed lines are
the CR frequencies within the parabolic band approximation
in the absence of electron-phonon interaction. The thin-solid
lines are the results including band nonparabolicity which
decreases the CR frequency, in particular at high magnetic
fields. The CR frequencies of the polarons using the 3D
GaAs phonon modes and band nonparabolicity are indicated
by the dot-dashed curves, and exhibit only one magnetopo-
laron resonance around the GaAs phonon frequency. The
thick-solid curves are the CR frequencies including band
nonparabolicity and the electron-phonon interaction with in-
terface and slab phonons. The experimental results are indi-
cated by the dots. Away from the resonant magnetopolaron
region around the AlAs phonons, the theory based on only
bulk GaAs phonons describes the experimental results quite
well, and coincides with our theory which includes interface
and slab phonons. Therefore, earlier claims* that interface
phonons are needed to describe the resonant magnetopolaron
effect near the GaAs phonons, i.e., ®<340 cm™ ', are ques-
tionable. Those claims are often based on crude approxima-
tions which, e.g., did not include band nonparabolicity
and/or the finite height of the quantum well and/or the elec-
tron mass difference between the well and barrier region
which result in important corrections to the CR peak posi-
tion. The present calculation with interface and slab phonons
is in agreement with the experimental results not only near
the GaAs phonon region but also near the AlAs phonon re-
gion. Deviations from the experimental results near the AlAs
resonant region can be attributed to (i) many-electron effects
which are not included here, (i) fluctuation of the frequncies
of the AlAs-like phonons of the Al Ga, _As alloy barrier
from sample to sample, and (iii) the larger error bar in the
experimental data. From the experimental results, we also
could not observe a decrease of the resonant frequency near
an AlAs-like phonon frequency with an increasing width of
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FIG. 1. The polaron CR frequency due to interface and slab
phonons (thick solid curves), and due to 3D LO phonons (dotted-
dashed curves) as a function of magnetic field in (a) 120-A, and (b}
240-A-wide GaAs/Aly;Ga, ,As quantum wells with the inclusion of
band nonparabolicity. The thin-dashed and thin-solid lines are the
unperturbed CR frequencies for parabolic and nonparabolic bands
without inclusion of polaron effects, respectively. The dots indicate
the experimental results. The horizontal dotted lines indicate the
LO- and TO-phonon frequencies of GaAs and AlAs-like modes.
The four branches of the CR frquencies in (a) are indicated by @},
¥, oF, and w} in increasing order of frequency.

the quantum well, which is expected from our theoretical
calculations. We notice that only three of the four branches
of the calculated magnetopolaron CR frequency are observed
in the experiment. In order to see the relative importance of
the different branches in the CR spectrum, we calculate the
oscillator strength of the different absorption peaks in the
magneto-optical spectrum which, for Im3 (@) =0, is given
by [1—3 ReZ(w)/dw]™". The results are shown in Fig. 2
for a 120-A QW. This figure shows the following: (1) There
arc only experimental results available in certain magnetic-
field regions for the different branches; e.g., for the lowest
CR frequency branch, ie., o], the oscillator strength re-
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Oscillator Strength

FIG. 2. The oscillator strength of the first four peaks in the
magneto-optical-absorption spectrum as a function of the magnetic
field in a 120-A-wide GaAs/Aly;Gay,As QW. They are indicated
by w, w5, ¥, and wf in increasing order of frequency.

duces with increasing magnetic field, and near B=22 T a
large part of its oscillator strength is transfered to the w¥
peak which becomes now experimentally observable, while
the w] peak becomes too weak to be seen experimentally.
(2) The second CR frequency, i.e., @3 , exhibits on oscillator
strength which is typically one order of magnitude smaller
than the main CR peak. Notice that the ) peak is in the
reststrahlen region, which is a second reason why it is not
observed experimentally.

A direct measure for the strength of the electron-phonon
interaction is the splitting of the avoided-level-crossing reso-
nance near the GaAs- and AlAs-like phonon modes. For sim-
plicity, we define the splitting near the AlAs-like phonons as
the frequency difference between @) and w7 at the magnetic
field, where 0 equals @2 (the frequency of the interface
phonon mode $+ at wave number g— ), and that near the
GaAs-like phonon is the difference between w) and o} at
;" =w;, of GaAs. These splittings are shown in Fig. 3 as a
function of the well width of the GaAs/Alj 3Gag 1As system.
The solid (dashed) curve indicates the resonance in the re-
gion of the AlAs (GaAs)-like optical-phonon frequencies.
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FIG. 3. The splitting of the magnetopolaron resonance around

the GaAs-like (dashed curve) and AlAs-like phonon frequencies
(solid curve). The dots are the experimental results.
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The solid dots are the experimental results. The present the-
oretical results predict that the largest splitting as due to the
AlAs-like interface phonons (solid curve in Fig. 3) occurs in
a GaAs/Aly ;Gag ,As quantum well of width =18 A. The
largest splitting near the GaAs phonon frequency occurs for
a much larger well width of about =100 A. The decrease
of the resonant splitting for a large well width near the AlAs-
like optical phonon is mainly a consequence of the reduced
overlap between the electron wave function and the interface
phonon polarization which falls off like e ™# from the inter-
face. The polaron splitting near the GaAs optical-phonon
modes is largely due to the interaction with GaAs slab
modes, and consequently the reduction for large widths is
due to the smaller confinement of the electrons and is similar
to the dectease of the polaton effects when one goes from a
2D system to a 3D system. The reduction of the splitting for
w<18 A is a consequence of the finite height of the quan-
tum well, which results in a large penetration of the electron
wave function into the Al Ga, _ As barrier and consequently
a reduced probability of finding the electron in the QW or
near the interface. The reduction of the splitting near the
GaAs phonon for <100 A is a consequence of the reduced
number of slab modes with decreasing W.

In Fig. 4 we plot the absorption spectra of the magneto-
polarons around (a) the GaAs and (b) AlAs-like phonon fre-
quencies at different magnetic fields for a QW of width #
=120 A. The results are obtained for a Landau-level broad-
ening I'=1 meV. Figure 4(a) shows the magnetopolaron
resonance due to GaAs-like interface and slab phonons. No-
tice that only two absorption peaks are observed, and that the
peak corresponding to the second branch in Fig. 1(a), situ-
ated between the TO- and LO-phonon frequencies of GaAs,
is absent. This is a consequence of its small oscillator
strength, which makes it disappear in the tail of the other
Landau-level broadened peaks. It is seen that, at B=20.5 T,
most of the absorption strength is in the lower peak at w
=244 cm™ !. When the magnetic field is increased, this peak
is pinned “‘around’’ the wyp of GaAs, and its absorption
strength is transfered to the higher peak located above the
w; o of GaAs. Figure 4(b) demonstrates the magnetopolaron
resonance due to AlAs-like interface phonons. It is seen that,
at lower magnetic fields (B<<26.5 T), the absorption peak at
higher frequency is in the reststrahlen region of the AlAs-
like phonons. With increasing magnetic field, the peak at
lower frequency enters this reststrahlen region. It becomes
very broad, and it loses most of its oscillator strength to the
higher-frequency peak.

IIl. PHONON-ASSISTED HARMONICS

Figure 5 shows the magneto-optical-absorption spectrum
for a polaron interacting with interface and slab phonon
modes in the frequency region above the AlAs optical pho-
non in GaAs/Aly;Gag ,As quantum wells of widths (a) 20 A
and (b) 120 A for two different values of Landau-level
broadening: I'=0.5 meV (solid curves) and I'=1 meV (dot-
ted curves). The scale of these figures is multiplied with a
factor of 300 as compared to the one of Fig. 4(a). We clearly
observe optical-phonon-assisted harmonics®'? for the slab
and interface phonons (namely, three series can clearly be
discriminated), as indicated by S—, slab, and S+, respec-
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FIG. 4. The magnetopolaron absorption spectrum around (a) the
GaAs-like and (b) the AlAs-like phonon frequencies at different
magnetic fields in a GaAs/Aly;Gag;As QW of width W=120 A
The two vertical dotted lines in (a) indicate the TO- and LO-phonon
frequencies of GaAs, and those in (b) indicate the frequencies of the
AlAs-like phonons. The Landau-level broadening is I'=1 meV.
The intensity in (b) is enlarged by a factor of 2 as compared to (a).
The different curves are offset for clarity.

tively. In Fig. 5(a) for W =20 A, we notice that the absorp-
tion strength of the interface-phonon-assisted harmonics
S— and S+ is larger than the one due to the slab phonons.
These three peaks are repeated periodically with period e,
but their strength decreases with increasing frequency. For a
120-A QW, as shown in Fig. 5(b), the slab-phonon-assisted
harmonics become much stronger than those of the interface
phonons, indicating the decreased (increased) interaction of
the electron with the interface (slab) phonons with increasing
QW width,

The position of the first ten absorption peaks in a QW of
width 120 A are plotted in Fig. 6. We found that the position
of the phonon-assisted harmonics depends only on the reso-
nant optical-phonon frequencies wj’-, and is given by @, ;
= wj'»-f-na)’g” with n=1,2,... . For the slab phonons we have

o (cm)
w=120A (b)
{islab
' [
S+ 1
g L J}25T
=
=
8 slab
< s;
% S+
R

500 600 700 800 900 1000
® (em™)

FIG. 5. The phonon-assisted harmonics in the polaron magneto-
optical-absorption spectrum in (a) 20-A and (b) 120-A-wide
GaAs/Aly;Ga,,As quantum wells for three different magnetic
fields and two values of the Landau-level broadening I'= 0.5 meV
(solid curves) and I'=1 meV (dotted curves). The intensity is en-
larged 300 times as compared to Fig. 4(a).

w',.»= W o because the slab modes were taken dispersion-
less. On the other hand, the interface phonons have disper-
sion, and consequently the resonant frequency depends on
the width of the QW. We found that the resonant frequencies
of the S+ and S— modes in a 120-A QW are v}, =371.4
cm ™! and wf_=281.7 cm ™!, respectively.

In order to investigate the importance of the phonon-
assisted harmonics, we calculated the strength of the differ-
ent peaks for the situation of Fig. 6. They are shown in Fig.
7(a) for the first  phonon-assisted  harmonics
wu:w}-k ", and in Fig. 7(b) for thc second phonon-

assisted harmonics w,;=w}+2w.”. Notice that they are
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FIG. 6. The positions of the first ten peaks in the magneto-
optical-absorption spectrum as a function of the magnetic field in a
120-A-wide QW. The positions of the harmonics due to the GaAs-
like interface mode (§—), slab modes, and AlAs-like interface
mode (S+), are indicated by thin-solid, dashed, and dotted curves,
respectively. The horizontal dotted lines are the frequencies of the
GaAs and AlAs-like phonons.

typically two orders of magnitude smaller than the oscillator
strength of the experimentally studied resonances (see Fig.
2). This result agrees with the earlier calculation of Wu,
Peeters, and Devreese,'? who included only interaction with
bulk GaAs phonons for a Q2D system of GaAs heterojunc-
tion. The results using the 3D phonon modes are shown as
solid dots in Fig. 7(a), and are compared with the present
results (open dots), where we added the oscillator strength of
the S+, S§—, and slab peaks. The present results for the
oscillator strength of the first phonon-assisted harmonics are
one order of magnitude smaller than the theoretical results of
Tanatar and Singh.'* Our theoretical results are in agreement
with recent experimental results'> which were unable to ob-
serve the first phonon-assisted harmonics in a number of dif-
ferent GaAs quantum wells, and where it was estimated that
the oscillator strength of this line must be less than 1% of the
main CR peak. On the other hand, in a recent experiment,'®
a phonon-assisted impurity transition was observed in a
donor-doped sample using photoconductivity at high fre-
quencies. These results are not in disagreement with the
present results, because here we considered free electrons
and calculated the CR absorptions, while the experiment in
Ref. 16 is for shallow bound electrons and where photocon-
ductivity was used. Therefore, we expect that it will be ex-
tremely hard to see these phonon-assisted harmonics experi-
mentally in GaAs/Alg ;Gag 4As quantum wells.

IV. SUMMARY AND CONCLUSIONS

A detailed theoretical analysis of the magneto-optical
absorption spectrum of low density electrons in
GaAs/Al Ga, _ As quantum wells was presented. From
our calculation of the polaron CR spectrum in
GaAs/Aly ;,Gag 7As quantum wells and a comparison with the
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FIG. 7. The oscillator strength of (a) the first (n=1) and (b) the
second (n=2) phonon-assisted harmonics in the magneto-optical-
absorption spectrum as a function of the magnetic field in a 120-A-
wide QW. The solid dots in (a) are the results using the GaAs
bulk-phonon modes, and the open dots are the sum of the oscillator
strength of the S+, §—, and slab peaks.

experimental results of Ref, 5, we demonstrated that, in order
to achieve good agreement with the experiments, it is impot-
tant to include correctly (1) an appropriate electron effective
mass for motion in the plane of the QW which is renormal-
ized by the penetration of the electron wave function into the
barriers, (2) band nonparabolicity effects, and (3) interface
phonon modes in order to explain the magnetopolaron reso-
nance around the AlAs-like optical phonons. The phonon-
assisted harmonics exhibit clear signatures of the different
interface phonons, and the slab phonons, but their oscillator
strengths are two orders of magnitude smaller than the main
CR resonances.
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Polaron cyclotron resonance (CR) has been studied in three modulation-doped GaAs/Al 3Gag7As
multiple quantum well structures in magnetic field up to 30 T. Large avoided-level-crossing splittings
of the CR near the GaAs reststrahlen region, and smaller splittings in the region of the AlAs-like
optical phonons of th AlGaAs barriers, are observed. Based on a comparison with a detailed theoretical
calculation, the high frequency splitting, the magnitude of which increases with decreasing well width, is

assigned to resonant polaron interactions with AlAs-like interface phonons.

PACS numbers: 71.38.+i, 71.70.Di, 78.20.Ls

The interaction of charge carriers with optical phonons
in quasi-two-dimensional (Q2D) systems has been of
considerable interest both experimentally [1-6] and
theoretically [7—12] for several years, since the electronic
properties of semiconductors, particularly energy loss
mechanisms for hot carriers, are strongly affected by
this interaction. For bulk polar materials, the dominant
interaction is between the charge carriers and longitudinal
optical (LO) phonons [7]. Interface and confined phonons
[11,12] and their interaction with charge carriers in quan-
tum wells have received considerable attention recently,
and it has been shown theoretically that these modes
can play a significant role in narrow wells. However,
a number of issucs remain unresolved. In particular,
a sum rule [13] makes it difficult to deconvolve the
relative important of interactions with the various phonon
modes of confined systems from measurements which
are not phonon-frequency specific [14]. There has also
been some controversy about the importance of interface
and confined phonon modes in the region of resonant
magnetopolaron interaction with GaAs phonons [6,11,12].
Raman scattering studies of short period GaAs/AlAs
superlattices [ 15,16] have provided experimental evidence
for both confined and interface modes, but there have
been no experimental measurements of the strength of

3226 0031-9007/97/79(17)/3226(4)$10.00
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the interactions in either GaAs/AlAs or GaAs/AlGaAs
quantum wells, there has been no experimental work
showing the effects of interface phonons in quantum well
structures with alloy barriers, and there has been no work
demonstrating clearly the importance of this imteraction
in “normal” well width range (the order of greater than
100 A) for practical devices (e.g., intersubband detectors).

The resonant magnetopolaron effect, which has been
studied for a number of years in bulk [17,18] and Q2D [4—
6] systems, provides a means of determining the strength
of interactions with specific phonons. When the cy-
clotron resonance (CR) frequency, w. = eB/m"c, is tuned
through the frequency of an appropriate optical phonon,
a resonant avoid level crossing occurs. The magnitude
of this avoided-level-crossing resonance is a direct mea-
sure of the strength of the effective interaction. Although
such effects have been studied for some time, much re-
mains unknown or poorly understood. Enhanced [1,19],
comparable [20], and reduced [3,5,21] resonant polaron
effects (relative to 3D) have been previously reported in
Q2D systems. The detailed mechanisms leading to these
observations have been obscured in some cases by inad-
equate theoretical models for the specific structures, and
in other cases by incomplete experimental data due to
an insufficient magnetic field. Nevertheless, appropriate

© 1997 The American Physical Society
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experiments spanning the resonant region can reveal the
existence of interactions with particular phonon modes,
and, when combined with theoretical calculations, can be
used to determine the strength of the interaction.

We have carried out an experimental study of elec-
tron CR vs magnetic ficld in three modulation-doped
GaAs/Aly3Gag7As multiple-quantum-well samples in
magnetic fields up to 30 T. Strong resonant avoided-
level-crossing behavior was observed in the region of the
GaAs optical phonons with a large splitting of the CR into
upper and lower branches. In addition, and of paramount
importance, a weaker splitting was observed at higher fre-
quencies in the region of the AlAs-like optical phonons of
the barriers. This splitting increases with decreasing well
width from 240 to 120 A, and is attributed to the resonant
magnetopolaron interaction of electrons in the GaAs wells
with barrier AlAs-like interface phonons. This permits the
direct measurement of the importance of the interaction as
a function of well width. The magnitude of the splitting
is in good agreement with theoretical calculations carried
out in the framework of the memory-function formalism
[11] including effects of interface optical phonon modes,
as well as screening and occupation effects. Our mea-
surements, which are sensitive to specific phonons via
the spectral specificity of the technique, demonstrate that,
even for barriers containing only 30% Al and relatively
wide GaAs wells, the AlAs-like interface phonon modes
associated with the barriers interact significantly with
electrons in the GaAs wells. A detailed comparison of
theory and experiment for the upper and lower branches
in the GaAs optical phonon region for two samples with
different carrier densities suggests that screening and
occupation effects are significant at the higher density and
are of nearly equal importance.

The far infrared transmission measurements were car-
ried out with a Bruker 113v Fourier transform interfero-
metric spectrometer in conjunction with a metal light-pipe
condensing-cone system and a 4.2 K silicon bolometer de-
tector on samples maintained at 4.2 K in a 30 T resistive
magnet. The three GaAs/Aly3Gap 7As multiple-quantum-
well (240 A barrier) samples were grown by molecular
beam epitaxy with fifteen and ten 240 A wells, and eight
120 A wells for samples A, B, and C, respectively. All
samples are doped with silicon donors in the barriers,
samples A and B over central % and sample C in a planar
sheet. The measured (from the quantum hall effect) elec-
tron densities per well for samples A and B are 1.5 X 10!
and 3.0 X 10" cm ™2, respectively; the nominal doping
for sample C is 1.5 X 10! cm™2. The maximum 30 T
magnetic field permits CR measurements that span the en-
tire GaAs and AlAs optical phonon regions.

Figure 1 is a plot of the measured CR frequency vs
magnetic field for these samples; the solid lines are
the calculated unperturbed single particle CR transition
frequencies, which include the conduction band non-
parabolicity. The data for all samples show clear, large
CR splittings in the GaAs reststrahlen region. The fre-
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FIG. 1. Experimental data for all three samples. The tilted
straight lines in the figures are the calculated CR transitions
including nonparabolicity only.

quencies of the lowest energy branch start to deviate from
those of the unperturbed CR well below the GaAs-like
optical phonon energies, and the intermediate branch ap-
proaches the GaAs-like LO phonon frequency from above
as the field is decreased. The CR frequencies of samples
A and B are indistinguishable at fields below 10 T. Larger
differences are observed at higher fields, particularly for
the intermediate branch in the region of resonance with
the GaAs optical phonons,

At higher frequencies there are smaller splittings ob-
served in the AlAs-like phonon region for samples A and
C. Raw magnetotransmission spectra for these samples
are shown in Fig. 2, at magnetic fields between 25 and
29 T. For sample A at 25 and 29 T, there is only one
observable resonance minimum at 348 and 391 cm ™!,
respectively. However, when the CR is tuned through
the AlAs-like optical phonon region of the barriers
(~26-28 T), the resonance is clearly split into two
branches. The intermediate energy branch loses intensity
gradually when the field is increased, while the highest
energy branch gains intensity over this same region. Note
that the pinning frequency (~370 cm™!) lies between the
AlAs-like LO and transverse optical (TO) frequencies.
The minimum separation between the two branches at
275 T is approximately 8 cm™!. A much clearer and
larger splitting is observed in sample C with a minimum
separation of 20 cm~! at 27 T, and pinning frequency
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FIG. 2. Transmission spectra at several different fields di-
vided by a zero-field reference spectrum for samples A and
C. The traces are spaced every 0.5 T, except the lowest trace
in (b). (a) sample A, (b) sample C.

close to 370 cm™'. The interaction which causes the
splitting clearly increases with decreasing well width.

There are two possible origins for this splitting:
(1) electrons localized in the GaAs wells interacting with
the AlAs-like slab LO phonons in the barriers due to
eleciron wave-function penetration into the barriers, or
(2) electrons in the GaAs wells interacting with AlAs-like
interface phonons due to the tail of the interface modes
in the GaAs wells. To estimate the importance of (1)
we have calculated the fraction of the probability density
of the ground confinement subband wave function pene-
trating into the Aly3Gag7As barrier for the structures of
samples A and C. For a 240 A X 240 A structure this
fraction is 3 X 1074 for a 120 A X 240 A structure it
is 2 X 1073, Since the splitting of the CR at resonance
with the GaAs LO modes is approximately 40 cm™! (see
Fig. 1), observed splittings (8 and 20 cm™!) cannot be
due to the interaction of the electrons in the wells with
the AlAs-like L.O phonons in the barriers, which should
scale with the fraction of electron probability in the
barriers because the Frohlich electron-phonon coupling
constant is approximately the same for GaAs (~0.068)
and Aly3GagsAs (~0.073). Another strong argument
against possibility (1) is the fact that for both well
widths the pinning energies clearly lie below the AlAs-
like LO phonon frequency for Aly3;Gap7As at helium
temperature [22].

The interaction between electrons and the symmetric
pure AlAs interface optical (I0) phonon modes has been
calculated [11]. In order to compare with the present
experimental results, the contribution from the pure AlAs
[0 phonon modes is multiplied by 0.3. The modified
theoretical calculation gives splittings of approximately
10 and 16 cm™! near 371 cm™' for the 240 and 120 A
wells, respectively, in reasonable agreement with the
measured values. This is taken to be a confirmation of this
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assignment. For sample B the splitting into two branches
is not resolved. It is likely that screening and Panli
principle effects reduce the effective interaction since the
electron density for sample B is twice that of sample A.

Dielectric artifacts can also give rise to apparent split-
tings [5,23] in the reststrahlen region due to the resonant
dielectric function of the material at the TO frequency. A
computer simulation of the classical dielectric effects [24]
in the reststrahlen region in the multilayer structure of our
samples was performed to examine the possible effect of
dielectric artifacts. For the present sample parameters, no
measurable CR splitting in the GaAs reststrahlen region
or in the region of the AlAs-like barrier phonons appears
in the simulation.

To test the above conclusion, detailed theoretical calcu-
lations for the sample structures are compared with the
experimental results in Fig. 3. The difference between
the measured polaron CR frequency and the unperturbed
CR frequency is plotted vs the measured frequency. The
electron-phonon interaction Hamiltonian is given by the
Fréhlich model, with the phonon modes modified due to
confinement and the presence of the interfaces. Three
types of optical phonon modes can interact with the elec-
trons in the wells: (1) symmetric interface optical (10)
phonon modes, (2) antisymmetric IO phonon modes, and
(3) confined GaAs slab LO phonon modes in the wells.
The solid line in Fig. 3 was obtained by considering the
effects of symmetric I0Q phonon and confined slab LO
phonon modes in a single electron picture. This calcu-
lation agrees well with the experimental results over the
entire resonant region. A calculation was also performed
for coupling with only bulk GaAs 3D LO phonons (other
lines in the figure). The results are nearly the same for
the wider well samples (A and B), except near the AlAs-
like phonon frequencies. This is to be expected for rela-
tively wide quantum wells. But the agreement for sample
C is clearly significantly worse. Confined and interface
modes must be accounted for to get good agreement in
this case. The GaAs-like interface phonon modes do not
play an important role over the range of fields and fre-
quencies for which the polaron CR is observable since
their interaction with electrons is smaller than that of the
GaAs confined phonon modes, and the experiments do
not probe into the reststrahlen region where the resonance
occurs. On the other hand, the AlAs-like 10 modes do
play an important role since there is no strong interac-
tion with any slab modes, and the total AlGaAs thickness
is small enough that the reststrahlen effect does not ob-
scure the interaction. The symmetric AlAs-like I0 modes
are responsible for the splittings near 370 cm !, and in-
clusion of this interaction provides good agreement with
experiment.

The doping concentrations of the samples lic in an
intermediate regime for which both screening and oc-
cupation effects must be considered. The dashed lines
in Fig. 3 are calculated results for coupling with only
bulk GaAs LO phonons, and the dash-dotied lines are
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FIG. 3. Plot of frequency shift vs frequency for three samples.
The dots are experimental data. The dashed curves are for
coupling with only bulk GaAs optical phonons, the dash-dotted
curves include screening effects within the RPA in addition to
the coupling with the GaAs bulk phonons, and the solid curves
consider the effects of 10 phonon and slab LO optical phonon
modes.

calculated results in which both screening (within the
static random-phase approximation [10]) and occupation
effects are taken into account in addition to the coupling
with bulk GaAs optical phonons. It can be seen that,
when occupation and screening effects are included, the
agreement between the calculations and the experimen-
tal results are further improved in the GaAs region for
sample B.

The importance of screening and Landau level occu-
pation can also be seen from the region of AlAs-like
phonons. Since the contribution to the interaction from
screening and occupation effects are both important [25]
m this region, the fact that a splitting in the AlAs-like
phonon region is not observed in the higher doped sample
B shows these effects play a strong role here.
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Magnetophonon resonances are found for w,=w /N with ¥=1,2,3...

in the polaron cyclotron resonance

(CR) linewidth and effective mass of bulk polar semiconductors. The CR mass and the linewidth are obtained
from the full polaron magneto-optical absorption spectrum which are calenlated using the memory function
technique. The amplitnde of the resonant peak in the Jinewidth can be described by exponential law at low

temperature. { S0163-1829(99)09139-0]

L INTRODUCTION

Magnetophonoen resonance (MPR) occurs when two Lan-
dau levels are a phonon energy apart that leads (o a resonant
scatlering due to emission or absorption of phonons, Since
the pioncer work by Gurevich and Firsov,! this effect has
been extensively studied in bulk®™® as well as low-
dimensional semiconductor systems.*™ The resonant charac-
ter makes it a powerlul spectroscopic tool. Magnetophonon
resonances have been used to obtain information on band-
structure parameters, such as the effective mass and the en-
ergy levels, and on the electron-phonon interaction. The vast
majority of work on the MPR has been done on the transport
propetties of semiconductors, usually the magnetoresistance,
which inevitably involves a complicated average of scatter-
ing processes. The oscillations in the magnetoresistance are
the results of a combination of scattering and broadening
processes that can lead to a quite complicated dependence of
the resonance amplitudes on doping, sample structure, carriet
concentration, and temperature. However, the MPR can also
be observed directly through a study of the electron cyclo-
tron resonance (CR) linewidth and effective mass, i.c., the
so-called optically detected MPR (ODMPR), as was demon-
strated in two-dimensional (2D) semiconductor systems of
GaAs/Al,Ga, . .As heterojunctions by Barnes ef al.'® The
ODMPR allows one to make quantitative measurements of
the scattering strength for specific Landau levels and yields
direct information on the nature of the clcctron-phonon in-
teraction in semiconductors.

In this work, we extend the theory for ODMPR to three-
dimensional (3D) systems and present a theoretical study of
the magnetophonon resonances in the frequency-dependent
conductivity in bulk polar semiconductors. Our calculations
show strong oscillations of both the linewidth and the effec-
tive mass in a 3D system of GaAs that indicate that the
ODMPR should also be observed experimentally in bulk po-
lar semiconductors,

The present paper is organized as follows. In Sec. [I, we
present our theoretical formulations of the problem. The nu-
merical results and discussions arc given in Sec. I, and we
summarize our results in Sec. IV.

0163-1829/99/60(241 16513{6)/815.00 PRB 6¢

1. THEORETICAL FRAMEWORK

Magnetophonon resonance 1s essentially a single-particle
effect and, consequently, can be treated as a one-polaron
problem. We consider a polar semiconductor in a uniform
magnetic field B directed along the z axis. The system under
consideration can be described by the following Hamil-
tonian,

H=H,+Hy+ 1, W
with
1 - -
Hl‘:m(p*‘eﬁl)z (2)
and
HPhIZ ﬁ.w(’;(az-aq‘%-:l-,), (3)

where m,, is the bare electron effective mass, the vector po-
tential 4 =B/2( —v,x,0) is chosen in the symmetrical Cou-
lomb gauge, 5 (r) the momentum (position) operator of the
electron, a; (a;) the creation {annihilation) operator of an
optical phc;non with wave vector 5 and cnergy fiw;. The
electron-phonon interaction Hamiltonian H,, is given by the
Frohlich interaction Hamiltonian

Hyy=2 (Voage' "+ lf'fa‘}e‘"‘"’), )
4
where
- ; i h /4 T 5)
So= =i (5
4 lmw!\ Em/.ww \/ et

and ¢ is the electron-LO-phonon coupling constant.

First, we calculate the optical-absorption spectrum of the
polaron in magnetic fields [rom which we are able to inves-
tigate the polaron CR spectrum and the MPR effects. For
convenicnee we use units such that i=m,=w; = 1. Within
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the linear-response theory, the {frequency-dependent

magneto-optical-absorption  spectrum for  cyclotron
resonance' ™ is given by
_ 1 Im2(z)
Alw)=—= (6)

2 [w—w,—Re3(2) P+ [Im ()] '

where w,=e¢B/m, is the unperturbed electron cyclotron fre-
quency, 2(z) is the so-called memory function, and z=w
+iy and vy is a broadening parameter. Notice that y is in-
troduced semiempirically to remove the divergence of the
Landau-level density of states. We take y as a constant, For
the magneto-optical-absorption spectrum in the Faraday
(active-mode) configuration, which corresponds (o the cyclo-
tmfl resonance experiments, the memory function is given
by'*

1 . .
2(2)=5—2 IV (7)
My, '; *
with
2 (= , +
Fizy=— ;f dr(1—e")Im{[b;(1),b-(0)]),  (8)
o !
where br=a ,;e'J "T, and the correlation function is given by
(TN BHON =1 +n(wro)le ™OS* (=41
~n(wiple “L'S(q,r, (9)
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where
1
V= ———— (10
oy o) . (10}

is the number of the LO phonons and
S(‘;’Iu):<ei[j-é(1)e—i§»}(0;> (11)

is the space Fourier transform of the electron density-density
correlation function. In Eq. (10) B=1/k,T, where ky is the
Boltzmann constant. For a weak electron-LO-phonon cou-
pling system, i.¢., @<€1, the density-density correlation func-
tion is calculated for a free electron in a magnetic field which
is given by

S(G.1) =Dy D) (12)
with
b
D(1y=5(—it+1*/B) {13)
and
1 _ o
Dy(ny= ;—{—)~[l -+ dn(w, )sin*(w, 1/2)].
From the above equations, we obtain the memory func-
tion for y=0. The calculation proceeds along the lines of a

similar calculation which was presented in Ref. 12. The re-
sults for the memory function are

VB e tah(Bw2) & [2cosh(Bw2)]7) [edy { x? }
ReXf{w)= p ) 2 J _ 1'n+n’7l[ ————_.7).—’
27w sinh(B72) v, nip'l 0 X | w, tanh(Bw,/2)
ﬁwnn'\ ( \”——«\ \"F_ . [ \//,—‘X \"E . | { \'[;S—’x \'/}; R A ‘
X1{exp 3 ) 2D{ T.*—;w,,,,,! —Dt 3 +§;—(w,,,,/+w);| -—D{‘ 5+ z\_—(w"«,,—w)}_‘.
{ B Wy } ‘ \‘i-Ex \{'E
—_ ) -,
+expL 2 !}[—D‘ 2 2y w, n)
N [y i iin i i
(\:Ex VB {VBx VB ‘ ¥
_ L P IA LN § 14)
Pl gyl ‘")) P\~ g (s w)f].u’ e
and
i avB w,sinh( Bw/2)tanh( Bw /2) [2 cosh(Bw f2)] 1"
Im3({w)=— —= s -
47w sinh{ 3/2} P aln’!
[ “dx E l x? }
X el Y R
Jo X T W, Lanh(,G(u,/Z)'
[ By B | [ Bx B i -
X_e,\pi 3 a(wm/-—w); +exp{ - Ti,—+ K((Oﬂ:n_ﬁ)/}},‘J, {15)
where a,,, =1+ (n—n"Yw., D{x) is the Dawson’s integral function, and
s [F7e~! .
Eﬂ: df - . {16)
0 ITXx

in the case of y# 0, the calculation is more tedious. We obtain the following results of the memory function,
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FIG. 1. (a) Re 3(w) and (b) Im Z(w) as a function of frequency « in GaAs at different magnetic fields ¢,/ w;o=0.3 (dotted curves),
0.4 (dashed curves), and 0.5 (solid curves). The corresponding absorption spectra are given in (c). The broadening parameter y=0 and

temperature 7=77 K.

ReX(w)=——= ——[wl{w)+ y[(w)]
V2m(w + %)
and
ImZ% ¢ I{w)+ yl(w
m(w)= \;"—2.77(w2+y2)[w Hw)+ vl (w)]
with

i
|
!

o) 73 w, tanh{ Bw, /2) {‘ 2 coshi fw/2)] 10 (edx i x?
(w)=—v2 : ; o) Ty eat
: F sinh{ 8/2) <7 nin o x TN T tanh{ Bw,/2)
[ [ Py, [ [ \"'E«\' \-'IE i
x| expl Wl 24 2, |
e I RS R
VT ( By B o [ VBx B o l
- + = o E: —_—t = w,,— i
2 [hn ,( 5y {w,, +wﬂy);+1mliﬂ\ 5 + 5o @n'n w+1’y))jj
Bw, i | \:’E,\‘ y"}g
s non H
~LC‘\p(_ }IDi _~_v“)r:'n}
! 2 Ik L2 2x :
[ i ey s i i [y Vi)
N VBx NS _ INBx NE RN
—T{Imb’(‘ 3 —E(i(lx,,n,l—w—zg/)!g+Im Hff\ 5 ZX(m,,.,,ﬂ-m—;y}l ) ¥

and

a7

(18)
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() 7B w, tanh{ B /2) 2 [2 cosh{ Bw /2)] 1) fde / x? \
Aw)= — — B [P —
) 2y2  osinh(p2) - nln'l o x T o tanh( o, m))
[ [Bw, v Vp ) VBx B .
X explﬁ " 1| Re H/{i‘i— [J( ;”,,,-raH-z))f Re W{ + ——(w,, w+z’y)}j
o2 2x i V2 2x |
{ iy v i (VBx s 1
+cxpl 7”"}[ c!f‘—-—-—-i—/-g(w",n ——iy)}*RcW{ p —-/-B-(a)" ,,+w—ty)lIJ|’ (20)
\ Z X ; VoL .
-
: the state £+ @, and Landau level E,=(1/2+n)w, . The

where W(z)=e¢ " erfe(—iz) is the complex error function.

HI. NUMERICAL RESULTS AND PISCUSSIONS

Tn this section, we are going to present our numerical
results on the magneto-optical-absorption spectra and to
study the magnetophonon resonant effects. As an example of
weak electron-LO-phonon coupling, we apply our theory to
semiconductor GaAs where @=10.07. First, we show some
numerical resultls for temperature 7=77 K and level broad-
ening parameter ¥=0. Due to the importance of the memory
function in the absorption spectrum, we plot the real and
imaginary parts of the memory function in Figs. 1(a) and
(b}, respectively, as a function of frequency at different
magnetic fields. We see that, at w=l|wg—ne.| (1
=0,1,2,...), ReZ(w) exhibits a jump while ImZ(w) di-
verges logarithmically. The discontinuity of Re2(w) and the
divergency in Im2(w) reflects the resonant coupling between
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FIG. 2. The magneto-optical-absorption spectrum at around (a)
w,lw o=1/2 and (b} w,/w;o=1/3. T=77 K and y=0.

stronger this coupling, the larger the discontinuity in
ReZ(w). Actually, the real part of the memory function
ReZ{e) is responsible for the shifi in the observed CR en-
ergy which is due to the clectron-phonon interaction, while
the imaginary part leads to a broadening of the spectrum
which is a result of scattering. When ImZ(«w)=0 like in a 2D
system, the absorption is a & function, and its position is
determined by the equation @F —w,~ReX(wF)=0. Figure
1(b} shows that in the present system the Im Z(w) is always
non-zero, which reflects the 3D character of the clectron
states. The scattering in the direction parallel to the magnetic
field results in a finite Im X(w) and, consequently, a finite
linewidth even for y=0. In Fig. 1(c), we show the corre-
sponding magneto-optical-absorption spectra. The position
of the absorption peak corresponds to the cyclotron resonant
frequency @ at which the cyclotron resonance occurs. We
see an asymmetric double peak siructure around = wy /2
for w,= wr /2 (the solid curve), and the aborption becomes
zero at w= @, = w;o/2. The zeros in the absorption spec-
trum are a consequence of the divergences in ImZ(w) and
can be traced back to the divergent nature of the density of
states. The double peak structure is a consequence of the
magnetophonon resonance which leads to an anticross be-
haviot in the CR spectrum. When the unperturbed CR fre-
quency w, deviates from w; /N, this splitting becomes very
weak and difficult to be observed in the absorption spectrum.
As we will see below, however, the magnetophonon reso-
nance will strongly affect the linewidth of the magneto-
optical absorption and the CR mass. From the dashed and
dotted curves,
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FIG. 3. The magneto-optical-absorption spectra as a function of
frequency w in GaAs for v/ wio=0 (solid curve), 0.001 (dashed
curve), 0.01 (dotted curve), and 0.1 (dash-dotted curve} at

w Jw 5=05and T=77 K
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FIG. 4. (a) Polaron CR mass and (b) FWHM as a function of w,
at different temperatures from 60 K to 200 K with y/w;o=10.05.

we observe that the absorption peak appears at o <w, due
to the polaron cffect which shifts the cyclotron frequency to
lower frequencies, The latter is often interpreted as an in-
crease of the cyclotron mass, i.¢., ¥ =eB/m*. In Fig. 2, we
show the absorption spectrum around (a) w,.= w; /2 and (b)
w,=wi /3. The double peak structure disappears when w,
deviates from wyo/N (N=23). The absorption spectra also
demonstrate clearly a nonlinear magnetic-field dependence
of the peak position and linewidth around w{q/N.

Figure 3 demonstrates the effect of the broadening param-
eter vy on the absorption spectrum. Notice that, with increas-
ing v. (ij the double peak structure disappears for y
>0.01w;q, (ii) the zero in the absorption spectrum disap-

0.015 —
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®
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&
g F=3 e 8 ® 2 oa g
0.005 . " ]
a
| ]
e ®
0.000 —= - - -
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FIG. 5. The CR mass oscillation amplitude as a function of
temperature at ©,/wyo=1/2 (dots) and w,/w o=1/3 (solid
squares) with ¥/ w; =10.05.
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FIG. 6. An activation plot of the amplitude of the resonant peak
in the FWHM at w,/w;o=1/2 (circles) and e,/w;q=1/3 (tri-
angles) as a function of T~'. The solid line *exp(—fiwyo/2ksT)
and the dotted line <exp(—2fwyo/3k5T).

pears when >0, and (iii) the position of the absorption peak
shifts to higher frequency. This indicates that the anticross-
ing behavior in the CR spectrum will be difficult 10 be ob-
served experimentally at @, = ;/2, due to broadening ef-
fects which are a consequence of scattering on eg.,
impurities and acoustical phonons.

As soon as the polaron CR frequency o is determined
from the position of the magneto-optical-absorption peak,
the CR mass of the polaron is obtained by

m*/m,=w. /0¥, 2D

The numerical results of the polaron CR mass and the
FWHM (full width at half maximum) for y=0.05w;q are
plotted as a function of the unperturbed CR frequency at
different iemperatures in Figs. 4(a) and 4(b), respectively.
One observes that the polaron CR mass is an oscillatory
function of magnetic field. Figure 4(b) shows that the
FWHM of the polaron magneto-optical-absorption spectrum
reach a local maximum at w.= ey o/N where the polaron
mass has an inflection point. This result demonstrates the
derivativelike relation between the polaron CR mass and the
linewidth which are due to the fact that the real and imagi-
nary part of the memory function are related to each other
through a Kramers-Kronig relation. One finds that, for tem-
perature 7100 K, the resonance grows rapidly with in-
creasing 7. This elfect can lead to a direct measure of the
optical-phonon scattering rate. We also show an overall in-
crease of the linewidth with temperature but an overall de-
crease of the effective mass for 7>>80 K. The resonant po-
sition is slightly larger than the unperturbed resonant
condition .= o o/N and is almost independent of tempera-
ture. A detailed analysis indicates that, al N=2 and 3, the
peak position both in the FWHM and in the derivative of the
CR mass is at about 0.504w; ¢ and 0.336wm,, respectively.
Experimentally, this position determines the so-called funda-
mental field Bg=m*w /e, which is an important quantity
o swdy the effective mass, nonparabolicity of the energy
band, as well as the LO-phonon frequency. The linewidth is
a direct measure of the lifetime of the state. Notice that the
conventionsl MPR occurs in the resistivity, which is given
by p.,= —Im3{w=0). But ODMPR is related to both the
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real and imaginary part of the memory tunction which occurs
for w#0 and is a dynamical MPR.

Figure 5 shows the CR mass oscillation amplitude at
w.lw q=1/2 and /3 as a function of temperature. With
increasing temperature, the number of phonons increases
and, consequently, the oscillation amplitude increases. On
the other hand, the background electron-phonon scattering
{coupling) increases, which resuits in a suppression of the
oscillation amplitude. Figure 6 shows an activation plot of
the amplitude of the resonant peak in the FWHM at
w, /o= 1/2 and 1/3 as a function of 77!, We find that, for
the resonance around N =2, the linewidth can be described
rather well by the exponential law
exp(~hwy /2kT) for T<240 K, while that around N=3
can be described by exp(—2%ew; /3kT) for T<<140 K. This
exponential behavior can be understeod as follows. MPR is
proportional to the number of LO phonons which are present
and therefore should increase as #{w; ). On the other hand,
thermal broadening of the Landau levels, which is propor-
tional to n(ew,), will diminish the resonant structure in
AFWHM. Thus, this contribution decreases the resonant
character, and consequently we expect that AFWHM
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~n{a ) n{wy=expl Aoy~ w, ) kyT] which agrees
with the exponential laws found for N=2 and N=3.

1V. SUMMARY

We have extended the theory for ODMPR 10 three-
dimensional (3D) systems and present the first detailed the-
oretical study of the magnetophonon resonance in the
magneto-optical-absorption spectrum in bulk GaAs. In com-
parison to the corresponding 2D systems, the theoretically
ebtained amplitudes for the oscillations of both the linewidth
and the effective mass in a 3D sysiem are for GaAs predicted
to be about half of those in 2D. Therefore, we believe that
ODMPR can also be observed experimentally in bulk polar
semiconductors. Our numerical results indicate that the am-
plitude of the resonant peak in the FWHM can be described
by exponential law at low temperature.
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Capituio 6

Sumario

Concluimos aqui a sintese de minhas atividades de pesquisa realizadas ao
longo dos ultimos anos. Este texto € composto basicamente por trés assuntos

principais.

Primeiro, mostramos teoricamente, em um sistema de dois fios quanticos
acoplados, um efeito oriundo da ressonancia entre os plasmons acusticos e as
excitacbes de particula independente. O campo magnético extra pode aumentar esta
ressonancia. Estendemos a aproximagéo GW para calcular o tempo de relaxagéo de
eléetrons devido a interagdo elétron-elétron em sistemas de multisubbandas.
Estudamos os processos de relaxamento nos pogos e fios quanticos acoplados.
Relacionado com este assunto, estamos estudando: (i) a dispersdo de plasmons e
efeito de correlagdo em sistemas de elétrons com duas camadas acopladas,; (ii)
efeito de desordem nas propriedades fisicas das fases solido-fluido do gas de
elétrons 2D presentes em heterojuncdes semicondutoras; e (iii) plasmons em
sistemas de multisubbandas a temperatura finita, como gas de elétrons Q1D na

superficie de hélio liquido.

Segundo, nosso trabalho mostrou que a teoria de RPA pode descrever
corretamente a blindagem de gas de elétrons no espalhamento de impureza
ionizadas no sistema de multisubbandas. Pela primeira vez conseguimos uma
expiicacdo tedrica das mobilidades de sistemas de multisubbandas, onde
destacamos a importadncia de mecanismos de acoplamento intersubbandas no
transporte eletrénico. (i) Embora nossos resultados apresentem concordancia

quantitativa com as mobilidades quanticas experimentais, as mobilidades de



transporte calculadas s&o quase duas vezes maiores que as experimentais.
Recentemente, descobrimos que tal diferenca pode ser corrigida através do caiculo
da amplitude de espalhamento além da aproximag¢ao de Born. Obtivemos entdo a
taxa de espalhamento através a solu¢édo exata da equacao Lippmann-Schwinger. (ii)
Por outro lado, estamos estendendo nossos célculos de mobilidade a sistemas com

spin polarizado.

Terceiro, explicamos a primeira observacdo experimental de ressonancia de
magneto-polaron devida a foénons interfaciais em pogos quéanticos de GaAs-
Alg3Gag7As. Confirmamos também a observagcdo experimental de harmonicos
assistidos por fonons em sistemas dopados de super-rede devido aos estados
ligados de impurezas rasas. Como uma continuidade deste assunto, estamos ainda
estudando acoplamento elétron-fénon em pontos quéanticos. Conseguimos a
densidade de estado e autoenergia devidos interacdo elétron-fonon em pontos
quanticos. Estamos trabalhando também para obter os espectros de absorgio de
ponto quantico (estados ligados em geral) no campo magnético usando a formula de
Kubo.





