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Gapítuio 1

Introdução

Nesse texto procuramos sintetizar, através de uma coletânea de artigos

publicados em revistas científicas; nossas atividades principais na área de física de

sistemas semicondutores de baixa dimensionalidade. Esses trabalhos foram

realizados durante os anos de 1994 a 2001, período que trabalhei no Instituto de

Física de São Carlos da USP e no Departamento de Física da UFSCar. Tive

também durante este período colaboração com vários grupos de pesquisa.

Nas últimas duas décadas, temos testemunhado um expressivo crescimento

na área de física de nanoestruturas semicondutoras. Com as novas tecnologias de

crescimento de cristais e litografias modernas, é possível controlar as estruturas

cristalinas no nível atômico, bem como produzir linhas litográficas na escala

nanométrica, produzindo assim poços e fios quânticos, super-redes e pontos

quánticos. Estas estruturas dão origem a novos dispositivos eletrônicos quãnticos e

também abrem caminho para o estudo de novos efeitos físicos. Nossos trabalhos

teóricos estão centrados no estudo dos efeitos de muitos corpos nos espectros

ópticos e na mobilidade eletrônica destes sistemas.

No segundo capítulo trataremos as excitações coletivas e os processos de

relaxamento de elétrons em fios e poços quânticos acoplados. As excitações

coletivas (ou plasmons) devido à flutuação de densidade de cargas em um gás de

elétrons são excitações dinâmicas fundamentais em cristais, estando relacionadas

com as propriedades eletrônicas dos materiais. Nosso estudo sobre os efeitos de

tunelamento nas excitações coletivas de fios quânticos paralelos indicou um novo

tipo de lnteração entre as excitações coletivas e de partícula independente (single-
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partícIe excitatíon - SPE). Também estudamos os magnétoplasmons nos fios

quànticos acoplados sob campo magnético transversal. Ademais, estendemos a

teoria de aproximação GW para sistemas de multisubbandas e estudamos os

processos de relaxamento dos elétrons quentes injetados nos fios e poços quánticos

acoplados. O tempo de relaxação de elétrons é uma quantidade física crítica para os

dispositivos opto-eletrônicos baseados nessas estruturas, como os "ínfrared

quantum well cascade lasers" e "quantum well photodectors".

No terceiro capítulo, apresentamos os trabalhos relacionados a propriedades

de transporte eletrônico em sistemas quase bidimensionais de multisubbandas,

como sistemas com dopagens planares. As estruturas semicondutoras com

camadas de impurezas altamente confinadas podem ser construídas nos

laboratórios desde a década de 80, As espessuras destas camadas variam desde

uma única monocamada até uns poucos parâmetros de rede. Tais perfis de

dopagens muito estreitos podem ser descritos matematicamente por uma função

delta de Dirac. Semicondutores com estes perfis de dopagens são denominados

dopagens planares ou tipo-delta. Estas incorporações de dopantes ionizados em

poucas monocamadas levam a um confinamento de cargas espaciais de elétrons

em um poço de potencial, onde se observam várias subbandas de energias

ocupadas, com o movimento perpendicular às camadas de dopantes quantizado.

Elas apresentam um sistema semicondutor quase bidimensional (Q20), com altas

densidades eletrônicas e com novas propriedades ópticas e de transporte. Nossas

contribuições sobre este assunto são: (i) pela primeira vez obtemos teoricamente as

mobilidades de sistemas quase bidimensionais de multisubbandas, onde

destacamos a importância de mecanismos de acoplamento intersubbandas no

transporte eletrônico; (ii) em colaboração com um grupo experimental, concluímos

que a teoria de RPA pode descrever corretamente a blindagem de gás de elétrons

no espalhamento de impureza ionizadas no sistema de multisubbandas; (iii)

esclarecemos vários pontos interessantes para experimentalistas, como os efeitos

de "background acceptors", mobilidades nos sistemas de duas camadas de

dopagem delta, efeitos de confinamento extra e etc.

No capítulo seguinte, apresentamos dois artigos sobre acoplamento entre

plasmons e fônons ópticos nos sistemas Q2D de multisubbandas. Apresentamos a

teoria de acoplamento plasmon-fônon de sistemas multisubbandas. Também

calculamos os espectros de espalhamento inelástico de luz (espectro de Raman) e

mostramos os efeitos de espalhamento de impurezas nos espectros de Raman

neste sistema.



No capítulo 5, estudamos interação elétron-fônon em poços quânticos. Os

trabalhos deste capítulo são uma continuidade do meu trabalho de doutorado

motivado pela observação experimental do grupo do Prof. B. D. Macombe na State

University of New York at Buffa/o. Um dos nossos resultados anteriores mostrou que

elétrons em poços quânticos de GaAs-AIAs se acoplam fortemente com os modos

de fônons interfaciais. Em campos magnéticos fortes, a ressonância polarôruca

acontece devido a fônons interfaciais neste sistema (G.Q. Hei, F.M. Peeters, and

J.T. Devreese, Pnys. Rev. B 47; 13058 (1993)). Este efeito foi observado em

experimentos de ressonância ciclotrônica em múltiplos poços quânticos de GaAs-

Alo.~Gao.,Asem 1996. Em colaboração com o grupo experimental, estendemos
nossa teoria para o sistema de GaAs-Alo.3Gao.7Ase conseguimos um acordo

excelente entre os resultados teóricos e experimentais. Além disso, estudamos os

harmônicos assistidos por fônons, objeto de estudo por vários anos de nossos

colaboradores em Buffalo, Nova York. Nossos cálculos numéricos de espectros de

absorção indicaram, quantitativamente, que os harmônicos são muito fracos e

dificilmente observados experimentalmente. Entretanto, nossos estudos mostram

que os harmônicos assistidos por fônons podem ser observados em sistemas

dopados de super-rede de GaAs-Alo.3Gao.7Asdevido aos estados ligados de

impurezas rasas.



Capítulo 2

Excitações coletivas e processos de relaxamento de

elétrons em sistemas de baixa dimensionalidade

Nossos trabalhos apresentados neste capítulo estão focados nos efeitos de

tunelamento nas excitações coletivas e também no processo de relaxamento dos

elétrons em sistemas de dois fios e dois poços quânticos acoplados. É oportuno

dizer que o primeiro dos artigos listados abaixo (artigo 2,1) poderia resumir todo o

capítulo, bem como os artigos subsequentes. Tal artigo é resultado de uma palestra

apresentada por mim no "Workshop on physics ot semiconauctor nano-systems"

(Beijing, julho 2002).

No artigo 2.2, a relação de dispersão dos modos de excitações coletivas foi

obtida; dentro da aproximação de fases aleatórias (RPA), para um sistema de fios

quánticos acoplados. De maneira original, mostramos um efeito oriundo da

ressonância entre os plasmons acústicos e as excitações de partícula independente.

Esta ressonância é assistida pelo tunelamento que pode ocorrer entre os fios

quânticos.

o artigo seguinte mostrou o efeito do campo magnético na dispersão de

plasmons (magnétoplasmons). A dificuldade no estudo teórico deste problema se

deu na convergência da matriz de função dielétrica. Resolvemos este problema

através de uma transformação na função de onda dos elétrons e,

consequentemente, no potencial de interação elétron-elétron.



Nos últimos dois artigos os espalhamentos inelásticos elétron-elétron foram

estudados para os sistemas de fios e poços quânticos acoplados. Analisamos

detalhada mente os efeitos do acoplamento intersubbanda na taxa de espalhamento

inelástico dos elétrons que são injetados na banda de condução desta estrutura. Tal

taxa é inversamente proporcional ao tempo de vida dos elétrons. Dentro deste

contexto; verificamos também a importância do tunelamento entre os fios e poços.

2.1. Collective excttetlons and fast electron relaxation ln coupled low-
dimensional e/ectron systems
G. Q. Hai
Proceedings of the Workshop on "Physics of Semiconductor Nano-systems"
(2002).

2.2. Tunneling-assisted acoustic plasmon-quasiparticle excitation
resonances ln coupled Q1D electron gases
G. Q. Hai and M. R. S. Tavares,
Phys. Rev. B 61, 1704-1707 (2000).

2.3. Collective and single-particle excitation spectra in coupled quantum
wires in magnetic fields
J.-B. Xia and G. Q. Hai,
Phys. Rev. B 65, (24)5326 (2002).

2.4. Inelastic Coulomb scattering rates due to acoustic and optical plasmon
modes in coupled quantum wires
M. R. S. Tavares and G. Q. Hai
Phys. Rev. B 61,7564-7570 (2000).

2.5. Carrier relaxation due to electron-electron interaction in coupled double
quantum well structures
M. R. S. Tavares, G. Q. Hai, and S. Das Sarma,
Phys. Rev. B 64, (04)5325 (2001).



Collective excitations and fast electron relaxation in
coupled low-dimensional electron systems

G.-Q. Hai
Instituto de Física de São Cartas, Universidade de São Paulo,

.13560-970, São Cartas, SP, Brazil

1. Introduction

Over the past decades it has become possible to fabricate semiconductor nano-
structures that exhibit reduced dimensionality. Electrons in such structures subject to an
extra confmement. When the confinement in one direction becomes comparable or
smaller than the electron Fermi wavelength the motion in that direction becomes
quantized, resulting in changes in energy spectrum and physical properties ofthe system.
When only in one dimension the electrons are confmed in a space less than Fermi
wavelength, a two-dimensional (20) electron system is reached. If the electrons are
confined in two dimensions, we obtain a one-dimensional (l0) electron system or a
quantum wire.

The confmement of the electrons can be realized in many ways. In most
semiconductor nano-structures, it is due to the compositional confmement arises from the
barrier to carrier motion imposed by an abrupt change in chemical composition. The well-
known two-dimensional systems are the Si-MOS structure and the GaAs/AIGaAs
heterojunction.[1,2] The Si-MOS was one of the first structures used to create a 20
electron system. A positive voltage applied in the gate attracts electrons to the p-Si/Si02

interface. The electrostatic potential together with the barrier (~ 3eV) at Si/Si02 interface
creates a potential well to form an inversion electron layer whose effective thickness is
typically a few nanometers. The electron density in the inversion layer can be easily
varied in the range 1011_1012 em" by changing the applied gate voltage. The electrostatic
potential in GaAs/AIGaAs heterojection is due to modulated doped ionized impurities. By
controlled growth technique, one can realize layered semiconductor structures to form the
so-called quantum wells and superlattices.[2] In these systems, the Iow-temperature
electron mobility is very high as reflected by the small effective mass (m *=0.068mo in
GaAs in contrast to m *=O.l9mo in Si-MOS structure) and the modulation doping which
separates the electrons from their parent donors. The typical density in GaAs/AIGaAs
heterojunctions and quantum wells is of order 1011_1012 em". Selective growth combining
with the modem lithographic and etching techniques produce confinement potentials in
two or three dimensions leading to the one- or even zero-dimensional semiconductor
systems.

Another important two-dirnensional electron system is realized on the surface of
liquid helium.[3] Electrons are subject to their own image force near the surface of liquid
helium which acts as a dielectric. The surface of liquid helium presents a barrier of more
than 1 eV to electrons. On the other hand, the image potential attracts the electrons
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towards the liquid leading to the confmement of the electrons in a 20 plane. In
comparison with the 20 system in semiconductors there is no impurity on liquid He so
that a very pure 20 system can be realized. Typical electron density in this system is 109

em".
A dimensionless parameter rs to indicate the density of one electron system is

defined by the average space occupied by one electron measured by the effective Bohr
radius a; = tz2so l m'e' with sQ beingthe dielectric constant ofthe material and m' the
electron effective mass. The parameter r, decreases as the density n increases given by
r. = (47l71 /3r1

/
3

/ a; for 30, rs = (7l71rIl2
/ a; for 20, and rs = n" /a; for 10 system,

where n is the electron density in the respective dimension. If we use the effective Bohr
radius and effective Rydberg as the units of length and energy, respectively, the
Hamiltonian of an electron system can be written as
H = (1/ rs2 )lLi V; + r.Li;t i1/ I F; -~. IJ. It is clear that r, is the key parameter to express

the ground state energy. We also see that r« is proportional to the ratio ofthe potential to
kinetic energy ofthe electrons at low-temperatures. For small r, the Coulomb potential
can be considered as a perturbation to the first term of kinetic energy which represents an
ideal electron gas. However, r; is not necessarily small in actual materiaIs. For instance,
in alkali metals, r, is of order of 2 to 6. In two dimensional semiconductor systems of
GaAs heterojunction and quantum wells (a; = 9.8 nm), the electron density n=1012

C~-2

corresponds to 's~0.56. In Si-MOS structure (a; =2.1nm), the same density gives
r, ~2.7.

Plasmons are the fundamental dynamical excitations of an electron gas to
describe the collective oscillations of the electrons in crystaI.[4-6] Considering a
uniformly distributed electron gas against an equal density positively charged
homogeneous background ionized atoms of crystal, we introduce an additional negative
point charge. At the first moment, free electrons are driven away immediately by
Coulomb repulsion from the vicinity of the negative point charge leading to a positive
charge-cloud around it relative to the average charge density of the electron gas
(screening effects). On the other hand, the long-range of the Coulomb potential push
initially the electrons too far away. They wiI1 flow back. In this process, the collective
oscillations appear corresponding to compressive waves of charge density ofthe electron
gas. Plasmons are the quantum mechanical quasi-particles to describe such collective
motions ofthe electron gas just as the phonons for lattice vibrations in crystaI. The 30

plasmon is of a constant finite frequency Olp= .J 47l71e 2 / m * at long wavelength limit q ~
O. It depends only on the electron density n ofthe system and the effective mass m' of
the electrons. Typical plasmon frequencies of 30 electron gases are several eV up to
about 15 eV in metals and less than 1 eV in doped semiconductors.

The 20 electron gas with quantized subband was first confirmed experimentally
li the inversion layers in Si-MOS structure by Fowler et al. in 1966.[7] However, the first
experiment that directly probed the two-dimensional plasmons was realized in the 20
electron systems on the liquid helium surface in 1976[8]. Later, 20 plasmons were also
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observed in Si inversion layer[9] and in GaAs/AIGaAs heterostructures[lO] An essential
difference ofthe 20 plasmon mode from its 30 counterpart is that the plasmon frequency
approaches to zero at long wavelength límit. The difference stems from the fact that the
electron-electron Coulomb electric fields remain 30 character while the induced charge
density attends a 20 behavior. Furthermore, the plasmon frequency at low dimension is
in general depends onthe shape ofthe confinement potential and the dielectric properties
ofthe host materials. Properties ofthe collective excitations and their dispersion relations
in 30 and 2D systems are well understood based on the Fermi liquid theory, which
assumes that the energy states ofthe electrons near the Fermi surface are not qualitatively
altered by Coulomb interactions. The plasmon dispersions obtained within the random-
phase approximation (RPA) and its improvement including the exchange-correlation
effects are in excellent agreement with the experimental observations.

In a semiconductor quantum wire structure, the electrons confined in two
dimensions are allowed free motion only in one dimension. An early motivation behind
the proposal ofthe semiconductor quantum wire structure was that the impurity scattering
would be severely reduced and, consequently, the low-temperature electron mobility
could be substantial1y enhanced. However, realization ofthe quantum wire structure also
provides an ideal platform to study the many-body electron effects and the 10 Fermi
liquido In 10 systems, even weak Coulomb interactions cause strong perturbations. It has
long been expected that the properties of a 10 electron gas are dramatical1y different
from its 20 and 3D counterparts. Much ofthe fundamental theoretical understanding of
the dynamical properties ofthe 10 electron systems has been gained from the Luttinger
liquid model.[ll] The Luttinger mode with a simplified linearized band structure has
been claimed to prevail in 10 where exchange-correlation cannot longer be treated
perturbatively. Any electron-electron interaction destroys the Fermi surface (i. e., no
discontinuity in the momentum distribution function) and consequently, there not exist
single-particle excitations in ID.

However, the theory within the RPA based the Fermi liquid theory agrees
remarkably well with the experimental measured plasmon dispersions of semiconductor
quantum wires.[12,13] It is argued that the distinct difference at a fundamental theoretical
levei of the two models are rather irrelevant to the understanding of the collective mode
spectra and their experimental realization in semiconductor quantum wire structures. The
quantitative agreement between the RPA plasmon dispersion and the Raman scattering
experimental results was explained that the RPA and the Luttinger theory for the
collective excitations ofthe 10 electron liquid are equivalent at long wavelengths.[l4,15]
Theoretical calculations also showed that in the presence of the impurities in
semiconductor quantum wire structures, even a slight impurity scattering restores the
Fermi surface and the Fermi liquid behavior remains. The actual semiconductor quantum
wire structure with slight rmpurities or defects is probably impure enough to suppress the
Luttinger-liquid behavior[16]. Luttinger-liquid behavior has been confirmed in the 10
electron systems in carbon nanotubes[17] and in one-dimensional metallic chains.[18]
Experiments on 10 semiconductor quantum wires have also been interpreted by using
Luttinger liquid theory[19], but an unequivocal verification of the theoretical predictions
has not yet been obtained. Theoretical calculations of the inelastic light scattering spectra
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with the Luttinger liquid theory cannot quantitatively explain the experimental data
indicating the 10 electron systems in semiconductor quantum wire structures are not in
the regime where the Luttinger liquíd effects are ímportant.(l4] The colleetive excitations
of 10 eleetron gas are presently described with two competing theoretical models.

In a 10 system, the electron-eleetron interaetion is much stronger than that in
higher dimensional ones. For an ideal 10 system with zero thickness, the Fourier
transform ofthe Coulomb potential is divergent. It becomes non-singular at finite q only
when the finite thickness ofthe wire is considered. Another important aspeet ofthe 10
eleetron gas is that the energy and momentum conservation in ID restriction opens a gap
in the single-partic1e continuum at low frequency where no Landau damping is possible.
This is very different from the 2D and 3D case where there is a continuous Landau
damping region in the energy-momentum space.

2. Dielectric function

The simplest and successful theoretical model to obtain the plasmon dispersion is
the random-phase approximation[I,20]. Within a one band (or subband for low-
dimensional systems) model, the RPA dieleetric funetion can be written as[21]

t:(w,q)= 1-V(q) nO(w,q), (1)

Where V(q) is the Fouriertransform ofthe electron Coulomb potential, d(w,q) is the free
particle polarization function, and q is the wavevector in the respective dimensions.
V(q) = 4n-e2 I&oq2for 3D; V(q) = 2n-e2 I &C)qfor 2D; and V(q) = -(2e2 I&o)lc(qW)
for 10 with the Coulomb form faetor fc(qW) depending on the confmement potential (W
stands for the e:ffectivethickness ofthe wire)[22J. The polarization function is given by

(2)

where E(k) = tz2e 12m· is the kinetic energy ofthe eleetron with momentum k, I(E)
is the Fermi distribution function, and ig represents a small imaginary number.

The plasmon dispersions are obtained by the zeros of the dielectric function. At
long wavelength limit the plasmon dispersion relations within the RPA are written as
m(q) =mp +a(tzlm*)q2 for 30, m(q) = [2n-ne2ql&om"r12 for 20, and

m(q)=[-2n-ne2q21n(qW)/&om*]1I2 for 10, where a=3EFl5tzmp is a constant
describing the leading waveveetor dependence of the 30 plasmon mode. The region in
the to - q plane where ImIt(w,q)::j:. O defmes the single-particle (electron-hole pair)
excitation continuum. In the single-particle excitation (SPE) continuum, one electron
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below the Fermi surface can be excited above it and leaves a "hole" in the Fermi sea. As a
consequence, the plasmon excitations are damped (Landau damping).

The RPA dielectric function which is exact at high electron density limit sr. ~ O )
becomes poor at low density. Most obvious defect is that the RPA leads the pair
distribution function g(r) to become negative at smal1r. The first attempt to improve the
RPA was proposed by Hubbard[23] who suggested a dielectric function in the following
form

&(úJ )-1- V(q) n° (úJ,q)
~ ,q - 1+ v(qX;(q) tr (úJ,q) , (3)

where G(q) = q2 /[2( q2 + k; )] is introduced to account for the effects of the exchange
interaction. This modification on the dielectric function is called static local field
correction. The most important improvement on the RPA is the STLS approximation.[24]
The STLS dielectric function is of the same form as the Hubbard dielectric function.
However it explicitly incorporates the exchange and correlation effects through a self-
consistent function G(q) give by

( )
1 õ-k _-

Gq =--"~S(lq-kJ)-l].n7 e
Where the statíc structure factor of the electron gas S(q) can be obtained through
dielectric function 8(úJ,q). In this scheme, the functions G(q), S(q), and 8(úJ,q) have to
be calculated self-consistently. Many different form have been proposed to improve the
function G(q). Generally, it may aiso depends on frequency w. Here, we will not discuss
more. One of them is that, with the Monte Carlo simulation results, the static structure
factor S(q) can be obtained directly from the Fourier transform of the pair distribution
function.

For low-dimensional electron systems of multisubbands, the dielectric function
becomes a tensor due to the quantized subbands. For a 2D system, the electron
eigenenergy can be written as En(k)=En +h2k2 12m* where E; (n=I,2,3, ... ) is the
quantized energy levels due to confinement. The corresponding electron wave function
(for a confmement in the z-direction and electrons being free in the xy-plane) is given by

'lfn.k(r, z)= (lIJA)eik''''lfJZ) where r and k are position and wavevector in the 2D
plane. As a consequence, the dielectric function becomes a tensor with subband indices n,
n " m, and m ', Within the RPA it is written as a matrix form[25]

(4)

Enn'.mm' (w, q) = <5nm<5n'm' - Vnn'.mm,(q) rr~m'(úJ,q),
with the matrix element ofthe Coulomb potential

(5)
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( )- 27re2 f f ' () ()e-qlz-z'l (,) (,)Vnn'mm'q - -- dz dz If/n Z If/n, Z If/m Z If/m' Z ,
, Boq

(6)

and the polarization function

rr~m,(w,q)=~L f(~m,(k+q))-!(Em(k) .
A k Em' k +q -u; k +m+i8

In a multisubband 1D system the dielectric function is ofthe similar formo The plasmon
dispersions can be obtained by the determinant equation of the dielectric matrix

det I Gnn',mm'(w,q)1=O.
In a multisubband system, new plasmon modes appear due to interactions ofthe

electrons between different subbands. These intersubband plasmon modes represent
oscillations ofthe electrons in the transverse direction. The frequency ofthe intersubband
plasmons at long wavelength is frnite because of the energy spacing between two
subbands. But the plasmon frequency does not depend only on the spacing of two
subbands. Electron-electron Coulomb interactions lead to two effects on the intersubband
plasmon frequency: the depolarization shift[26,27] and the excitonic shift.[28,29] The
depolarization shift arises from the resonant screening of the microscopic one-particIe
dipole excitation by the co11ective effect of a11other electrons. This collective influence is
usually caIculated within the RP A leading to an increase of the intersubband plasmon
frequency. The excitonic shift, due to exchange-correlation effects, results from the
energy renormalization when an electron is transferred from one subband to another and
leaving a "hole" behind, This effect shifts the intersubband plasma resonance to lower
frequency. At low (high) electron density the excitonic (depolarization) shift dominates
and the plasmon frequency becomes smaller (larger) than the subband separation.

(7)

3. Plasmons in double layer electron systems

Coupled double 2D electron layer system promises to afford interesting new
physics. This system is realized in double quantum well structures in which two 2D
electron gases are established parallel to each other separated by a potentiaI barrier, fi
such systems many-body correlations due to Coulomb interaction are the crucial
ingredients of the detailed description of their behavior because the interlayer Coulomb
interaction can counterbalance the kinetic energy of the electrons leading to many-body
effects to dominate. The Coulomb correlation in double quantum we11s leads to
interesting phenomena such as new states in fractional quantum HaU regime. Coupled
double electron and hole layer systems provide a new platform to study the Bose-Einstein
condensation in which the carriers of opposite charge in different layers attract each
other. They may form excitons and condense into a superfluid. The Coulomb drag effects
between two layers of electrons have provided an elegant and sensitive probe to study the
electron-electron scattering rate and correlation effects. Plasmons in coupled quantum
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wells represent another significant area for the study of many-body effects in IQw
dimensions. Many-body effects and collective excitations have also been studied
extensively in multilayer systems in the presence and absence magnetic fields in last two
decades. Here we are going to discuss the collective excitations in double electron layers
at zero magnetic field.

The RPA was generalized in calculation of the plasmon dispersion in bilayer
systems.[30-32] It is shown that, besides the usual plasmon mode ofthe 2D electron gas,
another new lower-lying mode appears whose frequency is of a linear dependence on the
wavevector q at long wavelength limit called acoustic mode. The acoustic plasmon mode
represents the out-of-phase oscillations ofthe charge-density waves in different layers of
electrons. While the usual 2D plasmon mode, proportional to .jq representing the in-
phase oscillation of the electrons in different layers, is called optical mode. Raman
spectroscopy has been used to probe the plasmon dispersions in GaAs!AlGaAs double
quantum well structures.[33-34] Both the optical and acoustic plasmon modes were
observed in experiments. Figure 1 shows the plasmon dispersion observed in the Raman
scattering spectra from GaAs!Al03Ga07Asdouble quantum wells of width WQW separated
bya barrier ofwidth Wb.

The acoustic mode is of particular interesting because it is sensitive to the
correlation effects. The acoustic behavior is originated from screening of the long-range
part of the Coulomb potential by charges in the opposite layer. It is also predicted to
enhance the electron-electron inter-layer interaction responsible for the Coulomb drag
between electron layers and maybe involve in mechanisms for high temperature
superconductivity.

Fig. 1. Dispersion of the optica1 (OP) and acoustic plasmon (AP) modes in GaAs/Alo3Gao7As double quantum
wells. (.): WQw =200 Á and Wb=600 Á; (e): WQw=180 Á and Wb=l25 Á. The curves are the theoretícal
fittíng (STLS) wíth the electron density as a parameter. The shaded region índicates the SPE contínuum.[34]

7
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The exchange and correlation effects that become even more important in
coupled bilayer systems are not considered within the RPA. For instance, the calculations
based on the RPA underestimate the transresistance of the interlayer Coulomb drag
effects by one order of magnitude. Onlythe theory including the local field correction due
to exchange and correlation effects within the STLS approach gives a reasonable
explanation to the experimental data.[35-36] The correlation effects on the plasmon
dispersions in coupled 2D electron gases have been studied exhaustedly within the STLS
self-consistent scheme. The dispersion of the acoustic mode is strongly affected by
correlations. Much work has been focused on the Landau damping effects on the acoustic
plasmons. It is expected that this mode is more susceptible to the Landau damping.
Although the RPA theory indicates a stable out-of-phase acoustic plasmon mode in
couple two identical electron layer system for any distance between them[31], further
calculations with correlation effects (STLS with static local field correction) showed that
there exists a critical separation between the layers.[37,38] Below this critical distance,
correlation pushes the acoustic mode merging entirely with the single-particIe excitation
continuum and, consequently, being damped out. For two coupled layers with different
densities, however, the acoustic mode survives in the single-particIe excitation region of
the higher density layer where the Landau damping is found very weak.[37] The Landau
damping on the acoustic plasmon mode ín two coupled charge layers with different
effective masses is of similar character.[39] The theory with a frequency-dependent local
field function to consider the dynarnical correlation effects yields qualitatively similar
results as those ofthe static approximation. Fig. 2 shows the optical and acoustic plasmon
dispersion within the RPA, static and dynamical STLS schemes. It is found that both the
optical and acoustic plasmon dispersions lie between the RPA and static STLS curves.
But it indicates the plasmon modes acquire damping even outside the single-particle
excitation region where the RPA and static STLS predict zero damping. [40] Temperature
effects on the plasmon modes have aiso been studied both theoretically and
experimentally in bilayer systems. A fmite temperature tends to increase the both the
acoustic and optical plasmon frequencies in contrast to that the correlations depress the
plasmon modes to lower frequencies. Moreover the Landau damping at finite temperature
leads to asymmetry in the Raman line-shape ofthe acoustic plasmons.[33,41] It was also
found that the local fields do not change much with temperature for kBT< EF.

The theoretical study on the plasmon excitations in strongly coupled bilayer
systems with the STLS framework was criticized[42,43] based the calculation of the
plasmon dispersion relations within the quasilocalized charge approximation (QLCA).
The theoretical results with this approach indicate that an energy gap exists in the out-of-
phase plasmon mode at long wavelength limit instead a linear (acoustic) dispersion. It is
believed that the STLS theory is inappropriate for the analysis of the long wavelength
behavior of the plasmon modes in strongly coupled bilayer systems. The discrepancy
between the STLS and QLCA may be due to the role played by the third frequency-
moment sum rule. On the other hand, Ortner analyzed different theoretical approaches
and argued that within the QLCA the neglect of the damping process overestimates the
correlations and the correct account of damping yields an acoustic mode without gap. In
view ofthe contradiction ofthe different theoretical predictions[44], further detail experi-
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Fig. 2. The plasmon dispersions for a double-layer system of e1ectrons at r.=2 and d=200 Á: The acoustic
(lower curves) and optical (upper curves) plasmons are depicted for the RPA (dotted lines), static STLS
(dashed lines), and dynamic STLS (solid lines). The shaded area indicates the single-partic1e excitation
regÍon.[40]

mental study on the collective modes in bilayer system would be interesting, especially
the plasmon dispersion at long wavelength limito

In a real bilayer system, when the two quantum wells are closed enough,
tunneling between the two layers occurs. Tunneling introduces qualitatively new physics
and new energy scale (i.e. the interlayer tunneling energy) in addition to the Coulomb
energy and the interlayer kinetic energy. Effects oftunneling between the two layers on

10 ]['-' \,,' (a) 150/30/150

;> 8
§
~ 6
t!

~ 4

SPEu2

o
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8, .,

q[IO em I

Fig. 3. Plasmon dispersions in two coupled GaAs/Alo3Gao.7Asquantum wells of widths WI=W2=150 Á
separated by a barrier ofwidth Wb=30 A. The tunneling between the wells is considered. The modes (1,1) and
(1).) correspond to the OP and AP modes when tunneling is absent. The shadow areas present the SPE
continua. Total e1ectrondensity Ne=2x 1011 em", [46]
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the collective excitations are of great interesting. Theoretical calculations within the RPA
and Hubbard approximation show the interlayer tunneling introduces an energy gap on
the out-of-phase plasmon mode while the in-phase mode is not affected qualitatively. The
appearance of the energy gap in the out-of-phase mode is not a surprise in the bilayer
system with tunneling. Tunneling results in the bilayers evolving to a 2D systems with
two subbands. ln this situation, the out-of-phase mode is actually an intersubband-like
plasmon mode[46,47] as shown in Fig. 3.

4. Plasmons in quantum wires

The crucial first step in developing the theory of plasmon dispersion in quasi-1D
electron gas was taken by Williams and Bloch using the RPA in 1974.[48] Subsequent1y,
a lot of theoretical studies have been carrier out within the RPA and the STLS self-
consistent approach. Most experimental work on the semiconductor quantum wires
during eighties was involved with the fabrication and characterization of electronic states
in wires. A clear signature ofthe lD plasmon behavior of an electron gas was observed
by resonant Raman spectroscopy in GaAs/AIGaAs quantum wire structures in 1991.[12]
The observed plasmon dispersion is of almost a linear q dependence as predicted by the
RPA as shown in Fig. 4. Among the important research milestones in semiconductor
quantum wires are the observation of the lD plasmons via inelastic light scattering
spectroscopy and the verification of the predicted acoustic linear plasmon dispersion
relation[12,49], the observation of pronounced lD Fermi edge singularity in optical
spectra[50], and the quantum wire excitonic laser operation.[51]

Collective excitations and exchange-correlation effects in multisubband quasi-1D
electron gases in both isolated quantum wires[12,49,52-60] and multiwire superlattices
[61-65] have been extensively studied in the last decade. In contrast to higher
dimensional electron gas systems, the SPE are suppressed in 1D electron gas due to the
energy-momentum conservation leading to a gap in the SPE continuum at low energies.
In a quantum wire with two occupied subbands, the intrasubband plasmon mode due to
the second subband lies in the gap between the two intrasubband SPE continua and is
undamped. This feature is different from its counterpart in a 2D system where only one
intrasubband plasmon mode is undamped. It has also been shown that the higher
frequency intrasubband plasmon mode in the QID system (due to the lowest subband) is
of an energy proportional to q~ln( qW) at the long wavelength limit, whereas the lower
frequency one has a linear q dependence. Furthermore, a large depolarization shift has
been found for the intersubband plasmon mode in single wires.

ln a similar way to coupled two-dimensional electron gases[33,45,66], optical
and acoustic plasmon modes[67-69] were found in two coupled quantum wires. However,
the acoustic plasmon mode in coupled quantum wires is of relatively strong spectral
weight (comparable to the optical one) because ofthe non-existence of the low-energy 1D
single-particle excitations. These modes were also studied in multiwire
superlattices[54,6l]. Theoretical work has been done on plasmon dispersions[68,69],

10



11 ~ • 10

10 '> c 20

E
9 -2

w

8

;;- o
7 o

'"E
6>-

o~ 5w
z
w 4

:3

2

0.5 1.0 1.5 2.0

WAVE VECTOR q (10'cm-1
)

Fig, 4. Collective and SPE spectnun of a lD e1ectron gas in the quantum limit, Solid dots represent the
intrasubband collective charge-density (CDE) and spin-density (SDE) excitations. Open circles display the
position of the peak at hqv F of intrasubband SPEs. Squares correspond to data of Q lD intersubband CDEs
measured in VV polarization. The shaded areas indicate SPE regime given by ImIT(co.q) "* o. Inset:
comparison of the ID intrasubband plasmon frequencies with those of a 2D electron gas with EF =3.8 meV as
a function of q1l2. (Gofíi et aI. [12])

electron-electron correlations[70,71], Coulomb drag[72], and tunneling effects in these
systems[73,74]. Tunneling effects have provided new devices formed by coupled
semiconductor quantum wires[74] and have attracted considerable theoretical interest. A
weak resonant tunneling in coupled wires leads to a finite energy value for the acoustic
mode at zero wavevector[68, 75] as shown in Fig. 5(a). This is similar as that in coupled
quantum wells. Furthermore, it was predicted that, in a very weak non-resonance
tunneling condition in two coupled asymmetric quantum wires, the acoustic plasmon
mode presents two gaps at finite q as indicated in Fig. 5(b).[75] Such acoustic mode
splitting indicates a resonant coupling between the acoustic plasmon and the single-
particle excitations. Figure 6 shows the calculated Raman spectra due to the plasmon
scattering ofthe corresponding modes in Fig. 5(b) around (a) the lower and (b) the higher
energy gap. We see a strong Raman scattering peak at high frequencies due to the optical
plasmons. Besides, there are two split peaks due to the acoustic plasmons. With
increasing q, the spectraI weight transfers from the lower to the higher frequency one.
When tunneling between two asymmetric quantum wires is strong in mode mixing occurs
among the different intrasubband- and intersubband-like plasmon modes. Calculated
Raman spectra indicate such a mixting leading to the intrasubband-like plasmon mode
partially Landau damped in the intersubband SPE continua.[47]
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Fig. 5. Plasmon dispersions in two eoupled GaAs quantum wires of widths (a) W] = W2 = 150 A and (b) W] =
150 A and Wl =145 A separated by an Alo.3Gao.7Asbarrier of width Ws = 70 A. The total eleetron density
Ne=106 em-I. The solid (dash) eurves present the plasmon dispersions with (without) tunne1ing. The thin and
thiek eurves indieate the in-phase (0)+) and out-of-phase (0)_) plasmon modes, respeetively. The shadowarea
presents the single-particle exeitation regions.[75]

Fig. 6. Raman seattering speetra in the eoupled quantum wires eorresponding to Fig. 5(b) at different q: (a)
from 2 to 5x104 em" with equivalent differenee b.q = 0.25 X 104 em-I and (b) from OA to lAx105 em" with
b.q = 0.05 X 105 em-I. The intensity in (a) is enlarged 4 times as eompared to (b). The different eurves are
offset for clarity.[75]

5. Inelastic Coulomb scattering in coupled quantum wells and wires

Electron-electron interaction induced carrier relaxation is an important inelastic
scattering process in low-dimensional semiconductor nanostructures. It is often
(particularly in situations where LO phonon emission is energetically prohibited because
the excited electrons do not have enough energy) the most dominant relaxation process in
semiconductor quantum wells and wires, and is therefore of considerable fundamental
and practical importance. Band gap engineering has led to the possibility of fabricating
tunable far infrared quantum well cascade lasers (QCL's) and efficient quantum well
infrared photodetectors (QWIP's), where inelastic carrier relaxation via electron-electron
interaction is a crucial (perhaps even decisive) process in determining device operation
and feasibility. For QCL and QWIP operations it is the intersubband inelastic relaxation
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that tums out to be the primary rate-limiting scattering processo For other proposed
devices, such as the planar hot electron transistors or related 2D high-speed devices,
intrasubband relaxation is the important processo A thorough quantitative understanding
of intra- and intersubband relaxation due to electron-electron interaction is therefore
important for the successful realization ofthese devices.

With improving materiaIs growth and nanostructure fabrication techniques one
expects a wide range of lD experimental phenomena and projected applications in
semiconductor quantum wire systems. Many of the projected applications such as
ballistic electron transistors, quantum wire-based infrared photodetectors and lasers, and
quantum wire THZ oscillators and modulators will utilize fast carriers (injected or
excited) in doped quantum wires as the active device elemento Effective control and
manipulation of these fast electrons in doped quantum wire systems are therefore
essential in projected quantum wire optoelectronic applications.

One of the most crucial physical processes that wilI limit the quantum weIl and
quantum wire optoelectronic applications is the relaxation of these fast electrons. The
main ultrafast mechanism controIling the relaxation process is the electron-electron
interaction. In addition to this practical technological motivation arising from the band-
gap-engineered quantum nanostructure devices, there is also an obvious fundamental
reason for studying inelastic Coulomb scattering in 2D and ID electronic systems.
Inelastic electron-electron scattering determines the quasi-particIe spectral width, as
determined, for example, in tunneling measurements, through the imaginary part of the
electron self-energy function.[76,77]

The central quantity to study the inelastic electron-electron scattering is the
imaginary part ofthe self-energy function. Within the leading-order dynamicalIy screened
Coulomb interaction expansion (the so-caIled GW approximation in the multisubband
situation), it is the imaginary part of electronic on-sheIl self-energy matrix, M, in the
quantum weIl or wire subband index (i, j, etc.). The subband self-energy in the
multisubband situation is, in general, off-diagonal, reflecting the breaking of the
translational invariance along the confmement direction. The off-diagonal self-energy,
Im(~), incorporates in an intrinsic many-body manner the possibility of electron-
electron-interaction-induced intersubband scattering (both virtual and real) of carriers. In
the doped situation of our interest the many-body self-energy approach is also a
reasonable technique in calculating the inelastic carrier relaxation rate in spite of the
Boltzman equation approach, where the scattering rates are usually calculated using
Fermi's golden rule.[78] The dynamical screening inherent in the many-electron system,
which affects the calculated inelastic scattering rates in profound and highly nontrivial
way, is automaticalIy incorporated in the many-body GW expansion, whereas incIusion of
dynamical screening in Fermi's golden rule type formula is done by replacing the bare
interaction by a screened interaction in an ad hoc manner.

The theory, as mentioned above, is based on the so-calIed GW self-energy
approximation[79-82] where the electron self-energy M is obtained in a leading order
expansion of the dynamically screened Coulomb interaction W == VS

, where the
superscript s denotes dynamical screening ofthe bare electron-electron interaction matrix
V in the multisubband situation. We use the RPA to obtain the dynamically screened
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Fig. 7. Total inelastic Coulomb scattering mte of electrons as a function of electron momentum k in coupled
two (a) symmetric quantum wells of widths W[= W2=150 A and (b) asymmetric wells of W[=150 A and
W2=140 A structures separated by a barrier of width Wb=30 A. (Figure (b) corresponds to figure 3). The thick
solid and thick dashed lines denote the total scattering rate O"n (k) for n=l and 2, respective1y. The symbols on
the thin lines represent each contribution to the total ca1culated scattering: diamonds standing for the SPE[[
contribution, the filled squares stand for the intrasubband (1,1) plasmon contribution, triangles stand for the
SPE12 contribution, and opaque squares stand for the intersubband (1,2) plasmon contribution. Total electron
density N.=2xlO[[ cm-2.[46]

interaction VS
, i.e., VS = C-IV. We also approximate the electron Green's function G by

the noninteracting Green' s function GO, making our formal expression for the self-energy
matrix to be

M = f cv: , (8)

where the integral involves integrating over alI internal momentum and energy variables
as well as summing over alI internal subband indices (and spin). Putting the subband
(matrix) indices explicitly in Eq. (8), we get

ImM ij = Im L f G;:"v,:"!I . (9)
1m

We note, however, that GO, being the noninteracting Green's function, is necessarily
diagonal in subband indices (i.e., an electron cannot undergo intersubband scattering in
the absence of interaction):

(10)
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Fig. 8. The inelastic Coulomb scattering rates in two coupled quantum wires of W] = W2 = 150 A separated by
a barrier Wb =30 A (long-dash line), 70 A (dashed line), 300 A (dotted line), and 00 (thin-solid line). No
tunneling occurs between the wires and electron density in each wire is n« =O.5x106 em". The inset shows the
acoustic and optical modes (thick dashed lines) for Wb=30 A, and the intrawire energy- vs momentum-loss
curves at the onset ofthe optical (thin solid line) and acoustic (thin dashed line) plasmon scattering.[82]

Then, Eq. (9) becomes

ImMiJ = L flm[Gl~V;;ij],
I

(11)

with V;;ij = (e-1V)ilij· Equations (9) and (10) are the central formal equations to obtain

the inelastic relaxation time r. The scattering rate a and the relaxation time r are
connected by r = li /(2a) where a =1 ImM I.

We emphasize that the inelastic relaxation time r defmed above is an energy
relaxation time (and not a momentum relaxation time, as, for example, will enter the
calculation of the mobility of the system). The inelastic relaxation time defmes the
lifetime of a single-particle energy eigenstate in the system. Due to Coulomb scattering
among the electrons the single-particle stationary states are well-defmed only over a
limited time scale and our calculated r is a measure ofthis lifetime arising from electron-
electron interaction.

The total inelastic Coulomb scattering rate <Jl(k) (thick solid line) and <J2(k)
(thick dashed line) offast electrons in the subband n=1 and 2 as a function ofwavevector
k in two symmetric and two asymmetric GaAs/ Alo.3Gao.7Asquantum well structures are
shown in Figure 7(a) and 7(b), respectively. The symbols on the thin lines identify the
contributions to <Jl(k) and <J2(k) coming from the emission of single-particle and
collective excitations individually. Single-particle excitations contribute for all values of
wavevectors k. However, neither intra- nor intersubband plasmon mode contributes to the
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scattering rates close to the subband Ferrn.i wavevectors. (k;!; =0.88 xl06 em" and

k72 =0.69 X 106 em" for the symmetric case). These collective modes provide excitation
channels for inelastic relaxation only above some threshold wavevectors.

The inelastic Coulomb scattering rate cr!(k)in two coupled symmetric quantum
wires with no tunneling is shown in Fig. 8. Two sharp peaks are result from the scattering
due to the optical and acoustic plasmons, respectively.

6. Summary

We have discussed the collective excitations (plasmons) in low-dimensional
electron systems. We describe especially the plasmon dispersion in coupled bilayer
electron gases and in coupled quantum wires. In both coupled bilayer and biwire systems,
acoustic plasmon mode appears result from the Coulomb interaction between them. This
mode is susceptible to electron correlations and is of particular interesting. Effects of
electron correations, Landau damping, and tunneling are studied in different systems. We
have also studied the electron-electron interaction induced fast electron relaxation. The
GWapproximation is extended to multisubband low-dimensional systems to calculate the
inelastic Coulomb scattering rate. The contributions of different scattering channels due
to collective and single-particle excitations are analyzed. In comparison to the 2D case,
the scattering due to single-particle excitations is suppressed in coupled biwires, but the
optical and acoustic plasmons induce two sharp peaks in the scattering rate. Quantitative
understanding of such relaxation processes in multisubband low-dimensional systems are
meaningful for the successful realization ofphotoelectronic semiconductor nanodevices.
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We show that a weak nonresonant tunneling between two quantum wires leads to splitting of the acoustic
plasmon mode at finite wave vector. Two gaps open up in the dipersion of the acoustic plasmon mode when
its frequency is close to the frequencies of the quasipartic1e excitations. ln contrast to the Laudau damping of
the collective excitations, these gaps are attributed to tunneling-assisted acoustic plasmon-quasiparticle exci-
tation resonances. We predict that such a resonance can be observed in ine1astic light scattering spectrum.

The plasmons of coupled low-dimensional electron gas
systems provide a valuable platform to study the electronic
many-body effects. In coupled double one-dimensional (l0)
electron quantum wires, sirnilarly to coupled two-
dimensional electron systems,' optical and acoustic plasmon
modes2-4 were found. They were interpreted, respectively, as
in-phase and out-of-phase oscillations of the electron charge
density in the two wires. Theoretical studies3-1Ohave been
done on the plasmon dispersions, electron-electron correla-
tion, far-infrared absorption, Coulomb drag, and tunneling
effects in these systems. Correlation induced instabilityv" of
the collective modes were predicted in coupled low-density
quantum wires. Experimentally, far-infrared spectroscopy
and Raman scattering were used to detect the collective
excitations.ê-!' Very recently, it was shown that a weak reso-
nant tunneling in the coupled two 1D electron gases leads to
a plasmon gap in the acoustic mode at zero wave vector.?

In this paper, we report a theoretical study of the effects
of weak tunneling on the collective excitations in coupled
quasi-IO electron gases. Tunneling between quanturn wires
can modify the collective behavior ofthe electron systems in
several aspects. Interwire charge transfer and intersubband
scattering become possible through the tunneling. As a con-
sequence, new plasmon modes and coupling between differ-
ent modes appear. On the other hand, intersubband interac-
tion leads to intersubband quasiparticle excitations. We
expect the tunneling will mainly affect the acoustic plasmon
mode because its polarization field is localized in the space
between the two wires where the tunneling occurs. Our nu-
merical results of paramount importance show that a weak
nonresonant tunneling between the wires produces two gaps
in the acoustic plasmon mode at finite wave vector q. These
gaps are attributed to the tunneling-assisted acoustic
plasmon=quasiparticle excitation resonances. It means that,
in contrast to the Landau damping of plasmon modes, a reso-
nant scattering occurs between the collective plasmon exci-
tation and the intersubband quasiparticle excitation through
tunneling. Such a resonance leads to splitting of the acoustic
plasmon mode around the quasiparticle excitation region
and, consequently, a double-peak structure in the corre-
sponding inelastic light-scattering spectrum.

We consider a two-dimensional system in the xy plane
subjected to an additional confinement in the y direction,
which forms two quanturn wires parallel to each other in the
x direction. The confinement potential in the y direction is

0163-1829/2000/61 (3)/1704(4)1$15.00 PRB 61

taken to be of square well type of height Vb and widths W1

and W2 representing the fust and the second wire, respec-
tively. The potential barrier between the two wires is of
width Wb• The subband energies E n and the wave functions
t/Jn(Y) are obtained from the numerical solution of the one-
dimensional Schrodinger equation in the y direction. We re-
strict ourselves to the case where n = 1,2 and define Wo
=E 2- E 1 as being the gap between the two subbands. The
interpretation of the index n depends on tunneling between
the two wires. When there is no tunneling, n is wire index.
On the opposite, when the wires are in resonant tunneling
condition, n is subband index.

The dispersions of the plasmon modes are obtained by the
poles of the density-density correlation function, or equiva-
lently by the zeros of the determinant of the dielectric matrix
det]B( w,q) I= O within the random-phase approximation
(RPA). The RPA has been proved a successful approxima-
tion in studying the collective charge excitations of QID
electron gas by virtue of the vanishing of all vertex correc-
tions to the ID irreducible polarizability.' Figure 1 shows the
plasmon dispersions of the coupled GaAS/Alo.3Gao.7As(Vb
= 228 meV) quanturn wires in (a) resonant tunneling and
(b) nonresonant tunneling. The nurnerical results, with tun-
neling effects, of the in-phase (optical) w + and out-of-phase
(acoustic) to : modes are presented by the thin-solid and
thick-solid curves, respectively. For a comparison, the in-
phase (out-of-phase) plasmon modes without tunneling are
plotted in the thin-dashed (thick-dashed) curves. In Fig. 1(a),
we observe that, in resonant tunneling, the out-of-phase
mode losses its acoustic characteristic at small q replaced by
two intersubband modes. In Fig. lfb), for the two wires out
ofresonant tunneling, we find that 99.4% ofthe electrons in
the lowest (second) subband are localized in the wide (nar-
row) quantum wire. In other words, each quanturn wire of
the 10 electron gas only has a small edge in the other. How-
ever, such an edge affects significantly the acoustic plasmon
mode. Two gaps open up around the intersubband quasipar-
ticle excitation region.

The dynamical dielectric function is given by
Bnn' ,mm'( w,q) = ônmôn'm' - Vnn, .mm,(q)IInn,(q,w), where
ônm is the Kronecker Ô function, Vnn',mm,(q) the bare
electron-electron Coulomb interaction potential, and
II

nl1
,(w,q) the lD polarizability.3,12 Within the RPA,

II"",(w,q) is taken as the non-interacting irreducible polar-

1704 ©2000 The American Physical Society
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FIG. 1. Plasmon dispersions in two coupled GaAs/AIO.3Ga07As
( Vh = 228 meV) quantum wires separated by a barrier of width
Wh=70 A of(a) W1=W2=150 A and(b) W1=150 A and W2

=145 A. The total eleetron density Ne=106 em-I. The solid
(dash) curves present the plasmon dispersions with (without) tun-
neling. The thin and thick curves indicate the in-phase (00 +) and
out-of-phase (00_) plasmon modes, respeetively.The shadow area
presents the quasipartic1eexcitationregions QPEnn, •

izability function for a clean system free from any impurity
scattering. ln the presence of impurity scattering, we use
Mermin's formula+' including the effect oflevel broadening
through a phenomenological damping constant y. The
electron-electron interaction potential Vnn, ,mm I (q) describes
two-particle scattering events.12,14 There are different scatter-
ing processes in the coupled quantum wires: (i) Intrawire
(intrasubband) interactions V11,II(q) = VA ,V22,22(q) = VB,
and V 1122(q ) = V2211( q ) = Vc representing the scattering in
which the electron~ keep in their original wires (subbands);
(ii) Interwire (intersubband) interactions V12,12(q)
=V21,21(q)=V12,21(q)=V21,dq)=VD representing the
scattering in which both electrons change their wire (sub-
band) indices; and (iii) Intra-interwire (subband) interac-
tions V11,dq)= V11,21(q)= V12,1l(q)= V21,II(q)= VJ and
V22,dq)= Vn,21(q)= VI2,22(q)= V21,2zCq)= VH indicating
the scattering in which only one of the electrons suffers the
interwire (intersubband) transition. Notice that, when there is
no tunne1ing, VD = VH = VJ = O. Clearl y, they are responsible
for tunneling effects on the collective excitations.

When the tunne1ing is considered, the plasmon disper-
sions of two coupled quantum wires are determined by the
equation,

F1F2-[(I- VAIl1d V~Il22+(I- VBIldV;Il11

- 2 VC v"V HIl11Il22](ll12+ Il21) = O, (1)

where F] = (1 - VAIl1])(l - VBIl22) - V~IlIIIl22 and F2

=1-VD(Il12+Il21)' This equation consists oftwo terms:
F]F2 and the rest. We know that tunneling introduces the
Coulomb scattering potential VD , V.J' and VH' However, for

two symmetric quantum wires in resonant tunneling, VJ and
VH vanish and, consequently, the second term in Eq. (1) is
zero. So, the plasmon modes are determined by equations
FI = O and F 2 = O. The latter carries the information of tun-
neling effects resulting in two out-of-phase (intersubband)
modes as shown in Fig. l Ia). To reveal the relative impor-
tance of the different plasmon modes, we performed a nu-
merical calculation of the oscillator strength defined by
1T{ 1a( detls 1)/ aáJ 1w=w,} - 1. It was found that the higher fre-
quency out-of-phase plasmon mode is of finite oscillator
strength at q =O. But the lower one has a very small oscil-
I h d is uni 14ator strengt an IS unimportant.

When the two wires are out of resonant tunneling, the
out-of-phase plasmon mode changes dramatical1y at small q
as shown in Fig. 1(b). It restores the acoustic behavior at q
--+0 but develops two gaps at finite q. The splitting of the
acoustic plasmon mode occurs when its frequency is close to
the frequencies of the intersubband quasiparticle excitations
QPE12• In this case, the small overlap between the wave
functions of the two subbands leads to VA, VB, and Vc
~VD,VJ and VH. It means that the FI in Eq. (1) is now
responsible for the main features of both the optical and
acoustic plasmon modes. A numerical test indicates that the
roots of the equation FI = O can almost recover the optical
and acoustic plasmon dispersions of which tunneling is not
considered. Whereas, the part F 2 relating to possible inter-
subband plasmon becomes less important. We also notice
that VD does not appear in the coupling term in Eq. (1). So,
the potentials VJ and VH are responsible for the splitting of
the acoustic plasmon mode. These interactions represent the
electron-electron scattering during which only one of them
experiences intersubband transition. When the momentum
and energy transfer between the two electrons occur in the
region QPEI2, only this electron creates an intersubband
electron-hole pairo From this point of view, the momentum
and energy conservation in the scattering leads to such a
transition getting rid of the Landau damping. In other words,
the intra-intersubband scattering VJ and VH produce a reso-
nance between the collective excitation and the quasiparticle
excitation. From another point ofview, the scattering VJ and
VH result in a net charge transfer between the wires. Thus,
they produce a local electric field between the two wires and
disturb the polarization field of the acoustic plasmon mode.
The energy gaps in the acoustic plasmon mode are dependent

0.0 L...-_ _~ ""-_-.J

2.5 3.00.5 1.0 1.5 2.0

N, r1O' em '1

FIG. 2. The normalized gap energies as a function of the total
electrondensity in the eoupledGaAs/AlO.3Ga07Asquantum wires of
(a) W,=lSO A, W.2=14S A, and Wh=70 A (solid circles with
000=0.94 mcV); and (b) W1=150 A, W2=I40 A, and W"
=50 A (solid squares with 000=2.01 meV).



1706 PRB 61BRIEF REPORTS

(a)

.~
'"<::.2a 0.0 0.2 0.4 0.6 0.8 1.0.s
c•• (b)~~

0.5 1.0 Li 2.0 2.5 3.0 3.5
O) [meV]

FIG. 3. Raman seattering speetra in the eoupled quantum wires
with WI = 150 A, W2= 145 A, and Wh= 70 A at different q: (a)
from 2 to 5 X 10" em -I with equivalent differenee âq = 0.25
XI04 em-I, and (b) from OA to L4X105 em-I with âq=0.05
X105 em-I. Ne=106 em-I and y=0.05 meV. The intensity in
(a) is enlarged 4 times as eompared to (b). The different curves are
offset for clarity.

on the electron density and tunneling strength. We can define
the gap as the frequency difference between the lower and
upper branch of the split mode at the q where the unper-
turbed acoustic plasmon frequency is in the center of the
quasipartic1e excitation region. In Fig. 2, we show the elec-
tron density dependence ofthe two gaps nonnalized by Wo in
different structures. The energies of the two gaps decrease
with increasing the total electron density. One also sees that,
for smaller barrier width, the plasmon gaps become larger.

The plasmon modes in the coupled quantum wires can be
observed in the Raman spectroscopy. The intensity of the
Raman scattering is proportional to the imaginary part of the
screened density-density correlation function with a weight
refiecting the coupling between the light and different plas-
mon modes.14•15 Figure 3 shows the calculated Raman spec-
tra due to the plasmon scattering of the corresponding modes
in Fig. l(b) around (a) the lower and (b) the higher energy
gap. ln the calculation, we took the damping constant y
= 0.05 meV corresponding to a sample with electron mobil-
ity in order of 5 X 105 cm2 IV s. We see a strong Raman scat-
tering peak at high frequencies due to the optical plasmons.

80

~60
S
~40

20

oL.....~~...•.....~ •....•..~ ....•.....~.......:;::l:J::I
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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FIG. 4. Inelastic Coulomb scattering rate a-n(k) in the narrower
one (n = 2) of the coupled quantum wires corresponding to Fig,
1(b). The solid and dashed curves present the results with and with-
out tunneling, respectively,

Besides, there are two split peaks due to the acoustic plas-
mons. With increasing q, the spectral weight transfers from
the lower to the higher frequency one.

Finally, we show the effects ofthe weak nonresonant tun-
neling on the inelastic Coulomb scattering rate lTn(k) of an
injected electron in the wire n with momentum k. The inelas-
tic Coulomb scattering rate was obtained by the imaginary
part of the e1ectron self-energy within the GW
approximation. 14,16 In Fig, 4, we plot CJ"n( k) of an electron in
the narrower quantum wire (n =2) of the coupled wire sys-
tem corresponding to Fig. l(b). When the tunneling is not
inc1uded, the lower and higher scattering peaks are resulted
from the emission of the acoustic and optical plasmons, re-
spectively. The weak tunneling infiuences its k-dependent
behavior and leads to a splitting of the lower scattering peak
in CJ"2(k), corresponding to the splitting ofthe acoustic plas-
mon mode.

In summary, we have studied the effects of weak tunnel-
ing on the collective excitations in two coupled quantum
wires. We show that a weak nonresonant tunneling between
the wires leads to the splitting of the acoustic plasmon mode.
Two gaps open up in the dispersion of the acoustic plasmon
mode. ln contrast to the Landau-damping mechanism of the
collective excitations, our result gives an evidence that the
resonant coupling between the collective excitations and the
quasiparticle excitations occurs in coupled quantum wires
through tunne1ing. Furthennore, we predict that such a reso-
nance can be observed in the inelastic light-scattering spec-
trum. Besides the optical plasmon scattering, a double peak
structure appears around the quasipartic1e excitation regime
due to the split acoustic plasmon modes. The splitting of the
acoustic plasmon mode also infiuences other e1ectronic prop-
erties of the system, for instance, the Coulomb inelastic-
scattering rate.

This work was supported by FAPESP and CNPq, Brazil.
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The full spectra of magnetoplasrnons and single-particle excitations are obtained of coupled one-dimensional
electron gases in parallel serniconductor quanrum wires with tunnelíng. We show lhe effects of lhe interwire
Coulomb interaction and lhe tunneling, as welJ as the magnetic-fíeld-indueedlocalization on lhe elementary
excitations in syrnmetric and asymrnetric coulped quantum wire structures. The interacton and resonance
between the plasmou and the íntersubband síngle-partícle excitations are tound in rnagnetic fields,
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L ll'i'TRODVCTION

ln coupled quantum wires, the Coulomb interaction be-
tween one-dimensional electron gases leads to the so-called
optical and acoustic plasmou modes. I Tunneling between the
wires modifies these plasmon medes, especially the acoustic
one?~4 When an asymmetry is introduced between the two
wires, a very weak nonresonant tunneling opens up gaps in
the acoustic plasmon mode resulting from a resonance be-
tween the acoustic plasmon and single-particle excitations. A
transverse magnetic field in such systems affects the tunnel-
ing strength and also the single-particle and collective
excitations.ê-" In Refs. 5 and 6 the far-infrared absorption
spectra due to the intersubband (transverso) magnetoplasmon
medes are calculated with and without tunneling between the
wircs. In such a spectrum, only the plasmon excitations at
long wavelength limit (q -? O) contribute to the absorption.
To observe the absorption peaks result from the so-called
intersubband plasmou modes, a four-subband model was
used in their ealculations (two subbands originated frorn
cach wire). The enhancement due to interwire exchange in-
teraction of the tunneting gap between lhe symmetric and
antisyrnmetric states was included in the calculation in Ref
5, and three peaks were found in the absorption spectrum.
They were attributed to the intersubband optical and acoustic
plasmou medes (from the lowest symmetric state to first ex.-
cited syrnmetric and antisymmetric states, respectively).
However, no information was given for the intersubband
plasmou mode due to tunneling induced two lowest sub-
bands (lhe Iowest symmetric and antisymmetric states), In
Ref. 6 the tunneling effect was considered only for the two
higher subbands, and the calculation was performed in lhe
small-magnetic-field limit. One intersubband magnetoplas-
mon absorption peak f1-0111 the ground state (no tunneling
effectl to the higher ernpty states were found. It was also
shown that a srnall magnetic field could induce a Landau
damping of this plasmon mode. However, a clear ove1'311
picture of lhe single-particle and magnetoplasmon excita-
uons in the system of coupled quantum wires has not been
obtained so lar. A similar situation occurs for these excita-

0163-1829/2002/65(24)/245326(5)/$20,00
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tions in coupled quantum wells in a parallel magnetic field,
Magnetoplasmons were studied in double quantum wells in a
parallel magnetic field where the tunneling was included
within only the lowest order of perturbation.'

The presence of a transverse magnetic field in couple
quantum wires leads to the motion of the electrons in the
wire direction being coupled to that in the lateral dírection.
The single-electron wave function in the lateral direction de-
pends on the wave vector k in the wire direction. If we pro-
ceed in the standard manner of Iinear-response theory to de-
rive the dispersion relation 01' the magnetoplasmons, we
would have to solve a secular equation with infinite dimen-
sions according to the wave veetor k. This leads to difficul-
ties in the calculations even within the random-phase ap-
proximation (RPA). ln this work, the magnetoplasmon
dispersions are obtained by projecting the electron states of
the coupled wires to a basis constructed by the states of
corresponding single wires, We show the effects of the tun-
neling strength anel the magnetic-field-induced tocalization
on the plasmon modos in such systems. We fínd a strong
interaction between the collecti ve modes and the single-
particle excitations induced by transverse magnetic fields and
tunneling.

li. THlWRETlCAL .·ORMALlSM

We consider two coupled parallel quantum wires in the xv
plane subjected a transverso magnetic field B in the
z-direction, The quantum wires are of zero thickness in the ::
direction. The confinement potential V(y) in the y direction
forms two quantum wires parallel to each other in the x di-
rection, It is taken as square well type of widths Wj anel W2

and banier height Vb. The potential barrier between the two
wires is of wídth rV". The numerical calcularion is applied to
GaAsl AlO.3Gao"As structures with V" = 228 me V,

The plasmou modes in such a system in the absence of
magnctic ficld were studied in our previous work,2) How-
ever, a magnetic field in the z direction strongly affects the

65 245326·j '1:;')2002The American Physical Society
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single-particle and collective excitations, as will be shown
below. The single-electron Hamiltonian in the present system
can be written as

I ! . i «n, 2( di/.:\ 2].He=-I p2+ rl+ (-) I Y- -\ + V(v),2m * L x .' \ C i \ e B l ..

where k is the electron wavevector in Lhex direction, m" the
electron effective mass, and e the electron charge. The above
equation indicates that the effect of an extemal magnetic
field is equivalem to an additional parabolic potential in the y
direction, whose origin depends on the wave vector k and the
magnetic field B. The eigenenergy and wave function in the v
direction are functions of k noted by E,,(k) and 1/1",!.-(1'). We
consider symrnetric and also asymmetric two coupled wires
with tunneling. The asymmetry is introduced by the different
wire widths WI *- W2 and the tunneling strength is controlled
by the barrier thickness between the wires. For the consid-
ered structures the excited states are much higher than the
ground states of the two coupled wires. We restrict ourselves
to the case of two ground states 11 = I and 2. For two sym-
rnetric quantum wires, the wave functions l/I".ker) at k=O
are symmetric (n = 1) and antisymmetric (n = 2) functions
of y. For nonzero k, the wave function 1/!1,k(Y) shifts to one
wire, while ifJ2,k(Y) to the other,

The screened Coulomb potential within the RPA is deter-
mined by the following self-consistent equation,

X 11(0) ( ) T"C ( '). "k",q,w r yk",fik"q,w ,

with lhe bare Coulomb potential

V:/C/31.' (q) = 2f~:f dy f dy' l/'lIk(Y) 1/!n'kq(Y)

X Ko(qly-y'l) 1/!m' k' +iY') 1/!mk'(Y') (3)

and

(til . _ .lfEm,(k)]-ffEm(k-q)] (4)npk ( q , W ) -. . . . ' \
Em.(k) -E",(k-q) +h(lÚ+iW)

where the índices a={n,n'J, /3={m,m'}, and y={l,l'}
represent pairs 01' the quantum numbers, and I(E) is the
Fcrmi distribution function.

In principie. the dispersion relation 01' lhe collective exci-
tations can be obtained by the secular equation of the
screened Coulomb potential defined by Eq. (2), However, it
depends not only on the índices a and f3 but also on the
wave vectors k and k' leading to a dielectric matrix of infi-
nite dimensions which is not "properly " convergem in that a
truncated submatrix with a finite dimension, For a system
with a parabolic confinement potential, such as a single para-
bolic quantum well (wire) in a parallc1 (transverse) magnetic
field, this difficulty was overcome by expanding lhe
k-dcpcndent wave function as a series of harmonic function
80 that Lhe dielectric function is projected in a linite
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FIG. 1. The coefficients Cni(k) (Il,i= 1 and 2) at B= 1 T for
the symmetric (asymmetric) coupled quantum wires of W, "" W2

=150 A (W,=150 A, W2=140 A) and Wh=30 A are plotted
by the solid (dahsed) curves. The dispersion re1ations of a single-
electron in the symmetric (asyrnmetric) structure Me indicated ín
the left (low) inseto

(2)

submatrix.v" In this work, however, we choose another basis
for our system of the coupled quantum wires. We consider
the two quantum wires independently, and find the electron
states in the single wires as a basis 4>;(Y). The wave function
1/!nk(Y) of the coupled wires is expanded in this basis accord-
ing to the k states. As will be shown below, we find it is
enough to include only the ground states of the two single
wires,

(5)

where i= I and 2 represent the ground states of the single
wires W, and W2, respectively. The coefficients Cn;(k) are
shown as the solid curves in Fig, 1 for symmetric structures
of Wj = W2= 150 A and W;.=30 A at B= 1 T. The dis-
persion relations of the two subbands are schematically indi-
cated in the inset on the left, At k=O, the expansion coeffi-
cients cross and their absolute values are li';2, i.e., the
electrons are distributed equally in the two wires. For large
Ikl, their absolute values approach to 1 or O, indicating a
magnetic-field-induced localization. The magnetic field
pushes the electrons with k< O in the n = 1 (n = 2) sub-
band to the left wire WI (the right wire W2). For those elec-
trons with k >O, the magnetic field has the opposite effect.
Thc expansion coefficients satisfy approximately the equa-
tion Ii= i,2C~Jk)= I within a numeric error <0.5%, indi-
cating that the basis functions </lI (y) and 4>2(Y) are orthogo-
na1 and almost complete. For the asymmetric structure with
WI = 150 Â, W2= 140 A, and W,,=30 Â at B= 1 T, the
cocfficients C"i(k) are given by the dashed curves. They
cross at k. = 6.6 X 105 em - j, where the anticrossing of the
two subbands occurs as indicated by the lower inset in the
figure.
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With such an expansion, both the Coulomb potential
V~k,t3k,(q) and the screened potential V::~,fJk,(q,Ú)) can be
written in the fonn

where ~= {t, i'} and 7J = {j ,}'} indicare pairs of the quantum
numbers in OUl" basis, and S"k t=Clli(k-q)CII'i,(k). As a
consequence, Eq. (2) reduces t~- - -

I2; ( 81;,'7'- ~ uf.,~Aq)llf','7,(q.w) )u·~C,)q,w)
'7 \ ç ;

= ()~1)(q).

The dispersion rclations of the magnetoplasmon excitations
can be obtained by the equation

wherc

vL(q) = 2e:)2 J dy J dy' <fJ;(v) <Pi'(Y)

X Ko(q Iy-y' I)<PjiJ") <prev')

and

n~,'7(q,(tJ) = 2: Cm'i(k+q)Cmi,(k)
mm',k

C t.: C t: - rr(Ol( ,X m/") 'm'r(,,+q) fJk q,w).

m. NVMERICAL RESULTS AND DISCUSSIONS

Figure 2 shows the magnetoplasmon and the single-
particle excitation (SPE) spectra of the two coupled symmet-
rio quantum wires of WI = W2 = 150 Â with a total electron
density N; = 10" em - I. The intrasubband (intersubband)
SPE continua are indicated by the dark (light) shadow areas.
Figures 2(a), 2(b), and 2(c) show structures 01' W" = 30 A
with different transverse magnetic fields B =O, I, and 2 T,
respectivcly. In this structure, the tunneling-induccd energy
gap between the two subbands ai zero magnelic Iield is A
= 1.7 meV. Figure 2(d) is for the structure of W,,=70 A ar
magnetic field B = I T. Tn this case, A= 0.14 meV at zero
magnetic fíeld indicating a much wcakcr tunneling.

The plasmon and SPE spectra at zero magnetic íield as
shown in Fig. 2(a) are similar to those of a single symrnetric
quantum wire with two occupied subbands, Two intrasub-
band (solid curves) and two intersubband plasmou medes
(dash curves) are found, as discussed in ReC 3. The symme-
try of the system and the parabolicity of the subbands ensure
that lhe intrasubhand medes do no! couple to the intersub-
band oncs.

The transverse magnetic field pushes the electrons with
k< O (k> O) in the n = 1 and 2 (n == 2 and 1) subbands to the
!VI and !V2 wires, respectively, affecting the tunncling
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FIG_ 2. The plasmon dispersions (thick curves), the intrasub-
band SPE (dark shadow), and the intersubband SPE (Jight shadow)
continua in the symmetric coupled quantum wire stmctures of l-V I

=1-1'2=150 Â and Wh=30 Â at different magnetic fields (a) B
= O, (b) B = I T and (c) B = 2 T. The results for the structure of
W1 = W2= 150 Â and H'n=70 A at B= J T are presented in (d).
The total electron density 1"1, = 106 em-I_

(8) strength between the wires, In k space, the magnetic field
leads to the two original parabolic subbands at B = O shiíting
to the opposite directions and the tunneling leads to an anti-
crossing in the dispersion of the two subbands which is sche-
matically shown in the left inset in Fig. l. As a consequence,
the intersubband SPE region is expanded, developing a band
aí q = O. The magnetic field and tunneling-induced nonpara-
bolicity in the subband dispersion results in interactions 00-
tween the single-particle and the collective excitations. Such
interactions are represented by the electron-electron scatter-
ing events during which only one of the electrons experi-
ences an intersubband transition. When the momentum and
energy transfer between the two electrons occurs in the in-
tersubband SPE region, only one of the electrons creates an
intersubband electron-hole pair, leading to charge tunneling
between the wires due to the fact that the transverse magnetic
field pushes the electron and the hole to opposite directions,
On the other hand, the momentum and energy conservation
guarantee the collective excitation due to such transitions,
eliminating the so-called "Landau damping." A resonance
between the plasmou and the single-particle excitations oc-
curso Note that the interaction strength depends on the mo-
mentumtransfer q. Figures 2lb) and 2íC) show the effects of
these interactions on the magnetoplasmon medes at B = I
and 2 T, respectively. At B =1 T (corresponding to a cyclo-
tron írequency úJc = 1.65 meV being dose to L\
= 1.7 meV), tunneling is relatively strong, and so is the in-
teraction between
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the plasmou medes and the intersubband single-particle ex-
citations. Figure 2(b) demonstrates this irueraction, leading
to (i) the high branch of the plasmon mode (above the inter-
subband SPE region and originalJy from the intersubband
mode) kecping a distance from the SPE and (ii) a breaking at
a certain energy of the plasmon mode in the intersubband
SPE region. A Iarger transverse magnetic field leads to a
strong localization of the electrons in each wire, The plas-
mou exeitations restore their dispersion relation of two dif-
ferem modes, i.e., the optical and acoustic medes. Sueh a
behavior is clearly seen in Figs. 2(c) and 2(d). In Fig. 2(e)
the lower braneh plasmon mode, i.e., the acoustic one, is stil1
strongly modified due to its interaction with the intersubband
SPE, showing a spliiting when it approaehes the SPE rezion
at low frequencies. A magnetic field of 1 T for the structure
with the larger barrier thickness of 70 A is strong enough to
suppress intersubband transitions completely, as indicated in
Fig. 2(d), where the overlap ofthe electron wavefunetions of
different subbands vanishes and so does the strenath of the
intersubband SPE. -

Figure 3 shows the magnetoplasmon modes and the SPE
spectra in two coupled asyrnmetric quantum wires. Compar-
ing to Fig. 2{a), both the intersubband SPE and the plasmons
in Fig. 3(a) shift to higher frequencies at small q because the
energy gap between the two subbands increases to E2 - E I

= 2.6 meV by reducing the wire width W, to 140 Â. AI-
though, at zero magnetic field, the asymmetry of the electron
wave functions in real space leads to an anticrossing of lhe
two high-frequency plasmon modes, as shown ia Fig. 3(aj,
the eleetron states are symmetric in k space, However, a
transverse magnetic field breaks the syrnmetry of the single-
electron states in the k space, as indicated in the lower inset
in Fig. L The electron gas has different Fenni wavc vectors

FlG. 3. The sarne as in Fig. 2, but now for the
asymmctric structures with W I= 150 A and l-fi7
= 140 A. -

for k>O and k<O. Consequently, the plasmon dispersions
and the SPE spectra are no longer symmetric functions of q.
The asymmetric and nonparabolic subband structures leading
to a strong eoupling between the intersubband SPE and the
plasmon medes are shown in Figs. 3(b) and 3(e), Figure 3(b)
shows basically three plasmon modes in a V shape, but the
electron-electron interaction results in an anticrossing and an
even breaking up of thesc modes. The two branches with
mínima at q = O.95 X 105 and - O.97 X 105 em - 1, respec-
tively, are essentially intersubband modes. The one with ú)

=0 at q=O is an intrasubband (optical) plasmon mode.
However, for q> J X 105 em - I, the plasmon modes are
strongly coupled to each other and also strongly interact with
the intersubband SPE's. An antierossing appears between the
two higher branches. Moreover, the two lower branches
break up at around q = 1.2X 105 em-I. At a laraer maznetic
field, the highest intersubband plasmou mode disappears, as
shown in Fig. 3(c) but a lower-frequency intrasubband mode
appears at small q which will eventually evolve into the 80-

ealled acoustic plasmon mode at larze maznetic fields. Fig-
ure 3(d) shows the plasmon dispersj~ns and the SPE spectra
for the two coupled asymmetric quantum wires with W"
= 70 A. ln this case, the electrons in two different subbands
are completely localized in different wires with a vanishing
tunneling strength. An external magnetic field of 1 T almost
does not affect the plasmon dispersion, which keeps its sym-
metry with respect to q = O as it is at zero maznetic field,
Note that the intersubband SPE in this case is of a vanishing
strength which has no effects on the plasmon modes.

IV. SVMMARY

Tnconclusion, lhe effects ar a transverso maznetic field on
single-particle and collcctivc excitations are studied in
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coupled quantum wires with tunneling. The magnetoplasmon
spectra are obtained by an expansion of the electron states in
a basis 01' the corresponding single quantum wires, The mag-
netic field modifies the electron subband structures and also
the localization of the electron states, leading to a strong
coupling between the collective and intersubband single-
particle excitations, In two asymmetric quantum wires, the
magnctic field results in the asymmetry of the plasmon and
single-particle spectrum, increasing the /lexibility to modu-
late the SPE and plasmon excitations, which may have some

PHYSICAL REVIEW 8 65 245326

applicanons in optical or magnetic switchcs. Our results also
show that a larger transverse magnetic field leads to electron
localization anel completely suppresses the tunneling effects,
leading to a recovery of the optical and acoustic plasmon
modes.
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We report a theoretical study of the inelasticCoulombscatteringrate of an injected electron in two coupled
quantum wires in quasi-one-dimensionaldoped semiconductors.Two peaks appear in the scattering spectrum
due to optical and aeoustic plasmonscatteringin the system. We find that the seatteringrate due to the optieal
plasmonmode is similar to that in a single wire, but the aeoustie plasmon seatteringdepends erucially on its
dispersionrelation at small q. Furthermore,the effeets of tunnelingbetween the two wires are studied on the
inelastic Coulomb seatteringrate. We show that a weak tunneling ean strongly affeet the acoustic plasmon
scattering.

I. INTRODUCTION

Recently, síngle-partícle propertíes of electrons in quasi-
one-dímensional (QID) electron systems have attracted con-
siderable interest. With theoretical calculations of the single-
particle renormalization factor' and the momentum
distribution function around the Fermi surface, Hu and Das
Sanna/ clarified that a clean lD electron system shows
Luttínger-liquid behavior, but even the slightest amount of
impurities restores the Fermi surface and the Fermi-liquid
behavior remains. Within a one-subband model, they evalu-
ated the self-energy due to electron-electron Coulomb inter-
action in unclean QID systems by using the leadíng-order
G W dynamical screening approxímatíon.l' Within such an
approximation, Hwang and Das Sarma" obtained band-gap
renormalization in a photoexcited doped-semiconductor
quantum wire in the presence of plasmon-phonon coupling.
In particular, the inelastic Coulomb scattering rate plays an
important role in relaxation processes of an injected electron
in the conduction bando The lifetime of the ínjected electron,
determined by this scattering rate, can be measured by fem-
tosecond time-resolved photoemission spectroscopy. ' The
relaxation processes of an injected electron occur through the
scattering channelsdue to different excitations in the system,
such as single-particle excitations, plasmons, and phonons.v'
Its lifetime provides information on the interactions between
the electron and the different excitations. The relaxation
mechanism is important because of its technological rel-
evance, as most semiconductor-based devices operate under
high-field and hot-electron conditions."

On the other hand, coupling between two parallel quan-
tum wires leads to so-called optical and acoustic plasmon
modes in the system." The ground-state properties and the
far-infrared absorption in two coupled quantum wires were
studied recently.!" Mode mixíng among different plasmon
modes is demonstrated due to the asymmetric confinement of
the two wires. It is also found that the dynamic depopulation
effect in coupled quantum wires results in bistability in elec-
tron transportoI1 Tunneling effects have provided devices
formed by coupled semiconductor quantum wires,12 and at-
tracted considerable theoretical interest because of their fun-
damental applicability.

o 163-1829/2000/61 (I 1)/7564(7)/$15.00 PRB 61

In this work we present a theoretical study on inelastic
Coulomb scattering rates ín coupled biwire electron-gas sys-
tems. Particular attention will be devoted to the effects of
weak resonant tunneling. We find that weak resonant tunnel-
ing can introduce a strong intersubband inelastic Coulomb
scattering by emitting an acoustic plasmon. The emission of
optical plasmon, on the other hand, is provided by intrasub-
band scattering of injected electrons.

The rest of the paper is organized as follows. In Seco Il,
we present the theoretical formalism of inelastic Coulomb
scattering rates in a multisubband QID system of coupled
quantum wires. Section III is devoted to an analysis of the
inelastic-scattering rates for a biwire system in the absence
of tunneling between the wires. As an extension of such
calculations, in Seco IV we show the numerical results in the
presence of weak resonant tunneling. Finally, we summarize
our results in Seco V.

11.THEORETICAL FORMULA TlON

We consider a two-dímensional system in the xy plane
subjected to additional confinement in the y direction, which
forms two quantum wires parallel to each other in the x di-
rection. The confinement potential in the y direction is taken
to be of square well type, of barrier height Vo, and well
widths WI and W2 represent the fust and second wires, re-
spectively. The potential barrier between the two wires is of
width W". The subband energies E; and the wave functions
<Pn(Y) are obtained from a numerical solution of the one-
dimensional Schrodinger equation in the y direction. We re-
strict ourselves to the case where n = 1 and 2, and define
Wo =E 2 - E I as being the gap between the two subbands.
The interpretation of the index n depends on tunneling be-
tween the two wires. When there is no tunneling, the wave
function <Pn(Y) of the subband E n is localized in quantum
wire n. Clearly, it is a wire index. For two symmetric quan-
tum wires, i.e., WI=W2, one has E2=EI or wo=O. When
tunneling occurs, the wave function of each subband spreads
in two quantum wires. In this case, n is interpreted as a
subband index. For two symmetric quantum wires with tun-
neling, the wave functions of the two lowest eigenstates are
symmetric and antisymmetric. In this case, the two wires are

7564 ©2000 The American Physical Society
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in the resonant tunneling condition, and the gap between the
two subbands is denoted by ~SAS=WO.

In a multisubband Q lD system, the inelastic Coulomb
scattering rate for an injected electron in subband n with
momentum k can be obtained by the imaginary part of the
screened exchange self-energy l,n[k,fn(k)],1 where, tn(k)
= fí 2 k2 12m * +E n - E F is the electron energy with respect to
the Fermi energy EF and m* the electron effective mass. We
use the GW approximation to ca1culate this self-energy. As
can be seen in Ref. 10, it is given by

2:n[k,fn(k)]= _i -f dqf dw'2: V~nlnln(q,w')
(21T)2 nl

XG~~)(k+q,gn(k) -w'), (1)

where G~O)(k,w) is the Green's function of noninteracting
1

electrons, and v'n fi n( q, w) is the dynamically screened
1 1

electron-electron Coulomb potential. The screened Coulomb
potential is related to the dielectric function enn'mm,(q,w)
and the bare electron-electron interaction potential
V"n' mm ' (q) through the equation

Similarly to the one-band model,z the self-energy in Eq. ( I)
can be separated into a frequency-independent exchange part
and a corre1ation part, 2:n[k,çn(k)]=2:~X(k)
+ 2:~oTk,ç"(k)]. The exchange part is given by

where In( ç) is the Ferrni-Dirac distribution function. Notice
that 2: ~X(k) is real because the bare electron-e1ectron Cou-
lomb potential Vnnlnln(q) is totally real. Therefore, one only
needs to analyze the irnaginary part of2:~oTk,çn(k)], since
it gives rise to the imaginary part ofthe self-energy in which
we are interested. After some algebra, we find that the Cou-
lomb inelastic-scattering rate for an electron in a subband n
with momentum k is given by

ITn(k)=-Im2:~or[k,çn(k)]=2: ITn,n,(k), (4)
n'

with

1 J sITn,n,(k)= 21T dq Im{Vnn'n,Jq'~n,(k+q)-çn(k)]}

x{a[çn(k)-çn,(k+q)]- a[ -ç",(k+q)]}(5)

where lJ(x) is the standard step function. In the above equa-
tion, the frequency integration has already been carried out,
since the bare Green's function G~O) can be written as a

1

Dirac fi function of w.13

For the present coupled quantum wire systems with two
occupied subbands, the multisubband dielectric function
within the random-phase approxirnation is given by

The function IInn,(q,w) is the 1D noninteracting irreducible
polarizability at zero temperature for a system free from any
impurity scattering. In the presence of impurity scattering,
we use Mermin's formula'"

(w+ i ')')IInn,(q, W + i ')')
IIY (q w)= (7)

nn' w+i')'[II"n,(q,w+i')')/IInn,(q,O)]

to obtain the polarizability, including the effect of level
broadening through a phenomenological damping constant
v, The Coulomb potential

2e
2f fVnn'mm,(q)= 70 dy dy' cPn(Y)cP,,'(Y)

XKo(qly - y' I)cPm(Y') cPm,(y')

is calculated by using the numerical solution of the electron
wave function cPn(Y). Here EO is the static lattice dielectric
constant, e is the electron charge, and K o(q Iy - y , I) is the
zeroth-order modified Bessel function of the second order.
The e1ectron-electron Coulomb interaction deseribes two-
particle scattering events. We observe the following charac-
teristics of the electron-electron Coulomb interaetion in
coupled quantum wires representing different physical scat-
tering processes: VIIII(q)= VA, VZ222(q)= VB, and
VIl22(q) = VZ211(q) = Vc represent the seattering in whieh
the electrons keep in their original wires or subbands;
Vl2lz(q) = VZl2l(q) = VJ22I(q) = V2112(q) = VD represent the
scattering in which both electrons ehange their wire or sub-
band indices; VIlIZ(q) = Vll2l(q) = V12Il(q) = V211I(q) = VJ
and V221z(q)= VZ22I(q) = VJ22z(q) = V212z(q) = V H indicate
the seattering in which only one of the eleetrons suffers an
interwire or intersubband transition. When there is no tunnel-
ing, VD= VH= VJ = O. Clearl y, these are responsible for tun-
neling effects. We also note that, for two syrnrnetric quantum
wires, VJ and VH would vanish on account of symmetry
along with or without tunneling.

m. BIWlRES WITHOUT TUNNELlNG

In the following, we will analyze the inelastie Coulomb
scattering rate of electrons in two coupled symmetrie quan-
tum wires (WI = Wz= W) in the absence oftunneling. As we
discussed above, when there is no tunneling between two
quantum wires, VD=VH=VJ=O. Only the Coulomb inter-
actions VA' VB, and Vc contribute to the eleetron-electron
interaction. Furthermore, the potentials VA and VB are re-
sponsible for the intrawire interaction and VA = VB due to the
symmetry properties of the two wires. The potential Vc is
responsible for the interwire Coulomb interaction. If we as-
sume that the two wires have an identical electron density
n I= n2 = ne, the total electron density in the system is N;
= 2ne. In this case, the two quantum wires have the same
Fermi level E F, so that IT 11 = IT22 = ITo. Therefore, from
Eqs. (2) and (6), we obtain the screened intrawire Coulomb
potential V;lII= V;222 = V' given by

V'= VA-(VA+VC)(VA-VC)TIO . (8)
[l-(VA+ VdITo][I-(VA- VdITo]
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FIG. 1. Dispersions of the collective excitations of two coupled
quantum wires of(a) ne=0.5X106 cm-I and (b) ne=106 cm-I,
with W1 = W2= 150 A and Wh=300 A (dotted curves), 70 A
(dashed curves), and 30 A (long-dashed curves). The plasmon
mode ofthe corresponding single wire (Wh=oc) is presented by the
thin solid curves. The shadowed areas indicate the single-partic1e
continua.

The denominator in the above equation is the detenninant of
the dielectric matrix det] é( q, w) I. The equation det]é( q, w) I
= O yields the plasmon dispersions of the electron-gas sys-
tem. The plasmons result in singularities in the screened
Coulomb potential which are of the most important contri-
bution to the inelastic Coulomb scattering rate.

According to Eq. (5), the intrawire scattering rate of the
symmetric biwires with identical electron density becomes

(Jn,Ak) = 2
1

1TJ dq{Im[ V'(q,2kq +q2)]}

x] O(-2kq-q2) - O(EFn-k2-q2_2kq)}

(9)

for n= I and 2, where EFn=EF-En is the subband Fermi
energy. Notice that EI =E2 for two symmetric quantum
wires. It is obvious that (Jl,l(k) = (J2,2(k). In the absence of
tunneling, interwire scattering rates (JI,2(k) and (J2,I(k) are
zero because the transition of an electron from one wire to
the other is impossible. Therefore, we have (JI (k) = (JI I(k)
= (J2(k) = (J2,2(k). But the interwire Coulomb interaction Vc
inil.uences the collective excitations in the system, leading to
two different plasmon modes, i.e., optical and acoustic
modes. Subsequently, it affects the inelastic-scattering rates.
We know that the zeros of the two parts 1-( VA + Vc) TIo
and 1-(VA-Vc)TIO in the denominator in Eq. (8) yield
optical and acoustic plasmon mode dispersions, respectively.
To understand the scattering mechanism better, in Fig. I we
show the collective excitation dispersion relations of the two
coupled symmetric GaAs quantum wires ofwidth W= 150 A
with different barrier widths. In the calculations, we consider
the barrier height Vo = 00, which does not permit tunneling
between the wires. The plasmon modes in Fig. I correspond
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FIG.2. The inelastic Coulomb scattering rates corresponding to
Fig. l(a) with ne=0.5X106 cm-I. The inset shows the acoustic
and optical modes (thick dashed lines) for Wh=30 A, and the in-
trawire energy- vs momentum-Ioss curves at the onset ofthe optical
(thin solid line) and acoustic (thin dashed line) plasmon scattering.

to the different scattering channels through which the in-
jected electron can lose energy. We find a higher- (lower-)
frequency plasmon branch which represents the optical
(acoustic) plasmon mode w+ (w_). The intrawire single-
partiele excitation continuum SPE (shadow region) is also
indicated in the figure. The thin solid curve is the plasmon
dispersion of a single quantum wire with electron density
ne' It corresponds to the situation in which the distance be-
tween the two wires is infinity (W h = (0) or Vc = O. In this
case, the plasmon mode is of dispersion relation w(q)
~ ~q [ln q Jt1112at q ~ O,2 As the distance between the
wires decreases, the potential Vc increases. A finite Vc leads
to a gap between the two plasmon modes. When the two
wires are elose enough, the acoustic mode develops a linear
wave-vector dependence. For q~O, w_(q)=vq with v
= [v F+ 4 V _( q = 0)/ 1T], where v F is the Fermi velocity and
V_ (q) = VA q) - VcC q), whereas the optical plasmon still
keeps its well-known 10 dispersion relation w + (q)
~ ~qllnqJt1112.4,15 Note that the interwire Coulomb inter-
action Vc' depending on the distance between the two wires,
is responsible for the behavior of the wave-vector depen-
dence of the acoustic mode. As we will see, this significantly
affects the inelastic Coulomb scattering rate due to the
acoustic plasmons.

Figure 2 shows the numerical results of inelastic plasmon
scattering rate in the coupled wires corresponding to Fig.
l(a) with a very small broadening constant y= 10-4 meV.
We observe two scattering peaks. The lower (higher) one is
due to the acoustic (optical) plasmon scattering. The abrupt
increase of the scattering rate at threshold electron momenta
k; and k; correspond to the onset of scattering ofthe acous-
tic and optical plasmon modes, respective1y. The higher scat-
tering peak due to the optical plasmon mode is always diver-
gent at the onset k=k; and (JI,I(k)lX(k-k;rlf2

, similarly
to that in the single wire. But the behavior of the lower
scattering peak is dependent on the distance between the two
wires, which is directly related to the dispersion relation of
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FIG. 3. The same as Fig. 2, but now with ne= 106 em-I.

the acoustic plasmon mode at small q. For small W,,, the
acoustic mode is of a linear wave-vector dependence, leading
to a finite scattering rate at the onset k=k : . With increasing
W", the acoustic mode loses its linear q dependence, result-
ing in a divergency at the onset of the scattering. In order to
clarify such a behavior, in the inset we show the energy- vs
momentum-Ioss curve

for k=k:=2.13X 106 cm-1 (thin solid curve) and k;
= 1.65X 106 em - 1 (thin dashed curve) in the system with
W" = 30 A . Along these curves, momentum and energy con-
servations are obeyed and electron relaxation is allowed. The
dispersions of the optical and acoustic plasmon modes
w+(q) and ÓL(q) are also given by thick long dashed
curves in the same figure. At k=k: (k;-), the thin solid (thin
dashed) curve intersects the optical (acoustic) mode disper-
sion curve at q = q: (q;-). This means that the injected elec-
tron with momentum k: (k;) can emit one optical (acous-
tic) plasmon offrequency w+(q:) [w_(q;)]. Note that the
slopes ofthe curves wk+(q) [Wk-(q)] and w+(q) [w_(q)]

are equal at q =q: (q;-). For the optical plasmon mode, the
intersection always occurs at finite q: because the optical
plasmon goes as w+(q)-qllnqTf1!12 for small q. The diver-
gency due to the optical plasmon scattering is similar to that
in the single quantum wire." which results from the coupling
of the initial and final states via plasmon emission at k
= k: . However, for the acoustic plasmon mode with a linear
q dependence, q;- =0, because wk(q) ......•2kq at q ......•O. In this
case, one can obtain k;- = v /2. Due to the fact that the plas-
mon mode is of vanishing oscillator strength at q = O, the
emission of the acoustic plasmon of the wave vector q
= q; cannot produce a divergency in the ine1astic-scattering
rate. As the distance between the two wires is increased, the
acoustic plasmon mode loses its linear q dependence and
approaches the dispersion ofthe optical plasmon mode. Con-
sequently, q c becomes finite, and the scattering rate is diver-
gent at thc threshold momentum k;- . In Fig. 3, we show the
scattering rates in the same structures as in Fig. 2, but with a
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(10)

higher electron density n e = 106 em - 1. We see that, in sys-
tems of higher electron density, the scattering threshold
shifts to a larger momentum and the scattering is enhanced.

In Figs. 2 and 3, we do not show the inelastic-scattering
rate due to virtual emission of single-particle excitations
which would occur below the threshold wave vector. It is
known that, in a one-subband quantum wire, the contribution
of single-particle excitations to the inelastic Coulomb scat-
tering rate is completely suppressed due to the restrictions of
the energy and momentum conservations. Consequently, the
scattering rate is zero until the onset of the plasmon scatter-
ing at a threshold k.;> kF. 2 Single-particle excitations con-
tribute to the inelastic scattering only when the level broad-
ening is introduced. These contributions are negligible when
the broadening constant is smal!. Although, in the present
case, we are dealing with two coupled quantum wires, the
Coulomb interaction does not influence the single-particle
excitations or as their contributions to the inelastic scattering.

At this point we should emphasize the importance of
acoustic plasmon scattering in double-wire systems in com-
parison to double-layer (coupled 2D electron gases) systems.
Contrary to their double-wire counterparts, single-particle
excitations in double-Iayer systems contribute essentially at
ali values of wave vectors in inelastic Coulomb scattering,
which is much more important than the plasmon scattering at
a small wave vector." The contribution of the acoustic plas-
mon peaks within a narrow window of wave vectors before
the onset optical plasmon scattering, where the single-
particle scattering also makes a significant contribution. In
double-wire systems, however, inelastic Coulomb scattering
is dominated by acoustic plasmon scattering before the onset
of optical plasmon scattering due to the surpression of
single-particle scattering in the ID system. So the acoustic
plasmon mode in the present system is much more important
than that in 2D systems.

As far as the effect of the phenomenological broadening
constant y is concerned, in Fig. 4, we show the deoendcncc
of the inelastic-scattering rate for different y's. Finite broad-
ening values of y in the system give rise to broken transla-
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tional invariance due to the presence of an impurity. This
fact is responsible for relaxing the momentum conservation
permitting inelastic scattering via single-partic1e and plas-
mon excitations for k<k~ . We show such a contribution in
the inset ofFig. 4. For k=k s= 1.6X 106 cm-1, conservation
of energy and momentum does not permit the opening of any
excitation channels. This means that the injected electron has
an infinite lifetime at the Fermi surface which has been re-
stored by impurity effects.

IV. WEAK TUNNELING EFFECTS

In this section, we discuss the effect of weak tunneling on
inelastic Coulomb scattering rates in two coupled symmetric
quantum wires, as shown in SecoIll, When tunneling occurs,
an energy gap I1sAs opens up between the two lowest sub-
bands which have symmetric and antisymmetric wave func-
tions in the y direction about the center of the barrier. In this
case, only the subband index is a good quantum number. As
we saw in Seco Il, VJ and VH vanish in two symmetric quan-
tum wires in resonant tunneling. However, VD is finite and
responsible for tunneling effects on the Coulomb scattering.
In a weak resonant tunneling condition, one finds VA= VB
= Vc= U. Afier some algebra, we obtain

l-U(TIII-II22)
1- U(TI Ii + II22) U,

and

-' 1- VD(TI12- II21)

V2112= 1-VD(II 12+ II21) VD'

From the above equations and Eq. (5), we can obtain the
inelastic Coulomb scattering rates in the presence of tunnel-
ing. We also note that the zeros of the denominators in Eqs.
(I 1) and (12) yield optical plasmon dispersion, and those in
Eqs. (13) and (14) yield acoustic plasmon dispersion. This
indicates that the optical plasmons only contribute to the
intrasubband scatterings 0"11 and 0"22' and the acoustic plas-
mons to the intersubband scatterings 0"12 and 0"21 .

We consider two coupled GaAs/Alo.3Gao.7As (V,,=228
meV) quantum wires of widths WI = W2 = 150 A separated
by a barrier of W" = 70 A . In this case, we find D.sAS
=0.14 meV indicating a very weak resonant tunneling. In
Fig. 5(a) we show both intersubband and intrasubband scat-
tering rates. The intrasubband scattering rates 0"11 and 0"22'
induced by the emission of optical plasmons, is very similar
to that in the absence of tunneling. It is also not difficult to
understand that 0"11= 0"22 because, above the threshold of the
optical plasmon emission, the plasmon frequency is much
larger than D.SAS and, consequently, II 11= II22. On the other
hand, tunneling introduces the intersubband scattering rates
0'12 and 0"21, and strongly modifies the mechanism of the
acoustic plasmon emission. In order to c1arify such results,
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(11) FIG. 5. (a) The intrasubband and intersubband inelastic-
saeattering rates in two eoupled GaAs/Alo.3Gao.7Asquantum wires
with tunneling. WI = Wz= 150 A, Wh=70 A, and Nç= 106 em-I.
The solid eurves present O'I,I(k) and O'z,z(k). The dasbed and dotted
eurves present O'1.2(k) and O'z.l(k), respeetively. (b) The aeoustic
plasmon dispersíon w_(q) (thick dasbed curve) in the systern. The
tbin dashed line indieates the w!z(q) eurve for k!z= 1.79
X 106 em-I, and the thin dotted line indieates the wZI(q) eurve for
k~I=1.59X106 em-I. nl=0.51Xl06 em-I and nz=0.49
XI06 em-I.

(12)

(13)

(14)
we plot the eorresponding acoustic plasmon dispersion rela-
tion by the thick dashed curve in Fig, 5(b). The acoustic
mode develops a plasmon gap at zero q due to the tunneling
effect.l'' The thin lines indicate the intersubband energy- vs
momentum-Ioss curves at the onset of the acoustic plasmon
scattering. They are deterrnined by conservations of energy
and momentum, given by

W!2(q) =Zqk+ qr-: D.SAS

for k=k~2 (thin dashed curve), and

w~l(q)=2qk-q2+D.SAS (16)

for k=k~1 (thin dotted curve), where k~2 and k~1 are thresh-
old wave vectors above which the injected electron can be
transferred to a different subband by emitting an acoustic
plasmon. w;l( q) (thin dotted curve) intersects the acoustic
plasmon dispersion at small wave vector q=q~1=O.05
X 106 em- I. The scattering process is similar to aeoustic
plasmon scattering in the absence of tunneling, as we dis-
cussed in Seco II!. But now, the acoustic plasmon mode is of
a finite frequency, with a finite oscillator strength at q--+O
resulting in a small divergency at k~l . On the other hand, the
intersection between w k\ q) (thin-dashed curve) and the
acoustic plasmon dispersion occurs at quite a larger wave

(15)
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FIG.6. Total inelastic-scattering rate CT.(k) of the biwíre system
(a) without (Vo=oc) and (b) with tunneling (Vo=228 meV]. WI

= W2 = 150 A, Wh= 70 A, and Ne= 106 em-I.

vector q=q~2=0.18X lOó cm-! . The scattering, mecha-
nism is more similar to that of the intrasubband scattering
and produces a pronounceable divergence at k~2 .

Finally, we would like to show the tunneling effects on
the total inelastic Coulomb scattering rates (T n( k)
= 2.n ' an, n ' ( k ). Figure 6 gi ves the total scattering rates in (a)
the absence and (b) the presenee of tunne1ing between two
quantum wires with W= 150 A and W,,=70 A . We observe
that weak resonant tunne1ing does not inftuence the optical
plasmon scattering very much, but it does strongly affect
acoustic plasmon scattering. The acoustic plasmon scattering
for the injeeted eleetron in the lowest subband is enhanced
significantly, and quite a strong scattering peak appears. For

the injected electron in the second subband, tunneling intro-
duces a small divergency in the scattering rate, and shifts the
scattering threshold to the lower wave vector.

V. SUMMARY

We have calculated the inelastic Coulomb scattering rates
of two coupled QID electron-gas systems within the GW
approximation. The screened Coulomb potential was ob-
tained within the random-phase approximation. The Cou-
Iomb interaction between the two quantum wires leads to
optical and acoustic plasmon modes and, consequently, two
scattering peaks appear due to the scattering of the two
modes. We found that the scattering of the optical plasmons
in two coupled quantum wires is very similar to plasmon
scattering in a single wire because both plasmon modes have
similar dispersion re1ations at small q. The scattering rate is
divergent at the onset of the optical plasmon scattering.
However, the acoustic plasmon mode does not produce such
a divergency when it is of a linear q dependence at small q.
This happens when two wires are cIose enough. Further-
more, we studied tunneling effects on inelastic scattering. A
weak resonant tunneling was introduced between the wires.
Such a tunneling lifts the degeneracy of the two subbands
that originates from two quantum wires, and also produces a
small plasmon gap on the acoustic mode at q = O. Moreover,
intersubband scattering appears. We show that, in this case,
the optical plasmons are responsible only for intrasubband
scattering, and the acoustic plasmons for intersubband scat-
tering. A weak tunneling significantly enhances acoustic
plasmon scattering for an injected electron in the lowest sub-
bando

As far as we know, there have been no experimental stud-
ies reporting intersubband scattering ofQID electrons in two
coupled quantum wires. For two-dimensional systems, how-
ever, theoretical calculations on the intersubband relaxation
times'? motivated tunneling spectroscopy experiments to
measure electron lifetimes'" in a strong-coupling situation.
We believe that our work can be useful to understand scat-
tering mechanisms which could be observed in double-wire
tunneling spectroscopy.
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Carrier relaxatinn due to electron-electren interactionin coupled double quantum well structures
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We calculare the electron-electron interactíon induced energy-dependent inelastic carrier relaxation rate in
doped scmiconductor coupled double quantum well nanostrucrurcs within the two-subband approximation at
zero temperature. In particular, we calculate, using many-body theory, the imaginary part ofthe full self-energy
matrix by expanding in the dynamically random-phase approximation screencd Coulomb interaction, obtaining
the intrasubband and intersubband electron relaxation rates in the ground and excited subbands as a function of
c1ectron energy. \Ve separare out the single-particlc and the collcctive excitation contributions, and commcnt
on the effects of structuralasymmetry in the quantum well on the relaxation rate. Effects of dynamical
screening and Fem1Í statistics are automatically included in our many-body formalism rather than being
incorporated in an ad hoc manner as one must do in the Boltzmann theory.

DOI: 10.1103!PhysRevB.64.045325

l. INTRODUCTION

Electron-clectron interaction induced carrier relaxation is
an important inelastic scattering process in Iow-dimensional
semiconductor nanostructures. It is often (particularly in situ-
ations where LO phonon emission is energetically prohibited
because the excited electrons do not have enough energy) the
most dominam relaxation process in semiconductor quantum
wells and wires, and is therefore of considerable fundamental
and practical importancc. Band gap engineering has led to
lhe possibility of fsbricating tunable far infrared quantum
wcll cascade lasers (QCL's) and efficient quantum well in-
frared photodetectors (QWIP's), where inelastic carrier re-
laxation via electron-electron interaction is a crucial (perhaps
even decisive) process in determíning device operatíon and
feasibility.' For QCL and QWIP operations it is the intersub-
band inelastic relaxation that turns out to be the primary
rate-limiting scattering processo For other proposed devices,
such as the planar hot electron transistors or related two-
dimensional (2D) high-spced deviccs, intrasubband relax-
ation is the importam processo A thorough quantitative un-
dcrstanding of intra- and intersubband relaxation due to
electron-electron interaction is therefore importam for lhe
successful rcalization of these devices. lu addition to this
practical technological motivation arising from QCL, QWIP,
and other proposed band-gap-engineered quantum well de-
vices, there is also an obvious fundamental reason for siudy-
ing inclastic Coulomb scattering in 2D quantum well sys-
tems, Inelastic electron-electron scauering determines lhe 2D
quasiparticle spectral width, as detennined, for example, in
tunneling measurements, through the imaginary part of lhe
clcctron sclf-energy function.i

Tn this article we use a many-body approach in calculating
lhe inelastic rclaxation rale of 2D electrons confined in
GUl\s-AI,Ga 1_ ,As scmiconductor quantum wcll structures,
Our work is a multisubband generalization of the earlier
work3 by Jalabert and Das Sarrna, who considcrcd only in-
trasubband relaxation wiihin a single subband model. We
considcr both intra- and intcrsubband relaxation Íll the two
lowest subbands, and eonsider both single-wcll and coupled

0163·1829.200 l!64(4)/045325( 11}!S20.00

PACS numberis): 73_61.-r, 73.50.0r, 72.l0.Di

double-well structures. An additíonal important issue ad-
dressed in our work is the effect of structural asymmetry in
the quantum we11 on the relaxation rate, This is in faet a
potentially significam factor in the fabrication of QCL and
QWIP structures since asymmetry could lead to the opening
of new electron-electron interaction channels in the inelastic
intersubband relaxation as we discuss below in this article,

TIIC central quantity we calculate in this work, within the
leading-order dynamically screened Coulomb interaction ex-
pansion (the so-called GW approximation in the multisub-
band situation), is the imaginary part of electronic on-shell
self-energy matrix, AI, in the quantum well subband index
(i .i. ete.). The subband self-energy in the multisubband situ-
ation is, in general, off-diagonal, reflecting the breaking of
lhe translational invariance along the growth (z) direction
(we take the x-y plane to be the 2D plane with ali wave
vectors in this paper being 2D wave vectors in the x-y plane).
The off-diagonal self-energy, Im(A1j), incorporares in an
intrinsic many-body manner the possibility of electron-
electron-interaction-induced intcrsubband scattering (both
virtual and real) of carriers. We believe that in lhe doped
situation of our interest, where the quantum well subbands
are occupied by many electrons, the many-body self-energy
approach is also a reasonable technique in calculating the
inelastic carrier relaxation rate in spite of lhe Boltzman equa-
tion approach, where the scattering rates are usually calcu-
lated using Fermis golden rule. The dynamical screening
inherent in the many-electron system, which affects the cal-
culated inelasuc scattering raies in profound and highly non-
trivial way, is automatically incorporated in our rnany-body
G W expansion, whereas inclusion of dynamical screening in
Fermis golden rule type formula is done by replacing lhe
barc interaction by a scrcened interaction in an ad hoc man-
ner.

Our theory, as mcntioned above, is bascd on the so-called
G W self-energy approximatirur':" where the electron self-
energy M is obiained in a leading order expansion of lhe
dynamically scrccncd Coulomb intcraction rv= l/x, where
lhe superscript s denotes dynamical screening of the bare
c1cctron-c1cetron intcraction matrix V in thc multisubband

64 045325· i Z?:200i The American Physical Society
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situation. We use the RPA to obtain the dynamical screened
interaction V', i.e., V' == B IV, with B == 1 - VII, where 11 is
the leading-order (i.e., noninteracting) electron polarizability
matrix. We also approximate the electron Green' s function G
by the noninteracting Greens function GO, making OUI for-
mal expression for the self-energy matrix to be

where lhe integral involves integrating over all interna I mo-
mentum and cnergy variables as well as summing over al1
interna! subband índices (and spin). Putting the subband (ma-
trix] índices explicitly in Eq. (1), we get

We note, howcvcr, that GÜ, being the noninteracting Green's
Iunction, 15 necessarily diagonal in subband indices (i.e., an
electron cannot undergo intersubband scattering in the ab-
sence 01' interaction]:

Then, Eq. (2) becomes

with

Equations (4) and (5) are the central formal equations we use
in our theory to obtain the inelastic relaxation time i, re-
mernbering that the scattering rate r and the rclaxation time
T are conncctcd by

h
T= 2r'

where

f= 11mMI·
We emphasize that lhe inelastic relaxation time T defined

by Eq. (6) and calculated in this paper is an energy relaxation
time (and not a momentum relaxation time, as, for example,
wil! enter the calculation of the mobility of the system). The
inelastic relaxaiion time calculated in this paper defines lhe
Iifetime of a síngle-particle energy eigenstate in the system.
Due to Coulomb scattering among the electrons the single-
particle stationary states are wcll-defined only ovcr a Iimited
time seale and our calculated T is a measure 01' this lifetime
arising from clectron-clectron interaction.

lu Eqs. (6) and (7), I'= 11.mMI is calculatcd on-shell, i.e.,
the quasiparticle sclf-energy defines r. To demonstra te how
Eq. (4) may, in principie, differ from the Fermi golden rule
approach wc considcr the specific two-subband model of in-
terest to us in this paper. Then i,j,l = 1.2 with only subband
I. lhe ground subband, and the subband 2, the first excited
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subband being considered in the theory assuming all other
subbands to be substantially higher in energy, making negli-
gible contributions to the self-energies ofthe lowest two sub-
bands, We also assume the square well structure to be sym-
metric, 50 that parity is a good quantum number in the
problern which makes a11 "off-diagonal' interaction matrix
elements vanish by virtue 01' parity conservation with the
only nonzero elements of V' bcing V~!ll' V;222' V~212' anel
V;122 (note that V\221 = V;112 and v~122= V~211 by symme-
try). lu this situation Eq. (4) implies that

Im M 12=1111 1\121 =0 (8)
and

(2) 1111M22~ J ltn[G~IV;112+G~2V~222].

We note that the dynamically screened interaetion matrix
element V; 122 is not explicitly present in Eq, (9). Ou the
othcr hand, a Fermi goldcn rule approach'' will explicitly
include such a V~122 term, because it seems to arise from the
direct Coulomb interaction VIl22 between an electron in sub-
band 1 and an electron in subband 2 without any intersub-
band scattering, We mention, however, that dynamical
screening of V2222 produces an effective V2211 term in our
theory sinec dynarnieal screening proceeds through virtual
creation of electron-hole pairs.

We have calculated the energy-dependent inelastic relax-
ation rate at T=O for a two-subband (1 and 2)
GaAs-AlxGal ~"As quantum well system with a total elec-
tron density N; =2 X 10" em 2 for the following five dis-
tinet situations. (i) Two coupled symmetric quantum wells of
width J 50 A each with interwell tunneling indueed by a tun-
neling barrier of height 228 me V and width 30 A. Here the
lowest two subbands are lhe so-called symmetric (bonding)
and antisymmetric (antibonding) levels with energies E I

= 15.35 meV and E2 = 17.03 meV, respectively, TIu: third
leve! EJ = 60.53 mcV is sufficiently high to be ignorcd
(EF] =EF-EI =4.28 meV; EF2=EF-E2=2.6J meV),
with both subbands 1 and 2 occupied by carriers, These re-
sults are presented in See. III A below. (li) Two coupled
asymmetric quantum wells with interwell tunneling [the
same as in ti) above], with one well of width 150A and the
other of width 140 A, leading to E 1= 15.93 meV and E2
= 18.55 meV (EFI =EF- EI =4.75 me V; EF2=EF-E2

=2.13 me V). Again, the next excited subband E3=62.86
me V is high enough to be ignored. These results are pre-
sented in Seco 111A bclow. (iii) Two couplcd identical syrn-
metric quantum wells 01' width J 50 A each with no interwell
tunneling [i.e., the interwell barrier is taken to be infinity)
and with a barrier widthof30A . Here,EI =E2=23.87 meV
(this degeneracy arises because the two wells are identical
and thcre is no tunncling). EFI=En=EF-EI=EF-E2
=3.44 me V, and the next subband E}=96 mcV is suffi-
ciently high in energy to be neglected, These results are pre-
sented in Seco 1II B bclow. (iv) The same as in the last case
with no interwel! tunneling but an asymmetric situation with
the two wclls being diffcrent. One has a width of 150 A and
lhe other a widih of J42.4 Á 30 that lhe subband Fermi

(9)

(3)

(4)

(5)

(7)

045325-2



CARRlER RELAXATION DUE TO ELECTRON-ELECTRON ..

energies EpI =Ep- Ej =4.75 meV and Ep2= Ep- E2

=2.13 me'V, which are the same as in (ii) above. In this
situation E, =23.87 l11eV,E2=26.49meV (again E3 can be
ncglccted). Furthermore, to keep the average distance be-
iween lhe two electron layers the same as in (ii), we choose
a barrier of width 28.8 A. These results are presented in Seco
ITIB below in comparison with those in (ii), (v) A single
symmetric quantum well of width 300 A and a barrier height
228 meV, which leads to the lowest two subbands at E,
=4.88 meV, E2= 19.51 me'V, and the Fermi energy Epj

= Er:E 1= 6.88 meV (with E p<E2, so that the second sub-
band is empty). Tn this situation, lhe next excited subband,
E1 =43.74 meV, is high enough in energy to be neglected,
These results are present in Seco III C below, Our reason for
studying lhe five different classes of systems described
above is that we are interested in understanding the effects of
interwell tunnelina and structural asyrnmetry on lhe electron
relaxation rate. 1; particular, asymmetry breaks parity con-
servation. making the off-diagonal matrix elements of
Coulomb interaction (e.g., Vjlj2,VJI21,VI2JI,V2JII,V222j,

V22lZ,V2122,VI222 ali of which are zero in the symmetric
situation) nonzero, Jeading to new inelastic relaxation chan-
nels not present in symmetric structures, For the sake of
brevity we present results for a single representative carrier
density and wcll parameters in each of the five cases. Our
theory could be easily generalized to obtain finite tempera-
ture relaxation rates, Note that our goal here is to provide a
qualitative understanding of how various physical param-
eters affect Coulomb scattering ratcs in 2D quantum wells.

The plan of this article is lhe following. In Seco TI we
present a brief theory with working formulas; in Seco 1II we
provide our numerical results and discussions; we conclude
in Seco IV with a summary,

II.THEORY
Our basic theory is outlined in the Introduction, where the

formal expression for the self-energies to be calculated were
given. Our central GW random-phase approximation {RPA)
expression for the self-energy can be explicitly written out
by using lhe noninteracting subband Greerr's function

(10)

where w is a complex frequency (Ií = J), and EJk)=E;
+e12m * is thc noninteracting subband onc-electron energy
dispersion. Using Eq. tiO) in Eqs, (4) anel (5), and carrying
out the internal frequency integration, and taking the imagi-
nary par! after lhe on-shell analytic continuation, we get

Im M,/k)= ~ L f d"q
(211')- I

X Im] V;lfil (q, tl( k+ q)- çJk)]

X {e(?,,(k) - (lk+ q)

-8(-~r{k+q)}, (lI)
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where lhe on-shell subband energy ç,(k) is given by

ç,(k) =E;(k) - EF, ([2)

and (:I(x)=O( 1), for x<O(>O), is lhe Heaviside step func-
ti011. The dynamically screened Coulomb interaction is given
by [see Eq. (5)J

f''' -( + I V')/ ijlm - c/ ijlm' (13)

with the multisubband RPA approximation" defined by Lhe
dielectric matrix

(14)

where V 'I is the bare Cou!omb interaction matrix elementl) m

in the subband representation, and n~,the noninteracting
polarizability, is given by

fi f d2q /;(k+q)-f~(k)
nik,(1l)=-2 (211')2 w-E;(k+q)+Elk), (15)

where I( k) is the Fermi distribution function in the ith sub-
bando ln this paper, we take the impurity-scattering-induced
background broadening y as being a small phenomenologi-
cal damping parameter which equivalem to be working in the
clean Iimit, We are therefore restricting ourselvcs to high
mobility quantum wells with sl11a11impurity-scattering-
induced levei broadening.

Using Eqs. {I I )-{ 15) it is straightforward to calculate the
imaginary part of the on-shell self-energy, For the sake of
completeness, we show below lhe detailed expressions for
Im M ij in the G W approximation for the two-subband
model:

(16)

(17)

{I 8)

and

(19)

Hcrc,

(TII!l( k) = ~J d2q{I111[ V; III( q,A)]
(L Ti)

X[H(-A)-8(-gI(k+q))]}, (20)

X[8(-A-w())-8(-f2(k+q))]}, (21)

[O( -A) - 0(- fI (k+ q))]J. (22)

04532.5-3



MARCOS R. S TAVlillES, a.-Q. tIAl, AND S. DAS SARMA

(rlm(l,:) = -1-21 d2qfIl1l [V'l2)J1q.A + wo)]
(211) . --'

X[8(-A-wo)-H(-6(k+q))}, t23)

1 J '<T2221{k)= --, d~q{Im [V~?ol(q,A)]
(211)" . ---

x[e(-A)-e(-~2(k+q)]}, (25)

and

<Tndk) = -? I .,J J2q{lm [V~222{q,A)]
(_ 11)-

x[ 8{- A) - 8(- g2(k+ q))]},

wherc úJn =E 2 - E 1 is the subband energy difference, A
=A(q,k)=(2kq COs1]+l)/2m* with 1]being the angle be-
twccn k and q: and 111* =0.07me being thc GaAs conduction
band electron effective mass. Now, we define lhe total in-
elastic Coulomb scattering rate for an electron with wave
vector k (i.e., an energy 01' k2í2m* with respect to the sub-
band bottom) in the subband 1 and 2 as

and

It is important to realize that the screened potentials V;ilm for
j * I do nol appear in Eqs. (20)-(27) and, consequently, do
not cxplicitiy contribute to scattering ratc. Thcy are implic-
itly induced in Lhe theory through dynamical screening" as
discussed before. Furthermore, ali screened interactions V;jlm
involved in Eqs. (20)-(27) are obtained from the relation
between thc bare electron-electron potential '

and lhe inverse matrix of the dynamical dielectríc íunction
E,jlm(q.(Il) [see Eqs. (13) and (14), where lhe indices i,j,l,
111 = L2j. These bare Coulomb potentials V'j!m(q) are calou-
latcd hcrc by using both the onc-clectron wavc function
<61(::,) and lhe subband energy E, obtained through the nu-
mcrical solution of thc Schrodinger cquation in the :: direc-
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[íon for lhe speciíic quantum weJl confinement potential.
Furthermore, the potential Vii1n,(q) can be separated into
intra- and intersubband terms. and understood as follows: (i)
intralayer (intrasubband) interactions V 1111 (q ) = VA ,

V2222( q) = VB, and VlI2i q ) = V2211 (q) = Vc represent those
scattering events whích the electrons remain in their original
well (subband); (ii) interlayer (intersubband) interactions
Vl21iq) = V212Jq) = V122I(q) = V2112(q) = VD represent
scattering in which both electrons change their welI (sub-
band) índices; and (iii) intrawell-interwell (subband) interac-
tions Vlldq)= Vll2l(q)= VI21l(q)= V211l(q)= v" and
V2212(q) = V222l(q) = Vlm(q) = Vm2(q) = V}f indicate the
scanering in which only one of lhe electrons suffers lhe in-
terwell (intersubband) transition.

For each wave vector k; the two-dimensional q integrals
in Eqs, (20)-(27) are pcrformed within the planes deter-
mined through the variables q and A in the screened interac-
tions V~jlm : The integration domains of q andTJ (in A) vari-
ables are restri.cted by the two fi functions appearing in the
integrais in Eqs. (20)-(27). The integrals involving VI 111 and
V; 112 are performed wi.thin the planes formed by those re-
gions in the q space where

(30)

l27)
while the integrais involving V:221 and V;222 are calculated
within the planes defined by

10 the same way, the integraIs involving V~222 and V~221 are
performed withi.n the planes defined by

O(-A) - O(- i;2(k+ q)* O, (}2)

(28)

and, finall y, for V;nz and V;!ll the intcgrating plane is de-
Iined by

(33)

The inelastic scattering rates in Eqs, (20)--l27) vanish out-
side each corresponding integrating plane, which means that
the momentum and energy conservation eannot be simulta-
neously obeyed for such values of (k.k+ q), and therefore
no Coulomb scattering i.sallowed there. It is easy to see that
these integrais are nonvanishing only ir the corresponding
integrating plane contains cither some part of the single-
particle excitation continuum or some branch representing
the collective cxcitations (plasmons) i.n the 2D q plane. This
is of course expected since a finite scattering rate must in-
volve real excitations, which in this case are single-particle
and collecti ve plasmon excitations,

ru. NlJi\U:RICAL RESULTS ANO J)lSCCSSIONS

A. Coulomb coupled bílayers wíth interwell tunnelíng

We consider first two coupled symmetric i.denti.caJ quan-
tum wells of same width fV I = J'V] = 150 A with an interwell
tunneling induced by a barrier of height 228 meV and width
30 A Thc total c1cctron density N; = fi J + fi 2

= 2 x Ioi i CI11-? in all structures studied in this papel', with
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n I and n~being the density in the subband 1 and 2, respec-
tively. For these sample parameters, the Fermi wave vectors
in the first and second subband are k~;~1=O.88 X 106 em- 1

and kf~=0.69X 101;em I, respectively (the superscript sy
stands for symmeiric). Here, both subbands 1 and 2 [sym-
metric and antisymmetric, respectively) are occupied by car-
riers with n 1= 1.23X lOlI em-1 and n 2=O.77X 1011 em- 2 .

The plasmou dispersion relation is determined by the
roots of the detenninantal equation dctlsijlm(q,w)! =0,
which, after some álgebra, can be rewritten as

- [ '1- // r'l° ) u2 11°+ 1- v 1-'10 ) 1'21'10
S intraS iuter { . A II r H n ( r B 22 V J ~ II

wherc

-11 - T7 nO -)11_ ~7 n0 .)_ v-2nO n0
S inn'a - \ ,. A [I \ • B 22 'C I I 22

and

For notational simplicity, we do not explicitly write the en-
ergy and wave vector dependence in Eqs. (34)--(36). For the
present symmetric situation, the unscreened Coulomb poten-
tial V, = VH= O by virtue of parity symmetry, because the
wave functions <PI (z ) and <P2(::') are symmetric and antisym-
metric functions of z, respectively. According to Eq. (34),
therefore, the plasmons dispersion relation in our symmetric
bilayer structure is determined by the roots 01' the equation
c-illtraf:inte,=O, i.e., either f:intra=O corresponding to the 20
intrasubband plasmons, or eintcr= O corresponding to the in-
tersubband plasmons.

There are four roots of 1-: inrra =O. Two of them are shown
in Fig. 1(a) by the solid Iines indicating thc intrasubband
plasmou modes (1,1) and (2,2). Notice that, for each solid
line, there is a corresponding dashed line that is also the root
of the samc equation always lying in the corresponding
single-particle excitation conrinuum. It is well known that
the plasmon modes indicated by the dashed Iines inside the
single-particle continua are strongly Landau damped by
single-particle excitations anel will be ignored in the fol1ow-
ing discussion. Furthermore, lhe iniersubband plasmon mode
(1.2) comes from the roots of eir./er=O. The wave functions
</1I(Z) anel </12(=) are schematically shown in the inset by the
solid and dot lines, respectively. Notice that, one is always
ablc to separare the intra and inter-subband plasmon modos
in structures that are invariant under space inversion. In ad-
dition, the intrasubband plasmons are not Landau damped by
iniersubband single-particle excitations (SPE's) and vice
versa in symmetric bilayer systems. The single-particle COll-

tinua SPE 11 (intrasubband SPE) and SPE12 (intersubband
SPE) in Fig. l ía) are those regions where Tm{n(tl(q,w)}

*0 and lm{lIi)/Q,w)}*O, rcspcctively, for the sakc of
simplicity, we will not indicate the continuum SPE22 in this
paper beca use itIies totally inside the continuum SPE I1 •

Moreovcr, we claim that the plasmon modc (2,2) should be
strongly damped by single-particle excitations in the SPE1I

conti11LIUI11 and will also be ignored in the following qualita-

I.
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FIG. I. Plasmon dispersions in two coupled GaAs!Alo3Ga'1.7As
quanrum wells of widths (a) WJ = W2= 150 A (symmetric) and (b)
tYj=150A and W2=140A (asymrnetric}; and scparatcd by a
barrier ofwidth 30 Â . Forthe symmetric (asymmetric) situation the
cnergy separation between thc two subbands is ú'o= 1.68 meV
(úl,,=2.62 meV). The shadow areas present the single-particle ex-
citation regíons SPE,w' where Im{Il~n.(q,w)j*O. Each structure
is shown in the inset where 4>1C:::) and 4>2(:::) are schcmatically
shown by the solid and dot lines, respectively.

tive scatiering rate discussion. Our numeri cal results of
course includc a11 contributions as obtained by evaluating the
2D integrais in Eqs. (20)-(27).

Figure l Ib] shows the same plasmon dispersion rclation
as in Fig. 1(a) but now in two coupled asymmetric quantum
wells with interwell tunncling, Here, one well is of width
150 A and the other is 01' width 140 A. For these pararneters,
the Fermi wave vector in the subband 1 and 2 are k~1
'--0.93X 106 em i and k~1=0.62X 106 em I, respectively
(lhe. superscript a stands for asymmetric). Both subbands are
occupied with 1I[=1.37X 10JI em2 and 112
'''' 0.63 x 10[i em" 2. In ihis asymmetric situation. the plas-
mou modos are obtained directly from the roots of Eq. (34)_
We show in Fig. I(b) ali these roots. We mention that it does
110t makc sensc naming the solid Iines as pure intra- ar intcr-
subband plasmon modes because the struciural asyrnmetry
lcads to li strong coupling (or mixing) between them, and this
intrasubband-intersubband mode coupling eliminares lhe
simplicity of Fig. 1(a). The solid line that is of finite frc-
quency as q--"O in Fig. l(b) is lhe intersubbandlike plasmou
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mode (l,2). This mode enters Lhe coniinuum SPEI2 at q
=0.42X iOú em I and should be, in principie, Landau
darnped. For srnall values of q, we find lhe same number of
roots as in the symmetric situation. The interactions V.r and
VI{ are finite in the asymmetric case and are responsible for
the strong rnixing between the intrasubbandlike plasmou
mode (1,1) and the intersubbandlike mode (1,2) around q
:= 0.18 X 10i>cm " I. Moreover, when the asyrnmetry is intro-
duced, the depolarization shift (i.e., the shift of the intersub-
band plasmou from the subband energy separation E2d in
the intersubbandli.ke plasmou (1,2) at q = O decreases. We
point out that thcsc roots of Eq, (34) do not provide a com-
plete description of the plasmou modes in asymmetric bi-
layer structures. A detailed theoretical calculation of the dy-
namical structure factor giving the plasmon spectral weight
provides a complete picture of the collective mode spcctra
and can be obtained using our multisubband theory.

Having studied the plasmou dispersion relations we now
investigare in Fig. 2(a) the corresponding total inelastic Cou-
lomb scattering rate (}I(k) (thick solid line) and (}2(k) (thick
dashed Iine) of'fast electrons in the subband 1 and 2, respec-
tively, as a function of wave vector k in our symmetric bi-
layer structure. The symbols on the thin lines identify the
contributions to (}t(k) and (J2(k) coming from the emission
of single-particle and collective excitatíons individually, The
dynanucally screened CouIomb interaction components eu-
tering in Eqs, (20)-(27) can be calculated from Eqs, (13) and
(14). After some álgebra, we get

V' = VA( 1 - VBII~) + VUI~2
1111 1-; unra '

(37)

(38)

and

V
p-'" _F' D
r 1221- r 2112=--'

êintcr
(39)

For the symmctric wcll case the off-diagonal components of
the Coulomb potential ali vanish by parity: V~II2= V'~121

= V;2Il = V; III = V;221 = V;212 = V;122= V;222 = O because V,
= Vil =O for symmetric systems. Therefore, according (o
Eqs.(20)l29). the total inelastic scattcring rates in the sub-
band I and :2 are

(40)

and

(41)

rcspectively. The tcrms (}1111, 0"1221, {T2222' and 0"2112 m-
vol ve intcgrations nf the interactions V; 111' V;221' V~222 and
V;lI2' respcctively, in Eqs. (20), (lI), (27), and (26). The
sclf-cncrgy cornponents in Eqs, (22) ··(25) are zero in the
symmetric case. Intrasubhand contributions to lhe scauering
rates arise from the terms "1111 and "2222' while intersub-
band coniributions are due to lhe ierms ('1221 and CT2112' The

PHYSICAL REVIEW B 64 045325

4
(a) Symmetric

3 • SPEu

>' • (1,1)
tU .•.SPE

I2.§.2 0(1,2)
t;)=

1

O

(b) Asymmetric

4
• SPEll

~3 • plasmons
E .& SPE12~
t;)"'2

- .• :::=:::
1

o
0.0 0.5 2.5 3.01.0 1.5 2.0

k [106cm-']

FIG. 2. Total inelastic Coulomb scattering rate of electrons in
our coupled bilayer (a) symmetric and (b) asymmetric structures.
The thick solíd and thick dashed lines denote the total scattering
rate CTn(k) for n= I and 2, respectively. The symbols on the thin
lines represent each contribution to the total calculated scattering:
diamonds standing for the SPE11 contribution, the filled squares
stand for the intrasubband (1,1) plasmon contribution, triangles
stand for the SPE12 contribution, and opaque squares stand for the
intersubband (1,2) plasmon contribution.

coníributions eoming from the plasmon medes (filled-square
lines) are obtained separately by excluding the continua
SPE11 and SPEI2 from the numerical intcgrations, whereas
contributions coming only from the single-particle continua
are obtained by numerically evaluating Eqs. (20 and (26)
on1y for the region representing each continuum. Single-
particle excitations contribute for al1 valucs of wave vcctors
k. However, neither intra- nor intersubband plasmon mode
contributes to the scauering raies close to k?1 or kf~ . These
collective modes provide excitation channels for inelastic re-
Iaxation only above some threshold wave vectors. The intra-
subband plasmou mode (I,I) begins to contribute to eithcr
(JI (k) or (J2(k) when the wavc vector is larger than the same
threshold k~~= 1.65 X 106 em I On the other hand, the con-
tribution coming from thc plasrnon mode (1,2) has a differ-
ent threshold for each scauering raie. This mode begins con-
tributing to (TI(k) and (J2(k) when the wave vcctor is largcr
than lhe thresholds k~~'- 1.25 Xl 06 em I and k~~,
= 2.0 xl 06 em t, respectively (notice that k;Y2<k?1 <k~~
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<k~~<k~~.). Obviously, these thresholds depend ou the par-
ticular choice of sample parameters. In the present paper,
they are 311100t11(instead of being a vcry sharp threshold)
because we are considering the impurity-induced constant
)1= 0.2 meV in our numerical evaluation. These thresholds
become much sharper for smaller values of 'Y without any
other substantive changes in our numerical results.

Figure 2(b) shows the same results as in Fig. 2(a) but for
the asymmetric bilayer system of Fig. I (b). In contrast to the
symmetric case, where we were able to separately obtain the
inter- and intrasubband plasmon modes through the roots of
Biuter=O and Bintra=O, respectively; the coupled plasmon dis-
persion in the asyrnmetric system is obtained directly from
the numerical roots of Eq, (34) in which the bare off-
diagonal Coulomb interactions V.! and Vf{ are now nonvan-
ishing. The terrns in Eq. (34) involving VI and V f{ are re-
sponsible for the mixing between the inter- and intrasubband
plasmon rnodes and for not allowing the contributions com-
ing from the intra- and intersubbandlike plasmon modes
( 1,1) and (1,2) to be picked up completely separated from
each other in the scattering rate. Notice that the dynamically
screened Coulornb potential n.: is a full i6X 16 matrix
(for the two-subband model-in general, it is an n4Xn4 ma-
trix for an n-subbullel problem) in the present situation anel is
obtained from Eq. (13), which involves lhe dielectric matrix
8 ijlin( q, w) and lhe bare Couíomb interactions
V4, r», r-, VD, VJ> and Vn (alI of which are finite in
this strongly coupled asymmetric bilayer structure)." There-
fore, boih inelastic scattering rates O"I(k) and fT2(k) in lhe
asymmetric case contai.n all terms shown in Eqs. (20)··(27),
which are finite in this situation. For lhe sake of clarity and
to understand Fig. 2(b) in the same way as done for Fig. 2(a),
we choose to show rhree contributions to the inelastic scat-
tering ratcs O"Jk) and 0"2(k) in Fig, 2(b) separately: thc
single-particle excitations in the continua (i) SPEI2 (up tri-
angles) and (li) SPEIl (diamonds); and (iii) the plasmon
mode segment outside these continua (filled squares). The
filled squares in Fig. 2(b) represem contributions coming
from those segments of the plasmon modes that lie outside
any single-particle excitation continua [see Fig. I (bl]. Con-
tributions coming from the plasmon segments lying inside
each continuum have been kept in our numerical work along
with thc singlc-particlc excitation contributions because it is
essentially numerically impossible to separare the two in this
regime. We should mention that, due to the fact that one is
not able to eliminate the contributions coming from the over-
damped plasmou modes lying inside the Landau continua,
lhe thin lines in Fig. 2(b) only serve as a qualitative
illustration.i"

B. Cuulomb coupled bílayers with no interwell tunneling

Now we investigate lhe two Coulomb coupled identical
symmctric quantum wells of width W1= W2 = 150 A each
with no interwell tunneling (i.c .. the interwell barrier is taken
to be infinity) and with a barrier width of 30 A. Here, the
Fermi wave vectors in ihe two wells are of the same value.
i.e., kFO=kFl =k,q''-0.79X 10<> cm·1 (or, equivalently, n)

=n2= ]011 em 2). Notice that Lhe índices I and 2 should
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FIG. 3. Plasmon dispersions in two coupled with no interwell
tunneling GaAsíAloJGao.7As quantum wells of widths (a) W1

= W2= ISO A and (b) /-V1 = 150.Â.. (syrnmetric) and W2= 142.4
(asymmetric) A, and separated by an infinity barrier of width 28.87
.Â... The shadow arcas present the single-particle excitation regions
SPEII' wherc lm{n~1.(q,'ll))*O. Each structure is shown in lhe
inset where cP1{z) and cPz(:::) are schernatícally shown by the solid
and dotted lines. respectively.

now be treated as well indices since there is no tunneling-
induced bonding-antibonding statcs. As we rnentioned in the
Introduction, an energy degeneracy arises in this case, i.e.,
E) =E 2 because the two wells are identical with no interwell
tunneling. If therc is no tunneling, the bare Coulomb poten-
tial components 1".1=VH= V[)= O and the polarizabihty n(:2
=n~l=o independent of whether the bilayer structure is
symmetric or not. Resides, for this symmetric no-tunneling
bilayer structure, the bare Coulomb potential V4 = Vo by
symmetry and thc polarizability n~)=n~2=nU due to the
fact that the densities in each well are identical.

According to Eqs. (34)-(36), thereíore, the plasmon dis-
persion relation should be obtained only from the roots of

(42)

Hcrc, the subscript (superscript) nt (sy) stands for no tunnel-
ing (symmetric). As shown in Fig. 3(a), we find four roots of
EC]. (42). Thc solid curves correspond to the in-phase optical,
{v (q), and lhe out-of-phase acoustic, lO(q), plasmon
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medes in lhe bilayer structure. II These or., (q) medes have
been observed'? in multilayer semiconductor systerns via in-
elastic light scatteríng spectroscopic experiments. They rep-
resent in-phase and out-of-phase interlayer density fíuctua-
tion modes: the out-of-phase acoustic mede, W _ (q -. O)
.- O( q) represents densities in lhe two layers fluctuating out
of phase with a linear wave vector dispersion and the in-
phase optical mode, w,(q-->O)~ ..jN"q, represents densities
in lhe two layers fluctuating in phase with the usual 2D
plasma dispersion, The dashed lines represent the collective
modes that should be strongly Landau damped by the single-
partic1e excitation continuum SPE, i.c., the region wherc
Im {Ilo(q ,w)} 7'= O.

Figure 3(b) shows the same quantities as in Fig, 3(a) but
for an asymmetric no-tunneling situation with the two wells
being different, one with a width 01' TVI= 150 A and the
other a width 01'W2= 142.4 A. Tnthis case, our no-tunneling
bilayer structure is no longer invariant under space inversion
and, consequently, the energy levei degeneracy is broken,
leading to the energy E I<E2• Besides, the bare Coulomb
potential VA is now different from VB' As we discussed
before, the two wells now have different charge densities but
we consider the whole system still being in equilibrium. Fur-
thermore, the Fermi wave vector in the first and second sub-
bands is the same as indicated before, i.e., k~'1 and k~'2'
respectively. Because of the densities in the two wells being
different from each other, the polarizability n~2*n~l' The
shadow area in Fig. 3(b) 1S the single-particle excitation con-
tinuum in the wider quantum well, i.e., the region where
Im{IT~I(q,w)}*O. The plasma dispersion relation is now
given by the roots of lhe Eq. (35). Note that all plasma
medes in the zero tunneling system are by definition intra-
subband plasmons in our model where higher subbands are
neglected,

As shown in Fig. 3(b), we again find four roots 01'such an
equation and consider that the dashcd lines should bc
strongly Landau damped modes since they are inside lhe
single-particle continua. Furthermore, it does not make
sense, in principle, to define lhe solid tines in Fig. 3(b) as
purc acoustic or optical plasmon modes because the asyrn-
metry leads to a difference between the eleetron densities in
cach layer. Now, the wider well has 30'1"0 more electrons than
the narrower one, and, consequeruly, lhe densities in lhe two
laycrs are not fluctuating exactly cither in phase or out of
phase, The solid lines in Fig. 3(b) are the approximaie
acoustic- and optical-Iike plasmou medes with the stri.ct dis-
tinction meaningful only in the long-wavelength limit. Due
to lhe structural asymmetry the acousticlike plasmon mede
enters lhe SPE continuum at a smaller wave vector, leading
to significant Landau damping of the acoustic plasmon mode
by single-particle excitations in the asymmetric bilayer sys-
tem. lu lhe single-particle continuum of lhe layer 2 (the nar-
rower welll lhe acousiiclike plasmon mode is completely
suppressed and we find no acoustidike mode in the
Jm {n~2(q,ü))}*O regime. Tu general lhe acousticiike plas-
mou mode is found to be much more sensitivc to smaH
asymmelry effects than lhe optical-like plasmon mode.13

I.
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This is physically reasonable and should be experimentally
tested viu inelastic light scattering experimcnts.

Now we concentra te on the investigation of the scattering
rates (]'I(k) and (T2(k) in the symmetric bilayer structure
with no tunneling. As the bare Coulomb potential VJ= Vf{
=VD=O, it is straightforward to see that only V;III and
V;222 are finite in the screened Coulomb interaction matrix
V' for a bilayer structure without any tunneling, Therefore
the scattering rates in Eqs, (21 ) "(26) all vanish by symmetry
in this case. The only nonvanishing terms to be calculated
are 0'1111 and 0'2222 in Eqs. ( 20) and (27), respectively, Fur-
thermore, as we discussed before, we have the polarizability
II iI= IT~2= IIo and the bare potential VA = VB for identieal
(i.e., symmetric case) quantum wells. According to Eqs, 07)
and (38), therefore, the sereened Coulomb potential is given
by

in the present situation of a symmetric bilayer system with
no interwell tunneling. ln fact, the total inelastic Coulomb
scattering O'I(k) and 0'2(k) are identical because the two
wells are idcntical with the same density. The thick line
shown in Fig. 4(a) represents lhe total inelastic scattering
rate, which is equal [(]' 1(k ) = O' 1111 = (]'2 ( k) = <T2222 J in both
subbands, as a function of the wave vector k. To show sepa-
rately the contributions coming from the emission 01' plas-
mons (squares) and single-particle excitations (diamonds),
we again exclude the region where Im[IT()(q • (ti)] * O from
the numerical calculations to obtain the plasmon contribu-
tion. Single-particle excitations again contribute ar ali values
of the wave vector, whereas the plasmons begin eontributing
to the scattering rate for wave vectors k larger than the Fermi
wave vector kFO' There are cJearly two thresholds wave vec-
tors in the plasmon contribution (squares), one at k= k~~
-~1.25xl06 em-I and other at k=k~)~=1.65X106 cm-I.
These are the thresholds for the .emission of the acoustic and
the optical plasmon, respectively. The substantial difference
between Figs. 4(a) and 2(a) demonstrares the strong effect of
tunneling on the inelastic scattering rates in bilayer struc-
tures. This is one of the important qualitativo rcsults in our
paper.

Figure 4tb) shows the same results as in Fig. 4(a) but for
the asymmetric bilayer structure without tunneling. As we
discussed before, the asymmetry leads to Il~2* ITr;I' Further-
more, lhe bare Coulomb potential V,t -4= VB and, therefore ac-
cording to Eqs, (37) and (38), the screened Coulomb poten-
tial V; 1117'= V;222 in the asymmetric case. lu this situation,
O'I(k)=O'llll (thick solid line} and 0'2(k)=(T2222 (thick
dashed linc) represent the total inelastic Coulomb scattering
rates in the wider and narrower layer, respectively. They are
different from each other because the two wells have differ-
ent widths and densities in lhe asyrnmetric situation. Again,
we separate the different contributions (by plasmons and by
SPE) by excluding the single-particle excitation continuum
SPE from the numerical calculations to obtain the plasmon
contribution. Tt is important to point out again that lhe
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FIG. 4. Total inelastic Coulomb scattering rate of electrons in
our coupled bilayer (a) symmetric and (b) asymmetric structures
with no tunneling. In (b), the thick solid and thick dashed lines
denote the total scattering rate un(k) for n= 1 and 2, respectively.
The symbols on the thin tines represent each contribution to the
total scattering: diamonds stand for the SPE contributions, and the
filled squares stand for the plasmon contributions.

squares in Fig. 4(b) represent contributions coming from the
ernission of undamped plasmou modes whose frequency
w( q) lies outside the continuum SPE [see Fig. 3(b)]. There is
only one threshold wave vector k"~1.71X 106 em 1 in the
thin solid line (squares) corresponding the plasmon contribu-
tion to O" 1 ( k). This threshold is due to the emission of the
optical-Iike plasmon mede shown in Fig, 3(b). Wc also find
that lhe thin solid line (diamonds) corresponding to the SPE
contribution 10 cr 1(k) does not contain any contribution com-
ing from the acousticlike plasmon mode. As a matter of fact,
there is no contribution to O" I (k) in Fig. 4(b) coming from
the emission ofthe acousticlike plasmon rnode at all because
thc integral in a I(k) does not contain any segment represent-
ing the acousticlike plasmon mode which is heavily Landau
darnped in the asymmetric siruation under consideration. On
the other hand, the thin dashed tine (squares), corresponding
to the plasmon contribution to u2(k), clearly has two
threshold wave vectors k= 1.15X 101> em 1 and k
= 1.76X 106 cm-1, which characterizes the cmission of the
acoustic- and optical-like plasmon.mode, respectively, Thus,
in the asymmetric case, the acoustic-like plasrnon medes

PHYSICAL REVIEW B 64 045325

contribute to carrier scattering 0"2 ( k) ín the narrower well
but not to O" 1(k) in lhe wider well by virtue of strong Landau
damping, The difference between Figs. 2(b) and 4(b) repre-
sents the strong effect of tunneling on lhe second component
of the inelastic scattering rates (TAk) in bilayer asymmetric
structures.

C. Síngle symmetríc quantum well

We now consider (for the sake of comparison) a single
symmetric GaAs-AlxGal_xAs quantum well of width 300 Á,
barrier height 228 mev, and with lhe same total electron
density N" =2 x 1011 cm--2 as used before. These sample pa-
rarneters lead to the Fermi wave vector in the first subband
k~~gle<", 1.J 3X 106 cm " 1 with on!y one subband occupancy.
Here, the second subband is empty, which leads to II~,=O.
As we discussed before, only the bare Coulomb potential
VA, VB, Vc' and VD are finite because V.r= V}{= O in sym-
metric strueture. Aeeording to Eqs. (35) and (36), therefore,
the intra- and intersubband plasmon modes are obtained
from the roots of the equations

and

"in~le 1 l! (.1..1°1.10) OBjnt;r == -,.. D~ 12+ 21 == .

Taking ng2=o (unoccupied excited subband) in Eqs, (37),
08), and ~39) we get

VV' =__A_
li 11 sinzle 'I

8intt;

(44)

(45)

alld

vVV = V' = __D_
1221 2112 sinsle '

Bint;r

(46)

Again in this case, the screened Coulomb potential V; 112

= V; 121 = V;211 = V; lII = V;221 = V~212= v; 122 = V~222 = O by
symrneiry because V,= VH=O. Therefore, as we discussed
in thc Seco 1lI A, the total inelastic scattering rates in the first
and the second subband are given by Eqs. (40) and (41),
respectively. ln the same way as done for the bilayer struc-
tures, we prcsent the scattering rates aI(k) and 0"2 (k) in Fig.
5 in the thick solid and thick-dashed lines, respeciively. The
symmetric nature of the single-well system enables us to
separa te out the different contributions Ia the scauering rates
as discussed before, We find that contributions to fT,(k)
come mainly 11'0111 the emission of both the intrasubband
plasmons ( 1,1) and the intrasubband single-particle excita-
[íons SPE1 i' The emission of intersubband excitations turn
out to make negligible contributions to the scattering becausc
of lhe sufficiently large energy gap between the two sub-
bands (wo=E21= 14.63 meV}. For this particular choicc of
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FIG. 5. Total inelastic Coulomb scattering rate of electrons in a
single quantum well. The thick solid and thick dashed lines denote
the total scattering rate o"n(k) for n = 1 and 2, respectively. The
symbols on the thin lines stand for the same as indicated in Fig.
2(a).

the sample parameters, U J J 11 turns out to be much larger than
u1221, implying that the carrier relaxation process in the
ground subband is almost entirely via intrasubband scatter-
ing. Another importam point in Fig, 5 is that inter- and in-
trasubband plasmou mudes as well as intra- and intersubbaud
single-particle excitations contribute to the total inelastic
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scattering rate u2(k) in the second subband, Notice that, in
contrast to the behavior of (T1(k), the total inelastic scatter-
ing rate in the second subband (T2(k) does not vanish for any
wave vectors k. This is due the fact that there is no Fermi
surface in lhe second subband, Thís should lead to qualita-
tively different effects in the measured carrier injected in the
second subband compared with that in the ground subband.i"
This Iifetíme, which is inversely proportional to the total
inelastic scauering rate u2(k), should be finite for ali finite
wave vectors in the excited ernpty subband,

IV. CONCLlTSIONS

We have developed a theory for calculating the inelastic
relaxation rate for Coulornb scattering in coupled bilayer
structures III semiconductor double quantum wcll systems,
We use a many-body theory based on a multisubband gen-
eralized G W approximation with the inelastic scattering rate
defined by the magnitude of the imaginary part of the on-
shell electron self-energy. Effects of dynamical screening,
mode coupling, and Fermi statistics are naturally included in
our many-body theory. Wc demonstrate the usefulness of our
theory by obtaining results for general representative two-
subband model systems: Coulomb coupled bilayer
OaAs-AlxOal_xAs double quantum well structures both with
and without interwell tunneling and also with and without
interwell asymrnetry in the system. Our theory naturally al-
lows for distinguishing various physical mechanisms con-
tributing to the inelastic scattering rate: intra- and intersub-
band contributions. We provide a critical qualitative
discussion of these various contributions to scattering and
comment on the effect of interwell tunneling and structural
asymmetry in bilayer quantum wells,
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Capítulo 3

Propriedades de transporte e espalhamento de impurezas

ionizadas em estruturas semicondutorascom dopagem

do tipo-delta

Um grande número de investigações experimentais foi realizado com

respeito às propriedades de transporte e propriedades ópticas destas estruturas.

Estes sistemas são interessantes para estudo dos mecanismos físicos fundamentais

envolvidos em sistemas com altas densidades de portadores e com estruturas

eletrônicas com um caráter de multisubbandas (várias subbandas ocupadas).

Estas altas doses de dopagem com impurezas constituem ainda um novo sistema

onde é possível estudar os mecanismos de espalhamento. Além do mais, novos

dispositivos semicondutores estão sendo fabricados a partir destas estruturas tipo-

delta.

Em sistemas semicondutores Q2D com alta dopagem, tais como

semicondutores com dopagem planar, a distância média entre as impurezas é
menor que o raio de Bohr efetivo. Geralmente, acredita-se que as correlações

espaciais entre as impurezas tornam-se muito importantes para as propriedades de

transporte. Por outro lado, o efeito de blindagem do gás de elétrons Q2D nos

potenciais de espalhamento de impurezas ionizadas é o fator mais importante que

modifica o potencial de espalhamento de impurezas ionizadas. Várias aproximações



de blindagens do gás de elétrons são usadas em sistemas Q20. Os mecanismos de

blindagem não foram ainda bem entendidos.

Em um dos nossos projetos, que começou em 1993, tratamos das

propriedades de transporte eletrônico neste sistema em colaboração com o grupo

experimental de Eindhoven Universify of Technology. Estudamos o transporte de

elétrons e as mobilidades das subbandas em estruturas semicondutoras Q20 a

baixas temperaturas. Os nossos cálculos descrevem de maneira correta e

quantitativa os resultados experimentais para as mobilidades quânticas. No nosso

trabalho, os mecanismos de espalhamento por impurezas ionizadas e os efeitos de

blindagem foram estudados. Conseguimos os seguinte resultados principais:

1) Mostramos os acoplamentos intersubbandas tem um papel crucial nos

espalhamentos por impurezas ionizadas e no transporte deste sistema de várias

subbandas. As mobilidades das subbandas de maior energia são dominadas por tal

acoplamento. Embora existam altas concentrações de impurezas nas estruturas

tipo-delta, o espalhamento por impurezas ionizadas ainda pode ser descrito pelo

potencial de Coulomb com blindagem. As correlações entre as impurezas podem ser

introduzidas pelo fator de estrutura das distribuições de impurezas, que não deve

levar a um aumento significativo da mobilidade no GaAs com estruturas planares

dopadas com Si.

2) A aproximação de Thomas-Fermi e a aproximação onde são considerados

apenas os elementos diagonais da matriz dielétrica de RPA (que são

freqüentemente usados para sistemas Q2D e Q1D), não são capazes de descrever

os efeitos de blindagens nestes sistemas com multisubbandas. Entretanto, a RPA

com a completa dependência no vetor de onda q fornece uma razoável descrição

dos resultados experimentais.

3) Mostramos também que as concentrações de aceitadores de fundo (background)

modificam fortemente as mobilidades das subbandas mais altas e a mobilidade

média de arrasto em GaAs com estruturas planares dopadas com Si. Tal efeito

reflete a característica especifica dos sistemas com dopagem tipo-delta onde o

confinamento de elétrons é determinado simplesmente pelo potencial auto-

consistente. Mostramos também os efeitos de acoplamento entre duas camadas de

dopantes na mobilidade, bem como os efeitos do confinamento extra devido ao poço

quântico (QW). Estes efeitos têm grande interesse experimental.
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The electron transport properties in 5-doped semiconductor systems are studied. The subband
electronic structure of the 5-doped system is obtained by solving the coupled Schrõdinger and
Poisson equations. The screening of the quasi-two-dimensional electron gas is taken into account
for the ionized impurity scattering through the matrix dielectric function within the random-phase
approximacion, The quantum and transport mobilities are calculated numerically as a. function of
the total electron density and the width of the doped layer at zero temperature, The intersubband
scattering and the effect of empty subbands above the Fermi leveI on the electron mobilities are
investigated. The calculated mobilities are in reasonable agreement with the available experimental
results.

I. INTRODUCTION

ln recent years, there has been increasing interest in
the study of the electron transport properties in II"-doped
semiconductor systems. The 8-doped systems are, in gen-
eral, characterized by a rather high electron concentra-
tion, which makes them different from the other quasi-
two-dimensional (Q2D) systems, such as heterojunctions
and quantum wells. Typically, several subbands are oc-
cupied in a II"-dopedsystem and the effects resulting from
the occupation of several subbands are very important.
An advantage of the actual system is that no ínterfaces
are present to confine the electrons and ionized impurity
scattering is by far the most important scattering mech-
anism.

A large number of experimental investigations1-13 have
been carried out on the electron transport properties in
11" layers. However, the theoreticaIstudies on the electron
transport properties of II"-dopedsystems are limited in
some way, Gillman et al.2 reported the calculation re-
sults of temperature dependence of the average electron
dríft mobility in II"-dopedGaAs and they found the same
trends as found experimentally for the Hall mobility. But
they did not give details about the calculation and the
electron subband mobility at low temperature was not
obtained. However, in II"-dopedsystems, the electrons in
different subbands have very different mobílifíes. Gold et
al.14 studied theoretically the electron transport in struc-
tures with low doping concentration such that only the
lowest subband is populated. They included the influ-
ence of the disorder in the doping layer on the density
of states and screening effects. The mobility was cal-
culated by using a multiple-scattering theory. Mezrin
and Shik15 calculated the electron mobility in heavily
doped 11" layers using screened Coulomb potential within
the Thomas-Fermi approximation (TFA)_ Very recently,
González, Krupski, and Szwacka16 calculated the elec-
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tron subband transport mobilities due to the ionized im-
purity scattering. The screening on the Coulomb scatter-
ing potential was taken into account within the randorn-
phase approximation (RPA)_ ln Refs. 15 and 16, the cal-
culations for electron mobility were based on the elec-
tronic subband structure obtained within the semiclassi-
cal Thomas-Fermi approximation,17,15 which yields ana-
lytical expressions for the effective confinement potential
and subband wave functions. ln doing so, they had as-
sumed the impurity layer with zero thickness. Further-
more, the condition of a vanishing background acceptor
concentration was used in Ref, 15. In order to introduce
a finite background acceptor concentration, a variational
approach was employed and the electron subband wave
function and the transport mobilities were obtained up
to three subbands in Ref. 16_

In this work, we study the electron subband mobil-
ities in heavily doped 11" layers. To describe the sys-
tem more realistically in such a way that the results ob-
tained can reflect the experimental situation, we calcu-
late the electronic structure of the 11" layer by solving self-
consistently the coupled Schrõdinger and Poisson equa-
tions. Although the calculation of the electron transport
properties becomes more laborlous using the numerical
self-consistent results for the subband energies and wave
functions, the distribution of the donors and acceptors
and the excha.nge-correlation contribution of the 2D elec-
tron gas can be easily introduced. As a result, the influ-
ences of the doping concentration and the thickness of
the doped layer on the electron subband mobility can
be studied in contrast with previous works. In our cal-
culation, the screening effects of the 2D electron gas on
the scattering potential of the ionized impurity are in-
cluded and the effect of the empty subbands above the
Fermi levei ou the electron mobility is also investigated
through the dielectric matrix within the RPA. The the-
ory is applied to Si II"-dopedGaAs struct ures.
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The paper ia organized as foIlows. The electronic struc-
ture of the system is presented in Seco lI. In Seco llI, the
scattering potential and screening effects on it are de-
scribed. The transport mobility obtained from the Boltz-
rnann transport equations within the relaxation time ap-
proximation and the quantum mobility coming from the
linear response theory are exhibited in Seco N. The nu-
merical results for the electron mobilities and the com-
parison with experiments are discussed in Seco V. We
present our coneluding remarks in Seco VI.

11. ELECTRONIC STRUCTURE OF THE
SYSTEM

We consider the following impurity distribution for a
Si <l-doped GaAs structure,

nD(Z) = {ND/WD, Izl < WD/2
O, Izl > WD/2,

where N D is the areal impurity concentration, WD is
the width of the doped layer, which is taken in the
xy plane. For typical experimental conditions, we have
ND 2; 1012/cm2 and WD ;S 100 Á. At such a high
doping level, the average distance between impurities is
smaller than the effective Bohr radius aB = 1i2f'.o/m-e2

(aB ~ 100 Á for GaAs) and the electron wave function
of the individual Si donors overlaps strongly with each
other. As a consequence, the donors no longer act as iso-
lated trapping centers and an impurity band is formed
just below the conduction band of GaAs. The electrons
are free to move in the doping plane and they do not
freeze out on the donors at low temperature. Due to
the interaction between the ionized impurities and the
delocalized electrons, an effective attractive potential is
formed in the z direction, which confines the electrons
elose to the 8 layer. The electron energy in this direc-
tion is quantized into discrete levels and a Q2D electron
systern is formed. In GaAs, a critical n-type doping con-
centratiou is about 0.3 x 1012 em-2.13 In the low doping
concentration regime below this critrcal Mott density, the
electron wave functions of the individual donors do not
have an important overIap with each other. No impu-
rity band is formed and the conduction takes place by
electrons that hop from one donor site to another. In
this case, the electric conductivity vanishes at zero tem-
perature. In the present work, we are interested inthe
electron transport in the 8-doped systems in the high
doping concentration regime.

The eonventional way to determine the electronic
strueture of the li -doped system is to employ the so-
caIled self-consistent calculation within the Hartree-Foek
approximation.1S-20,11 It amounts to replace the ex-
act many-particle potential by an average one. Each
electron is assumed to move in a self-consistent poten-
tial V.c(z) and the eoupled one-dimensional Poisson and
Schrodinger equations have to be solved self-eonsistently.
ln such a calculation, the impurity distribution, the
exchange-correlation potential of the 2D electron gas,
and the nonparabolicity of the conduction band can be

included. ln another way, the electron subband energy
and wave functions of the ó-doped system can be ob-
tained within the semiclassical TFA. It has been proven
that for a system with zero-thickness doping layer and
vanishing background acceptor concentration, such an
approximation yields the results that are equivalent to
those obtained from the self-consistent approximacíon.V
The advantage of the TFA is that it gives an analyti-
cal expression for the effective confinement potential and
subband wave functions. However, it is difficult to take
into account the thickness of the doped layer and the
acceptor background.

ln this work, the subband wave functíons are obtained
from a self-consistent solution of the one-dimensional
Schrodinger and Poisson equations. The total electron
energy and wave function can be written as

(2)

(1) and

where n =1, 2,... , is the subband index, rll (kU) is the
electron position (wave vector) in the xy plane, En is the
subband energy, 1/Jn(Z) is the electron wave function in
the z direction, é:{kll) = 1i2 kff /2m· is the electron kinetic
energy, m" the electron effective mass, and A is the area
of the sample.

The Schrôdinger equation in 'the z direction is given by

where V.cCz) = VH(z)+Vxc(z) is the effective confinement
potential, which is composed as a sum of the Hartree po-
tential VH(Z) and exchange-correlation potential Vxc(z).
The Hartree potential, due to the electrostatic interac-
tion of the electrons with themselves and with ionized
impurities, is determined by the following Poisson equa-
tion:

(5)

where n,,{z) is the electron concentration distribution and
nA is the ionized background acceptor concentration. In
Eq. (5), we assumed that all the donors in the doping
layer are ionized, At zero temperature, the electron dis-
tribution is obtained by

(6)

where N is the number of the occupied subbands, p(E)
is the electron density of states of the system, and EF
is the Fermi energy. For a parabolic conduction band,
p(E) = m* /7T1i2 is a constant for the 2D system. The ef-
fect of the nonparabolicity of the conduction band on the
electronic subband structures can be included through
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electron density of states (or the effective mass m"].
In the numerical calculations, we found that using the
usual formalism for Q2D systems.ê! the nonparabolic-
ity modifies the self-consistent solution slightly. So, we
will not give the details here. The total electron den-
sity N; = J~oone(z)dz is determined by the difference
between ND and NA, where NA is the areal ionized
acceptor concentration and can be estimated from the
thickness of the depletion layer. For nA = 1014/cm3,

NA ~ 1011/cm2.
The exchange-correlation potential Vxc(z) is a function

of electron density and can be evaluated within the local-
density approximationêê

e
2

2 [ (11.4)]Vxc(z) = ----- 1 +O.05451n 1 +-
87rEoaB oatr ; r.

where Q' = (4/97r)1/3 and r. = [47rne(z)/3J-1/3 laR.
We performed a self-consistent calculation for the sub-

band electronic structures of a Si 6-doped GaAs system.
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FIG. 1. The subband energy as a function of (a) total elec-
tron density for WD = 20 Á and (b) the width of the doping
layer for ND = 5.5 X 1012jcm2. The dotted line indicates the
Ferrnl leveI.

(7)

ln the calculation, we took the parameters m" = 0.07mo,
("o = 13.18, and nA = 1014jcm3 . The electron exchange-
correlation energy and the band nonparabolicity were in-
cluded. We input the donor concentration ND and the
width of the doped layer WD. The effective confining po-
tential profile Vsc(z), the subband energy En, the wave
function 1/Jn(z), the Fermi energy EF , and the subband
electron population were obtained. We confirmed that
the subband electron population density from our calcu-
lation is in good agreement with the electron densities ob-
tained from Shubnikov -de Haas (SdH) experiments.ll,13

Figure 1 shows the subband energy En as a func-
tion of (a) the total electron density Ne for WD = 20
Á and (b) the thickness of the doped layer WD for
ND = 5.5 x 1012jcm2. ln the figure, the energy level
En is measured from the Fermi energy EF, which is in-
dicated by the dotted line. In Fig.l(a) for WD = 20
A, on1y the lowest subband is populated at low electron
density (low doping concentration). With increasing No
(or ND), the effective confinement potential becomes nar-
row and deep. The distance between two levels increases
and more subbands are populated. The n=2, 3, and 4
subbands begin to be occupied at Ne = 0.58, 1.62, and
4.76xl012jcm2, respectively. With increasing WD, we
also find that more subbands are populated as shown
in Fig. 1(b). In this case, however, the total electron
density is fixed. Wide doped layers lead to a broad and
shallow confinement potential.

IH. SCATTERING POTENTIAL

AND SCREENING

ln the following, we will consider only the ionized donor
scattering because it is the most important scattering
mechanism for the considered system. The ionized im-
purities scattering potential is given by

e2 1
V(r) = - L - ~,

i EO Ir'- Ril
(8)

where fi.. is the posit.ion of the impurity, the sum runs
over all the impurities in the system which are distributed
randomly in the doped layer. The two-dimensional
Fourier transform of the scattering potential is given by

(9)

where fi. = (Rlli, Zi).
In the calculation of the electron transport properties,

we assume a parabolic conduction bando Using the Fermi
golden rule, the electron transition probability from state
In, kll) to In', kíl) for electron-impurity scattering is given
by

~~, 27r ~ 12
Wn,n.(kll,kll) = Iilun,n·(qll) 6kil-kll,qll

x6(En·(kíl) - En(kll)J, (10)

,.'l., '.,I' ',;..J
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where Un,n' (qjl) is the transition matrix element due to
the scattering.

The present system has a rather high electron density
and consequently the screening of the scattering potential
due to the electron gas will be significant. The screened
íonized impurity potential can be obtained in terms of
the static dielectric response function within RPA. Be-
cause of the occupation of severa! subbands, the dielec-
tric function has a tensor character given by €a,/3(qjl) =
"nnl,,,,m'(qjl)' where a = (n,n'), (3 = (m,m'). If we as-
sume that the impurities are uniformly distributed in the
doped layer and are uncorrelated, the square of the tran-
sition matrix element due to the screened Coulomb scat-
tering potential is given by

(11a)

and

G/3(QIl,z.) = 100

dzW",(z)w",,(z)[e-Qlllz-z.1

+(-1)"'+"" e-911Iz+z.I], (llb)

with the change in electron momentum due to scattering

(llc)

and () is the angle between kll and kíl.
In the above equations, €~,~ (qjl) is the element of the

inverse matrix of the dielectric response function, and the
sum (3 = (m, m') runs over ali the subbands of the sys-
tem. In actual calculations, however, we have to limit the
(3 sumo In most previous works, only the matrix elements
of the dielectric function associated with the occupied
subbands were considered. Consequently for a system of
N occupied subbands, the dielectric funct ion €a,p(qll) is
approximated by a N2 x N2 matrix. Following this ap-
proach, the subband mobilities in heterojunctions with
two occupied subbands were studied in Refs. 23-25. And
those in a d-doped system with three occupied subbands
were calculated in Ref. 16.

The dielectric function within the RPA is given by

(12a)

where

(12b)

is the Coulomb form factor and X~ (qjl) is the static
electron density-density correlation function23,24,26-28

without the electron-electron interaction. Notice that
X!.m' (qjl) = O only when both the subbands m and m'
are empty, and X!.ml (qjl) =1= O as long as one of the them is
populated. It means that the unoccupied subbands have
contributions to the intersubband interaction of the Q2D
electron gases.28 They could also infiuence the intrasub-
band interaction of the occupied subbands through the
mode coupling between the intrasubband and intersub-
band excitations. Such an effect in the collective excita-
tions of the QlD electron system with a three- band model
(one of them was empty), was investigated in Ref. 30.

IV. TRANSPORT EQUATIONS

Considering only the ionized impurity scattering, we
calculate the electron subband quantum and transport
mobilities. These are determined from the different scat-
tering times connected to the average time between the
scattering events. The quantum Iifetirne or the single
particle relaxation time is the averaged elastic scattering
time. On the other hand, in the transport lifetime or the
momentum relaxation time, every scattering event is av-
eraged over its projection of the outgoing wave vector on
the incident dírectíon.P The Boltzmann equation of the
d-doped system for steady-state transport can be written
as

x[Jn' (kíl) - I,,(kll)], (13)

where Wn,n.(kll,kíl) is given by Eq. (10), and In(kll)
is the electron distribution function. Notice that
Wn"n(kíl' kll) = Wn,n' (kll' kíl)·

Within the relaxation time approximation, the distri-
bution function can be written as29,19

(O) ~
- (O) ~ e - ~ 81n (kll) tI,,(kll) = In (kll) + -.likll· EII _ Tn(é),

m oé(kll)

where I~O) is the Fermi-Dirac distribution function and
r~(é) is the so-called subband transport lifetime (momen-
tum relaxation time). The Boltzmann equation can be
reduced to a coupled linear equation about r!(ê).29 At
T = O, only the electrons on the Fermi surface contribute
to electric transport and we have r~ = r~(EFn), where
EFn = EF - En. For a system of N subbands populated,
the electron subband transport lifetime is determined by
the equations

N

z:::: Kn,n'"T~ = 1 for n = 1,2, ... , N
n'=1

(14a)

with
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Kn,n = :: {11r

d(JIu..,n(qll)12(1- cos é)

+t 1"d(JIUn,n'(qll)12}, (14b)
n';"n o

and, for n' =1= n,

(14c)

where

(14d)

The quantum mobility or the single-particle mobility T~

is determined by the average scattering time. Within the
linear response theory, the subband quantum Iifetime is
given by24

From the transport and quantum lifetime, the electron
subband transport mobility and quantum mobility can
be obtained easily,

Notice that the empty subbands n > N do not appear in
the transport equations (14) and (15) which determine
the electron mobilities. They are not involved in the
scattering processes directly. However, the empty sub-
bands influence the impurity scattering potential through
screening effects, which is taken into account by the di-
electric funetion.

V. NUMERICAL RESULTS ANO OISCUSSION

Using the previous results for the transport proper-
tios, we ealculated the electron transport mobility and
the quantum mobility in the Ó layer. In Fig. 2, the elec-
tron subband (a) quantum mobility and (b) transport
mobility for the Si ó-doped GaAs struetures of Wv = 20
A are plotted as a function of the total electron den-
sity. The solid curves indicate the results considering
only the N occupied subbands in the dielectric function,
which is approximated by a N2 x N2 matrix. The dashed
and dotted curves present the results including one and
two empty subbands, respectively, in the dielectric func-
tion, which is given by a (N + 1)2 x (N + 1)2 and a
(N + 2)2 x (N + 2)2 matrix. It is seen that the empty
subbands above the Fermi level indeed influence the elec-
tron mobility through the effect of the screening on the
Coulomb scattering in the present multisubband system.
Such an influence on the mobility of the electrons in the
higher subband is stronger than in the lower ones. Both
the quantum and transport mobilities eoming from the
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FIG.2. The subband (a) quantum mobility and (b) trans-
port mobility as a function of the total electron density for
WD = 20 A. The solíd, dashed, and dotted curves present the
results including 0, 1, and 2 empty subbands in the dielectric
matrix, respectively.

highest occupied subband are depressed due to the ef-
feets related to the empty subbands. However, such an
infl.uence on the mobilities from the lower subbands is
not pronounced.

We found that the quantum mobility, as shown in Fig
2(a), increases with increasing subband index and de-
creases with increasing total electron density (or donor
concentration). At the onset of occupation of a new
subband, the theoretical subband mobility exhibits an
abrupt jump. Such a diseontinuity is due to the inter-
subband scattering and has been discussed in Refs. 16,
23, and 24 for the multisubband transport in Q2D sys-
tems. However, for the transport mobility, as shown in
Fig. 2(b), p.~ > p.~ when only three subbands are pop-
ulated, which is qualitatively in agreement with the re-
sults in Ref. 16. This is mainly due to the fact that the
wave function 'if;2 (z) is antisymmetric and has a node at z
= O. For a narrow doped layer, electrons in this subband
have a smaller overlap with the impurities than those in
the third subband and, consequently, the scattering is
weaker. After the onset of occupation of the n = 4 sub-
band, p.; becomes smaller than p.~. This is because 'if;2(Z)
and 'if;4(Z) have the same parity, and the intersubband
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mobility.

5(a) and 5(b), respectively. In this figure, the calculated
mobilities of the first two subbands for WD = 20 Á are
given by the solid (n = 1) and dashed (n = 2) curves.
The experimental results of a Si ó-doped GaAs are in-
dicated by solid circles (n = 1) and squares (n = 2).
For the transport mobllity in Fig. 5(a), our calculation
shows the correct qualitative behavior as found experi-
mentally. Quantitatively, the calculated transport mo-
bility of n = 1 subband has a better agreement with
experimental measurements than that of n = 2 subband,
which is about a factor of 2 larger than observed exper-
imentally for Ne > 300x 1012/cm2. At the onset of the
population of a new subband, the theoretical subband
mobility exhibits an abrupt decrease, which is not seen
experimentally. This is probably due to the fact that
in real systems there exist thickness fluctuations in the
doped layer, which lead to fluctuations in En. However,
in Fig. 5(b), the calculated quantum mobility shows a
quite good agreement with the experimental results.

In Fig. 6, the quantum mobility is .given as a functíon
of the width of doped layer WD for Si 6-doped GaAs of
ND = 5.5 x 1012jcm2. The theoretical (experimental)
quantum mobilities are presented by solid curve (circles)
for n = 1, dashed curve (squares) for n = 2, and dotted
curve (triangles) for n = 30 We found that for the first
two subbands, the calculated mobility is in good agree-
rnent with the experimental results. By increasing WD,
J.Li. increases slowly and J.L~ tends to J.Li at WD > 120
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port mobility and (b) the quantum mobility in Si d-doped
GaAs. The solid and dashed curvespresent the calculated mo-
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Á. The experimental results are indicated by the solid circles
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from Refs. 5 and 11, but the results at N« = 7.2 X 1012/cm2

are from Ref, 4 and the results of transport mobilities at
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A. For the higher subband n =3, the calculated mobil-
ity shows qualitatively similar WD dependence as found
experimentally.

We also found that the ratio of the transport mobility
to the quantum mobility frorn our calculation increases
with increasing the doping concentration. But it is al-
most not infiuenced by the thickness of the doped layer.
In the range of the doping concentration considered, it
increases from three to six for the lowest two subbands
and from one to three for the third one. Experimentally,
this ratio was found to be in the range 1.3 - 2.9 for the
8-layer structurell,13 and it is about two for the 8-doped
quantum wells." The ratio of the transport to the quan-
tum mobility reflects the nature of the scattering mecha-
nism, i.e., long-range versus short-range scattering. lt is
seen that the present calculation yields a higher transport
mobility than the experimental resulto It seems that the
model of the screened Coulomb scattering potential with
static RPA describes the short-range scattering more ex-
actly than the long-range scattering.

ln the present calculation, only the scattering of íon-
ized donors is considered. Even though ionized impurity
scattering dominates the electron mobility in 8-doped
systems, there are several unknown factors, which can
modify the electron transport properties. For instance,
frorn an experimental point of view, the profile of the im-
purity layer and the effective thickness of the doping layer
are not always exactly known. ln heavily doped semicon-
ductor systems, the random distribution of the impurities
induces a band tail and creates localized states. Then
the density of states of the d-doped system is no longer a
steplike function. Because of the localized states and the
deep level centers, the electron density becomes much
lower than the intended doping concentration at high
daping level. For the present system, this is expected
to be relevant for ND > 6 X 1012 cm-2• Other scat-
tering mechanisms will also infl.uence the electron mo-
bility slightly, such as scattering with ionized acceptors,
neutral impurities, and the electron-elect.ron interaction.
Deep level centers and the presence of possible impurity
clusters may also play a role. Because of the high impu-
rity concentration, the correlation among the impurities
becomes important and should be considered. Besides,
the screening is an important factor that infl.uences the
electron-impurity scattering. ln the theoretical study of
the electron transport properties in Q2D systems, the
static RPA screening is often used. In principle, alI the
energy states in the system, including the screening ef-
fects, and the full energy spectrum should be considered
in the dielectric function within RPA for a multisubband
system. ln the present calculation, we included all the
occupied subbands and two empty subbands above EF
in the dielectric function. ln such a case, the numeri-
cal calculation was already very difficult for four or five
populated subbands.

In our calculation, we assumed a steplike electron den-
sity of states for each subband af the Q2D systems. This
is justified when the subbands are well separated in en-
ergy and are much larger than the band tail of localiza-
tion st.ates, This is the case for the first few subbands.
When there is a band tail at the onset of subband occu-

pation, the Fermi level will cross the mobility edge of the
subband leading to a different scattering rate.

VI. CONCLUSIONS

ln summary, the electron transport properties in 0-
doped semiconductor systems have been studied, Our
mobility calculations were based on the self-consistent so-
lution of the subband electronic structure and wave func-
tions. The influences of the doping concentration and
the thickness of the doped layer on the electron subband
transport and quantum mobilities were investigated. The
ionized donor scattering was considered and the screening
was included within the static RPA for the multisubband
2D system. To the best of our knowledge, this is the first
work where the self-consistent electronic structure of 0-
layers has been used to investigate the subband quantum
and transport mobilities. The effects due to the thickness
of the doped layer on the subband mobility and due to
use of empty subbands in the screening of 2D electron
gas were also studied.

Our calculation shows that the electrons ín the lowest
subband have a low mobility, which is not much influ-
enced by the doping concentration and the thickness of
the doped layer. The mobilities due to the occupation of
higher subbands are much bigger than those of the lowest
one for small WD, and they are strongly dependent on
the different parameters, We demonstrated that inter-
subband scattering is also important, as we have seen at
the onset of the occupation of a new subband. Although
the empty subbands are not involved in the solution of
the Boltzmann transport equation at zero temperature,
they affect the electron mobility through screening effects
on the scattering potential. The result of our calculation
shows that the empty subbands modify the subband mo-
bility, especially for the highest occupied subband. So, in
this way our calculation includes the important effect of
the mode coupling between the intrasubband and inter-
subband excitations that has been shown to be relevant
in multisubband models of plasmon excitations. We also
observed that is very important to obtain an accurate
electronic structure for the mobility calculations. For in-
stance, the position of the onset of the population of a
new subband determines where a new scattering channel
is introduced, which leads to the discontinuity in mobil-
ity.

Our calculated quantum mobilities of the lowest two
subbands, both for Ne dependence and WD dependence,
are in quite good agreement with experimental results
from Shubnikov -de Haas measurements.ll,13 The trans-
port mobilities and the quantum mobilities of higher sub-
bands have the same behavior as observed experimentally
but, quantitatively, they are larger than experimental re-
sults,
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The effect of the background acceptor concentrationon the electron mobility in Si 8-doped GaAs has been
investigated. The subband electronic structure of the 8-doped system was obtaíned by solving self-consistently
the coupled Schrodinger and Poisson equations. The screened ionized impurity potential is considered by
taking lhe dielectric matrix of the multisubband systemwithin lhe random-phase approximation. We found thal
the background acceptor conceiltration in the present system strongly modifies both lhe mobilities of electrons
in higher subbands and lhe average drift mobility. Our results may provide useful information for the inter-
pretation of experimental mobility data in 8-doped semiconductors and related devices.

The quasí-two-dimensional (Q2D) electron gas system in
a o-doped semiconduclor structure is realized by producing a
very thin doping layer with high impurity concenlration.
Typically, lhe thickness of lhe doping layer WD < 100 Á and
lhe areal concentration ND2:: 1012/cm2. ln contrasl with other
Q2D semiconductor systems, such as heterojunctions and
quantum weJls, no inlerface is present in a o-doped structure.
The confinement potential is simply formed by the interac-
tion between lhe ionized impurities in the doping layer and
the delocalized electrons around it. UsualIy, several subbands
are populated in o-doped systems because of high electron
density, and lhe ionized impurity scattering is by far the rnost
important scattering mechanism at low temperature.

In recent years, an appreciable amount of experimental
work has been carried out on the electron transporl properties
in o Iayers.' The effects of the doping concentration, thick-
ness of lhe doping layer and temperature, on the electron
mobility have been studied.l " However, the influence of lhe
background acceptors is not considered. ln general, such an
effect is not well pronounced on the electronic properties of
a Q2D system. However, in o-doped structures, lhe quantum
confinement is a result of the self-consistent bound potential.
The electronic subband structure of the system is mainly
determined by the doping concentration, the profile of the
doped impurities, and also the background acceptor concen-
tration. ln this paper, we will show that the background ac-
ceptor concentration in a Si 8-doped GaAs strongly infíu-
ences the rnobilities of electrons in the higher subbands and
lhe average drift mobility.

ln the system here considered, the impurity layer is placed
in the x y plane with thickness WD =20 Á and areal donor
concentration ND' The background acceptors are distributed
uniformly in the sample. The electronic structure of the sys-
tem is determined by employing lhe so-called self-consistent
calculation within the local density approxirnation.f "? In
such a calculation, impurity distribution, lhe exchange-
correlation potential of the 2D electron gas, and the nonpa-
rabolicity of the conduction band can be included. The sub-
band energy E; and wave function I{In(z) are then obtained
from the nu me rica I self-consistent solution of the one-
dimensional Poisson and Schrodinger equations, The total
elcctron energy is given by En(kll)=En+e(kll)' where

o163-1829/95/52( 4)/2245( 4)/$06.00

n=I,2, ... is the subband index, e(kll)=1í2k~/2m* is the
electron kinetic energy, and kU is the electron wave vector
in the xy plane. The effective confinement potential
Vsc(z) = V H(z) + Vxc(z) is composed as a sum of the Hartree
potential Vu(z) and exchange-correlation potential Vxc(z).
The Hartree potential is determined by the Poisson equation.
ln lhe calculation, we assumed that ali the donors in the
doping layer are ionized. The subband nonparabolicity is in-
cluded through lhe electron density of states." The ionized
acceptor distribution can be written as

(1)

where nA is lhe background acceptor concentration which Is
about 1014_1015fcm3 in the experimental situation, 0(x) ís
the step function. WA is determined by EF=Ev+Ea for
Izl;;.wA• where Ea is the binding energy of lhe acceptors
measured from lhe top of lhe valence band E v' Then, we
have Vsc( WA) =E F +E g - E a' because in the depletion layer
nA is much larger than the electron concentration. The
thickness af the depletion layer can be estimated by
Wde = ,Jeo(Eg- Ea)/27re2nA , where Eg= 1.52 eV is the en-
erg; gap of GaAs and we took E.=30 meV which is a
typical binding energy for shallow acceplors in GaAs. WA is
determined self-consistently from lhe requirements of charge
neutrality and Fermi energy lineup by using the initial value
of Wdep' The total areal electron density is given by
Ne=ND-2nA WA·

The exchange-correlation potential as a function of elec-
tron density ne(z) is given by?

e
2

2 [ (11.4) ]Vxc(z)=- -- 1+0.0545In 1+-- ,
8 7TEoU B trar s rs

where a=(4/97r)1/3, rs=[47Tne(z)/3rl/3/aB, and aB is the
effective Bohr radius,

In Fig. 1, we give the self-consistent solutions of lhe con-
finement potential profile VsC<z), the first five quantized lev-
eis E n' and lhe electron distributions for two different accep-
tor concentrations nA = 1014 and 1015/cm3 of Si o-doped
GaAs with ND = 8 X 1012fcm2. The shadow indicates lhe
doping layer. We found that WA=4.674 and 1.478 ILffi for
nA = 1014 and 1015Jcm3, respectively, In the figure, the en-

(2)
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FIG. 1. The effective confinement potential profile Vsc(z) and
the electron density distribution ne(z) in Si o-doped GaAs of
WD = 20 Á and N D = 8 X 1012/ cnr', The thick solid and thick dashed
curves indicare V.c(z) for nA = 1014 and 1015/crn3, respectively. The
corresponding n.(z) is presented by the thin solid and thin dotted
curves. The shadow indicates the doping layer and E. are given by
the thin solid and thin dashed lines.

ergy is measured from the Fermi energy E F which is indi-
cated by the dotted line. Figure 2 shows the influence of the
nA on the subband energy En in the structure of
Nv=8X l012fcm2. It is seen that, at nA = 1014/cm3,

En<EF for the first four subbands (n~4) which are popu-
lated. With increasing nA, E 1 almost does not change, and
the other levels shift to higher energy. The distance between
the different levels also inereases. E 4 crosses the Fermi en-
ergy at nA =9 X 1014fcm3 and becomes depopulated for
higher acceptor concentrations. We also found that the frac-
tional eleetron density of the lowest subband increases with
increasing nA, while those of the higher subbands decrease.

When we calculated the electron subband mobílity, only
the ionized donor scattering was eonsidered because it is the
most important scattering mechanism in the ô-doped sys-
tems. The ionized donor scattering potential is given by

3>' -40.0"5 2
uf, -80.0
p.J "

-120.0
0=1

-160.0 I.
10 1015 1016

nA (em")

FIG. 2. Subband energy as a function of background acceptor
concentration for Si o-doped GaAs of WD = 20 Á and
ND=8X 1012/crn2•

~ e2 1
V(r)=-L ~-~-~-,

; EO Ir-Ril

where Ri is the position of the impuríty and the sum runs
over all the impurities which are distributed randomly in the
doping layer. In the calculation of the electron transport
properties, we assumed a parabolic conduction bando Using
the Fermi golden rule, the electron transition probability
from state In,kll> to In/ ,kiP for electron-impurity scattering
is given by

(3)

where un,n,(qll) is the transition matrix elemento If we ignore
the correlation between impurities, the square of the transi-
tion matrix element due to the screened ionized donor scat-
tering is given by

4 2_(27Te
2
)2 NDJWDI2 2lun.n,(qll)1 - ~q -w dzi[Gn,n,(qll,Zi)] ,

~o II D -WDI2
(5)

where

X[e-qUIZ-Zil + (_l)m+m' e-qUIZ+Zil], (6)

with the change in electron momentum due to scattering
written as

qll=[ (En-En,) 2~* +2k~

/ 2 * ] 1/2
-2kncos(J-Y (En-En') ~ +k«. (7)

ln Eq. (7), (J is the angle between kll and kli . E:n1',mm,(qn) is
the element of the inverse matrix of the dielectric response
function, and the sum (m,m/) runs over a11the subbands of
lhe systern. In this work, the dielectric function is calculated
within random-phase approximatíon.f'" In practical calcula-
tions, we have to limit the (m ,m ') sumo In most previous
works, on1y the matrix elements of the dielectríc function
associated with the occupied subbands were considered.
Consequently for a system of N occupied subbands the di-
electric function Enn'.mm,(qn) is approximated by an
N2XN2 matrix.3,lU.11 In our calculation, we inc1uded ali the
occupied subbands and two empty subbands above E F in the
dielectric response function which is approxirnated by an
(N+2)2X(N+2f matrix."

The electron mobility has been calculated by solving the
Boltzmann equation within relaxation time approximation
for the multisubband system at zero temperature.lO,ll,4 The
transport mobility is shown as a funetion of the total electron
density in Fig. 3 for nA = 1014fcrrr'. It is seen that the trans-
port mobilities of the n = 2 and n = 3 subbands are dose to
each other and rnuch higher than that of the lowest subband.
The abrupt decrease of the mobility at N e= 4.76X 1.0U

/C1ll
2
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FIG. 3. The transpor! mobilities of the lowest three subbands as
a function of the total electron density for WD = 20 Á and
nA = 1014jcm3• The solid, dashed, and dotted curves show the re-
suIts of n= 1,2, and 3 subbands, respectively.

is due to the onset of the occupation of the n=4 subband,
where the intersubband scattering related to the fourth sub-
band starts to be included in lhe scattering processes.

Now, we proceed to a discussion on the main contribution
of our paper, i.e., the influence of the background acceptor
concentration on lhe subband electron mobilities. In Fig, 4,
the transport rnobility is plotted as a function of the acceptor
concentration for Si b'-doped GaAs with (a) ND = 2 X 1012/
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FIG. 4. The transpor! mobility as a function of lhe aeceptor
eoncentration for (a) ND=2X 1Q12lcm2 and (b) ND=8X 1012(
crrr'. Wn=20 Á.
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FIG. 5. The average drift rnobility as a function of the acceptor
concentration for .5 layers of WD = 20 Á and different N D: a,
2 X 1Q12jcm2; b, 4 X 1Q12jcm2; c, 6 X l012/cm2; d, 8 X lOI2/cm2;
and e, lXlQ13/crn2.

cm2 and (b) ND=8X 1012/cm2• It is seen that, when nA var-
ies frorn 1014 to 5 X 1015/em3, the rnobility of electrons in the
lowest subband does not change in an appreciable way. How-
ever, the mobilities of higher subbands change significantly.
The abrupt inerease of the mobility at nA = 2.5 X 1Q14/cm3 in
Fig. 4(a) and at nA = 9 X l014/cm3 in Fig. 4(b) is due to the
depopulation of the n = 3 and n = 4 subbands, respeetively.
Exeept for this increasing jump, the mobility deereases with
inereasing nA. Figure 4(a) shows that /L~ is about four times
larger than /L~ at nA=1014/em3. But, when nA>2.7
xl015/em3, /L~ beeomes smaller than /L~. For a higher dop-
ing concentration ND, the influence of nA on the mobility
becomes weaker but still significant as shown jn Fig. 4(b).
Notice that we did not take into account the ionized aeeeptor
scattering in the calculation because it is much smaller than
the ionized donor scattering. The effect of the background
acceptor concentration on the subband mobility can be un-
derstood as follows. By increasing nA, the thickness of the
depletion layer deereases and the profile of the effective con-
finement potential becomes narrower and deeper. On one
hand, this Ieads to a strong interaetion between the conduc-
tion electrons and the ionized donors because they become
closer, As a consequence the impurity scattering increases. If
the acceptor scattering is included, such an inerease of the
impurity scattering on the electrons will be enhanced
slightly. On the other hand, the separation between the sub-
bands increases and more electrons are transferred to the
lowest subband from the higher ones. At some nA , the high-
est occupied subband becomes depopulated and the intersub-
band scattering related to this subband disappears.

The average drift mobility /LI of the eleetrons is obtained
from lhe subband mobility and eleetron population as
p..r=L~~I/L'"N~/Ne' Figure 5 shows the dependenee of the
electron drift rnobility on the acceptor concentration. The
solid, dashed, dotted, dotted-dashed, and thick-dashed curves
present the results for (a) N D = 2 X 1012, (b) N D =
4X1012, (c) ND = 6Xl02, (d) ND =8XlO12, and (e)
ND = 1013 /cm2. It is seen that the electron drift rnobility is
also strongly infiuenced by the background aceeptor concen-
tration. For instance, for the donor concentration of
N D = 2 X 1Q12/em2, the mobility /Lr =4654 cnr' IV s at
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nA = 1 X 1014jcm3 and decreases to 2397 cm2N s at
ItA=5Xl015jcm3. The abrupt change of the mobility in
curves a and b is due to the depopuIation of n = 3 subband,
and that in curves c, d, and e is induced by the depopulation
of n = 4 subband. We observe that, in Si t5-doped GaAs of
ND=1012_1013jcm2 and nA= 1014_5 X 1015jcm3, which ís
the usual experimental situation, there are two up to four
populated subbands. The onset of the occupation of the
fourth subband depresses strongly the drift mobility.

ln the present calculation, only the scattering of ionized
donors was considered. Although severa! other scattering
mechanisms, such as ionized acceptors, neutral impurities,
deep level centers, and electron-electron interaction, can
modify the electron transport properties, the main feature of
the effect of the background acceptors on the electron mo-
bilities in this work will not change, If including ionized
acceptor scattering, this effect will be enhanced slightly,

ln a o-doped system, high donor concentration leads to an
impurity band just below the conduction bando The disorder
of the impurity distribution could create localization states
and a band tail. The thickness fluctuations in the doping layer
ma y also broaden the energy leveI E n' When there is a band

tail at the onset of subband occupation, the Fermí level will
cross the mobility edge of the subband leading to a different
scattering rate. In experiments, the change of the mobility at
the onset (or depopulation) of a higher subband will not be
abrupto In the calculation, we assumed a steplike electron
density of states for each subband of the Q2D systems. This
is justified when the separatíon between subbands is much
larger than the band tail of localization states. This is the case
for the first few subbands.

ln conclusion, we have studied theoretically the electron
mobility in Si o-doped GaAs. We found that the background
acceptor concentratíon strongly influences lhe mobilíties of
electrons in high subbands and the average drift mobility.
Such an effect reflects the specific characteristics of Q2D
system in a t5 layer which is simply determined by the self-
consistent potential. We hope our calculation can provide
useful information for experimentalists to optimize the
samples and the related devices.
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The low-temperature transport properties are studied for electrons confíned in ó-doped semi-
conductor structures with two sheets in parallel. The subband quantum mobility and transpore
mobility are calculated numericallyfor the Si ó-doped GaAa systems, The effect of coupling of the
two Ó layers on the electron transport is investigated. Our calculations are in good agreement with
experimental resulta.

I. INTRODUCTION

In recent years, an appreciable amount of work
has been devoted to the electron transport properties
in ó-doped semiconductor systems.1-13 The quasi-two-
dimensional electron system in 5-doped semiconductors
is realized, typica1ly,by a very thin doped layer (W D ;S 20
Á) of high doping concentration (ND ;:::1Ol2 cm-2). On
one hand, a high concentration of impurities leads to a
high electron density in the system and several subbands
are populated. On the other hand, as a consequence,
thls resulta in a very strong jscattering on the electrons
and, consequently, a low electron mobility. In order
to fabricate hígh-mobílíty 5-doped devices, some works
are focused in improving doping and material growth
techniques.2•4•5 An alternative way to improve the elec-
tron mobility ín the <5-dopedsemiconductors, which has
been proposed recently, is to make a structure with dou-
ble Ó layers.10-13 It is expected that the couplíng between
the two layers leads to an increase of the average dístance
Df the electrons from the doped layers. The impurlty
scattering is then reduced and the electron mobility is
enhanced, It was shown that the electron mobility is in-
creased by two to five times over that of a single 5-doped
case. 10

In previous works,7,5 we studied theoretically the elec-
tron transport properties in single ó-Iayer systems. The
effects of the doplng concentration, thickness of the
doped layer, as well as the background acceptor concen-
tration ou the electron subband mobility were investi-
gated. The screening of the electron gas on the impu-
rity scattering potential was included within the static
random-phase approximation (RPA). In this paper, we
report a theoretical study of the electron transport prop-
ertíes in double ó layer systems. We calculete the elec-

nD(Z) = {.ND/WD,O,

tron subband mobility for two interacting Si 8-doped lay-
ers in GaAs based on the se1f-consistent calculation of
the electronic structure and wave functions in such a
system. The electron subband quantum and transport
mobilities are determined from the different scattering
times connected to the average time between the scatter-
ing events. The quantum lifetime or the single pareícle
relaxation time is the averaged elastic scattering time.
On the other band, ín order to obtain the transport Iífe-
time 01' the momentum relaxation time, every scattering
event ia averaged over its projection of the outgoing wave
vector on the incident dírectíon.ê For a discussion from
a theoretical point of view, see Ref. 14. Experimentally,
the quantum mobility is obtained by Shubnikov-de Haas
(SdH) measurements and the transport mobility is deter-
mined by the so-called mobility spectrum technique or by
Hall measurements combined with the subband electron
density obtained from SdH meaeuremeuts.ê-P We show
the effect of the coupling between the two 5 layers on the
quantum and transport mobility of electrons in dift'erent
subbands. In Seco II, the self-consistent electronic struc-
ture of the coupled 8 wells is determined and in Seco IH,
the electron mobilities are numerically calculated and the
theoretical results are compared with the available exper-
imental unes.

II. SELF-CONSISTENT ELECTRONIC
STRUCTURE

We consider the Si lÍ-doped GaAs structure with dou-
bly doped layers in parallel. We assume that the two
doped layers are symmetric, Le., they have the same
thickness and doping concentration. If we take the doped
layers in the xy plane, the donor impurity dístrâbution
can be written as

(Ws - WD)!2 < Izl < (Ws + WD)/2
otherwíse , (1)

0163-1829/95/52(15)/11273(4)/$06.00 11273 @1995 The American Physical Society
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where ND is the donor areal concentration of eaeh layer,
WD the thiekness of the doped laye~, and Ws the sep-
aration between the two layers. In Eq. (I), we have
assumed Ws > Wn. For Ws 5 WD, the two doped
layers become overlapped. In this case, we deal with
the system as single doped layer." The electron energy
and wave function in the system can be written as
En(kll} = En + ~(kll)' where n =1, 2, 3,... is the sub-
band index, e(kU} = 1i2kU/2m* is the electron kinetic

energy, and kJl the electronwave vector in the plane.
The subband energies E•• and wave functions 'l/Jn(z} are
obtained from the self-consistent solution of the coupled
one-dimensional Schrôdinger and Poisson equations. In
the calculation, we assume that all the impurities in the
doping layers are ionized and the conduction band Is
parabolic. We took the parameters m* = 0.067m", (o =
13.18, and the energy g~p of GaAs Eg = 1.52 eV. The
exchange-correlation potential of the electron gas was in-
cluded within the local-density approximation.15•7•8 In
Fig. 1, the effective confinement potential V.c{z), the
subband energies, and the probability distríbutions of
the electrons in different subbands are depicted in the
case of a structure with Ws = 160 A, WD = 10 A,
No = 2.5 x 1012j cm2, and background acceptor concen-
tration nA ;; 1015jcm3• The shadow indicates the impu-
ritysheets. In this figure V.c(Z) is given by the thickcurve
and the tbin curves indicate the subband electron distri-
butions. It ls seen that the lowest two levels are closed
to each other and their respective electron distributions,
which strongly overlap with the impurity layers, are very
similar. Furthermore. the electron wave functions in the
higher levels spread out in a much wider region as com-
pared with those of the lowest subbands. Notice that the
wave functions of the lowest two subbands have differ-
ent parity. One (n = 1) is symmetric and the other one
(n = 2) is antisymmetric. In the case of E1 = E3, the
two levels become degenerate and the wave fwiction can
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FIG. 1. The resulta of the self-consistent calculation of
the effectíve confinement potential (tbíck-eclld curve), the
energy ievels En. and the electron probability distribution
(thin-solid curves) for a double J layer structure of Ws = 160,
A, WD = 10 Á, Nv = 2.5 X 1012/cm· for each Iayer, and
nA = l015/cm3. The energy is measured from the Fermi
energy (thin-dotted line), and the shadow indicates the Si
rS-doped Iayers,
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FIG. 2. The subband energy as a function of the separation
between the two doped layerswith Nt» = 2.5 X IOl2/cm2 and
Wv = 10 Á for eaeh layer. The dash curve indicates the
barrier at z = O between the two coupled quantum wells.
nA = 1016 /ems•

also be expressed as 1/I:I:(z) = ['l/Jl(Z) ± 'l/J2(Z)]/v'2, where
'I/J+(z) and 1/I-(z) present the electron states ín the right
and the left quantum well, respectively. In Fig. 2, the
subband energy E.,. is depicted as a function of the sep-
aration of the two sheets Ws for Nn = 2.5 x l012fcm2,
WD = 10 A, and nA = 101S/cm3. The dashedcurve
presents the barrier (at z = O) between the two quan-
tum wells. For small Ws, where the barrier V.c(O) is
much smaller than the lowest subband energy, the sys-
tem is similar to the single 61ayer. When Ws 5 WD, the
system becomes a single doped layer with doping con-
centration 2Nn. With increasing Ws, the barrier V.c(O}
increases rapidly. We find that El = V.c(O) at Ws = 89.4
A, and E2 = V.c(O) at Ws = 132.5 A. For Ws = 200 A,
the first two subbands become almost degenerate. At
small WS, the lowest three subbands are populated by
electrons. The n = -4 and 5 subbands become populated
forWs;:::: 46A and 196Á,respectively. When Ws -r+ 00,

the system behaves like two independent single Ó layers
and the euergy Ievel E3 corresponds to the secoud levei
of the independent d layer.

III. ELECTRON MOBILITIES

Based on the above self-consistent solution of the elec-
tronic structure a!l~ the wa,ve functions, we study the
electron transport properties of the system. In the calcu-
lation, only the scattering by ionized donors in the doped
layers are considered, because it is the most important
scattering mechanism at low temperature. We consider
the Coulomb scattering potential due to ionized impuri-
t~es, distributed randomly in the doped layer at positions
R;" whose two-dimensional Fourier transform is given by

(2)



52 ELECTRON MOBILITY IN TWO COUPLED li LAYERS 11275

Using the Fermi golden rule, the electron transition
probability from state In,k,,} to In', kíl} for the electron-
impurity scattering is given by

W••,••,(kll,kí,) = '1.; Iu..,••' (qj,Wókil-kn ,qnó[En' (kíl)

-E ••(kll)]' (3)

where u••,n,(qjl) is the transition matrix elemento Be-
cause of the high electron density in the present system,
the screening effects of the electron gas on the scatter-
ing potential has to be taken into a.ccount properly. The
screened ionized impurity potential can be obtained in
terms of the static dielectric response function within
the RPA.'7,~6-19 The dielectric function In the present
multisubband system has a tensor character given by
En"',mm'(i!t). For the present double 5 layer system, the
transition matrix elements, due to the screened scatter-
íng potential, is written as

where

G;,.•,(qll'Zi) = L(±l)"'+-'E;~"tntn,(qjl)G~L,(qll'z.),
tnm!

(4b)

where the overlapping function G~~~,(qu, Zi) is written as

G~~~,(qll'Zi) =I:dz1/J••(z)1/J",(z)e-qlllz:-.z:il, (4.-<:)

with the ch.ange in electron momentum, due to scattering
given by

qu = [<En - En' )7;; + 2k~

2m*
-2k" coso (E •• - E"')1i2 + krr

1/2

and o is the angle between kn and kÍl'
We have performed the numerical calculation for the

electron subband transport and quantum mobility, 1IS-

ing the self-consistent subband wave function to evaluate
the transition matrix elements. In practica1 calculations,
we have to limit the sum over (m,m') in Eq. (4b). For
a system with N populated subbands, we indude N +2
eubbands in the matríx of the díelectríc functíon, i.e., we
consider ali the occupied subbands ànd two empty ones.
Within such an approximation, the dielectric function
Enn',TnTn,(qj!) is approximated by an (N + 2)2 X (N + 2:)2
matrix. The thick curves in Fig. 3 show the quantum
mobility, as a function of Ws for ND = 2.5 x l012jcm2,

WD = 10 A, and nA = 1015/cm3. We found that the
quantum mobility of the lowest subband J.LI increases

slightly with increasing Ws until Ws = 130 A and
then turns out to be a decreasing function. The JLg de-
creases monatonously as a functian of Ws- For small
Ws, J.L~ ~ 14· When Ws > 82 A, J.L~ becomes smaller
than ",i and they are very clase to each other. The mo-
bility ",1 is about a factor of 3 larger than JLf. J.Ll is
close to JLã and it increases slawly with increasing Ws.
At Ws = 46 and 196 A, due to the onset of the oc-
cupation of the subbands n = 4 and 5, the calculated
subband mobility exhibits an abrupt jump as a canse-
quence of the intersubband intera.ction. We also notice
that, at the onset of the occupatian of n = 4 subband,
J.Li and J4 have small decreasing jumps, due to the con-
tribution of the intersubband scattering related to the
n = 4 subband. Hawever, J.Lã Increases abruptly. Such
a result reflects the screening effect ín the intersubband
intera.ction. At the onset of the occupation of n = 5 sub-
band, the changes of the quantum mobilities of the lawer
subbanda jJ.Ienot pronounced. The experimental resulta
of the quantum mobilityll are presented by the different
symbals in Fig. 3: circles (n = 1), squares (n = 2), tri-
angles (n = 3), and díamonds (n = 4). Our calculation
ís in quite good agreement with the experimental results
for the faur subbands. The thick curves ín Fig. 4 give the
transport mobility as a function of Ws. It is seen that
the subband transport mobility has a similar behavior as
the quantum mobilities. But the transport mabilities of
the lawest twa subbands are about a factor 4 larger than
the corresponding quantum mobilities. Such a factor is
about 2-3 for the n =3 and 4 subbands. Besides, the
transport mobility is difIerent from the quantum mobil-
ity ín the following ways. (i) ",1 ~ JL~ for Ws > 80 A,
J.L~ > J.L~ for Ws < 18 A, and J.L~ t'V J.Li for Ws > 150
Á. (ii) At the onset of the occupation of the n = 4 sub-
band, I'~is about a factor of 2 smaller than 1';,but it
Increases rapidly and approaches to J.L~ at larger Ws. (ili)

(5)
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FIG. 3. Tbe subband quantum mobility as a function ofthe
separation ofthe two J layers for ND = 2.5 x 1012fcm2 ano
WD = 10 A in Si J-doped GaAs. The thick and thin curves
indicate the ca.lculation resulta ofnA = 1015 and 1014 cm-3,

respectively. The solid, dashed, dotted, and dotted-dashed
curves present the results of the n =1, 2, 3, and 4 subbands,
respectively. The experimental resulta are indicated by the
circles, squares, triangles, and diamonds, wbich correspond

to n =1,2, 3, and 4, respectívely (see Ref. 11),
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FIG. 4. The same as Fig. 3, but for the subband transport
- mobilities.

At the onset of the occupation of a higher subband, the
transport mobilities of all the lower subbauds exhibit an
abrupt decrease. (iv) Intersubband scattering is stronger
for the transport mobility. Unfortunately, as far as we
know, there are no available low-temperature measure-
ments of the transport mability for our structure, except
the experimental results for the HalI mobility 'for T ~ 77
K.lO

We also examined the infiuence af the background ac-
ceptor concentration on lhe electron transport proper-
ties. 'I'he ca1culated quantum mability and the trans-
port mobillty with 1014jcm3 (ND = 2.5 x 1Q12jcm2 and
WD = 10 A) are given in thin curves in Fig. 3 and Fig. 4,
respectively. It is seen that nA strongly in.Buences the
.mobility of the electrons in the higher subbands in such
a system. The mobilities of the n = 3 and 4 subbands
are enhanced pronouncedly, due to the reduction of the

background acceptor concentration. This is a rather indi-
rect effect: the background acceptor concentration influ-
ences the band bending (e.g., higher concentration leads
to a narrower confinement potential), which influences
the distribution of electrons in real space and between the
subbands (e.g., the conduction electrons become cIoser to
the doped layers), and this in turn affects the mobility.
We demonstrated explicitly this effect in the case of a
single 6 layer. 8 .

lu conclusion, we have presented a theoretical study
of the electron subhand mobility in double 6 layer struc-

. tures. The electron subband quantum and transport mo-
bilities are calculated for the Si ó-doped GaAs systems.
We found that, for Ws ~ 50 A, the mobilities ofthe low-
est two subbands are very close to each other and much
smalIer than those of tqe higher subbands. For Ws ~ 120
A, the influence of the separation of the two doping layers
on the subband quantum mobilities is not pronounced.
Furthermore, the transport mobilities of the n = 3 and
4 subbands increase with increasing Ws. We also found
that the background acceptor concentration modify the
electron mobility of the higher subbands. 8uch an infiu-
ence is very pronounced in the transport mobility. Our
calculation of the electron quantum mobility is in good

.agreement with the experimental results of Refs. 11 and
2.
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Capítulo 4

Acoplamento plasmon-fônon em sistemas quase
bidimensionais de multisubbandas

Em sistemas de gás de elétrons, as excitações coletivas e de partícula

independente são freqüentemente observadas. Nos semicondutores polares; as

excitações coletivas podem ser fortemente modificadas devido ao acoplamento com

fônons LO. Assim, o espalhamento de luz fornece importantes informações sobre

estes fenômenos.

Estudamos teoricamente o espectro de excitações coletivas e o

espalhamento inelástico de luz (Raman) devidos aos modos acoplados de plasmon-

fônons em estruturas planares com multisubbandas ocupadas. Nossos cálculos

mostraram um forte acoplamento entre os modos de plasmons intra e

intersubbandas com os fônons LO e suas ressonâncias. Devido ao alargamento das

subbandas induzido pelo espalhamento por impurezas, somente uns poucos picos

principais são mantidos nos espectros de Raman. Mas a influência do

amortecimento não é tão importante para aqueles picos com modos do tipo fônon, e

que estão próximos da freqüência dos fônons TO do sistema. Nossos cálculos

permitem uma clara explicação para alguns resultados experimentais publicados.

4.1. Plasmon-phonon coupling tn õ-aopeâ polar semiconauctors
G. Q. Hai, N. Studart, and G. E. Marques,
Phys. Rev. B 55, 1554-1562 (1997).



4.2. Levei broadening effects on ine/astic light scattering due to coupled
plasmon-phonon modes ln r5-doped Semiconductors
G. Q. Hai, N. Studart, and G. E. Marques,
Phys. Rev. B 57,2276-2279 (1998).
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Plasmon-phonon coupling in ô-doped polar semiconductors
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The collective excitations and their coupling to optical phonons have been studied for a two-dimensional
electron gas in 8-dopedpolar semiconductorswithin the random-phaseapproxirnation.Our caJculationshows
that, due to the high electron density in these systemsin which several subbands are occupied,both intrasub-
band and intersubband plasmon modes are strongly coupled to the optical-phonon modes.
[SO163-1829(97)06204-8]

I.INTRODllCTION

The quasi-two-dimensional (Q2D) electron gas system in
8-doped serniconduetor strueture is realized by produeing a
very thin doping layer with high impurity eoneentration. Be-
cause the dopants are eonfined to a single or few monolayers
of the serniconduetor lattiee, the doping profile ean be math-
ematieally described by Dirae's 8 funetion. Semieonductors
with such dopant distributions are referred to as 8-doped
semiconductors.' The incorporation of dopants within a few
monolayers leads to electron confinement in the space-
charge potentiaI well and thus to a set of subbands where the
eleetron motion perpendicular to the doping layer is quan-
tized. It presents an important Q2D serniconductor system in
which high electron densities are attained and several sub-
bands are occupied leading to a new multisubband system.
The eleetron confinement in 8-doped serniconduetors is sim-
ply realized by a space-charge potential well, So, the sub-
band energy En and the wave function f/!n(z) are obtained
from the numerical solution of the coupled one-dimensional
Poisson and Schrodinger equations. If we take the doping
layer in the xy plane located at z= O, the confinement poten-
tial 01' the system is symmetric about the z = O plane. The
total eleetron energy and wave function are given by

and

~ 1 ~ ~'I' n k(r,z)= f/!n(z) "exp(ik·r),, yA

where n = I, 2, ... is the subband index, ; (k) the electron
position (wave vector) in thexy plane, e(k)=h2eí2m* the
electron kinetic energy, m * the electron effective mass, and
A the area of sample.

Since the pioneering experimental work by Bass," Wood
et al.,3 and Schubert et al.,4 highly spatiaIly confined impu-
rity doping layers have been achieved in semiconductors by
the molecular-bearn epitaxy technique. A large number of
experimental ínvestigations'r'"!' have been earried out on the
electron transport and optical properties in 8-doped semicon-
ductors, Furthermore, novel and irnproved serniconductor
devices have been fabricated from 8-doped structures, such
as 8-doped doping-superlattice Iight-emitting diodes,12

o163-1829/97/55(3)íl554(9)/$ !O.OO

(1)

lasers.l ' and modulators.l" high-transconductance selectively
8-doped heterostrueture transistors.P planar-doped barrier
diodes.l'' negative differential conductance oscillators, 17etc.

Plasma excitations in low-dimensional electron systems
have been studied extensively. 18 As proposed by Burnstein
et al., 19 resonant inelastic light scattering is a sensitive
method for the investigation ofthe elementary excitations in
2D eleetron systems. It yields separate spectra of single-
particle and collective excitations, which Ieads to the deter-
mination of the energy states and collective electron-electron
interaction. This yields substantial information on different
2D serniconductor systems. Plasmons in serniconductor su-
perlattices have also attracted much attention.20-26 Novel
collective modes have been found in artificially structured
superlattices. Das Sarma27 presented a generalized rnany-
body dielectric theory to study the spectrum of collective
excitations in Q2D electron systems realized in semiconduc-
tor heterostructures. The intersubband plasmon modes and
their coupling to the intrasubband plasmon modes also were
investigated.27-29 It was shown that the resonant mode cou-
pling of intersubband and intrasubband plasmons takes place
in an asymmetric quantum well at high eIectron densities and
small energy separation between the subbands. Backes
et al.3o investigated the effects of confínement on the plas-
mon modes in the Q2D system. By including alI the energy
levels in an infinite quanturn well, they recovered the results
of the idea12D and 3D electron systems by varying the width
of the quantum well from zero to infinity.

Collective excitations and their coupling to the
longitudinal-optical (LO) phonons in doped polar semicon-
duetor structures are the basic physical phenomena which
affect the different aspects of the electronic and optical prop-
erties of the systems.!" Wu, Peeters, and Devreese'! studied
the plasmon-phonon coupling of 2D electron electron gas in
GaAs/.t\lxGal_xAs heterojunctions. They showed that the
intrasubband plasmon mode in GaAs heterostructures is
strongly coupled to the LO phonon modes at high electron
densities. When the unperturbed plasmon frequeney is dose
to the LO-phonon frequency, a resonant coupling takes place
and there is a splitting of the plasmon frequency. Wendler
and Pechstedt+' investigated interfaee effects on the phonon
modes and the plasmon-phonon coupling in a serniconductor
quantum well. They found that the Landau damping of the
intersubband plasmon modes depends strongly on the width
of the quantum well and the electron density. The 8-doped

(2)
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polar semiconductors, e.g., Si 8-doped GaAs, have also sev-
eral advantages to study the collective excitations and their
coupling to LO phonons. The electron density in 8-doped
serniconductors is much higher than the other Q2D systems,
such as heterojunctions and quantum wells, in which
electron-electron interactions play a substantial role. It could
be a good system to investigate the electron-electron interac-
tion for a deeper understanding of lhe many-body effects.
Typically, several subbands are occupied in 8-doped semi-
conductors, so the intersubband interaction is strong. Fur-
thermore, the separation between the different subbands is
close to the optical phonon energy in such a way that the
electron LO-phonon coupling is strong and easier to be de-
tected experimentally. On the other hand, the host semicon-
duetor is uniform in such a way that there is no material
interface present. The phonon modes in ô-doped systems
have, therefore, a three-dimensional character. The electron-
phonon interaetion ean be deseribed by the Frohlich Hamil-
tonian. This is different from other Q2D systerns, such as
GaAs/AI x Ga I_x-.-\s heterostructures, where the interface
modifies the phonon modes, and eonsequently, the electron-
phonon interaction. Jn this case, the Frohlich Hamiltonian is
only a good approximation to descrihe the electron-phonon
interaction when the interface effects are not pronounced.f

Jn our previous works,34-3ówe studied the eleetron trans-
port properties in 8-doped semiconductors. The effects due
to intersubband coupling and screening of the Q2D electron
gas on the ionized impurity scattering were investigated
theoretically. The subband transport and quantum mobilities
coming from ionized impurity scattering were analyzed. We
found that not only the intersubband scattering by itself, but
also the intersubband coupling through the screening of the
Q2D eleetron gas plays an essential role in the eleetron trans-
port in this multisubband system.

Jn this paper, we study the spectrurn of collective excita-
tions of a Q2D eleetron gas in ô-doped polar semiconduc-
tors. Our model consists of a multisubband 2D electron gas
system coupled to 3D bulk optical phonons at zero tempera-
ture. The intrasubband and intersubband plasmon modes and
their coupling to the opticaI phonons are investigated. Our
calculation is based on the dielectric function in the random-
phase approximation (RPA) and is applied to Si ô-doped
GaAs structure of an impurity layer in the xy plane with
thickness WD = 10 Á. Tbe electronic structure is determined
by ernploying a self-consistent method within the local den-
sity approxirnation/? We assumed that ali the donors in the
doping layer are ionized and the background acceptor con-
centration, which is supposed to be uniformly distributed in
the sample, is nA = 1015 em -3. We found that in tbe present
system the 11 = 2, 3, and 4 subbands begin to be occupied at
the total electron density Ne=O.93, 2.67, and 8.33X 10-12

em -2, respectively.
Experimentally, Mlayah et al.9 investigated the intersub-

band plasmon-phonon coupling in Si ô-doped GaAs. The
signature of the coupled modes was pointed out by rneans of
Raman scattering measurements. They found that the
phononlike mode, due to the coupling of the intersubband
plasmon of the lowest two subbands to the LO phonons, is
located between LO and TO phonon frequencies. Jntluences
ofthe doping concentration and thickness ofthe doping layer
on these phononlike modes were discussed.

According to the experimental accessible electron densi-
ties, we consider a realistic four-subband model, and in order
to make our discussion clearer, we analyze fírst the case
where one subband is occupied and the other three are
empty. Second, we discuss the results when electrons occupy
two subbands and the other ones are empty, and finally the
case where three subbands are occupied. Our calculation
shows that both the intersubband plasmon modes and their
coupling to the LO phonons are much more pronounced in
8-doped polar semiconductors than those in other Q2D semi-
conductor systems. Jn a wide range of electron densities (do-
nor concentrations), the frequencies of the phononlike
branches of the intersubband plasmon-phonon modes due to
the first four subbands are in the reststrahlen region of GaAs.

We do not consider impurity scattering effects on the
plasmon excitation spectnnn. Such scattering should be
strong in the ô-doped system and soften the plasrnon spec-
trum. It may also lead to a mixture of different plasmon
modes when they are close to each other. But the main fea-
tures shown in this work will not be modified essentially. As
far as we know, this is the first theoretical work studying the
collective excitations and their coupling to LO phonons in
ô-doped semiconductors.

H. PLASMON-PHONON COllPLlNG

For an electron gas embedded in a polar serniconductor,
the optical phonons interact with the electrons. Since the host
material of the 2D electron gas in the ô-doped system is
homogeneous, which is different from the other 2D systems
such as heterojunctions and quantum wells where interfaces
between different materiaIs are present, the electron-phonon
interaction can be described by the well-known Fróhlich
Hamiltonian. The electrons interact among thernselves
through the CouIomb interaction and through the virtual LO
phonons via the Frôhlich interaction. Jn this way, both the
electron-electron interaction and the electron-phonon interac-
tion play significant roles and affeet substantially the elec-
tron and the phonon systemsr" EspeeiaIly, the electron-
phonon coupling may be strong because the intersubband
plasmon frequencies in Si ô-doped Gaás are close to the
optical phonon frequency.

Jn a Q2D system, the screened interaction potentialv:.~,.mm' (ti, úJ) within the RPA is determined by the Dyson
equation37

V"c ~ ~
nn ' .mm ' (q ,(v) == V,lIl, ,mm'( q,úJ)

(3)

~ _ c ~ ph ~ .
where Vlln, mm'(q,w)-unn, ,(q)+v, ,(q,w) lS the. , . - .mm - n n ,mm

bare interaction potentiaI which is composed by the electron-
electron CouIomb potential and the electron-phonon interac-
tion determined by the Frohlich Harniltonian, and
II~m' (ti, úJ) is the polarizability function of the noninteract-
ing 2D electron gas. The well-known bare electron-electron
potential is38
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c ~ 21Te2
.

vnn',mm,(q)= Exq Fnn',mm,(q),

with the Coulomb form faetor

Due to the spatiaI symmetry of the potential about the z =O
plane, which is a characteristic of the b'-doped systern, we
have

Fnn' ,mm,(q) =F n'n,mm,(q) =Fnn' ,m'm(q) =F n'n,m'm(q)·

Furthermore, the Coulomb form factor Fnn' mm,(q) vanishes
if 11 +n' +m +m' is an odd number. Notice that
Fnn' mm'(O)= 1 for 1/=n' and m=m", and
Fnn':mm'(O)=O otherwise.

The bare electron-phonon interaction coming from the
Frohlich Hamiltonian is given by

where Mnn,(q,qz) is the matrix element representing the in-
teraction between the 2D electron gas and 3D phonons,
which is defined by

where Vi,qz is the coefficient ofthe Fourier transform ofthe
Fróhlich Hamiltonian,

a is the Frohlich coupling constant, and fi is the volume of
the sample. After some algebra, we obtain

2 (2 2)ph ~ _ 21Te WLO- (1)ro

Unn',mm,(q,W)- -E q 2_ 2 Fnn',mm,(q)·
cc ta ltJLO

The free polarizability function ofthe Q2D electron gas in
the multisubband system, at zero temperature, is given by

where f(E) is the Fenni-Dirac distribution function, and y is
broadening of the energy leveI related to impurity scattering.
Whell y-+O, we obtain26,28,32

(4) o ~ m * ( [<. 1 _
ReIImm,(q,ltJ)= 1Tlí2 2eq - .J;qsgn(vmm,)

XRe(e:m,- EFm) 112] ®(EFm)

(11)

and

*o ( ~ __ ~ I _ - 2 1/2ImIlmm, q,w)- 1Tlí21Re[4EFm,eq (vmm'/Sq)]

- Re[ 4EFm,leq-( v,:m'/Sq)2]ll2}, (12)

(6)

h -h2 2/? * :t -h +E E + :tW ere S q - q _m , Vmm' - W m' - m - S q , S mm'

=(v~m,)2/4sq, EFm=EF-Em, and e(E) is the step func-
tion,

The dielectric function Enn' ll'(q,ltJ) is defined through
the equation ve

, ,(q) =2./;, Enn' 1I,(q~,ltJ)~IIC, ,«;,ltJ).nll ,mm ,- .mm 1

When both the electron-electron and the electron-phonon in-
teractions are included in the dielectric function, we obtain
within RPA (Rer. 37)

with

(14)

(8)

Note that the dielectric function of a 2D electron gas without
taking the electron-phonon interaction into account is easily
recovered by substituting 1 for €ó(w) in Eq. (13).

The spectrum of collective excitations of the system is
given by the zeros of the generalized dielectric function

det] Enn' ,mm'( q,ltJ)! = o. (15)

(9) In principIe, alI the subbands in the system should be con-
sidered in the above equation. If we keep N subbands for
numerical calculations, Eq. (15) wiIl be reduced to an
N2 X N2 detenninantal equation. In the region where the di-
electric function has an imaginary part, i.e., Im II~m' = O, the
plasmou modes are Landau damped. We found that, in the
ta-q plane, it corresponds to -z.-»-«, with
w:n,(q)=(lí2/2m*)[(q±kFn)2-k~",], where kFn
= V2m*EFnlh is the Fenni wave vector of each subband.
Notíce that the intrasubband plasmon is not damped inside
the regime of intersubband single-particle excitations be-
cause a charge-density wave parallel to the xy plane cannot
excite partic1es across the subbands.P
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We restrict ourselves to a four-subband model by consid-
ering the cases where one, two, or three subbands are occu-
pied by the electrons and we neglect the effect of higher
empty subbands.

To begin with, we consider the situation in which only
one subband is occupied by the electrons and the other three
are empty. There exist plasmou modes denoted by (l,n'),
where (1,1) is the single intrasubband plasmon mede and
those with n ':;:"2 represent the intersubband plasmon modes.
Within the four-subband model, the intrasubband IDOde(1,1)
and the intersubband mede (1,3) are coupled, The modes are
determined by the following dispersion equation (see the Ap-
pendix for details):

[€b( (tJ) - v~1.11(q)X~I(q,W)][ €b( w) -vhn(q) X~3(q,W)]

- vf 1:13( q )X~l( q,w) X~3( q, w) = O, (16)

where X~lIn(q,w)=ll~m(q,w) and / ,(q,w)o o mm
=llmm,(q,w) + llrn'rn(q,w) for m v-m". Ou lhe other hand,
the intersubband medes (1,2) and (1,4) are coupled to each
other and are given by the solution of

[€b( w) - V~2.12(q hi2(q,W)][ €b( w) -V~4,14(q )Xi4(q,W)]

-V~iliq)x~iq,w)X~4(q,W) = O. (17)

The dispersion relations of the coupled plasmon-phonon
modes in a Si o-doped GaAs system with e1eetron density
Ne=0.7X 1012 em-2 are depicted in Fig. 1. lu the calcula-
tion, we took wLO=36.25 IDeV and wTo=33.29 meV. For
this density, only lhe lowest subband is occupied by elec-
trons. The subband Fermi energy Epl =22.45 IDeV and the
subband Fermi wave vector kFI =2.03X 106 em-I. The dis-
persion relations of the unperturbed plasmon modes without
electron-phonon interaetion are given by the dashed eurves
in the figure. Figure 1(a) shows the dispersions of the intra-
subband mode (1,1) and the intersubband modes (1,3). The
spectrum of the other two modes 0,2) and (1,4) is given in
Fig, 1(b). The shadow area corresponds to the single-particle
continuum region where Im ll~n' 0/= O. The results of Fig. 1(a)
indicate that the dispersion of the unperturbed intrasubband
plasmon mode (1,1) develops a loop in the w-q plane and
has an acoustical-like behavior, since w approaches zero
when q-+O. The maximum frequency appears at
(w,q)=(35.57,1.23) on lhe edge of' the region where Im
li ~ 1= O. Hereafter, to is in energy units meV and q is in
units 01' 106 eID- I. In between, there are two frequencies for
a given q. The upper branch is loeated in the region with Irn
TI 1,1 =O whereas the lower one is in the region where Irn
TI 1,1 0/= O and the collective excitations are strongly Landau
damped and are not significant, The above results in the re-
gion where the dielectric function has an imaginary part do
not exactly correspond to the frequency of lhe plasmou,
which should be deterrnined from the position of the peak in
the electron energy-loss function defined as the imaginary
part of the inverse of the dieleetrie function. Nevertheless, it
was shown in Ref. 31 that for the plasmon-phonon modes in
2D electron systems, the zeros of lhe dielectric function cor-
respond to peaks in the energy-loss spectrum. It is seen that
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FIG. 1. Dispersions of the colleetive (a) intrasubband mode
(I ,I) and the intersubband mode (J,3) and (b) the intersubband
medes (1,2) and (1,4) for Si o-doped GaAs Df Ne=0.7X 1012

em- 2. The dispersions of the coupled plasmon-phonon modes and
the unperturbedplasmon modes are shown by the thick-solid and
the thick-dashedcurves, respectively. The thin-solid curves (w:n,)

are the boundaries of the 2D single-particleexcitation continuum.
The shadow indicates the region where ImII~n'*O. The dotted
lines indicare lhe optical-phononfrequencies WLO and WTO'

the plasrnon-phonon coupling is strong for both the intrasub-
band and the intersubband modes and this shows up at wave
vectors far from the resonance where the unperturbed plas-
mou frequeney is close to the LO phonon frequeney wLO'

We observe in Fig. 1(a) that lhe frequency of the unper-

8IDLI(Y1F"
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turbed intrasubband plasmou mode (1,1) is smaller than
WLO for ali q. When the electron-phonon interaction is con-
sidered, the coupled intrasubband plasmon-phonon modes
show two branches in the region where Im II~l=O. The
lower branch is shrunk in comparison with the unperturbed
plasmon rnode, which penetrates into the continuum at
(W,q) = (27.20, 0.99). The upper one is above the LO-
phonon frequency. lt is very dose to WLO at q = O. By con-
sidering the intersubband mode (1,3), we see that the energy
difference E13 between the two subbands is 39.48 meV,
which is greater than wLO' .However, the unperturbed inter-
subband plasmon frequency is 41.46 meV at q = O, which is
larger than E 13 due to the depolarization shift coming from
many-body effects. The electron-phonon coupling shifts this
intersubband mode to higher frequency. In addition, a
phononlike mode appears in the reststrahlen region of Ge.As.
Figure 1(b) shows the dispersion relations of the intersub-
band modes (1,2) and (1,4) in the four-subband model when
only one subband is occupied. It is seen now that the unper-
turbed plasmon mode (1,2) crosses the LO-phonon fre-
queney. We observe that the electron-phonon interaction
leads to a large splitting of this mode.

Now, we analyze the case where Ne=2.0X1012 em~2
and two subbands of the four-subband model are occupied.
The dispersion equations are given by Eqs. (A6) and (A 7) in
the Appendix. In Fig. 2, we plot the dispersion relations of
the coupled plasmon-phonon modes. The subband Fermi en-
ergies are EFl = 50.41 meV and E F2 = 11.24 meV, respec-
tively. Consequently, kl'l=3.04XI06 crn-1 and kF2

= 1.42X 106 em ~ I. Figure 2(a) shows the dispersion of the
coupled modes (1,1), (2,2), (1,3), and (2,4). The dashed
curves in the figure indicate the dispersion relations of the
plasmon modes without the electron-phonon interaction. By
comparing with the results shown in Fig. l ía), we observe
that two extra plasmon modes (2,2) and (2,4) arise due to the
occupation of the n = 2 subband. Furthermore, the increase
of the total eleetron density (doping concentration) leads to
higher subband eleetron density and larger separation in en-
ergy between two subbands. Due to the higher electron den-
sity (larger Fermi wave vector) in the lowest subband, the
unperturbed intrasubband plasmon mode (1,1) crosses over
the LO-phonon frequency, and the electron-phonon interac-
tion leads to the splitting of this mode. We see that the in-
trasubband mode (2,2) is not so pronouneed and it is located
within the single-particle eontinuurn of the lowest subband.
The intersubband mode (2,4) is elose to, but smaller than, the
phonon frequency ww. The shrink of this mode is pro-
nouneed due to the electron-phonon coupling. Contrary to
the situation shown in Fig. 1(a), the effect of the electron-
phonon eoupling on the intersubband mode (1,3) is not sig-
nificant sinee its frequeney is much larger than WLO in the
present case. In Fig. 2(b) the most signifieant effect of the
electron-phonon interaction is shown on the intersubband
plasmon mode (1,2). The electron-phonon eoupling leads to
a shift of this mode to higher frequeney and another phonon-
like mode appears in the reststrahlen region. This phononlike
rnode is almost fiat.

Finally, we analyze the ease where the eleetron density
IVe = 5.OX 1O12 em ~2 which eorresponds to three occupied
subbands. Here, the subband Fermi energies (Fermi wave
vectors) are EF1=100.89 meV (kpl=4.31Xl06 em-I),
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FIG. 2. The same as Fig. 1 but now for Ne= 2 X 1012 eID-2.

Four plasmon medes (1,1), (2,2), (1,3), and (2,4) appear in (a) and
threeplasmon modes (1,2), (2,3), and (1,4) in (b),

EF2=33.23 meV (kn=2.47X 106 em-I), and EF3=8.82
meV (kF3 = 1.27X 106 em ~ 1), respectively. Figure 3 shows
the dispersion relations of the coupled plasmon-phonon
modes. Two additional plasmon modes are found: the intra-
subband mode (3,3) shown in Fig. 3(a) and the intersubband
mode (3,4) in Fig. 3(b). The intrasubband mode (1,1) in Fig.
3(a) is strongly coupled to the LO-phonon modes. The cou-
pling of the intersubband mode (2,4) to the LO-phonon leads
to a phononlike mode in the reststrahlen region starting from
w=35011 meV at q=O. In Fig. 3(b), the electron-phonon
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FIG. 3. The sarue as Fig. 1 but now for Ne=5XlO12 cm-2.

Five plasmon modes (1,1), (2,2), (3,3), (1,3), and (2,4) appear in (a)
and four plasmou medes (1,2), (1,4), (2,3), and (3,4) in (b),

coupling results in a pronouneed splitting ofthe intersubband
mode (2,3).

In Fig. 4, the unperturbed intersubband plasmon frequen-
cies at q = 1 X 104 em - 1 are plotted as a funetion of the total
electron density in the o-doped system. The dotted curves
represent the energy differenee E n ' - E n between the two
subbands. Wc see that, at the onset of the oeeupation of a
subband, the intersubband plasmon frequeney is equal to the
cnergy difference. By increasing the total eleetron density,
and the subband eleetron density, the intersubband plasmon
frequeney becomes larger than the energy differenee. This
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FIG. 4. The unperturbed intersubband plasmou frequencies at
q= 104 em - 1 as a funetion of lhe total electron density in Si
ô-doped GaAs. The dotted ClIIVesindicate the energy differences
between the subbands.

results in a depolarization shift due to many-body effects.
The shift is more pronouneed for adjaeent subbands, i.e., the
intersubband modes (1,2) and (2,3). When the electron-
phonon interaetion is ineluded, the intersubband plasmon
frequeney splits around the LO-phonon frequeney. The fre-
queneies of the eoupled plasmon-phonon modes at
q = 1 X 104 em -I, as a funetion of the total electron density,
are depicted in Fig. 5(a) for the (1,2) and (1,3) intersubband
modes and in Fig. 5(b) for the (2,3) and (2,4) modes. The
thin curves represent the corresponding intersubband plas-
mon frequeneies without the electron-phonon interaetion.
We see that the intersubband plasmon modes are strongly
eoupled to the optieal-phonon modes. When the unperturbed
intersubband frequency is equaI to WLQ, the splitting is 9.29
meV for the (1,2) mode and 9.73 meVand 5.45 meV for
(2,3) and (2,4) modes, respectively. At low electron densi-
ties, the lower branch is close to the unperturbed plasmon
frequeney and it is rnuch smaller than WLO, while the fre-
queneies of the upper branch are close to WLO' However, the
lower branch approaches the wLO at high densities whereas
the upper one becomes elose to the unperturbed plasmon
frequency. For a wide range of eleetron densities, the fre-
queneies of the lower braneh of the intersubband plasmon-
phonon modes (1,3), (1,2), and (2,4) lie in the reststrahlen
region of Gai\.s.

The coupled plasmon-phonon mode in the reststrahlen re-
gion was observed experimenta1ly for the Si o-doped GaAs
system by Mlayah et al.9 They found in the Raman spectrum
that the phononlike mode appears at W = 34.97 me V (282
em - 1) for the sample with donor concentratíon
ND=2.7X 1012 em -2 and WD=20 À. By fitting the Raman
speetrum, they obtained the depolarization shift about
26.67 meV (215 em-I) for the unperturbed intersubband
mode (1,2). From our ealculation with the same donor eon-
centration, we obtained for the intersubband mode (1,2)
(EI2=42.09 meV), the unperturbed plasmon frequency
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FIG. 5. The frequencies of lhe coupled intersubband plasmon-
phonon medes (a) (1,2) (solid curves) and (1,3) (dashedcurves) and
(b) (2,3) (solid curves) and (2,4) (dashed curves) at q= 104 em -1 as
a function of electron density. The thin curves indicate lhe unper-
turbed p lasmon frequency.

equals to 54.21 meV, a depolarization shift of 34.08 mev,
and frequencies of the coupled plasmon-phonon modes with
values 34.28 meV and 55.54 rneV. So, our results are in
reasonable agreement with the experimental results of Ref. 9.
However, we also observed that, for higher electron densi-
ties, there are two or more intersubband pIasmon-phonon
modes in the reststrahlen region such as (1,2), (1,3), and
(2,4) modes, At Ne>8 X 1012 em -2, the intersubband mode
(2,3) would pIay an important role in this region.

IV. CONCLUSIONS

We have ealculated the speetrum of the eoupled plasmon-
phonon modes for a multisubband eleetron system realized
in Si o-doped GaAs. The numerieal results show that the and

eIectron-phonon interaction alters the unperturbed plasmon-
exeitation spectrum considerably. Due to its high electron
density, the plasmon-phonon coupling is substantially stron-
ger than that in other 2D systerns, such as semiconductor
quantum wells and heterojunctions. Since several subbands
are occupied by the electrons, the intersubband plasmon
modes have be shown to be essential to the physical descrip-
tion of the system.

Our results show that the high electron density leads to a
large depolarization shift of the intersubband plasmon fre-
quencies between adjacent subbands. Furthermore, both in-
trasubband plasmon and intersubband plasmon modes are
strongly coupled to the optical-phonon modes. The frequen-
cies of the coupled intrasubband plasmon-phonon modes do
not enter in the reststrahlen region of GaAs. However, the
frequencies of the coupled intersubband plasmon-phonon
modes split around the LO-phonon frequency Ww. In a
wide range of electron density (donor concentration), the fre-
quencies of the phononlike branch of the intersubband
plasmon-phonon modes (1,2), (1,3), (2,3), and (2,4) are m
the reststrahlen region of GaAs.
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APPENDIX

In this appendix, we show in detail how the determinantal
equation for the dielectric matrix, Eq. (15), was solved nu-
merically. Due to the symmetry of the confinement potential
in the o-doped system which results in the vanishing of the
forro factor Fnn' mm,(q), given by Eq. (5), when
n + n' + m + m' is ~ odd number, and the corresponding
matrix elements ofthe dielectric function, given by Eq. (13),
we find that there are two groups of plasmon modes. One of
them includes all the intrasubband medes as well as the in-
tersubband modes whose wave funetions have the same par-
ity. Ali plasmon modes in this group are coupled to each
other. The other group is formed by the intersubband modes
of two subbands with different parities and the plasmon
modes in this group are a1so coupled to each other but they
do not interaet with the modes of the former one.

In the four-subband model, the 16X 16 determinantal
equation is reduced to the following two groups of equations:

KIl.ll KIl,22 Kl1':33 Kl1,44 KIl,13 Kl1,24

K22,11 K22,22 K22,33 K22,44 K22,13 K22,24

K33,IJ K33,22 K33,33 K33,44 K33,13 K33,24 =0
K44,11 K44,22 K44,33 K44,44 K44,13 K44,24

K13,11 K\3,22 KJ3,33 K13,44 K13,13 KJ3,24

K24,1l K24,22 K24,33 K24,44 K24,13 K24,24
(Al)
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K12,12 K12,14 K12,23 K12,34

K14,12 K14,14 K14,23 K14,34
=0,

K23,12 K23,14 K23,23 K23,34

K34,12 K34,14 K34,23 K34,34

where

c o
Kllll, ,mm,(q .ca = Eb(W) onmon'm' -u nn!,mm,(q )Xmm,(q,(j),

(A3)

with X~l1n(q,w) = II~m(q,w) and X~m,(q,w) =II~m,(q,w)
+ rr~n'm(q,w) for mi=m',

In the case of only one occupied subband, Eqs. (AI) and
(A2) reduce to

I <u,n Kll,131 =0
K13,1I K13,13

and

I K12,12 K12,141 =0.
K14,12 K14,14

(AS)

It is seen that the intrasubband mode (I, I) couples to the
intersubband mode (1,3) determined by Eq. (A4). The other
two intersubband modes (1,2) and (1,4) are coupled to each
other,

lu the case of two occupied subbands within the four-
subband model, the determinantal equations, given by Eqs.
(AI) and (A2), are now written in terms of 4X4 and 3X3

(A2)

determinants. There are two intrasubband modes (1,1) and
(2,2). These two modes are coupled to each other and also
coupled to the intersubband rnodes (1,3) and (2,4). Theyare
determined by the dispersion equation

K 11,11 Kll,22 K 11,13 Kll,24

K22,1l K22,22 Kn,13 K22,24
=0. (A6)

K13,ll K13,22 K13,13 K13,24

K24,11 /'24,22 K24,13 K24,24

The rernaining coupled intersubband rnodes (1,2), (2,3), and
(1,4) ean be calculated from

(A4)
K23,12 K23,14 K23,23

K12,12 K12,14 K12,23

K14,12 K14,14 K14,23 =o. (A7)

In the case of three occupied subbands, Eq. (Al) reduces
to

KII,II K11,22 Kll,33 Kll,13 Kl1,24

K22,l1 K22,22 K22,33 K22,13 K22,24

K33.11 K33,22 K33.33 K33,13 K33,24 =0, (A8)

K13,ll K13,22 K13,33 K13,13 K13,24

K24,11 K24,22 K24,33 K24,13 K24,24

while Eq. (Al) keeps the sarne formo
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Level-broadening effects on the inelastic light-seatteríng spectrum
due to coupled plasmon-phonon modes in ô-doped semiconductors
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The Raman scattering intensity of 8-doped semiconductors is evaluated. The dynamical response of the
multisubband two-dimensional electron system which is coupled to optical phonons is calculated within the
random-phase approximation. Our ca!culation shows that both intrasubband and intersubband plasmon medes
are strongly coupled to optical-phonon modes. Leve! broadening due to high impurity concentration modifies
the inelastic light scattering spectrum significantly, However, a few scattering peaks corresponding to phonon-
like modes can be observed even at large broadening. [SOI63-1829(98)04304-5]

I. INTRODUCTION

Inelastic light (Raman) scattering has been used exten-
sively to investigate novel aspects of the electronic structure
and collective excitations in low-dimensional serniconductor
systems.f ? In semiconductors with simple band extrema,
collective excitations due to charge-density fluctuations and
single-particIe excitations related to spin density fluctuations
have been observed." In polar semiconductors, the collective
excitations due to charge-density fluctuations of the electron
gas can be modified by their coupling to longitudinal-optical
(LO) phonons as shown in light scattering experiments.l<"

In o-doped polar serniconductors, such as Si o-doped
GaAs, the plasmon-phonon coupling is quite pronounced and
essentially important because the electron density is high and
also because the energy separation between different sub-
bands is cIose to the optical-phonon energy," The quasi-two-
dimensional electron gas (Q2DEG) in a o-doped sernicon-
duetor is formed by a highly doped impurity layer. Since the
electrons share the same spatial region with the ionized do-
nors, they are strongly scattered by the impurities. Conse-
quently, the scattering reduces not only the electron
mobility'" but also broadens the optical spectrum. The
present work is intended to describe theoretically the light
scattering spectrum due to coupled plasmon-phonon modes
in the Si o -doped GaAs system based on a self-consistent
calculation of the subband strueture and the dielectric many-
body theory within the random-phase approximation (RPA).
This paper stresses the broadening effects on the light spec-
trum and predicts the scattering peaks which can be detected
experimentally. In Seco II, we develop the dielectric forrnal-
ism that is used to evaluate the plasmon-phonon spectrum
and the inelastic light-scattering intensity. Section III is de-
voted to a diseussion of the calcuIation resuIts and in SecoIV
we sumrnarize our main conclusions.

11.THEORETICAL FORMALISM

We have dcrived the inelastie light scattering eross sec-
tiOTI due to coupled plasrnon-phonon modes in a multisub-
band Q2DEG embedded into a polar semiconduetor. The
inelastic light scattering intensity is re1ated to the dynarnical
structure faetor and can be written as

o 163-1829/98/57( 4)/2276( 4)/$15.00

J(kz,q,w)= f dzf dz'e-ik,(z-z')

X[ - Im{€,,(w)X(q,w,z,z')}], (I)

where kz is the z component of wave vector of the incident
light and q is the electron wave vector transfer in the xy
plane. In Eq. (1), the polarization of the background polar
serniconductor is modeled by a frequency-dependent dielec-
tric function €,,( w) determined by the longitudinal (WLO)
and transversal (wTO) optical-phonon frequencies, with the
following simplified form:

2 2
wTO-wLO

€f'(W)= I+ 2 2 . '
to -wTo+ZW17

where we have introduced a phenomenological parameter 17,
to incorporate the phonon damping associated to possible
defects in the crystalline structure.

The density-density eorrelation X( q, w,z,z') of the
Q2DEG is ealcuIated as an expansion in single-particle wave
functions I/In(z), as

(2)

x(q,w,z,z')= L: Xnn',mm,(q,w)I/In(z), ,
nn ,mm

where n,m= 1,2,3, ... , are the subband indices. The
density-density correlation function Xnn' mm,(q,w) is related
to the dielectric function €nn'.mm,(q,w) tlrrough the equation

(4)

with the polarizability of the noninteracting electron gas
given by

(5)

Here In(E) is the Fermi-Dirac funetion, the electron energy
is given by En(k)=En+1í2k2I2m*, m* being the eleetron
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effective mass, and y is a phenomenological damping con-
stant which takes into account the level broadening mainly
induced by scattering of eleetrons by impurity centers. In the
case y= O, Sterull was the fust to give an analytical expres-
sion for TI li li ' ( q , w). In general, the damping constant 7J for
the phonon system is much smaller that the damping con-
stant of electrons and, due to the high impurity concentration
in the o-doped system, we can safely take 7J as a positive
infinitesimal in reliable calculations.

It is well known that the polarizabilities from both elec-
tron and phonon systems are additive in the RPA so that
when both the electron-electron and the electron-phonon in-
teractions are inc1uded we can write the total dielectric func-
tion as

-vqF""',mm,(q)TImm,(q,w), (6)

where v q =2 7re2 / Exq is the 2D Fourier transform of the bare
electron-electron interaction, with Ex being the high-
frequency dielectric constant of the background. Finally
F n n! .m m ' (q) is the Coulomb form factor which results from
the spreading of the electron wave in the z direction and is
given by'"

Note that by setting E,,( w) = 1 in Eq. (6), the dielectric func-
tion of the Q2DEG in the RPA, without considering the
electron-phonon interaction, is easily recovered.

Equations (1)-(6) describe the inelastic light scattering by
charge density fluctuations of the coupled plasmon LO-
phonon modes in a multisubband system. It is worth noticing
that the light scattering intensity, given by Eq. (1), is propor-
tional to the product of X(q,w,z,z') and E,,(W). As a conse-
quence, one important feature is that the scattering intensity
is zero at w = wLO' This is a signature of a charge-density
fluctuation mechanism because, at w = wLO, there are no
free-electron density fiuctuations in the coupled plasmon
LO-phonon system.

tu. NUMERICAL RESUL TS AND DISCUSSION

As in our previous works,9,1Owe consider a Si o-doped
GaAs structure with a doping layer in the xy plane with
thickness WD = 10 A. The background acceptor concentra-
tion in the sample is taken to be nA=lOI5 cm ":'. In Fig. 1,
the inelastic light intensity is indicated by solid curves, for
different q 's, ranging from 104 to 1.4X 106 em - 1, in the
system where the electron density Nç= 2 X lOIZ em -2 and
y=0.5 meV. ln this situation, two subbands whose subband
Fcrmi energies are EF1=50.41 meV and EF2= 11.24 meV
are occupied. The energy separations between subband pairs
(Enn,=En,-En) are Elz=39.17 meV, EI3=55.38 meV,
and E23= 16.19 meV. ln the calculation, we have included a
third unoccupicd subband. The thin solid curves show the
scattcring intensity due to plasmon medes of the Q2DEG,
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FIG. 1. The inelastic light scattering intensity due to plasmon
(thin solid curves) and coupled plasmon-phonon modes at q=O.I,
1,3,6,10, and 14X105 cm-I in Si 8-doped GaAs with Ne=
2 X 1012 cm -2. The thick solid and dotted curves indicate the re-
sults with -y=0.5 and 6 meV, respectively. The scattering peaks due
to different plasmon modes are labeled by (n,m). Note the change
in spectra scales: the intensity for -y= 6 meV is enlarged 3 times.

without phonons, and the thick solid curves are the results
with the inclusion ofthe plasmon-phonon coupling. The ver-
tical dotted lines indicare the frequencies of TO and LO
phonons, Ii,wLO=36.25 meV and Ii,WTO=33.29 meV, respec-
tively.

The Raman spectrum in the absence of plasmon-phonon
coupling exhibits a rich peak structure corresponding to ex-
citation modes which are denoted by (n,m) . We can ob-
serve in the thin curves of Fig. I, the peaks at small wave
vectors related to the intrasubband modes (2,2) and (1,1),
with very weak intensity, and the intersubband modes (2,3),
(1,2), and (1,3). With increasing q, the peaks of the modes
(2,2) and (1,3) disappear, while the peak corresponding to
the (I, 1) mode becomes pronounced and survi ves at large q.
When the plasmon-phonon coupling is considered, a com-
parison of the two scattering spectra shows that the reso-
nance frequencics below wLO are redshifted while those
above wLO are blueshifted. More essentially, new coupled
modes, which are denoted by (n,m)', arise around WLOdue
to the plasmon-phonon coupling. At small q, we can see
clearly a phononlike mode in the reststrahlen region of GaAs
which comes from the phonon-coupling of the intersubband
mode (1,2). At large q, the intrasubband mode (1,1) is
strongly coupled to the phonons.

Now, we investigate the effect of the impurity scattering
on the light spectrum, which is described by the broadening
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FIG. 2. The dispersion relations of the plasmon (thick dotted
curves) and coupled plasmon-phonon (thick-solid curves) modes
with y= O in the system of N e =2 X 1012 cm - 2. The open and solid
circles indicate the peak positions in the scattering spectrum due to
coupled plasmon-phonon modes with y= 0.5 and 6 meV, respec-
tively. The shaded area corresponds to the pair-excitation region
(Landau damping).

width y related to the electron subband quantum lifetime or
the single-particle relaxation time. From our previous
works.!" the subband quantum mobility varies from about
500 em 2Ns (the lowest subband with energy of 24 meV) to
4000 em 2Ns (the third subband with energy of3 meV). The
dotted curves in Fig. I represent the seattering intensity with
y=6 meV. As expeeted, some ofthe peaks are merged. The
scattering peak of the intrasubband mode (I,l)' cannot be
observed at small q. Also, those peaks eorresponding to the
intrasubband mode (2,2) and to the intersubband (1,3) dis-
appear. However, the broadening does not affect consider-
ably the phononlike modes, e.g., the peak (1,2)' loeated at a
little higher than wTO'

In order to clarífy the scattering speetra, we have calou-
lated the dispersion relations of the plasmon and eoupled
plasmon-phonon modes. For y= O, the dispersion relation of
the eolleetive excitations ean be obtained from"

detlénn',mm,(q,w)l=o. (7)

Figure 2 shows the plasmon dispersion (thick-dotted curves)
and coupled plasmon-phonon modes (thick-solid curves)
within the three-band model, The shaded area shows the
single-particle spin-density exeitation regime where
Im TInn' *0. It can be seen that the dispersion ofthe unper-
turbed plasmon modes (1,1) and (2,2) develops a loop in the
w - q plane. There are two frequencies, for a given q, but the
lower braneh is in the region where ImTI" n *O and the cor-
responding 1110des are strongly Landau damped. Due to the

0.0 20.0 40.0 60.0
00 (meV)

80.0 100.0

(b)
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0.0 20.0 100.040.0 60.0
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FIG. 3. The scattering spectra with y= 1.5 meV (thin curves)
and y= 10 meV (thick curves) at (a) q = 5 X 104 em - I and (b) q
=5 X 105 em - I for the systems of different eleetron densities N e

=2,4,6, 8, and 10X 1012 em -2 The scattering peaks due to dif-
ferent plasmon-phonon modes are labeled by a and a' (1,1); ai and
a;: (1,2); a2: (1,2); a): (I,4); b , and b;: (2,3); b2 and b~: (2,4);
CI: (3,4).

80.0

high eleetron density in the lowest subband, the unperturbed
plasmon mode (1,1) erosses over the LO-phonon frequency
and the electron-phonon interaetion leads to a splitting ofthis
mode. The electron-phonon coupling also alters the intersub-
band mode (1,2) by indueing a shift to higher frequeney and
another phononlike mode (1,2)' arises between WTO and
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WLO' The results obtained from the peak positions of the
seattering speetrum with y=0.5 and 6 meV are indieated by
open and solid eirc1es in Fig. 2, respeetively. From the spec-
trum with y=0.5 meV, we observe all the plasmon-phonon
modes in the region where ImIIn,m=O. From the above re-
sults, we eonelude that (i) each mode (n,m) is Landau
damped only in the region where Im IIn m*O, (ii) the scat-
tering peak coming from the intrasubband or intersubband
mode vanishes slowly when it enters into its own single-
partic1e continuum region, and (iii) the scattering intensity of
the intrasubband modes is almost zero at small q and it in-
creases with increasing q. Conversely, the intersubband
modes exhibit the most intensity at small q, and it decreases
with increasing q. For larger broadening, y=6 meV, only
three peaks ean be observed at small q. These are related to
the plasmonlike mode (2,3) and the coupled plasmon-phonon
modes (1,2) and (1.2)'. At large q, these peaks disappear,
but the intrasubband plasmon-phonon mode (1,1) becomes
re1evant. When we further inerease y, the calculated scatter-
ing spectrum remains similar to the structure for y= 6 meV.

Finally we diseuss the electron density dependence ofthe
light scattering spectrum for two wave vectors and two level-
broadening widths. Figure 3 shows the Raman intensities at
(a) q=5x104 crn-I and (b) q=5X105 crn-I for N;
=2,4,6,8, and lOX 1012 em -2. The thin and thick curves are
the results for y= l.5 and y= 10 meV, respectively. With
increasing electron density, the n=2, 3, and 4 subbands be-
gin to be occupied at Ne=O.93, 2.67, and 8.33X 1012 em -2,

respectively. For Ne= 1013 em -2, four subbands are occu-
pied. Then the contribution from the n =4 subband becomes
prominent. In the caleulation, we now have to consider a
four-subband model. In Fig. 3(a), we see that the intrasub-
band seattering is very weak. For y= l.5 meV, we can ob-
serve the seattering peaks due to the coupled intersubband
plasmon-phonon modes labeled by aI: (1,2); ai: (1,2)'; a2:
(1,3); a3: (1,4); bl: (2,3); b;: (2,3)'; b2: (2,4); b~: (2,4)';
and CI: (3,4). The seattering due to intersubband modes
from two adjacent subbands, such as (1,2) and (2,3), is sig-
nifieant. For high eleetron density Ne= 1013em -2, the inter-
subband mode (3,4) aIso becomes pronounced. When y
= 10 meV, most scattering peaks merge together and the
seattering spectrum assumes a simple structure with a few
broad peaks. However, the scattering peaks due to the
phononlike modes, whieh are close to wLO' are not strongly
affeeted. For q = 5 X 105 em - I, the peak from the intrasub-

band mode (1,1) becomes the most important one, as is
shown in Fig. 3(b). For the lower electron density Ne=
2 X 1012 em -2, we can see two peaks a and a' correspond-
ing to the eoupled intrasubband plasmon-phonon mode (1,1).
For intermediate densities, the peak a from the (1,1) mode
mixes with the peak b , from the (2,3) mode which domi-
nates the scattering around this frequency. Also, the (2,3)
and (3,4) modes merge into the lower peak (1, 1). For the
higher electron density, the peak below wt.o is mainly due to
the (1,1) mode, while the other one above (!Jw comes from
the (2,3) mode.

IV. CONCLUSIONS

We have investigated the inelastic light scattering due to
coupled plasmon-phonon modes in a multisubband Q2DEG
realized in o-doped semiconductors. Our study stressed the
broadening effects (indueed by impurity seattering) on the
Raman spectrum and we have calculated the overall features
of the spectrum which eould be observed in realistie experi-
mental situations. For small broadening, we have found a
very rich structure in the light scattering spectrum. AlI the
peaks due to different intra- and intersubband modes can be
observed. At small q, the intersubband modes have the larg-
est seattering strength. But the scattering due to the intrasub-
band modes ofthe lowest subband beeomes very pronounced
for large q. For large broadening widths, whieh eorresponds
closely to the experimental situation, most of the modes are
strongly damped. Only a few scattering peaks clearly observ-
able with a large full width at half maximum. However, the
infiuence of the damping is not very pronounced for the
phononlike modes which are close to the LO-phonon fre-
quency. For Ne=2X 1012 cm-2, the phononlike mode from
the intersubband (1,2) can be seen c1early at small q. For
large q, only the intrasubband mode (1,1) is relevant. For
high electron density systems, the phonon-like mode from
intersubband (2,3) becomes important at small q. We hope
our results will provide useful information and stimulate fur-
ther experimental study. 8
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Capítulo 5

Interação elétron-fônon em poços quânticos

semicondutores sob campos magnéticos

Desde a década de 80, a interação elétron-fônon e os efeitos de interface em

heteroestruturas semicondutoras têm sido bastante estudados. Estudos teóricos

mostraram que, considerando apenas o confinamento de elétrons e tratando os

fônons como 3D ou "bulk-like", as propriedades polarônicas no sistema eletrônico

20 são qualitativamente semelhantes ao caso 3D. Ainda que um grande número de

trabalhos tenham se dedicado ao acoplamento elétron-fônon devido aos efeitos

interfaciais nas estruturas 20, não existia evidência experimental que confirmasse

ou desmistificasse esta aproximação até recentemente. Nos trabalhos anteriores,

investigamos os efeitos de acoplamento devidos ao fônons-LO interfaciais, fônons-

LO confinados numa camada e fônons-LO com modos para o serni-espaço, em

estruturas GaAs-AIGaAs.

Um dos nossos resultados mostrou que os elétrons em poços quânticos de

GaAs-AIAs, acoplam-se muito fortemente com os modos de fônons interfaciais. Em

campos magnéticos fortes, a ressonância polarônica acontece muito próximo das

freqüências de fônons interfaciais de GaAs e de AIAs. Este efeito foi observado em

experimentos de ressonância ciclotrônica em múltiplos poços quânticos de GaAs-

Alo.3Gao.7As com dimensões, 120Al240A e 240A/240A, pelo grupo do Prof. B. D.

McCombe (State University of New York at Buffallo) indicando que mesmo nos

poços quânticos muito largos (-200A) os modos de fônons do material das barreiras

ainda interagiam com elétrons dentro do poço quântico através dos efeitos de

interface. Parte do trabalho mostrado em seguida foi motivado por esta observação.

I 11



Nos primeiro dois artigos neste capítulo, estudamos os efeitos no espectro

ciclotrônico devido aos fônons interfaciais de poços quânticos de GaAs- Alo.3GaO.7As.

Estendemos nossa teoria do sistema GaAs-AsAI para o GaAs-AIGaAs. Neste

contexto; o espectro de absorção rnaçneto-ópnco foi determinado; e foram ainda

investigados detalhadamente os harmônicos assistidos por fônons. Confirmamos os

resultados experimentais que relatam os efeitos devido aos magneto-po/arons

ressonantes. Em colaboração com os autores de tais experimentos, mostramos a

importância dos efeitos de interface nos magneto-po/arons sujeitos a campos

magnéticos intensos. Como uma extensão deste trabalho teórico, estudamos

quantitativa mente os espectros de absorção dos harmônicos assistidos por fônons.

Ao contrario de algumas previsões anteriores concluímos que os harmônicos são

dificilmente observados experimentalmente.

No artigo 5.3, estudamos os estados de alta energia das impurezas rasas em

super-redes GaAs-AIGaAs em campo magnético. Obtemos as energias de

transições, os espectros de absorção, e os efeitos de magneto-po/arons.

Confirmamos as observações experimentais dos harmônicos assistidos por fônons

dos estados ligados de impurezas rasas no super-redes de GaAs-AIGaAs.

No último artigo mostramos que as ressonâncias magneto-fônon, que são

bastante estudadas em experimentos de transporte, também podem ser detectadas

opticamente (optical/y detected magnet-phonon resonances) em semicondutores

polares volumétricos.

5.1. Interface effects on magnetopolarons in GaAs/AlxGa1-xAs quantum
wells at high magnetic fields
G. Q. Hai, F. M. Peeters, N. Studart, Y. J. Wang, and B. D. McCombe,
Phys. Rev. B 58,7822-7828 (1998).

5.2 Resonant magnetopolaron effects due to interface phonons in
GaAs/AIGaAs multiple quantum wells
Y. J. Wang, H. A. Nickel, B. D. McCombe, F. M. Peeters, J. M. Shi,
G. Q. Hai, X.-G. Wu, T. J. Eustis, and W. Schaff,
Phys. Rev. Lett. 79, 3226-3229 (1997).

5.2. High energy transitions of shallow magneto-donors in a GaAs/AIGaAs
multiple quantum well
A. Bruno-Alfonso, G. Q. Hai, F. M. Peeters, T. Yeo, S. R. Ryu,
and B. D. McCombe,
J. Phys.: Condensed Matter 13,9761-9772 (2001).

5.4. Optically detected meçnetopbonon resonences in GaAs
G. Q. Hai and F. M. Peeters,
Phys. Rev. 860, 16513-16518 (1999).
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Effects due to interface optical-phonon modes on the cyclotron resonance in high magnetic fie1d are inves-
tigated for GaAslAl,Gal_xAs quantum wells with the inclusion of band nonparabolicity. The polaron cyclo-
tron resonant frequencies are obtained frorn the magneto-optical absorption spectrum which exhibits magne-
topolaron resonances near the GaAs and AlAs-like phonon frequencies. Our theoretical results are in good
agreement with recent cyclotron resonance experiments. Furthermore, we present calculations of interface-
phonon-assisted harmonics at high frequency whose positions are determined by the resonant phonon frequen-
cies. [S0163-1829(98)04936-4]

I. INTRODUCTION

The effects of interface phonons on magnetopolarons in
quasi-two-dimensional (Q2D) systems of semiconductor het-
erostructures have received considerable attention in the last
decade. In quantum wells (QW's), the e1ectron motion is
confined in one direction, which leads to an increased local-
ization of the electron wave firnction. This results in an in-
crease of single polaron effects. A second effect of the con-
finement is the modification of the phonon modes. The
confinement is a result of the sandwiching of the e1ectron
between different dielectric materiaIs, which will also
modify the phonons resulting in confined slab phonons, in-
terface phonons, and barrier bulk phouOUS.I-3

For zero magnetic field, there exists a sum rule ' indicating
that the polarization due to different modes is practically the
same as for buIk phonon modes, This makes it difficult to
discriminate the relative importance of the interaction of the
various phonon modes from the result one would obtainfrom
a calculation using only buIk-phonon modes. But increasing
thc magnetic field allows one to bring the cyclotron fre-
quency into resonance with the different confined phonon
modes, resulting in magnetopolaron effects which are mark-
edly different from those found using only the bulk phonons.
Such a study provides information on the frequency of the
confrned phonons and on the strength of their interaction
with the electrons.

Although a large amount of theoretical work has been
done I ,2,4 conceming the effects of interface phonons on the
position of the cyc1otron resonance (CR) peak, only recently
has the magnetopolaron resonance due to interface phonon

0163-1829/98/58(12)/7822(7)/$15.00 PRB 58

modes been observed experimentally' In Ref. 5, a detailed
experimental and theoretical study of the polaron cyc1otron
resonance in modulation-doped GaAs/Al0.3GaO.7Asmultiple
quantum welIs was carried out in magnetic fields up to 30 T.
Resonant magnetopolaron effects due to the interaction be-
tween the electrons and the interface optical phonon modes
were observed for the first time. Splitting of the polaron CR
frequency was found in the region of the AlAs-like optical-
phonon modes. Our calculation confirmed that this resonance
resulted from the AlAs-like interface optical phonons in the
quantum wells.

In this paper, we present a detailed theoretical calculation
of the magnetopolaron CR spectrum with interface effects in
GaAs/AlxGal_xAs quantum wells based on our previous
work of polaron cyc1otron resonance in GaAs/AlAs
systems. I The calculation is improved by taking into account
the nonparabolicity of the conduction band, and we extend
our theory to GaAs/ Al.Ga I_.tAs structures for x"* 1, where
the GaAs- and AlAs-like phonon modes appear in the barrier
material. The QW width dependence of the resonance mag-
netopolaron effect due to interface phonons is studied in de-
tail and compared to experimental results. The oscillator
strength of the different peaks in the CR spectrum are inves-
tigated as a function of the magnetic fie1d. Furthermore, we
investigate the interface and slab-phonon-assisted harrnonics
which occur above the optical-phonon frequencies. Such
nhonon-assisted harmonics have been studied in three-
dnnellsional (3D) systems" and were observed in InSb (Ref.
7) and HgxCdl-xTe. 8 Here we generalized this to lower di-
mensional systems,

7822 © 1998 The American Physical Society



PRB 58 INTERFACE EFFECTS ON MAGNETOPOLARONS IN ... 7823

lI. MAGNETOPOLARON RESONANCE

lu the presence of a magnetic field B applied in the z
direction perpendicular to the interface, the energy levels of
an electron are given by

where E: is the level (/= 1,2, ... ) due to the QW confine-
meut corresponding to the motion in the z direction, úJc
=», is the unperturbed cycIotron frequency, n is the
Landau-level index, and m is the electron band mass in the

11

xy plane given by

where P w (p/,) is the probability to find the electron inside
(outside) the quantum well, and m: and m:b are the electron
effective mass in the well and in the barrier, respectively.
Equation (2) inc1udes the penetration of the electron wave
function into the barrier resulting in a renonnalization of the
effective electron mass. This leads to an increase ofthe elec-
tron mass because m':t,>m:, which is appreeiable for nar-
row quantwn wells. Here we are interested in the Landau
levels E~,1=E~ +húJc(n+ 1/2) associated with the lowest
electric subbaud E~ .

To compare theoretical results for the cycIotron resonant
frequency with the experimental results, it is necessary to
include the band nonparabolicity of the conduetion band in
the ca1culation. The electronic structure of IlI-V compound
semiconductors in the presence of external magnetic fie1ds
can be described very well within the framework of k- P
theory.?"!' Ruf and Cardona" studied the electronic strueture
of GaAs by the technique of resonant Raman scattering in
magnetic fields. They showed that the nonparabolicity of the
bulk GaAs eonduction band ean aeeurately be deseribed by
the expression

E* [(E*)2 ( m" m*) JII2E n = - .-!L + .-!L + I - _e - __e C'" E* E~
2 2 mo mo g

m*
+ -" (1 + C* )E~ ,

mo

with the fitting pararneter C* = - 2.3, and E; = E g + 110/3,
Eg= 1520 meV, Eg + 110/3= 1631 meV, E~=húJC<n +112),
and m:=0.0665mo. Here we generalized this expression to
the quasi-two-dimensional case by (I) replacing the buIk
mass m: by the effeetive electron mass in the 2D plane mil'
and (2) by incIuding the confinernent energy in the band gap
energy E; =E g + 110/3+E~. The CR frequeney including
the eorreetion due to band nouparabolicity is now obtained
from

The prcsent calculation of the magneto-optieal absorption
spectrum is similar to the one described in Ref. I for GaAsI
AlAs quantum wells, except that we additionally include
band nonparabolieity and eonsider the different effective

phonon modes of the GaAs/AlxGa1-xAs system. Within the
linear-response theory, the polaron magneto-optical absorp-
tion is proportional to1,12

-Im 2:(w)
(5)

(1) [w- w?- Re l(ctJ)F+[Im 2:(w)F'

where 2:(w) is the so-called memory function and w? is the
unperturbed CR frequeney. In the absence of Landau-level
broadening we have 11112:(w) = O, and the position of the CR
peak is determined by the equation w- w? - Re2: ( w) :;;;;;O.
When we ca1culated the CR frequeney of the polarons in the
GaAsI AIAs quantum well, I the memory funetion could be
deeomposed into

(2)

(3)

whieh is a sum of the contribution from the slab phonon
modes, the S+ interface mode (supported by the AlAs
phonons), and the S- interfaee mode (supported by the
GaAs phonons).

In GaAs/AlxGal_xAs quantum-weíl structures, the barrier
material is the AIxGal_xAs alloy whieh has two LO- and
two TO-phonon modes. They are the GaAs- and AlAs-like
modes, respectively. In the small-magnetic-field regime, it is
possible to replace, in an approximate way, the two TO- and
LO-phonon modes by single effective TO and LO modes as
introduced in Ref. 13and used, e.g., in Ref. 2, in the study of
the electron-phonon renonnalization of the eIectron energy
and mass. However, for magnetopolaron effects in high mag-
netic fields, this approximation is no longer valid because
resonant polaron effeets OCCUIand the electron energy ean be
comparable to the energy of the different TO- and LO-
phonon modes. In principIe, we should consider all the TO-
and LO-phonon modes in the different materiaIs in order to
obtain the "exact" interface phonon modes.

For the GaAs/AIxGaI_xAs struetures, frequencies of the
AlAs-like phonon modes in the AlxGal_xAs alloy are given
by n1~s=360+70.8x-26.8x2 em-I and n1~s=360
+4.4x- 2.4x2 em - I. Those of the GaAs-like phonon modes
are nf~As=296-52.8x+14.4x2 cm-I and n~~As=270
-5.2x-9.4x2 em-I. Typieally, one uses x=O.3, and we
have nt';-'=379 em-I, n1~s=361 cm-I, nf~As=281
em -1, and nr~As=268 em - I. In this work, we are inter-
ested in the magnetopolaron resonanee cIose to the GaAs
phonon frequencies and the AIAs-like phonon frequencies.
Notice that the frequeneies of the GaAs-like phonons are
cIose to those of bulk GaAs, whieh are ww(GaAs)=296
em-I and wro(GaAs)=270 em-I. In a full theory one
should calculate the interface phonon modes of the
GaAs/AlxGaI_xAs interface which for x*O leads to six dif-
ferent modes of whieh two are AlAs like and the fOUIothers
GaAs like. Two of these four GaAs-like interface modes are
supported by the GaAs in the quantum well (corresponding
to the S - modes) and the two others are from the GaAs-like
modes (with weight I - x) in the barrier material whose fre-
queneies are between the TO and LO GaAs-like phonon fre-
quencies. In order to avoid this extra eomplieation, it is
physically more transparant to weight the dífferent interface
phonon modes of the GaAs/AJAs system by the concentra-
tion of AI or Ga in the AlxGal_xAs a11oy.Therefore, as in

(4)
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Ref. I, in the present paper we approximate the memory
function of the S+ interfuce phonon mode as

2:s+(w)-+x2:s+(w) +( 1-x)2:s-(w).

Then Eq. (6) becomes

2:( (ti) = 2:slab( w) +x2:S+ (w) + (2 - x):Ss- (w). (8)

We see that Eq. (8) reduces to Eq. (6) for x = I. On the other
hand, for x-+O we also have the correct limit because
2:s+ ( w) and 2:s - ( w) approach each other and vanish. The
approximation in Eq. (7) indicates that we have separated the
contribution ofthe barrier material AlxGa'_xAs to the inter-
fcace polaron effect into two parts. The first part is from the
AlAs-like phonons and is weighted by x, and the second part
is from the GaAs-like phonons and is weighted by 1- x.
Furthermore, the momery function of the second part is ap-
proximated by that of the S - mode.

In the ca1culation of the magneto-optical-absorption spec-
trum in GaAs/Al0.3Gau.7As quantum wells, we take
a=0.068, €o=12.85, and €",=ll.OO in GaAs; and
€o=11.91 and €",,=1O.18 in AIo.3GaO.7Asin Eqs. (59) and
(60) of Ref. l. The CR frequency is determined by the posi-
tion of the peaks in the magneto-optical-absorption spec-
trurn. Figure 1 shows the polaron CR frequency as a function
of magnetic field in GaAS/AlO.3GaO.7Asquantum wells of
widths (a) 120 Á and (b) 240 Á. The thin-dashed lines are
the CR frequencies within the parabolic band approximation
in the absence of electron-phonon interaction. The thin-solid
lines are the results including band nonparabolicity which
decreases the CR frequency,in particular at high magnetic
fields. The CR frequencies of the polarons using the 3D
GaAs pbonon modes and band nonparabolicity are indicated
by the dot-dashed curves, and exhibit only one magnetopo-
laron resonance around the GaAs pbonon frequency. The
thick-solid curves are the CR frequencies including band
nonparabolicity and the electron-phonon interaction with in-
terface and slab phonons. The experimental results are indi-
cated by the dots. Away from the resonant magnetopolaron
region around the AlAs phonons, the theory based on only
bulk GaAs phonons describes the experimental results quite
well, and coincides with our theory which includes interface
and slab phonons. Therefore, earlier claims" that interface
phonons are needed to describe the resonant magnetopolaron
effect near the GaAs phonons, i.e., w< 340 em- I, are ques-
tionable, Those c1aims are often based on crude approxima-
tions which, e.g., did not include band nonparabolicity
and/or the finite height of the quantum well andlor the elec-
tron mass difference between the well and barrier region
which result in important corrections to the CR peak posi-
tion. The prcsent calculation with interface and slab phonons
is in agreement with the experimental results not only near
the GaAs phonon region but also near the AlAs phonon re-
gion. Deviations from the experimental results near the AlAs
resonant region can be attributed to (i) many-electron effects
which are not included here, (ii) fiuctuation of the frequncies
of the AlAs-like phonons of the Al.Ga 1-xAs alloy barrier
from sample to sample, and (iii) the larger error bar in the
experimental data. From the experimental results, we also
could not observe a decrease of the resonant frequency near
an AlAs-like phonon frequency with an increasing width of
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FIG. 1. The polaron CR frequency due to interface and slab
phonons (thick solid curves), and due to 3D LO phonons (dotted-
dashed curves) as a function of magnetic field in (a) l20-À, and (b)
240-À-wide GaAs/Alo.3G30.7Asquantum wells with the inclusion of
band nonparabolicity. The thin-dashed and thin-solid lines are the
unperturbed CR frequencies for parabolic and nonparabolic bands
wíthout inclusíon of polaron effects, respectívely. The dots indícate
the experimental results. The horizontal dotted lines indícate the
LO- and TO-phonon frequencies of GaAs and AlAs-like modes.
The four branches of the CR frquencíes in (a) are indicated by wi ,
wi, wj, and w: in increasing order of frequency.

the quantum well, which is expected from our theoretical
calculations. We notice that only three of the four branches
of the calculated rnagnetopolaron CR frequency are observed
in the experiment. In order to see the relative irnportance of
the different branches in the CR spectrum, we calculate the
oscillator strengtb of the different absorption peaks in the
magneto-optical spectrum which, for InU,( úJ) = O, is given
by [I - d ReS (w)/ dW r I. The results are shown in Fig. 2
for a 120-Á QW. This figure shows the following: (1) There
are only experimental results available in certain magnetic-
field regions for the different branches; e.g., for the lowest
CR frequency branch, i.e., w~, the oscillator strength te-
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FIG. 2. The oscillator strength of the first four peaks in the
magneto-optical-absorption spectrum as a function of the magnetic
field in a 120-Â-wide GaAslAloJGao.7As QW. They are indícated
by wt , (Vi, wj, and wt in increasing arder of frequency.

duces with increasing magnetic field, and near B = 22 T a
large part of its oscillator strength is transfered to the wj
peak which becomes now experimentally observable, whi1e
the wi peak becomes too weak to be seen experimentalIy.
(2) The second CR frequency, i.e., w; , exhibits on oscillator
strength which is typically one order of magnitude smaller
than the main CR peak. Notice that the w; peak is in the
reststrahlen region, which is a second reason why it is not
observed experimentally.

A direct measure for the strength of the electron-phonon
interaction is the splitting ofthe avoided-level-crossing reso-
nance near the GaAs- and AlAs-like phonon modes. For sim-
plicity, we define the splitting near the AlAs-like phonons as
the frequency difference between w: and (új at the magnetic
fíeld, where w? equals w~+ (the frequency of the interface
phonon mode S+ at wave number q-+oo), and that near the
GaAs-like phonon is the difference between wj and wf at
w? = wLO of GaAs. These splittings are shown in Fig. 3 as a
function of the well width of the GaAs/Alu3GllQ.7Assystem.
The solid (dashed) curve indicates the resonance in the re-
gion of the AlAs (GaAsj-Iike optical-phonon frequencies.
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FIG. 3. The splitting of the magnetopolaron resonance around
the GaAs-like (dashed curve) and AlAs-like phonon frequencies
(solid curve). The dots are the experimental results.

The solid dots are the experimental results. The present the-
oretical results predict that the largest splitting as due to the
AlAs-like interface phonons (solid curve in Fig. 3) occurs in
a GaAs/AI0.3Gao.7As quantum well of width W= 18 Á. The
largest splitting near the GaAs phonon frequency occurs for
a much larger well width of about W = 100 Á. The decrease
ofthe resonant splitting for a large well width near the AlAs-
like optical phonon is mainly a consequence of the reduced
overlap between the electron wave function and the interface
phonon polarization which falls offlike e-kz from the inter-
face. The polaron splitting near the GaAs optical-phonon
modes is largely due to the interaction with GaAs slab
modes, and consequent1y the reduction for large widths is
due to the smaller confinement of the e1ectrons and is similar
to the decrease of the polaron effects when one goes from a
2D system to a 3D system. The reduction ofthe splitting for
W< 18 Á is a consequence of the finite height of the quan-
tum well, which results in a large penetration of the electron
wave function into the AlxGal-xAs barrier and consequently
a reduced probability of finding the electron in the QW or
near the interface. The reduction of the splitting near the
GaAs phonon for W< 100 A is a consequence of the reduced
number of slab modes with decreasing W.

In Fig. 4 we plot the absorption spectra of the magneto-
polarons around (a) the GaAs and (b) AlAs-like phonon fre-
quencies at different magnetic fie1ds for a QW of width W
= 120 Á. The results are obtained for a Landau-leveI broad-
ening I' = 1 meV. Figure 4(a) shows the magnetopolaron
resonance due to GaAs-like interface and slab phonons. No-
tice that only two absorption peaks are observed, and that the
peak corresponding to the second branch in Fig. 1(a), situ-
ated between the TO- and LO-phonon frequencies of GaAs,
is absent. This is a consequence of its small oscillator
strength, which makes it disappear in the tail of the other
Landau-level broadened peaks. It is seen that, at B = 20.5 T,
most of the absorption strength is in the lower peak at w
= 244 em-I. When the magnetic field is increased, this peak
is pinned "around" the WTO of GaAs, and its absorption
strength is transfered to the higher peak located above the
Ww of GaAs. Figure 4(b) demonstrates the magnetopolaron
resonance due to AlAs-like interface phonons. It is seen that,
at lower magnetic fields (B<26.5 T), the absorption peak at
higher frequency is in the reststrahlen region of the AlAs-
like phonons. With increasing magnetic fie1d, the peak at
lower frequency enters this reststrahlen region. It becomes
very broad, and it loses most of its oscillator strength to the
higher-frequency peak,

m, PHONON-ASSISTED HARMONICS

Figure 5 shows the magneto-optical-absorption spectrum
for a polaron interacting with interface and slab phonon
modes in the frequency region above the AlAs optical pho-
non in GaAs/Alo.3Gao.7As quantum wells of widths (a) 20 Á
and (b) 120 Á for two different values of Landau-level
broadening: f=0.5 meV (solid curves) and f= 1 meV (dot-
ted curves). The scale of these figures is multiplied with a
factor of 300 as compared to the one of Fig. 4(a). We clearly
observe optical-phonon-assisted harmonics'v'ê for the slab
and interface phonons (namely, three series can clearly be
discriminated), as indicated by S-, slab, and S+, respec-
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FIG. 4. The magnetopolaron absorption spectrurn around (a) the
Ga.As-like and (b) the AlAs-like phonon frequencies at different
magnetic fields in a GaAs/Alo.3Gao.7As QW of width w= 120 Â.
The two vertical dotted lines in (a) indicare the TO- and LO-phonon
frequencies of GaAs, and those in (b) indicate the frequencies of the
AlAs-like phonons. The Landau-level broadening is r= 1 meV.
The intensity in (b) is enlarged by a factor of 2 as compared to (a).
The different curves are offset for clarity.

tively. In Fig. 5(a) for W=20 Â, we notice that the absorp-
tion strength of the interface-phonon-assisted hannonics
S - and S + is larger than the one due to the slab phonons.
These three peaks are repeated periodically with period Wc>

but their strength decreases with increasing frequency. For a
120-Â QW, as shown in Fig. 5(b), the slab-phonon-assisted
harmonics beeome mueh stronger than those of the interface
phonons, indicating the deereased (increased) interaetion of
the electron with the interface (slab) phonons with inereasing
QW width.

The position of the first ten absorption peaks in a QW of
width 120 Â are plotted in Fig. 6. We found that the position
of the phonon-assisted hannonies depends only on the reso-
nant optieal-phonon frequencies wi, and is given by wn,j
= (Vi +n w? with n = 1,2, .... For the slab phonons we have

W=20Â (a)

s
s+

\slab .•fi'. o A '.0 A n BB==11=>:5TI _
Oj~Ul~LJ~\'L-__~ __~~ __~~~ __-J

400 500 800 900

W=120Â (b)

. .slsb

'~I,s: I

j\25T.~ L-..-..

t~~l:s. ,1\ 20T- ! L......" ,

slab

0\1, ~ J B=15T
o

500 600 700 800 900 ]000
(I) (em")

FIG. 5. The phonon-assisted harmonies in the polaron magneto-
optical-absorption spectrum in (a) 20-Â and (b) 120-Â-wide
GaAs/AlO.3GaO.7Asquantum wells for three different magnetic
fields and two values of the Landau-level broadening r= 0.5 meV
(solid curves) and r= 1 meV (dotted curves). The intensity is en-
larged 300 times as compared to Fig. 4(a).

W.~lab= wLO beeause the slab modes were taken dispersion-
less. On the other hand, the interface phonons have disper-
sion, and consequently the resonant frequeney depends on
the width ofthe QW. We found that the resonant frequencies
ofthe S+ and S- modes in a 120-Â QW are w~+ =371.4
ern-I and w~_=281.7 em-I, respectively.

ln order to investigate the importance of the phonon-
assisted hannonics, we calculated the strength of the differ-
ent peaks for the situation of Fig. 6. They are shown in Fig.
7(a) for the first phonon-assisted hannonics
wIJ=wi+w~P, and in Fig. 7(b) for tne second phonon-
assisted hannonics w2J=w;+2w;p. Notiee that they are
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FIG. 6. The positions of the fírst ten peaks in the magneto-
optical-absorption spectrum as a function of the magnetic field in a
120-Á-wide QW. The positions ofthe hannonics due to the GaAs-
like interface mode (S-), slab modes, and AlAs-like interface
mode (S+), are indicated by thin-solid, dashed, and dotted curves,
respectively, The horizontal dotted lines are the frequencies of the
GaAs and AlAs-like phonons,

typically two orders of magnitude smaller than the oscillator
strength of the experimentally studied resonances (see Fig.
2). This result agrees with the earlier calculation of Wu,
Peeters, and Devreese.F who included only interaction with
bulk GaAs phonons for a Q2D system of GaAs heterojunc-
tion. The results using the 3D phonon modes are shown as
solid dots in Fig. 7(a), and are compared with the present
results (open dots), where we added the oscillator strength of
the S +, S -, and slab peaks. The present results for the
oscillator strength of the fust phonon-assisted harmonics are
one order of magnitude smaller than the theoretical results of
Tanatar and Singh.!" Our theoretical results are in agreement
with recent experimental resulta" which were unable to ob-
serve the first phonon-assisted harmonics in a nurnber of dif-
ferent GaAs quanturn wells, and where it was estimated that
the oscillator strength of this line must be less than 1% of the
main CR peak. On the other hand, in a recent experiment.!"
a phonon-assisted impurity transition was observed in a
donor-doped sample using photoconductivity at high fre-
quencies. These results are not in disagreement with the
present results, because here we considered free electrons
and calculated the CR absorptions, while the experiment in
Ref. 16 is for shallow bound electrons and where photocon-
ductivity was used. Therefore, we expect that it will be ex-
tremely hard to see these phonon-assisted harrnonics experi-
mentally in GaAs/AI0.3Gao.7Asquantum wells.

IV. SUMMARY AND CONCLUSIONS

A detailed theoretical analysis of the magneto-optical
absorption spectrum of low density electrons in
GaAs/Al,Gal_xAs quantum wells was presented. From
our calculation of the polaron CR spectrurn in
GaAs/Alo3Gao.7As quanturn wells and a comparison with the
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FIG.7. The oscillator strength of (a) the first (n = 1) and (b) the
second (n =2) phonon-assisted hannonics in the magneto-optical-
absorption spectrum as a function ofthe magnetic field in a 120-Á-
wide QW. The solid dots in (a) are the results using the GaAs
bulk-phonon modes, and the open dots are the sum ofthe oscillator
strength of the S +, S -, and slab peaks.

experimental results ofRef. 5, we demonstrated that, in order
to achieve good agreement with the experiments, it is impor-
tant to include correctly (I) an appropriate electron effective
mass for motion in the plane of the QW which is renormal-
ized by the penetration ofthe electron wave function into the
barriers, (2) band nonparabolicity effects, and (3) interface
phonon modes in order to explain the magnetopolaron reso-
nance around the AlAs-like optical phonons. The phonon-
assisted harmonics exhibit clear signatures of the different
interface phonons, and the slab phonons, but their oscillator
strengths are two orders of magnitude smaller than the main
CR resonances.
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Polaron cyclotron resouance (CR) has been studied in three modulation-doped GaAsj AI O.3Ga{1.7As
multiple quantum well structures in magnetic field up to 30 T. Large avoided-level-crossing splittings
of the CR near the GaAs reststrablen region, and smaller splittings in the region of the AlAs-like
optical phonons of th AlGaAs barriers, are observed. Based on a comparison with a detailed theoretical
calculation, the high frequency splitting, the magnitude ofwhich increases with decreasing well width, is
assigned to resonant polaron interactions with AlAs-like interface phonons. [30031-9007(97)04404-9]

PACS numbers: 71.38. + i, 71. 70.Di, 78.20.Ls

The interaction of charge carriers with optical phonons
in quasí-two-dimensional (Q2D) systems has been of
considerable interest both experímentally [1-6] and
theoretically [7-12J for several years, since the e1ectronic
properties of semiconductors, particularly energy loss
mechanisms for hot carriers, are strongly affected by
thís interaction. For bulk polar materiais, the dominant
interaction is between the charge carriers and longitudinal
optical (LO) phonons [7J. Interface and confined phonons
[11,12] and their interaction with charge carriers in quan-
tum wells have received considerable attention recently,
and it has been shown theoretically that these modes
can play a significant role in narrow wells. However,
a number of issues remain unresolved. In particular,
a sum rule [l3J rnakes it difficult to deconvolve the
rei ative important of interactions with the various phonon
modes of confined systems from measurements whích
are not phonon-frequency specitic [141. There has also
been some controversy about the importance of interface
and confined phonon modes in the region of resonant
magnetopolaron interaction with GaAs phonons [6,11,12].
Raman scattering studies of short period GaAsj AlAs
superlattices [15,16] have provided experimental evidence
for both confined and interface modes, but there have
been no experimental measurements of the strength of

3226 0031-9007/97/79(17)/3226(4)$10.00

the interactions in either GaAsj AlAs or GaAsj AIGaAs
quantum wells, there has been no experimental work
showing the effects of interface phonons in quantum well
structures with alloy barriers, and there has been no work
demonstrating clearly the importance of this interaction
in "normal" weU width range (the order of greater than
100 Á) for practical devices (e.g., intersubband detectors).

The resonant magnetopolaron effect, which has been
studied for a number of years in bulk [17,18] and Q2D [4-
6] systems, provides a means of determining the strength
of interactions with specific phonons, When the cy-
clotron resonance (CR) frequency, Wc = eB j m" c, is tuned
through the fiequency of an appropriate optical phonon,
a resonant avoid level crossing occurs. The magnitude
of this avoided-level-crossing resonance is a direct mea-
sure of the strength of the effective interaction. Although
such effects have been studied for some time, much re-
maíns unknown or poorly understood. Enhanced [1,19],
comparable [20], and reduced [3,5,21] resonant polaron
effects (relative to 3D) have been previously reported in
Q2D systems. The detailed mechanisms leading to these
observations have been obscured in some cases by inad-
equate theoretical models for the specific structures, and
in other cases by incomplete experimental data due to
an insufficient magnetic tield. Nevertheless, appropriate

© 1997 The American Physical Society
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experirnents spanning the resonant region can reveal the
existence of interactions with particular phonon modes,
and, when combined with theoretical calculations, can be
used to determine the strength of the interaction.

We have carried out an experimental study of elec-
tron CR vs magnetic field in three modulation-doped
GaAs/ A4uGao.7As multiple-quantum-well samples in
magnetic fields up to 30 I. Strong resonant avoided-
level-crossing behavior was observed in the region of the
GaAs optical phonons with a large splitting of the CR into
upper and lower branches. lu addition, and of paramount
importance, a weaker splitting was observed at higher fre-
quencies in the region ofthe AlAs-like optical phonons of
the barriers. Ihis splitting increases with decreasing well
width from 240 to 120 A, and is attributed to the resonant
magnetopolaron interaction of electrons in the GaAs wells
with barrier AlAs-like interface phonons, This permits the
direct measurement of the importance of the interaction as
a function of well width. The magnitude of the splitting
is in good agreement with theoretical calculations carried
out in the framework of the memory-function formalism
[11] including effects of interface optical phonon modes,
as well as screening and occupation effects. Our mea-
surements, which are sensitive to specífic phonons via
lhe spectral specificity of the technique, demonstrate that,
even for barriers containing only 30% AI and relatively
wide GaAs wells, the AlAs-like interface phonon modes
associated with the barriers interact significantly with
electrons in the GaAs wells. A detailed comparíson of
theory and experiment for the upper and lower branches
in the GaAs optical phonon region for two samples with
different carrier densities suggests that screening and
occupation effects are significant at the higher density and
are of nearly equal importance.

Ihe far infrared transmíssion measurements were car-
ried out with a Bruker 113v Fourier transform interfero-
metric spectrometer in conjunction with a metal light-pipe
condensing-cone system and a 4.2 K silicon bolometer de-
tector on samples maintained at 4.2 K in a 30 I resistive
magnet. The three GaAs/ AIo.3G~).7Asmultiple-quantum-
well (240 A barrier) samples were grown by molecular
bearn epitaxy with fifteen and ten 240 A wells, and eight
120 A wells for samples A, B, and C, respectively. All
samples are doped with silicon donors in the barriers,
samples A and B over central ~ and sample C in a planar
sheet. The measured (from the quantum hall effect) elec-
tron densities per well for samples A and B are 1.5 X 101 í

and 3.0 X 1O1l cm-2, respectively; the nominal doping
for sample C is 1.5 X 1O11 cm-2. The maximum 30 I
magnetic field permits CR measurements that span the en-
tire GaAs and AlAs optical phonon regions.

Figure 1 is a plot of the measured CR frequency vs
magnetic field for these samples; the solid lines are
the calculated unperturbed single particle CR transition
frequencies, which include the conduction band non-
parabolicity. The data for ali samples show clear, large
CR splittings in the GaAs reststrahlen region. The fie-

450.---.---~----.----.---.----.----.
400 ._. .LQ(~~L. o _._ ._._. ,_,_._.

350
300 ._._._~~(~;L_._._. . ~+''":::~~~._._.__

"250 '-.-·-i-ÕiG';';';}-·-·-·- .---.- -~-~:~------ ---.-. --.

200
150

+ -SampleA

'" ----·Sample C

100
E.3-
fj'
s
:::l
~ 450
u.. 400
c:
.g 350
.~
~ 300
t--

250

50

200

150

SampleB

100

50
OL-__~ __~ L-__-L__-J ~ __ -J

o 5 15 30 3520 2510

Field (T)

FIG. 1. Experimental data for ali three samples. The tilted
straigbt lines in tbe figures are tbe calculated CR transitions
including nonparabolicity only.

quencies of the lowest energy branch start to deviate from
those of the unperturbed CR well below the GaAs-Iike
optical phonon energies, and the intermediate branch ap-
proaches the GaAs-like LO phonon frequency from above
as the field ís decreased. Ihe CR frequencies of sarnples
A and B are indistinguishable at fields below 10 I. Larger
differences are observed at higher fields, particularly for
the intermediate branch in the region of resonance with
the GaAs optical phonons.

At higher frequencies there are srnaller splittings ob-
served in the AlAs-like phonon region for sarnples A and
C. Raw magnetotransmission spectra for these samples
are shown in Fig. 2, at magnetic fields between 25 and
29 I. For sarnple A at 25 and 29 I, there is only one
observable resonance minimum at 348 and 391 cm-I,
respectively. However, when the CR ís tuned through
the AlAs-like optical phonon region of the barriers
(-26- 28 I), the resonance is clearly split into two
branches. The intermediate energy branch loses intensity
gradually when the field is increased, while the highest
energy branch gains intensity over this sarne region. Note
that the pinning frequency (-370 cm "} lies between the
AlAs-like LO and transverse optical (IO) frequeneies.
The minimurn separation between the two branches at
27.5 I is approximately 8 em-I. A much clearer and
larger splitting is observed in sample C with a minimum
separation of 20 em -I at 27 I, and pinning frequency
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FIG. 2. Transmission spectra at severaI different fields di-
vided by a zero-field reference spectrum for samples A and
C. The traces are spaced every 0.5 T, ex.cept the lowest trace
in (b). (a) sample A, (b) sample C.

dose to 370 cm-I. The interaction which causes the
splitting c1early increases with decreasing well width.

There are two possibIe origins for this splitting:
(1) electrons localized in the GaAs wells interacting with
the AlAs-like slab LO phonons in the barriers due to
electron wave-function penetration into the barriers, or
(2) electrons in the GaAs wells interacting with AIAs-like
interface phonons due to the tail of the interface modes
in the GaAs wells. To estimate the importance of (1)
we have calculated the fraction of the probability density
of the ground eonfinement subband wave funetion pene-
trating into the AIn.3Gao.7As barrier for the structures of
samples A and C. For a 240 A X 240 A structure this
fraction is 3 X 10-4; for a 120 A X 240 A strueture it
is 2 X 10-3. Since the splitting of the CR at resonanee
with the GaAs LO modes is approximately 40 em-) (see
Fig. 1), observed splittings (8 and 20 cm-I) cannot be
due to the interaction of the electrons in the wells with
the AfAs-Iike LO phonons in the barriers, which should
scale with the fraetion of electron probability in the
barriers because the Frõhlich e1ectron-phonon coupling
constant is approximately the same for GaAs (~0.068)
and A103G3{uAs (~0.073). Another strong argument
against possibility (1) is the fact that for both well
widths the pinning energies clearly lie below the AIAs-
like LO phonon frequency for Aln3G<I{J.7Asat helium
temperature [22].

The interaction between eIectrons and the symmetric
pure AlAs interface optical (10) phonon modes has been
calculated [11]. In order to compare with the present
experimental results, the contribution from the pure AlAs
IO phonon modes is multiplied by 0.3. The modified
theoretical calculation gives splittings of approximately
iO and 16 em-I near 371 em"! for the 240 and 120 A
wells, respectively, in reasonable agreement with the
measured values. This is taken to be a confirmation of this
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assignrnent. For sample B the splitting into two branches
is not resolved. It is likely that screening and Pauli
principle effects reduce the effective interaction since the
electron density for sample B is twice that of sample A.

Dielectric artifacts can also give rise to apparent split-
tings [5,23J in the reststrahlen region due to the resonant
dielectric function ofthe material at the TO frequency. A
computer simu1ation ofthe classical dielectric effects [24J
in the reststrahlen region in the multilayer structure of our
samples was performed to examine the possible effect of
dielectric artifacts. For the present sample parameters, no
measurable CR splitting in the GaAs reststrahlen region
or in the region of the AlAs-like barrier phonons appears
in the simulation.

To test the above conc1usion, detaíled theoretícal calcu-
lations for the sample structures are compared with the
experimental results in Fig. 3. The difference between
the measured polaron CR frequency and the unperturbed
CR frequency is plotted vs the measured frequency. The
electron-phonon interaction Hamiltonian is given by the
Frõhlich model, with the phonon modes modified due to
confinement and the presence of the interfaces. Three
types of optical phonon modes can interact with the elec-
trons in the wells: (I) symmetric interface optical (10)
phonon modes, (2) antisymmetric 10 phonon modes, and
(3) confined GaAs slab LO phonon modes in the wells.
The solid line in Fig. 3 was obtaíned by considering the
effects of symmetric 10 phonon and confined slab LO
phonon modes in a single electron picture. This calcu-
lation agrees well with the experimental results over the
entire resonant region. A calculation was also performed
for coupling with only bulk GaAs 3D LO phonons (other
lines in the figure). The results are nearly the same for
the wider well samples (A and B), except near the AIAs-
like phonon frequencies. This is to be expected for rela-
tively wide quantum wells. But the agreement for sample
C is clearly significantly worse. Confined and interface
modes must be accounted for. to get good agreement in
this case. The GaAs-1ike interface phonon modes do not
play an important role over the range of fields and fre-
quencies for which the polaron CR is observable since
their interaction with electrons is smaller than that of the
GaAs confined phonon modes, and the experiments do
not probe into the reststrahlen region where the resonance
occurs. On the other hand, the AlAs-like 10 modes do
pIay an important role since there is no strong interac-
tion with any slab modes, and the total AIGaAs thickness
is small enough that the reststrahlen effect does not ob-
scure the interaction. The symmetric AlAs-like 10 modes
are responsible for the splittings near 370 em -), and in-
clusion of this interaction provides good agreement with
experiment.

The doping concentrations of the samples lie in an
intermediate regime for which both screening and oc-
cupation effects must be considered. The dashed lines
in Fig. 3 are calculated results for coupling with only
buIk GaAs LO phonons, and the dash-dotted lines are
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calculated results in which both screening (within the
static random-phase approximation [10]) and occupation
effects are taken into account in addition to the coupling
wíth bulk GaAs optical phonons. It can be seen that,
when occupatíon and screening effects are included, the
agreement between the calculations and the experimen-
tal results are further improved in the GaAs region for
sample B.

The importance of screening and Landau leveI occu-
pation can also be seen from the region of AlAs-like
phonons. Since the contribution to the interaction from
screening and occupatíon effects are both important [25]
in this region, the fact that a spIitting in the AlAs-like
phonon region is not observed in the higher doped sample
B shows these effects play a strong role here.

Experimenta! work was performed at the Nationa! High
Magnetic Fíeld Laboratory, which is supported by NSF

Cooperative Agreement No. DMR-9016241 and by the
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Optically detected magnetophonon resonances in GaAs
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Magnetophonon resonances are found for úJc= lf)wlN with N= I ,2,3 ... in the polaron cyclotron resonance
(CR) linewidth and effectivc mass of bulk polar scmiconductors. The CR mass and the lincwidth are ohtained
from the full polaron magneto-optical absorption spectrurn which are calculated using the memory function
tcchnique. The amplitude of the rcsonant peak in thc linewidth can be describcd by exponential law at low
temperature. [SOI63-1829(99)09139-0]

l. INTRODVCTION

Magnctophonon resonance (MPR) occurs when two Lan-
dau levels are a phonon energy apart that leads to a resonant
scanering due to emission or absorption of phonons. Since
the pioneer work by Gurevich and Firsov, 1 this effect has
been extensively studied in bulk2.3 as well as low-
dimensional serniconductor systems.T" The rcsonant charac-
ter makes it a powerful spectroscopic tool. Magnetophonon
resonances have been used to obtain information on band-
structure parameters, such as lhe effective mass and lhe en-
ergy levels, and on the electron-phonon interaction. The vast
majority of work on the MPR has been done on lhe transport
properties of scrniconductors, usually the magnetoresistance,
which inevitably involves a complicated average of scatter-
ing processes. The oscillations in the magnetoresistance are
the results of a combination of scanering and broadeni.ng
processes that can lead to a quite complicated dependence of
lhe resonanee amplitudes on doping, sample structure, carrier
concentration, and temperature. However, the MPR can also
be observed directly through a study of the electron cyclo-
tron resonance (CR) linewidth and effective mass, i.e., the
so-calJed optically detected MPR (ODMPR), as was demon-
strated in two-dimensional 12D) semiconductor systems of
GaAs/ AI,Gal-xAs heterojunctions by Barnes et al. 10 The
ODl\1PR allows one to make quantitativo mcasurernents of
the scauering strength for speciíic Landau levels and yields
direct information on the nature of lhe electron-phonon in-
teraction in semiconductors,

lu this work, we cxtend the theory for ODMPR to three-
dimensional (3D) systems and present a theoretical study of
the magnetophonon resonances in the frcquency-dependent
conductiviiy in bulk polar semiconductors. Our calculations
show strong oscillations of both the linewidth and the effec-
tive mass in a 3D system of GaAs that mdicate that lhe
ODMPR should also be observcd experimentally in bulk po-
lar semiconductors.

Thc prcscnt papcr is organizcd as follows. In Seco Il. wc
present our theoreucal formulations of Lhe problem. The nu-
mcrical results and discussions are given in Seco Ill, and we
summarize our results in Sec. IV.

0163-1829/99/60(24)' 16513(6;':$ 15.00 PRB 60

n, THEORETICAL FR.A.MEWORK

Magnetophonon resonance is essentially a single-particle
effect and, consequently, can be treated as a one-polaron
problem. We consider a polar semiconductor in a uniform
magnetic field B directed along the z axis. The system under
consideration can be described by the following Hamil-
tonian,

with

1 _ _?

H.=--(p+eA)-'2mb •
(2)

and

Hph=2;, liúJq(a~aq+~),
q

(3)

where mb is the bare elcctron effective mass, the vector po-
tential.4 =B/2( -y,x,O) is chosen in thc symmetrical Cou-

lomb gauge, fi (i::) the momcntum (position) operator of the
electron, a~ (a,;) the creation (annihilation) operator of anq •

optical phonon with wavc vcctor q and energy líw'l' The
eJectron-phonon interaction Hamiltonian li;llt is given by the
Frohlich interaction Hami ltonian

(4)

whcrc

and Q is lhe electron-LO-phnnon coupling constam.
First, we calculate the optícal-absorption spectrum of the

polaron in magnetic fields Irom which we are able to inves-
tigate thc polaron CR spectrum and the MPR effects, For
conveniencc we use units such that fi =mh=úJLU= I. Within

16513 :(' 1999 The Arnerican Physical Society



PRB 60!6 S 14 G.-Q. HAI AND F. ivL PEETERS

wherethe linear-response theory, the frequency-dependent
magneto-optical-absorption spectrum for cyc1otron
resonancelH3 is given by

where wc=eBlm" is the unperturbed electron cyclotron fre-
quency, ~ (z ) is the so-called memory function, and z = w

+ iY and y is a broadening pararneter. Notice that y is in-
troduced semiempirically to remove the divergence of the
Landau-level density of states. We take 'Yas a constam. For
the magneto-optical-absorption spectrum in the Faraday
(active-modej coníiguration, which corresponds to the cyclo-
tron resonance experiments the memorv function is ziven
by12 "~

with

? l·~F;;(::) = -:. df(1-ei~t)Im([b;;(i),b~(O)]),
z o .

where b,l=a;;e,q·,., and the correlatíon function 18 given by

([ h q(ti .b ~(O)]) = [) +n( wLOi]e - ilOLf)IS*( - q,r)

-n(ww)e-iWLO'S(q,t), (9)

1
n(wI.O)= -,,---

e!J"'LO- 1
(10)

is the number of the LO phonons and

00
is the space Fourier transforrn of the electron density-density
correlation function. In Eq, (10) (3= l!klJT, where kB is the
Boltzrnann constant, For a weak electron-LO-phonon cou-
pling system, i.e., a~ 1, the density-density correlation func-
tion is calculated for a free electron in a magnetic field which
is given by

(12)

with

(13)

and

I. 2
Dlf(t) = -?-[ 1-e1wc' +4n( WJSlll (w,J/2)].

- (1)1'

From the above equations, we obtain lhe memory func-
tion for 'Y=O. The ca lculation proceeds along the Unes of a
similar calculation which was presented in Ref. 12. The re-
sults for the memory function are

and

~14)

i /3x /3 \ I: /3x /3 .. 1
x expi--~-(Wnn,-w)i+exp --J. +-4.(Ú)n'n-w) l

\ 4 4x I'. x
(15)

where úJIIII, = 1+(n-nl)w,., D(x) is lhe Dawsons integral function, and

Ix . t"e "
E = dr--.

t7 (I r+x
(16)

ln the case of "1* 0, lhe calculaiion is more iedious. We obtain the following results of lhe memory function,
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FIG. 1. (a) Re};( w) and (b) 1m};( w) as a function of frequency w in GaAs at different magnetic fields (<1,.1 WLQ=O.3 (dotted curves),
0.4 (dashed curves), and 0.5 (solid curves). The corresponding absorption speetra are given in (c). The broadening parameter 1'=0 and
ternperature T= 77 K.

(t

Re2:(liJ)=-. ? ? fW!,(liJ)+yJ2(w)]
\1'2 '1i( or: + y.) ,

and

(J 7)

with

(18)

/ (i i f3wnn, I r ri /iix IIi ,\
x exp] -2-1 iD; -')-+ -z:w"I"!

''. i l . - .X "

- ~[ Im TI·r -J:x + f!(WlliI' +w+iy) + lm wl"';~x + ~~(Wn'n-W+iY))

( f3wn''';1 í \f3x <ffJ \
+cxpl --- !D ----w' r' . '. 2 / l 2 2x li li,

-J;. r . / -\/f3x ,JJ3
- -'-lIIll Wr -'- - -' í (l) • -w-i'y)

4 \ 2 2x" n ti

and

(\r;3x ,f f3 ,
+ Im wl -- - - «(iJ , + ftl- i 'Vi. \:2. 2x fl 11 ,

(9)



16516 G.-Q. HAI AND F. M. PEETERS PRB 60

Wc tanh{f3w,j2)

r i (3w ,\ [ (ljix J7j \ I· -J"/3x -J"/3 .)'
xlexpl.~' ReW\.-?-+ -(w/lII,+w+i')'l I-Re11'.-2-+ ~(W"n,-w+iy) ..

\ .: J \ - 2x i \ _x .

((3Wnln"\[ (I!jjx jjj ') (,.)"/3x -Jfj \ 11 (_?O)
+expl--- RerV---(w, -w-iy) -ReW\----(w .., +W-iYJ/I

J
'\ 2 /. \:2 2x n n ' l '. 2 2x ,,11 / J '

where W(::) =e - ="erfe( - iz) is the complex errar function.

rn. NUMERICAL RESULTS .Al'D DISCUSSIONS

In this section, we are going to present our numerical
results on the magneto-optical-absorption spectra and to
study the magnetophonon resonant effects. As an example of
weak electron-Lô-phonon coupling, we apply our theory to
semiconductor GaAs where a=0.07. First, we show some
numerical results for temperature T= 77 K and level broad-
ening parameter y=O. Due to the importance of the memory
function in the absorption spectrurn, we plot the real and
imaginary parts of the memory function in Figs. ) (a) and
l tb), respectively, as a function of frequency at different
magnetic íields. We see that, ar bJ= !rf}I.Q-n rUe! (n
=0,1,2, ... ), Re2:(w) exhibits a jump while Im~(w) di-
verges logarithmically. The discontinuity of Re2(w) and the
divergency in Im2(w) reílects the resonant coupling between
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FIG. 2. The magneto-optical-absorption spectrum at around (a)
w,.!wLQ= 1/2 and (b] wc/WLQ= 1/3. T=77 K and y=O.

the state EO+wLOand Landau leve! EII=( li2+n)lUc' The
stronger this coupling, the larger the discontinuity in
Re2(w). Actually, the real part of the memory function
Re2{úJ) is responsible for the shift in the observed CR en-
ergy which is due to the electron-phonon interaction, whi1c
the imaginary part leads to a broadening of the spectrum
which is a result of scattering. When .ú112:( (tJ) =0 like in a 2D
system, the absorption is a 8 function, and its position is
determined by the equation (u:-lúc-Re2(w~)=O. Figure
l(b) shows that in the present system the Im 2( w) is always
non-zero, which reflects the 3D character of the e1ectron
states. The scattering in the direction parallel to lhe magnetic
field results in a finite Im~(w) and, consequently, a finite
linewidth even for y= O. In Fig. l.íc), we show the corre-
sponding magneto-optical-absorption spectra, The position
of the absorptíon peak corresponds to the cyclotron resonant
frequcncy w: at which the cyclotron resonance occurs. We
see an asymmetric double peak structure around «a= wLd2
for w •.= wrnl2 (the solid curve), and lhe aborption becomes
zero at w = ca c = w Ld 2. The zeros in the absorption spec-
[rum are a consequence of lhe divergences in Im2.{(o) and
can be traced back to the divergent nature of the density of
states. The double peak structure is a consequence of the
magnetophonon resonance which leads to an anticross be-
havior in the CR spectrum. When the unperturbed CH fre-
quency lllc deviates from Ww / N, this splitting becomes very
weak and difficult to be observed in the absorption spectrum .
As we will see below, however, the magnetophonon reso-
nance will strongly affect the Iinewidth of the magneto-
optical absorption and the CR mass, From the dashed and
dotted curves,

wr-------------------~---.

40

20

0.46 0.52 0.540.48 0.50
w/w...o

FIG. 3. The magneto-optical-absorption spectra as a function of
frequency w in GaAs for vt <Vt.o= O (solid curve), 0.001 (dashed
curve), 0.01 (dotted curve), and 0.1 (dash-dotted curve) at
'.rJc/wLQ=0.5 and T=77 K.
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FIG.4. (a) Polaron CR mass and (b) FWHM as a function of Wc

at different ternperatures from 60 K to 200 K with ylwLQ=0.05.

we observe that Lhe absorption peak appears at w;< (tIe due
to the polaron cffect which shifts the cyclotron frcquency to
lower frequencies. The latter is often interpreted as ao in-
crease ofthc cyclotron mass, i.e., Ú)~ = eB/m *. In Fig. 2, we
show Lhe absorption spectrum around (a) 1f1c= IUl\)/2 and (bl
IUc = wLC/3. The double peak structure disappears when w c

deviates írom ww/N (N=2,3). The absorption spectra also
dernonstrate clearly a nonlinear magnetic-field dependence
of the peak position and linewidth around wwíN.

Figure 3 demonstrares the effect ofthe broadening param-
der ')' 011 the absorption spectrum. Notiee that, with increas-
ing y. (i) the double peak structure disappears for y
>0.01 Wm. (i i) lhe zero in lhe absorption spectrum disap-

0.015 ,-------------..,..--, . . . . . .
• N=2

0.010

.i.g
0.005

•
•. •

0.000 -
100

N=3
• • • • • • •••

200
T(K)

300

FIG. 5. The CR rnass oscillation amplitude as a function of
temperarure at Wc I wLO= 112 (dots) and ú)c I~o= 1/3 (solid
squares] with yl wLQ= 0.05.

10-4
0.00 0.01 0.02

I/r (K-')
0.03

FIG. 6. An acuvation plot of the amplitude of the resonant peak
in the FWHM at W,. I WLQ= 1/2 (circles) and Wc I WLO= 1/3 (tri-
angles) as a function of r I. The solid line x exp( - h~d2k B 1)
and the dotted tine «expí -2h~d3kB1).

pears when y>O, and (iii) the position of the absorption peak
shifts to higher frequency. This indicares that the anticross-
ing behavior in the CR spectrum will be difficult to be ob-
servcd experimentally at lU"= IULQ/2, due to broadening ef-
fects which are a consequence of scattering on e.g.,
ímpurities and acoustical phonons.

As soon as the polaron CR frequency lU: is determined
from the position of lhe magneto-optical-absorption peak,
the CR mass of Lhe polaron is obtained by

(21)

The numerical results of the polaron CR mass and the
FWHM (full width ai half maximum) for ')1= O.05WLO are
plotted as a function of the unperturbcd CR frequency at
different temperatures in Figs. 4(a) and 4(b), respectively.
One observes that the polaron CR mass is an oscillatory
function of magnetic field. Figure 4(b) shows that the
FWHM of the polaron magneto-optical-absorption spectrum
reach a local maximum at (J)•. = {J}Lo/N where the polaron
mass has an inflection point. This result demonstrates the
derivativelike relation between the polaron CR mass and the
linewidth which are due to the fact that the real and imagi-
nary part of the memory function are related to each other
through a Kramers-Kronig relation, One finds that, for tem-
perature T< 100 K, thc rcsonancc grows rapidly with in-
creasing T. This effect can lead to a direct measure of lhe
optical-phonon scattering rate. We also show an overall in-
crease of the linewidth with temperature but an overall de-
crease 01' lhe effecti ve mass for T> 80 K. The resonant po-
sition is slightly larger than the unperturbed resonant
condition (Uc = Ú)LO!N and is almost independent of tempera-
ture. A detailed analysis indicates that, at N=2 and 3, the
peak position both in the fWHM and in the derivativo of the
CR mass is at about O.504(tiLO and O.336úJLO' rcspcctively .
Experimenrally, this position determines the so-called funda-
mental field BO=m*wLOle, which is an important quantity
to study the effective mass, nonparabolicity of the energy
band, as wcll as the LO-phonon frequency. The linewidth is
a direct rneasure of lhe lifctime of lhe state. Notice that lhe
convcniional MPR occurs in thc resistivity, which is given
by p:z= -lml(w=O). But ODMPR is related to both the
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real and imaginary part of the memory function which occurs
for w*O and is a dynamical MPR.

Figure 5 shows the CR mass oscillation amplitude at
wel WLO= li2 and lI3 as a function of temperature. With
increasing temperature, the number of phonons increases
and, consequently, the oscillation amplitude increases. On
the other hand, lhe background electron-phonon scauering
(coupling) increases, which results in a suppression of the
oscillation amplitude. Figure 6 shows an activation plot of
the amplitude of the resonant peak in the FWHM at
we IúlLO= 1/2 and 113as a functiou of T-i. We find that, for
the resonance around N =2. the linewidth can be described
rather well by lhe exponential law
cXp(-hWLO/2kT) for T<240 K, while that around N=3
can be described by exp( -2hlÚLQ/3kT) for T< 140 K. This
exponential behavior can be understood as follows. MPR is
proportional to the number of LO phonons which are present
and therefore should increase as n( úlLO)' On the other hand,
thermal broadening of the Landau levels, which is propor-
tional to n (wJ, will diminish the resonant structure in
~FWHM. Thus, this contribution decreases the resonant
character, and consequently we expect that ~ FWHM

~n(ClJLO)ín(úlJ=expr -fi(úlL(J-Úlc)/kllT] which agrees
with the exponential Iaws found for N = 2 and N= 3 .

IV. SlJM.MARY

We have extended the theory for ODMPR to three-
dimensional (3D) systems and present the first detailed the-
oretical study ar the magneiophonon resonance in the
magneto-optical-absorption spectrum in bulk GaAs. ln com-
parison to the corresponding 2D systems, the theoretically
obtained amplitudes for the oscillations of both the linewidth
and the effective mass in a 3D system are for GaAs predicted
to be about half of those in 2D. Therefore, we believe that
ODMPR can also be observed experimentally Íl1 bulk polar
semiconductors, Our numerical results indicate that the am-
plitude of the resonant peak in the FWHM can be described
by exponential law at low temperature.
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Capítulo 6

Sumário

Concluímos aqui a síntese de minhas atividades de pesquisa realizadas ao

longo dos últimos anos. Este texto é composto basicamente por três assuntos

principais.

.1

Primeiro, mostramos teoricamente, em um sistema de dois fios quânticos

acoplados, um efeito oriundo da ressonância entre os plasmons acústicos e as

excitações de partícula independente. O campo magnético extra pode aumentar esta

ressonância. Estendemos a aproximação GW para calcular o tempo de relaxação de

elétrons devido a interação elétron-elétron em sistemas de multisubbandas.

Estudamos os processos de relaxamento nos poços e fios quânticos acoplados.

Relacionado com este assunto, estamos estudando: (i) a dispersão de plasmons e

efeito de correlação em sistemas de elétrons com duas camadas acopladas; (ii)

efeito de desordem nas propriedades físicas das fases sólido-fluido do gás de

elétrons 2D presentes em heterojunções semicondutoras; e (iii) plasmons em

sistemas de multisubbandas a temperatura finita, como gás de elétrons Q1D na

superfície de hélio líquido.

Segundo, nosso trabalho mostrou que a teoria de RPA pode descrever

corretamente a blindagem de gás de elétrons no espalhamento de impureza

ionizadas no sistema de rnultisubbandas. Pela primeira vez conseguimos uma

explicação teórica das mobilidades de sistemas de multisubbandas, onde

destacamos a importância de mecanismos de acoplamento intersubbandas no

transporte eletrônico. (i) Embora nossos resultados apresentem concordância

quantitativa com as mobi!idades quànticas experimentais, as mobilidades de



transporte calculadas são quase duas vezes maiores que as experimentais.

Recentemente, descobrimos que tal diferença pode ser corrigida através do cálculo

da amplitude de espalhamento além da aproximação de Born. Obtivemos então a

taxa de espalhamento através a solução exata da equação Lippmann-Schwinger. (ii)

Por outro lado, estamos estendendo nossos cálculos de mobilidade a sistemas com

spin polarizado.

Terceiro, explicamos a primeira observação experimental de ressonância de

magnefo-polaron devida a fônons interfaciais em poços quânticos de GaAs-

Alo.3Gao.7As.Confirmamos também a observação experimental de harmônicos

assistidos por fônons em sistemas dopados de super-rede devido aos estados

ligados de impurezas rasas. Como uma continuidade deste assunto, estamos ainda

estudando acoplamento elétron-fônon em pontos quânticos. Conseguimos a

densidade de estado e autoenergia devidos interação elétron-fonon em pontos

quânticos. Estamos trabalhando também para obter os espectros de absorção de

ponto quântico (estados ligados em geral) no campo magnético usando a formula de

Kubo.




