UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA DE SÃO CARLOS

"Metabólitos Secundários Bioativos e Mediadores de Relação Predador/Presa de Invertebrados Marinhos"

Volume 2

Fábio Renato Pereira

Tese apresentada ao Instituto de Química de São Carlos para a obtenção do título de doutor em Ciências. Área de concentração: Físico-Química.

Orientador: Prof. Dr. Roberto G. S. Berlinck

São Carlos-SP 2011

Exemplar revisado.

O exemplar original encontra-se disponível no Serviço de Pós-Graduação do IQSC-USP.

VOLUME 2

SUMÁRIO

Figura 4.1: Espectro de RMN- ¹ H da oroidina (104) isolada da esponja <i>Agelas sventres</i> (MeOD, 600 MHz)1
Figura 4.2: Espectro de RMN- ¹³ C da oroidina (104) isolada da esponja <i>Agelas sventres</i> (MeOD, 150 MHz) 2
Figura 4.3: Espectro de RMN- ¹ H da hanishina (108) isolada da esponja <i>Agelas sventres</i> (DMSO- <i>d</i> ₆ , 400 MHz) 3
Figura 4.4: Espectro de RMN- ¹³ C da hanishina (108) isolada da esponja <i>Agelas sventres</i> (DMSO- <i>d</i> ₆ , 100 MHz)
Figura 4.5: Espectro de RMN-COSY da hanishina (109) isolada da esponja Agelas sventres
Figura 4.6: Espectro de RMN-HSQC da hanishina (109) isolada da esponja Agelas sventres
Figura 4.7: Espectro de RMN-HMBC da hanishina (109) isolada da esponja <i>Agelas sventres</i>
Figura 4.8: Espectro de RMN- ¹ H da longamida B (109) isolada da esponja <i>Agelas sventres</i> (MeOD, 400 MHz) 8
Figura 4.9: Espectro de RMN- ¹ H do éster metílico da longamida B (110) isolada da esponja <i>Agelas sventres</i> (MeOD, 400 MHz) 9
Figura 4.10: Espectro de RMN- ¹ H do ácido dibromopirrólico (111) isolada da esponja <i>Agelas sventres</i> (MeOD, 400 MHz) 10
Figura 4.11: Espectro de RMN- ¹³ C do ácido dibromopirrólico (111) isolada da esponja <i>Agelas sventres</i> (MeOD, 100 MHz)11
Figura 5.1: Espectro de RMN- ¹ H da tambjamina C (112) (fração Tsme-4) isolada do nudibrânquio <i>T. stegosauriformis</i> (CDCl ₃ , 400 MHz) 12
Figura 5.2: Espectro de RMN- ¹ H da tambjamina D (113) (fração Tsme-7) isolada do nudibrânquio <i>T. stegosauriformis</i> (CDCl ₃ , 400 MHz) 13
Figura 5.3: Espectro de RMN- ¹ H do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio <i>T. stegosauriformis</i> (DMSO- <i>d</i> ₆ , 600 MHz) 14
Figura 5.4: Espectro de RMN- ¹³ C do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio <i>T. stegosauriformis</i> (DMSO- <i>d</i> ₆ , 150 MHz) 15
Figura 5.5: Espectro de RMN-COSY do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio <i>T. stegosauriformis</i> 16

Figura 5.6: Espectro de RMN-HSQC do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio <i>T. stegosauriformis</i> 17
Figura 5.7: Espectro de RMN-HMBC do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio <i>T. stegosauriformis</i>
Figura 5.8: Espectro de RMN- ¹ H do aldeído da tambjamina B (117) (fração Tsme-8) isolada do nudibrânquio <i>T. stegosauriformis</i> (DMSO- <i>d</i> ₆ , 400 MHz) 19
Figura 5.9: Espectro de RMN- ¹ H do aldeído da tambjamina B (117) (fração CF11-2G9) isolada do briozoário <i>Bugula</i> sp. (DMSO- <i>d</i> ₆ , 400 MHz) 20
Figura 5.10: Espectro de RMN- ¹³ C do aldeído da tambjamina B (117) (fração CF11-2G9) isolada do briozoário <i>Bugula</i> sp. (DMSO- <i>d</i> ₆ , 100 MHz) 21
Figura 5.11: Espectro de RMN- ¹ H da tambjamina C (112) (fração CF11-2H5) isolada do briozoário <i>Bugula</i> sp. (CDCl ₃ , 400 MHz) 22
Figura 5.12: Espectro de RMN- ¹³ C da tambjamina C (112) (fração CF11-2H5) isolada do briozoário <i>Bugula</i> sp. (CDCl ₃ , 100 MHz) 23
Figura 5.13: Espectro de RMN- ¹ H da tambjamina D (113) (fração CF11-2I6) isolada do briozoário <i>Bugula</i> sp. (CDCI ₃ , 400 MHz) 24
Figura 5.14: Espectro de RMN- ¹³ C da tambjamina D (113) (fração CF11-2I6) isolada do briozoário <i>Bugula</i> sp. (CDCI ₃ , 100 MHz) 25
Figura 5.15: Espectro de RMN- ¹ H da tambjamina A (114) (fração CF11-2H2) isolada do briozoário <i>Bugula</i> sp. (DMSO- <i>d</i> ₆ , 600 MHz) 26
Figura 5.16: Espectro de RMN- ¹³ C da tambjamina A (114) (fração CF11-2H2) isolada do briozoário <i>Bugula</i> sp. (DMSO- <i>d</i> ₆ , 150 MHz) 27
Figura 5.17: Espectro de RMN- ¹ H da tambjamina K (118) (fração CF11-2I5c) isolada do briozoário <i>Bugula</i> sp. (CDCI ₃ , 600 MHz) 28
Figura 5.18: Espectro de RMN- ¹³ C da tambjamina K (118) (fração CF11-2I5c) isolada do briozoário <i>Bugula</i> sp. (CDCI ₃ , 150 MHz) 29
Figura 5.19: Espectro de RMN- ¹ H do composto (125) (fração CF11-2I7) isolado do briozoário <i>Bugula</i> sp. (DMSO- <i>d</i> ₆ , 600 MHz) 30
Figura 5.20: Espectro de RMN- ¹³ C do composto (125) (fração CF11-2I7) isolado do briozoário <i>Bugula</i> sp. (DMSO- <i>d</i> ₆ , 150 MHz) 31
Figura 5.21: Espectro de RMN-COSY do composto (125) (fração CF11-2I7) isolado do briozoário <i>Bugula</i> sp
Figura 5.22: Espectro de RMN-HSQC do composto (125) (fração CF11-2I7) isolado do briozoário <i>Bugula</i> sp
Figura 5.23: Espectro de RMN-HMBC do composto (125) (fração CF11-2I7) isolado do briozoário <i>Bugula</i> sp

Figura 5.24: Espectro de RMN-HMBC (expansão) do composto (125) (fração CF11-2I7) isolado do briozoário Bugula sp
Figura 6.1: Espectro de RMN- ¹ H das rodriguesinas A e B (143 e 144) isolada da ascídia <i>Didemnum</i> sp. (MeOD, 400 MHz)
Figura 6.2: Espectro de RMN- ¹³ C das rodriguesinas A e B (143 e 144) isolada da ascídia <i>Didemnum</i> sp. (MeOD, 100 MHz) 37
Figura 6.3: Espectro de RMN- ¹ H do composto presente na fração AS11-Aq2c5 da ascídia <i>Didemnum</i> sp. (DMSO- <i>d</i> _δ , 400 MHz) 38
Figura 6.4: Espectro de RMN- ¹ H do composto 166 (fração Pame-3d5) isolado da ascídia <i>Didemnum</i> sp. (DMSO- <i>d</i> ₆ , 400 MHz) 39
Figura 6.5: Espectro de RMN- ¹³ C do composto 166 (fração Pame-3d5) isolado da ascídia <i>Didemnum</i> sp. (DMSO- <i>d</i> ₆ , 100 MHz) 40
Figura 6.5a: Espectro de RMN- ¹³ C do composto 166 (fração Pame-3d5) isolado da ascídia <i>Didemnum</i> sp. (DMSO- d_6 , 100 MHz) 41
Figura 6.6: Espectro de RMN- ¹³ C (DEPT) do composto 166 (fração Pame-3d5) isolado da ascídia <i>Didemnum</i> sp. (DMSO- <i>d</i> ₆ , 100 MHz) 42
Figura 6.7: Espectro de RMN-COSY do composto 166 (fração Pame-3d5) isolado da ascídia Didemnum sp43
Figura 6.8: Espectro de RMN-HSQC do composto 166 (fração Pame-3d5) isolado da ascídia Didemnum sp44
Figura 6.9: Espectro de RMN-HMBC do composto 166 (fração Pame-3d5) isolado da ascídia Didemnum sp45
Figura 6.10: Espectro de massas do composto 166 (fração Pame-3d5) isolado da ascídia Didemnum sp46
Figura 6.11: Espectro de RMN- ¹ H do composto 167 (fração Pame-3d6c) isolado da ascídia <i>Didemnum</i> sp. (DMSO- <i>d</i> ₆ , 400 MHz) 47
Figura 6.12: Espectro de RMN- ¹³ C do composto 167 (fração Pame-3d6c) isolado da ascídia <i>Didemnum</i> sp. (DMSO- <i>d</i> ₆ , 100 MHz) 48
Figura 6.12a: Espectro de RMN- ¹³ C do composto 167 (fração Pame-3d6c) isolado da ascídia <i>Didemnum</i> sp. (DMSO- <i>d</i> ₆ , 100 MHz) 49
Figura 6.13: Espectro de RMN- ¹³ C (DEPT) do composto 167 (fração Pame-3d6c) isolado da ascídia <i>Didemnum</i> sp. (DMSO- <i>d</i> ₆ , 100 MHz) 50
Figura 6.14: Espectro de RMN-COSY do composto 167 (fração Pame-3d6c) isolado da ascídia <i>Didemnum</i> sp51
Figura 6.15: Espectro de RMN-HSQC do composto 167 (fração Pame-3d6c) isolado da ascídia <i>Didemnum</i> sp

Figura 6.16: Espectro de RMN-HMBC do composto 167 (fração Pame-3d6c) isolado da ascídia <i>Didemnum</i> sp53
Figura 6.17: Espectro no infravermelho do composto 167 (fração Pame-3d6c) isolado da ascídia <i>Didemnum</i> sp54
Figura 6.18: Espectro de massas do composto 167 (fração Pame-3d6c) isolado da ascídia Didemnum sp5
Figura 7.1: Espectro de RMN- ¹ H da lactona da furodisinina (171) isolada do nudibrânquio <i>Hypselodoris lajensis</i> (DMSO- <i>d</i> ₆ , 400 MHz) 56
Figura 7.2: Espectro de RMN- ¹³ C da lactona da furodisinina (171) isolada do nudibrânquio <i>Hypselodoris lajensis</i> (DMSO- <i>d</i> ₆ , 100 MHz) 57
Figura 7.3: Espectro de RMN- ¹³ C (DEPT) da lactona da furodisinina (171) isolada do nudibrânquio <i>Hypselodoris lajensis</i> (DMSO- <i>d</i> ₆ , 100 MHz) 58
Figura 7.4: Espectro de RMN-COSY da lactona da furodisinina (171) isolada do nudibrânquio Hypselodoris lajensis
Figura 7.5: Espectro de RMN-HSQC da lactona da furodisinina (171) isolada do nudibrânquio Hypselodoris lajensis60
Figura 7.6: Espectro de RMN-HMBC da lactona da furodisinina (171) isolada do nudibrânquio Hypselodoris lajensis61
Figura 7.7: Espectro de RMN- ¹ H da 2,5,6-tribromo- <i>N</i> -metilgramina (172) (fração Oket-5b) isolada do nudibrânquio <i>Okenia zoobotryon</i> (DMSO- <i>d</i> ₆ , 400 MHz) 62

Figura 7.8: Espectro de RMN-¹H da 2,5,6-tribromo-*N*-metilgramina (**172**) (fração Zvme-5b2) isolada do briozoário *Zoobotryon verticillatum* (DMSO-*d*₆, 400 MHz)......**63**

Figura 4.1: Espectro de RMN-¹H da oroidina (**104**) isolada da esponja *Agelas sventres* (MeOD, 600 MHz).

Figura 4.2: Espectro de RMN-¹³C da oroidina (104) isolada da esponja *Agelas sventres* (MeOD, 150 MHz).

Figura 4.3: Espectro de RMN-¹H da hanishina (**108**) isolada da esponja *Agelas sventres* (DMSO-*d*₆, 400 MHz).

Figura 4.4: Espectro de RMN-¹³C da hanishina (**108**) isolada da esponja *Agelas sventres* (DMSO-*d*₆, 100 MHz).

Figura 4.5: Espectro de RMN-COSY da hanishina (109) isolada da esponja Agelas sventres.

Figura 4.6: Espectro de RMN-HSQC da hanishina (109) isolada da esponja Agelas sventres.

Figura 4.7: Espectro de RMN-HMBC da hanishina (109) isolada da esponja Agelas sventres.

Figura 4.8: Espectro de RMN-¹H da longamida B (109) isolada da esponja Agelas sventres (MeOD, 400 MHz).

Figura 4.9: Espectro de RMN-¹H do éster metílico da longamida B (110) isolada da esponja Agelas sventres (MeOD, 400 MHz).

Figura 4.10: Espectro de RMN-¹H do ácido dibromopirrólco (111) isolada da esponja Agelas sventres (MeOD, 400 MHz).

Figura 4.11: Espectro de RMN-¹³C do ácido dibromopirrólco (111) isolada da esponja Agelas sventres (MeOD, 100 MHz).

Figura 5.1: Espectro de RMN-¹H da tambjamina C (112) (fração Tsme-4) isolada do nudibrânquio *T. stegosauriformis* (CDCl₃, 400 MHz).

Figura 5.2: Espectro de RMN-¹H da tambjamina D (113) (fração Tsme-7) isolada do nudibrânquio *T. stegosauriformis* (CDCl₃, 400 MHz).

Figura 5.3: Espectro de RMN-¹H do aldeído da tambjamina A (**116**) (fração Tsme-2b1) isolada do nudibrânquio *T. stegosauriformis* (DMSO-*d*₆, 600 MHz).

Tsme-2b1-1 p1341 in DMSO-d6 AV600,cp

Figura 5.4: Espectro de RMN-¹³C do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio *T. stegosauriformis* (DMSO-*d*₆, 150 MHz).

Figura 5.5: Espectro de RMN-COSY do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio *T. stegosauriformis*.

Tsme-2b1-1 p1341 in DMSO-d6 gradHSQC run on AV600.cp File: D:\DAVID\CONVERTD\TSME\2B11\HSQC\004001.RR Date: 9.04.2010 Time: 12:52

Figura 5.6: Espectro de RMN-HSQC do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio T. stegosauriformis.

Figura 5.7: Espectro de RMN-HMBC do aldeído da tambjamina A (116) (fração Tsme-2b1) isolada do nudibrânquio T. stegosauriformis.

Figura 5.8: Espectro de RMN-¹H do aldeído da tambjamina B (**117**) (fração Tsme-8) isolada do nudibrânquio *T. stegosauriformis* (DMSO-*d*₆, 400 MHz).

MHz).

Figura 5.10: Espectro de RMN-¹³C do aldeído da tambjamina B (**117**) (fração CF11-2G9) isolada do briozoário *Bugula* sp. (DMSO-*d*₆, 100 MHz).

Figura 5.11: Espectro de RMN-¹H da tambjamina C (112) (fração CF11-2H5) isolada do briozoário Bugula sp. (CDCl₃, 400 MHz).

Figura 5.12: Espectro de RMN-¹³C da tambjamina C (112) (fração CF11-2H5) isolada do briozoário *Bugula* sp. (CDCl₃, 100 MHz).

Figura 5.13: Espectro de RMN-¹H da tambjamina D (113) (fração CF11-2I6) isolada do briozoário *Bugula* sp. (CDCI₃, 400 MHz).

Figura 5.14: Espectro de RMN-¹³C da tambjamina D (113) (fração CF11-2I6) isolada do briozoário Bugula sp. (CDCl₃, 100 MHz).

Figura 5.15: Espectro de RMN-¹H da tambjamina A (114) (fração CF11-2H2) isolada do briozoário *Bugula* sp. (DMSO-*d*₆, 600 MHz).

Figura 5.16: Espectro de RMN-¹³C da tambjamina A (114) (fração CF11-2H2) isolada do briozoário *Bugula* sp. (DMSO-*d*₆, 150 MHz).

Figura 5.17: Espectro de RMN-¹H da tambjamina K (118) (fração CF11-2I5c) isolada do briozoário *Bugula* sp. (CDCI₃, 600 MHz).

Figura 5.18: Espectro de RMN-¹³C da tambjamina K (118) (fração CF11-2I5c) isolada do briozoário *Bugula* sp. (CDCI₃, 150 MHz).

Figura 5.19: Espectro de RMN-¹H do composto (125) (fração CF11-2I7) isolado do briozoário Bugula sp. (DMSO-d₆, 600 MHz).

Figura 5.20: Espectro de RMN-¹³C do composto (125) (fração CF11-2I7) isolado do briozoário Bugula sp. (DMSO-d₆, 150 MHz).

Figura 5.21: Espectro de RMN-COSY do composto (125) (fração CF11-2I7) isolado do briozoário Bugula sp.

Figura 5.22: Espectro de RMN-HSQC do composto (125) (fração CF11-2I7) isolado do briozoário Bugula sp.

Figura 5.23: Espectro de RMN-HMBC do composto (125) (fração CF11-2I7) isolado do briozoário Bugula sp.

Figura 5.24: Espectro de RMN-HMBC (expansão) do composto (125) (fração CF11-2I7) isolado do briozoário Bugula sp.

Figura 6.1: Espectro de RMN-¹H das rodriguesinas A e B (143 e 144) isolada da ascídia *Didemnum* sp. (MeOD, 400 MHz).

Figura 6.2: Espectro de RMN-¹³C das rodriguesinas A e B (143 e 144) isolada da ascídia *Didemnum* sp. (MeOD, 100 MHz).

Figura 6.3: Espectro de RMN-¹H do composto presente na fração AS11-Aq2c5 da ascídia *Didemnum* sp. (DMSO-*d*₆, 400 MHz).

Figura 6.4: Espectro de RMN-¹H do composto 166 (fração Pame-3d5) isolado da ascídia *Didemnum* sp. (DMSO-*d*₆, 400 MHz).

Figura 6.5: Espectro de RMN-¹³C do composto 166 (fração Pame-3d5) isolado da ascídia *Didemnum* sp. (DMSO-*d*₆, 100 MHz).

Figura 6.5a: Espectro de RMN-¹³C do composto 166 (fração Pame-3d5) isolado da ascídia *Didemnum* sp. (DMSO-*d*₆, 100 MHz).

Figura 6.6: Espectro de RMN-¹³C (DEPT) do composto 166 (fração Pame-3d5) isolado da ascídia *Didemnum* sp. (DMSO-*d*₆, 100 MHz).

Figura 6.7: Espectro de RMN-COSY do composto 166 (fração Pame-3d5) isolado da ascídia Didemnum sp.

Figura 6.8: Espectro de RMN-HSQC do composto 166 (fração Pame-3d5) isolado da ascídia Didemnum sp.

Figura 6.9: Espectro de RMN-HMBC do composto 166 (fração Pame-3d5) isolado da ascídia Didemnum sp.

Figura 6.10: Espectro de massas do composto 166 (fração Pame-3d5) isolado da ascídia Didemnum sp.

Figura 6.11: Espectro de RMN-¹H do composto 167 (fração Pame-3d6c) isolado da ascídia *Didemnum* sp. (DMSO-*d*₆, 400 MHz).

Figura 6.12: Espectro de RMN-¹³C do composto 167 (fração Pame-3d6c) isolado da ascídia *Didemnum* sp. (DMSO-*d*₆, 100 MHz).

Figura 6.12a: Espectro de RMN-¹³C do composto 167 (fração Pame-3d6c) isolado da ascídia *Didemnum* sp. (DMSO-*d*₆, 100 MHz).

Figura 6.13: Espectro de RMN-¹³C (DEPT) do composto **167** (fração Pame-3d6c) isolado da ascídia *Didemnum* sp. (DMSO-*d*₆, 100 MHz).

Figura 6.14: Espectro de RMN-COSY do composto 167 (fração Pame-3d6c) isolado da ascídia Didemnum sp.

Figura 6.15: Espectro de RMN-HSQC do composto 167 (fração Pame-3d6c) isolado da ascídia Didemnum sp.

Figura 6.16: Espectro de RMN-HMBC do composto 167 (fração Pame-3d6c) isolado da ascídia *Didemnum* sp.

Figura 6.17: Espectro no infravermelho do composto 167 (fração Pame-3d6c) isolado da ascídia Didemnum sp.

Figura 6.18: Espectro de massas do composto 167 (fração Pame-3d6c) isolado da ascídia Didemnum sp.

Figura 7.1: Espectro de RMN-¹H da lactona da furodisinina (**171**) isolada do nudibrânquio *Hypselodoris lajensis* (DMSO-*d*₆, 400 MHz).

Figura 7.2: Espectro de RMN-¹³C da lactona da furodisinina (171) isolada do nudibrânquio *Hypselodoris lajensis* (DMSO-*d*₆, 100 MHz).

Figura 7.3: Espectro de RMN-¹³C (DEPT) da lactona da furodisinina (**171**) isolada do nudibrânquio *Hypselodoris lajensis* (DMSO-*d*₆, 100 MHz).

Figura 7.4: Espectro de RMN-COSY da lactona da furodisinina (171) isolada do nudibrânquio Hypselodoris lajensis.

Figura 7.5: Espectro de RMN-HSQC da lactona da furodisinina (171) isolada do nudibrânquio Hypselodoris lajensis.

Figura 7.6: Espectro de RMN-HMBC da lactona da furodisinina (171) isolada do nudibrânquio Hypselodoris lajensis.

Figura 7.7: Espectro de RMN-¹H da 2,5,6-tribromo-*N*-metilgramina (**172**) (fração Oket-5b) isolada do nudibrânquio *Okenia zoobotryon* (DMSO-*d*₆, 400 MHz).

Figura 7.8: Espectro de RMN-¹H da 2,5,6-tribromo-*N*-metilgramina (172) (fração Zvme-5b2) isolada do briozoário *Zoobotryon verticillatum* (DMSO-*d*₆, 400 MHz).