• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.75.2018.tde-16012018-092925
Document
Author
Full name
Mônica Freitas da Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2017
Supervisor
Committee
Varanda, Laudemir Carlos (President)
Yoshioka, Sergio Akinobu
Corbi, Pedro Paulo
Favorin, Leila Aparecida Chiavacci
Rocha, Fillipe Vieira
Title in Portuguese
Estudo de estabilidade coloidal de sistemas de nanopartículas magnéticas recobertas visando aplicação em biomedicina
Keywords in Portuguese
ácido fólico
estabilidade coloidal
magnetita
nanopartículas
quitosana
Abstract in Portuguese
Nanoparticulas magnéticas (NPMs) de óxido de ferro tem sido amplamente utilizadas em diversas áreas da biotecnologia e biomedicina, tais como no tratamento de câncer, na entrega controlada de fármacos e como agentes de contraste em imagem por ressonância magnética. O intuito deste trabalho foi sintetizar nanopartículas magnéticas com magnetização de saturação intensificadas via processo do poliol modificado e modificar sua superfície afim de promover a biocompatibilização dos sistemas. Além da funcionalização de nanopartículas previamente biocompatibilizadas utilizando dois métodos: via ligação amida com moléculas de ácido fólico (AF) e com a encapsulação das nanopartículas com quitosana. A modificação de superfície deu-se via procedimentos de lavagem de superfícies, adição e/ou troca de ligantes utilizando moléculas de ácido ?- aminocapróico (EACA), aminopropiltrimetoxisilano (APTMS) e ácido dimercaptosuccínico (DMSA). Através da microscopia eletrônica de transmissão (TEM), foi obtido que as nanopartículas magnéticas de magnetita obtiveram um diâmetro médio de 8 nm, em uma estreita distribuição de tamanho. A difração de raios-X (DRX) indicou a formação de magnetita em todos os sistemas em que o método do poliol modificado foi utilizado. As medidas de espectroscopia vibracional na região do infravermelho (FTIR) evidenciaram a presença de modos de vibração relacionados às macromoléculas e compostos inorgânicos utilizados na modificação de superfície das nanopartículas magnéticas e/ou funcionalização. A TEM das diferentes modificações de superfície mostram a formação de aglomerados dependendo da molécula utilizada. Os estudos de estabilidade coloidal foram necessários para que o meio biológico fosse simulado para uma possível aplicação destes sistemas como carreadores para tratamento via magnetohipertermia ou entrega controlada de NPMs para tratamento de câncer. A nanopartícula recoberta com DMSA apresentou melhores resultados de estabilidade coloidal. Com os sistemas funcionalizados com ácido fólico, o procedimento via ligação com carbodiimida na presença de NHS demonstrou ser eficaz na formação de ligação amida, confirmada por FTIR e quantificação de ligantes. A funcionalização com quitosana necessita de alguns ajustes, visto ser um novo procedimento, porém alguns sistemas em que foi utilizado o método da gelificação iônica possuíram bons resultados de nanocápsulas de quitosana formadas com nanopartículas biocompatibilizadas em seu interior.
Title in English
Colloidal stability study of magnetic nanoparticles systems covered for application in biomedicine
Keywords in English
chitosan
colloidal stability
folic acid
magnetite
nanoparticles
Abstract in English
Magnetite, iron oxide, is a type of magnetic nanoparticles (NPMs) that is a widely adopted in several areas of biotechnology and biomedicine, such as in the treatment of cancer, controlled delivery of drugs and as contrast agents in magnetic resonance imaging. The purpose of this work is to synthesize magnetic nanoparticles with enhanced saturation magnetization via modified polyol process and modify its surface to promote a biocompatibilization in these systems. In addition, there was the aim to functionalize nanoparticles with modificate surfaces, using two methods: via amide bonding with folic acid molecules (AF) and encapsulation of nanoparticles with chitosan. Surface modification was done via surface washing, addition and / or exchange ligands using ?-aminocaproic acid (EACA), aminopropyltrimethoxysilane (APTMS) and dimercaptosuccinic acid (DMSA) molecules. By transmission electron microscopy (TEM), it was obtained that the magnetite nanoparticles had an average diameter of 8 nm, in a narrow size distribution. X-ray diffraction (XRD) indicated formation of magnetite in all systems where modified polyol method was used. Infrared spectroscopy (FTIR) showed the presence of vibration modes related to macromolecules and inorganic compounds used in the surface modification of magnetic nanoparticles and / or functionalization. The TEM of different surface modifications showed the formation of agglomerates, depending on the molecule used. Colloidal stability studies were necessary to simulate a biological medium for a possible application of these systems as carriers for treatment via magnetohyperthermia or controlled delivery of NPMs for cancer treatment. Nanoparticles coated with DMSA showed better colloidal stability results. With folic acid functionalized systems, the procedure via carbodiimide linkage in the presence of NHS had been shown to be effective in FTIR-confirmed amide bond formation and ligand quantification. The functionalization with chitosan requires some adjustments, since it was a new procedure, however some systems using the ionic gelation method had good results of chitosan nanocapsules formed with biocompatibilized nanoparticles in structure.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-02-01
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.