• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.75.2017.tde-08022017-151223
Document
Author
Full name
Thairo de Araújo Rocha
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2016
Supervisor
Committee
Gonzalez, Ernesto Rafael (President)
Ciapina, Eduardo Gonçalves
Perez, Joelma
Santos, Mauro Coelho dos
Gomes, Janaina Fernandes
Title in Portuguese
Estudo da atividade e estabilidade eletrocatalítica de materiais nanoestruturados Pt3Nb/C e Pt-Nb2O5/C para aplicações em células a combustível de eletrólito polimérico
Keywords in Portuguese
Célula a combustível
Eletrocatálise
Platina-Nióbio
Abstract in Portuguese

Este trabalho foi dividido em duas seções. Na primeira parte foi avaliado o desempenho de uma célula a combustível de eletrólito polimérico com ânodos de Pt/C e/ou Pt3Nb/C alimentada com hidrogênio contaminado com CO e oxigênio no cátodo. O material Pt3Nb/C 20% metal/C foi sintetizado por impregnação dos metais em carbono. Difratogramas de raios X mostraram evidências da formação de uma estrutura Pt3Nb-NbxOy, com os dados de microscopia eletrônica indicando que mesmo após tratamento térmico a 1000 °C é possível ter uma boa distribuição do tamanho das nanopartículas. Resultados de absorção de raios X mostraram que a um preenchimento dos níveis eletrônicos na banda 5d da Pt devido principalmente a distribuição maior do tamanho das nanopartículas do material Pt3Nb/C e a presença do Nb na estrutura, e que esse efeito tem um influência marcante nas respostas eletroquímicas observadas para a reação de eletroxidação de CO. Os dados da célula a combustível em conjunto com os dados extraídos com auxílio de um espectrômetro de massas mostraram definitivamente que o material Pt3Nb/C apresenta um desempenho muito superior a Pt/C em termos de tolerância ao CO presente no H2 usado como combustível.

Na segunda parte do trabalho foram sintetizados usando-se o método de redução de íons em solução com ácido fórmico, dois materiais com nanopartículas de Pt suportadas em Nb2O5/C. Os materiais sintetizados foram avaliados em relação ao desempenho e estabilidade no cátodo de uma célula a combustível de eletrólito polimérico, com ânodos de Pt/C e cátodos com Pt/C e/ou Pt-Nb2O5-C, e alimentada com hidrogênio e oxigênio. De acordo com os dados de Absorção de Raios X, devido a presença do óxido ocorre a retirada de densidade eletrônica da banda 5d da Pt levando a um pequeno aumento da absorção verificado para os materiais sintetizados em relação ao material comercial. As imagens de Microscopia Eletrônica de Transmissão, mostram que o desempenho da célula diminui com o tempo de uso, principalmente devido a aglomeração das nanopartículas e corrosão do suporte de carbono. Em termos de estabilidade, a menor perda de área ativa verificada nos materiais suportados em Nb2O5/C aparentemente é o fator responsável pelo melhor desempenho desses materiais no cátodo em relação a reação de redução de oxigênio principalmente em longos períodos de operação da célula.

Title in English
Study of the activity, stability and electrocatalytic nanostructure materials Pt3Nb/C and Pt-Nb2O5/C for applications in fuel cells using polymeric electrolyte
Keywords in English
Electrocatalysis
Fuel Cell
Platinum-Niobium
Abstract in English

This work was divided into two parts. In the first part, the performance of a fuel cell with Nafion 115 as the polymer electrolyte was evaluated. The anodes were composed of Pt/C and/or Pt3Nb/C, which were fed with H2 containning 100 ppm of CO, while the cathode (Pt/C) was fed with O2. For the Pt3Nb/C (20 % metal/C) synthesis, the metals were impregnated on carbon, followed by heat treatment in a reducing atmosphere. X-Ray Diffraction results showed evidence of a Pt3Nb-NbxOy structure. The Transmission Electron Microscopy data indicated that even after heat-treating the material at 1000°C, it is possible to obtain a good nanoparticle size distribution. X-Ray Absorption results for Pt3Nb/C showed that electronic levels in the Pt 5d band are filled, mainly because of the better size distribution of the nanoparticles in this material, and because of the Nb presence in the structure. The later has a significant influence on the electrochemical responses observed for the CO electrooxidation reaction. The data obtained from the fuel cell coupled to a mass spectrometer definitely showed that Pt3Nb/C is much more Co-tolerant than Pt/C.

In the second part, two materials composed of Pt supported on Nb2O5/C were synthesized by reducing ions with formic acid. The performance and stability of these materials as cathodes of a fuel cell were evaluated. In this case, the fuel cell with Nafion 115 as the polymer electrolyte was fed with H2/O2. Its anode was composed of Pt/C, and cathodes of Pt/C and/or Pt-Nb2O5-C. The X-Ray Absorption data reveled a decrease in the electronic density of the Pt 5d band, due to the presence of oxide, leading to a small increase of the absorption observed for the synthesized materials when compared to the commercial Pt/C. Transmission Electron Microscopy images showed nanoparticles agglomeration and corrosion of the carbon support in the cathode, decreasing the performance of the fuel cell over time. In terms of the stability, the better performance of the materials supported on Nb2O5/C in relation to the oxygen reduction reaction, over long periods of the fuel cell operation, is due to a small loss of the active areas of these materials.

 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-02-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.