• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.75.2008.tde-22042008-092559
Documento
Autor
Nome completo
Patricia Soares Santiago
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2008
Orientador
Banca examinadora
Tabak, Marcel (Presidente)
Borges, Julio Cesar
Borissevitch, Iouri
Costa Filho, Antônio José da
Itri, Rosangela
Título em português
Interação de porfirinas hidrofílicas e de hemoglobina extracelular com modelos biomiméticos de membrana biológica
Palavras-chave em português
DLS
espectroscopia ótica
hemoglobina
micelas
porfirinas
SAXS
vesículas de fosfolipídios
Resumo em português
Na primeira parte deste trabalho foi estudada a interação da porfirina catiônica meso-tetrakis N-metil-4-piridil (TMPyP) e a porfirina aniônica meso-tetrakis 4-fenilsulfonato (TPPS4) nas formas de base livre com sistemas modelos de membrana biológica (micelas iônicas, micelas mistas e vesículas de fosfolipídios) em soluções aquosas, através das técnicas de absorção ótica, espalhamento de luz ressonante (RLS do inglês "resonante light scattering), fluorescência e SAXS, do inglês "Small Angle X-Ray Scattering". As curvas de SAXS das micelas catiônicas de CTAC (cloreto de cetiltrimetilamônio) foram ajustadas como um elipsóide prolato na ausência e na presença de 2-10 mM de TPPS4. Os dados de SAXS mostraram que a presença da porfirina TPPS4 modifica o centro hidrofóbico micelar, levando a formação de micelas menores. Através das análises dos dados de SAXS das micelas de SDS (dodecilsulfato de sódio) observamos que a forma da micela na ausência e na presença de 2-10 mM TMPyP apresenta a forma de um elipsóide prolato sem mudanças. Entretanto, o coeficiente de ionização, diminuiu com o aumento da concentração de porfirina, sugerindo a "blindagem" da carga aniônica do SDS pela porfirina catiônica. A supressão de fluorescência da TPPS4 e TMPyP foi estudada na ausência e na presença de diferentes micelas de surfactantes, tais como as de SDS, CTAC, HPS (N-hexadecil-N,N,dimetil-3-amônio-1-propano sulfato) e TX-100 (t-octil-fenoxi-polietoxi-etanol). O iodeto de potássio (KI) foi utilizado como supressor. Os gráficos de Stern-Volmer dos dados de fluorescência no estado estacionário foram ajustados pela equação quadrática, incluindo a supressão dinâmica (KD) e estática (KS). Os valores de KS são muito menores do que os valores de KD. Os resultados da TMPyP são consistentes com as constantes de ligação reportadas na literatura: uma redução significativa de supressão acontece para a TMPyP na presença de SDS, e uma redução moderada é observada para o sistema TMPyP-HPS e quase nenhuma mudança é vista para a TMPyP na presença de TX-100. Para o sistema CTAC-TPPS4 um aumento na supressão foi observado quando comparada com a TPPS4 em tampão puro. Isto provavelmente é associado ao acúmulo de iodeto na interface da micela catiônica. A atração entre a cabeça polar do CTAC e I-, e a repulsão entre SDS e I-, aumenta e reduz a supressão de fluorescência, respectivamente, das porfirinas que se localizam na interface micelar. A pequena supressão da TPPS4 em TX-100 é coerente com a forte ligação entre a TPPS4-TX-100 reportada na literatura. A TPPS4 e a TMPyP na presença de concentrações baixas dos surfactantes CTAC e SDS, respectivamente, apresentaram formação de agregados pré-micelares. A adição de surfactante neutro, TX-100, reduziu o efeito de agregação, acompanhada pelas várias técnicas espectroscópicas utilizadas neste trabalho. Portanto, sob condições onde temos a máxima formação de agregados (porfirina-surfactante), a titulação da TPPS4 com micelas de 40%CTAC-60%TX-100 e a TMPyP com micelas de 80%SDS-20%TX-100 não foi suficiente para eliminar a agregação, apesar da diminuição significativa do efeito de supressão de fluorescência e da intensidade de luz espalhada. A interação da TMPyP com 1-Palmitoil-2-Oleoil-sn-Glicero-3-fosfocolina (POPC), 1-Palmitoil-2-Oleoil-sn-Glicero-3-[Fosfo-rac-(1-glicero)] (POPG) e a mistura POPC + POPG é predominantemente devido à contribuição de eletrostática. O aumento da carga negativa, devido à adição de POPG, favorece a interação das vesículas com a porfirina catiônica. Na segunda parte deste trabalho foram estudados os efeitos de três surfactantes na estrutura oligomérica da hemoglobina extracelular gigante de Glossoscolex paulistus (HbGp) na sua forma oxi. O estudo com o SDS, CTAC e HPS permitiu diferenciar os efeitos de cargas opostas da cabeça polar dos surfactantes na dissociação da estrutura oligomérica e na autoxidação da hemoglobina. A interação do HPS com HbGp foi claramente menos intensa que a interação desta hemoglobina com os surfactantes catiônico (CTAC) e aniônico (SDS). Provavelmente, esta menor interação da HbGp com HPS, quando comparada com o SDS e o CTAC, é devido a menor atração eletrostática entre o HPS e os sítios iônicos da proteina. Dados espectroscópicos foram discutidos e comparados com os da literatura, afim de compreender a interação hemoglobina-surfactante, e como o ponto isoelétrico ácido (pI) pode influenciar na relação da estrutura-atividade das hemoglobinas gigantes extracelulares. As amostras de HbGp foram estudadas por espalhamento de luz dinâmico (DLS do inglês "Dynamic light scattering"). Na faixa de pH 6.0 a 8.0, HbGp é bastante estável e a distribuição de tamanho das partículas é monodispersa com um diâmetro hidrodinâmico médio (Dh) de 27 nm. O aumento dos valores de pH (pH>9.0) induziu um processo de dissociação irreversível, resultando num valor do Dh menor (10 nm). A diminuição do Dh sugere uma dissociação completa da hemoglobina. Em pH>9,0 a cinética de dissociação é lenta, com um mínimo 24 h para ser completada. As constantes cinéticas de dissociação aumentam progressivamente, com o aumento do valor do pH. As curvas de melting point para HbGp apresentaram dissociação oligomérica e desnaturação da proteina em função do pH. Os processos de autoxidação e dissociação estão intimamente relacionados, de modo que a dissociação da proteina oligomérica promove um aumento na velocidade de autoxidação e vice-versa.
Título em inglês
Interaction of hidrophilic porphyrins and extracellular hemoglobin with biomimetic models of biological membranes
Palavras-chave em inglês
DLS
hemoglobins
micelles
optical spectroscopies
phospholipidis vesicles
porphyrins
SAXS
Resumo em inglês
In the first part of this work interactions of the cationic meso tetrakis (4-N-methilpyridil) porphyrin (TMPyP) and meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) in the free base forms with membrane model systems (ionic micelles, mixed micelles and phospholipids vesicles) in aqueous solutions, have been investigated by optical absorption, resonance light scattering (RLS), fluorescence and SAXS (Small Angle X-Ray Scattering). The best-fit SAXS curves were obtained assuming for cetyltrimethylammonium chloride (CTAC) micelle a prolate ellipsoidal shape in the absence and upon incorporation of 2-10 mM TPPS4. SAXS results show that the presence of TPPS4 impacts on micellar hydrophobic core, leading to a micellar reassembling into smaller micelles. SAXS data analysis demonstrated a prolate ellipsoidal shape for sodium dodecyl sulfate (SDS) micelles; no significant changes in shape and size were observed for SDS-TMPyP co-micelles. Moreover, the ionization coefficient, α, decreases with the increase of the porphyrin concentration, suggesting the "screening" of the anionic charge of SDS by the cationic porphyrin. These results are consistent with optical absorption, fluorescence and RLS spectroscopies data, allowing to conclude that neutral surfactants present a smaller interaction with the cationic porphyrin as compared with ionic surfactants. Fluorescence quenching of TPPS4 and TMPyP is studied in aqueous solution and upon addition of micelles of SDS, CTAC, N-hexadecyl-N,N-dimethyl-3-ammonio-1- propanesulfonate (HPS) and t-octylphenoxypolyethoxyethanol (Triton X-100). Potassium iodide (KI) was used as quencher. Steady-state Stern-Volmer plots were best fitted by a quadratic equation, including dynamic (KD) and static (KS) quenching. KS was significantly smaller than KD. For TMPyP quenching results are consistent with reported binding constants: a significant reduction of quenching takes place for SDS, a moderate reduction is observed for HPS and almost no change is seen for Triton X-100. For CTAC-TPPS4 system an enhancement of quenching was observed as compared to pure buffer. This is probably associated to accumulation of iodide at the cationic micellar interface. The attraction between CTAC headgroups and I-, and repulsion between SDS and I-, enhances and reduces the fluorescence quenching, respectively, of porphyrins located at the micellar interface. The small quenching of TPPS4 in Triton X-100 is consistent with strong binding as reported in the literature. Anionic TPPS4 and cationic TMPyP in the presence of low concentrations of the surfactants CTAC and SDS, respectively, showed formation of aggregates, monitored by optical absorption, fluorescence and resonance light scattering intensity (RLS). The addition of nonionic surfactant, Triton X-100, reduced the effect of aggregation monitored by the various techniques used in the present work. Therefore, under conditions for the maximum of aggregate formation (porphyrin-surfactant), apparently, the CTAC: TX-100 ratio equal to 40:60 and SDS:TX-100 ratio equal to 80:20 are not sufficient to eliminate aggregation, despite the significant decrease of the quenching effect of fluorescence and of the light scattering intensity. The interaction of TMPyP with 1-Palmitoyl-2-Oleoyl-sn- Glycero-3-Phosphocholine (POPC), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-rac-(1- glycerol)] (POPG) and the mixture POPC+POPG is predominantly due to the electrostatic contribution. The increase of the negative charge, due to addition of POPG, favors the interaction of vesicles with the cationic porphyrin. On the second part of this work the effects of three surfactants upon the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form was studied. The use of SDS, CTAC and HPS has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on its structure-activity relationship. HbGp samples were studied by dynamic light scattering (DLS). In the pH from range 6.0 to 8.0, HbGp is stable and a monodisperse size distribution with a z-average hydrodynamic diameter (Dh) of 27±1 nm is observed. More alkaline pH (pH>9.0) induced an irreversible dissociation process, resulting in smaller Dh of 10±1 nm. Dh decrease suggests a complete hemoglobin dissociation. At pH 9.0 the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Autoxidation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice-versa.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
PatriciaSantiagoR.pdf (4.18 Mbytes)
Data de Publicação
2008-06-24
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.