UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA DE SÃO CARLOS

"ESTUDO EXPERIMENTAL E TEÓRICO DE COMPOSTOS DE BASES DE SCHIFF COM COBRE (II)"

ÉRICA TOZZO

Tese apresentada ao Instituto de Química de São Carlos - USP como requisito para a obtenção do título de Doutor em Ciências (Química Analítica)

Orientador: Prof. Dr. Regina Helena de Almeida Santos

São Carlos, agosto de 2006

Dedico este trabalho à Deus, à minha família e aos amigos que foram atuantes durante toda essa jornada, me presenteando com imenso carinho, incentivo e solidariedade.

À Cinyra Camillotti Pessona (in memorian)

AGRADECIMENTOS

São inúmeras as pessoas que atuaram de forma decisiva para o sucesso desse trabalho, todas elas são merecedoras do meu agradecimento, reconhecimento e carinho.

Agradeço à Prof^a. Regina pela paciência e dedicação incansáveis. À Prof^a. Teca pelo apoio e presença em momentos cruciais. À Janaina Gomes Ferreira pela amizade e auxílio que nunca falharam nessa caminhada de seis anos. À Cláudia Cândida da Silva pelo apoio e auxílio, mesmo estando distante.

À minhas grandes amigas e companheiras Vanessa Carolina Falarara e Cristina Lerosa, pela incansável presença nos momentos mais difíceis e também nos momentos de alegrias e realizações. À Sandra Romera e Mirian Paula dos Santos pela identidade, cumplicidade, apoio incondicional, amizade e união imprescindíveis nessa nossa caminhada.

Aos meus pais, a minha eterna gratidão, por terem me concedido a vida e proporcionado os melhores ensinamentos de caráter, ética e honestidade. À meu irmão pelas palavras de confiança e serenidade.

Ao Prof. Dr.Edward Ralph Dockal, pelas amostras e pelos ensinamentos;

À todos do Grupo de Cristalografia e Quântica, professores e funcionários, pela imensa colaboração;

Às agências CAPES, FAPESP, CNPq e FINEP pelo apoio financeiro.

ÍNDICE DE FIGURAS

Figura	1	Exemplo de um complexo quiral oxotitânio(IV)- base de Schiff	07
Figura	2	Exemplo de complexo binuclear titânio(IV)-base de Schiff	08
Figura	3	Exemplos de complexos quirais de Bases de Schiff utilizando Manganês como átomo central	08
Figura	4	Novo complexo de Manganês (II)	09
Figura	5	Exemplo de complexo oxovanadio(IV)-(salcn)	09
Figura	6	Gráfico de um conjunto de dados bidimensionais PC1 e PC2	39
Figura	7	Processo de agrupamento conexão simples e o dendograma de conexão.	42
Figura	8	Representação ORTEP para o composto CMO1	47
Figura	9	Representação ORTEP do empacotamento cristalino para o composto CM01	48
Figura	10	representação ORTEP para o composto CM02	51
Figura	11	Representação ORTEP do empacotamento cristalino para o composto CMO2	52
Figura	12	representação ORTEP, com os átomos identificados para o CM03	55
Figura	13	Representação ORTEP, do empacotamento cristalino para CM03	56
Figura	14	Representação ORTEP, para o CM04	60
Figura	15	Representação ORTEP do empacotamento cristalino para o composto CMO4	60
Figura	16	 (a)numeração dos átomos da molécula para os cálculos teóricos e, (b) numeração da estrutura cristalográfica 	66
Figura	17	Distâncias interatômicas para a estrutura cristalográfica	67
Figura	18	Distâncias interatômicas para a estrutura otimizada	67
Figura	19	Cargas atômicas na estrutura cristalográfica	68
Figura	20	Cargas atômicas para a estrutura otimizada	68
Figura	21	Orbitais atômicos para HOMO, HOMO-1 e HOMO-2	69
Figura	22	Contribuições dos orbitais atômicos para LUMO e LUMO	70
Figura	23	Diagramas do Potencial Eletrostático	70
Figura	24	 (a) numeração dos átomos da molécula para os cálculos teóricos e, 	73
		(b) numeração da estrutura cristalográfica	
Figura	25	Distâncias interatômicas para a estrutura cristalográfica	74
Figura	26	Distâncias interatômicas para a estrutura otimizada	74
Figura	27	Cargas nos átomos da estrutura cristalográfica	76
Figura	28	Cargas nos átomos da estrutura otimizada	76
Figura	29	Orbitais atômicos para HOMO, HOMO-1 e HOMO-2	77
Figura	30	Orbitais atômicos para LUMO e LUMO	78

Figura	31	Gráfico de potencial eletrostático para as três estruturas.	78
Figura	32	numeração dos átomos da molécula para os cálculos (a) teóricos e (b) cristalográfica	81
Figura	33	distâncias interatômicas para a estrutura cristalográfica	82
Figura	34	distâncias interatômicas para a estrutura otimizada	82
Figura	35	Cargas atômicas da estrutura cristalográfica.	84
Figura	36	Cargas atômicas da estrutura otimizada	84
Figura	37	contribuições dos orbitais atômicos para HOMO.	85
	• ·	HOMO-1 = HOMO-2	00
Figura	38	Contribuições dos orbitais atômicos para LUMO	86
Figura	30	gráfico de potencial eletrostático para ac duac	86
riguia	55	grafico de pocenciar electoscacico para as duas	00
Figure	4.0	Numeroção dos átomos de melégula (a) teóreira e	0.0
riguia	40	(h) estimuture mistelemifie	69
-	4.7	(D) estilutura cristalografica	0.0
Figura	41	Distancias interatomicas para a estrutura otimizada	90
Figura	42	Distancias interatomicas para a estrutura	90
		cristalográfica	
Figura	43	Cargas atômicasda estrutura cristalográfica	92
Figura	44	Cargas atômicasda estrutura otimizada	92
Figura	45	contribuições dos orbitais atômicos para HOMO,	93
		НОМО-1 е НОМО-2	
Figura	46	contribuições dos orbitais atômicos para LUMO e	94
		LUMO+1	
Figura	47	gráfico de potencial eletrostático para as	94
		estruturas otimizada e cristalográfica	
Figura	48	estruturas propostas para as moléculas modeladas	98
Figura	49	Distâncias interatômicas para os compostos	103
		modelados	
Figura	50	Esqueleto base utilizado para comparações de	107
2		algumas propriedades	-
Figura	51	Cargas atômicas calculadas para os compostos	117
		modelados	
Figura	52	Ordem de ligação calculada para os compostos	124
		modelados	
Figura	53	orbitais HOMO HOMO-1 e HOMO-2 para os compostos	1 3 1
rigura	55	modeladog	101
Figura	5 1	arbitaid LIMO a LIMO+1	126
Figura	51	diograma do potopaiol eletrostático poro os	141
riguia	55	diagrama de potenciai eretrostatico para os	141
T	50		140
Figura	50	Grafico de escores para todas as amostras, sem	148
		tratamento	
Figura	57	gráfico de loadings para todas as variáveis, sem	148
		tratamento	
Figura	58	Dendograma envolvendo todas as amostras	149
Figura	59	Gráfico de escores para PC1 e PC2 para o modelo	151
		gerado	
Figura	60	Gráfico dos loadings obtidos para as variáveis encontradas	151

ii

Figura 61	Dendograma envolvendo isômeros cis e trans	152
Figura 62	Gráfico dos escores para PC1 e PC2	155
Figura 63	Dendograma de HCA com todas as amostras	156

ÍNDICE DE TABELAS

Tabe	la 1	Nomes e siglas dos compostos	47
Tabela	2	Resumo dos principais dados cristalográficos	46
Tabela	3	Distâncias interatômicas (Å) para o composto CM01	48
Tabela	4	Ângulos interatômicos (°) para o composto CM01	48
Tab	ela .	5 Resumo dos principais dados cristalográficos	50
Tabela	6	Distâncias interatômicas (Å) para o composto CM02	52
Tabela	7	Ângulos interatômicos (°) para o composto CM02	52
Tabela	8	Resumo dos principais dados cristalográficos	55
Tabela	9	Distâncias interatômicas (Å) para o CM03	56
Tabela	10	Ângulos interatômicos (°) para o CM03	57
Tabela	11	Resumo dos principais dados cristalográficos	59
Tabela	12	Distâncias interatômicas (Å) para o CM04	61
Tabela	13	Ângulos interatômicos (°) para o CM04	61
Tabela	14	Propriedades físico-químicas calculadas para o CM01	65
Tabela	15	Correlação Entre a Numeração do Cálculo e a	66
		Cristalográfica	
Tabela	16	Ângulos interatômicos (°) para as formas de	68
		cálculo	
Tabela	17	Propriedades físico-químicas calculadas CM02	72
Tabela	18	Correlação entre a numeração de cálculo e a	73
		Cristalográfica	
Tabela	19	Ângulos interatômicos (°) para as formas de	75
		cálculo	
Tabela	20	Propriedades físico-químicas calculadas CM03	80
Tabela	21	Correlação entre Numeração Ouântica e	81
		Cristalográfica	
Tabela	22	Ângulos interatômicos (°) para as formas de	83
		cálculo	
Tabela	23	Propriedades físico-químicas calculadas CM04	88
Tabela	24	Correlação Entre a Numeração Ouântica e a	89
		Cristalográfica	
Tabela	25	Ângulos interatômicos (°) para as formas de cálculo	91
Tabela	26	Siglas e nomes dos compostos modelados	96
Tabela	27	Propriedades físico químicas clculadas	100
Tabela	28	Ângulos interatômicos do composto CM5	108
Tabela	29	Ângulos interatômicos do composto CM6	108
Tabela	30	Ângulos interatômicos do composto CM7	108
Tabela	31	Ângulos interatômicos do composto CM8	109
Tabela	32	Ângulos interatômicos do composto CM9	109
Tabela	33	Ângulos interatômicos do composto CM10	109
Tabela	34	Ângulos interatômicos do composto CM11	110
Tabela	35	Ângulos interatômicos do composto CM12	110
Tabela	36	Ângulos interatômicos do composto CM13	110
Tabela	37	Ângulos interatômicos do composto CM14	111
Tabela	38	Ângulos interatômicos do composto CM15	111

Tabela	39	Ângulos interatômicos do composto CM16	111
Tabela	40	Ângulos interatômicos do composto CM17	112
Tabela	41	Ângulos interatômicos do composto CM18	112
Tabela	42	Ângulos interatômicos do composto CS1	112
Tabela	43	Ângulos interatômicos do composto CS2	113
Tabela	44	Ângulos interatômicos do composto CS3	113
Tabela	45	Ângulos interatômicos do composto CS4	113
Tabela	46	Ângulos interatômicos do composto CS5	114
Tabela	47	Ângulos interatômicos do composto CS6	114
Tabela	48	Ângulos interatômicos do composto TS1	114
Tabela	49	Ângulos interatômicos do composto TS2	115
Tabela	50	Ângulos interatômicos do composto TS3	115
Tabela	51	Ângulos interatômicos do composto TS4	115
Tabela	52	Ângulos interatômicos do composto TS5	116
Tabela	53	Ângulos interatômicos do composto TS6	116
Tabela	54	Atividade catalítica das moléculas estudadas	147
Tabela	55	porcentagem acumulada para o modelo	152
		estatístico gerado	
Tabela	56	Valores de Variância para as 4 primeiras	153
		componentes principais	
Tabela	57	<i>Escores</i> das variáveis para as componentes	154
		principais	
Tabela	58	Valores de loadings para as quatro componentes	154
		principais	
Tabela	5 9	Classificação final das atividades catalíticas	157

SIMBOLOGIA UTILIZADA

siglas	Nomenclatura científica
CM1	N,N'-bis(3-etoxisalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM2	N,N'-bis(4-dietilaminasalicylidene)-(1,2-
	ethilenodiamina)Cu(II)
CM3	N,N'-bis(3methoxisalicilideno)(1,2etileno
	diamina)Cu(II)
CM4	(SALAHE)Cu(II)
CM5	N,N'-bis(4-hidoxisalicilideno)-
	(1,2etilenodiamina)Cu(II)
СМб	N,N'-bis(4-metoxisalicilideno)-
	(1,2etilenodiamina)Cu(II)
CM7	N,N'-bis(5-clorosalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM8	N,N'-bis(5-bromosalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM9	N,N'-bis(5-iodosalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM10	N,N'-bis(5-hidroxisalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM11	N,N'-bis(5-metoxisalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM12	N,N'-bis(3,5-diclorosalicilideno)-
	(1,2etilenodiamina)Cu(II)
CM13	N,N'-bis(3,5-dibromosalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM14	N,N'-bis(3,5-diiodosalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM15	N,N'-bis(7-fenilsalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM14	N,N'-bis(3,5-diiodosalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM15	N,N'-bis(7-fenilsalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM14	N,N'-bis(3,5-dilodosalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM15	N,N'-bis('/-fenilsalicilideno)-
and 6	(1,2etilenodiamina) Cu(11)
CM16	N,N'-bis(/-etilsalicilideno)-
OM1 7	(1,2etilenodiamina) Cu(II)
CM17	N,N'-DIS(3-etil-/-Ienlisalicilideno)-
CM1 0	(1,2etilenodiamina) Cu(11)
CMIS	N, N'-DIS(3-HIGFOXISALICIIIdeno)-
т <u>с</u> 1	(1,2ecifenouramina) (u(11)
TOT	(1 2 gid obeyanodiamina) (1/(TT))
тсว	trang N N'-big(galigilideno)-
197	(1 2 gid obevanodiamina) (1/(TT))
	(1,2010110Aanoutamina) Cu(11)

TS3	trans N,N'-bis(3-etoxisalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
TS4	trans N,N'-bis(3-metoxisalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
TS5	trans N,N'-bis(5-bromosalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
TS6	<pre>trans N,N'-bis(4-dietilamina- salicilideno)</pre>
	-(1,2ciclohexanodiamina) Cu(II)
CS1	cis N,N'-bis(5-clorosalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS2	cis N,N'-bis(salicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS3	cis N,N'-bis(3-etoxisalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS4	cis N,N'-bis(3-metoxisalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS5	cis N,N'-bis(5-bromosalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS6	cis N,N'-bis(4-dietilamina- salicilideno)-
	(1,2ciclohexanodiamina) Cu(II)

RESUMO

Neste trabalho inicialmente foi feita uma breve apresentação sobre a utilização de compostos de bases de Schiff e Cobre(II) como catalisadores na reação de oxidação de sulfetos.

Foi feita a determinação das estruturas cristalinas dos compostos: N,N'-bis(3-etoxisalicilideno)-(1,2etilenodiamina) Cu(II), sistema cristalino ortorrômbico grupo espacial Pbcn a = 7.639(5); b= 12.760(5); c= 19.733(5)Å; V = 1923.4(15) (3)Å³; Dcalc = 1.505 Mg/m³; MM = 435.96; e μ = mm⁻¹, N,N'-bis (4-dietilaminasalicilideno) 1.170 _ (1,2etilenodiamina) Cu(II), sistema monoclínico, C2/c, a = 19.571(2); b=9.8514(2)=; c=12.4552(4) Å; β = 93.705(9)°; V =2396.4(5) Å³; D_{calc} =1.358 Mg.m⁻³; MM= 490.10; e μ = 0.944 mm⁻ ¹, N,N'-bis(3-metoxisalicilideno)-(1,2etilenodiamina)Cu(II), sistema ortorrômbico, Pna21, a = 7.5140(6); b= 9.2629(9); c= 24.721(3)Å; V =1720.6(3) Å³; Dcalc = 1.575 Mg, m^{-1} ; MM = 407.91; e μ = 1.302 mm¹ e (SALAHE)Cu(II), monoclínico, P2₁/C, a = 18.3216(2) Å; b=4.804(3) Å; c=19.801(2)Å; β = 98.908(6)°; V =2396.4(5) Å³; D_{calc} =1.358 Mg.m⁻³; MM= 490.10; e μ = 0.944 mm-1.

Os cálculos teóricos para as quatro moléculas foram efetuados partindo-se das coordenadas atômicas cristalográficas. Foram modeladas, para posterior estudo teórico, as moléculas de vinte e seis compostos de bases de Schiff e Cobre(II) análogos.

Foram calculadas 104 variáveis para cada composto, e realizado o estudo de correlação estruturaatividade catalítica através de métodos de Quimiometria.

Foi obtido um modelo de correlação utilizando a classe de compostos de atividade catalítica pré-definida.

Finalmente foi realizada a tentativa de previsão de atividade dos vinte e quatro compostos com atividade não conhecida, obtendo-se como resultado a probabilidade de vinte deles serem ativos como catalisadores da conversão sulfeto-sulfóxido.

ABSTRACT

Initially, in this work, a brief presentation about Schiff bases and their applications as catalysist.

The crystalline structure determination was made for compounds: N,N'-bis(3-etoxysalicylidene)the (1,2ethylenediamine) Cu(II), crystal system orthorhombic spatial group Pbcn a = 7.639(5); b= 12.760(5); c= 19.733(5)Å; V = 1923.4(15) (3)Å³; Dcalc = 1.505 Mg/m³; MM = $e \mu = 1.170 \text{ mm}^{-1}$, N,N'-bis 435.96; (4diethylaminesalicilidene) - (1,2ethylenediamine) Cu(II), monoclinic, C2/c, a = 19.571(2); b=9.8514(2)=; c=12.4552(4) Å; β = 93.705(9)°; V = 2396.4(5) Å³; D_{calc} =1.358 Mg.m⁻³; MM= 490.10; e μ = 0.944 mm⁻¹, N,N'-bis(3-metoxysalicilidene)-(1,2ethylenediamine) Cu(II), orthorhombic, Pna2₁, a 7.5140(6); b= 9.2629(9); c= 24.721(3)Å; V = 1720.6(3) Å³; Dcalc = 1.575 Mg,m⁻¹; MM = 407.91; e μ = 1.302 mm¹ e (SALAHE)Cu(II), monoclinic, $P2_1/C$, a = 18.3216(2) Å; b=4.804(3) Å; c=19.801(2)Å; β = 98.908(6)°; V =2396.4(5) Å³; $D_{calc}=1.358 \text{ Mg.m}^{-3}; \text{ MM}= 490.10; e \mu = 0.944 \text{ mm}^{-1}.$

The theoretical calculations for the four molecules had been effected starting of the crystallographic atomic coordinates.

Twenty-six molecules without determined crystallographic structure had been shaped for theoretical study. 104 variables for each compound had been calculated, and carried through the correlation study structure-catalyst activity through chemometric methods. A separation model was gotten in one single class. Finally the attempt of forecast of activity of twenty four compounds with activity unknown was carried through, getting itself as resulted the probability of twenty in all to be able to become active.

I – INTRODUÇÃO

Este trabalho faz parte de um estudo conjunto de dois Grupos de Pesquisa, no intuito de estabelecer parâmetros de correlação entre a estrutura molecular e a atividade catalítica de alguns compostos contendo Bases de Schiff e em especial aqueles que contêm Cobre(II) como metal central.

Para tanto, foram selecionados, para serem calculados, alguns parâmetros químico-quânticos que deverão atuar como variáveis comportamentais frente à eficiência catálise da na conversão de sulfeto em sulfóxido, mediante ensaios previamente executados pela MSc. Sandra Romera em seu projeto de doutorado, sob a orientação do Prof. Dr. Edward Ralph Dockal.

dedicação do Os esforcos а е grupo de pesquisadores do Laboratório de Síntese Inorgânica, Catálise e Cinética (LSICC/UFSCar) resultaram na obtenção de vários monocristais das Bases de Schiff ligantes livres, Bases de Schiff de Oxovanádio(IV) e finalmente as de Cobre(II), sendo estas ultimas, sintetizadas pela MSc. Mirian Paula dos Santos, igualmente sob a orientação do Prof. Dr. Edward Ralph Dockal.

De posse do material, iniciou-se a determinação da estrutura de todos os monocristais, porém apenas quatro deles, compreendidos na série simétrica e tetradentada dos compostos de Base de Schiff e Cobre(II), foram incluídos em nossos estudos.

Os demais, de igual importância científica, porem merecedores de abordagem diferenciada quanto ao tratamento químico-quântico foram omitidos, pois sua apresentação certamente estenderia demasiadamente este trabalho.

determinação da cristalina Α estrutura е molecular dos quatro compostos foi feita por meio de difração de raios-X, utilizando o equipamento CAD4 da Enraf Nonius do laboratório de Química Estrutural do Instituto de Química de São Carlos da Universidade de São Paulo (IQSC/USP), o primeiro passo para atingir 0 objetivo deste trabalho.

Além dos compostos experimentais, aqueles cujos parâmetros espaciais foram obtidos via difração de raios-X, outros compostos análogos foram adicionados para os cálculos teóricos a fim de conferir ao estudo uma abrangência superior à proposta inicialmente, assim seus parâmetros estruturais foram obtidos de forma teórica.

O trabalho, portanto, compreende amostras estudadas de forma teórica e experimental, sendo todas elas igualmente submetidas à rotina de cálculos químicoquânticos para a obtenção dos parâmetros físico-químicos.

A escolha e execução dos métodos de cálculos adequados para todos os compostos integrantes do trabalho estão descritas na seqüência da metodologia.

Finalmente, alcançando a principal meta deste estudo, a verificação das é apresentada possíveis correlações variáveis físico-químicas, entre as os parâmetros estruturais e geométricos e a atividade catalítica dos compostos aqui citados usando estudos quimiométricos e estatísticos.

I.1 - AS BASES DE SCHIFF

Em linhas gerais, as Bases de Schiff são conhecidas como aqueles compostos que contém o grupo azometila (-R, R'C=N), e são comumente preparadas a partir da reação de condensação de uma amina primária com um grupo carbonila ativo. Como mostra o esquema 1.

Esquema 1 - A obtenção das Bases de Schiff

Atualmente uma grande variedade de Bases de Schiff é conhecida, podendo apresentar caráter de coordenação bi, tri, tetra, penta ou polidentado de acordo com as características de seus ligantes [Raso, 2003].

facilidade de síntese, De acordo com а versatilidade de propriedades estéricas suas e eletrônicas, os complexos de Base de Schiff com metais de transição têm sido amplamente estudados. Suas propriedades podem ser ajustadas e maximizadas de acordo com a escolha apropriada de aminas e substituintes em seus anéis aromáticos ou ainda, substituintes na própria amina do composto carbonílico. [Chantarasiri e colaboradores, 2004]

Os efeitos estereoquímicos e a seletividade desses sistemas podem ainda ser amplificados quando se propõe a inserção de um ou mais centros quirais na esfera de coordenação. [Nathan e colaboradores, 2003; Mukherjee e colaboradores, 2004].

I.1.1 - AS BASES DE SCHIFF E SUAS APLICAÇÕES.

Devido as suas propriedades, as Bases de Schiff têm sido amplamente exploradas, ao longo dos anos, nas mais variadas aplicações.

Sua atividade anticorrosiva foi comprovada por Zenhlan e colaboradores [2002] em ensaios envolvendo o método de Self-Assembly, onde utilizando-se sucessivos filmes de Bases de Schiff, aplicados sobre uma superfície de metálica de cobre, apresentaram bons resultados de proteção do metal frente à ação de agentes oxidantes.

As bases de Schiff, quando sustentadas em Alumina podem promover a catálise de oxidação do ciclohexeno, utilizando tert-butil hidroperóxido como doador de oxigênio.[Salavati-Niasari, 2003]

Na indústria pode-se citar a aplicação como catalisador de reações de oxidação de álcoois e ciclohexanol, hidrogenação de olefinas e ainda na transferência específica de um grupo amina [Felício e colaboradores, 1999].

Segundo Samide e colaboradores [1998], as Bases de Schiff têm sido também amplamente utilizadas em estudos biológicos agindo na clivagem de DNA, como mimetizadores de sítios ativos de várias espécies e inclusive como agentes quimioterápicos [Soliman e colaboradores, 1999]. Também foram encontradas propriedades biológicas igualmente importantes como a inibição das reações de Anidrase Carbônica (CAI) e (CAII) em organismos vivos [Supuran e colaboradores, 1998], a atividade antimicrobial [Ünver e colaboradores, 2005] e, especialmente, agindo como catalisadoras na oxidação assimétrica de sulfetos [Zhu e colaboradores, 2004].

Existe um considerável interesse na química de coordenação dos metais de transição unidos às Bases de Shiff. Isso ocorre devido à ampla área de aplicações e aos aspectos estruturais dos compostos resultantes. Uma atenção particular tem sido dispensada aos derivados das Bases de Schiff -salicilidenos- porque elas podem promover a quelação e ainda gerar uma estabilidade extra ao centro metálico.

I.2 - OS SULFÓXIDOS OPTICAMENTE ATIVOS

Segundo dados obtidos na página eletrônica do órgão FDA (Food and Drugs Administration), as vendas de drogas envolvendo o Omeprazole, um conhecido sulfóxido quiral, atingiram a marca de US\$6.2 bilhões no ano de 2002. Conseqüentemente, espera-se que um grande número de empresas, envolvidas com a pesquisa e o desenvolvimento de fármacos, busque desenvolver seus próprios inibidores da secreção gástrica baseado na estrutura do Omeprazole ativo, valendo-se opticamente de outros fragmentos privilegiados para compor a nova estrutura. Entende-se que o principal interesse dessas companhias é a síntese e a separação economicamente viável do (S) Omeprazole opticamente puro.

A oxidação enantioseletiva de sulfetos proquirais é indubitavelmente o método mais direto e econômico para as sínteses de sulfóxidos enantiomericamente puros.

Sulfóxidos opticamente ativos são utilizados como auxiliares quirais em sínteses orgânicas. Há ainda um

5

interesse particular na aplicação de sulfóxidos em sistemas biológicos [Fernández e colaboradores, 2003].

Hemeenzimas peroxidases, catalases e citocromo P-450 estão presentes em muitos organismos, e catalisam uma grande variedade de reações tais como: oxidação redução, e isomerização. A horseradish peroxidase (HRP) é uma hemeproteína peroxidase capaz de catalisar reações de oxidação de muitos compostos orgânicos. [Sivasubramanian e colaboradores, 2002].

Alguns sistemas enzimáticos utilizando a HRP estão sendo estudados e apresentam excelentes resultados de obtenção de sulfóxidos opticamente ativos.

Para controlar um possível reconhecimento molecular visando um eficiente processo de oxidação, estão sendo desenvolvidas aproximações enzimáticas, assim como reagentes químicos que atuam da mesma maneira que as enzimas. Resultados promissores obtidos em sulfoxidações biológicas sugerem que esta aproximação será de interesse em síntese no futuro.

Para mimetizar intermediários ativos em reações de oxidação catalisadas por enzimas, os complexos metaloporfirinas e metalosalen de ferro, manganês, cromo e rutênio estão sendo usados como compostos modelos e mostraram ser eficientes na transferência de um átomo de oxigênio de agentes oxidantes, como iodosilbenzeno, H₂O₂, entre outros, para hidrocarbonetos saturados e insaturados e outros substratos orgânicos.

A discreta participação de intermediários oxometálicos, em especial os de alta valência, em oxidação de substratos orgânicos por heme proteínas em sistemas modelo é aceitável. Porém afirmar com segurança qual a configuração eletrônica do centro metálico nestes intermediários é um difícil desafio. Apesar da versatilidade de sintese destes sistemas, existem controvérsias sobre detalhes do mecanismo de transferência do átomo de oxigênio nestas reações.

Dentre os inúmeros ligantes Bases de Schiff, destacam-se as salicilideno-etilenodiaminas (salens) que formam complexos estáveis com muitos metais de transição. Estão ao lado das porfirinas no contexto dos catalisadores para a oxidação assimétrica de substratos orgânicos, visto que os complexos metal-salen têm características comuns às das metaloporfirinas, no que tange sua estrutura e atividade catalítica. Estes complexos metal-base de Schiff estão sendo utilizados como catalisadores em epoxidação de olefinas e oxidações de outros substratos orgânicos. [Canali e colaboradores, 1999].

Os complexos quirais oxotitânio (IV) - base de Schiff, como apresentados na Figura 1, desenvolvidos em 1986 por Pasini [Colombo e colaboradores, 1986] e colaboradores, foram submetidos à ensaios de catálise na oxidação do metilfenil sulfeto. A atividade catalítica deste sistema foi excelente (razão catalisador/substrato de 1:1000 à 1:1500), mas apresentou resultados baixos de enantio-seletividade (<20% e.e).

Figura 1 - Exemplo de um complexo quiral oxotitânio(IV)- base de Schiff

A mais promissora aproximação foi desenvolvida por Fujita e colaboradores (1986), que usando 4 mol % equivalente do complexo binuclear titânio(IV)-base de Schiff (Figura 2) como catalisador da oxidação assimétrica do metilfenil sulfeto pelo tritilhidroperóxido em metanol a 0°C, obteve (R)-metil fenil sulfóxido com 60% de e.e.

Figura 2 - Exemplo de complexo binuclear titânio(IV)-base de Schiff

Jacobsen e colaboradores [1992] desenvolveram um sistema de epoxidação assimétrica de olefinas simples, oxidação assimétrica de sulfetos proquirais. para а Jacobsen publicou o uso de 2 mol % do complexo quiral manganês-(salcn), Figura 3, para a oxidação de sulfetos, com H_2O_2 como doador de oxigênio. Ao contrário dos excelentes resultados obtidos com este sistema nas reações de epoxidação com olefinas conjugadas, foi obtido para as reações de sulfoxidação dos alquilaril sulfetos uma baixa enantio-seletividade (24% e.e). A enantio-seletividade das reações aumentou de 24% para 47% com a modificação do ligante do complexo inserindo um grupo doador de elétrons - o grupo metoxi.

Figura 3 - Exemplos de complexos quirais de Bases de Schiff utilizando Manganês como átomo central

de manganês(II)-(salcn), Um novo complexo 4, relatado apresentado Figura por Katsuki na е colaboradores [1994], demonstrou melhores resultados na catálise assimétrica para a oxidação de sulfetos (acima de 90%e.e) usando PhIO ao invés do H₂O₂, como doador de oxigênio. Os mesmos pesquisadores relataram o uso do complexo manganês-(salcn) com substituintes quirais na posição axial, como demonstrado na Figura 4. Este complexo apresentou melhorias na enantio-seletividade da oxidação de sulfetos proquirais com 84% e.e.

Figura 4 - Novo complexo de Manganês (II)

Fujita e colaboradores [1986] reportou a oxidação assimétrica de arilmetil sulfetos utilizando hidroperóxidos (TBHP, CHP) como doadores de oxigênio e um catalisador opticamente ativo, o complexo oxovanadio(IV)-(salcn) (Figura 5) obtendo (S_s) -sulfóxidos de baixo excesso enantiomérico (acima de 40%).

R= OMe, OEt, t-Bu

Figura 5 - Exemplo de complexo oxovanadio(IV)-(salcn)

O crescente interesse nesses processos oxidativos tem impulsionado as pesquisas em compostos sintéticos que mostrem atuar de forma semelhante às enzimas.

Em 1998 a pesquisadora Siona Bunce [Bunce e outros, 1998] provou os efeitos de catálise enantioseletiva de complexos estericamente impedidos. Seus experimentos comprovaram que quanto maior o volume estérico, maior o excesso de produto enantiomérico puro.

I.3 – BASES DE SCHIFF COMO CATALISADORAS DA OXIDAÇÃO ASSIMÉTRICA

Em linhas gerais, o esquema utilizado para demonstrar a reação de oxidação de metil-fenil-sulfeto, catalisada por base de Schiff, contendo Cobre(II) encontrada na literatura em Yamada [1999] é mostrada no esquema 2.

Esquema 2 - Reação de oxidação do metil-fenil-sulfeto

Como mencionado anteriormente, as Bases de Schiff tem permanecido como alvo de inúmeras pesquisas sobre sua aplicação em catálise assimétrica. Os compostos que contém em suas estruturas anéis-quelatos de cinco ou seis membros apresentam admiráveis resultados quando atuam como catalisadores de sínteses assimétricas.

A literatura trás à tona valiosas informações a respeito da oxidação pro-quiral do PhMeS a seu sulfóxido,

PhMeSO, que apresenta êxito quando catalisada por 10 mol% do complexo [Cu(salpn)]; ou [Cu(salcx)] na ação de 5% de BuOOH aquosos como agente oxidante, em meio dicloroetano ou acetonitrila, mantendo a temperatura criteriosamente controlada à 0°C ao longo de toda a reação, uma vez que, reações à baixa temperatura tendem a aumentar a enantioseletividade catalítica. Sabe-se ainda, que as reações de oxidação realizadas sem a utilização dos catalisadores, apresentaram uma mistura racêmica como produto principal. [Bunce e colcaboradores, 1998]

O mecanismo da oxidação assimétrica de sulfetos catalisadas por Bases de Schiff quirais contendo Cobre(II) como átomo central, permanece desconhecido.

Recorrendo à literatura, verifica-se que Zhu e colaboradores [2004] postularam que a enantio-seletividade da reação depende fortemente da comunicação estereoquímica entre o substrato e o catalisador. Sendo assim, é primordial que a espécie catalítica apresente grande estabilidade durante a formação do composto de Cobre(II) e peróxido de hidrogênio intermediário, cuja estabilidade química depende ainda do tipo de solvente utilizado na reação.

Os experimentos que auxiliaram nesse postulado partem de ensaios executados anteriormente por Solezzi e colaboradores [2003] onde foi proposto o mecanismo da epoxidação do estireno utilizando o iodosilbenzeno na presença da Base de Schiff com Cobre (II).

Nesses ensaios foi detectada a formação de um composto intermediário de Cobre-iodosilbenzeno. Zhu [2004] reproduziu os ensaios dentro de sua realidade, utilizando seus próprios complexos de Base de Schiff de Cobre(II) e peróxido de hidrogênio na ausência de outros substratos, nas mesmas condições que Solezzi, a fim de identificar as espécies reativas. As medidas de UV-vis da mistura do peróxido demonstraram complexo е que bandas as características do complexo diminuíram em absorbância ao decorrer da reação, mostrando а diminuição da sua concentração, apontando para a provável formação do composto intermediário.

I.4- Obtenção das bases de Schiff e seus complexos

Neste item é apresentado o processo de obtenção das Bases de Schiff e dos complexos que foram utilizados em nosso estudo.

A síntese dos ligantes de bases de Schiff segue uma seqüência reacional semelhante a mostrada no Esquema 3. Os dados laboratoriais aqui relatados foram cedidos pela aluna de doutorado Sandra Romera, que desenvolve sua tese sob a orientação do Prof. Dr. Edward Ralph Dockal, no Laboratório de Sínteses Inorgânicas e Catálise (LSICC) do Departamento de Química da UFSCar.

As variações na estrutura dos aldeídos e das aminas reagentes possibilitam um grande leque de estruturas de Bases de Schiff, ampliando em muito as alternativas estruturais.

R= H,3 MeO, 4 MeO, 5 MeO, 3 EtO, 3 OH, 4 OH, 4 DEA, 5 Br, 5 Cl, 3,5 Br, 3,5 Cl, 3,5 I, 5 NO₂ , 7 CH₃ ,7-4 ph MeO, 7 ph, 7 Etil, (CH₂CH₃), 7 Fenil Etil,

Esquema 3 - Rota sintética simplificada para obtenção de Bases de Schiff

Para a síntese dos complexos, 3 mmol de ligante foram dissolvidos em 30 mL de etanol. Esta mistura foi mantida sob agitação constante e refluxo. A seguir, 3 mmol do metal correspondente foram dissolvidos em água destilada e adicionados lentamente na solução em refluxo. As soluções que inicialmente eram de cor amarelada, tornaram-se arroxeadas quando utilizado o acetato de cobre(II).

A mistura foi mantida em refluxo por aproximadamente 2 horas Após este período a solução foi submetida à agitação constante até que a mesma atingisse a temperatura ambiente. As soluções foram armazenadas à temperatura de aproximadamente 0°C por 24 horas.

II - CÁLCULOS TEÓRICOS

II.1 - Introdução

A compreensão da natureza das propriedades dos átomos, moléculas e de sistemas mais complexos está diretamente relacionada à distribuição e o comportamento das partículas sub-microscópicas que os constituem.

Diversas evidências experimentais sugeriram que a estrutura dos átomos e moléculas não poderiam ser explicadas por princípios baseados na mecânica clássica. Dados experimentais como a radiação do corpo negro, capacidade calorífica e espectros atômicos e moleculares, sugeriam que os processos de absorção ou emissão de energia só poderiam ser explicados admitindo-se que a energia envolvida nesses processos fosse quantizada, e não contínua como prevê a mecânica clássica [Atkins, 1997]

Em 1925, houve um grande avanço na teoria quântica, quando foi incorporada a natureza ondulatória do elétron. Essa teoria aperfeiçoada, chamada mecânica quântica ou mecânica ondulatória, foi desenvolvida principalmente pelo físico alemão Werner Heisenberg, pelo físico austríaco Erwin Schrödinger e pelo físico inglês Paul Adrien Maurice Dirac [Pauling, 1966].

O referencial de toda descrição quântica de um sistema qualquer está na utilização da equação de Schrödinger. Na sua forma independente do tempo, a equação é escrita como:

$$H\psi = E\psi \tag{1}$$

A equação de Schrödinger é uma equação de autovalores, quando um operador atua sobre uma função e

resulta na mesma função multiplicada por uma constante. A função de onda ψ é uma autofunção do operador Hamiltoniano H correspondente ao autovalor E (energia do sistema). Uma vez obtida a função de onda, tem-se uma descrição completa do sistema, podendo-se calcular qualquer propriedade do mesmo, já que se tem toda informação necessária para a predição das propriedades atômicas. [Bunge, 1972].

Para átomos ou moléculas, a aparente simplicidade da equação desaparece, pois a equação acima corresponde a uma abreviação de diversos termos. O termo H corresponde a um operador que permite obter informações sobre a energia do sistema. Este operador é conhecido como operador Hamiltoniano, e é dado por:

$$H = T + V_{e-e} + V_{e-n} + V_{n-n}$$
(2)

onde:

T = energia cinética dos elétrons e dos núcleos; V_{e-e} = energia potencial devido à interação elétron-elétron; V_{e-n} = energia potencial de interação elétron-núcleo; V_{n-n} = interação núcleo-núcleo.

Na prática, a equação de Schrödinger não é fácil ou mesmo possível de ser resolvida; possui solução exata somente para o átomo de hidrogênio ou cátions hidrogenóides.

Para átomos polieletrônicos e moléculas não possui solução exata, necessitando de aproximações. A principal aproximação feita, no sentido de resolver a equação de Schrödinger, consiste na aproximação de Born e Oppenheimer [Levine, 1991] que permite a separação dos movimentos nucleares e eletrônicos, simplificando, assim, o tratamento do sistema. Esta aproximação considera o fato de que, sendo os núcleos mais pesados que os elétrons, movam-se devagar quando comparados ao movimento dos elétrons. Assim, como uma boa aproximação pode-se considerar os elétrons em uma molécula movendo-se em um campo fixo formado pelos núcleos. Desse modo, o termo correspondente à energia cinética dos núcleos pode ser desprezado e a energia potencial de repulsão núcleo-núcleo pode ser considerada como constante [Szabo e Ostlund, 1982]. O hamiltoniano para a energia eletrônica, então, é dado por:

$$H_e \psi_e = E_e \psi_e \tag{3}$$

Mesmo considerando esta simplificação, a equação de Schrödinger só pode ser resolvida exatamente para sistemas monoeletrônicos. Então, recorre-se a outros métodos de aproximação, o método de Hartree-Fock e o método de Hartree-Fock-Roothaan [Szabo е Ostlund, 1982], que possibilitam resolver satisfatoriamente, mesmo de forma equação de Schrödinger para aproximada, a sistemas atômicos e moleculares polieletrônicos.

II.2. - Métodos Semi-Empíricos

Todas as funções de onda são aproximadas, porém algumas são mais aproximadas que outras; e isto conduziu à necessidade de divisão dos métodos mecânicos-quânticos em duas formas:

- 1- Métodos "ab initio";
- 2- Métodos semi-empíricos.

Os cálculos no método "ab initio" referem-se a cálculos de funções de onda, onde o operador de Fock completo, $\hat{F}_{\mu\nu}$, é utilizado.

Todavia, nem sempre estes métodos obtêm sucesso na reprodução de parâmetros experimentais.

Os métodos semi-empíricos utilizam as mesmas equações que os métodos "ab initio", mas realizam uma série de aproximações utilizando parâmetros experimentais, e ajustáveis, que são otimizados com o objetivo de reproduzir propriedades químicas de interesse.

Dentre os vários métodos semi-empíricos estão: o método MNDO, AM1 e SAM1. Os principais métodos semiempíricos envolvem aproximações, como o uso de um Hamiltoniano de um elétron, onde a matriz Hamiltoniana é obtida por valores empíricos ou semi-empíricos que tentam relacionar os resultados calculados com os resultados experimentais, como ocorre no método de Hückel, desenvolvido por Hoffmann [Hoffmann, 1963].

A outra aproximação se baseia em uma aproximação matemática, que despreza alguns termos da integral de sobreposição. Estas aproximações ocorrem pela introdução de parâmetros empíricos e então, usando a nova forma da equação aproximada de Schrödinger, com seus parâmetros ajustáveis, como um procedimento de ajuste para os resultados experimentais.

Os métodos semi-empíricos mais amplamente utilizados fazem uso do método do campo autoconsistente (SCF – *Self Consistent Field*) [Levine, 1991; Szabo e Ostlund, 1982; Atkins, 1997] e deixam de lado a teoria quântica exata, ao introduzir várias aproximações nas integrais e introduzir parâmetros empíricos para que os resultados estejam de acordo com os valores experimentais [Bunge, 1977].

O mais antigo desses métodos é o CNDO (Complete Neglect of Differential Overlap) [Pople e outros, 1965]; [Pople e Segal, 1965] desenvolvido por Pople. Este método ignora a maior parte das integrais utilizadas em cálculos ab initio; e as integrais que se mantêm são avaliadas a partir de expressões simples. A mais utilizada é a CNDO/2, onde o conjunto de integrais bieletrônicas e de troca de átomos separados se aproxima de zero. Com o CNDO/2 não se pode distinguir os estados de spin de radicais como os estados tripletes e singlete do NH3. Por essa razão foi introduzido 0 método INDO (Intermediate Neglect of Differential Overlap) [Pople e outros, 1967] que só despreza de modo intermediário o recobrimento diferencial.

Entretanto, nem no CNDO ou o INDO pode-se repulsão de elétrons representar а entre pares desemparelhados, e por isso foi desenvolvida a aproximação NDDO (Neglect of Diatomic Diferencial Overlap) [Segal, 1977]. Esta aproximação ignora o recobrimento diferencial diatômico somente quando os orbitais atômicos estão centrados em átomos diferentes.

A aplicação destes métodos não proporcionava bons resultados quanto à otimização de geometrias, e só podia ser aplicado a poucas classes de sistemas. Por isso desenvolveu uma nova família, a MINDO (*Modified* INDO), desenvolvida por Dewar [Dewar e colaboradores, 1977].

Neste método, os parâmetros empíricos introduzidos reproduzem o melhor possível as características experimentais (geometria, calor de formação, potenciais de ionização, etc.) de um grande número de compostos.

entanto, o método MINDO/3 tem importantes No deficiências, como sobre-estimar os ângulos de ligação (principalmente no caso de ligações duplas), а estabilidade de pequenos ciclos (particularmente se contêm próximos), e também a estabilidade heteroátomos as ligações entre três centros mediante um par de elétrons. Ele também não é adequado para descrever sistemas com ligações de hidrogênio (pois não reproduz a energia de estabilização), não proporciona bons resultados em compostos que contenham heteroátomos com pares de elétrons desemparelhados e subestima a interação entre átomos situados a distâncias não covalentes.

Outro método semi-empírico desenvolvido foi o MNDO (Modified NDO) [Dewar e Thiel, 1977], desenvolvido por Dewar e Thiel em 1977. A parametrização do MNDO cobre os elementos do primeiro ao terceiro período da tabela periódica, todos os halogênios e muitos metais presentes em compostos organometálicos (Zn, Hg, Sn, Pb e Ge). No entanto, segue incapaz de descrever ligações de hidrogênio sobreestima as barreiras de ativação das reações е químicas. Para corrigir este inconveniente inclui-se o cálculo de correlação eletrônica no método MNDO.

Em 1984, Dewar e colaboradores publicaram uma nova versão melhorada do MNDO, a qual recebeu o nome de AM1 [Dewar e outros, 1984].

Foi desenvolvido na tentativa de corrigir problemas surgidos em métodos anteriores, como MINDO/3 e

MNDO [Dewar e Thiel, 1977], tais como a tendência de superestimar repulsões entre átomos situados à distância de Van der Waals, que ocorria no MNDO.

O caminho óbvio foi modificar a função core de repulsão (CRF) no MNDO. Grandes esforços foram feitos no sentido de se encontrar uma função conveniente, decidindose modificar os termos gaussianos existentes. As repulsões que distinguem o método AM1 do MNDO consistem na modificação das integrais de repulsão entre dois núcleos e são dadas pelas equações:

$$CRF (AB) = Z_A Z_B Y_{SS} [1+F(A)+F(B)]$$
(4)

onde:

$$F(A) = \exp(-\alpha_{A}R_{AB}) + \sum_{j} K_{Aj} \exp[L_{Aj}(R_{AB} - M_{Aj})^{2}]$$
(5)

$$F(B) = \exp(-\alpha_{B}R_{AB}) + \sum_{j} K_{Bj} \exp[L_{Bj}(R_{AB} - M_{Bj})^{2}]$$
(6)

O simbolismo é o mesmo que no MNDO. Os valores dos parâmetros L determinam a largura das gaussianas. Os parâmetros M e K foram todos otimizados. Os termos gaussianos, assim como os outros na CRF referem-se a átomos e não a pares de átomos.

Duas estratégias foram utilizadas para modificar a CRF e reduzir excessivas repulsões interatômicas a grandes separações. Primeiro, uma ou mais Gaussianas de atração são adicionadas para compensar as excessivas repulsões diretamente, centradas na região onde as repulsões são excessivas. Em segundo lugar, as Gaussianas de repulsão foram centradas a separações internucleares menores, levando a uma redução do termo principal na expressão do core de repulsão e, em conseqüência, reduzindo a repulsão a grandes distâncias internucleares.

No caso do carbono, hidrogênio e nitrogênio, ambos os tipos de Gaussianas são incluídos, enquanto somente as Gaussianas de repulsão são necessárias para o oxigênio. Esforços para utilizar somente Gaussianas de repulsão para outros elementos deixaram os resultados mais empobrecidos, enquanto que o uso de apenas Gaussianas de atração não provocaram algum melhoramento no MNDO.

O método semi-empírico utilizado neste trabalho foi o SAM1 (Semi ab initio Method, Version 1), desenvolvido por M. J. S. Dewar [Dewar e outros,1995] que constitui o passo seguinte dentro do processo de desenvolvimento de métodos de cálculo, que geraram no passado, métodos como MNDO, AM1, ZINDO, PM3, etc.

II.2.1 - O Método semi-empiírico SAM1 [AMPAC 5.0 1994]

A necessidade do desenvolvimento de novos métodos de cálculo semi-empíricos tornou-se crescente por inúmeras Certas deficiências dos métodos AM1 MNDO razões. е são resistentes à remoção por parametrização, em certos casos, dentro do modelo teórico atual. Os problemas são inerentes aos tratamentos teóricos e a única solução razoável é a criação de um novo método.

O cálculo computacional de integrais de repulsão entre dois elétrons (TERI's) torna-se impraticável quando elevado a sistemas contendo orbitais-d. Até então, métodos AM1 e MNDO utilizam uma expansão multi-polo modificado para calcular as integrais TERI's:

21

$$\langle \mu v | \lambda \sigma \rangle = \sum_{l_1} \sum_{l_2} \sum_{m} \left[M l_1^A m, M l_2^B m \right]$$
(7)

Onde M são valores de multi-polos. Os valores das integrais TERI's são computados por meio da determinação da magnitude das repulsões dos potenciais eletrostáticos existente entre os multi-polos. Enquanto essa expansão forma apenas 22 integrais únicas de repulsão para orbitais s e p, o número de integrais incluídas para orbitais d é gigantesco.

Integrais nesse formato tendem a convergir para valores próximos às calculadas para sistemas de um único centro. Tornaram-se necessárias aproximações para amenizar esse problema.

A aproximação escolhida no caso do método SAM1 foi utilizar integrais previamente calculas pelo método ab initio, utilizando parâmetros ajustáveis para os efeitos de correlação, característicos nos métodos semi-empíricos.

O método semi-empírico SAM1 (semi ab initio version 1) difere dos antigos métodos semi-empíricos exatamente em sua metodologia em calcular as integrais TERI's. Utiliza uma base teórica diferente das utilizadas nos métodos descritos anteriormente, ainda permite o estudo de novos elementos, em especial os que contém orbitais-d, enquanto mantém a eficiência computacional habitual dos métodos semi-empíricos tradicionais.

A fórmula para o cálculo das TERI's utilizada no método SAM1 é a seguinte:

$$\langle \mu v | \lambda \sigma \rangle = f(R_{AB}) \langle \mu V | \lambda \sigma \rangle^{CGF}$$
 (8)

onde $\langle \mu V | \lambda \sigma \rangle^{CGF}$ são as integrais das funções de Gaussian ajustadas aos orbitais de Slater (STO-3G) utilizando métodos fundamentais.

O termo $f(R_{AB})$ é uma função de parâmetros ajustáveis, que podem ser alterados sistematicamente a fim de reproduzir os dados experimentais.

Existem inúmeras vantagens no uso do cálculo das TERI's utilizando SAM1 como procedimento de cálculo semiempírico. Primeiro, a fórmula é bem definida e conhecida há anos. Segundo, os gradientes são facilmente computados da forma Cartesiana das funções de Gaussian. Isso permite a rápida e eficiente construção dos "Gaussians" e de seus derivados simultaneamente. Terceiro, fórmulas para sistemas de orbitais-d já existem e estas funções não apresentam a limitação encontrada nos métodos de cálculos discutida anteriormente.

Deve-se notar que, o tempo computacional e de manipulação dos cálculos das integrais TERI's são responsáveis por grande parcela do tempo total da execução dos cálculos, quando usado o ab initio. Isto porque o tempo requerido não é apenas para o cálculo de uma integral, mas sim de um grande número de integrais independentes que se fazem necessárias serem computadas.

Com o protocolo SAM1, as aproximações NDDO estão ativas, limitando as integrais que precisam ser explicitamente calculadas para apenas termos bicêntricos, excluindo termos que envolvem três ou quatro centros.

Devido ao aumento de tempo gasto em cada integração, o método SAM1 se mostra duas vezes mais lento

23

que o método AM1, demora aceitável tendo em vista o tempo computacional previsto utilizando método ab initio.

II.3 - Descrição das Propriedades Físico-Químicas

Atualmente é crescente o número de trabalhos onde existe a tentativa de expressar as relações entre a estrutura química e alguma atividade por meio de equações matemáticas, com o objetivo de proporcionar a modelagem e síntese de compostos mais específicos e potentes.

Nas equações matemáticas incluem-se parâmetros que representam as propriedades físico-químicas de um composto e sua correlação com a atividade de interesse.

Centenas de parâmetros diferentes foram introduzidos nos últimos 30 anos e esse número permanece em crescimento, uma vez que alguns cientistas acreditam esse aumento todos os problemas de relação que com estrutura-atividade seriam resolvidos. No entanto, o uso prático desses parâmetros acaba por destacar alguns como relevância determinados de maior em casos. Estes parâmetros podem ser divididos em:

- Hidrofobicidade;
- > Estéricos;
- Polarizabilidade;
- ➢ Eletrônicos.

II.3.1 - Parâmetros de Hidrofobicidade

Os parâmetros de hidrofobicidade são conhecidos também como parâmetros de solubilidade ou de lipofilia, e
medem o grau de atração dos fármacos pelos lipídeos ou hidrofóbicas das regiões macromoléculas. Estão pelas relacionados com o transporte do fármaco desde o exterior da estrutura biológica em questão, até ao compartimento receptor e com a possibilidade de atração entre as regiões hidrofóbicas do fármaco е do receptor. Entre estes parâmetros encontramos a densidade de carga eletrônica, o coeficiente de partição, a tensoatividade e outros.

II.3.2 - Parâmetros Estéricos

Estes parâmetros são importantes, uma vez que envolvem informações sobre possíveis interações de ajustes espaciais. dependentes No entanto, são parâmetros difíceis de serem relacionados devido ao fato de que estruturas tridimensionais de sítios ligantes são, maioria, desconhecidos. Neste trabalho em sua foram calculados: área superficial, volume molar, distâncias interatômicas, ângulos de ligação e ângulos de torção.

II.3.3 - Parâmetros de Polarizabilidade

Estas propriedades traduzem de que modo eventuais alterações nos substituintes de uma estrutura podem modificar a distribuição de cargas. Dentre as propriedades inclusas nesta categoria estão a refratividade, o momento dipolar e a polarizabilidade.

II.3.4 - Parâmetros Eletrônicos

25

Os parâmetros eletrônicos relacionam-se com os orbitais moleculares, suas energias correspondentes, e vários outros índices eletrônicos. Entre estes parâmetros encontram-se as energias do HOMO ("Highest Occupied Molecular Orbital") e do LUMO ("Lowest Unoccupied Molecular Orbital"), o potencial de ionização e a afinidade eletrônica.

II.4 - Parâmetros Calculados Pelo SAM1

Os métodos teóricos de cálculo foram realizados com o objetivo de calcular parâmetros que pudessem relacionar aspectos químicos / farmacológicos [Claire, 1994] tais como: as energias dos orbitais moleculares (de HOMO-2 a LUMO+1), densidade eletrônica, potencial de ionização e ordem de ligação entre outros. Neste trabalho, procura-se entender a relação entre alguns aspectos químicos e a atividade catalítica.

Os orbitais HOMO e LUMO são os parâmetros mais utilizados no estudo estrutura-atividade, uma vez que medem, respectivamente, a capacidade doadora e receptora de elétrons.

Quanto menor a energia do HOMO maior será a capacidade doadora de elétrons, uma vez que a energia necessária para retirar um elétron do HOMO será menor, e em uma interação por transferência de cargas a molécula poderá se comportar como doadora. Por outro lado, quanto mais baixo for o nível energético do LUMO, maior será a afinidade eletrônica, pois os elétrons estarão em um

26

orbital mais estável. E a molécula provavelmente se comportará como aceptora.

As cargas atômicas parciais são fatores importantes que influenciam as propriedades químicas e físicas de uma molécula e correspondem às distribuições de densidades eletrônicas ou densidades de carga.

O conceito de cargas pontuais centradas em átomos implica na aproximação do modelo de cargas pontuais, onde as representam termos monopolares, centrados carqas nos átomos, em uma expansão multipolar da densidade de carga. Portanto, as cargas atômicas fornecem uma representação simples da densidade de carga na molécula. mais No entanto, não podem ser calculadas teoricamente de uma forma única como a densidade eletrônica, pois essas não são valores esperados da função de onda, portanto não observáveis. Desta forma, os métodos utilizados no cálculo de cargas atômicas parciais são totalmente arbitrários.

Mesmo com esta limitação, vêm sendo amplamente utilizados nos estudos de previsão da reatividade química, análises conformacionais e nos estudos de correlação entre estrutura química e atividade biológica [Guadagnini e Bruns, 1996].

Dentre os métodos existentes [Guadagnini e Bruns, 1996], o método do potencial eletrostático molecular, baseado na função de onda SAM1, foi utilizado nos cálculos das moléculas deste estudo.

Este método baseia-se no cálculo de um conjunto de cargas atômicas pontuais, de modo que estas representem o melhor possível o potencial eletrostático molecular quântico, em um conjunto de pontos pré-definidos ao redor da molécula.

O potencial eletrostático é definido como:

$$V^{q}(\vec{r}) = \sum_{i=1}^{m} \frac{Zi}{\left|\vec{r}_{p} - \vec{R}_{i}\right|} - \int \frac{\rho(\vec{r})}{\left|\vec{r}_{p} - \vec{r}\right|} d\vec{r}$$
(9)

onde:

 \vec{r} é um ponto para um sistema composto de N elétrons e M átomos

Zi = carga do iésimo núcleo localizado em R_i

 $\rho(\vec{r})$ =densidade eletrônica total

O primeiro termo da equação corresponde à contribuição ao potencial eletrostático total devido aos núcleos, onde a Lei de Coulomb é utilizada para calcular o potencial de repulsão entre as cargas pontuais Z_i e a carga unitária \vec{r}_p . O segundo termo corresponde ao potencial de atração eletrostático envolvendo a distribuição de cargas eletrônicas em todo o espaço e a carga unitária positiva \vec{r}_p .

potencial eletrostático foi calculado 0 utilizando o método desenvolvido por Chirlian e Francl [Chirlian e Francl, 1987]. Neste método o potencial eletrostático é determinado para um número de pontos em volta da molécula, escolhidos em camadas esféricas, à distância de 1Å (14 pontos são colocados quase simetricamente ao redor dos átomos). Os pontos que coincidem com o raio de Van der Waals de gualquer átomo, são eliminados, devido às grandes distorções causadas pela proximidade com o núcleo. O número total de pontos é selecionado com o objetivo de estender a região até 3Å a partir da superfície de Van der Waals da molécula considerada.

O melhor ajuste das cargas ao potencial eletrostático, utilizando o método dos mínimos quadrados, é obtido encontrando-se o valor mínimo de y:

$$y(q_1, q_2, ..., q_n) = \sum_{i=1}^m |V_i - E(q_1, q_2, ..., q_n)|^2$$
 (10)

onde m é o número total de pontos para o ajuste e V_i é dada pelas funções de onda LCAO ("Linear Combination of Atomic Orbitals"), como na equação (9), e E_i , o potencial eletrostático na aproximação monopolo, é dado por:

$$E_i = \sum_{j=1}^n \left(\frac{q_j}{r_{ij}}\right) \tag{11}$$

com a somatória estendendo-se sobre os n na molécula.

O valor mínimo de y pode ser obtido calculando-se os pontos estacionários da função de Lagrange (z):

 $z(q_1, q_2, ..., q_n) = y(q_1, q_2, ..., q_n) + \lambda g(q_1, q_2, ..., q_n)$ (12) onde g é a restrição imposta no ajuste, e λ é o multiplicador de Lagrange associado a esta restrição. A restrição utilizada foi a de reproduzir a carga total da molécula, com a função g na forma:

 $g(q_1, q_2, \dots, q_n) = (\sum q_i) - q_{tot} = 0$ (13) e, os valores extremos de z são obtidos resolvendo-se as equações:

$$\frac{\partial z}{\partial \lambda} = 0 \qquad \qquad \frac{\partial z}{\partial q_k} = 0 \tag{14}$$

Com isso obtém-se um conjunto de n+1 equações onde n é o número de átomos. A solução da equação (11), admitindo-se um isovalor de potencial eletrostático e conhecendo-se os valores de q_j , fornece as superfícies de potencial eletrostático para cada molécula.

O potencial de ionização representa a energia necessária para retirar um elétron da última camada preenchida de uma molécula. Este parâmetro é calculado segundo o teorema de Koopmans [Koopmans, 1934], como sendo o valor negativo da energia do HOMO. Esta propriedade é muito importante no caso em que o composto é ativo em sua forma iônica, ocorrendo um aumento da atividade quando se aumenta o grau de ionização. Por outro lado, se a molécula é ativa na forma não dissociada, o aumento no grau de ionização reduzirá a atividade biológica [Korolkovas, 1982]

A ordem de ligação representa a densidade eletrônica total entre dois átomos. Existe uma relação entre a força que liga os dois núcleos e a densidade de elétrons na região ente os núcleos. Quanto maior for o índice de ligação, maior será a energia de dissociação e menor será o comprimento de ligação [Bunge, 1991].

Observa-se para o método SAM1, analogamente como encontrado para o AM1 que os valores para o índice de ligação de ligações simples é da ordem de 1,0; para ligações duplas 2,0; para ligações triplas 3,0 e ligações aromáticas 1,5.

A eletronegatividade é uma outra propriedade utilizada no estudo estrutura-atividade, que pode ser usada como parâmetro para estimar a capacidade que uma molécula tem de atrair elétrons de outra molécula, quando as duas se aproximam. Segundo Mulliken [Mulliken, 1934.] a eletronegatividade é definida como:

$$x = \frac{1}{2} (PI + AE) = \frac{1}{2} (-E_{HOMO} - E_{LUMO})$$
(15)

onde AE é a afinidade eletrônica.

A dureza absoluta representa a resistência da molécula á deformação, ou à mudança [Pearson e Palke, 1992]. Então, pode-se dizer que moléculas que possuem dureza apresentam alto potencial de ionização e alta eletronegatividade. A dureza absoluta é definida como:

$$\eta = \frac{1}{2} (PI - AE) = \frac{1}{2} (E_{HOMO} - E_{LUMO})$$
(16)

O momento dipolar mede a magnitude da carga deslocada, quando átomos de eletronegatividade diferentes estão ligados. A direção do momento dipolar de uma molécula é baseada na eletronegatividade relativa dos átomos desta molécula. O valor é obtido pelo vetor resultante dos momentos de dipolo, de cada ligação presente na molécula. Esta propriedade é muito utilizada em estudos de estrutura-atividade [Parr e Pearson, 1983

II.5 - Parâmetros Calculados por Outros Métodos

Utilizando métodos diferentes do SAM1, foram calculadas outras propriedades que também são importantes no estudo da relação estrutura-atividade.

A área e o volume são parâmetros estéricos e são propriedades importantes para a compreensão dos mecanismos envolvidos na interação fármaco-receptor, e também nos mecanismos responsáveis pela atividade biológica. Neste trabalho foram calculados a área e o volume das moléculas, com o objetivo de estimar seus aspectos tridimensionais.

No cálculo do volume molar foi utilizado o método desenvolvido por Bodor [Bodor e outros, 1989]. Neste método, o volume molar é calculado pelo uso de uma técnica de integração. Um conjunto de redes cúbicas é gerado, o centro da rede é posicionado em um átomo, a aresta do cubo é o diâmetro do átomo.

Todos os pontos da rede são testados, como se eles estivessem dentro do átomo e, toma-se o cuidado de evitar o problema da superposição atômica. Um ponto da rede é considerado dentro do átomo se as seguintes condições forem satisfeitas:

(a) $g^{(L)}_{ijk} - c_L < r_L$;

(b) $g^{(L)}_{ijk} - c_P < r_P$ P = L, ..., L-1 (17) onde: $g^{(L)}_{ijk}$ é um ponto na rede L; c_L é o centro do átomo L; r_L é o raio de Van der Waals do átomo L.

A primeira condição é satisfeita se o ponto-teste está dentro do átomo em questão. A segunda condição garante que o ponto-teste não pertence a qualquer átomo considerado anteriormente.

A contribuição do volume de um átomo é estimada pela expressão:

$$V = \frac{4}{3}r^3\pi \left(\frac{n}{n_T}\right) \tag{18}$$

onde: n é o número de pontos na rede que satisfaz a condição; n_T é o número total de pontos na rede, dentro do átomo e r é o raio de Van der Waals.

O volume molar é calculado somando-se todas as contribuições atômicas.

No calculo da área superficial também foi utilizado o método de Bodor e outros, usando os raios atômicos de Gavezotti [Bodor e outros, 1989; Gavezotti,1983].

Inicialmente um conjunto de ponto é gerado numa superfície esférica. Outra vez uma rede cúbica é usada como ponto de partida. A rede é centrada na origem de um sistema de coordenadas e tem uma aresta a = 2. Uma esfera é definida, centrada na origem, com raio r = 1. Todos os pontos da rede são selecionados para estarem próximos da superfície da esfera pelo seguinte critério:

 $(x^2 + y^2 + z^2)^{1/2} - 1 < eps$ (19) onde: eps é limiar da precisão.

Se uma rede de pontos satisfaz a desigualdade, então, em um caso geral, sete outros pontos da rede aceitável podem ser gerados por projeções. Agora um ponto pode ser facilmente gerado na superfície de um átomo da molécula:

$$P_{ik} = v_i + r_i g_k \tag{20}$$

Onde: P_{ik} é o késimo ponto na superfície do átomo i; v_i é o centro do átomo i; r_i é o raio do átomo i e g_k é o késimo ponto da rede esférica.

Um ponto p está na superfície da molécula se não está na esfera de nenhum outro átomo, satisfazendo a seguinte desigualdade:

$$P_{ik} - v_j > r_j$$

para j = 1,...,n e i \neq j (21)

Contando-se o número de pontos que satisfazem o sistema de desigualdade, pode-se estimar as contribuições atômicas para a superfície molecular:

$$S_i = \frac{4\pi n}{n_i r_i^2} \tag{22}$$

onde: S_i é a contribuição da superfície atômica; n_i é o número total de pontos tentativos e n é o número de pontos que satisfazem a desigualdade (21).

A superfície molecular total pode ser calculada somando-se todas as contribuições da superfície atômica.

A polarizabilidade é uma propriedade que representa a facilidade com que uma nuvem eletrônica se deforma em um campo elétrico. Quanto mais polarizável fora molécula, maior será sua tendência de unir-se a outras moléculas. Para o cálculo da polarizabilidade foi utilizado o método desenvolvido por Miller [Miller, 1990]

Neste método, o cálculo da polarizabilidade molecular leva em consideração o ambiente devido à hibridização atômica sobre um átomo central, ou sobre átomos que definem uma ligação ou grupo. Assim:

$$\alpha = \left(\frac{4}{N}\right) \left[\sum_{A} \tau_{A}\right]^{2}$$
(23)

onde: τ_A é uma componente híbrida atômica para cada átomo A, em um estado de hibridização e N é o número total de elétrons.

As componentes híbridas atômicas otimizadas, τ_A , reproduzem α com 1 a 3% de erro, e este erro está dentro do erro experimental para a maioria das moléculas testadas com o método.

III - QUIMIOMETRIA

III.1 – INTRODUÇÃO

O uso de computadores para a análise de dados químicos cresceu exponencialmente nos últimos vinte anos, devido aos avanços em "hardware e software" [Ferreira e outros, 1999].

Por outro lado, a aquisição de dados na área da Química atingiu um estágio sofisticado com a interface de instrumentos analíticos e computadores, produzindo uma enorme quantidade de informações, por vezes complexa e variada.

Nos modernos instrumentos um grande número de variáveis pode ser medido em uma única amostra. Um exemplo é a intensidade de absorção, que é rotineiramente registrada em um único espectro, e que contém milhares comprimentos de onda. Tal quantidade de dados gera a necessidade de novas, e mais sofisticadas, ferramentas para extrair informações.

Este campo cresceu muito rapidamente dando origem à Quimiometria, que é uma área especificamente destinada à análise de dados de medidas químicas (quimiométricos) de natureza multivariada.

A quimiometria não é uma disciplina da matemática, mas sim da química, isto é, os problemas que ela se propõe a resolver são de interesse e originados na Química, ainda que ferramentas de trabalho provenham principalmente as da matemática, estatística e computação. Como citado por Kowalski [1984] "as ferramentas quimiométricas são veículos auxiliar os químicos que podem а se moverem mais

eficientemente na direção do maior conhecimento". Isto leva a uma definição formal de quimiometria: - "uma disciplina que emprega métodos matemáticos e estatísticos para planejar ou selecionar experimentos de forma otimizada e para fornecer o máximo de informação química como análise dos dados obtidos".

Alguns métodos que utilizam análise multivariada dos dados são conhecidos como métodos de reconhecimento de padrões. O objetivo principal destes métodos é encontrar similaridades (e/ou diferenças) entre os dados em estudo com base em medidas experimentais ou propriedades moleculares calculadas teoricamente. Estes métodos podem ser classificados de aprendizagem supervisionada de em е aprendizagem não-supervisionada.

Na Química, os métodos que utilizam análise multivariada dos dados são conhecidos como métodos quimiométricos, que são geralmente usados análise para exploratória dos dados, estudos de aprendizagem em supervisionada e não-supervisionadas.

A construção de modelos confiáveis que resultem em sucesso na análise de dados, envolve um procedimento simples que apresenta seis etapas principais.

1- Examinar os dados: nesta etapa é possível verificar erros ou características importantes presentes nos dados. Aqui se pode verificar a necessidade de algum pré-processamento dos dados.

2- Pré-processamento dos dados: durante a análise de um problema pode-se verificar variações dentro do conjunto de dados que podem ocultar as informações mais relevantes para a análise [Levine, 1991]. Assim, alguns métodos de pré-processamento são utilizados para reduzir fontes irrelevantes de variação nos dados.

Os métodos de pré-processamento são divididos em dois tipos: aplicados sobre as amostras, tais como normalização e correções de linha de base ou aplicados sobre as variáveis como auto-escalonamento, dados centrados na média e escalonamento pela variação.

3- Estimar o modelo: após o pré-processamento dos dados, o próximo passo é obter o modelo quimiométrico utilizando programas computacionais apropriados.

4- Examinar os resultados e validar o modelo: os modelos quimiométricos geram dados numéricos e gráficos e, com base nestes dados, é possível analisar e validar o modelo obtido. Nesta etapa são utilizados conhecimentos matemáticos e químicos, pois algumas vezes o modelo obtido não é confiável e torna-se necessária a inclusão ou remoção de dados do sistema estudado.

5- Fazer previsões com o modelo: pode-se utilizar o modelo validado para prever o comportamento de novas amostras.

6- Validar a previsão: a validação da previsão é muito importante, pois indica quando um modelo não é aplicável devido a erros instrumentais ou amostras desconhecidas que não se enquadram no modelo.

No presente trabalho foram realizados todos os passos acima sendo que, para o pré-processamento foi utilizado o método de auto-escalonamento e para os passos seguintes as análises de componentes principais e análise hierárquica de grupos.

III.2 - ANÁLISE DE COMPONENTES PRINCIPAIS

A técnica da componente principal foi primeiro descrito por Karl Pearson em 1901 [Manly, 1986]. Ele acreditava que essa técnica poderia dar solução correta para alguns problemas da biomedicina.

A descrição prática dos métodos de cálculo só veio mais tarde com Hotelling em 1933. Os cálculos, na época, eram exaustivos e feitos à mão. Somente com o uso dos computadores é que a técnica foi generalizada.

Na Química, a PCA foi introduzida por Malinowski por volta de 1960, sob o nome de análise de fatores principais. Após 1970, um grande número de aplicações já tinha sido publicado [Massart, 1990].

A análise de componentes principais é uma técnica estatística multivariada que tem por objetivo reduzir a dimensão dos dados originais, permitindo a fácil visualização das informações mais importantes em um número menor de fatores, ou seja, as componentes principais.

A técnica da PCA agrupa variáveis altamente correlacionadas em um número menor de novas variáveis não correlacionadas, chamadas componentes principais (CP). Essas novas variáveis devem ser ortogonais entre si, ou seja, há um novo sistema de coordenadas, como o apresentado na Figura 6. Cada componente principal é a combinação linear das variáveis originais, de forma que

este novo conjunto de variáveis é construído em ordem decrescente de quantidade da variância que descrevem. A componente principal primeira descreve а maior variância nos dados que a segunda, e assim por diante Geladi, е 1987]; [Kowalski, [Esbensen 1984]; [Malinowski, 1991].

Figura 6 - Gráfico de um conjunto de dados bidimensionais $(\lambda_1 \in \lambda_2)$, mostrando os eixos das componentes principais (PC1, PC2).

De uma forma geral e bem simplificada as combinações lineares das m-variáveis originais que geram cada componente principal podem ser representadas pela equação:

$$PC_{i} = a_{i1}U_{1} + a_{i2}U_{2} + \ldots + a_{im}U_{m}$$
(24)

Para esta equação, u_j (para j=1, 2, ..., m) são variáveis originais e a_{ij} (para j=1, 2, ..., m) são os coeficientes que medem a importância de cada variável na i-ésima componente principal (PC_i), ou seja, o peso que cada variável tem naquela combinação linear. Este peso é o cosseno do ângulo entre o eixo da componente principal e o eixo da variável original, sempre estará entre 1 e -1. Se o coeficiente estiver próximo de zero, menor a influência da variável naquela componente principal, mas, se estiver próximo de ±1, maior a influência que está determinada variável tem na descrição desta componente principal [Beebe e outros, 1998];[Thomas, 1994].

A PCA fornece uma aproximação de uma tabela de dados, a matriz X, em termos do produto de duas pequenas matrizes, T e P'. Estas duas matrizes absorvem os dados essenciais de X. A matriz T corresponde aos escores, os quais são definidos como as coordenadas das amostras no novo sistema de coordenadas, e a matriz P' corresponde aos *loadings* ("pesos das propriedades"), que indicam a importância de cada variável original no novo conjunto de variáveis, que podem ser organizados na forma de um gráfico.

Esses vetores são escritos usualmente em ordem decrescente de autovalores. Portanto, uma análise de PCA também estima a estrutura de correlação das variáveis. Na prática, as análises de PCA são feitas sempre observando as informações dos dois gráficos, loadings e escores, a há liberdade de se excluir variáveis, buscando melhorar resultados. А PCA permite que sempre se encontrem correlações entre amostras e/ou variáveis e distinguir categorias nas quais novas amostras possam ser adequadas [Malinowski, 1991].

III.3 - ANÁLISE HIERÁRQUICA DE GRUPOS

Em um problema de análise multivariada um passo a ser seguido é identificar, se possível, grupos de amostras com propriedades similares e, em geral, métodos de análise de agrupamentos são utilizados para este propósito. Muitos tipos de algoritmos têm sido utilizados para o agrupamento de amostras, tais como as técnicas hierárquicas.

Nas técnicas hierárquicas de agrupamento, inicialmente são calculadas as distâncias de cada amostra em relação às outras do conjunto de dados.

0s agrupamentos entre as amostras podem ser formados utilizando dois processos: aglomeração ou divisão. No processo de aglomeração cada amostra é considerada como um grupo e, a seguir, os grupos mais próximos são unidos gradualmente até que todas as amostras formem um único grupo. No processo de divisão, todas são as amostras consideradas como um único grupo. Este grupo é dividido em dois; estes dois novos grupos são divididos novamente, e este processo se repete até que todas as amostras estejam em seus próprios grupos.

А técnica escolhida neste trabalho para Ο agrupamento dos compostos foi a análise hierárquica de agrupamentos (HCA). Esta técnica calcula as distâncias entre todas as amostras do conjunto de dados e as representa em forma de gráficos bidimensionais conhecidos como dendogramas. A técnica de HCA forma grupos de amostras para gerar os dendogramas baseando-se nas similaridades, ou nas distâncias entre as amostras.

Existem vários métodos de cálculo de distâncias utilizados para agrupar as amostras, tais como: conexão simples que utiliza a distância do vizinho mais próximo; conexão completa que utiliza a distância do vizinho mais distante; conexão média que utiliza a distância média entre os grupos de amostras e conexão incremental que se baseia na média ponderada, entre outros métodos.

A conexão mais recomendada quando se tem uma interface entre as classes de amostras é a incremental, a mais indicada para o agrupamento dos compostos estudados neste trabalho.

Uma ilustração esquemática de uma conexão simples e o correspondente dendograma é apresentada na Figura 7 [Levine, 1991].

Figura 7 - Processo de agrupamento conexão simples e o correspondente dendograma de conexão.

Em algumas circunstâncias pode ser apropriado obter similaridades diretamente das amostras, desta forma é possível calcular a medida da distância destes valores como:

$$d_{ij} = 1 - \frac{S_{ij}}{S_{ij}(max)}$$
(25)

onde S_{ij} é a distância entre os pontos i e j e $S_{ij}(max)$ é a maior distância na matriz distância. Dessa forma, os dois pontos mais distantes no conjunto de dados tem d=0 e pontos idênticos apresentam similaridade máxima de 1 [Massart, 1990]. Ao contrário da análise de componentes principais (PCA), a técnica de HCA não fornece informações sobre as variáveis mais relevantes para o agrupamento das amostras. Assim, não é possível avaliar o poder discriminante de diferentes variáveis e isto indica que, para uma melhor análise do conjunto de dados, é recomendável o uso das técnicas de PCA e HCA em conjunto, pois uma técnica complementa os resultados da outra.

IV - ESTUDOS CRISTALOGRÁFICOS

IV.1 - INTRODUÇÃO

Os cristais dos complexos foram analisados em um microscópio de luz polarizada. um único monocristal foi escolhido para cada composto a ser analisado. sendo colado à uma fibra de vidro, que por sua vez foi encaixada sem orientação especial no eixo da cabeça goniométrica do difratômetro automático CAD4 da Enraf-Nonius [Enraf-Nonius, 1992], para a realização das medidas dos parâmetros da cela unitária e das intensidades das reflexões. Os compostos tiveram seus parâmetros de cela unitária determinados, e os dados de intensidade das reflexões coletados à temperatura de 293K.

Os parâmetros de rede foram determinados através da localização automática de 25 posições angulares de reflexões (número máximo possível). Os ângulos de posicionamento (θ , ω , $\kappa \in \Phi$), localizados e centrados automaticamente, permitiram a determinação e refinamento dos parâmetros de cela unitária, levando conseqüentemente à identificação do sistema cristalino. A seguir foram coletadas as intensidades dos feixes difratados para a parte independente da esfera de reflexão, Para estas coletas foi utilizada radiação K α (Mo) (λ =0,71073Å), monocromatizada por um cristal de grafite, no modo $\omega - 2\theta$,

O monitoramento da posição correta dos cristais, foi feito por 2 reflexões, que tiveram suas posições angulares medidas em intervalos de 2 horas, e que indicariam qualquer mudança na orientação do cristal. A qualidade do cristal foi verificada através de 3 reflexões de controle, essenciais para que seja atingido um bom resultado na determinação das estruturas.

No Laboratório de Cristalografia faz-se a coleta de dados em camadas angulares denominadas "shells", até um máximo de 18 camadas, iniciando-se as medidas em torno de 17° e descendo até aproximadamente 2° , seguindo de volta 17° novamente e subindo até um limite para superior determinado pela qualidade do cristal. O número de reflexões em cada camada depende dos intervalos angulares, e assim é sempre preferível dividir as camadas de maneira que cada uma delas tenha um número de reflexões próximo ao das demais. A vantagem de se iniciar a coleta de dados varrendo de 17° para valores inferiores é a de que, no caso de cristais mais instáveis, torna-se possível a coleta de um número razoável de reflexões em um curto espaço de tempo, porque, a baixos ângulos as reflexões são sempre mais fortes.

Ao final do processo utilizando as reflexões fortes, e de alto valor de θ , foram refinados os parâmetros da cela unitária. Em seguida, para a correção dos dados de intensidade pelo efeito de absorção dos raios-X pelos diferentes caminhos percorridos pela reflexão no cristal, efetua-se uma rotina denominada PSISCAN [North Phillips e Mathews, 1968], onde se efetua a medida de 7 reflexões com variação do ângulo ϕ de 0 à 360°, de 10 em 10° que são registradas em um arquivo de dados em separado. Uma vez realizada coleta de dados pelo CAD4 o passo seguinte foi o tratamento dos dados, efetuado por meio do sistema computacional WinGX [Farrugia, 1999].

Este sistema contém os programas necessários para as etapas de redução de dados a módulo do fator de estrutura, o que consiste na correção das intensidades pelos fatores de Lorentz, e polarização.

A correção pelo fator de Lorentz se faz necessária porque o feixe incidente proveniente da fonte de raios-X atravessa a esfera de reflexão em velocidades diferentes. O fator de polarização leva em consideração a natureza dos raios-X é que sai do tubo não polarizado e torna-se polarizado pela difração.

Todas as estruturas presentes neste trabalho foram resolvidas pela combinação dos Métodos de Patterson e diretos através do sistema SIR97 [Altomare e outros, 1999].

Obtido o primeiro modelo, o refinamento е complementação das estruturas foram feitos pelo método de mínimos quadrados usando matriz completa associados aos cálculos de Fourier diferença, utilizando o programa SHELXL-97 [Sheldrick, 1998]. Após a convergência do refinamento foram posicionados os átomos de hidrogênio, de acordo com a geometria do átomo ao qual estavam ligados, usando como fator de deslocamento térmico do hidrogênio, 1,3 vezes o valor do Ueq do átomo a ele ligado. Suas posições não foram sim recalculadas a refinadas, mas cada estágio de refinamento, até a convergência final. Todos os átomos não hidrogênio foram refinados com fator de deslocamento térmico anisotrópico.

A analise da geometria e do empacotamento foi feita pelo sistema PLATON [Speck, 1990]. As representações gráficas das moléculas foram feitas usando o sistema ORTEP-3 for Windows [Farrugia, 1997].

Na Tabela 1 encontram-se os nomes dos compostos e as siglas utilizadas neste trabalho.

Tabela 1 - Nomes e siglas dos compostos	
Nomenclatura científica	siglas
N,N'-bis(3-etoxisalicilideno)-(1,2etilenodiamina) Cu(II)	CM01
N,N'-bis(4-dietilaminasalicylidene)-(1,2-ethilenodiamina)Cu(II)	CM02
N,N'-bis(3-methoxisalicilideno)-(1,2etilenodiamina)Cu(II)	CM03
(SALAHE)Cu(II)	CM04

Os monocristais foram fornecidos pelo Prof. Dr. Edward Ralph Dockal do Departamento de Química da Universidade Federal de São Carlos, com o objetivo da elucidação das estruturas.

IV.2 - Estrutura cristalina e Molecular do N,N'-bis(3etoxisalicilideno)-(1,2etilenediamina) Cu(II) - CM01

IV.2.1 - Dados Cristalográficos

O composto identificado como o N,N'-bis(3etoxisalicilideno)-(1,2etilenediamina) Cu(II) - CMO1 teve seus dados de cela unitária determinados usando reflexões num intervalo de coleta (20) entre 11,55° a 18,30°,

Identificado como pertencente ao sistema ortorrômbico, foram medidas as reflexões com índices de Miller no intervalo $-10 \le h \le 4$; $-3 \le k \le 17$; $-27 \le 1 \le 5$; sendo coletadas 3006 reflexões, das quais 2797 são reflexões independentes, com velocidade de varredura máxima e mínima de 16,48°/min e 4,12°/min respectivamente Destas 1524 foram consideradas reflexões observadas com (I \ge 2,0 σ (I)).

A Tabela 2 mostra um resumo dos principais dados cristalográficos e do refinamento.

Tabela 2 - Resumo dos principais dados cristalográficos para o CM01

Fórmula	C ₂₀ H ₂₂ Cu N ₂ O ₄ H ₂ O					
Massa molecular	435.96					
Sistema Cristalino	Ortorrômbico					
Grupo espacial	Pbcn					
a(Å)	7.639(5)					
b(Å)	12.760(5)					
c(Å)	19.733(5)					
V (Å ³)	1923.4(5)					
Z	4					
Dc (g/cm^3)	1.505					
F(000)	908					
Dimensões (mm)	0.03 x 0.10 x 0.10					
μ (mm ⁻¹)	1.170					
Cor do cristal	marrom					
Rad. (Ka Mo) (Å)	0.71073					
Modo de coleta	$\omega - 2\Theta$					
Variação de θ	3.2 a 30.0					
hkl mín.: máx.	-10:4; -3:17; -27:5					
Ref. únicas (R _{int})	2797, 0.034					
Reflexões obs.[$I \ge 2.0 \sigma(I)$]; NREF	1524; 131					
R _{all} ; R ; GOF	0.1281; 0.0457; 1.00					

O complexo de Base de Schiff CMO1 foi identificado com a fórmula $C_{20}H_{22}CuN_2O_4$ H_2O e é pertencente ao grupo espacial

Pbcn, tendo os parâmetros de cela: a = 7.639(5); b= 12.760(5); c= 19.733(5)Å; V = 1923(2)Å³; Dcalc = 1.505 Mg/m³; MM = 435.96; e coeficiente de absorção mássica, μ = 1.170 mm⁻¹.

No estágio final do refinamento os índices de discordância foram R = 0.0457,; R_{all} =0.1281; com GOF = 1.00.

IV.2.2 - Resultados Estruturais do CM01

A estrutura do CMO1 mostrou que o complexo cristaliza-se com o átomo de cobre em posição especial sobre o eixo de ordem 2 cristalográfico, e associada a um molécula de água de cristalização. O átomo de oxigênio da água também esta posicionado sobre o eixo de ordem 2, e o hidrogênio independente foi posteriormente refinado.

A Figura 8 mostra a representação do composto com os átomos identificados.

O empacotamento do composto na cela unitária é apresentado na Figura 9, e nas Tabelas 3 e 4 estão mostrados as distâncias e ângulos interatômicos para o CM01.

Figura 8 - Representação ORTEP, com os átomos identificados e elipsóides de vibração com 50% de probabilidade, para CMO1. Os átomos denotados com * são gerados pela simetria de ordem 2.

Figura 9 - Representação ORTEP da cela unitária para o composto CM01

Tabela 3 - Distâncias interatômicas (Å) com os respectivos desvios padrão entre parênteses para o CM01

	puarao	enere pare	110000	para	0 01101
Cu	02	1,906(2)	C2	C3	1,428(5)
Cu	Nl	1,933(3)	C3	C4	1,449(6)
Cu	02*	1,906(2)	C3	C8	1,418(4)
Cu	Nl*	1,933(3)	C4	C5	1,354(6)
01	C7	1,367(4)	C5	CG	1,398(5)
01	C9	1,424(4)	C6	C7	1,380(4)
02	C8	1,310(3)	C7	C8	1,424(4)
N1	C2	1,283(5)	C9	C10	1,494(5)
N1	C1	1,462(4)	ΟW	HW1	1,09
C1	Cl*	1,510(5)	OW	HW1*	1,09
			I		

Tabela 4 - Ângulos interatômicos (°) com os respectivos desvios padrão entre parênteses para o CM01

			paurao encre parent	6969	para	O CHUI	
02	Cu	N1	93,30(9)	C1	N1	C2	119,7(3)
02	Cu	02*	89,50(8)	C2	C3	C8	122,0(3)
02	Cu	N1*	177,20(10)	C4	C3	C8	120,0(3)
02*	Cu	N1	177,20(10)	C2	C3	C4	117,9(3)
Nl	Cu	N1*	83,90(11)	C3	C4	C5	120,7(4)
02*	Cu	N1*	93,30(9)	C4	C5	C6	120,5(3)
C7	01	C9	118,1(2)	C5	C6	C7	120,2(3)
Cu	02	C8	127,20(17)	CG	C7	C8	121,1(3)
Cu	N1	C1	114,8(2)	C3	C8	C7	117,1(2)
Cu	N1	C2	125,5(2)	01	C7	C8	114,6(2)
Nl	C1	C1*	109,6(3)	01	C4	C5	123,9(4)
Nl	C2	C3	126,5(3)	01	C9	C10	107,7(3)
02	C8	C7	118,2(2)	HW1	. OW	HW1*	148
02	C8	C3	124,6(2)				

Na estrutura do composto N,N'-bis(3-etoxisalicilideno) -(1,2etilenediamina) Cu(II) foi também verificada a presença das seguintes interações de hidrogênio:

- O1W-H1W-O1= 0.75(4)Å, 2.37(4)Å, 3.038(3)Å e 150(4)°
- O1W-H1W-O2= 0.75(4)Å, 2.27(4)Å, 2.8963(19)Å e 142(4)°
- C8-H81-O1= 0.9700Å, 2.4000Å, 3.240(4)Å e 145.00°

A úlitima interação presenta (1-x,-y,1-z) como operação de simetria. As distâncias interatômicas apresentadas na Tabela 3 indicam que as ligações nos anéis são de caráter aromático. As distâncias interatômicas envolvendo o átomo central cobre(II) e os átomos de oxigênio e nitrogênio assumem valores muito próximos aos encontrados na literatura, em estruturas análogas tais como as determinadas por [Plitt e colaboradores (2005)] onde Cu-O = 1,889(2)Å e Cu-N = 1,938(2)Å; com os ângulos O-Cu-O = 89,90(6)°; O-Cu-N = 93,66(3)°; 169,09(7)°; e N-Cu-N = 84,62°

Os dados estruturais obtidos são compatíveis com os de Elmali [2005], que determinou a estrutura de uma Base de Schiff similar.

IV.3 - Estrutura cristalina e molecular do N,N'-bis(4dietilaminasalicilideno)-(1,2etilenodiamina)Cu(II)-CM02

IV.3.1 - Dados Cristalográficos

O composto que recebeu a sigla CMO2 apresentou-se como um monocristal alaranjado de dimensões $0.05 \times 0.10 \times 0.20$ mm. teve seus parâmetros de cela unitária determinados com reflexões coletadas entre 11,55° a 18,30°.

Identificado como o N,N'-bis(4-dietilamina salicilideno)-(1,2-ethilenodiamina) Cu(II) pertence ao sistema

monoclínico. Com velocidade de varredura máxima e mínima de 16,48°/min e 3,296°/min respectivamente, mediu-se as reflexões com índices de MIller no intervalo $-27 \le h \le 27$; $-13 \le k \le 0$; $-17 \le l \le 0$; sendo coletadas 3427 reflexões únicas, das quais 1654 foram consideradas reflexões observadas com (I $\ge 2,0 \sigma(I)$).

A base de Schiff de fórmula: $C_{24}H_{32}CuN_4O_2.H_{2}O$ cristaliza-se no sistema monoclínico; grupo espacial C2/c, tendo os parâmetros de cela: a = 19.571(2); b=9.8514(2)=; c=12.4552(4)Å; β = 93.705(9)°; V =2396.4(5) Å³; D_{calc} =1.358 Mg/m³; MM= 490.10; e μ = 0.944 mm⁻¹. No estágio final do refinamento, os índices de discordância são R_{obs} = 0.0590,; R_{all} = 0.1620; com GOF = 1,00.

A Tabela 5 mostra um resumo dos principais dados cristalográficos e do refinamento.

Fórmula Molecular	C ₂₄ H ₃₂ Cu N ₄ O ₂ .H ₂ O
Massa Molecular	490,10
Sistema Cristalino	monoclínico
Grupo Espacial	C2/c
a (Å)	19,571(2)
b (Å)	9,8514(2)
c (Å)	12,4552(4)
β (°)	93,705(9)
Z (moléculas/cela unitária)	4
V (Å ³)	2396,4(5)
$D_c (Mg.m^{-3})$	1,358
Dimensão do cristal (mm)	0,05 x 0,10 x 0,20
Cor do cristal	laranja
μ (mm ⁻¹) (K α (Mo))	0,944
λ (Å) (ΚαΜο)	0,71073
Modo de coleta	ω - 2θ
Temperatura de coleta (K)	293
Intervalo de $ heta$ (°)	2,3 - 30
hkl máx,: mín,	-27: 27 ; -13: 0 ; -17: 0
Reflexões coletadas únicas	3427
Observadas [I > $2\sigma(I)$]; Npar	1654; 149
R _{obs} ; R _{all} ; GOF	0,0590, 0,1620, 1,00
Dens. residual (e/Å ³) máx.; min.	0,56, -0,43

Tabela 5 - Resumo dos principais dados cristalográficos

IV.3.2 - Resultados Estruturais do N,N'-bis(4-dietil aminasalicilidene)-(1,2-etilenodiamina)Cu(II)

Assim como no CM01 apenas meia molécula constitui a unidade assimétrica. O átomo de cobre esta sobre o eixo de ordem 2 cristalográfico. A molécula de água de cristalização também tem o oxigênio sobre o eixo 2. A Figura 20 mostra a representação do composto com os átomos identificados e a Figura 21 a representação gráfica da cela unitária.

Figura 10 - Representação ORTEP, com os átomos identificados e elipsóides de vibração com 50% de probabilidade, para CM02

Figura 11 - Representação gráfica da cela unitária do composto CM02

Na Tabela 6 estão apresentadas as distâncias interatômicas. Os ângulos interatômicos estão na Tabela 7.

Tabela 6 - Distâncias interatômicas (Å) com os respectivos desvios

pa	arao	entre	parer	ices	es	para o CMUZ
Cu	01	1,9	16(2)	C7	C8	1,397(5)
Cu	Nl	1,9	31(3)	C1	C1	* 1,525(5)
Cu	01*	1,9	16(2)	C2	C3	1,412(5)
Cu	N1*	1,9	31(3)	C3	C8	1,428(6)
01	C8	1,3	23(4)	C3	C4	1,409(5)
Nl	C2	1,2	93(5)	C4	C5	1,355(6)
Nl	C1	1,4	62(5)	C5	C6	1,412(6)
N2	C11	1,4	49(6)	C6	C7	1,405(5)
N2	C9	1,4	95(6)	C11	C1	2 1,484(7)
N2	C6	1,3	69(6)			
				•		

Tabela 7 - Ângulos interatômicos (°) com os respectivos desvios entre parênteses para o CM02

01	. Cu	N1	93,78(2)	N2	C6	C7	122,2(4)
01	. Cu	01*	93,03(1)	N2	C9	C10	111,7(5)
01	. Cu	N1*	163,73(3)	N2	C11	C12	114,2(4)
01	.* Cu	N1	163,73(3)	N2	CG	C5	121,0(4)
01	. C8	C7	117,9(3)	C3	C8	C7	119,0(3)
01	.* Cu	N1*	93,78(2)	C6	N2	C9	121,3(4)
01	. C8	C3	123,0(3)	C9	N2	C11	116,4(4)
Cu	a 01	C8	127,0(2)	C2	C3	C8	124,2(3)
Cu	1 N1	C1	113,3(3)	C4	C3	C8	116,9(3)
C1	. N1	C2	120,9(3)	C2	C3	C4	118,9(4)
Cu	1 N1	C2	125,4(3)	C3	C4	C5	123,2(4)
N1	. Cu	N1*	83,62(4)	C4	C5	CG	120,9(4)
N1	. C1	C1*	106,5(3)	C5	CG	C7	116,8(4)
N1	. C2	C3	125,6(4)	C6	C7	C8	122,8(4)

Os ângulos e as distâncias interatômicas encontrados para o CM01 são compatíveis com este tipo de estrutura.

As distâncias interatômicas envolvendo o átomo central Cu(II) e os átomos de oxigênio e nitrogênio assumem valores muito próximos aos encontrados na literatura, em estruturas análogas [Plitt e colaboradores (2005)]

A estrutura do N,N'-bis(4-dietilaminasalicilideno)-(1,2- etilenodiamina) Cu(II) apresenta ligação de hidrogênio entre os átomos Ow -Hw -O1 com distâncias interatômicas Ow-Hw = 1.09 Å, Hw-O1= 2.12 Å, Ow-O1= 2.841(6) Å e o ângulo entre os três átomos envolvidos de 122°, com operação de simetria 2-x, y, 3/2-z.

IV.4 - Determinação da Estrutura do composto N,N'-bis(3metoxisalicilideno)-(1,2etilenodiamina)Cu(II) - CM03

IV.4.1 - Dados Cristalográficos

Os dados foram coletados usando um monocristal de dimensões $0.10 \times 0.15 \times 0.30$ mm, o composto identificado posteriormente como o N,N'-bis(3-metoxisalicilideno)-(1,2etilenodiamina) Cu(II) é pertencente ao sistema ortorrômbico.

As reflexões foram medidas com índices de Miller no intervalo -10 \leq h \leq 3; -13 \leq k \leq 5; -34 \leq l \leq 4; sendo coletadas 2651 reflexões independentes, das quais 1776 foram consideradas reflexões observadas com (I \geq 2,0 σ (I)), A velocidade de varredura máxima e mínima foi de 16,48°/min e 2,747°/min respectivamente.

O complexo tem fórmula: $C_{18}H_{20}CuN_2O_5 e$ cristaliza-se no grupo espacial Pna2₁, tendo os parâmetros de cela: a = 7.5140(6); b= 9.2629(9); c= 24.721(3)Å; V =1720.6(3) Å³; Dcalc = 1.575 Mg,m⁻¹; MM = 407.91; e μ = 1.302 mm¹.

A Tabela 8 mostra um resumo dos principais dados cristalográficos e do refinamento.

No estágio final do refinamento os índices de discordância são R_{obs} = 0.0375; R_{all} =0.1119; com GOOF = 1.05.

Fórmula Molecular	$C_{18}H_{20}CuN_2O_5$						
Massa Molecular	407.91						
Sistema Cristalino	ortorrômbico						
Grupo Espacial	Pna2 ₁						
a (Å)	7.5140(6)						
b (Å)	9.2629(9)						
c (Å)	24.721(3)						
Z	4						
V (Å ³)	1720.6(3)						
$D_c (Mg, m^{-3})$	1.575						
Dimensão do cristal (mm)	0.10 x 0.15 x 0.30						
Cor do cristal	marrom						
μ (mm ⁻¹) (k α (Mo))	1.302						
λ (Å) (kα(Mo))	0.71073						
Modo de coleta	ω - 2θ						
Temperatura de coleta (K)	293						
Intervalo de $ heta$ (°)	2.8, 30.0						
hkl máx,: mín,	-10: 3 ; -13: 5 ; -34: 4						
Reflexões coletadas únicas	2633						
Observadas [I > $2\sigma(I)$]; Npar	1776; 240						
R _{obs} ; R _{all} ; GOF	0.0375, 0.1119, 1.05						
Dens. residual (e/Å ³) máx.; min.	-0.43, 0.53						

Tabela 8 - Resumo dos principais dados cristalográficos

IV.4.2 - Resultados Estruturais do composto N,N'-bis(3metoxisalicilideno)-(1,2etilenodiamina)Cu(II)

A Figura 12 mostra a representação da molécula com os átomos identificados. A figura 13 mostra a representação gráfica da cela unitária do composto.

Figura 12 - representação ORTEP, com os átomos identificados e elipsóides de vibração com 50% de probabilidade, para CM3

Figura 13 - representação ORTEP, com os átomos identificados e elipsóides de vibração com 50% de probabilidade, para CM3

Algumas distâncias interatômicas relevantes foram selecionadas e estão dispostas na Tabela 9 assim como os ângulos interatômicos estão são apresentados na Tabela 10.

Tabela 9 - Distâncias interatômicas (Å) com os respectivos desvios padrão entre parênteses para o CM03

Cu	01	1.955(8)	C1	C10	1.480(11)
Cu	WO	2.366(3)	C2	C3	1.372(15)
Cu	03	1.897(8)	C3	C8	1.448(15)
Cu	N1	1.964(9)	C3	C4	1.357(17)
Cu	N2	1.949(11)	C4	C5	1.423(17)
01	C8	1.287(14)	C5	C6	1.34(2)
03	C17	1.326(12)	C6	C7	1.416(18)
04	C7	1.352(14)	C7	C8	1.399(16)
04	C9	1.381(13)	C12	C17	1.398(16)
05	C16	1.394(14)	C12	C13	1.459(14)
05	C18	1.448(14)	C13	C14	1.299(17)
N1	C1	1.608(11)	C14	C15	1.417(18)
N1	C2	1.320(16)	C15	C16	1.355(17)
N2	C11	1.261(17)	C16	C17	1.450(16)
N2	C10	1.502(11)			

01	Cu	03	90.7(3)	C4	C5	C6	117.1(12)C4
01	Cu	N1	92.3(4)	C5	C6	C7	124.1(14)C5
01	Cu	N2	162.4(4)	04	C7	C8	116.9(9)04
WO	Cu	03	97.1(3)	04	C7	C6	122.6(11)04
WO	Cu	N1	89.9(3)	C6	C7	C8	120.5(12)
WO	Cu	N2	98.0(4)	01	C8	C3	129.1(10)
03	Cu	N1	171.8(4)	01	C8	C7	116.6(9)
03	Cu	N2	92.0(4)	C3	C8	C7	114.3(10)
N1	Cu	N2	82.9(4)	N2	C10	C1	96.4(7)
Cu	01	C8	124.9(7)	N2	C11	C12	121.9(9)
Cu	03	C17	129.4(7)	C11	C12	C17	125.3(10)
C7	04	C9	121.9(8)	C11	C12	C13	117.2(10)
C16	05	C18	113.6(10)	C13	C12	C17	117.4(9)
Cu	N1	C1	106.6(6)	C12	C13	C14	122.7(11)
Cu	N1	C2	123.5(7)	C13	C14	C15	121.6(10)
C1	N1	C2	118.9(9)	C14	C15	C16	118.0(11)
C10	N2	C11	113.4(9)	C15	C16	C17	122.9(10)
05	C16	C15	126.4(11)	03	C17	C12	121.9(10)
05	C16	C17	110.6(10)	03	C17	C16	120.8(10)
C10	N2	C11	113.4(9)	C12	C17	C16	117.3(9)
Cu	N2	C11	128.7(8)	C2	C3	C4	117.4(10)
Cu	N2	C10	111.4(7)	C2	C3	C8	118.7(11)
N1	C1	C10	106.5(6)	C4	C3	C8	123.9(10)
N1	C2	C3	129.4(11)				

Tabela 10 - Ângulos interatômicos (°) com os respectivos desvios entre parênteses para o CM03

A análise das distâncias e ângulos interatômicos feita na estrutura CM03 mostra a proximidade entre dados experimentais e teóricos.

Para valores experimentais de distância entre o átomo de cobre e o átomo de oxigênio, nitrogênio e oxigênio da molécula de água presente na estrutura temos respectivamente: Cul-O3=1.955(8)Å e Cul-O1=1.897(8)Å, Cul-N=1.964(9)Å e Cul-N2 1.949(11)Å e finalmente Cul-Ow= 2.366(3)Å. Na literatura encontramos os valores de 1,916(2)Å para Cul-O3, 1,949(3)Å para Cul-N1, 2,494Å para Cul-Ow , 1,929(2)Å para Cul-O1 e 1,952(3)Å para Cul-N2.

Os valores dos ângulos interatômicos envolvendo o metal central foram igualmente comparados aos valores encontrados na literatura, sendo: 91,06(10)° para o ângulo O1-Cu-O3, 91,92(12)° para O1-Cu-N1, 171,29(12)° para O3-Cu-N1, 99,29(12)° para O-Cu-Ow, 90,81(13)° para N1-Cu-O3, 169,57(12)° para O1-Cu-N2, 92,43(12)° para O3-Cu-N2, 83,29(12)° para N1-Cu-N2, 87,97(14) ° para O1-Cu-O3 e por último 99,33(14)° para o ângulo entre os átomos N2- Cu-O3 [Bunce e colaboradores (1998)].

As ligações de Hidrogênio encontradas foram listadas abaixo, seguido de uma breve descrição de distâncias e ângulos interatômicos e operações de simetria:

- OW -H12-O1 (OW -H12 = 0.8500Å, H12-O1 = 2.5600Å, OW-O1 = 3.010Å e OW -H12-O1 = 112.00°), ½+x,-y,1-z;
- OW-H12-O4(OW-H12 = 0.8500Å, H12-O4 = 2.4600Å, OW-O4 = 2.9100Å e OW -H12-O1 = 120.00°), 1-x,-y,1-z;
- OW-H22-O3(OW-H22 = 0.8500Å, H22-O3 = 3,0169Å, OW-O3 = 3.466Å e OW-H22-O3 = 145.00°), ½+x,-1/2-y,1/2-z;
- C1-H1B-O1(C1-HB1 = 0.9700Å, HB1-O1 = 2.5300Å, C1-O1 = 3.100Å e C1-H1B O1 = 128.00°), 1-x,-y,1-z.

IV.5 - Determinação da Estrutura do (SALAHE)Cu(II)

IV.5.1 - Dados Cristalográficos

O composto que recebeu a sigla CMO4, apresentou-se como um monocristal alaranjado de dimensões 0.15 x 0.18 x 0.20 mm, que foi também montado sem orientação especial para realização das medidas das intensidades das reflexões.

O composto identificado posteriormente como o (SALAHE)Cu(II) teve seus parâmetros de cela unitária determinados e seus dados de intensidade das reflexões coletados à temperatura de 293K e velocidade de varredura máxima e mínima de 16,48°/min e 2,06°/min respectivamente.

Identificado como pertencente ao sistema monoclínico, mediu-se as reflexões com índices no intervalo $-25 \le h \le 25$; - $6 \le k \le 0$; $0 \le l \le 27$; sendo coletadas 5003 reflexões únicas, das quais 2678 foram consideradas reflexões observadas com (I $\ge 2,0 \sigma(I)$).
A base de Schiff de fórmula: C_{18} H₂₀ Cu N₂ O₄ cristaliza-se no sistema monoclínico; grupo espacial P2₁/C, tendo os parâmetros de cela: a = 18.3216(2) Å; b=4.804(3) Å; c=19.801(2)Å; β = 98.908(6)°; V =2396.4(5) Å³; D_{calc}=1.358 Mg.m⁻³; MM= 490.10; e μ = 0.944 mm⁻¹.

No estágio final do refinamento os índices de discordância são R_{obs} = 0.026, R_{all} = 0.0388 com GOF = 0.1253.

A Tabela 11 mostra um resumo dos principais dados cristalográficos e do refinamento.

Fórmula Molecular	C_{18} H ₂₀ Cu N ₂ O ₄
Massa Molecular	391.91
Sistema Cristalino	Monoclínico
Grupo Espacial	$P_2 1/c$
a (Å)	18.3216(2)
b (Å)	4.804(3)
с (Å)	19.801(2)
β (°)	98.908(6)
Z (moléculas/cela unitária)	4
V (Å ³)	1721.8(1)
$D_c (Mg.m^{-3})$	1.512
Dimensão do cristal (mm)	0.15 x 0.18 x 0.20
Cor do cristal	marrom
μ (mm ⁻¹) (Kα(MO))	0.71073
λ (Å) (Κα(ΜΟ))	1.294
Modo de coleta	ω - 2θ
Temperatura de coleta (K)	243K
Intervalo de θ (°)	2.5 a 30.0
hkl máx,: mín,	-25, 25; -6, 0; 0, 27
Reflexões coletadas únicas	5003
Observadas [I >2 0 (I)]; Npar	2678; 229
R _{obs} ; R _{all} ; GOF	0.0388, 0.1253, 1.00
Dens. residual (e/Å ³) máx.; min.	-0.57, 0.61

Tabela 11 - Resumo dos principais dados cristalográficos

IV.5.2 - Resultados Estruturais do composto (SALAHE)Cu(II)

A Figura 14 mostra a representação da molécula com os átomos identificados e a Figura 15 a representação gráfica da cela unitária.

Figura 14: representação ORTEP, com os átomos identificados e elipsóides de vibração com 50% de probabilidade, para CM04

Figura 15 - Representação gráfica da cela unitária do composto CM04

Na Tabela 12 estão apresentadas as distâncias interatômicas. Os ângulos interatômicos estão na Tabela 13.

Tabela 12 - Distâncias interatômicas (Å) com os respectivos desvios padrão entre parênteses para o CM04

Cu	01	1.876(2)	Nl	C8	1.472(5)
Cu	Nl	2.013(2)	N2	C16	1.289(6)
Cu	01_a	1.876(2)	N2	C17	1.471(4)
Cu	N1_a	2.013(2)	.C1	C2	1.403(5)
Cu2	03	1.885(2)	C1	C6	1.414(5)
Cu2	N2	1.999(2)	C1	C7	1.434(5)
Cu2	03_b	1.885(2)	C2	C3	1.413(6)
Cu2	N2_b	1.999(2)	C3	C4	1.366(5)
01	C2	1.310(4)	C8	C9	1.514(4)
02	C9	1.422(3)	C17	C18	1.511(4)
Nl	C7	1.291(5)			

Tabela 13 - Ângulos interatômicos (°) com os respectivos desvios entre parênteses para o CM04

01	Cul	Nl	91.92(2)	C7	Nl	C8	115.9(2)
01	Cul	01_a	180.00	Cul	Nl	C8	120.38(2)
01	Cul	N1_a	88.08(8)	Cul	Nl	C7	123.68(2)
01_a	Cul	Nl	91.92(8)	C16	N2	C17	116.2(2)
01_a	Cu	N1_a	93.78(2)	Cu2	N2	C16	124.01(2)
03	Cu2	N2	91.33(9)	Cu2	N2	C17	119.74(2)
03	Cu2	03_b	180.00	C2	C1	C7	122.8(2)
03	Cu2	N2_b	88.67(9)	C6	C1	C7	118.0(2)
03_b	Cu2	N2	88.67(9)	C2	C1	C6	119.1(2)
N2	Cu2	N2_b	180.00	Cul	01	C2	130.55(2)
03_b	Cu2	N2_b	91.33(9)	Cu2	03	C11	130.12(2)

Foram analisadas as principais distâncias e ângulos interatômicos, comparando-os frente à compostos análogos da literatura científica disponível. Em Akitsu 2005 [Akitsu e colaboradores (2005)] foram encontrados os seguintes valores para as distâncias envolvendo o átomo de cobre: Cul-O1=1,890(4) Å e Cul-N1=1,972(4) Å.

Os valores encontrados na literatura para os ângulos envolvendo o metal central são: O1-Cu1-O1a= 151,7(3)°, N1-Cu-N2=159,4(2)°, O1-Cu1-N1=92,0(2)° e O1-Cu1-N1=93,0(2)°. As ligações de Hidrogênio encontradas para a estrutura CMO4 foram listadas abaixo, seguidas de uma breve descrição de distâncias e ângulos interatômicos e suas operações de simetria:

- O2-OH2-O4 (O2-OH2 = 0.8200Å, OH2-O4 = 2.0000Å, O2-O4 = 2.742(3)Å e O2-OH2-O4 = 151.00°), 3-x,-y,z
- O4-OH4-O2 (O4-OH4 = 0.8200Å, OH4-O2 = 1.9200Å, O4-O2 = 2.723(3)Å e O4-OH4-O2 = 166.00°), 1-x,-y,1-z;
- C8-H8A-O1 (C8-H8A = 0.9700Å, H8A-O1 = 2.3700Å, C8-O1 = 2.762(4)Å e C8-H8A-O1=104.00°), 1-x,-y,1-z;
- C9-H9B-O1 (C9-H9B = 0.9700Å, H9B-O1 = 2.4900Å, C9-O1 = 3.050(4)Å e C9H9B-O1 =116.00°), 1-x,-y,1-z;
- C17-H17B-O3 (C17-H17B = 0.9700Å, H17B-O3 = 2.3400Å, C17-O3 = 2.757(4)Å e C17-H17B-O3 = 105.00°), 2-x,-y,2-z;
- C18-H18A-O3 (C18-H18A = 0.9700Å, H18A-O3 = 2.5300Å, C18-O3 = 3.064(4)Å e C18-H18A-O3 = 115.00°), 2-x,y,2-z.

Observando os valores de distâncias e ânqulos interatômicos envolvendo o metal central nas quatro estruturas, percebe-se que as duas primeiras, CMO1 e CM2, são bastante regulares, apresentando o metal central bem centralizado. Na estrutura CM1 observa-se maior а planaridade entre todas elas, apresentando valor de ângulo de ligação da ordem de 177º entre os átomos Nitrogênio e Oxigênio diametralmente opostos.

As distorções nos valores de ângulos e distâncias encontradas na molécula CM3 são explicadas pela proximidade da molécula de água com o metal central do composto. Tal aproximação é responsável pelo aumento nos valores de comprimento de ligação entre os átomos de Cu e os átomos de Oxigênio e Nitrogênio. A molécula CM04 apresenta inúmeras variações nos valores de ângulos e distâncias interatômicas. Os dois átomos de Oxigênio encontram-se ligados ao átomo central de forma diametralmente oposta, assim como os dois átomos de Nitrogênio, diferenciando das bases de Schiff comumente encontradas. Seus valores de comprimento de ligação entre Cu-O são ligeiramente menores e entre Cu-N maiores, quando comparados às bases de Schiff do tipo *salen* convencionais. Observou-se ainda uma excelente planaridade envolvendo o átomo central e seus átomos vizinhos.

O composto CM4 é um composto tido como subproduto da reação de obtenção das Bases de Schiff, isso explica sua peculiaridade.

V - CÁLCULOS TEÓRICOS

Neste Capítulo estão apresentados os resultados dos cálculos teóricos, efetuados pelo o método semiempírico SAM1 usando o sistema AMPAC 6.0 [1997] instalado na máquina Sun Ultra-1, do Grupo de Química Teórica do IQSC/USP. Foram feitos os cálculos da estrutura eletrônica, das propriedades geométricas e da otimização da geometria molecular.

Para a visualização dos resultados destes cálculos, foi utilizado o programa HIPERCHEM 6.03 [2000], para os compostos cujas estruturas foram determinadas por difração de raios-X, e também para as estruturas propostas por modelagem.

Para as moléculas com estrutura cristalográfica obtida e que continham o esqueleto-base típico das Bases de Schiff, foram realizados cálculos teóricos para duas situações: estrutura cristalográfica e estrutura cristalográfica totalmente otimizada.

Primeiramente estão apresentados os cálculos semi-empíricos para as moléculas que tiveram suas estruturas cristalográficas estudadas, e a seguir estão apresentadas as demais moléculas.

V.1 – CÁLCULOS TEÓRICOS PARA O N,N'-BIS(3-ETOXI SALICILIDENO)-(1,2ETILENODIAMINA) CU(II)- CM01

Os cálculos para o composto CMO1 foram efetuados partindo-se das coordenadas atômicas (ortogonalizadas) obtidas através da determinação da estrutura por difração de raios-X. Para esta molécula (CM01) as propriedades físicoquímicas foram calculadas para as estruturas: cristalográfica (sem otimização) e totalmente otimizada. Os parâmetros estruturais (distâncias interatômicas e ângulos interatômicos) também foram calculados para as três estruturas.

A Tabela 14 mostra os resultados das propriedades físico-químicas calculadas para o CM01

Tabela 14 - Propriedades	físico-químicas	calculadas	CM01
Propriedades	Cristal	Otimizada	
Energia eletrônica (eV)	-16270	-16090	
Repulsão núcleo-núcleo (eV)	125789	12385	
Energia Total (eV)	-3691	-37045	
Momento Dipolar (Debye)	7,582	7,98	
Energia do HOMO-2 (eV)	-7,725	-7,681	
Energia do HOMO-1 (eV)	-7,662	-7,579	
Energia do HOMO (eV)	-5,895	-6,531	
Energia do LUMO (eV)	-3,380	-0,765	
Energia do LUMO+1 (eV)	-0,435	0,749	
Polarizabilidade (Å ³)	21,02	20,56	
Potencial de Ionização (eV)	5,895	6,531	
Afinidade Eletrônica (eV)	3,380	0,765	
Eletronegatividade (eV)	4,6375	3,648	
Dureza (eV)	1,2575	2,883	
Área superficial (Ų)	399,84	399,84	
Volume molecular (Å ³)	630,80	630,80	

A Figura 16 está mostra a numeração dos átomos adotada para as estruturas cristalográfica e a usada nos cálculos, e na Tabela 15 encontra-se a correlação entre ambas.

Figura 16 - (a) numeração dos átomos da molécula para os cálculos teóricos e, (b) numeração da estrutura cristalográfica

Tabela	15	-	Correlação	Entre	a	Numeração	do	Cálculo	е	a
			Cri	istalog	grá	áfica				

Cristalográfica	Cálculo	Cristalográfica	Cálculo
Cu	10	H1A	6
01	16	H1B	25
O2	9	H2	15
N1	18	H4	4
C1	20	H5	3
C2	17	H6	7
C3	13	H9A	23
C4	8	H9B	1
C5	5	H10A	2
C6	11	H10B	22
C7	14	H10C	24
C8	12	MOLÉC.ÁGUA	
C9	19	Ow	1
C10	21	Hw1	2

Na Figuras 17 e 18 estão mostradas as distâncias interatômicas para as estruturas cristalográfica e otimizada, respectivamente.

Figura 17 - Distâncias interatômicas para a estrutura cristalográfica

Figura 18 - Distâncias interatômicas para a estrutura otimizada

A Tabela 16 mostra os ângulos interatômicos para as estruturas estudadas.

	c	ristalográfica	otimizada				cristalográfica	otimizada
02 Cu	N1	93,30(9)	93,309	C4	C3	C8	120,0(3)	120,079
C7 01	C9	118,1(2)	118,084	C2	C3	C4	117,9(3)	118,048
Cu 02	C8	127,2(2)	127,132	C3	C4	C5	120,7(4)	120,084
Cu N1	C1	114,8(2)	114,838	C4	C5	C6	120,5(3)	120,043
Cu N1	C2	125,5(2)	125,566	C5	C6	C7	120,2(3)	120,146
N1 C2	C3	126,5(3)	126,560	C6	C7	C8	121,1(3)	121,228
02 C8	C7	118,2(2)	114,481	C3	C8	C7	117,1(2)	116,952
02 C8	C3	124,6(2)	124,744	01	C7	C8	114,6(2)	114,481
C1 N1	C2	119,7(3)	119,589	01	C9	C10	107,7(3)	107,719
		C2	C3 C8 122,0	(3)		121,759)	

Tabela 16 - Ângulos interatômicos (°) para as formas de cálculo

A Figura 19 mostra as cargas residuais de cada átomo encontradas para estrutura cristalográfica e a Figura 20 apresenta as cargas encontradas na estrutura otimizada.

Figura 20 - Cargas atômicas para a estrutura otimizada

A Figura 21 mostra uma ilustração da contribuição dos orbitais atômicos para os orbitais moleculares HOMO-2, HOMO-1 e HOMO. Para estas figuras, as regiões em verde possuem fases positivas e as violetas são regiões com fases negativas.

Na Figura 22 estão apresentadas ilustrações da contribuição dos orbitais atômicos para os orbitais moleculares LUMO+1 e LUMO. As regiões em verde são fases positivas e as violetas são fases negativas.

Figura 21 - orbitais atômicos para HOMO, HOMO-1 e HOMO-2

69

Figura 22 - Contribuições dos orbitais atômicos para LUMO e LUMO A Figura 23 mostra os gráficos de potencial eletrostático para estrutura cristalográfica e otimizada

As energias dos orbitais de HOMO-2 e HOMO-1 não sofrem variações significativas para as duas conformações da molécula. Para as duas estruturas os orbitais moleculares são iguais entre si, apresentando apenas pequenas variações nos seus coeficientes. A grande maioria dos orbitais atômicos têm suas contribuições em pz, sendo assim, todas as regiões ligantes são do tipo $\pi^{\dots}\pi$. O grupo etila não contribui para a formação de nenhum dos orbitais aqui estudados.

A estrutura otimizada possui valores de potencial de ionização, polarizabilidade e momento dipolo próximos aos valores obtidos para a estrutura cristalográfica.

De um modo geral, a estrutura otimizada tem as ligações dos carbonos aromáticos e ligações C-H mais longas que a estrutura cristalográfica. Fato explicável já que, submetida à rotina de cálculos, a molécula é admitida em seu estado gasoso, não sofrendo influência dos átomos vizinhos como sua análoga apresentada no estado cristalino.

Não existem grandes variações nos valores dos ângulos interatômicos entre as duas estruturas.

V.2 - Cálculos Teóricos para o composto N,N'-bis(4dietilaminasalicilidene)-(1,2-etilenodiamina)Cu(II)

Os cálculos para o composto CMO2 foram efetuados partindo-se das coordenadas atômicas (ortogonalizadas) obtidas pro meio da determinação da estrutura por difração de raios-X.

Para esta molécula (CM1) as propriedades físicoquímicas foram calculadas para as estruturas: cristalográfica (sem otimização) e totalmente otimizada. Os parâmetros estruturais (distâncias interatômicas e ângulos interatômicos) também foram calculados para as duas estruturas.

A Tabela 17 mostra os resultados das propriedades físico-químicas calculadas para o CM02.

Tabela 17 - Propriedades físico-químicas calculadas CM02

Propriedades	Cristal	Otimizada
Energia eletrônica (eV)	-194956	-19082
Repulsão núcleo-núcleo (eV)	15546	15117
Energia Total (eV)	-3950	-3965
Momento Dipolar (Debye)	9,918	10,286
Energia do HOMO-2 (eV)	-7,559	-7,863
Energia do HOMO-1 (eV)	-7,297	-7,750
Energia do HOMO (eV)	-5,878	-6,754
Energia do LUMO (eV)	-3,105	-0,594
Energia do LUMO+1 (eV)	-0,383	0,826
Polarizabilidade (Á³)	26,07	20,56
Potencial de Ionização (eV)	5,877	6,754
Afinidade Eletrônica (eV)	-3,087	0,594
Eletronegatividade (eV)	1,395	3,174
Dureza (eV)	4,482	2,58
Área superficial (Á²)	456,11	456,11
Volume molecular (Á ³)	738,38	738,38

A Figura 24 está mostra a numeração dos átomos adotada para as estruturas cristalográfica e a usada nos cálculos, e na Tabela 18 encontra-se a correlação entre ambas.

igura 24 - (a) numeração dos átomos da molécula para os cálculos teóricos e (b) numeração da estrutura cristalográfica

Tabela	18	-	Correlação	entre	а	numeração	de	cálculo	е	а
			Cri	istalog	jra	áfica				

Cristalográfica	Cálculo	Cristalográfica	Cálculo
Cu	18	H1A	4
O1	21	H1B	20
N1	17	H2	11
N2	26	H4	9
C1	13	H5	12
C2	15	H7	27
C3	19	H10A	29
C4	14	H10B	30
C5	16	H11A	1
C6	23	H11B	2
C7	24	H11C	5
C8	22	H12A	31
C10	25	H12B	32
C11	6	H13A	3
C12	28	H13B	7
C13	8	H13C	8
		MOLÉC.ÁGUA	
		Ow	1
		Hw1	2

Nas Figuras 25 e 26 estão mostradas as distâncias interatômicas para as estruturas cristalográfica e otimizada, respectivamente.

Figura 25 - Distâncias interatômicas para a estrutura cristalográfica

Figura 26 - Distâncias interatômicas para a estrutura otimizada

A Tabela 19 mostra os ângulos interatômicos para as estruturas estudadas.

	Tab	ela	19 - Ângul	los i	nte	ratômico	s (°)	para	as	formas	de cál	lculo
			cristalogr	áfica	a o	timizada	N2	C6		C5	111,0(4	l) 111,715
01	Cu	N1	93,78(2	2)		93,7783	C3	C8		C7	119,0(3	3) 119,061
01	C8	C7	117,9(3)	-		117,88	C6	N2		C10	121,3(4) 121,998
01	C8	C3	123,0(3)			123,059	C2	C3		C8	124,2(3	3) 124,209
Cu	01	C8	127,0(2)			126,929	C4	C3		C8	116,9(3	8) 116,915
Cu	N1	C1	113,3(3)			113,227	C2	C3		C4	118,9(4) 118,871
C1	N1	C2	120,9(3)			120,913	C3	C4		C5	123,2(4) 123,166
Cu	N1	C2	125,4(3)			125,372	C4	C5		C6	120,9(4	l) 120,992
N1	C2	C3	125,6(4)			125,602	C5	C6		C7	116,8(4) 116,816
N2	C6	C7	122,2(4)			122,088	C6	C7		C8	122,8(4) 122,773
			N2	C6	C5	111,7(5)		121,	998		
			N2	C10	C11	114,2(4)		114,	22		

As Figuras 27 e 28 apresentam as cargas residuais em cada átomo das estruturas cristalográfica e otimizada, respectivamente.

A Figura 29 mostra uma ilustração da contribuição dos orbitais atômicos para os orbitais moleculares HOMO-2, HOMO-1 e HOMO. Na Figura 30 estão apresentadas ilustrações da contribuição dos orbitais atômicos para os orbitais moleculares LUMO+1 e LUMO. As regiões em verde são fases positivas e as violetas são fases negativas.

Figura 27 - Cargas nos átomos da estrutura cristalográfica.

Figura 28 - Cargas nos átomos da estrutura otimizada.

Figura 29 - Orbitais atômicos para HOMO, HOMO-1 e HOMO-2

Figura 30 - Orbitais atômicos para LUMO e LUMO

A Figura 31 mostra os gráficos de potencial eletrostático calculados para estrutura cristalográfica e otimizada .

Figura 31: gráfico de potencial eletrostático para as três estruturas.

As energias dos orbitais de HOMO-2 e HOMO-1 não sofrem variações significativas para as duas conformações molécula. duas orbitais da Para as estruturas os grandes semelhanças moleculares apresentam entre as conformações cristalográfica e otimizada, apresentando apenas pequenas variações nos seus coeficientes. O grupo dietilamina contribui para a formação de vários dos orbitais aqui estudados.

A estrutura otimizada possui valores de potencial de ionização, polarizabilidade e momento dipolo próximos aos valores obtidos para a estrutura cristalográfica.

De um modo geral, a estrutura otimizada tem as ligações dos carbonos aromáticos e ligações C-H mais longas que a estrutura cristalográfica. Fato explicável, como no caso anterior, uma vez que ao ser submetida à rotina de cálculos, a molécula é admitida em seu estado gasoso, não sofrendo influência dos átomos vizinhos como sua análoga apresentada no estado cristalino.

Não existem grandes variações nos valores dos ângulos interatômicos entre as duas estruturas.

79

V.3 - Cálculos Teóricos para o composto N,N'-bis(3metoxisalicilideno)-(1,2etilenodiamina)Cu(II)- CM03

Os cálculos para o CM03 foram efetuados partindo-se das coordenadas atômicas (ortogonalizadas) obtidas através da determinação da estrutura por difração de raios-X.

As propriedades físico-químicas e parâmetros estruturais foram calculados para as estruturas: cristalográfica (sem otimização)

A Tabela 20 mostra os resultados das propriedades físico-químicas calculadas para o CM03

Tabela 20 - Propriedades	físico-químicas	calculadas	СМ03
Propriedades	Cristal	Otimizada	
Energia eletrônica (eV)	-35117	-35079	
Repulsão núcleo-núcleo (eV) 29253	29228	
Energia Total (eV)	-5864	-5851	
Momento Dipolar (Debye)	6,949	8,219	
Energia do HOMO-2 (eV)	-8,865	-9,046	
Energia do HOMO-1 (eV)	-8,799	-8,811	
Energia do HOMO (eV)	-7,787	-7,622	
Energia do LUMO (eV)	-7,478	-6,931	
Energia do LUMO+1 (eV)	-5,146	-3,455	
Polarizabilidade (Å ³)	34,19	34,17	
Potencial de Ionização (eV)	8,991	7,456	
Afinidade Eletrônica (eV)	6,274	6,931	
Eletronegatividade (eV)	7,633	6,693	
Dureza (eV)	1,3585	1,7625	
Área superficial (Å ²)	576,04	576,04	
Volume molecular (Å ³)	965,42	965,42	

A numeração dos átomos adotada para as estruturas cristalográfica e a usada nos cálculos está na Figura 32, e na Tabela 21 encontra-se a correlação entre ambas.

Figura 32: numeração dos átomos da molécula para os cálculos teóricos (a) e numeração da estrutura cristalográfica (b)

Cristalográfica	Cálculos	Cristalográfica	Cálculos
Cu	10	H1A	43
01	13	H1B	22
O3	9	H2	38
O4	12	H4	37
O5	7	H5	32
N1	15	H6	19
N2	25	H9A	2
C1	35	H9B	4
C2	30	H9C	40
C3	29	H10A	1
C4	33	H10B	14
C5	31	H11	27
C6	23	H13	41
C7	18	H14	536
C8	20	H15	21
C9	8	H18A	3
C10	6	H18B	5
C11	26	H18C	42
C12	28		
C13	38		
C14	34	MOLÉC.ÁGUA	
C15	24	Ow	1
C16	16	Hw1	2
C17	17	Hw2	3
C18	11		

Tabela 21 - Correlação entre Numeração Quântica e Cristalográfica

Nas Figuras 33 e 34 estão mostradas as distâncias interatômicas para as estruturas cristalográfica e otimizada, respectivamente.

Figura 33 - Distâncias interatômicas para a estrutura cristalográficado do CM03

Figura 34: Distâncias interatômicas para a estrutura CM03 otimizada

A Tabela 22 mostra os ângulos interatômicos para as estruturas estudadas.

		•					
Tabela	22-	Ângulos	interatômicos	(°)	para	0	СМ0 3

	Cristalográfica	Otimizada
O1 Cu O3	90,7(3)	90,6
O1 Cu N1	92.3(4)	98.1
01 Cu N2	162.4(4)	163.0
O3 Cu N1	171.8(4)	163.0
O3 Cu N2	92.0(4)	92.84
N1 Cu N2	82.9(4)	82.8
Cu O1 C8	124.9(7)	125.5
Cu O3 C17	129.4(7)	128.6
C7 O4 C9	121.9(8)	122.1
C16 O5 C18	114(1)	113
Cu N1 C1	106 6(6)	114.6
Cu N1 C2	123 5(7)	122.8
C1 N1 C2	118 9(9)	116.2
C10 N2 C11	113 4(9)	113 /
	126(1)	126
C10 N2 C11	112 4(0)	112.0
	113,4(9)	120.0
	120,7(0)	129,0
	111,4(7)	111,0
N1 C1 C10	106,5(6)	109,8
N1 62 63	129(1)	129
	120(1)	120
C4 C5 C6	117,1(12)	116,9
C5 C6 C7	124,1(14)	123,9
O4 C7 C8	116,9(9)	116,9
O4 C7 C6	122,6(11)	121,8
C6 C7 C8	120,5(12)	120,5
O1 C8 C3	129,1(10)	129,0
O1 C8 C7	116,6(9)	116,6
C3 C8 C7	114,3(10)	114,3
N2 C10 C1	96,4(7)	96,4
N2 C11 C12	121,9(9)	121,9
C11 C12 C17	125(10)	122
C11 C12 C13	117(1)	117
C13 C12 C17	117,4(9)	117,5
C12 C13 C14	123(1)	123
C13 C14 C15	122(1)	122
C14 C15 C16	118(1)	118
C15 C16 C17	123(1)	123
O3 C17 C12	121,9(1)	121,9
O3 C17 C16	121(1)	120
C12 C17 C16	117,3(9)	117,2
C2 C3 C4	117(1)	117
C2 C3 C8	119(1)	119
C4 C3 C8	124(1)	124

As figuras 35 e 36 apresentam as cargas residuais encontradas nas estruturas cristalográfica e otimizada, respectivamente.

Figura 35 - Cargas atômicas da estrutura cristalográfica do CM03.

Figura 36 - Cargas atômicas da estrutura otimizada do CM03.

A Figura 37 mostra uma ilustração da contribuição dos orbitais atômicos para os orbitais moleculares HOMO-2, HOMO-1 e HOMO. Na Figura 38 estão apresentadas ilustrações da contribuição dos orbitais atômicos para os orbitais moleculares LUMO+1 e LUMO. As regiões em verde são fases positivas e as violetas são fases negativas.

Figura 37 - Contribuições dos orbitais atômicos para HOMO, HOMO-1 e HOMO-2 na estrutura do CM03

Figura 38 - Contribuições dos orbitais atômicos para LUMO e LUMO+1

A Figura 39 mostra os gráficos de potencial eletrostático calculados para as estrutura do CM03.

Figura 39 - Gráfico do potencial eletrostático para as conformações do CM03

As energias dos orbitais de HOMO-2 e HOMO-1 não mostram variações significativas para as duas conformações da molécula. A grande maioria dos orbitais atômicos têm suas contribuições em Pz, sendo assim, todas as regiões ligantes são do tipo $\pi^{\dots}\pi$. O grupo metila não contribui para a formação de nenhum dos orbitais aqui estudados.

A estrutura otimizada possui valores de potencial de ionização, polarizabilidade e momento dipolo próximos aos valores obtidos para a estrutura cristalográfica.

De um modo geral, a estrutura otimizada tem as ligações dos carbonos aromáticos e ligações C-H mais longas que a estrutura cristalográfica, uma vez que, a molécula é admitida em seu estado gasoso na rotina de cálculos, não sofrendo influência dos átomos vizinhos como sua análoga apresentada no estado cristalino.

Não existem grandes variações nos valores dos ângulos interatômicos entre as duas estruturas.

V.4 - Cálculos Teóricos para o composto (SALAHE)Cu(II) -CM04

Os cálculos para o (SALAHE)Cu(II) também foram efetuados partindo-se das coordenadas atômicas (ortogonalizadas) obtidas através da determinação da estrutura por difração de raios-X nos modos cristalográfica e totalmente otimizada.

A Tabela 22 mostra os resultados das propriedades físico-químicas calculadas para o CM04

Propriedades	Cristal	Otimizada
Energia eletrônica (eV)	-35577.963	-40760.472
Repulsão núcleo-núcleo (eV)	29201.233	34368.547
Energia Total (eV)	-6376.729	-6391.925
Momento Dipolar (Debye)	11.001	0.750
Energia do HOMO-2 (eV)	-6.538	-6.6
Energia do HOMO-1 (eV)	-6.505	-6.3
Energia do HOMO (eV)	-6.357	-6.305
Energia do LUMO (eV)	0.996	0.
Energia do LUMO+1 (eV)	1.089	0.
Polarizabilidade (Á ³)	30.1	36
Potencial de Ionização (eV)	6.357	6.
Afinidade Eletrônica (eV)	-0.996	-0.6
Eletronegatividade (eV)	2.681	2.
Dureza (eV)	3.677	2.90
Área superficial (Á ²)	613.74	613.
Volume molecular (Á ³)	1011.11	1011.1

Tabela 23 - Propriedades físico-químicas calculadas CM04

A Figura 40 está mostra a numeração dos átomos adotada para as estruturas cristalográfica e a usada nos cálculos, e na Tabela 24 encontra-se a correlação entre ambas.

Figura 40 - Numeração dos átomos da molécula para os cálculos teóricos (a) e numeração da estrutura cristalográfica (b)

Tabela 24 - Corre	elação Entr	re a Numeração (Quântica e a
	Cristal	ográfica	
Cristalográfica	Cálculos	Cristalográfica	a Cálculos
Cu1	7	Cu2	13
O1	5	O3	16
O2	12	O4	14
N1	14	N2	6
C1	11	C10	12
C2	6	C11	19
C3	3	C12	21
C4	4	C13	22
C5	8	C14	15
C6	15	C15	8
C7	16	C16	4
C8	21	C17	3
C9	15	C18	10
H3	1	H12	23
H4	2	H13	22
H5	9	H14	15
H6	18	H15	8
H7	20	H16	4
H8A	22	H17A	1
H8B	23	H17B	2
H9A	10	H18A	5
H9B	19	H18B	18
HO2	17	HO4	9

Na Figuras 41 e 42 estão mostradas as distâncias interatômicas cristalográfica para estruturas as е otimizada, respectivamente.

Figura 41 - Distâncias interatômicas para a estrutura cristalográfica

Figura 42 - Distâncias interatômicas para a estrutura otimizada

A Tabela 25 mostra os ângulos interatômicos para as estruturas estudadas.

Tabel	la 25	5 - 2	Ângulos :	interatômic	os ('	') pa	ra a	s formas	de cálculo
			Cristal	Otimizada				Cristal	Otimizada
O1	Cu1	01*	180	180	O3	Cu2	O3**	180	181
O1	Cu1	N1	91,92(2)	90,98	O3	Cu2	N2	91,33(9)	90,99
O1	Cu1	N1*	88,08(8)	87,97	O3	Cu2	N2**	88,67(9)	87,65
O1*	Cu1	N1	91,92(8)	91,54	O3**	Cu2	N2	88,67(9)	88,96
O1*	Cu	N1*	93,78(2)	93,65	O3**	Cu2	N2**	91,33(9)	90,65
N1	Cu1	N1*	180,00	179,8	N2	Cu2	N2**	180,0	180,0
Cu1	N1	C7	123,68(2)	123,00	Cu2	N2	C16	124,01(2)	124,11
Cu1	N1	C8	120,38(2)	120,37	Cu2	N2	C17	119,74(2)	119,65
Cu1	01	C2	130,55(2)	131,24	Cu2	O3	C11	130,12(2)	131,57
C7	N1	C8	115,9(2)	115,9	C16	N2	C17	116,2(2)	116,0
C2	C1	C7	122,8(2)	122,8	C13	C10	C16	121,7(3)	121,0
C6	C1	C7	118,0(2)	118,0	C15	C10	C16	117,7(8)	117,5
C2	C1	C6	119,1(2)	119,0	C13	C10	C15	120,2(2)	119,6(5)

As figuras 43 e 44 apresentam as cargas residuais encontradas nas estruturas cristalográfica e otimizada respectivamente.

A Figura 45 mostra uma ilustração da contribuição dos orbitais atômicos para os orbitais moleculares HOMO-2, HOMO-1 e HOMO. Para estas figuras, as regiões em verde possuem fases positivas e as violetas são regiões com fases negativas.

Na Figura 46 estão apresentadas ilustrações da contribuição dos orbitais atômicos para os orbitais moleculares LUMO+1 e LUMO. As regiões em verde são fases positivas e as violetas são fases negativas.

Figura 43 - Cargas atômicas da estrutura cristalográfica

Figura 44 - Cargas atômicas da estrutura otimizada.

Figura 45 - contribuições dos orbitais atômicos para HOMO, HOMO-1 e HOMO-2

e LUMO+1

A Figura 47 mostra os gráficos de potencial eletrostático calculados para estrutura cristalográfica e otimizada .

Figura 47 - gráfico de potencial eletrostático para as duas estruturas
As energias dos orbitais de HOMO-2 e HOMO-1 não sofrem variações significativas para as duas conformações da molécula. Para as duas estruturas os orbitais moleculares são iguais entre si, apresentando apenas pequenas variações nos seus coeficientes. A grande maioria dos orbitais atômicos têm suas contribuições em Pz, sendo assim, todas as regiões ligantes são do tipo π \cdots π .

A estrutura otimizada possui valores de potencial de ionização, polarizabilidade e momento dipolo próximos aos valores obtidos para a estrutura cristalográfica.

Não existem grandes variações nos valores dos ângulos interatômicos entre as duas estruturas, o mesmo acontece entre os ângulos de torção.

VI - Cálculos Quânticos Para as Estruturas Modeladas

Estes compostos são apresentados em separado tiveram suas estruturas determinadas porque não por difração de raios-X. São apresentados somente os dados de estruturas modeladas calculadas pelo AMPAC, que com base nas estruturas conhecidas mostraram coerência estrutural e, serão por esse motivo, incluídos neste trabalho para realização de correlações através de cálculos quimiométricos.

As moléculas estudadas nesta etapa e suas siglas estão dispostas na tabela 25.

ela 26 - Siglas e nomes dos compostos modelados
N,N'-bis(4-hidoxisalicilideno)-
(1,2etilenodiamina)Cu(II)
N,N'-bis(4-metoxisalicilideno)-
(1,2etilenodiamina)Cu(II)
N,N'-bis(5-clorosalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(5-bromosalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(5-iodosalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(5-hidroxisalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(5-metoxisalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(3,5-diclorosalicilideno)-
(1,2etilenodiamina)Cu(II)
N,N'-bis(3,5-dibromosalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(3,5-diiodosalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(7-fenilsalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(3,5-diiodosalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(7-fenilsalicilideno)-
(1,2etilenodiamina) Cu(II)
N,N'-bis(3,5-diiodosalicilideno)-
(1,2etilenodiamina) Cu(II)

Tabela 26 - Siglas e nomes dos compostos modelados (continuação)

CM15	N,N'-bis(7-fenilsalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM16	N,N'-bis(7-etilsalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM17	N,N'-bis(3-etil-7-fenilsalicilideno)-
	(1,2etilenodiamina) Cu(II)
CM18	N,N'-bis(3-hidroxisalicilideno)-
	(1,2etilenodiamina) Cu(II)
TS1	trans N,N'-bis(5-clorosalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
TS2	trans N,N'-bis(salicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
TS3	trans N,N'-bis(3-etoxisalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
TS4	trans N,N'-bis(3-metoxisalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
TS5	trans N,N'-bis(5-bromosalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
TS6	trans N,N'-bis(4-dietilamina-
	<pre>salicilideno)(1,2ciclohexanodiamina)Cu(II)</pre>
CS1	cis N,N'-bis(5-clorosalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS2	cis N,N'-bis(salicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS3	cis N,N'-bis(3-etoxisalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS4	cis N,N'-bis(3-metoxisalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS5	cis N,N'-bis(5-bromosalicilideno)-
	(1,2ciclohexanodiamina) Cu(II)
CS6	cis N,N'-bis(4-dietilamina-
	salicilideno)(1,2ciclohexanodiamina)Cu(II)

Na Figura 48 estão apresentadas as estruturas propostas para estes compostos. Na Tabela 27 estão apresentadas as propriedades físico-químicas calculadas pelo método SAM1, através do software AMPAC 6.0 [AMPAC, 1997], instalado na máquina Sun Ultra-1, do Laboratório de Química Estrutural, no IQSC. A Figura 45 mostra as distâncias interatômicas para todos os compostos aqui apresentados.

CM6

CM10

CM13 CM14 Figura 48 - estruturas propostas para as moléculas modeladas

Figura 48 - estruturas propostas para as moléculas modeladas (continuação)

Figura 48 - estruturas propostas para as moléculas modeladas (continuação)

Tabela	27	-	Propriedades	físico	químicas	clculadas	
--------	----	---	--------------	--------	----------	-----------	--

	M5	Мб	М7	M8	М9
E. Eletrônica	-27431.864	-31228.217	-27709.784	-27550.063	-28560.7277
Rep. Core-core	22254.116	25688.101	22541.543	22367.459	23431.1535
Energia Total	-5177.749	-5540.116	-5168.239	-5182.603	-5129.5741
Mom. Dipolar	8.145	4.697	6.989	7.034	5.487
HOMO -2	-8.723	-8.479	-9.816	-9.799	-9.550
HOMO-1	-8.642	-8.859	-9.664	-9.653	-8.838
HOMO	-7.727	-7.514	-7.904	-7.983	-8.438
LUMO	-7.583	-7.375	-7.805	-7.878	-8.133
LUMO+1	-3.776	-3.588	-4.261	-4.626	-3.035
Polarizab.	32.33	36.01	34.91	36.31	41.12
Pot. de Ioniz.	8.9104	8.721	9.377	9.375	6.0435
Af. Eletrônica	6.399	6.167	6.332	6.486	10.5275
Eletroneg.	7.655	7.444	7.854	7.931	8.2855
Dureza	1.255	0.0695	0.0495	0.0525	0.1525
Á. Superficial	515.09	576.01	538.86	559.26	504.82
Vol. Molecular	855.88	968.96	897.59	936.77	975.78

Tabela 27 - Pro	opriedades f	Eísico quím	icas calcu	ladas (con	ntinuação)
	M10 I	M11 1	M12 I	M13 I	M14
E. Eletrônica	-28568.6066	-32331.9803	-33607.907	-33363.185	-32979.564
Rep. Core-core	23398.7201	26799.429	27797.055	27523.660	27232.332
Energia Total	-5169.6865	-5532.487	-5810.852	-5839.524	-5747.231
Mom. Dipolar	6.590	6.979	8.707	8.228	6.712
HOMO -2	-9.340	-9.153	-9.789	-9.681	-8.996
HOMO-1	-8.661	-8.484	-9.386	-9.276	-8.865
HOMO	-8.033	-7.831	-8.972	-8.926	-8.329
LUMO	-7.680	-7.492	-8.653	-8.600	-8.088
LUMO+1	-2.787	-2.617	-3.572	-3.448	-3.136
Polarizab.	32.33	36.00	38.77	41.56	51.17
Pot. de Ioniz.	5.5789	5.4356	6.6219	6.5279	6.1365
Af. Eletrônica	10.1341	9.8874	11.0031	10.9981	10.2805
Eletroneg.	7.8565	7.6615	8.8125	8.7630	8.2085
Dureza	0.1765	0.1695	0.1595	0.1630	0.1205
Á. Superficial	420.51	505.90	525.58	562.04	610.31
Vol. Molecular	853.02	963.79	982.03	1057.70	1134.48

Tabela 27 - Propriedades físico químicas calculadas para os compostos (continuação)

	(001	101111114yu0/		
	M15 N	416 1	M17	M18
E. Eletrônica	-46763.210	-33951.144	-57850.834	-28992.026
Rep. Core-core	40329.146	28712.562	50689.728	23824.0453
Energia Total	-6434.064	-5238.582	-7161.1055	-5167.9814
Mom. Dipolar	4.720	5.933	3.955	6.407
HOMO -2	-8.916	-9.149	-8.765	-8.711
HOMO-1	-8.617	-8.498	-8.469	-8.498
HOMO	-8.541	-8.457	-8.356	-7.979
LUMO	-8.270	-8.112	-8.038	-7.262
LUMO+1	-2.653	-2.389	-2.542	-2.884
Polarizab.	52.56	38.40	59.90	31.79
Pot. de Ioniz.	5.0092	5.2518	4.8204	5.8438
Af. Eletrônica	11.8018	11.3172	11.5736	9.3972
Eletroneg.	8.4055	8.2845	8.1970	7.6205
Dureza	0.1355	0.1725	0.1590	0.1792
Á. Superficial	495.78	463.23	592.39	414.39
Vol. Molecular	1184.02	982.92	1369.64	859.81

	201	mposcos(c	Oncinuação	<i>,</i>		
	CS1	CS2	CS3	CS4	CS5	CS6
E Eletrônica	-37855.07	-32140.8	-47889.763	-40783.313	-36119.599	-55269.999
Rep Core-core	31843.562	26927.3	41308.639	34548.826	30241.968	48188.127
E Total	-6011.505	-5213.52	-6591.123	-6234.487	-5877631	-7081.871
Mom Dipolar	26.144	7.835	4.559	5.897	8.051	10.071
HOMO -2	-10.433	-9.221	-8.507	-8.401	-9.659	-7.468
HOMO-1	-9.095	-9.095	-7.962	-8.297	-9.534	-7.133
HOMO	-9.015	-7.605	-7.672	-6.887	-7.884	-6.853
LUMO	-8.614	-7.482	-6.971	-6.806	-7.777	-6.552
LUMO+1	-5.318	-3.673	-2.365	-3.537	-4.106	-4.659
Polarizab	40.39	36.54	45.15	41.48	41.79	53.92
Pot. Ioniz	10.341	8.786	5.463	8.633	9.207	7.092
AfEletrônica	7.288	6.301	9.179	5.059	6.454	6.314
Eletroneg	8.814	7.543	7.321	6.847	7.8305	6.703
Dureza	1.527	1.243	0.349	0.0405	0.0535	0.1505
Á Superficial	604.02	551.75	649.96	643.66	6,22,86	806.6
V Molecular	1040.77	950.84	1180.85	1107.9	10,77,84	1433.43

Tabela 27 - Propriedades físico químicas calculadas para os compostos(continuação)

Tabe	ela 27 - Proj	priedades	físico qu	ímicas ca	lculadas pa	ara os co	ompostos
(continuação)							
		TS1	TS2	TS3	TS4	TS5	TS6
	E Eletrônica	-36016.742	-32270.727	-47762.038	3 -42229.773 ·	-37287.698	-55548.052
	Rep Core-core	30153.492	27057.97	41171.365	36002.968	31417.069	48436.199
	E Total	-5863.25	-5212.758	-6590.672	-6226.804	-5870.628	-7111.852
	Mom Dipolar	8.211	4.257	4.509	9 4.181	8.542	5.397
	HOMO -2	-9.705	-9.239	-8.544	-8.802	-9.556	-8.225
	HOMO-1	-9.547	-9.059	-8.045	-8.018	-8.756	-7.904
	HOMO	-7.808	-8.236	-7.648	-7.239	-8.591	-7.279
	LUMO	-7.709	-7.507	-6.996	-6.903	-8.263	-7.265
	LUMO+1	-4.093	-4.161	-2.451	-2.475	-3.304	-2.716
	Polariz.	40.39	36.54	45.15	5 41.48	41.79	53.92
	Pot. Ioniz	9.189	8.32	5.511	5.268	6.322	5.707
	Af Eletrônica	6.328	7.424	9.133	8 8.874	10.532	8.838
	Eletroneg	7.759	7.872	7.322	2 7.071	8.427	7.272
	Dureza	1.431	0.448	0.326	0.168	0.164	0.007
	Á Superficial	612.05	560.87	645.89	648.09	631.39	804.13
	V Molecular	1047.89	957.92	1117.12	115.46	1084.86	1439.2

102

Figura 49 - Distâncias interatômicas para os compostos modelados

(continuação)

Figura 49 - Comprimento de ligação para os compostos modelados (continuação)

Figura 49 - Comprimento de ligação para os compostos modelados (continuação)

Nas Tabelas de 28 à 53 estão apresentados os ângulos interatômicos mais importantes para o estudo dos compostos de Bases de Schiff modelados neste trabalho.

Um esqueleto base foi utilizado para que fosse possível realizar comparações entre todas as moléculas que compõe esse trabalho. Este esqueleto constitui-se na parte comum a todas as moléculas. A Figura 50 mostra o esqueleto base utilizado.

Figura 50 - Esqueleto base utilizado para os cálculos quimiométricos

Tabela 28 - Ângulos interatômicos do composto CM5

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,295	C3-C4-C5	118,453	C3-C2A4	119,614
Cu-N-C1	112,948	C3-C8-C7	122,080	C3-C8-A5	120,803
Cu-N-C2	121,222	C4-C5-C6	123,718	C4-C5-A8	118,341
Cu-O-C4	116,086	C4-C3-C8	117,878	C5-C6-A7	121,608
O-C4-C3	124,133	C5-C6-C7	116,994	C6-C5-A8	117,940
O-C4-C5	117,284	C6-C7-C8	120,708	C6-C7-A6	119,409
N-C2-C3	124,951	N-C1-A1	113,189	C7-C6-A7	121,375
C1-N-C2	121,663	N-C1-A2	107,029	C7-C8-A5	117,115
C2-C3-C4	125,179	N-C1-A3	104,232	C8-C7-A6	119,879
C2-C3-C8	116,803	N-C2-A4	115,325		

Tabela 29 - Ângulos interatômicos do composto CM6

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,316	C3-C4-C5	118,805	C3-C2A4	119,628
Cu-N-C1	112,962	C3-C8-C7	121,935	C3-C8-A5	120,820
Cu-N-C2	121,165	C4-C5-C6	124,233	C4-C5-A8	116,095
Cu-O-C4	116,090	C4-C3-C8	117,503	C5-C6-A7	125,732
O-C4-C3	123,919	C5-C6-C7	115,565	C6-C5-A8	119,672
O-C4-C5	117,227	C6-C7-C8	121,935	C6-C7-A6	118,982
N-C2-C3	124,882	N-C1-A1	113,173	C7-C6-A7	118,548
C1-N-C2	121,702	N-C1-A2	107,025	C7-C8-A5	117,245
C2-C3-C4	125,394	N-C1-A3	104,237	C8-C7-A6	119,233
C2-C3-C8	116,944	N-C2-A4	115,381		

Tabela 30 - Ângulos interatômicos do composto CM7

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,216	C3-C4-C5	118,58	C3-C2-A4	119,646
Cu-N-C1	112,930	C3-C8-C7	121,99	C3-C8-A5	120,227
Cu-N-C2	121,227	C4-C5-C6	122,53	C4-C5-A8	118,836
Cu-O-C4	116,116	C4-C3-C8	118,38	C5-C6-A7	119,952
O-C4-C3	124,211	C5-C6-C7	118,85	C6-C5-A8	118,624
O-C4-C5	117,157	C6-C7-C8	119,58	C6-C7-A6	119,968
N-C2-C3	125,084	N-C1-A1	113,181	C7-C6-A7	121,179
C1-N-C2	121,720	N-C1-A2	107,031	C7-C8-A5	117,779
C2-C3-C4	125,394	N-C1-A3	104,249	C8-C7-A6	120,442
C2-C3-C8	116,944	N-C2-A4	115,163		

Tabela	31 – Ângu	los inter	atômicos	do composto	CM8
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,239	C3-C4-C5	118,590	C3-C2-A4	119,644

Cu-N-C1	112,934	C3-C8-C7	121,969	C3-C8-A5	120,055
Cu-N-C2	121,221	C4-C5-C6	122,555	C4-C5-A8	118,818
Cu-O-C4	116,103	C4-C3-C8	118,388	C5-C6-A7	119,777
O-C4-C3	124,217	C5-C6-C7	118,814	C6-C5-A8	118,623
O-C4-C5	117,147	C6-C7-C8	119,624	C6-C7-A6	119,898
N-C2-C3	125,094	N-C1-A1	113,184	C7-C6-A7	121,393
C1-N-C2	121,698	N-C1-A2	107,034	C7-C8-A5	117,974
C2-C3-C4	124,937	N-C1-A3	104,240	C8-C7-A6	120,474
C2-C3-C8	116,547	N-C2-A4	115,155		

Tabela 32 - Ângulos interatômicos do composto CM9

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,226	C3-C4-C5	118,52	C3-C2-A4	119,663
Cu-N-C1	112,945	C3-C8-C7	122,19	C3-C8-A5	119,902
Cu-N-C2	121,230	C4-C5-C6	122,54	C4-C5-A8	118,814
Cu-O-C4	116,073	C4-C3-C8	118,37	C5-C6-A7	119,603
O-C4-C3	124,249	C5-C6-C7	119,04	C6-C5-A8	118,639
O-C4-C5	117,183	C6-C7-C8	119,26	C6-C7-A6	120,066
N-C2-C3	125,069	N-C1-A1	113,183	C7-C6-A7	121,340
C1-N-C2	121,704	N-C1-A2	107,034	C7-C8-A5	117,899
C2-C3-C4	124,927	N-C1-A3	104,242	C8-C7-A6	120,670
C2-C3-C8	116,570	N-C2-A4	115,161		

Tabela 33 - Ângulos interatômicos do composto CM10

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,260	C3-C4-C5	118,162	C3-C2A4	119,631
Cu-N-C1	112,934	C3-C8-C7	123,469	C3-C8-A5	120,299
Cu-N-C2	121,246	C4-C5-C6	122,358	C4-C5-A8	118,905
Cu-O-C4	116,023	C4-C3-C8	118,255	C5-C6-A7	119,962
O-C4-C3	124,346	C5-C6-C7	120,355	C6-C5-A8	118,733
O-C4-C5	117,446	C6-C7-C8	117,344	C6-C7-A6	121,131
N-C2-C3	125,039	N-C1-A1	113,187	C7-C6-A7	119,668
C1-N-C2	121,666	N-C1-A2	107,040	C7-C8-A5	116,230
C2-C3-C4	124,945	N-C1-A3	104,238	C8-C7-A6	121,521
C2-C3-C8	116,671	N-C2-A4	115,221		

Tabela	34 – Ângu.	los intera	atômicos (do composto	CM11
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,199	C3-C4-C5	118,453	C3-C2A4	119,709
Cu-N-C1	112,906	C3-C8-C7	122,080	C3-C8-A5	118,146
Cu-N-C2	121,270	C4-C5-C6	123,718	C4-C5-A8	118,948
Cu-O-C4	116,001	C4-C3-C8	117,878	C5-C6-A7	119,303

O-C4-C3	124,580	C5-C6-C7	116,994	C6-C5-A8	118,837
O-C4-C5	117,506	C6-C7-C8	120,708	C6-C7-A6	118,186
N-C2-C3	125,180	N-C1-A1	113,199	C7-C6-A7	119,238
C1-N-C2	121,681	N-C1-A2	107,028	C7-C8-A5	117,842
C2-C3-C4	124,643	N-C1-A3	104,238	C8-C7-A6	125,791
C2-C3-C8	116,768	N-C2-A4	115,006		

ÁtomosÂnguloÁtomosÂnguloÁtomosÂnguloN-Cu-O102,131C3-C4-C5118,469C3-C2A4119,675Cu-N-C1112,944C3-C8-C7121,975C3-C8-A5120,297Cu-N-C2121,115C4-C5-C6122,393C4-C5-A8119,302Cu-O-C4116,444C4-C3-C8118,555C5-C6-A7120,67O-C4-C3123,699C5-C6-C7119,014C6-C5-A8118,306O-C4-C5117,795C6-C7-C8119,537C6-C7-A6120,053N-C2-C3125,203N-C1-A1113,166C7-C6-A7120,308C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,027C6-C7-A6120,405	Tabela	35 – Ângu	los intera	tômicos d	do composto	CM12
N-Cu-O102,131C3-C4-C5118,469C3-C2A4119,675Cu-N-C1112,944C3-C8-C7121,975C3-C8-A5120,297Cu-N-C2121,115C4-C5-C6122,393C4-C5-A8119,302Cu-O-C4116,444C4-C3-C8118,555C5-C6-A7120,67O-C4-C3123,699C5-C6-C7119,014C6-C5-A8118,306O-C4-C5117,795C6-C7-C8119,537C6-C7-A6120,053N-C2-C3125,203N-C1-A1113,166C7-C6-A7120,308C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,027C6-C7-A6120,405	Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
Cu-N-C1112,944C3-C8-C7121,975C3-C8-A5120,297Cu-N-C2121,115C4-C5-C6122,393C4-C5-A8119,302Cu-O-C4116,444C4-C3-C8118,555C5-C6-A7120,67O-C4-C3123,699C5-C6-C7119,014C6-C5-A8118,306O-C4-C5117,795C6-C7-C8119,537C6-C7-A6120,053N-C2-C3125,203N-C1-A1113,166C7-C6-A7120,308C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,027C6-C7-A6120,405	N-Cu-O	102,131	C3-C4-C5	118,469	C3-C2A4	119,675
Cu-N-C2121,115C4-C5-C6122,393C4-C5-A8119,302Cu-O-C4116,444C4-C3-C8118,555C5-C6-A7120,67O-C4-C3123,699C5-C6-C7119,014C6-C5-A8118,306O-C4-C5117,795C6-C7-C8119,537C6-C7-A6120,053N-C2-C3125,203N-C1-A1113,166C7-C6-A7120,308C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,027C6-C7-A6120,405	Cu-N-C1	112,944	C3-C8-C7	121,975	C3-C8-A5	120,297
Cu-O-C4116,444C4-C3-C8118,555C5-C6-A7120,67O-C4-C3123,699C5-C6-C7119,014C6-C5-A8118,306O-C4-C5117,795C6-C7-C8119,537C6-C7-A6120,053N-C2-C3125,203N-C1-A1113,166C7-C6-A7120,308C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,027C6-C7-A6120,405	Cu-N-C2	121,115	C4-C5-C6	122,393	C4-C5-A8	119,302
O-C4-C3123,699C5-C6-C7119,014C6-C5-A8118,306O-C4-C5117,795C6-C7-C8119,537C6-C7-A6120,053N-C2-C3125,203N-C1-A1113,166C7-C6-A7120,308C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,027C7-C8-A5120,405	Cu-O-C4	116,444	C4-C3-C8	118,555	C5-C6-A7	120,67
O-C4-C5117,795C6-C7-C8119,537C6-C7-A6120,053N-C2-C3125,203N-C1-A1113,166C7-C6-A7120,308C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,027C6-C7-A6120,405	O-C4-C3	123,699	C5-C6-C7	119,014	C6-C5-A8	118,306
N-C2-C3125,203N-C1-A1113,166C7-C6-A7120,308C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,021104,263	O-C4-C5	117,795	C6-C7-C8	119,537	C6-C7-A6	120,053
C1-N-C2121,842N-C1-A2107,020C7-C8-A5117,724C2-C3-C4125,088N-C1-A3104,263C8-C7-A6120,405C2-C3-C8116,236N-C2-A4115,021	N-C2-C3	125,203	N-C1-A1	113,166	C7-C6-A7	120,308
C2-C3-C4 125,088 N-C1-A3 104,26 C8-C7-A6 120,405 C2-C3-C8 116,236 N-C2-A4 115,02	C1-N-C2	121,842	N-C1-A2	107,020	C7-C8-A5	117,724
C2-C3-C8 116,236 N-C2-A4 115,02	C2-C3-C4	125,088	N-C1-A3	104,263	C8-C7-A6	120,405
	C2-C3-C8	116,236	N-C2-A4	115,021		

Tabela	36	-	Ângulos	interatômicos	do	composto	CM13
--------	----	---	---------	---------------	----	----------	------

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,08	C3-C4-C5	118,36	C3-C2A4	119,691
Cu-N-C1	112,95	C3-C8-C7	121,95	C3-C8-A5	120,139
Cu-N-C2	121,10	C4-C5-C6	122,52	C4-C5-A8	119,480
Cu-O-C4	116,52	C4-C3-C8	118,60	C5-C6-A7	120,782
O-C4-C3	123,59	C5-C6-C7	118,90	C6-C5-A8	118,000
O-C4-C5	118,00	C6-C7-C8	119,58	C6-C7-A6	119,993
N-C2-C3	125,23	N-C1-A1	113,157	C7-C6-A7	120,302
C1-N-C2	121,85	N-C1-A2	107,023	C7-C8-A5	117,899
C2-C3-C4	125,10	N-C1-A3	104,266	C8-C7-A6	120,414
C2-C3-C8	116,17	N-C2-A4	114,979		

Tabela	37 – Ângu	los intera	atômicos d	do composto	CM14
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,020	C3-C4-C5	118,51	C3-C2A4	119,768
Cu-N-C1	112,970	C3-C8-C7	122,08	C3-C8-A5	120,038
Cu-N-C2	121,082	C4-C5-C6	122,17	C4-C5-A8	119,901
Cu-O-C4	116,422	C4-C3-C8	118,57	C5-C6-A7	120,636
O-C4-C3	123,455	C5-C6-C7	119,31	C6-C5-A8	117,923
O-C4-C5	117,980	C6-C7-C8	119,27	C6-C7-A6	120,127

N-C2-C3	125,142	N-C1-A1	113,132	C7-C6-A7	120,047
C1-N-C2	121,995	N-C1-A2	107,019	C7-C8-A5	117,868
C2-C3-C4	125,179	N-C1-A3	104,293	C8-C7-A6	120,591
C2-C3-C8	116,129	N-C2-A4	114,995		

Tabela	38 – Ângu	los intera	atômicos d	lo composto	CM15
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,295	C3-C4-C5	118,453	C3-C2-A4	122,385
Cu-N-C1	112,948	C3-C8-C7	122,080	C3-C8-A5	121,672
Cu-N-C2	121,222	C4-C5-C6	123,718	C4-C5-A8	118,917
Cu-O-C4	116,086	C4-C3-C8	117,878	C5-C6-A7	119,809
O-C4-C3	124,133	C5-C6-C7	116,994	C6-C5-A8	118,201
O-C4-C5	117,284	C6-C7-C8	120,708	C6-C7-A6	119,809
N-C2-C3	124,951	N-C1-A1	113,863	C7-C6-A7	121,176
C1-N-C2	121,663	N-C1-A2	107,400	C7-C8-A5	112,967
C2-C3-C4	125,179	N-C1-A3	107,330	C8-C7-A6	120,667
C2-C3-C8	116,803	N-C2-A4	119,287		

Tabela	39 – Ângu	los intera	atômicos d	do composto	CM16
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	100,575	C3-C4-C5	120,378	C3-C2A4	122,522
Cu-N-C1	109,236	C3-C8-C7	124,085	C3-C8-A5	122,367
Cu-N-C2	121,881	C4-C5-C6	122,705	C4-C5-A8	118,925
Cu-O-C4	112,270	C4-C3-C8	115,186	C5-C6-A7	121,069
O-C4-C3	124,211	C5-C6-C7	117,981	C6-C5-A8	118,370
O-C4-C5	115,366	C6-C7-C8	119,644	C6-C7-A6	119,792
N-C2-C3	120,426	N-C1-A1	114,847	C7-C6-A7	120,948
C1-N-C2	128,337	N-C1-A2	107,060	C7-C8-A5	113,523
C2-C3-C4	126,093	N-C1-A3	106,18 ⁻	C8-C7-A6	120,564
C2-C3-C8	118,667	N-C2-A4	117,04 <i>1</i>		

Tabela	40 - Ângu	los intera	atômicos d	do composto	CM17
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	101,448	C3-C4-C5	122,06	C3-C2A4	122,343
Cu-N-C1	107,912	C3-C8-C7	124,779	C3-C8-A5	121,947
Cu-N-C2	123,352	C4-C5-C6	120,910	C4-C5-A8	120,414
Cu-O-C4	112,130	C4-C3-C8	113,699	C5-C6-A7	121,164
O-C4-C3	123,117	C5-C6-C7	118,819	C6-C5-A8	119,959
O-C4-C5	114,774	C6-C7-C8	119,395	C6-C7-A6	119,876
N-C2-C3	118,303	N-C1-A1	113,779	C7-C6-A7	119,959
C1-N-C2	125,919	N-C1-A2	107,300	C7-C8-A5	113,058
C2-C3-C4	127,797	N-C1-A3	107,50 <i>1</i>	C8-C7-A6	120,665

C2-C3-C8	118,378	N-C2-A4	119,351

Tabela	41 -Ângul	os intera	tômicos d	lo composto	CM18
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	101,826	C3-C4-C5	120,016	C3-C2A4	119,929
Cu-N-C1	113,018	C3-C8-C7	121,608	C3-C8-A5	121,084
Cu-N-C2	121,002	C4-C5-C6	120,077	C4-C5-A8	119,967
Cu-O-C4	115,669	C4-C3-C8	118,288	C5-C6-A7	119,668
O-C4-C3	123,613	C5-C6-C7	120,562	C6-C5-A8	119,955
O-C4-C5	116,332	C6-C7-C8	119,357	C6-C7-A6	120,185
N-C2-C3	124,719	N-C1-A1	112,894	C7-C6-A7	119,761
C1-N-C2	122,657	N-C1-A2	107,039	C7-C8-A5	117,295
C2-C3-C4	125,184	N-C1-A3	104,580	C8-C7-A6	120,452
C2-C3-C8	116,402	N-C2-A4	115,259		

Tabela	42	-	Ângulos	interatômicos	do	composto	CS1	
--------	----	---	---------	---------------	----	----------	-----	--

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	104,450	C3-C4-C5	120,067	C3-C2A4	118,360
Cu-N-C1	110,047	C3-C8-C7	121,061	C3-C8-A5	119,975
Cu-N-C2	118,986	C4-C5-C6	120,497	C4-C5-A8	120,053
Cu-O-C4	114,557	C4-C3-C8	118,480	C5-C6-A7	119,606
O-C4-C3	122,110	C5-C6-C7	119,881	C6-C5-A8	119,400
O-C4-C5	117,765	C6-C7-C8	119,97	C6-C7-A6	120,273
N-C2-C3	121,439	N-C1-A1	106,721	C7-C6-A7	120,505
C1-N-C2	129,150	N-C1-A2	117,060	C7-C8-A5	118,923
C2-C3-C4	123,456	N-C1-A3	106,209	C8-C7-A6	119,743
C2-C3-C8	117,598	N-C2-A4	119,851		

Tabela	43 - Âng	ulos inte:	ratômicos	do compos	to CS2
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	104,454	C3-C4-C5	120,097	C3-C2A4	118,369
Cu-N-C1	110,049	C3-C8-C7	121,014	C3-C8-A5	120,231
Cu-N-C2	118,973	C4-C5-C6	120,441	C4-C5-A8	120,081
Cu-O-C4	114,520	C4-C3-C8	118,448	C5-C6-A7	119,965
O-C4-C3	122,079	C5-C6-C7	119,847	C6-C5-A8	119,427
O-C4-C5	117,764	C6-C7-C8	120,110	C6-C7-A6	120,045
N-C2-C3	121,423	N-C1-A1	106,71	C7-C6-A7	120,179
C1-N-C2	129,177	N-C1-A2	117,06	C7-C8-A5	118,716
C2-C3-C4	123,466	N-C1-A3	106,22	C8-C7-A6	119,830
C2-C3-C8	117,629	N-C2-A4	119,862		

Tabela	44 - Âng	ulos inter	ratômicos	do compos	to CS3
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	102,422	C3-C4-C5	120,375	C3-C2-A4	118,130
Cu-N-C1	110,086	C3-C8-C7	120,943	C3-C8-A5	119,872
Cu-N-C2	117,841	C4-C5-C6	119,633	C4-C5-A8	123,323
Cu-O-C4	114,299	C4-C3-C8	118,591	C5-C6-A7	120,149
O-C4-C3	122,105	C5-C6-C7	120,327	C6-C5-A8	117,034
O-C4-C5	117,518	C6-C7-C8	120,003	C6-C7-A6	119,888
N-C2-C3	121,954	N-C1-A1	106,553	C7-C6-A7	119,478
C1-N-C2	129,691	N-C1-A2	117,063	C7-C8-A5	119,180
C2-C3-C4	125,231	N-C1-A3	106,284	C8-C7-A6	120,098
C2-C3-C8	115,938	N-C2-A4	119,731		

Tabela 45 - Ângulos interatômicos do composto CS4

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	104,327	C3-C4-C5	117,422	C3-C2A4	118,385
Cu-N-C1	110,081	C3-C8-C7	120,585	C3-C8-A5	120,197
Cu-N-C2	118,829	C4-C5-C6	120,887	C4-C5-A8	118,191
Cu-O-C4	114,686	C4-C3-C8	118,512	C5-C6-A7	120,515
O-C4-C3	121,514	C5-C6-C7	120,203	C6-C5-A8	122,234
O-C4-C5	117,845	C6-C7-C8	120,238	C6-C7-A6	119,982
N-C2-C3	121,463	N-C1-A1	106,700	C7-C6-A7	119,274
C1-N-C2	129,299	N-C1-A2	107,039	C7-C8-A5	118,776
C2-C3-C4	123,626	N-C1-A3	106,239	C8-C7-A6	119,765
C2-C3-C8	116,803	N-C2-A4	119,838		

Tabela 46 - Ângulos interatômicos do composto CS5

Ângulo	Átomos	Ângulo	Átomos	Ângulo
104,462	C3-C4-C5	120,079	C3-C2-A4	118,366
110,059	C3-C8-C7	121,030	C3-C8-A5	120,073
118,970	C4-C5-C6	120,472	C4-C5-A8	120,065
114,533	C4-C3-C8	118,468	C5-C6-A7	119,741
112,096	C5-C6-C7	119,868	C6-C5-A8	119,413
117,767	C6-C7-C8	120,040	C6-C7-A6	120,207
121,431	N-C1-A1	106,720	C7-C6-A7	120,383
129,159	N-C1-A2	117,052	C7-C8-A5	118,856
123,469	N-C1-A3	106,215	C8-C7-A6	119,738
117,600	N-C2-A4	119,855		
	Ângulo 104,462 110,059 118,970 114,533 112,096 117,767 121,431 129,159 123,469 117,600	ÂnguloÁtomos104,462C3-C4-C5110,059C3-C8-C7118,970C4-C5-C6114,533C4-C3-C8112,096C5-C6-C7117,767C6-C7-C8121,431N-C1-A1129,159N-C1-A2123,469N-C1-A3117,600N-C2-A4	ÂnguloÁtomosÂngulo104,462C3-C4-C5120,079110,059C3-C8-C7121,030118,970C4-C5-C6120,472114,533C4-C3-C8118,468112,096C5-C6-C7119,868117,767C6-C7-C8120,040121,431N-C1-A1106,720129,159N-C1-A2117,052123,469N-C1-A3106,215117,600N-C2-A4119,855	ÂnguloÁtomosÂnguloÁtomos104,462C3-C4-C5120,079C3-C2-A4110,059C3-C8-C7121,030C3-C8-A5118,970C4-C5-C6120,472C4-C5-A8114,533C4-C3-C8118,468C5-C6-A7112,096C5-C6-C7119,868C6-C5-A8117,767C6-C7-C8120,040C6-C7-A6121,431N-C1-A1106,720C7-C6-A7129,159N-C1-A2117,052C7-C8-A5123,469N-C1-A3106,214C8-C7-A6117,600N-C2-A4119,854C8-C7-A6

Tabela	47 - Âng	ulos inte	ratômicos	do compo	sto CS6
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	104,460	C3-C4-C5	120,145	C3-C2A4	118,404

Cu-N-C1	110,058	C3-C8-C7	121,062	C3-C8-A5	120,203
Cu-N-C2	118,911	C4-C5-C6	120,627	C4-C5-A8	119,805
Cu-O-C4	114,383	C4-C3-C8	118,394	C5-C6-A7	119,910
O-C4-C3	122,074	C5-C6-C7	119,392	C6-C5-A8	119,508
O-C4-C5	117,715	C6-C7-C8	120,338	C6-C7-A6	120,201
N-C2-C3	121,381	N-C1-A1	106,701	C7-C6-A7	120,691
C1-N-C2	129,248	N-C1-A2	117,037	C7-C8-A5	118,700
C2-C3-C4	123,489	N-C1-A3	106,253	C8-C7-A6	119,442
C2-C3-C8	117,682	N-C2-A4	119,888		

Tabela 48 - Ângulos interatômicos do composto TS1

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	103,877	C3-C4-C5	120,106	C3-C2A4	118,245
Cu-N-C1	109,791	C3-C8-C7	120,866	C3-C8-A5	119,968
Cu-N-C2	117,630	C4-C5-C6	120,346	C4-C5-A8	120,097
Cu-O-C4	112,626	C4-C3-C8	118,641	C5-C6-A7	119,559
O-C4-C3	121,419	C5-C6-C7	119,961	C6-C5-A8	119,478
O-C4-C5	118,377	C6-C7-C8	120,024	C6-C7-A6	120,253
N-C2-C3	121,048	N-C1-A1	105,285	C7-C6-A7	120,468
C1-N-C2	122,873	N-C1-A2	118,041	C7-C8-A5	119,114
C2-C3-C4	122,642	N-C1-A3	109,088	C8-C7-A6	119,705
C2-C3-C8	118,051	N-C2-A4	119,482		

Tabela 49 - Ângulos interatômicos do composto TS2

Ângulo	Átomos	Ângulo	Átomos	Ângulo
103,898	C3-C4-C5	120,127	C3-C2A4	118,230
109,805	C3-C8-C7	120,827	C3-C8-A5	120,225
117,644	C4-C5-C6	120,295	C4-C5-A8	120,123
112,660	C4-C3-C8	118,614	C5-C6-A7	119,921
121,406	C5-C6-C7	119,930	C6-C5-A8	119,513
118,371	C6-C7-C8	120,152	C6-C7-A6	120,024
121,062	N-C1-A1	105,283	C7-C6-A7	120,137
122,843	N-C1-A2	118,048	C7-C8-A5	118,895
122,651	N-C1-A3	109,097	C8-C7-A6	119,805
118,067	N-C2-A4	119,479		
	Ângulo 103,898 109,805 117,644 112,660 121,406 118,371 121,062 122,843 122,651 118,067	ÂnguloÁtomos103,898C3-C4-C5109,805C3-C8-C7117,644C4-C5-C6112,660C4-C3-C8121,406C5-C6-C7118,371C6-C7-C8121,062N-C1-A1122,843N-C1-A2122,651N-C1-A3118,067N-C2-A4	ÂnguloÁtomosÂngulo103,898C3-C4-C5120,127109,805C3-C8-C7120,827117,644C4-C5-C6120,295112,660C4-C3-C8118,614121,406C5-C6-C7119,930118,371C6-C7-C8120,152121,062N-C1-A1105,283122,843N-C1-A2118,048122,651N-C1-A3109,097118,067N-C2-A4119,475	ÂnguloÁtomosÂnguloÁtomos103,898C3-C4-C5120,127C3-C2A4109,805C3-C8-C7120,827C3-C8-A5117,644C4-C5-C6120,295C4-C5-A8112,660C4-C3-C8118,614C5-C6-A7121,406C5-C6-C7119,930C6-C5-A8118,371C6-C7-C8120,152C6-C7-A6121,062N-C1-A1105,283C7-C6-A7122,843N-C1-A2118,048C7-C8-A5122,651N-C1-A3109,097C8-C7-A6118,067N-C2-A4119,475C6-C7-A6

Tabela 50 - Ângulos interatômicos do composto TS3

Ângulo	Átomos	Ângulo	Átomos	Ângulo
101,997	C3-C4-C5	120,416	C3-C2A4	118,015
109,792	C3-C8-C7	120,778	C3-C8-A5	119,889
116,277	C4-C5-C6	119,459	C4-C5-A8	123,581
112,336	C4-C3-C8	118,759	C5-C6-A7	120,104
121,341	C5-C6-C7	120,440	C6-C5-A8	116,955
	Ângulo 101,997 109,792 116,277 112,336 121,341	ÂnguloÁtomos101,997C3-C4-C5109,792C3-C8-C7116,277C4-C5-C6112,336C4-C3-C8121,341C5-C6-C7	ÂnguloÁtomosÂngulo101,997C3-C4-C5120,416109,792C3-C8-C7120,778116,277C4-C5-C6119,459112,336C4-C3-C8118,759121,341C5-C6-C7120,440	ÂnguloÁtomosÂnguloÁtomos101,997C3-C4-C5120,416C3-C2A4109,792C3-C8-C7120,778C3-C8-A5116,277C4-C5-C6119,459C4-C5-A8112,336C4-C3-C8118,759C5-C6-A7121,341C5-C6-C7120,440C6-C5-A8

O-C4-C5	118,233	C6-C7-C8	120,035	C6-C7-A6	119,871
N-C2-C3	121,838	N-C1-A1	105,429	C7-C6-A7	119,425
C1-N-C2	122,714	N-C1-A2	117,864	C7-C8-A5	119,330
C2-C3-C4	124,468	N-C1-A3	109,095	C8-C7-A6	120,087
C2-C3-C8	116,393	N-C2-A4	119,271		

Átomos Ângulo Átomos Ângulo Átomos Ângulo N-Cu-O 103,777 C3-C4-C5 120,623 C3-C2A4 118,28 Cu-N-C1 109,797 C3-C8-C7 120,694 C3-C8-A5 120,29	
N-Cu-O103,777C3-C4-C5120,623C3-C2A4118,28Cu-N-C1109,797C3-C8-C7120,694C3-C8-A5120,29	2
Cu-N-C1 109,797 C3-C8-C7 120,694 C3-C8-A5 120,29	36
	92
Cu-N-C2 117,459 C4-C5-C6 119,400 C4-C5-A8 118,20)8
Cu-O-C4 112,689 C4-C3-C8 118,675 C5-C6-A7 120,47	71
O-C4-C3 120,830 C5-C6-C7 120,275 C6-C5-A8 122,33	39
O-C4-C5 118,450 C6-C7-C8 120,287 C6-C7-A6 119,96	51
N-C2-C3 121,070 N-C1-A1 105,298 C7-C6-A7 119,24	15
C1-N-C2 123,038 N-C1-A2 118,03 C7-C8-A5 118,96	38
C2-C3-C4 122,798 N-C1-A3 109,05 C8-C7-A6 119,72	29
C2-C3-C8 117,902 N-C2-A4 119,49	

Tabela 52 - Ângulos interatômicos do composto TS5

Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	103,901	C3-C4-C5	120,110	C3-C2-A4	118,232
Cu-N-C1	109,807	C3-C8-C7	120,852	C3-C8-A5	120,07
Cu-N-C2	117,637	C4-C5-C6	120,328	C4-C5-A8	120,109
Cu-O-C4	112,654	C4-C3-C8	118,631	C5-C6-A7	119,698
O-C4-C3	121,418	C5-C6-C7	119,949	C6-C5-A8	119,494
O-C4-C5	118,377	C6-C7-C8	120,075	C6-C7-A6	120,181
N-C2-C3	121,063	N-C1-A1	105,282	C7-C6-A7	120,342
C1-N-C2	122,846	N-C1-A2	118,051	C7-C8-A5	119,025
C2-C3-C4	122,650	N-C1-A3	109,098	C8-C7-A6	119,725
C2-C3-C8	118,046	N-C2-A4	119,478		

Tabela	53 - Âng	ulos inter	catômicos	do compos	to TS6
Átomos	Ângulo	Átomos	Ângulo	Átomos	Ângulo
N-Cu-O	103,914	C3-C4-C5	120,187	C3-C2A4	118,289
Cu-N-C1	109,783	C3-C8-C7	120,879	C3-C8-A5	120,198
Cu-N-C2	117,565	C4-C5-C6	120,486	C4-C5-A8	119,847
Cu-O-C4	112,463	C4-C3-C8	118,549	C5-C6-A7	119,850
O-C4-C3	121,396	C5-C6-C7	119,464	C6-C5-A8	119,588
O-C4-C5	118,309	C6-C7-C8	120,385	C6-C7-A6	120,179
N-C2-C3	121,000	N-C1-A1	105,291	C7-C6-A7	120,674
C1-N-C2	122,987	N-C1-A2	118,028	C7-C8-A5	118,879

C2-C3-C4	122,673	N-C1-A3	109,090	C8-C7-A6	119,416
C2-C3-C8	118,149	N-C2-A4	119,526		

A Figura 51 nos mostra os compostos modelados com suas respectivas cargas atômicas calculadas.

Figura 51 - Cargas atômicas calculadas para os compostos modelados

117

Figura 51 - Cargas atômicas calculadas para os compostos modelados (continuação)

Figura 51 - Cargas atômicas calculadas para os compostos modelados (continuação)

Figura 51 - Cargas atômicas calculadas para os compostos modelados (continuação)

Figura 51 - Cargas atômicas calculadas para os compostos modelados (continuação)

Figura 51 - Cargas atômicas calculadas para os compostos modelados (continuação)

A Figura 52 nos mostra os compostos modelados com suas respectivas ordens de ligação calculadas.

Figura 52 - ordem de ligação calculada para os compostos modelados

Figura 52 - ordem de ligação calculada para os compostos modelados (continuação)

Figura 52 - ordem de ligação calculada para os compostos modelados (continuação)

Figura 52 - ordem de ligação calculada para os compostos modelados (continuação)

Figura 52 - ordem de ligação calculada para os compostos modelados (continuação)

Figura 52 - ordem de ligação calculada para os compostos modelados (continuação)

Na Figura 53 estão esquematizados os orbitais HOMO-2, HOMO-1 e HOMO para todos os compostos modelados. As regiões em verde representam contribuições positivas e em violeta as contribuições negativas.

HOMO-1

HOMO

Figura 53 - orbitais HOMO, HOMO-1 e HOMO-2(continuação)

Figura 53 - orbitais HOMO, HOMO-1 e HOMO-2 (con

(continuação)

Figura 53 - orbitais HOMO, HOMO-1 e HOMO-2 (continuação)

Figura 53 - orbitais HOMO, HOMO-1 e HOMO-2 (continuação)

A Figura 54 expõe os orbitais LUMO e LUMO+1 calculados para todos os compostos modelados. As regiões em verde representam as contribuições positivas e em violeta as negativas.

Figura 54 - orbitais LUMO e LUMO+1 para as bases de Schiff modeladas

Figura 54 - orbitais LUMO e LUMO+1 (continuação)

Figura 54 - orbitais LUMO e LUMO+1 (continuação)

A Figura 55 contém a representação dos gráficos de potencial eletrostático para cada uma dos compostos modelados e suas respectivas escalas, com a cor verde representando potencial positivo e a violeta potencial negativo.

CM8 CM9 CM10 Figura 55 - diagrama de potencial eletrostático para os compostos modelados

modeladas

modeladas

Os resultados apresentados nas Tabelas e Figuras mostram que as estruturas dos compostos analisados demonstram grande regularidade e semelhança. As pequenas distâncias variações encontradas nas е ângulos das estruturas estão relacionadas às variações nos átomos ou grupos substituintes, causando também pequenas variações na polarizabilidade, no volume molecular e no momento dipolar em especial.

Maiores variações não são encontradas devido à rigidez do esqueleto base dos compostos, compreendendo o anel aromático ligado a um carbono sp². Fato que explica a restrição de graus de liberdade nas estruturas, salvo nos substituintes.

Para o estudo das cargas atômicas foi utilizado o método baseado no potencial eletrostático. Todos os átomos de hidrogênio possuem cargas positivas, como o esperado. Para os átomos de carbono foram encontradas cargas negativas, com exceção dos átomos ligados a outros mais eletronegativos, como os de oxigênio, nitrogênio, cloro e bromo.

A ordem de ligação entre os átomos de carbonos aromáticos está em torno de 1,41, o que enfatiza o caráter de ressonância dessas ligações, em todos os compostos. Já as ordens de ligação com os heteroátomos estão em valores considerados normais. As ligações carbono-hidrogênio apresentam valores próximos de 1,00, comprovando o caráter de ligação simples, como o esperado.

V - ANÁLISE ESTATÍSTICA DOS DADOS

Após a realização dos cálculos teóricos e obtenção dos parâmetros moleculares e propriedades físicoquímicas para os compostos, os dados foram submetidos à análise estatística para identificar a possibilidade de correlação destas propriedades com a atividade catalítica dos compostos de bases de Schiff frente à conversão sulfeto-sulfóxido.

Na primeira fase desse processo, foi efetuada a análise exploratória dos dados através de PCA (análise de componentes principais) e HCA (análise hierárquica de agrupamentos), na tentativa de obter, deste modo, as variáveis mais importantes relacionadas à eficiência catalítica dos compostos estudados.

Posteriormente, foi realizada a previsão da possível atividade dos compostos que tiveram suas estruturas determinadas neste trabalho e que não foram submetidos a testes de catálise.

Foram analisadas 104 variáveis:

- Energia Eletrônica em (eV);
- Energia core-core em (eV);
- Energia Total em (eV);
- Potencial de Ionização em (eV);
- Energia do HOMO -2 em (eV);
- Energia do HOMO -1 em (eV);
- Energia do HOMO em (eV);
- Energia do LUMO em (eV);
- Energia do LUMO + 1 em (eV);
- Eletronegatividade em (eV);
- Momento de Dipolo (Debye);

- Polarizabilidade em (Å³);
- Área em (Å²);
- Volume em $(Å^3);$
- Afinidade Eletrônica em (eV);
- Dureza em (eV);
- Ordens de ligação (20 variáveis)
- Distâncias de ligação em (Å) (20 variáveis)
- Ângulos interatômicos (29 variáveis)
- Cargas atômicas (19 variáveis)

A Figura 51 deve utilizada para auxiliar as comparações.

Figura 51 - Esqueleto base utilizado para os cálculos quimiométricos

A Tabela 54 mostra os resultados obtidos nas análises de atividade catalítica das moléculas estudadas.

Esses dados foram extraídos de experimentos laboratoriais previamente executados pela Msc. Sandra Romera, sob a orientação do Prof. Edward Ralph Dockal no Laboratório de Sínteses Inorgânicas, Catálise e cinética LSICC/DQ-UFSCar.

Compostos trans	Agente oxidante utilizado	% sulfeto reagido
TS01	H_2O_2	73,5
	tbuOOH	26,5
TS02	H ₂ O ₂	28,0
	tbuOOH	11,5
TS03	H ₂ O ₂	27,5
	tbuOOH	18,5
TS04	H ₂ O ₂	22,0
	tbuOOH	16,0
TS05	H ₂ O ₂	25,5
	tbuOOH	32,0
TS06	H ₂ O ₂	36,0
	tbuOOH	19,0
Sem catalisador	H ₂ O ₂	21,5
	tbuOOH	11,5

Tabela 54: Atividade catalítica das moléculas estudadas

Todos os compostos submetidos ao estudo neste trabalho apresentaram excelentes resultados quanto а catálise de conversão de sulfeto em sulfóxido, tanto na utilização de tbuOOH como de H₂O₂ como doadores de oxigênio. Dessa forma foi necessário um tratamento diferente na aplicação dos métodos estatísticos e na observação dos resultados, posto que, na grande maioria dos trabalhos quimiométricos, é comum encontrar а separação entre classes de compostos ativos e compostos inativos.

Neste caso em especial, uma única classe foi considerada: a classe dos compostos ativos. A partir dessa realidade, o trabalho se ateve em explicar, da forma mais completa possível, quais as variáveis abordadas são as que melhor explicam tal comportamento.

Na Figura 56 apresenta-se o gráfico de *escores* para todas as amostras antes de qualquer tratamento. Na Figura 58 está o gráfico de *loadings* com todas as variáveis sem tratamento algum também.

Figura 56 - Gráfico de escores para todas as amostras, sem tratamento.

tratamento.

148

O gráfico de escores já aponta para uma tendência das estruturas cis exibirem um comportamento natural semelhante ao das estruturas *trans* ativas. Nota-se uma aglomeração dessas estruturas na região esquerda do gráfico de escores. Este fato indica claramente que as amostras dos isômeros cis seriam bons candidatos à catalisadores e de demais estruturas iqual eficiência. As encontram-se aglomeradas na região à direita, salvo os compostos de siglas M15, M16 e M17.

O dendograma exposto na Figura 58 reforça a similaridade entre os compostos *cis* e *trans* perante todas as variáveis estudadas nesse trabalho.

Figura 58 - Dendograma envolvendo todas as amostras.

O primeiro passo da análise exploratória de dados consistiu em retirar as amostras de atividade catalítica desconhecida. Desse modo, contando apenas com as amostras *trans* TS1, TS2, TS3, TS4, TS5, TS6 e *cis* CS1, CS2, CS3, CS4, CS5, CS6, foi efetuado um primeiro ensaio de PCA e HCA.

Através da observação dos gráficos de *loadings* e escores efetuou-se a retirada das variáveis que, a princípio, não demonstravam influência sobre a posição das amostras de atividade conhecida. Essas variáveis foram retiradas cuidadosamente, uma a uma, seguidas de verificação cautelosa sobre a melhora dos resultados, sobretudo nos valores de variância e de porcentagem cumulativa.

Concomitantemente o dendograma HCA era observado a fim de verificar o agrupamento das amostras.

A cada passo de remoção ou inserção de variáveis eram executados novamente a análise de HCA e de PCA e a verificado o comportamento dos compostos.

A Figura 59 mostra o gráfico final de *escores* para o modelo gerado.

As variáveis que melhor descreveram as amostras de atividade catalítica comprovada foram no total 21, sendo elas: Momento de Dipolo, Potencial de Ionização, cargas sobre os átomos C6 e C8, comprimento das ligações entre os átomos: Cu-O, C2-C3, C3-C4, C4-O, C4-C5, C5-C6, C8-C3 e C7-A6, ângulos de ligação entre os átomos: N-Cu-O, C2-C3-C4, C3-C8-C7 e C5-C6-C7 e os valores da ordem de ligação entre os átomos: C4-O, C5-C6, C6-C7, C8-C3 e C2-A4.

A Figura 60 mostra o gráfico de *loadings* após a retirada das variáveis excedentes para a geração do modelo.

Neste estágio os valores de variância e porcentagem cumulativo mostravam 88,6% de verificação positiva para as primeiras quatro componentes principais, conforme pode ser visto na Tabela 55.

Tabela	55	-	Porcentagem	acun	nulada	para	о	modelo	estatístico	gerado
			Uaria	anc	Perce	ent 🗆	Сu	mulat		

	varianc		Canarac
PC 1	54.7075	49.7341	49.7341
PC 2	21.9304	19.9367	69.6708
PC 3	12.0203	10.9276	80.5985
PC 4	8.46594	7.69631	88.2948

Este resultado sugere que as outras 83 variáveis não são relevantes para explicar a atividade catalítica dos compostos.

Na classificação via HCA utilizou-se o método incremental que resultou em uma melhor visualização da similaridade entre compostos e grupos de compostos *cis* e *trans* como observado na Figura 61. As linhas horizontais representam os compostos com atividade conhecida, e as linhas verticais representam os valores de similaridade entre os pares de compostos, e a similaridade entre os grupos de compostos.

A etapa seguinte do estudo quimiométrico foi a previsão da atividade catalítica dos demais compostos aqui abordados, utilizando o mesmo modelo. Desse modo, passou-se para a etapa de inserção das moléculas de atividade desconhecida no modelo criado. Na Tabela 56 são apresentadas as variâncias (autovalores) para as 4 primeiras componentes

Tabela 56 - Valores de Variância para as 4 primeiras componentes principais

principais.

	Varianc	Percent	Cumulat
PC 1	107.650	50.8226	50.8226
PC 2	39.7346	12.1666	62.9892
PC 3	35.2832	11.3829	74.3722
PC 4	33.0106	9.89087	84.2630

De acordo com a Tabela 6 pode-se verificar que as quatro primeiras componentes principais explicam 84,26% da variância total dos dados. Estas quatro primeiras componentes principais são suficientes para demonstrar que algumas amostras atenderiam com êxito as exigências para atuar como bons catalisadores frente à conversão de sulfeto a sulfóxido.

Os valores dos *loadings* das variáveis selecionadas para as quatro componentes principais estão na Tabela 57.

A Tabela 58 apresenta os *escores* dos compostos para as 4 componentes principais.

Tabela 57 - Escores das variáveis para as componentes principais

	PC 1	PC 2	PC 3	PC 4
TS1	2.73940	0.46493	-0.2110	1.29888
TS2	1.92239	-0.3332	-1.9921	0.46031
TS3	-0.4740	-0.1375	-0.7985	-2.2499
TS4	1.31815	-0.8925	-2.0965	-0.6751
TS5	2.11390	-0.5664	0.51232	0.71307
TS6	1.40335	-1.8479	-0.9782	0.51630
CS1	2.26985	1.07490	-1.0964	1.49642
CS2	1.43489	-1.1286	-0.5187	0.01500
CS3	-0.8655	-0.0857	-0.6587	-2.1884
CS4	-0.1215	-0.3127	-0.3095	-2.0353
CS5	2.42052	0.70097	0.10259	1.52398
CS6	1.91490	-0.9798	0.34109	0.65599
M1	-0.7138	-1.0345	1.93585	0.42531
M2	-0.5533	-0.7920	2.02694	0.14627
MB	-0.9486	-0.3673	0.14532	-0.5937
M4	0.42348	-0.7540	0.66521	-1.7424
M5	-0.6022	-0.7265	0.74798	0.49768
M6	-0.6744	-0.2852	0.47144	0.10096
M7	0.88740	4.98300	-0.2427	-0.8388
M8	-0.4440	-0.4333	1.31465	-0.4921
M9	-0.0391	0.77254	0.71812	0.29931
M10	-0.6717	0.62402	0.06533	-0.5761
M11	-0.7610	0.53403	0.16216	-0.4112
M12	0.24810	0.43892	1.23610	0.08871
M13	0.20435	0.48600	1.45058	0.40005
M14	-0.0568	0.74229	1.19621	0.41797
M15	-5.1994	-0.2643	-1.2738	1.78073
M16	-2.8865	U.13734	Ø.16251	-0.1181
M17	-5.3963	U.49251	-1.4836	1.37695
M18	1.10802	-0.5092	-1.5941	-0.2921

Tabela 58 - Valores de loadings para as quatro componentes principais.

	PC 1	PC 2	PC 3	PC 4
MOM.DI	0.01729	0.31292	0.01721	-0.2367
POT.IO	0.14970	0.22468	0.05489	0.23440
qC6	-0.0657	0.25035	-0.3397	-0.2735
qC8	0.03522	-0.1055	-0.3071	-0.2546
CuO	0.21379	0.24871	0.27922	-0.0360
C2C3	0.27954	-0.2134	0.09285	0.03273
C3C4	0.20589	0.17801	-0.1467	0.24743
C40	-0.2361	0.20116	0.19991	0.18907
C4C5	-0.2031	-0.2414	0.34555	-0.2053
C5C6	0.26557	0.14410	-0.2662	0.16658
C8C3	-0.1900	-0.2047	0.36660	-0.1328
C7A6	-0.0142	0.34605	0.17346	0.31803
NCu0	0.29062	0.08805	-0.0134	-0.0799
C2C3C4	-0.2840	-0.1467	-0.1468	0.08156
C3C8C7	-0.2290	-0.1450	-0.1736	0.40029
C5C6C7	0.17278	-0.1224	0.34387	0.38087
OLC40	-0.2675	0.30664	0.01447	-0.0132
0LC5C6	-0.2998	0.16161	-0.0103	0.16070
OLC6C7	0.29839	-0.1952	0.03985	0.00320
0LC8C3	0.30740	-0.1477	0.01533	-0.0188
OLC2A4	-0.0956	-0.3347	-0.3343	0.34141

A Figura 62 apresenta o gráfico dos *escores* para PC1 e PC2. Neste gráfico, é possível observar que alguns compostos em azul (atividade desconhecida) se miscigenam com parte dos compostos em vermelho (atividade conhecida).

A análise do dendograma de HCA, na Figura 63, também aponta para a miscigenação com apreciáveis valores de similaridade entre os compostos de atividade conhecida (CS1, CS2, CS3, CS4, CS5, CS6, TS1, TS2, TS3, TS5 e TS6) e compostos de atividade até então TS4. desconhecida (M1, M2, M3, M4, M5, M6, M8, M9, M10, M11, M13, M14, M16, e M18). Observa-se também no M12. gráfico de escores, que os compostos M15 e M17, mais afastados dos compostos em vermelho, também apresentam similaridade iqual à zero no gráfico dendograma, sendo um forte indício para classificá-las como catalisadores não tão bons quanto os compostos atividade de comprovada. O mesmo acontece para a amostra de sigla M7, que se apresenta deslocada do grande grupo de miscigenação.

Figura 63 - Dendograma de HCA com todas as amostras

Analisando os resultados obtidos neste trabalho, tem-se que o modelo gerado no processo quimiométrico é satisfatório porque as variáveis importantes envolvem parâmetros estéricos e eletrônicos.

foi possível, Observa-se êxito, que com а separação entre as moléculas ativas e inativas para o efeito catalítico aqui abordado. Para tanto, apenas quatro componentes principais foram necessárias, que juntas, explicam 84,26% da variância total dos dados. E finalmente verificou-se que 21 propriedades foram suficientes para explicar o comportamento desses compostos, sendo elas: Momento Dipolo, Potencial de Ionização, cargas sobre os átomos C6 e C8, comprimento das ligações entre os átomos: Cu-O, C2-C3, C3-C4, C4-O, C4-C5, C5-C6, C8-C3 e C7-A6,

ângulos de ligação presente entre os átomos: N-Cu-O, C2-C3-C4, C3-C8-C7 e C5-C6-C7 e os valores das ordem de ligação entre os átomos: C4-O, C5-C6, C6-C7, C8-C3 e C2-A4.

A Tabela 59 mostra a classificação final dos compostos segundo nosso estudo, exaltando quais seriam compostos candidatos à obterem o mesmo sucesso catalítico dos que foram previamente testados.

Tabela	59 - Classificação final	da atividade	catalítica
Nome	Atividade	Nome	Atividade
CS1	Ativa	М7	Inativa
CS2	Ativa	M8	Possível ativa
CS3	Ativa	м9	Possível
			ativa
CS4	Ativa	M10	Possível ativa
CS5	Ativa	M11	Possível ativa
CS6	Ativa	M12	Possível ativa
M1	Possível ativa	M13	Possível ativa
M2	Possível ativa	M14	Possível ativa
м3	Possível ativa	M15	Inativa
M4	Possível ativa	M16	Inativa
М5	Possível ativa	M17	Inativa
M6	Possível ativa	M18	Possível ativa

O resultado obtido por meio da análise quimiométrica aponta para a importância da escolha dos substituintes nos anéis aromáticos, visto que são os principais causadores das variações dos valores de cargas sobre alguns átomos, em especial dos átomos C6 e C8.

Um exemplo claro é a adição de um anel fenílico no átomo C2 dos compostos M15 e M17, elevando o valor da carga atômica de seu átomo vizinho C8, diminuindo o valor do ângulo entre os átomos N-Cu-O e conseqüentemente aumentando os valores dos ângulos entre os átomos C2-C3-C4

157

e C3-C8-C7 a fim de melhor acomodar o substituinte volumoso.

Na estrutura M16, a inserção de um substituinte etila no C2 desfavorece sua candidatura a bom catalisador, aumentando os valores dos ângulos de ligação entre os átomos C2-C3-C4 e C3-C8-C7, diminuindo o valor do comprimento de ligação entre os átomos Cu-O, aumentando o da ligação C2-C3.

Na estrutura M7 o potencial de ionização é maximizado com a inserção de um íon Cl- na posição C7, o que o diferencia em demasiado de toda a classe de compostos modelados. O mesmo não é observado na inserção de um segundo Cl- na posição C5, ou na inserção dos íons Br- e I- , nas posições C5 e C7.

VIII - CONCLUSÕES

Concluídos os estudos cristalográficos e os cálculos químico-quânticos para as substâncias apresentadas neste trabalho, algumas considerações podem ser feitas em relação à análise dos dados aqui apresentados.

Deve ser observado, entretanto, que não foi encontrado na literatura, até o presente momento, estudo semelhante ao apresentado aqui.

Os compostos com estrutura determinada, CM01, CM02, CM03 e CM4, apresentaram excelente concordância com dados encontrados na literatura quanto a seus principais ângulos e distâncias interatômicas. Entre as espécies otimizada e não otimizada, as diferenças encontradas em valores de ordem de ligação, cargas interatômicas, distância e ângulos interatômicos foram insignificantes.

Os resultados obtidos por meio das análises quimiométricas apontam para a importância da escolha dos substituintes nos anéis aromáticos e no carbono sp2 ligado ao nitrogênio, visto que são os principais causadores das variações nos valores de cargas sobre alguns átomos, em especial os átomos C6 e C8.

A grande maioria das representações gráficas dos orbitais moleculares HOMO e LUMO mostram que existem apenas contribuições dos orbitais atômicos em pz. Quase todas as intersecções são do tipo $\pi...\pi$.

A diferença de energia entre os orbitais HOMO para o LUMO é da ordem de 7 eV para todos os compostos.

Para os átomos de carbono foram encontradas densidades de carga residuais negativa, com exceção dos átomos ligados a outros mais eletronegativos. A ordem de ligação entre os átomos de carbonos aromáticos está em torno de 1,41, o que enfatiza o caráter ressonante dessas ligações, em todos os compostos. Já os valores de ordem de ligação para os heteroátomos estão em intervalos considerados normais.

No processo quimiométrico foram separadas as moléculas entre cataliticamente ativas e inativas, aceitando-se assim o modelo gerado como satisfatório. Foram utilizadas quatro componentes principais que, juntas, explicam 84,26% da variância total dos dados.

Quando as amostras desconhecidas foram introduzidas, verificou-se a existência de uma separação entre elas, indicando que vários compostos aqui estudados seriam fortes candidatos a bons catalisadores.

Estudando as estruturas de compostos já sintetizados, pode-se obter informações valiosas a respeito de novos compostos.

estrutura proposta, a estrutura com а de compostos com atividade conhecida e a de possíveis compostos (de síntese viável), podem ser indicados caminhos mais assertivos e quimicamente racionais para alcançar resultados mais seguros, evitando-se 0 desperdício de tempo e o consumo desnecessário de reagentes nesse segmento da química que apresenta extrema relevância na comunidade acadêmica.

Baseado nos dados e indicações apresentados neste trabalho pretende-se de alguma forma contribuir para o estudo de novos catalisadores em reações de conversão de sulfetos à sulfóxidos.

IX -BIBLIOGRAFIA

Akitsu, T., Einaga, Y., *Polyhedron*, <u>24</u>, 2933 (2005)

- Altomare A.; Burla M.C.; Camalli M.; Cascarano G.L.; Giacovazzo C. ; Guagliardi A.; Moliterni A.G.G.; Polidori G.; Spagna R.; J. Appl. Cryst. <u>32</u>, 115-119. (1999)
- AMPAC 6.55 Users Manual Semichem, Inc. (2000).
- Atkins P. W.; Physical Chemestry; 6ed.; Oxford; Oxford University; 434 p.

(1997)

- Beebe, K. R.; Pell, R. J.; Seasholtz, M. B.; Chemometrics: A Practical Guide. New York; Wiley-Interscience; 348p. (1998)
- Bodor, N.; Gabanyi, Z.; Wong, C. K.; *J. Am. Chem. Soc.;* <u>111</u>; 3783; (1989)
- Bunce, S.; Cross, R.J.; Farrugia, L.J.; Kunchandy, S.; Meason, L.L.; Muir, K.W.; O'Donnell, M.; Peacock, R.D.; Stirling, D.; Teat, S.J.; Polyhedron 17, 4175, (1998)
- Bunge, A. V.; Introdução à Química Quântica. São Paulo; Edgard Blucher Ltda; (1991).
- Canali. L.; Sherringgtin, D.C.; *Chem. Soc. Rev.* <u>28</u>, 85, (1999)
- Chantarasiri, N.; Ruangpornvisuti, V.; Muangsin, N.; Hussadee Detsen, H.; Mananunsap, T.; Batiya, C.; Chaichit, N.; *J. Mol. Structure*, <u>701</u>, 93-103, (2004)

Chirlian, L.E.; Francel, M.M.; J. Comp. Chem. 8; 894; (1987)

Claire, B.W.; *Theor. Chim. Acta*; <u>87</u>; 415; (1994)

Colombo, A.; Marturano, G.; Pasini, A. Gazz. Chim. Ital.,

<u>116</u>, 35, (1986)

- Dewar, M. J. S.; Jie, C.; Yu, G.; Ruiz, J. M. R; Healy, E. J. Chem. Soc., Perkin Trans. 2, 923 (1995)
- Dewar, M. J. S.; Thiel, W. J.; J. Am. Chem. Soc.; <u>99</u>, 4899; (1977)
- Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stwart, J. J. P.; J. Am. Chem. Soc.; 107; 3902-3909; (1984)
- Elmali, A.; Elerman , Y.; *J. of Mol. Struct.* <u>737</u> 29-33 (2005)
- ENRAF NONIUS, Reference Manual, Holland, (1992).
- Esbensen, K.; GELADI, P.; Principal Component Analysis; Chem. Intell. Lab. Syst.; 2; 37-52; (1987)
- Farrugia, L. J., Appl. Crystallogr. <u>30</u>, 565, (1997)
- Farrugia, L. J.; J. Appl. Cryst.; 32, 837-838; (1999)
- Felício, R.C.; Dockal, E.R. et al.; Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 29(2), 171,(1999)
- Fernández, I.; Khiar, N, Chem. Rev. 103, 3651,(2003)
- Fujita, J., Nakajima, K.; Kojima, M.; **Chem. Lett**., 1483, (1986)
- Gavezotti, A.; *J. Am. Chem. Soc.;* <u>105</u>; 5220; (1983)
- Guadagnini, P.H.; Bruns, R.E.; De Souza, A. A.; *Química Nova*, <u>19</u>, 148; (1996)
- Hoffmann, R.; An extended Huckel Theory I Hydrocarbons; J. Chem. Phys.; 39(6); 1397;(1963)
- Hypercube; HyperChem: Molecular visualization and simulation. Ontario; (1994).
- Katsuki, T., Noda, K.; Hosoya, N.; Irie, R.; Yamashita, Y.; Tetrahedron, <u>50</u>, 9609, (1994)

Koopmans, T.; *Phisica*, <u>1</u>, 104; (1934)

- Korolkovas, A.; Fundamentos da Farmacologia Molecular; Rio de Janeiro; Gaunabara Dois S/A; (1982)
- Kowalski, B. R.; CHEMOMETRICS: MATHEMATICS AND STATISTICS IN CHEMESTRY; Cosenza; Reidel; 485p. (1984).
- Levine, I. N.; Quantum Chemestry; 4ed.; New York; Prentice Hall; 628p; (1991)
- Malinowski, B. R.; Factor Analysis in Chemistry; 3ed. New York; John Wiley; 350p. (1991)
- Manly, B. F. J.; Multivariate Statistical Methods. New York; Chapman and

Hall; 154p. (1986)

- Massart, D. L.; Chemometrics Tutorials; Amsterdam; Elsevier; 427p. (1990)
- McWeeny, R.; Quantum-Mechanics: Methods and Basic Applications; New York; Pergamon Press; p.243; (1973)
- Miller, K.; *J. Am. Chem. Soc.;* <u>112</u>; p.8533; (1990)
- Mukherjee, A.; Nethaji, M.; Chakravarty, A.R.; Polyhedron
 23, 3081-3085,(2004)
- Mulliken, R. S.; *J. Chem. Phys.* <u>2</u>; 782; (1934)
- Nathan, L.C.; Koehne, J.E.; Gilmore, J.M.; Hannibal, K.A.; Dewhirst, W.E.; Mai, T.D.; Polyhedron, <u>22</u>, 887-894, (2003)
- North, A.C.T.; Phillips, D.C.; Mathews, F.S. A semiempirical method of absorption correction. Acta Cryst.

A24, 351, (1968).

Palucki, M.; Hanson, P.; Jacobsen, E. N. **Tetrahedron** Lett., 33, 7111 (1992)

Parr, R. G.; Pearson, R. G.; *J. Am. Chem. Soc.* <u>105</u>; 7512; (1983)

Pauling, L.; Química geral; 2ed.; Rio de Janeiro; Livro Técnico; 201 p.; (1966)

Pearson, R.G.; Palke, W. E.; *J. Phys. Chem.* <u>96</u> 3283 (1992)

Plitt P.; Pritzkow, H.; Oeser, T.; Kraemer R.; J. of Inorg. Biochem. 99 1230-

1237 (2005)

- Pople, J. A.; Beveridge, D. L.; Dobosh, P. A.; Approximate Self-Consistent Molecular Orbital Theory 5. Intermediate Neglect of differential Overlap; J. Chem. Phys. 47(6) 2026 (1967)
- Pople, J. A.; Santry D. P.; Segal, G. A; Approximate Self-Consistent Molecular Orbital Theory I; J. Chem. Phys.; 43 129 (1965)
- Raso, G. A., et. Al. Polihedron., 22, 403, (2003)
- Salavati-Niasari, M.; Banitaba S.H.; J. of Mol. Catalysis A: Chemical <u>201</u>, 43 (2003)
- Samide, M.; Peters, D.G.; J. of Electroanalytical Chem., <u>44</u> 95, (1998)
- Segal, G. A.; Semiempirical Methods of electronic structure calculation; New York; Plenum Press; A-B; (1977);
- Sheldrick, G.M. SHELXL97: Programs for Crystal Structure Analysis. Germany, University of Göttingen, (1998)
- Sivasubramanian, V. K.; Rajagopal, M. G. S.; Ramaraj, R.; J. of Organic Chem. <u>67</u>, 1506 (2002)

Solezzi, S.; Spodine, E.; Decinti, A.; Polyhedron, 22,

1653, (2003)

Soliman, A.A.; Linert, W.; **Thermochimica Acta**, <u>338</u>, 67-75. (1999)

Spek, A. L. Acta Cryst. <u>A46</u>, C34 (1990)

- Supuran, C.T.; Clare, B.W.; European Journal of Medicine. Chem., 33, 489, (1998)
- Szabo, A.; Ostlund, N. S.; Modern Quantum Chemistry: Introduction Advanced Electronics Structure Theory; New York; Macmillian; 446 p.; (1982);
- Thomas, E. V.; A Primer on a Multivariate Calibration. Anal. Chem.; 66(15) 795-803; (1994)
- Unver, H.; Yildiz, M.; Dülger, B.; Ozgen, O.; Kendi, E. J. of Molecular

Structure 737, 159-164, (2005)

Yamada, S. Coord Chem. Ver. 537, 190-192, (1999)

Zenhlan, Q.; Shenhao, C.; Ying, L.; Xuegui, C.; Corrosion Science, 44, 703-715,(2002)

Zhu, H.; Daí, Z.; Huang, W.; Cui, K. Gou, S. **Polyhedron** <u>23</u> 1131, (2004)