• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.75.2012.tde-25102011-170304
Document
Author
Full name
Adriana Coêlho Queiroz
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2011
Supervisor
Committee
Lima, Fabio Henrique Barros de (President)
Souza, Flavio Leandro de
Santos, Mauro Coelho dos
Title in Portuguese
Síntese e estudo da atividade eletrocatalítica de óxidos de metais de transição e de nanopartículas de prata e ouro para a reação de redução de oxigênio
Keywords in Portuguese
Bateria metal/ar
Células a combustível alcalinas
Eletrocatalisadores
Nanopartículas metálicas
Óxidos de metais de transição
Abstract in Portuguese
A reação de redução de oxigênio (RRO) foi estudada em eletrocatalisadores formados por nanopartículas de óxidos puros e mistos de metais de transição de Mn, Co e Ni, além de estrutura tipo espinel, e por nanopartículas de Ag, Au e Ag3M (M= Au, Pt, Pd e Cu) suportadas em carbono Vulcan, em eletrólito alcalino. Os óxidos de metais de transição foram sintetizados por decomposição térmica de seus respectivos nitratos e as nanopartículas a base de prata e ouro foram sintetizadas por redução química com borohidreto. Os eletrocatalisadores foram caracterizados por Difratometria e Espectroscopia de Absorção de Raios X (somente para os óxidos de transição). Os materiais a base de óxidos de manganês, mostraram-se com alta atividade para a RRO, para os quais os resultados espectroscópicos in situ evidenciaram a ocorrência da redução do Mn(IV) para Mn(III), na região de início da RRO. Assim, as atividades eletrocatalíticas foram associadas à ocorrência da transferência de elétrons do Mn(III) para o O2. Entretanto, apresentaram forte desativação após ciclagem potenciodinâmica, o que foi associado à formação da fase Mn3O4, conforme indicado por difratometria de Raios X, após os experimentos eletroquímicos, que é eletroquimicamente inativa. Já o material formado pela estrutura do tipo espinel de MnCo2O4 apresentou alta atividade e estabilidade frente à ciclagem e à RRO. A alta atividade eletrocatalítica foi relacionada a ocorrência do par redox CoII/CoIII em maiores valores de potencial em relação ao CoOx e MnOx, devido a interações entre os átomos de Co e Mn no reticulo espinélico. Contrariamente ao observado nos óxidos com maior quantidade de manganês, o espinel mostrou-se altamente estável, o que foi associada à não alteração de sua estrutura no intervalo de potenciais que a RRO ocorre. Para os materiais bimetálicos a base de prata e ouro, os experimentos eletroquímicos indicaram maior atividade eletrocatalítica para o material de Ag3Au/C. Neste caso, a alta atividade foi associada a dois efeitos principais: (i) a um efeito sinergético, no qual os átomos de ouro atuam na região de ativação, favorecendo a adição de hidrogênio e os átomos vizinhos de prata proporcionam a quebra da ligação O-O, conduzindo a RRO pelo caminho de quatro elétrons por molécula de O2; (ii) ao aumento força da ligação Ag-O, devido à interação da Ag com o Au, resultando em maior atividade para a quebra da ligação O-O, aumentando a atividade da Ag para a RRO, em relação à atividade da Ag pura. Assim, a RRO apresentou menor sobrepotencial e maior número de elétrons em Ag3Au/C, quando comparado com as demais nanopartículas bimetálicas.
Title in English
Synthesis and study of the electrocatalytic activity of transition metal oxides, and silver and gold nanoparticles for the oxygen reduction reaction
Keywords in English
Alkaline fuel cells
Electrocatalysts
Metal/air batteries
Metallic nanoparticles
Transition metal oxides
Abstract in English
The oxygen reduction reaction (ORR) was studied on electrocatalysts composed by pure and mixed transition metal oxides of Mn, Co, and Ni, including spinel-like structures, and by Ag, Au, and Ag3M/C (M= Au, Pt, Pd e Cu) bimetallic nanoparticles, in alkaline electrolyte. The transition metal oxides were synthesized by thermal decomposition of their nitrates, and the silver and gold-based nanoparticles by chemical reduction using borohydride. The electrocatalysts were characterized by X-Ray Diffraction and X-Ray Absorption Spectroscopy (in the case of the metal oxides). The manganese-based oxide materials showed high activity for the ORR, in which the in situ spectroscopic results evidenced the Mn(IV) to Mn(III) reduction, in the range of the ORR onset. In this case, the electrocatalytic activities were correlated to the transfer of electron from Mn(III) to O2. However, they presented strong deactivation after several potentiodynamic cycles, which was ascribed to the formation of the electrochemically inactive phase of Mn3O4, as indicated by the XRD results, after the electrochemical experiments. On the other hand, the MnCo2O4 spinel-like material showed high activity and stability for the ORR. Its high electocatalytic activity was attributed to the CoII/CoIII redox pair, taking place at higher potentials, in relation to that of the CoOx e MnOx pure phases, due to the Co and Mn interactions in the spinel lattice. Contrarily to the behavior observed for the manganese-based materials, the spinel oxide presented high stability, which was ascribed to the non alteration of its crystallographic structure in the range of potentials tha the ORR takes place. For the Au and Ag-based materials, the electrochemical experiments indicated higher electrocatalytic activities for Ag3Au/C. In this case, its higher activity as associated to two main aspects: (i) to a synergetic effect, in which the gold atoms act in the activation region, facilitating the hydrogen addition, and the neighboring Ag atoms promoting the O-O bond breaking, leading the ORR to the 4-electrons pathway; (ii) to the increased Ag-O bond strength, due to the electronic interaction between Ag and the Au atoms, resulting in a faster O-O bond breaking, enhancing the electrocatalytic activity of the Ag atoms in the Ag3Au/C nanoparticle, in relation to that on the pure Ag. Therefore, the ORR presented lower overpotential and higher number of electrons in the Ag3Au/C electrocatalyst, when compared to the other investigated bimetallic nanoparticles.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2012-04-27
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.