UNIVERSIDADE DE SÃO PAULO INSTITUTO DE QUÍMICA DE SÃO CARLOS

Eli Fernando Pimenta

Volume 2

Investigação das condições de crescimento e produção de metabólitos secundários das linhagens de fungos *Penicillium citrinum* e *Penicillium oxalicum*

> Tese apresentada ao Instituto de Química de São Carlos para a obtenção de título de doutor em Ciências. Área de concentração: Físico-Química

Orientação: Prof. Dr. Roberto G. S. Berlinck

São Carlos - SP

2010

Este exemplar foi revisado e alterado em relação à versão original, sob a exclusiva responsabilidade do autor.

São Carlos, 11/11/2010

Eli Lerando la

Eli Fernando Pimenta

Volume 2

Sumário

Figura v2 - 1 – Árvore filogenética demonstrando a relação entre a amostra F30 e linhagens de microrganismos relacionados, com base em sequências da região 28S rDNA (D1/D2)......1

Figura v2 – 13 – Espectro de RMN-¹H realizado a 30° C, da amostra F53OT-3-P8, (**56**), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz)..... 13

Figura v2 – 14 – Espectro de RMN-¹H realizado a 40° C, da amostra F53OT-3-P8, (**56**), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz)..... 14

Figura v2 – 15 – Espectro de RMN-¹H realizado a 50°C, da amostra F53OT-3-P8, (**56**), isolada da fração 3 da EFS de *P. citrinum* (DMSO- d_6 , 400 MHz)..... 15 **Figura v2 – 16** – Espectro de RMN-¹H realizado a 60° C, da amostra F53OT-3-P8, (**56**), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz)..... 16

Figura v2 – 17 – Espectro de RMN-¹H realizado a 70°C, da amostra F53OT-3-P8, (**56**), isolada da fração 3 da EFS de *P. citrinum* (DMSO- d_6 , 400 MHz)..... 17

Figura v2 – 18 – Espectro de RMN-¹H realizado a 80° C, da amostra F53OT-3-P8, (**56**), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz)..... 18

Figura v2 – 20 – Espectro de RMN-¹³C da amostra F53OT-3-P11, (**58**), isolada da fração 3 da EFS de *P. citrinum* (DMSO- d_6 , 100 MHz)......20

Figura v2 – 21 – Espectro de RMN-¹H da amostra F53-F4-P4, (**59**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , 400 MHz). 21

Figura v2 – 22 – Espectro de RMN-¹³C da amostra F53-F4-P4, (**59**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , 100 MHz). 22

Figura v2 – 23 b – Ampliação do espectro de RMN-¹H da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz). 24

Figura v2 – 23 c – Ampliação do espectro de RMN-¹H da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz). 25

Figura v2 – 23 d – Ampliação do espectro de RMN-¹H da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz). 26

Figura v2 - 26 a – Espectro de RMN-¹H-¹H COSY da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , 600 MHz).

Figura v2 - 28 a – Espectro de RMN-¹H-¹H tROESY da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_{6} , 600 MHz).

Figura v2 - 28 b – Ampliação do espectro de RMN-¹H-¹H tROESY da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , 600 MHz).

Figura v2 - 29 b – Ampliação do espectro de RMN- ¹ H da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- <i>d</i> ₆ , 600 MHz)
Figura v2 – 29 c – Ampliação do espectro de RMN- ¹ H da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- <i>d</i> ₆ , 600 MHz)
Figura v2 – 29 d – Ampliação do espectro de RMN- ¹ H da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- <i>d</i> ₆ , 600 MHz)
Figura v2 – 29 e – Ampliação do espectro de RMN- ¹ H da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- <i>d</i> ₆ , 600 MHz)
Figura v2 – 29 f – Ampliação do espectro de RMN- ¹ H da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , 600 MHz)
Figura v2 – 30 a – Espectro de RMN- ¹³ C da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , 150 MHz). 48
Figura v2 – 30 b – Ampliação do espectro de RMN- ¹³ C da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , 150 MHz). 49
Figura v2 – 30 c – Ampliação do espectro de RMN- ¹³ C da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , 150 MHz). 50
Figura v2 – 31 a – Espectro de RMN- ¹ H- ¹³ C HSQC da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , ¹ H 600 MHz e ¹³ C 150 MHz)
Figura v2 – 31 b – Ampliação do espectro de RMN- ¹ H- ¹³ C HSQC da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , ¹ H 600 MHz e ¹³ C 150 MHz)
Figura v2 – 31 c – Ampliação do espectro de RMN- ¹ H- ¹³ C HSQC da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , ¹ H 600 MHz e ¹³ C 150 MHz)
Figura v2 – 31 d – Espectro de RMN- ¹ H- ¹⁵ N NHSQC da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , ¹ H 600 MHz e ¹⁵ N 60 MHz)
Figura v2 – 32 a – Espectro de RMN- ¹ H- ¹ H COSY da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , 600 MHz). 55
Figura v2 – 32 b – Ampliação do espectro de RMN- ¹ H- ¹ H COSY da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , 600 MHz)
Figura v2 – 33 a – Espectro de RMN-1H-13C HMBC da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , ¹ H 600 MHz e ¹³ C 150 MHz)
Figura v2 – 33 b – Ampliação do espectro de RMN- ¹ H- ¹³ C HMBC da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , ¹ H 600 MHz e ¹³ C 150 MHz)
Figura v2 – 33 c – Ampliação do espectro de RMN- ¹ H- ¹³ C HMBC da citrinalina B, (62), isolada de <i>P. citrinum</i> (DMSO- d_6 , ¹ H 600 MHz e ¹³ C 150 MHz)

Figura v2 – 33 d – Ampliação do espectro de RMN-¹H-¹³C HMBC da citrinalina B, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz). 60

Figura v2 – 33 e – Ampliação do espectro de RMN-¹H-¹³C HMBC da citrinalina B, (62), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz). 61

Figura v2 – 34 b – Ampliação do espectro de RMN-¹H-¹H tROESY da citrinalina B, (**62**), isolada de *P. citrinum* (DMSO- d_6 , 600 MHz).63

Figura v2 - 1 – Árvore filogenética demonstrando a relação entre a amostra F30 e linhagens de microrganismos relacionados, com base em sequências da região 28S rDNA (D1/D2).

Figura v2 - 2 – Árvore filogenética demonstrando a relação entre a amostra F53 e linhagens de microrganismos relacionados, com base em sequências da região ITS.

Figura v2 - 3 – Espectro de RMN-¹H da amostra F300T-3-P1 isolada da fração 3 da EFS de *P. oxalicum* (DMSO-*d*₆, 400 MHz).

Figura v2 - 4 – Espectro de RMN-¹H da amostra F300T-3-P2, meleagrina (52) isolada da fração 3 da EFS de *P. oxalicum* (DMSO-*d*₆, 400 MHz).

Figura v2 - 5 – Espectro de RMN-¹H da amostra F300T-3-P3, oxalina (26), isolada da fração 3 da EFS de *P. oxalicum* (DMSO-*d*₆, 400 MHz).

Figura v2 - 6 – Espectro de RMN-¹³C da amostra F300T-3-P3, oxalina (26), isolada da fração 3 da EFS de *P. oxalicum* (DMSO-*d*₆, 100 MHz).

Figura v2 - 7 – Espectro de RMN-¹H da amostra F53OT-3-P1-4 (citrinina 31) isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 - 8 – Espectro de RMN-¹H da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 - 9 – Espectro de RMN-¹³C da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 100 MHz).

Figura v2 – 10 – Espectro de RMN-¹H da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (CDCl₃, 400 MHz).

Figura v2 – 11 – Espectro de RMN-¹H da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (MeCN-*d*₃, 400 MHz).

Figura v2 – 12 – Espectro de RMN-¹H da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (MeOH-*d*₄, 400 MHz).

Figura v2 – 13 – Espectro de RMN-¹H realizado a 30°C, da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 – 14 – Espectro de RMN-¹H realizado a 40°C, da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 – 15 – Espectro de RMN-¹H realizado a 50°C, da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 – 16 – Espectro de RMN-¹H realizado a 60°C, da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 – 17 – Espectro de RMN-¹H realizado a 70°C, da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 – 18 – Espectro de RMN-¹H realizado a 80°C, da amostra F53OT-3-P8, (56), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 – 19 – Espectro de RMN-¹H da amostra F53OT-3-P11, (58), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 – 20 – Espectro de RMN-¹³C da amostra F53OT-3-P11, (58), isolada da fração 3 da EFS de *P. citrinum* (DMSO-*d*₆, 100 MHz).

Figura v2 – 21 – Espectro de RMN-¹H da amostra F53-F4-P4, (59), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 400 MHz).

Figura v2 – 22 – Espectro de RMN-¹³C da amostra F53-F4-P4, (59), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 100 MHz).

Figura v2 – 23 a – Espectro de RMN-¹H da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 23 b – Ampliação do espectro de RMN-¹H da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 23 c – Ampliação do espectro de RMN-¹H da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 23 d – Ampliação do espectro de RMN-¹H da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 23 e – Ampliação do espectro de RMN-¹H da amostra F53-F4-P7, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 - 24 a – Espectro de RMN-¹³C da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 150 MHz).

Figura v2 - 24 b – Ampliação do spectro de RMN-¹³C da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 150 MHz).

Figura v2 - 25 a – Espectro de RMN HSQC-¹H-¹³C da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , ¹H em 600 MHz e ¹³C em 150 MHz).

Figura v2 - 25 b – Ampliação do espectro de RMN-¹H-¹³C HSQC da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, ¹H em 600 MHz e ¹³C em 150 MHz).

Figura v2 - 25 c – Espectro de RMN-¹H-¹⁵N NHSQC da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , ¹H em 600 MHz e ¹⁵N em 60 MHz).

Figura v2 - 26 a – Espectro de RMN-¹H-¹H COSY da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 - 26 b – Ampliação do espectro de RMN-¹H-¹H COSY da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 - 27 a – Espectro de RMN HMBC-¹H-¹³C da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , ¹H em 600 MHz e ¹³C em 150 MHz).

Figura v2 - 27 b – Ampliação do espectro de RMN-¹H-¹³C HMBC da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , ¹H em 600 MHz e ¹³C em 150 MHz).

Figura v2 - 27 c – Ampliação do espectro de RMN-¹H-¹³C HMBC da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , ¹H em 600 MHz e ¹³C em 150 MHz).

Figura v2 - 27 d – Ampliação do espectro de RMN-¹H-¹³C HMBC da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , ¹H em 600 MHz e ¹³C em 150 MHz).

Figura v2 - 27 e – Ampliação do espectro de RMN-¹H-¹³C HMBC da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO- d_6 , ¹H em 600 MHz e ¹³C em 150 MHz).

Figura v2 - 28 a – Espectro de RMN-¹H-¹H tROESY da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 - 28 b – Ampliação do espectro de RMN-¹H-¹H tROESY da amostra **F53-F4-P7**, (citrinalina A **60**), isolada da fração 4 da EFS da reunião do PFF de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 29 a – Espectro de RMN-¹H da citrinalina B, (**62**), isolada de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 - 29 b – Ampliação do espectro de RMN-¹H da citrinalina B, (62), isolada de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 29 c – Ampliação do espectro de RMN-¹H da citrinalina B, (62), isolada de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 29 d – Ampliação do espectro de RMN-¹H da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 29 e – Ampliação do espectro de RMN-¹H da citrinalina B, (62), isolada de *P. citrinum* (DMSO-*d*₆, 600 MHz).

Figura v2 – 29 f – Ampliação do espectro de RMN-¹H da citrinalina B, (62), isolada de *P. citrinum* (DMSO- d_6 , 600 MHz).

Figura v2 – 30 a – Espectro de RMN-¹³C da citrinalina B, (62), isolada de *P. citrinum* (DMSO-*d*₆, 150 MHz).

Figura v2 – 30 b – Ampliação do espectro de RMN-¹³C da citrinalina B, (62), isolada de *P. citrinum* (DMSO-*d*₆, 150 MHz).

Figura v2 – 30 c – Ampliação do espectro de RMN-¹³C da citrinalina B, (62), isolada de *P. citrinum* (DMSO-*d*₆, 150 MHz).

Figura v2 – 31 a – Espectro de RMN HSQC-¹H-¹³C da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz).

Figura v2 – 31 b – Ampliação do espectro de RMN-¹H-¹³C HSQC da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz).

Figura v2 – 31 c – Ampliação do espectro de RMN-¹H-¹³C HSQC da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz).

Figura v2 – 31 d – Espectro de RMN-¹H-¹⁵N NHSQC da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹⁵N 60 MHz).

Figura v2 – 32 a – Espectro de RMN-¹H-¹H COSY da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , 600 MHz).

Figura v2 – 32 b – Ampliação do espectro de RMN-¹H-¹H COSY da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , 600 MHz).

Figura v2 – 33 a – Espectro de RMN-¹H-¹³C HMBC da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO d_{6} , ¹H 600 MHz e ¹³C 150 MHz).

Figura v2 – 33 b – Ampliação do espectro de RMN-¹H-¹³C HMBC da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz).

Figura v2 – 33 c – Ampliação do espectro de RMN-¹H-¹³C HMBC da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz).

Figura v2 – 33 d – Ampliação do espectro de RMN-¹H-¹³C HMBC da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz).

Figura v2 – 33 e – Ampliação do espectro de RMN-¹H-¹³C HMBC da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , ¹H 600 MHz e ¹³C 150 MHz).

Figura v2 – 34 a – Espectro de RMN-¹H¹H tROESY da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , 600 MHz).

Figura v2 – 34 b – Ampliação do espectro de RMN-¹H-¹H tROESY da **citrinalina B**, (**62**), isolada de *P. citrinum* (DMSO- d_6 , 600 MHz).