• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.74.2015.tde-08092015-155222
Documento
Autor
Nome completo
Carolina Melleiro Gimenez
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Pirassununga, 2015
Orientador
Banca examinadora
Costa, Ernane José Xavier (Presidente)
Conceição, Maristela Neves da
Lopes, Luis Sergio Paço
Martello, Luciane Silva
Titto, Cristiane Gonçalves
Título em português
Identificação biométrica de bovinos utilizando imagens do espelho nasal
Palavras-chave em português
Biometria animal
Inteligência computacional
Processamento de imagem
Zootecnia de precisão
Resumo em português
Os sistemas tradicionais de identificação de gado são comprovadamente passíveis de perda, danos e possíveis operações fraudulentas justificando as pesquisas de identificadores biométricos. Este trabalho tem por objetivo verificar a possibilidade do uso de componentes principais para avaliar a divisão do espelho nasal de bovinos em classes genéricas e melhorar o reconhecimento biométrico automático dos indivíduos. O banco de dados deste trabalho foi composto pela coleta e catalogação de imagens do espelho nasal de 187 bovinos da raça Nelore ao nascimento e aos 6 meses de idade e deste grupo foram escolhidos 68 animais aleatoriamente para serem fotografados aos 12 meses de idade. Os algoritmos de processamento digital de imagens, redução de dimesionalidade e extração de característas por PCA e classificação por meio de SVM, foram implementados utilizando o software MATLAB®. Por meio da metodologia estabelecida foi possível dividir os bovinos em classes genéricas e a validação do classificador foi realizada mediante análise estatística dos seus erros e acertos. Os resultados apresentados pelo classificador SVM atingiram índices de acertos na faixa de 95,33% a 99,52%, justificando seu uso como forma automática de identificação. Estes resultados permitem concluir que a metodologia de processamento digital de imagens, a extração de características por componentes principais e o uso de máquina de vetores de suporte utilizada neste trabalho, foi capaz de verificar a individualidade dos padrões existentes no espelho nasal de bovinos.
Título em inglês
Cattle biometric identification using muzzle images
Palavras-chave em inglês
Animal biometric
Animal science precision
Computational intelligence
Image processing
Resumo em inglês
Livestock identification in traditional systems has been proven to be susceptible to loss, damage, and possible fraudulent operations justifying the research area of biometric identification. This work aim the study of possibility for using principal components to evaluate the division of the muzzle of cattle in generic classes to improve the automatic biometric recognition of individuals. This thesis used a database composed by 187 Nelore bulls muzzle image collected from animals aged from birth to 6 months. From this group 68 animals were randomly photographed at 12 months of age. The digital image processing, feature extraction and vector support machine (SVM) were implemented using MATLAB software. The methodology used in this thesis provides an alternative to divide the cattle in generics class. The class could be available by means of statistical classifier performance The results presented by classifier achieved 95.33% to 99.52% of accuracy classification justifying its use as automatic identification. The digital signal processing, feature extraction and support vector machine methodology were able the conclusion that muzzle print image could be used as animal identification.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
DO3781290COR.pdf (3.08 Mbytes)
Data de Publicação
2015-09-15
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.