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RESUMO

ERNST, M. Metabolômica como ferramenta em taxonomia: O modelo em Arnica . 2013.
250f. Dissertação (Mestrado). Faculdade de Ciências Farmacêuticas de Ribeirão Preto -
Universidade de São Paulo, Ribeirão Preto, 2013.

Taxonomia vegetal é a ciência que trata da descrição, identificação, nomenclatura e classifi-
cação de plantas. O desenvolvimento de novas técnicas que podem ser aplicadas nesta área de
conhecimento é essencial para dar suporte às decisões relacionadas a conservação de hotspots
de biodiversidade. Nesta dissertação de mestrado foi desenvolvido um protocolo de metabolic
fingerprinting utilizando MALDI-MS (matrix-assisted laser desorption/ionisation mass spec-
trometry) e subsequente análise multivariada utilizando scripts desenvolvidos para o pacote
estatístico R. Foram classificadas, com base nos seus metabólitos detectados, 24 plantas de
diferentes famílias vegetais, sendo todas elas coletadas em áreas da Savana Brasileira (Cerrado),
que foi considerada um hotspot de biodiversidade. Metabolic fingerprinting compreende uma
parte da Metabolômica, i.e., a ciência que objetiva analisar todos os metabólitos de um dado
sistema (celula, tecído ou organismo) em uma dada condição. Comparada com outros méto-
dos de estudo do metaboloma MALDI-MS apresenta a vantagem do rápido tempo de análise.
A complexidade e importância da correta classificação taxonômica é ilustrada no exemplo do
gênero Lychnophora, o qual teve diversas espécies incluídas neste estudo. No Brasil espécies
deste gênero são popularmente conhecidas como "arnica da serra" ou "falsa arnica". Os resul-
tados obtidos apontam similaridades entre a classificação proposta e a classificação taxonômica
atual. No entanto ainda existe um longo caminho para que a técnica de metabolic fingerprinting
possa ser utilizada como um procedimento padrão em taxonomia. Foram estudados e discu-
tidos diversos fatores que afetaram os resultados como o preparo da amostra, as condições de
análise por MALDI-MS e a análise de dados, os quais podem guiar futuros estudos nesta área
de pesquisa.

Palavras-chave: metabolic fingerprinting, taxonomia vegetal, MALDI-MS, análise multivariada
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ABSTRACT

ERNST, M. Metabolomics in plant taxonomy: The Arnica model. 2013. 250p. Master’s
thesis. Faculty of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo,
Ribeirão Preto, 2013.

Plant taxonomy is the science of description, identification, nomenclature and classification of
plants. The development of new techniques that can be applied in this field of research are essen-
tial in order to assist informed and efficient decision-making about conservation of biodiversity
hotspots. In this master’s thesis a protocol for metabolic fingerprinting by matrix-assisted laser
desorption/ionisation mass spectrometry (MALDI-MS) with subsequent multivariate data anal-
ysis by in-house algorithms in the R environment for the classification of 24 plant species from
closely as well as from distantly related families and tribes was developed. Metabolic finger-
printing forms part of metabolomics, a research field, which aims to analyse all metabolites, i.e.,
the metabolome in a given system (cell, tissue, or organism) under a given set of conditions.
Compared to other metabolomics techniques MALDI-MS shows potential advantages, mainly
due to its rapid data acquisition. All analysed species were collected in areas of the Brazilian
Savanna (Cerrado), which was classified as "hotspot for conservation priority". The complexity
and importance of correct taxonomic classification is illustrated on the example of the genus Ly-
chnophora, of which several species also have been included into analysis. In Brazil species of
this genus are popularly known as "arnica da serra" or "falsa arnica". Similarities to taxonomic
classification could be obtained by the proposed protocol and data analysis. However there is
still a long way to go in making metabolic fingerprinting by MALDI-MS a standard procedure
in taxonomic research. Several difficulties that are inherent to sample preparation, analysis of
plant’s metabolomes by MALDI-MS as well as data analysis are highlighted in this study and
might serve as a basis for further research.

Keywords: metabolic fingerprinting, plant taxonomy, MALDI-MS, multivariate data analysis
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1 INTRODUCTION

Plant taxonomy is the science of description, identification, nomenclature and classifi-

cation of plants. It is a research field, which suffered from a decline in expertise during the last

few years, and is therefore recognized as a "science in crisis" by various researchers (COLLE-

VATTI, 2011; HOPKINS and FRECKLETON, 2002; WHEELER et al., 2004). Plant taxonomy

plays an important role in conservation of biodiversity, as there is a need for exact characteriza-

tion of distribution of species as well as localization of areas of high species richness in order

to make efficient and informed decisions about conservation (HOPKINS and FRECKLETON,

2002; WHEELER et al., 2004). It is therefore essential to develop new taxonomic tools, in

order to assist in a better understanding of taxonomic relationships between plant species.

In the present master’s thesis metabolic fingerprints of 24 plant species belonging to

four different tribes, three subfamilies, two families and two orders were acquired by matrix-

assisted laser desorption/ionisation mass spectrometry (MALDI-MS) and were subsequently

classified by multivariate data analysis by in-house algorithms in the R environment. All anal-

ysed plants were collected in areas of the Brazilian Savanna (Cerrado), which was classified as

"hotspot for conservation priority" by Myers and collaborators (2000), an area, which features

exceptional concentrations of endemic species and experiences an exceptional loss of habitat.

The analysed samples included species from the tribes Vernonieae, Eupatorieae, Heliantheae

and Microlicieae. Out of these, 12 belong to the genus Lychnophora, a genus which showed

serious problems with correct botanical identification. In Brazil species of this genus are pop-

ularly known as "arnica da serra" or "falsa arnica" and are used in folk medicine as analgesic

and anti-inflammatory agents (BASTOS et al., 1987; GUZZO et al., 2008; KELES et al., 2010;

SEMIR et al., 2011).

Metabolic fingerprinting is a term that emerged in the field of metabolomics. By

definition after Rochfort (2005) metabolomics is the measurement of all metabolites; i.e., the

metabolome, in a given system (cell, tissue, or organism) under a given set of conditions. Cor-

responding definitions are also given in other sources (FIEHN, 2001; GOODACRE et al., 2004;

KOPKA et al., 2004; TOMITA, 2005). It is still a recent field that has developed over the last

ten years and which has found application in a variety of research areas (GOODACRE, 2005;
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MORITZ and JOHANSSON, 2008; ROCHFORT, 2005; ROESSNER et al., 2001; TOMITA,

2005; VERPOORTE et al., 2008; VILLAS-BÔAS et al., 2007). An international Metabolomics

society was established in 2004, which now publishes its own journal "Metabolomics", thus

demonstrating the growing interest in and the potential importance of this new research field

(GOODACRE, 2005).

Together with other "omic" fields, such as transcriptomics, proteomics, and genomics,

the potential of metabolomics has mainly been regarded as a functional genomics tool that

should serve for a better understanding of systems biology (ROCHFORT, 2005; TOMITA,

2005; VILLAS-BÔAS et al., 2007). Examples of the application of metabolomics in the deter-

mination of gene function are given in the works of Allen and coworkers (2003) and Raamsdonk

and coworkers (2001). However, metabolomics has gone far beyond that and is useful when-

ever changes in metabolite levels are of interest (SHULAEV, 2006). Nowadays, metabolomics

is applied in a variety of research fields, in medicinal research such as drug toxicity (GRIF-

FIN and BOLLARD, 2004; LINDON et al., 2004; LINDON et al., 2003; NICHOLSON and

WILSON, 2003; NICHOLSON et al., 2002; NICHOLSON et al., 1999; ROBERTSON et al.,

2005), drug discovery (KELL, 2006; WATKINS and GERMAN, 2002b), disease diagnosis

(BRINDLE et al., 2002; KUHARA, 2005; MOOLENAAR et al., 2003; OOSTENDORP et al.,

2006; WISHART et al., 2001), or research into diseases like cancer (GRIFFITHS and STUBBS,

2003) or diabetes (WATKINS et al., 2002c), in nutrition and nutritional genomics (GERMAN et

al., 2003; GERMAN et al., 2002; GIBNEY et al., 2005; TRUJILLO et al., 2006; WATKINS et

al., 2001, WATKINS and GERMAN, 2002a), in natural product discovery (FIEHN et al., 2000),

in reserach of bacteria, fungi and yeast (KANG et al., 2011, POPE et al., 2007; TWEEDDALE

et al., 1998; MARTINS et al., 2004), and diverse applications in plant sciences (TAYLOR et

al., 2002; RIZHSKY et al., 2004; CATCHPOLE et al., 2005). The list of examples has been

collected and replenished from Brown and collaborators (2005), Shulaev (2006) and Wishart

(2007).

In particular, plant metabolomics has a potentially broad field of applications (HALL,

2006). A wide range of applications for plant metabolomics can be found in literature. In

a recent review on plant metabolomics, Wolfender and collaborators (2013) subdivide plant

metabolomic studies into seven subareas: (i) fingerprinting of species, genotypes or ecotypes

for taxonomic, or biochemical (gene discovery) purposes, (ii) comparing and contrasting the

metabolite content of mutant or transgenic plants with that of their wild-type counterparts,

(iii) monitoring the behaviour of specific classes of metabolites in relation to applied exoge-

nous chemical and/or physical stimuli, (iv) interaction of plants with the environment or herbi-

vores/pathogens, (v) studying developmental processes, such as the establishment of symbiotic

associations, fruit ripening, or germination, (vi) quality control of medicinal herbs and phy-
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topharmaceuticals, and (vii) determining the activity of medicinal plants and health-affecting

compounds in food.

Compared to animals, plants contain a remarkable wide variety of metabolites. In-

deed, the total number of metabolites present in the plant kingdom is estimated at 200,000 or

more (OKSMAN-CALDENTEY and SAITO, 2005). The large variety of plant metabolites

has always received special attention in various research fields (WINK et al., 2010). In plant

systematics; i.e., the biological classification of plants, secondary metabolites have been used

as taxonomic markers for nearly 200 years (VILLAS-BÔAS et al., 2007; WINK et al., 2010).

Targeted analysis of plant metabolites for various purposes dates back as far as the analysis of

essential oils, which has been performed since the introduction of gas chromatography in the

early 1950s (ROCHFORT, 2005; RYAN, D. and ROBARDS, 2006; VERPOORTE et al., 2008).

As the field of chemotaxonomy emerged in the 1960s, analysis of plant secondary metabolites

became a common attempt for the taxonomic classification of plants. Moreover, different an-

alytical methods for the comparison of chemical data in plants and for the establishment of a

"degree of similarity" by computational data analysis became a common technique in the 1970s

(WINK et al., 2010). Hence, neither the analysis of metabolites itself nor the use of metabolites

as taxonomic markers in plant systematics is new (VERPOORTE et al., 2008; WINK et al.,

2010). What is it then that distinguishes plant metabolomics from traditional metabolite analy-

sis? Whereas traditional metabolite analysis has focused on a small number of targeted analytes

that have been preselected by the researcher according to their assumed importance or due to

technical limitations of the experiment, metabolomics seeks to simultaneously measure all the

metabolites; i.e., the metabolome (GOODACRE et al., 2004; KOPKA et al., 2004; TOMITA

and NISHIOKA, 2005). This enables the visualization of the changes in plant metabolism

caused either by environmental, genetic, or developmental alterations (TRYGG et al. 2006).

In the special case of plant taxonomy, metabolomics may be able to circumvent several

problems inherent to traditional chemotaxonomic investigations of plant metabolites. Chemo-

taxonomic investigations focus mainly on the analysis and comparison of the presence, absence,

or amount of one group of secondary metabolites (WINK et al., 2010). Sesquiterpene lactones

for example are used as taxonomic characters for differentiating species of the Asteraceae fam-

ily (SEAMAN, 1982). Metabolomics however provides a picture of the metabolome as a whole,

and therefore is a more holistic approach. Furthermore, several secondary metabolites assessed

by chemotaxonomy have turned out to be useless as taxonomic markers, since they are dis-

tributed over various unrelated plant families and might have developed as a convergent trait

(WINK et al. 2010).

Compared with more recently developed DNA sequence-based taxonomic methods,

metabolomics may also offer advantages. The metabolome is further down the line from gene
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to function. Therefore, it reflects the activities of the cell at a functional level more closely.

Changes in the metabolome are thus expected to be amplified relative to alterations in the

genome, transcriptome, and proteome (GOODACRE et al., 2004; POPE et al., 2007). DNA

barcoding for example, which was introduced by Herbert and collaborators (2003) and aimed

to identify animal species based on a short DNA sequence could not be applied in most plant

species, as the gene coI used in DNA barcoding evolves relatively slowly in plants and due to the

instability of the structure of the mitochondrial genome. Finding an alternative gene sequence

appropriate for DNA barcoding further showed to be problematic and is still being discussed

(COLLEVATTI, 2011).

Successful metabolomics approaches for chemotaxonomic purposes in plants belong-

ing to the same genus by 1H-NMR, LC-MS and GC-MS have already been published (FARAG

et al., 2012; GAO et al., 2012; GEORGIEV et al., 2011; KIM et al., 2010, XIANG et al.,

2011), however, at present there neither exist studies applying metabolomics techniques for the

classification of species from different genera nor do there exist studies applying MALDI-MS

for plant taxonomic purposes.

MALDI-MS has originally been developed for the analysis of high molecular weight

compounds and was only recently introduced to the analysis of low molecular weight com-

pounds (WANG et al., 2011). At the current state of art of MALDI-MS, compared to other

more traditional analytical methods applied in plant metabolomics research mainly the rapid

acquisition time, which is of central importance in metabolomics experiments may be named.

In the following an introduction to plant metabolomic research (Section 1.1), MALDI-

MS (Section 1.2), the genera of all analysed plants (Section 1.3) and to metabolomics data anal-

ysis (Section1.4) is given. The complexity of taxonomic classification by traditional methods is

illustrated on the example of the genus Lychnophora in Section 1.3.1. Chapter 3 introduces ma-

terials and methods that were used throughout all experiments. Results, including more specific

descriptions of material and methods are then presented in Chapters 4 to 9. Chapter 8 forms

the main part, where statistical data analysis and obtained classification results are discussed.

Finally, Chapter 9 gives an outlook on realized experiments that could guide future reserach.

Some definitions of terms used throughout the text are given in Table 1. For simplicity, the

terms plant systematics and plant taxonomy will be used interchangeably.
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1.1 Introduction to metabolomics

1.1.1 Classification of metabolomic approaches

The quantification of all the metabolites in a given system is at present impossible, due

to the lack of simple automated and sufficiently sensitive analytical strategies (DETTMER et

al., 2007; GOODACRE et al. 2004; KOPKA et al. 2004; SUMNER et al.; 2003; TOMITA,

2005). In order to distinguish different approaches of metabolite analysis, several terms have

been introduced. Because metabolomics is a developing research field, terminologies are still

evolving (GOODACRE et al., 2004; OLDIGES et al., 2007) and different sources consider

slightly different definitions. In Table 2 some of the most common definitions are listed.
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1.1.2 Sampling and extraction of metabolites

Sampling of the metabolites is a critical step in every metabolomics experiment and

has to be treated with special care. The first difficulties already arise with the harvesting of

the plants (ROESSNER and PETTOLINO, 2007; VERPOORTE et al., 2008). There are sev-

eral factors, that have an influence on a plant’s metabolome. According to Villas-Bôas and

coworkers (2007) the main sources of variability during the sampling of plant material is light.

The reason for this is photosynthesis, which makes the intensity of metabolic processes depend

heavily upon the availability of light (ROESSNER and PETTOLINO, 2007). In addition, the

wavelength of the light also influences the metabolite profiles. The upper leaves may have dif-

ferent metabolite profiles than the lower leaves of the same plant, because light does not reach

each leaf to the same extent (VILLAS-BÔAS et al., 2007). This has not only an influence on

leaves but also on subterranean parts of the plant (ROESSNER and PETTOLINO, 2007). A

further factor that has an influence on a plant’s metabolome is the time of harvesting. Due

to diurnal changes a plants metabolome differs depending on the time of the day (MORITZ

and JOHANSSON, 2008; ROESSNER and PETTOLINO, 2007; VERPOORTE et al., 2008;

VILLAS-BÔAS et al., 2007).

Further factors according to Villas-Bôas and collaborators (2007) are the atmospheric

O2/CO2 ratio during sampling and nutrient/substrate supply. Moreover also the stage of plant

development at the time of harvesting affects the metabolite profile (ROESSNER and PET-

TOLINO, 2007; VERPOORTE et al., 2008; VILLAS-BÔAS et al., 2007). A series of samples

harvested at different times of the day and in distinct stages of development should therefore

ideally be measured, in order to determine the biological variation and set standard conditions

for the experiments (VERPOORTE et al., 2008). Another possible solution for the minimiza-

tion of variability is to harvest all plants under the same light intensity (the same period of

day/night) within a very small timeframe and select leaves or other parts of the plant that are

under similar light-exposure. Of course this method is only applicable if only a small amount

of plant material is needed (ROESSNER, 2007; VILLAS-BÔAS et al., 2007). To illustrate the

large influence of biological variance, one might consider unpublished data from Sumner and

coworkers (2003), which suggest an average biological variance of 50% for Medicago truncat-

ula.

Harvesting also means stressing and wounding the plant, which causes alterations in

the metabolome, as well (VERPOORTE et al., 2008; VILLAS-BÔAS et al., 2007). Because

changes in the plant metabolism take place within seconds up to a few minutes, harvesting must

be performed quickly, and metabolism must be stopped right after the harvesting procedure

(VERPOORTE et al., 2008). The most frequently used and, at present best method for stop-
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ping metabolism after harvesting, according to Moritz and Johansson (2008) is to freeze the

plant material in liquid nitrogen. However, as the cells are destroyed during freezing, thawing

may induce all kinds of biochemical conversions. Enzyme activity must be halted either by

extraction of the frozen material by means of a denaturing solvents or by brief treatment with

microwave (VERPOORTE et al., 2008). It should be borne in mind that modifications in the

metabolite profiles will nevertheless still occur during the short period between sampling of the

plant material and its placement into liquid nitrogen (MORITZ and JOHANSSON, 2008).

It should further be noted that each plant organ, tissue, or cell type contains different,

characteristic metabolites because of different external stimuli. The analytical techniques that

are currently employed in metabolomics still lack sensitivity and therefore, many different cell

types and tissues have to be extracted together, so that sufficient levels of all the metabolites

are simultaneously obtained. Hence, the results of metabolomic studies in plants only show

an average of the metabolite content distributed over different plant organs and tissues. In this

context, research is also being conducted on single cell metabolite analysis (ROESSNER, 2007;

ROESSNER and PETTOLINO, 2007). A first successful attempt of single cell metabolomics

in Arabidopsis thaliana has been presented by Schad and collaborators (2005).

For the same reasons that sampling needs to be rapid, extraction of the plant mate-

rial must also occur within a short timeframe (MORITZ and JOHANSSON, 2008). Extraction

methods for metabolomic experiments should be as simple and fast as possible (MORGEN-

THAL et al., 2007). Common are solvent extraction, steam distillation, and supercritical fluid

extraction or the use of ionic liquids. According to Verpoorte and collaborators (2008), sol-

vent extraction is applied most frequently in metabolomics experiments. Steam distillation is

utilized for volatile compounds and supercritical fluid extraction and the use of ionic liquids

is still not very common, since there is little experience of applying these extraction methods

in metabolomic high-throughput analytical techniques (VERPOORTE et al., 2008). Degrada-

tion, modification, and loss of metabolites during the extraction must be minimized (MORITZ

and JOHANSSON, 2008; VERPOORTE et al., 2008; VILLAS-BÔAS et al., 2007). How-

ever, to date, no method for the extraction of all the metabolites without artefact formation

or degradation has been reported (MORITZ and JOHANSSON, 2008; VERPOORTE et al.,

2008). Because metabolites in plant tissue are highly diverse and may contain non-polar com-

pounds (terpenoids and fatty acids from cell membranes), compounds of medium polarity (most

of the secondary metabolites), and polar compounds (most of the primary metabolites such as

sugars and amino acids), no solvent is able to extract all the compounds at the same time (VER-

POORTE et al., 2008). In order to obtain good reproducibility of a certain class of metabolites,

others have to be sacrificed (VILLAS-BÔAS et al., 2007). Common solvent extraction methods

usually extract medium-polar or polar compounds. A sub-metabolomic approach focused on the
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analysis of non-polar metabolites, namely lipidomics, has been developed for the extraction of

non-polar metabolites. Several considerations have to be made previous to the selection of a

solvent. The choice of solvent is extremely important for the achievement of reliable results,

since it needs to be adequate for the metabolites targeted for extraction as well as the analytical

method. Therefore, the selectivity and polarity of the solvent, its boiling point (in case solvents

have to be evaporated), toxicity and environmental considerations, interference with the ana-

lytical procedure, and possible contaminants must be taken into account during the selection

(VERPOORTE et al., 2008). The most common way of extracting metabolites is to shake the

previously homogenized plant tissue at high or low temperatures in either a pure organic sol-

vent, in the case of non-polar compounds, or a mixture of solvents, for more polar compounds.

Solvents employed for the extraction of polar metabolites are methanol, ethanol, and water,

while chloroform is most often used for lipophilic compounds. Methanol/water/chloroform

1:3:1 is a common mixture for the extraction of compounds of medium polarity (MORITZ and

JOHANSSON, 2008). More detailed information on extraction methods for metabolomics can

be found in Villas-Bôas and coworkers (2007). A possible standard method for the optimization

of extraction methods by design of experiments for metabolomic studies has been proposed by

Gullberg and collaborators (2004).

Well-known extraction methods still are most suitable for targeted analysis, whereas an

ideal extraction method for research in metabolomics has yet to be developed (VILLAS-BÔAS

et al., 2007). Because a completely non-compound specific sample preparation as the one re-

quired for a metabolomic experiment is impossible, focus should therefore be placed mainly on

the reproducibility of the sample processing protocol. In order to compare different samples,

their preparation must be identical, although some metabolites might be excluded (OLDIGES

et al., 2007).

1.1.3 Analytical methods used in plant metabolomics

Different analytical methods are used for the analysis of plant’s metabolomes. The

most widely employed methods are mass spectrometry coupled to gas or liquid chromatog-

raphy (GC-MS and LC-MS) and nuclear magnetic resonance (NMR), but also other methods

such as capillary electrophoresis mass spectrometry (CE-MS), high-performance liquid chro-

matography with photodiode array detection (HPLC-PDA), thin layer chromatography with UV

detection (TLC-UV) and Fourier transform-ion cyclotron resonance mass spectrometry (FT-

ICR-MS) have been described (HAGEL and FACCHINI, 2008; MORITZ and JOHANSSON,

2008). Each method has its own advantages and disadvantages, an appropriate combination of

analytical tools with respect to the analysed plant material is therefore essential (MORITZ and
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JOHANSSON, 2008).

In the following, the most commonly cited analytical methods for plant metabolomic

studies shall be briefly introduced, and the advantages and disadvantages of each technique will

be outlined. Bino and collaborators (2004) state that a combination of LC, NMR, and MS sys-

tems might be preferably applied in the future, because it increases the number of quantifiable

and identifiable metabolites, but will probably only be limited to few laboratories due to the

high costs. Since all techniques used in metabolomics research listed here are well-established

and common analytical methods, they shall only be briefly discussed.

Hyphenated mass spectrometry methods: GC/LC-MS

The techniques that are most often utilized are the hyphenated mass spectrometry

methods, so-called separation-based methods coupled with mass spectrometry. In these meth-

ods, the metabolites are separated via gas chromatography, liquid chromatography, or capil-

lary electrophoresis (CE) prior to mass spectrometric analysis. GC and LC or HPLC (high-

performance liquid chromatography) separate compounds due to different interactions of the

substances with the stationary phase, while CE separation is based on the size-to-charge ratio

of the ionic molecules (HAGEL and FACCHINI, 2008). CE-MS will not be further discussed

at this point. A CE-MS approach and the advantages of using it in metabolomics studies of bac-

teria are given in Soga (2007), for instance. The separation technique is chosen on the basis of

the type of molecules present in the target sample. GC is applicable in the case of hydrophobic,

low molecular weight compounds such as essential oils, hydrocarbons, esters, and metabolite

derivatives with reduced polarity (HAGEL and FACCHINI, 2008). In order to perform a GC

analysis the analytes must be heat-stable and volatile. Otherwise they have to be derivatized

(HAGEL and FACCHINI, 2008; MORITZ and JOHANSSON, 2008).

Different ionisation methods and mass detectors can be applied in mass spectrometry,

depending on the kind of molecules targeted for analysis. The ionisation method that is usually

utilized for GC is electron impact (EI) ionisation. EI belongs to the hard ionisation methods. It

transfers an excess amount of energy, which causes strong molecular fragmentation (KOPKA

et al., 2004). Soft ionisation technologies are more commonly employed when MS is coupled

with LC. Due to their lower energy transfer, less molecular fragmentation is induced, so that

fewer molecules are ionised (KOPKA et al., 2004; VERPOORTE et al., 2008). Atmospheric

pressure chemical ionisation MS coupled to LC (APCI-LC-MS), can be applied in the case of

polar metabolites with low to moderate molecular weight (i.e., MW<2000), such as sterols;

fatty, organic, and amino acids; metal ions; and alkaloids. Electrospray ionisation LC-MS, on

the other hand, is used for polar molecules, such as proteins, peptides, polysaccharides, or DNA,

within a broad molecular weight range (i.e. MW 10 - 300,000) (HAGEL and FACCHINI, 2008;
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KOPKA et al., 2004; VERPOORTE et al., 2008).

In order to obtain better peak resolutions, tandem mass spectrometry (MS/MS) or MSn

can be applied instead of simple MS (VILLAS-BÔAS et al., 2007). In tandem mass spectrom-

etry two mass spectrometers are coupled to each other. The first spectrometer chooses ions of a

specific mass, whereas the second mass spectrometer causes further decay to the ions produced

before (MCLAFFERTY, 1981). In this way, these methods allow the identification of individual

metabolites of a specific m/z value (TAGUCHI, 2005). A previous chromatographic separation

can even be left out in order to differentiate between isomers of two samples when various mass

spectrometers (MSn) are combined (MCLAFFERTY, 1981), given that the fragmentation pat-

terns of the isomers are different.

The combination of many different ionisation methods and mass-detection approaches

has given rise to several types of mass spectrometers. Features of each mass analyser are rather

different; therefore, it is essential to choose the mass spectrometer that best suits the specific

research requests (TAGUCHI, 2005). For major advantages and disadvantages of employing

hyphenated mass spectrometry methods in metabolomics see Table 3.
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Direct injection MS (DIMS)

Direct injection MS describes MS analyses that are done by direct injection of a sample

into the ionisation source of a mass spectrometer. Usually atmospheric pressure ionisation tech-

niques are applied in DIMS, most commonly ESI (DETTMER et al., 2007). The soft ionisation

technologies are often utilized in metabolomics, because they give rise to less fragmentation

than hard ionisation technologies. This results in a smaller number of signals in the spectra,

which in turn are less complex (HAGEL and FACCHINI, 2008).

A large variety of mass analysers have been applied in DIMS analyses in metabolomics

research such as single-stage quadrupole, triple quadrupole, Orbitrap, time of flight (TOF) and

Fourier transform ion cyclotron mass spectrometers (FT-ICR-MS) (DETTMER et al., 2007;

WOLFENDER et al., 2013). According to Dettmer and collaborators (2007) and Wolfender

and collaborators (2013), high-resolution mass spectrometers such as TOF and FT-ICR should

be preferably used, in order to be able to distinguish between isobars (compounds with the same

nominal mass). FT-ICR-MS shows a very high resolution and mass accuracy and is therefore

described as method of choice for DIMS in most plant metabolomics reviews (HAGEL and

FACCHINI, 2008; HALL, 2006; KOPKA et al., 2004; WOLFENDER et al., 2013). However,

since its first application in plant metabolomics by Aharoni and coworkers (2002), not many

studies have been reported mainly due to the high instrument costs (DETTMER et al., 2007;

HAGEL and FACCHINI, 2008).

A main disadvantage of direct infusion FT-ICR-MS is that isomers cannot be distin-

guished and less chemical information than in hyphenated MS methods is obtained (HAGEL

and FACCHINI, 2008). In order to distinguish between isomers, MSn analyses can be per-

formed (HAGEL and FACCHINI, 2008). MSn can avoid a previous chromatographic separa-

tion in order to differentiate between isomers of different samples, because enough information

is collected from the obtained fragmentation patterns (MCLAFFERTY, 1981), given that the

fragmentation patterns of the two isomers are not identical. And chemical information can be

increased by performing analyses in negative as well as in positive ion mode (WOLFENDER

et al., 2013).

Mass accuracy, resolution, and detection limits of all mass spectrometric methods de-

pend highly on the type of mass analyser and ionisation. Advantages and disadvantages inherent

to direct infusion with FT-ICR-MS are summarized in Table 4. Specific advantages depend on

the chosen instrument type.
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NMR-based methods

Another analytical approach used in plant metabolomics is nuclear magnetic reso-

nance (NMR). Krishnan and coworkers stated in 2005 that MS-based techniques were more

suited for plant metabolomic experiments, but NMR could offer interesting advantages when

employed in combination with MS. However, nowadays, NMR-based metabolomics, espe-

cially one-dimensional (1D) 1H-NMR is a major analytical tool for many applications in plant

metabolomics from quality control, to chemotaxonomy, to comparison of genetically modified

plants, interaction with other organisms and many more (KIM et al., 2011). A major drawback

of 1D 1H-NMR besides the low sensitivity is the signal overlap. To obtain better signal resolu-

tion 2D NMR spectroscopy, LC-NMR or LC-NMR-MS are also used (HAGEL and FACCHINI,

2008; KIM et al., 2011). As a detailed description of NMR-based metabolomics would exceed

the scope of this master’s thesis, merely some pros and cons are given in Table 5.
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1.2 Introduction to matrix-assisted laser desorp-
tion/ionisation mass spectrometry (MALDI-MS)

Lasers have been used in mass spectrometers since the early 1960s. Though, none of

the existing laser ionisation methods were able to completely solve the problem of measuring

thermally instable and difficult to ionise high molecular weight compounds (HILLENKAMP et

al., 1991). The main breakthrough in measuring high molecular weight compounds was only

when Karas and coworkers (1987) discovered that laser desorption (LD) combined with the use

of a matrix could solve the problem. With their newly developed technique Hillenkamp and

Karas were able to measure proteins with molecular masses exceeding 10,000 Da (KARAS et

al., 1988). Later, Tanaka (1988) applied the same technique with a special matrix and was able

to measure biomolecules having a molecular weight up to 100,000 Da. For this discovery he

was awarded the Nobel Prize in Chemistry in 2002 (TANAKA, 2003).

The mechanisms of ionisation in MALDI-MS are not completely understood yet

(EL-ANEED et al., 2009; THOLEY and HEINZLE, 2006). The general idea though is that

by dissolving the analyte in a solvent and mixing it with a solid matrix (compound that

absorbs laser radiation) a matrix-analyte crystal results after evaporation of the solvents. The

bombardment of the matrix-analyte crystal with a laser beam excites the matrix molecules

and those transfer energy to the analytes leading to ionisation and desorption of the same

(EL-ANEED et al., 2009). Gates and collaborators (2006) summarize the ionisation process

into three basic steps:

(i) Formation of a ’solid solution’. Formation of the matrix-analyte crystal after evaporation of

the solvents.

(ii) Matrix excitation. Absorption of photons from the laser beam by the chromophore of the

matrix substance, which causes rapid vibrational excitation and leads to disintegration of the

solid solution. The formed clusters on the surface consist of analyte molecules, which are

surrounded by matrix and salt ions. The matrix molecules evaporate way and as they do so

transfer their charge to the analyte.

(iii) Analyte ionisation: Stabilisation of the photo-excited matrix molecules occurs via proton

transfer to the analyte during which also cation attachment is encouraged, leading to the

characteristic [M+X]+ (X = H, Na, K etc.) analyte ions in positive ion mode. The described

ionisation reactions occur in the desorbed matrix-analyte cloud close to the surface. From there

analyte ions are extracted into the mass spectrometer for analysis.

More detailed reviews on ionisation mechanisms can be found in Zenobi and Knochenmuss

(1998), Karas and collaborators (2000) and Knochenmuss and Zenobi (2003).
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Figure 1: A schematic representation of the mechanism of matrix-assisted laser desorption/ionisation in positive
ion mode. Redrawn after Gates and collaborators (2006).

During the last few years, despite its original purpose to analyse big, high molecular

weight and non-volatile biopolymers, MALDI-MS has been introduced to the analysis of low

molecular weight compounds (LMW) (WANG et al., 2011). As advantages for using MALDI-

MS instead of other mass spectrometric methods, that are undoubtedly as suitable, or even more

suitable for the analysis of LMW compounds, the following advantages may be mentioned

(COHEN et al., 2002; THOLEY and HEINZLE, 2006; VAN KAMPEN et al., 2011; YANG et

al., 2007):

• simple and rapid sample preparation

• very low sample consumption

• high-sensitivity

• high throughput

• samples can be stored directly on the target plate for a defined time interval (see Section

9.6)

• relative tolerance to impurities, salts and buffers

• less ion suppression effects in compound mixtures observed compared to electrospray

ionisation mass spectrometry (ESI-MS)
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For metabolomics studies, where a large number of samples are analysed, the ex-

tremely fast analysis time and consequently high-throughput may be named as the main ad-

vantages. Analysis of 50 Arabidopsis samples by liquid chromatography coupled to mass spec-

trometry (including spectra preprocessing) takes about 4 days (DE VOS et al., 2007), while

in MALDI-MS, assuming a total of 8 technical replicates per sample, a capacity of 384 sam-

ple spots per MALDI-plate and using any of the MALDI parameters that are described in this

master’s thesis, analysis would take 2 days (it was observed during own laboratory experience

that after having acquired spectra of one whole target plate the MALDI equipment had to be

cleaned. During this process the vacuum is lost and analyses were only continued on the next

day in order to allow the vacuum pressures to stabilize). Acquisition of one single sample with

8 technical replicates in MALDI-MS takes one to five minutes, depending on the chosen acqui-

sition parameters. Furthermore a previous sample cleanup of the plant extracts with hexane was

not necessary in analysis by MALDI-MS as there is no source contamination as in ESI.

Disadvantages of MALDI-MS applied in metabolomic studies correspond to a major

part to those mentioned for DIMS (see Section 1.1.3) including that no distinction between

chemical isomers can be made, less chemical information is obtained than in hyphenated mass

spectrometry methods and the high instrument cost and limited availability of the MALDI-MS

equipment. In order to compensate for the lack of chemical information compared to hyphen-

ated techniques, spectra of plants analysed in this master’s thesis were acquired with two dif-

ferent matrix substances in positive ion mode as well as with one matrix substance in negative

ion mode. It was assumed that in this way the probability of different types of compounds to be

ionised would raise and a broader insight into the plants metabolome would be enabled.

A further bottle-neck in applying MALDI-MS for metabolomics studies is the analysis

of LMW compounds. Selection of an appropriate matrix is relatively difficult since traditional

matrix substances interfere with analyte ions and further MALDI-MS has a poor reproducibil-

ity of signal intensities (VAN KAMPEN et al., 2011). As the process of ion formation in

MALDI is still not fully understood, the choice of an appropriate matrix is mainly experimen-

tal (EL-ANEED et al., 2009). The only requirements of a matrix substance is its absorption

of laser light at the applied wavelength, solubility in a solvent in which also the analyte may

be dissolved, inertness, vaccuum stability, and absence of overlap of matrix and analyte ions.

Most common used matrices are small organic molecules that absorb laser light in the range

of 266-355 nm, typically having hydroxyl- or amino groups in ortho- or para-position (-OH,

-NH) and facultatively exhibit acidic groups or carbonyl functions (carboxyl group, amides, ke-

tones). Some of the frequently used matrices are 2, 5-dihydroxybenzoic acid (2,5-DHB), which

besides others is thought to be especially suited for the analysis of LMW compounds, and α-

cyano-4-hydroxycinnamic acid (CCA), a matrix mostly used for peptide analysis (THOLEY
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and HEINZLE, 2006).

Various approaches already have been proposed in order to improve analysis of

low molecular weight compounds by MALDI-MS including desorption/ionisation on silicon

(FINKEL et al., 2005; GO et al., 2005; WEI et al., 1999); using inorganic compounds as matrix

substances (such as porous alumninium, zinc oxide nanoparticles, carbon nanotube, graphite,

graphene and graphene flakes) (DONG et al., 2010; LANGLEY et al., 2007; LU et al., 2011;

NAYAK et al., 2007; WATANABE et al., 2008; XU et al., 2003), which were also classified

as matrix-free approaches in Guo and coworkers (2002); high-mass matrix molecules as matrix

substances (such as meso-tetrakis(pentafluorophenyl)porphyrin) (AYORINDE et al., 1999); the

addition of a surfactant to traditional crystalline matrices (2,5-DHB or CCA) (GUO et al., 2002)

or the optimization of the matrix suppression effect (MSE) by testing different laser intensities

(McCOMBIE and KNOCHENMUSSS, 2004). The list of examples was adapted and replen-

ished from Liu and collaborators (2012).

As traditional MALDI matrices often show big differences in intensity and resolution

at different positions of the sample spot (also called hot/sweet spot formation), also several

techniques have been proposed to improve sample homogeneity. One of those is the use of

ionic liquid matrices (ILM) (THOLEY and HEINZLE, 2006). ILM are so called class II ionic

liquids and were especially developed for MALDI-MS, as classical ionic liquids weren’t suited

as MALDI matrices. They are equimolar mixtures of crystalline MALDI matrices (e.g. CCA,

2,5-DHB) with organic bases (tributylamine, pyridine, or 1-methylimidazole) forming organic

salts. ILM form viscous liquids (sometimes also solids), that have a highly homogeneous sur-

face. Hot spot formation is therefore prevented, leading to more homogeneous samples and

consequently higher reproducibility of intensities and resolution, compared to traditional crys-

talline matrices (THOLEY and HEINZLE, 2006). Besides traditional crystalline matrices, two

forms of ILM were also tested in this master’s thesis (see Section 9.4).

Due to the difficulties mentioned above, application of MALDI-MS in plant

metabolomics studies up to this day has been very limited. Fraser and collaborators (2007)

describe a targeted approach for carotenoids. And other studies propose new matrix substances

for MALDI-MS with potential to be applied in metabolomics studies (SHROFF et al., 2009;

LIU et al., 2012). Furthermore, the potential of MALDI-MS applied in plant metabolomics

studies is also seen in MALDI imaging in order to access the spatial distribution of metabo-

lites in a plant organ (WOLFENDER et al., 2013; LEE et al., 2012). MALDI-MS applied in

metabolomics studies for plant taxonomy as described in this master’s thesis however, has not

been published yet.
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1.3 Introduction to the genera of the analysed plants
and their chemical constituents

In the following a brief introduction to the genus of each plant analysed, Lychnophora,

Vernonia, Ageratum, Bidens, Calea, Porphyllum, Lavoisiera and Microlicia including their

chemical constituents shall be given. The descriptions are far from being complete and merely

shall serve as a brief overview. As the present study did only include leaves of the named plants,

only chemical compounds isolated from extracts of aerial parts, or of the whole plant were

considered. Metabolites isolated from other plant parts or from essential oils were excluded.

Solvents that were used for extraction varied and have to be checked in the corresponding ref-

erences.

In order to illustrate the complexity of taxonomic classification by traditional means

a more extensive introduction to the genus Lychnophora, which showed serious problems in

correct botanical classification is given in Sections 1.3.1, 1.3.2 and 1.3.3 .

1.3.1 Taxonomic classification of the genus Lychnophora

The genus Lychnophora forms part of the Asteraceae (also referred to as Compositae)

family within the tribe Veronieae (NAKAJIMA et al., 2012) and the subtribe Lychnophorinae

(ROBINSON, 1999).

Numerous changes considering taxonomic classification were made beginning from

the family level down to the genus level. The family Asteraceae was first described by Cassini

(1817, 1819). Further authors that Semir (2011) and collaborators name, which contributed

to morphology-based classification of the Asteraceae family are Lessing (1829, 1831a, b), De

Candolle (1836), Bentham (1873a,b), Hoffmann (1894), Cronquist (1977) and Jeffrey (1978).

Subsequently, studies based on molecular taxonomy and DNA analysis by Jansen and Palmer

(1987), Bremer (1994,1996) and Panero and Funk (2002) lead to further reclassifications. The

last paper published in 2008 by Panero and Funk proposes 12 subfamilies, which are divided in

43 tribes. The same subdivision into 12 subfamilies also corresponds to the classification found

on the Angiosperm Phylogeny Website (STEVENS, 2012) (see Figure 2).

Various scientist also contributed to diverse reclassifications of subtribes and genera in

the tribe Vernonieae (SEMIR et al., 2011). According to Semir and coworkers (2011) Brazilian

plants of the subtribe Vernonieae have mainly been studied by Lessing (1829, 1831a, b), De

Candolle (1836), Gardner (1842, 1845), Schultz-Bipontinus (1861, 1863) and Baker (1873).

Doubts considering the tribe Vernonieae exist mainly in the subdivision into subtribes. The

subtribe Lychnophorinae as represented in Figure 2 corresponds to the most recent classifica-
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tion by Robinson (1999). Robinson described 61 genera for the tribe Vernonieae, Semir and

coworkers (2011) summarize the tribe to approximately 40 genera that are represented in Brazil

and on the official and regularly updated website of the Species List of the Flora of Brasil

(NAKAJIMA et al., 2012) 55 genera are listed. Latter is also represented in Figure 2.

The genus Lychnophora was first described by Martius in 1822 (MARTIUS, 1822).

He collected a total of 12 species, of which he describes 8 and illustrates 7 in his publication in

1822 (MARTIUS, 1822): L. brunioides, L. ericoides, L. pinaster, L. staavioides, L. rosmarini-

folia, L. hakeaefolia, L. salicifolia and L.villosissima. In the following years various botanists

contributed to revisions, new classifications and additions of new species to the genus. Ma-

jor publications include Sprengel (1826, 1827), Lessing (1829, 1832), De Candolle (1836),

Gardner (1846), Schultz-Bipontinus (1863) and Baker (1873). For a short description of major

publications in chronological order see Table 6.

Semir, the only Brazilian botanist that made a revision on taxonomic classification of

the genus disagrees with the classifications of all previous authors and proposes 68 species in his

unpublished doctoral thesis, which he divides in six sections: Lychnophora, Lychnophoriopsis,

Lychnophorioides, Lychnocephaliopsis, Sphaeranthus and Chronopappus. Separation of those

he bases on inflorescence morphology and absence or presence of sheath or petiole (SEMIR,

1991). In Semir and coworkers (2011) he heavily critisizes the review by Coile and Jones

(1981), see Table 6. The review publicated in 1981 strongly disagrees with the two previous

reviews on the genus by Schultz-Bipontinus (1863) and Baker (1873). They reduce the number

of species of the genus Lychnphora to 11: L. diamantinana Coile and Jones, sp. nov., L. het-

erotheca (Schultz-Bip.) Jones and Coile, comb. nov., L. tomentosa (Mart. ex DC.) Schultz-Bip.,

L. humillima Schultz-Bip, L. sellowii Schultz-Bip., L. salicifolia Mart., L. villosissima Mart.,

L. staavioides Mart., L. ericoides Mart., L. phylicifolia DC., L. uniflora Schultz-Bip. As criti-

cal points Semir and collaborators (2011) mention the imprecise circumscription of the genus,

the use of inadequate synonyms, apparent ignorance of the natural habitat of the plants, and

incomplete description of morphological characteristics of the genus. Out of this reason, Semir

and collaborators (2011) further emphasize that morphological and molecular taxonomic stud-

ies only based on voucher specimens clearly show to be insufficient to classify species of the

genus Lychnophora. Instead, more detailed observations of the plants in their natural habitat

together with the selection of appropriate morphological characteristics for their differentiation

from other genera are essential for the correct classification (SEMIR et al., 2011).

Besides the morphological based taxonomy studies on the genus Lychnophora men-

tioned above, also cytotaxonomic studies have been realized (MANSANARES et al., 2002).

However they turned out to be problematic for classification: chromosome numbers of different

species of the genus Lychnophora were compared, and didn’t show to be an important character
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for separation (MANSANARES et al., 2002).

The above described complexity of correct taxonomic classification of species of the

genus Lychnophora based on morphology as well as cytotaxonomy emphasizes the need for

further methodologies supporting traditional taxonomic methods.
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1.3.2 Distribution of species of the genus Lychnophora

Martius (1824) was the first scientist to classify Brazilian vegetation. He divided Brazil

into five floristic domains, naming those domains after Greek nymphs: Amazon (Nayades), the

Cerrados of central Brazil (Oreades), the Atlantic rainforests (Dryades), the Araucaria forests

and southern grasslands (Napeias), and the northeastern Caatinga (Hamadryades) (FIASCHI

and PIRANI, 2009).

Although altered several times, up today scientists use similar classification systems

for Brazilian vegetation. According to Fiaschi and Pirani (2009) the most widely accepted

classification system is that of Veloso and coworkers (1991). According to those authors the

country is subdivided into four biomes 1: the Amazon Forest, the Atlantic Forest, the Savanna

(Cerrado) and the Steppe (Caatinga and Campos sulinos). The IBGE (Brazilian Institute of

Geography and Statistics) subdivides the country into six biomes: Amazon Forest, Atlantic

Forest, Caatinga, Savanna (Cerrado), Pantanal and Pampa.

According to the IBGE the biome Cerrado is after the Amazon the second largest

biome and covers 23.92% of the total area of Brazil (see Figure 3). The vegetation type of

the Cerrado was denominated differently by different authors, such as Estepe, Savana and

Savannas between others. Due to the fact that the phytophysionomy of the Brazilian Cerrado is

similar to that of the African and Asian savannas, the official term accepted by the IBGE today is

Savanna with Cerrado as regional synonym (IBGE, 2012). Determinig factors for the savannic

phytophysionomy are climate, soil, and fire. The climate is sub-humid tropical with dry and wet

seasons with annual rainfall ranging from 600 to 2200 mm and temperatures from 22 to 27◦C.

The geology of the Cerrado is one of the most diverse and complex of Brazil with rocks formed

during the precambrian and cenozoic era. More than ten different soil types are encountered

and morphological features vary according to the altitude, which ranges from 50m to 2000m.

Three well-defined units are distinguished by the IBGE: the plains, depressions and plateaus.

Plateaus are the most widespread unities, charcteristically they form vast plain surfaces called

Chapadas (IBGE, 2012).
1The term biome (Gr. bios = life; oma = suffix for generalization (group, set)) was defined differently since

its introduction in the mid 20th century. Good reviews are given in Coutinho (2006) and IBGE (2012). The
IBGE (2004) states that a biome is defined by its predominant physical conditions, such as climate, lithology,
geomorphology, pedology and common evolutionary history. It is composed of a group of spatially close vegetation
types, which results like this in an own biological diversity. The authors further summarize the definition as the
biome being a community (plants and animals) with a spatially close type of vegetation, similar geo-climatic
conditions and a similar evolutionary history, which results in an own biological diversity.
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Figure 3: Map of Brazilian biomes (IBGE, 2004).

Species of the genus Lychnophora occur in the Cerrado biome described above. They

are encountered in the Brazilian rupestrian fields, the so-called campos rupestres 2 of four

Brazilian states: Bahia, Goiás, Minas Gerais and São Paulo. However between places in São

Paulo, where Lychnophora were found and the state Minas Gerais no ecological differences ex-

ist. Therefore it is generally said that Lychnophora is endemic to three states: Bahia, Goiás and

Minas Gerais (SEMIR et al., 2011). More specifically Semir and collaborators (2011) name

three places, where species of the genus Lychnophora can be found:

1. Serra do Espinhaço (MG)

2. Chapada Diamantina (BA)

3. Serra dos Pireneus with branches into the Serra Geral do Paraná, Serra Dourada and Serra

dos Cristais (GO)

The Serra do Espinhaço and the Chapada Diamantina form together the so-called

Cadeia do Espinhaço and places named in item 3. can also be summarized as Maciço Goiano.

Both mountain chains are thought to have originated at the same time, during the Precambrian

(SEMIR et al., 2011). Figure 4, which was adapted from Semir and collaborators (2011) illus-

trates the distribution described above of species of the genus Lychnophora.
2The term was defined differently by several scientists, by botanists and phytogeographs the term is most

commonly used to describe the vegetation of the quartz gravel fields along the Cadeia do Espinhaço, a mountain
chain in the state of Bahia and Minas Gerais (DE VASCONCELOS, 2011). Here campos rupestres describes the
vegetation on the top of mountain chains in central and southeastern regions of Brazil (KELES et al., 2010).
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Figure 4: Map of distribution of Lychnophora adapted from Semir and collaborators (2011). The dotted area
represents the Cadeia do Espinhaço on the right side and Maciço Goiano on the left side, which basically

corresponds to the distribution of Lychnophora.

1.3.3 Chemical constituents of Lychnophorinae

Species of the genus Lychnophora are popularly known as "arnica da serra" or "falsa

arnica" (BASTOS et al., 1987). In Brazilian folk medicine extracts of aerial parts or roots

of species of the genus Lychnophora in water, ethanol or "cachaça" (sugar cane spirit), which

are administered orally or topically, are used as analgesic and anti-inflammatory treatments

(GUZZO et al., 2008; KELES et al., 2010; SEMIR et al., 2011). Reported biological activities

include in vitro antitumor, analgesic, antimicrobial, cytotoxic, analgesic and anti-inflammatory

activity (SEMIR et al., 2011; KELES et al., 2010). L.ericoides was the first species being used

as a medicinal plant, though, over time, almost all species having any morphological similarity

with L.ericoides were utilized. Emphasizing by this means the importance of a correct taxo-

nomic classification of species of this genus (SEMIR et al., 2011).

An extensive review on chemical compounds isolated from species of the subtribe Ly-

chnophorinae, to which Lychnophora belongs to (besides Eremanthus the most numerous genus

of the subtribe) can be found in Keles and collaborators (2010). Data reported in the following
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is based on this review.

Based on literature, the main secondary metabolites reported for species of the sub-

tribe Lychnophorinae are terpenoids (70.2 %) and flavonoids (16.9%), furthermore, also

acetylene derivatives, quinic acid derivatives, benzoic acid derivatives and phenylpropanoids

are mentioned. Among the terpenoids, sesquiterpenes are most abundant. Triterpenes,

steroids, saponins and monoterpenes were reported. Diterpenes were only found in L. sellowii

(BOHLMANN et al., 1982a). Sesquiterpene lactones were reported for 90% of the species of

the subtribe Lychnophorinae. Sesquiterpene lactones of a major part of the investigated species

were furanoheliangolides of the goyazensolide and eremantholide type. Only two species of Ly-

chnophora, L. pseudovillosissima and L. reticulata showed guaianolides and eudesmanolides.

In flavonoids, flavonols and flavones are most commonly found, whereas dihy-

droflavones and dihydroflavanols are less common. Chalcones could only be isolated from

L. ericoides (GOBBO-NETO and LOPES, 2008).

Quinic acid derivatives up to now have only been reported in the species L. ericoides

(DOS SANTOS et al., 2005; GOBBO-NETO et al.; 2008), L.pinaster (DE MORAES et al.

2009), L.pohlii (DE MORAES et al. 2009) and L. villosissima (DE MORAES et al. 2009).

Figure 5 shows some substances isolated from aerial parts of species of Lychnophora. A fu-

ranoheliangolide of the goyazensolide type (1) (ALVES et al., 2008) and of the eremantholide

type (2) (BOHLMANN et al., 1981d) and the flavone vicenin-2 (3) (GRAEL et al., 2005),

which showed significant anti-inflammatory activity (GOBBO-NETO et al., 2005).

Figure 5: Structures of compounds isolated from aerial parts of species of the genus Lychnophora.

1.3.4 Chemical constituents of the genus Vernonia

With almost 1000 species the genus Vernonia is the largest genus in the tribe Vernon-

ieae, which comprises a total of 1500 species. Species of this genus can adapt to a variety of

habitats, however they are most frequently encountered in tropical regions, mainly in Africa and

South America (BREMER, 1994; KEELEY and JONES, 1979). Also the morphological varia-

tion observed in the genus is wide. Species of the genus Vernonia are encountered as annuals,
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herbaceous perennials, lianas, shrubs and trees (KEELEY and JONES, 1979). They are widely

used as food and medicine and various bioactive compounds have been isolated so far. A good

review of ethnomedicinal uses of plants of the Vernonia genus and in vivo and in vitro studies

of isolated compounds can be found in Toyang and Verpoorte (2013).

Secondary metabolites described for species of the genus Vernonia include triter-

penes (ALVES et al., 1997), diterpenes (KOS et al., 2006), steroids (DA COSTA et al., 2008;

JISAKA et al., 1993; JISAKA et al., 1992; MACHADO et al., 2013; OHIGASHI et al., 1991;

TCHINDA et al., 2003; TCHINDA et al., 2002), sesquiterpene lactones (ABEGAZ et al., 1994;

BAZON et al., 1997; BUSKUHL et al., 2010; JAKUPOVIC et al., 1986; PERDUE et al., 1993;

ZDERO et al., 1991) and flavonoids (ABEGAZ et al., 1994; BUSKUHL et al., 2010; IGILE

et al., 1994; MORALES-ESCOBAR et al., 2007). Most abundant compounds found in the

genus are the flavonoids and sesquiterpene lactones. In sesquiterpene lactones the family of

germacranolides, the glaucolides and hirsutinolides are predominantly found (BUSKUHL et

al., 2010). In African species also elemanolides have been described (ABEGAZ et al. 1994;

ZDERO et al., 1991) and Da Costa and coworkers (2005) and Buskuhl and collaborators (2010)

also reported cadinanolides in Brazilian species. However, there is an ongoing discussion on

whether hirsutinolides and cadinanolides are artefacts formed during isolation or whether they

are natural products contained in the plant (BAZON et al., 1997; BUSKUHL et al., 2010).

Table 7 gives a short summary of compounds isolated and identified in the articles

cited above. A representative structure of each mentioned class can be found in Figure 6. The

triterpene lupeol (4) (ALVES et al. 1997; DA COSTA et al., 2008; MACHADO et al., 2013),

the diterpene ent-kaurane glycoside (5) (KOS et al., 2006), a stigmastane-type steroid gluco-

side (vernonioside) (6) (OHIGASHI et al., 1991), the flavonoid luteolin (7) (ALVES et al.1997;

BUSKUHL et al., 2010; IGILE et al. 1994; MACHADO et al., 2013), a hirsutinolide (8)

(ZDERO et al., 1991), and a glaucolide (9) (ZDERO et al., 1991).
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Figure 6: Structures of compounds isolated from aerial parts of species of the genus Vernonia.
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1.3.5 Chemical constituents of the genus Ageratum

The genus Ageratum forms part of the tribe Eupatoriae and consists of approximately

30 species of which very few have been phytochemically investigated (BURKILL, 1985). Table

8 lists some chemical compounds identified in species of the genus Ageratum. The most studied

species is Ageratum conyzoides. A review on its chemical constituents and biological activities

was published by Okunade (2002). Four main classes are described, mono- and sesquiterpenes

(from essential oils); chromones, chromenes and coumarin; polyoxygenated flavonoids and

triterpenes and sterols. Furthermore studies of anti-inflammatory, analgesic, antipyretic and in-

secticidal activities are described.

In Brazil Ageratum fastigiatum is also known as "matapasto" or "enxota" and aqueous

extracts are used to treat pain and inflammations (GONÇALVES et al., 2011). Substances that

were isolated from this species include triterpenes, diterpenes, coumarin, eudesmane deriva-

tives, labdane derivatives and steroids (see Table 8). Figure 8 shows some substances iso-

lated from species of the genus Ageratum. An eudesmane derivative (10) (BOHLMANN et

al., 1983a), a seco-kaurene (11) (BOHLMANN et al., 1981a), the triterpene taraxasterol (12)

(GONÇALVES et al., 2011), the chromone conyzorigun (13) (ADESOGAN and OKUNADE,

1978) and a flavone (14) (QUIJANO et al., 1980).

Figure 7: Structures of compounds isolated from aerial parts of species of the genus Ageratum.
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1.3.6 Chemical constituents of the genus Bidens

The genus Bidens includes more than 200 species and is represented in the Americas,

Africa, Polynesia and to a smaller extent in Europe and northern Asia (GANDERS et al., 2000).

Bidens alba forms part of the Bidens pilosa complex, a species complex comprised of Bidens

odorata, Bidens alba and Bidens pilosa. Species of this complex are widely distributed sub-

tropical and tropical weeds with a center of diversification in Mexico (BALLARD, 1986). They

are encountered in agricultural areas and along roadsides. Grombone-Guaratini and collabora-

tors (2006) report that Bidens alba is the only species of the complex that is restricted to the

seacoast.

Da Silva (2009) reports that compared to the amount of species of the genus Calea only

very few studies of chemical constituents exist. Based on literature, compounds that were found

most frequently included polyacetylenes (34%), chalcones (12%), phenylpropanoids (9%),

flavonoids (9%), thiophene derivatives (9%) and aurones (5%) (DA SILVA, 2009). Several

biological activity studies for species of the genus Bidens can be found in literature including

antiulcer, antioxidant, anti-inflammatory, immunomodulatory, anti-hypertensive, antimicrobial,

anti allergic, anti-diabetic, antiviral, antitumoral and antimalarial activities, which were related

to the presence of flavonoids and polyacetylenes (DA SILVA, 2009).

Table 9 was adapted from Da Silva (2009), only substances that have been isolated

or identified from aerial parts or the whole plant were included. In Figure 8 a representative

substance for each described class is shown. The polyacetylene 1-phenylhepta-1,3,5-triyne (15)

(CANTONWINE and DOWNUM, 2001), a chalcone (16) (WANG et al., 2007a), a phenyl-

propanoid (17) (SASHIDA et al., 1991), the flavonoid luteolin (18) (WOLNIAK et al., 2007),

a tiophene acetylene (19) (CHRISTENSEN, 1990) and the aurone sulfurein (20) (ZHU et al.,

2009). For a recent review article about botanical properties, phytochemistry and pharmacology

of Bidens pilosa see Bartolome and collaborators (2013).
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Figure 8: Structures of compounds isolated from aerial parts of species of the genus Bidens.
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1.3.7 Chemical constituents of the genus Calea

The genus Calea comprises about 110 species, which can be found in Mexico, Central

and South America (KARIS and RYDING, 1994). According to Do Nascimento and coworkers

(2002) approximately 37 species have been investigated chemically, some of them are listed

in Table 10. Sesquiterpene lactones of the furanoheliangolide, germacranolide, eudesmanolide

and guaianolide type, daucane and acorane sesquiterpenes, p-hydroxyacetophenone derivatives,

thymol derivatives, benzofurans and chromenes were some of the main substances isolated from

species of the genus Calea. Figure 9 shows some of the structures. A furanoheliangolide (21)

(BOHLMANN et al., 1982b), a germacranolide (22) (BOHLMANN and JAKUPOVIC, 1979),

the eudesmanolide trichomatolide A (23) (OBER et al., 1984c), a guaianolide (24) (CAS-

TRO et al., 1989), a daucane (25) (JAKUPOVIC and BOHLMANN, 1984), an acorane (26)

(JAKUPOVIC and BOHLMANN, 1984), a p-hydrocyacetophenone (27) (GÓMEZ and GIL,

2011), a thymol derivative (28) (MALDONADO et al., 1992) and the benzofuran derivative

calebertin (29) (OBER et al., 1985). Several biological activities of species of the genus Calea

have already been reported, Do Nascimento and coworkers (2004) summarize them as anti-

inflammatory, cytotoxic, larvicidal, antiplasmodial and antihypertensive.
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Figure 9: Structures of compounds isolated from aerial parts of species of the genus Calea.
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1.3.8 Chemical constituents of the genus Porophyllum

Species of the genus Porophyllum can be found in an area extending from the southwest

of the United States to South America (RICHETT, 1966). Several studies on the essential oils of

species of the genus Porophyllum and their insecticidal and antioxidative activity could be found

(LOAYZA et al., 1999; JIMENEZ et al., 2012, GUILLET et al., 1998; BEZERRA et al., 2002;

FONSCECA et al., 2006; LABUCKAS et al., 1999), however very few studies were found on

non-volatile substances. Table 11 lists some of them. In Brazil Porophyllum ruderale is widely

distributed and is used in traditional medicine as an antibacterial and anti-inflammatory, for the

treatment of snakebites, stomach ache and wounds (LORENZI and MATOS, 2002). Structures

of substances isolated from species of the genus Porophyllum can be found in Figure 10. A

dithienyl derivative (30) (BOHLMANN et al., 1980), a thymol derivative (31) (BOHLMANN

et al., 1983b) and the flavonol quercetin (32) (VAN BAREN et al., 1994).

Figure 10: Structures of compounds isolated from aerial parts of species of the genus Porophyllum.
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1.3.9 Chemical constituents of the genus Lavoisiera

Renner (1993) describes 46 species belonging to the genus Lavoisiera that are encoun-

tered in south-central Brazil. Very few phytochemical studies of species of this genus were

found. An extensive study on flavonoids contained in species of three genera of the tribe Mi-

crolicieae including Lavoisiera was done by Bomfim-Patrício and collaborators (2001). The

15 analysed species of Lavoisiera showed a large diversity of flavonoids. Flavones (mostly

apigenin derivatives) and flavonols, as well as 6-oxygenated derivatives (mainly flavones)

were identified. Jamal and coworkers (1999) reported antinociceptice activity of an extract

of Lavoisiera pulcherrima and isolated the triterpenes betulin and betulinic acid, as well as fer-

ulic acid esters. Cota and collaborators (2002) reported antimicrobial activity of extracts of L.

confertiflora and L. cordata against Staphylococcus aureus and Micrococcus luteus.

1.3.10 Chemical constituents of the genus Microlicia

The genus Microlicia comprises 100 species, which are encountered in south-central

Brazil, and a few also in Guayana, Peru and Bolivia (RENNER, 1993). In Brazil the herbs or

shrubs of species of this genus are predominantly found in the campos rupestres (TOUDAHL

et al., 2012). Almost no studies on the chemistry of species of this genus could be encountered.

Bomfim-Patrício and coworkers (2001) name tannins (very common) and alkaloids (rare) as

being typical for the family of Melastomataceae to which the genus Microlicia belongs to.

The 17 species of Microlicia analysed by Bomfim-Patrício and coworkers (2001)

showed highly homogeneous flavonoid patterns: flavonol derivatives were predominantly found

with a wide structural diversity of quercetin and kaempferol derivatives. On the contrary to

species of the genus Lavoisiera, which belongs to the same tribe as Microlicia no 6-oxygenated

flavonoid derivatives were found. Chemical compounds isolated from the essential oil of one

Microlicia species, Microlicia graveolens are described in Toudahl and coworkers (2012).

1.4 Introduction to metabolomics data analysis

As an enormous amount of data is produced by metabolomics studies, statistical and

computational methods have been applied for the evaluation of the large data sets that are

generally obtained (MEHROTRA and MENDES, 2006; ROESSNER et al., 2002). Mathe-

matical and statistical skills are a necessary prerequisite for the extraction of a maximum of

information contained in metabolomics data (SHULAEV, 2006; TRYGG et al., 2007). Re-

search into metabolomics requires its own computational methods, which are routinely applied
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in metabolomics experiments (WISHART, 2007). However, standard methods have not yet

been defined, and analytical methods have been adapted from other ’omics’ sciences that have

been developed in the fields of chemometrics, chemoinformatics, and bioinformatics (TRYGG

et al., 2007; WISHART, 2007). Some sources denote the data processing tools employed in

metabolomics as chemometric methods (BROWN et al., 2005; TRYGG et al., 2007; TRYGG

et al., 2006), whereas others designate the utilized methods as combined methods from bioin-

formatics and chemoinformatics, since metabolomics is not only about the identification and

quantification of metabolites, but also about the contextualization of the data from a biological

and metabolic viewpoint (WISHART, 2007). The terms are overlapping, and brief definitions

are given in Table 12. In the case of metabolomics research in plant taxonomy, the use of

chemoinformatic or chemometric methods (the terms are overlapping and in the present study

describe one and the same tool, see definitions in Table 12) are sufficient.

At present, the field of computational metabolomics is still evolving, and the main

developments in this field will be a key factor in making metabolomics a standard ana-

lytical procedure in different research areas (WISHART, 2007). This is because compu-

tational metabolomics will not only have a major impact on data analysis, but also on

(i) metabolomics databases; (ii) metabolomics laboratory information management systems

(LIMS) and data standards; (iii) spectral analysis tools for metabolomics ; and (iv) metabolic

modeling (WISHART, 2007).

As these fields are not of particular interest regarding data analysis of metabolomics

studies for plant taxonomy, they will not be further discussed at this point. However, it is

suggested that whenever a metabolomic experiment is carried out, one should also seek famil-

iarization with those aspects of computational informatics (WISHART, 2007). Storage of raw

data plays a particularly important role, because there is always the possibility that better data

processing methods will be developed in the future. This is particularly probable in the case of

metabolomics research, as it is still a developing research field (MEHROTRA and MENDES,

2006). A good overview of computational metabolomics is given in Wishart (2007). Hansen

(2007) and Steuer and coworkers (2007) both give introductions into data analysis as well as

preprocessing in metabolomics research. Steuer and coworkers (2007) additionally provide

scripts and implementations for the statistical program Matlab in a ready-to-use format on the

webpage http://bioinformatics.mpimp-golm.mpg.de/. In the following a brief introduc-

tion into metabolomics data analysis including preprocessing and multivariate data analysis is

given.

For the multivariate analysis various computational programs may be applied such as

Excel, Matlab, SAS, Octave or R, some basic statistical analyses are also available in the prepro-

cessing software Mzmine and XCMS (PLUSKAL et al., 2010; WEI et al., 2011). R (R Devel-
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opment Core Team, 2011), a free software environment for statistical computing and graphics,

was used in the present master’s thesis, as it is available for free, widely used by the scientific

community and furthermore open-source, meaning that exact mathematical algorithms applied

for the analysis are accessible and can be retraced by any scientist, facilitating like this data ex-

change between different laboratories. Furthermore R is extensible through a wide varieties of

packages, all spectra preprocessing steps, which will be described in more detail in the follow-

ing could also be performed in R, through the packages MALDIquant (GIBB and STRIMMER,

2012) and MALDIquantForeign (GIBB, 2013). All R scripts used for data analysis for all de-

scribed experiments were developed in collaboration with Ricardo Silva, doctoral student of

Prof. Dr. Ricardo Z. N. Vêncio of the Department of Computing and Mathematics, Faculty of

Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP, USP).
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1.4.1 Preprocessing of spectra

The aim of data preprocessing is to eliminate the variance and bias that is introduced

during the analysis of samples, which cannot be attributed to real differences and may mask

the outcome of chemometric methods (SMITH et al., 2006).

Since data preprocessing software is usually proprietary or may only be applied to data

produced by a vendor’s specific instrument, efforts have been made towards the development

of freely accessible, open-source software, in order to favour standardization, reproducibility,

and exchangeability of metabolomics data (CASTILLO et al., 2011; PEDRIOLI et al., 2004;

SMITH et al., 2006). Various open-source software programs are currently in use (mainly for

LC-MS), some of which have been developed especially for metabolomics, while others have

been adapted from data processing software for proteomics (CASTILLO et al., 2011). Because

these programs are open-source, they are relatively easy to customize with few programming

skills, dismissing the need for the development of a completely new algorithm for specific

problems. Furthermore, open-source software also facilitates the exchange of algorithms and

data with other laboratories involved in metabolomics research (CASTILLO et al., 2011;

SMITH et al., 2006). Also the R environment, in which data analysis, including preprocessing,

of this master’s thesis was performed is a free and open-source software. For preprocessing R

was extended with the MALDIquant R package (GIBB and STRIMMER, 2012).

As raw data are usually in the specific data format of a proprietary vendor, they have

to be converted to an open format before preprocessing. Different tools are available and

described in Castillo and coworkers (2011). MALDIquant was designed to be independent of

any specific mass spectrometry hardware. However, through the package MALDIquantForeign

(GIBB, 2013) input of binary data files or complete folder hierarchies from Bruker flex series

instruments is possible (GIBB and STRIMMER, 2012). As all data of this master’s thesis were

acquired on a MALDI-TOF/TOF mass spectrometer (ultrafleXtreme, Bruker Daltonics), raw

data could be imported into R without previously converting them into an open format. Import

of raw data including preprocessing therefore took only a few minutes, which further facilitated

data analysis and decreased the time used for it.

Preprocessing comprises all steps that have the reduction of complexity and extraction

of the most important features of the raw data as objectives. This includes noise filtering, peak

detection, deisotoping, normalization, alignment, and identification (CASTILLO et al., 2011).

Except for peak identification and deisotoping, an algorithm which groups isotopic peaks that

originate from one and the same compound, which otherwise would be considered as various

different compounds and would consequently falsify data interpretation (CASTILLO et al.,

2011), all preprocessing steps are included in MALDIquant. The preprocessing workflow that
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was applied in this master’s thesis (a spectrum acquired in negative ion mode from an extract

of Lychnophora candelabrum was taken as an example) is illustrated in Figure 11. It included

variance stabilization (by square root transformation of the absolute intensities), noise filtering

(called smoothing in MALDIquant) by the moving average algorithm, baseline subtraction by

the Top Hat algorithm, TIC normalization and peak detection.

Figure 11: Example of MALDIquant output: 1 raw spectrum; 2 variance-stabilized spectrum; 3 smoothed
spectrum; 4 baseline-corrected spectrum; 5 normalized spectrum; 6 preprocessed spectrum with detected and

labeled peaks.

Noise filtering separates compound signals from background signals, whilst peak de-

tection identifies the correct form of a compound signal and estimates its intensity. Normal-

ization corrects systematic variation and enables the direct comparison of different samples

(CASTILLO et al., 2011). The normalization type that was applied in this master’s thesis was

the total ion current (TIC) normalization. According to Murray et al. (2013) the total ion cur-

rent is the sum of all separate ion currents carried by the ions of different m/z contributing to

a complete mass spectrum. The total ion current normalization is a global normalization type,

which sets the TIC of every analysed spectra to one (GIBB and STRIMMER, 2012) and like

this allows comparison of intensities between different spectra. One and the same compound

may appear at slightly different m/z values. In order to compare different features between

samples, peaks have to be aligned before interpretation. In MALDIquant landmark peaks are
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identified that occur in most spectra and a non-linear warping function is then computed for each

spectrum by fitting a local regression to the matched reference peaks (GIBB and STRIMMER,

2012). Figure 12 illustrates the alignment of four spectra of species of the genus Lychnophora

by MALDIquant.

Both normalization and alignment can be performed with or without the addition of

an internal standard (CASTILLO et al., 2011; SMITH et al., 2006). Indeed, a frequently dis-

cussed question in studies on metabolomics is whether or not an internal standard should be

added. Smith and coworkers (2006) have highlighted various drawbacks of the addition of in-

ternal standards during alignment in metabolomic studies. According to these authors, working

with internal standards wrongly assumes that deviations in retention time are linear. Further-

more, an additional step in sample preparation is required, which is more time-consuming and

thus unfavorable for metabolomics experiments. Finally, internal standards may mask other

experimentally relevant analytes (SMITH et al., 2006). Instead, Smith and collaborators (2006)

encourage the use of an algorithm in XCMS, a program developed for LC-MS data prepro-

cessing that takes into consideration the nonlinearity of retention time deviation without using

internal standards. Also in this master’s thesis no internal standards were used due to the afore

mentioned disadvantages.

Van den Berg and coworkers (2006) have tested different data preprocessing methods

and have come to the conclusion that these methods greatly influence the outcome of data anal-

ysis. As in the case of all the other metabolomics areas, preprocessing of metabolomics data

is still in its infancy, and new algorithms and/or software are continuously being developed by

various research groups (SMITH et al., 2006). It is therefore essential to store raw data, in order

to be able to perform analysis at a later point in time using newly developed algorithms.

Figure 12: Example of peak alignment by MALDIquant: A four unaligned peaks; B four aligned peaks.
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1.4.2 Multivariate data analysis

Metabolomics data sets are usually multivariate, which means they include more vari-

ables (e.g. ions) than samples (TRYGG et al., 2006). For analysis of those highly collinear

and complex data sets multivariate statistical methods are applied (TRYGG et al., 2006). Mul-

tivariate statistical methods are procedures that observe and analyse more than one variable at

a time (NORDSTRÖM, 2008). Univariate approaches (e.g., student’s t-test) and traditional sta-

tistical methods (e.g., multiple linear regression) assume independent variables, and are there-

fore inappropriate for the analysis of data resulting from metabolomics studies (TRYGG et al.,

2006). There are two sub-classes of multivariate statistical methods, namely non-supervised

classification and supervised classification methods (GOODACRE et al., 2004; HALL, 2006;

NORDSTRÖM, 2008). Non-supervised classification methods do not associate samples with

labels; that is, no assumption about the existence of groups among the samples is made. In

contrast, supervised classification methods use external information related to the data set to

make predictions through multivariate calibration or by performance of discriminant analysis

(NORDSTRÖM, 2008; WEBB, 2002). According to Hall (2006), unsupervised approaches

for discriminatory analyses such as principal component analysis (PCA) and hierarchical clus-

tering (HCA) or supervised approaches like partial least squares (PLS) or Soft Independent

Modeling of Class Analogy (SIMCA) are the simplest and most widely employed classification

methods in metabolomics studies (HALL, 2006). Trygg and coworkers (2007) further mention

orthogonal-PLS (OPLS) as a more advanced method. They point out that more advanced mul-

tivariate methods such as SIMCA, PLS-DA (PLS discriminant analysis), and/or OPLS-DA are

rarely utilized in studies in metabonomics (metabolomics for disease or treatment observation

in tissues and biological fluids [DUNN and ELLIS, 2005]). Although PCA is an appropriate

tool for any work on metabonomics (as well as metabolomics) and is always recommended

for the attainment of a rapid overview of the information contained in the data, it is impor-

tant that various and more advanced multivariate methods are also considered, because they

provide important information that is not contained in PCA (Trygg et al., 2007). In Johnson

and collaborators (2003), for instance, it was not possible to discriminate between salt-stressed

tomatoes and the control, non-salt-stressed tomatoes by PCA. With discriminant function anal-

ysis (DFA), a supervised method, instead it was possible to differentiate between salt-treated

and non-treated fruits.

Van den Berg and coworkers (2009) have presented further variations of PCA, consen-

sus principal component analysis (CPCA), and canonical correlation analysis (CCA), by means

of which data analysis can be focused on a group of metabolites that is of special interest. It

was shown that the application of these advanced statistical methods lead to better biological
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interpretation of data in E. coli.

There are attempts in the metabolomics research community to uniform description of

metabolomics experiments from the experimental part up to data analysis. Goodacre (2007)

and coworkers report minimum reporting standards for data analysis in metabolomics.

Multivariate data analysis applied in this master’s thesis included 4 types of non-

supervised classification namely PCA and three types of cluster analyses. A short introduction

to those methods is therefore given in the following.

Principal component analysis

Principal component analysis (PCA) as well as the partial least squares (PLS) method

belong to the projection-based methods. In these methods, each row (individual sample) of data

listed in a table (so called data matrix or table X) with n rows (plant extracts) and k columns

(ions), is represented as a point in a k-dimensional space, where its position is given by the

coordinates (values in each of the k columns) (NORDSTRÖM, 2008; STEUER et al., 2003;

TRYGG et al., 2006). Each sample creates one point, thereby leading to a swarm of points in

a multidimensional space. Samples (points) that lie close to each other are chemically more

similar than points lying far apart. Projection-based methods convert this multidimensional

data table into a low-dimensional model plane that usually consists of two to five dimensions

and gives a summary of the variation in the data table X (swarm of points) (NORDSTRÖM,

2008; TRYGG et al., 2006). Figure 13 was adapted from Trygg an collaborators (2006) and

illustrates data analysis by multivariate projection-based methods.
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Figure 13: Illustration of projection-based methods based on Trygg and collaborators (2006): 1 each row in the
data table X represents one sample, each of which contains three metabolites (k = 3); 2 in a k = 3 dimensional

space each sample may be represented as one point. All samples together create a swarm of points; 3
projection-based methods such as PCA and PLS then convert the data into a representative low-dimenional model
plane (here two-dimensional) that summarizes the variation in the data table X; 4 this model plane may further be

visualized in scatter plots, which show groupings, trends, or outliers in the data.

In PCA, the largest variation is expressed in the first PC (t1p1T ), the second largest

variation is expressed in the second PC (t2p2T ), and so on. Points in the data swarm have the

largest distance from each other in the direction of the first principal component and principal

components are mutually orthogonal (JOLLIFFE, 2002; TRYGG et al., 2007). There are many

algorithms for the accomplishment of PCA, each of which is suited for different applications.

The most common algorithm used is the Eigenvector method (JOLLIFFE, 2002), which was

also applied in this master’s thesis. PCA results are presented in two different plots, namely the

score plot and the loading plot (MORITZ and JOHANSSON, 2008; TRYGG et al., 2006). The

sample points on the low dimensional model plane described above are the weighted averages

of all the variables (the ions) in the data table X and are designated scores T. This plot is there-

fore also called the score plot. It provides an overview of all the samples in X and of how they

relate to each other, thus affording groupings of samples (clusters). Trends and outliers (deviat-

ing samples) can be clearly distinguished, because they show up as distinct clusters. Hence, in

the score plot the relation among the samples are shown (KRZANOWSKI, 2000; MORITZ and

JOHANSSON, 2008; TRYGG et al., 2007; TRYGG et al., 2006). To understand the reason for

the observed patterns; i.e., to find out which variables (ions) are responsible for a distinct pat-

tern, the loading plot P can be used. As directions in the loading plot correspond to directions
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in the score plot, it is possible to identify which variables (loadings), or ions respectively, are

responsible for the separation of objects (scores), the plant samples (KRZANOWSKI, 2000;

MORITZ and JOHANSSON, 2008; TRYGG et al., 2006). The part of the X matrix, which

cannot be explained by the model plane is known as residuals E. E describes the distance be-

tween each sample point in the k-dimensional space and its projection on the plane (TRYGG et

al., 2007; TRYGG et al., 2006). Consequently, all of the variation in the data table X can be

described as (TRYGG et al., 2007):

X = T PT +E = t1p1T + t2p2T +E (1)

Recently, Kuhnert and coworkers (2011) have compared several PCA processing pa-

rameters, in order to distinguish between different green coffee beans by LC-ESI-TOF-MS.

They concluded that the grouping of samples does not depend on PCA parameters, but they

found out that the identification of metabolites responsible for grouping patterns varies signif-

icantly between different PCA parameters. The partial least squares method (PLS) can be ap-

plied when additional knowledge about each sample exists. This additional information about

the X matrix is denominated Y matrix. The Y matrix may include quantitative (e.g. , glucose

concentration) as well as qualitative information (e.g. , morphological trait, such as leaf shape).

PLS is analogous to PCA, except that the additional information in the Y matrix is used to show

the variation that is related to Y in X instead of showing the overall variation (TRYGG et al.,

2007; TRYGG et al., 2006).

Clustering

Clustering is defined as discipline, which aims to reveal groups or clusters of similar

entities in the data (MIRKIN, 2005). There exist various clustering algorithms in the literature,

which can be further subdivided in partitioning methods and hierarchical methods. In this

master’s thesis two partitioning methods, partitioning around medoids (PAM) and dynamic tree

cut, a recently developed tree cut method (LANGFELDER et al., 2008) and one hierarchical

method, the hierarchical cluster analysis were performed. In both methods the input data is

a dissimilarity matrix. In such a matrix distances between each pair of objects i and j are

computed, in order to quantify their degree of dissimilarity. Distance measures, which are

used to calculate the dissimilarity between two objects are numerous and depend upon the data

type. In this master’s thesis clustering was performed on a binary data set. Binary variables

are variables that only have two possible outcomes. In the present case this would be either the

presence (designated as 1) or the absence of a particular ion (designated as 0). There are two

types of binary variables. Asymmetric and symmetric ones. In symmetric binary variables it is
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assumed that both variables are equally valuable and carry the same weight. For example two

plants showing the same ion in their mass spectrum would be accounted equally similar, as two

plants that do not show this particular ion. In asymmetric binary data however it is assumed

that not both variables carry the same weight. Two plants showing the same ion in their mass

spectrum would be correctly accounted more similar to each other than two plants that don’t

show the ion. In the present study the Jaccard coefficient, which is most commonly used when

working with asymmetric binary data was used to calculate the dissimilarity matrix of the data

set. Given the association table in Table 13, the Jaccard Coefficient is defined as (KAUFMAN

and ROUSSEEUW, 1990):

b+ c
a+b+ c

(2)

Partitioning methods classify data into k groups, where k is defined by the user. Hi-

erarchical algorithms however deal with all values of k in the same run (KAUFMAN and

ROUSSEEUW, 1990). Hall and collaborators (2006) state that the cluster algorithms that are

most often employed in metabolomics belong to the hierarchical techniques. A hierarchy of a

treelike structure can be produced by these methods, the so-called dendrogram. Such tree dia-

grams are also commonly seen in taxonomic studies and phylogenetics (NORDSTRÖM, 2008;

GOODACRE et al., 2004).

Table 13: Association table. Source: KAUFMAN and ROUSSEEUW, 1990.

object j
1 0

object i
1 a b a + b
0 c d c + d

a + c b + d

There exist two kinds of hierarchical algorithms, agglomerative methods and divisive

methods. Agglomerative methods start when all objects are apart and two clusters are con-

tinuously merged until only one is left. Divisive methods however start when all objects are

together and splits it continuously up (HAIR, 1995; KAUFMAN and ROUSSEEUW, 1990;

NORDSTRÖM, 2008). In the hierarchical cluster analysis that was performed in this master’s

thesis an agglomerative cluster method was performed. There exist a variety of different ag-

glomerative clustering methods including for example Ward’s method, single linkage, complete

linkage, unweighted pair-group average, McQuitty’s similarity analysis, median method and

centroid method besides others. Each method uses a different clustering algorithm and has its

own advantages and disadvantages. There is no single "best" clustering method, and the cho-
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sen clustering method depends highly on the data set (KAUFMAN and ROUSSEEUW, 1990).

Out of this reason various clustering methods implemented in R were tested for the data set

presented in this master’s thesis.
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10 CONCLUSIONS

To develop a protocol for metabolic fingerprinting by MALDI-MS, which can be used

for taxonomic classification of a variety of plant species is a very ambitious goal. Several

taxonomic tools, based on morphological traits up to genome analysis showed various draw-

backs in correct taxonomic classification of plants. It is therefore not surprising that various

difficulties also remain in the taxonomic classification of plants based on their metabolome.

Hence, metabolomics applied to plant systematics may rather serve as additional tool besides

others, than provide independent results. In order to judge whether results obtained from plant

metabolomics studies provide a reliable approach for plant systematics limitations of chemo-

taxonomy as well as limitations present during sampling, in the chosen analytical method and

data analysis should be considered.

The major challenge in chemotaxonomy has always been the fact that particular sec-

ondary metabolites can occur in plant groups that are not related in a phylogenetic context.

Same secondary metabolites occur in non-related groups due to convergent evolution, due to

the fact that genes encoding the enzymes of secondary metabolism might be widely distributed

in the plant kingdom, but switched on or off in a certain context or due to the presence of en-

dophytic fungi, which are able to produce secondary metabolites. As a consequence, similar

metabolite profiles of two taxa cannot necessarily be taken to imply a monophyletic relation-

ship. A further confounding factor is that external pressure may influence the production of

secondary metabolites. Phylogenetic unrelated plants that are confronted with same environ-

mental factors, may develop similar stratagems to combat the influencing factor, meaning they

would produce similar chemical compounds (WINK et al., 2010). Wink and collaborators state

that these confounding factors have a greater impact at higher taxonomic levels and influence

of those on lower taxonomic levels may be considered minor. Even if a broader picture of

a plant’s metabolites is obtained in metabolomics studies than in classical chemotaxonomic

studies, where only few substances are analysed, it may not automatically be implied that clas-

sification based on plant’s metabolomes lead to a taxonomy correspondent classification.

In this master’s thesis a protocol for metabolic fingerprinting by MALDI-MS as well

as a subsequent data analysis pipeline that is able to detect in a robust way ions present in all
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replicate samples was developed. Classifications that were obtained from the metabolic finger-

prints of 24 plant species belonging to four different tribes, three subfamilies, two families and

two orders based on binary hierarchical cluster analyses showed similarity to taxonomic classi-

fications of the plants. Despite this similarity however, it was also possible to point out several

difficulties that are inherent to plant metabolomic studies and specifically, which are inherent to

MALDI-MS applied in plant metabolomic studies.

A first essential step is the harvesting of the plant material. If the study is conducted

with plant species that were collected in their natural habitat, at different points in time, with

different developmental stages and at different places as was the case in this master’s project,

it should be kept in mind that the conditions under which these plants were grown could have

varied to a great extent. A quantitative metabolomic analysis would therefore be questionable

as the quantitative differences found in the metabolome also could be attributed to external fac-

tors such as climate, soil condition or water stress and not be inherent to the species genetic

composition. In this master’s thesis it was therefore opted to base data analysis merely on the

presence or absence of specific ions.

Metabolomics aims to analyse the metabolome as a whole, however there are various

steps during sample preparation, sample analysis and data analysis that considerably decrease

the insight into a plant’s metabolome. The first decrease already occurs during sample prepara-

tion. Depending on which solvent is used (as outlined in Section 9.5) different metabolites are

extracted and hence a different view of the metabolome is obtained. Subsequently the chosen

analytical method further decreases this amount as never all metabolites can be detected with

one single analytical technique. As was shown MALDI-MS is able to detect different metabo-

lites not only depending on the chosen ionisation mode but also on the chosen matrix substance.

To capture an as large variety of metabolites as possible it was proposed to perform analysis in

both ionisation modes and with various different matrix substances. On the other hand how-

ever this increases considerably the time that is used for data acquisition, which originally was

thought to be the main advantage of MALDI-MS applied in plant metabolomics. Furthermore

a major difficulty was to find an appropriate matrix substance for analysis of low molecular

weight compounds, which can be applied to a variety of plant species and does not show ions

that interfere with ions of the plant extract. The exploration of a matrix substance that can be

used in both ionisation modes, which additionally shows no interfering ions, may be applied

to various different plant species and with which an as wide variety of metabolites as possible

may be detected will therefore be a key factor in making MALDI-MS feasible for metabolic

fingerprinting.

Last but not least also data analysis further reduces the amount of ions that actually will

be considered for classification. It was shown that several ions do not constantly show neither in
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all technical replicates nor in all sampling replicates and therefore can’t be considered for data

analysis. Furthermore it was also shown that any kind of preprocessing has a large influence

on the obtained classification when working with a binary data set. In order to get reproducible

classification patterns a subset of ions would have to be defined with which standard ideal pre-

processing methods could be chosen. However the total number of possible subsets out of the

set of all detected ions is so big that not all possibilities can be tested. The in-house R-script that

was developed in this master’s thesis was only able to test a very small percentage of the total

number of possibilities. It is therefore possible that the subset of ions that would have led to

a complete taxonomy correspondent classification remained undetected. Application of further

multivariate data analysis methods and the development of further algorithms in combinatorial

optimization would therefore be necessary in order to improve obtained classifications and in

order to increase reliability of the obtained results. Additionally a deisotoping algorithm during

preprocessing of the spectra might further lead to more reliable results.

The ions that were found to be responsible for classifications that showed most similar-

ity with taxonomy showed very low intensities, furthermore also no class specific ions could be

detected. It remains unknown if the metabolites responsible for the taxonomic classification of

the analysed plant species are only present at very low concentrations and compounds that are

more abundant are equal in all plant species. If these compounds only could be ionised to a very

low extent with the chosen matrix substances or if these substances are not at all detectable with

MALDI-MS. If they were at all present in the plant extract, or if they could not be extracted

with the chosen solvent, or at last, if they do exist at all.

As pointed out here, there are still various open questions and still a long way to go

in making MALDI-MS a feasible, rapid and confident tool for metabolic fingerprinting applied

for taxonomic classification of plants. Also with metabolic fingerprinting, as stated in Stuessy

(2009) taxonomy remains dynamic, beautiful, frustrating, and challenging all at the same time.

The results presented in this master’s thesis are a first attempt in applying MALDI-MS for

metabolic fingerprinting for plant taxonomic purposes and might present essential knowledge

needed for further studies. Developed algorithms in the R environment are included in the ap-

pendix, proposed data analysis workflows can therefore be directly applied and further improved

during future studies.
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