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ABSTRACT 

 

MARTINS TEIXEIRA, M. B. Synthesis of novel anthracycline derivatives containing azido 

glycosides. 2018. 298 p. Thesis (Doctoral). School of Pharmaceutical Sciences of Ribeirão 

Preto – University of São Paulo, Ribeirão Preto, 2018. 

 

Anthracyclines are ranked among the most effective chemotherapeutics against cancer. They 

are glycoside drugs comprised by the aminosugar daunosamine linked to a 

hydroxyanthraquinone aglycone, and act by DNA-intercalation, oxidative stress generation and 

topoisomerase II poisoning. Regardless of their therapeutic value, multidrug resistance and 

severe cardiotoxicity are important limitations arising from anthracycline treatment, prompting 

the discovery of novel analogues, for instance through glycodiversification. This work aimed 

to exploit azido glycosides, to be combined with anthracycline aglycone and generate novel 

glycosides. In a semi-synthesis approach, both daunorubicinone and protected doxorubicinone 

were glycosylated with conveniently functionalised 2-azido glucosyl and galactosyl donors, as 

well as glycals. A screening of glycosylation protocols involved glycosyl chlorides, imidates 

and thioglycosides with the most successful promoters being HgO/HgBr2 (4-52% yield) and 

TMSOTf (38-41%); for glucals and galactals, Au(I) and Cu(I) catalysts gave moderate yields 

(15-46%), but thiourea-phosphoric acid was the most efficient catalyst system (18-95%). 

Cleavage of protecting groups proved challenging, hampering and delaying the obtention of 

free glycosides. Upon deprotection, the glycosides obtained included glucoside 49 (13%), 2-

azido glucoside 51 (34%), 2-deoxyglucoside 58 (11%), and 2-deoxygalactoside 61 (85%), all 

with the daunorubicin scaffold. In cell proliferation assays, glycosides 61α and 61β were tested 

against human cancer cell lines HeLa, MDA-MB-231 and MCF-7 and a model of healthy cells 

(HDF), with IC50 in the range of 27.1 to 74.6 M for the α anomer, and higher than 250 μM for 

the β anomer. Preliminary studies with human cardiomyocytes derived from induced 

pluripotent stem cells were inconclusive to establish a cardiac toxicity experimental model. 

 

Keywords: Anthracycline. Azido glycoside. Glycodiversification. Cytotoxicity. Cardiotoxicity 
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RESUMO 

 

MARTINS TEIXEIRA, M. B. Síntese de novos derivados de antraciclinas contendo azido 

glicosídeos. 2018. 298 p. Tese (Doutorado). Faculdade de Ciências Farmacêuticas de Ribeirão 

Preto – Universidade de São Paulo, Ribeirão Preto, 2018. 

 

Antraciclinas estão entre os mais eficazes quimioterápicos contra o cancer. São fármacos 

glycosídicos compostos pelo carboidrato daunosamina ligado a uma aglicona hidróxi 

antraquinona, e atuam por intercalação ao DNA, geração de estresse oxidative e envenenamento 

de topoisomerase II. Apesar de sua utilidade terapêutica, multirresistência e cardiotoxicidade 

grave são importantes limitações decorrentes do tratamento com antraciclinas, estimulando a 

descoberta de novos análogos, por exemplo através de glicodiversificação. Este trabalho 

objetivou explorar azido glicosídeos, a serem combinados com agliconas de antraciclinas para 

gerar novos glicosídeos. Em uma estratégia semi-sintética, daunorrubicinona e doxorrubicinona 

protegida foram glicosiladas com doadores 2-azido glucosídicos e -galactosídicos, além de 

glicais. Uma varredura de metodologias de glicosilação envolveu cloretos, imidatos e 

tioglicosídeos, sendo os promotores com melhores rendimentos HgO/HgBr2 (4-52%) e 

TMSOTf (38-41%); para glucais e galactais, catalisadores de Au(I) and Cu(I) forneceram 

moderados rendimentos (15-46%), mas o sistema mais eficiente foi o organocatalisador de 

tiouréia e ácido fosfórico (18-95%). A clivagem dos grupos de proteção foi desafiadora, 

dificultando e atrasando a obtenção dos glicosídeos livres. Mediante desproteção, os glicosídeos 

obtidos incluíram glucosídeo 49 (13%), 2-azido glucosídeo 51 (34%), 2-desóxi glucosídeo 58 

(11%) e 2-desóxi galactosídeo 61 (85%), todos com o esqueleto de daunorrubicina. Em ensaios 

de proliferação celular, os glicosídeos 61α e 61β foram testados em linhagens de células 

tumorais humanas HeLa, MDA-MB-231 e MCF-7 e um modelo de células sadias (HDF), com 

IC50 na faixa de 27.1 a 74.6 M para o anômero α, e superior a 250 μM para o anômero β. 

Estudos preliminares com cardiomiócitos humanos derivados de células-tronco induzidas 

foram inconclusivos para estabelecer um modelo experimental de toxicidade cardíaca. 

 

Palavras-chave: Antraciclina. Azido glicosídeo. Glicodiversificação. Citotoxicidade. 

Cardiotoxicidade 
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1 INTRODUCTION 

 

1.1 Cancer and anticancer treatment 

 

The global cancer burden has been continually rising, with predictions to keep 

growing throughout the coming decades, associated with population ageing and contemporary 

lifestyle, especially in lower-resource countries that are undergoing major social, 

demographic, and economic transitions. According to the most current appraisals of cancer 

incidence and mortality worldwide, the World Health Organization (WHO) estimates more 

than 18 million new cases diagnosed in 2018, which is projected to increase by over 60% in 

the next two decades; and at least 9.6 million deaths from cancer during this year, placing the 

disease as the second leading cause of death globally.1-3 

Cancer is characterised by abnormal cell transformation with unsuppressed growth 

and spreading, due to the gradual acquirement of cellular capabilities, such as limitless 

proliferation and evasion from control mechanisms, known as cancer hallmarks. Ultimately, 

such multistage process results from cumulative genetic mutations that dysregulate proto-

oncogenes and tumour suppressor genes, causing genome instability. In turn, genomic 

alterations are multifactorial, ensued from the interaction between the individual genetic 

profile and external agents, including physical, chemical, and biological carcinogens.4-6  

Among the nearly two hundred existing cancer types, the most common incidence 

sites are lung, breast, colorectum, prostate, stomach and liver. Although the classification of 

cancers is traditionally based on the organ of origin combined with histological typing, the 

increasing knowledge on tumour genomics is providing a deeper refinement of cancer 

complexity at the molecular level, which is expected to provide better prognostic power and 

more precisely targeted therapies.3, 7  

A milestone in anticancer therapy was the discovery of cytotoxic agents in the last 

century, improving survival rates and the quality of life for cancer patients.6, 8 Currently, there 

is a vast therapeutic armoury available for the treatment of a variety of cancer types: 

alkylating agents, intercalators, antimetabolites, antimitotic, enzyme inhibitors, hormone 

antagonists, in addition to immuno and gene therapies (Figure 1). 

Underlying many of these antineoplastic classes is the disruption of nuclear 

mechanisms, which kills cancer cells by strategically exploiting their rapid replication as a 

selectivity feature. However, these drugs also affect healthy tissues that inherently have a 
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high cell renovation rate, causing recurrent side effects, such as bone marrow suppression, 

hair loss, mucosal irritation, gastrointestinal disturbances, and many others.9 

 

 

Figure 1. Selected examples of cytotoxic drugs affecting cell replication processes. Cyclofosfamide, a DNA-

alkylating agent; cytarabine, a DNA polymerase inhibitor and chain terminator; camptothecin: a topoisomerase I 

poison; dactinomycin, a DNA intercalator; vincristine, a tubulin-polymerisation inhibitor;  

 

 

1.2 Anthracyclines 

 

Anthracyclines comprise a class of natural antibiotics among the most effective 

antineoplastic agents in current clinical use, with few unresponsive cancer types. The first 

representative compounds of this family were isolated from a mutant strain of the actinobacteria 

Streptomyces peucetius by Arcamone and Di Marco, as part of a systematic search for 

antitumour agents by an industrial company (Farmitalia Research Laboratories of Milan). 

Daunorubicin (DAU) was described in 1964, followed by doxorubicin (DOX) in 1969, when 

they used to be named “daunomycin” and “adriamycin”, respectively (Figure 2). They were 

soon tested clinically, achieved registration in the early 1970s, and have been marketed since 

then, becoming the prototypes of the anthracycline class.10-13 

After half a century of their discovery, the so-called first-generation anthracyclines are 

still frequently prescribed today and persist as a mainstay in many chemotherapeutic schemes. 

Ranked among the most potent and widely useful anticancer drugs, DAU and DOX are 
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consistently listed by WHO as essential medicines for cancer treatment. While daunorubicin 

is indicated against acute lymphoblastic and myeloblastic leukaemias, doxorubicin is more 

active on lymphomas, sarcomas, and a broad spectrum of solid tumours, including breast, lung, 

bladder, bone, and cervical cancers. 6, 13-15 

Such a distinct range of anticancer activity between daunorubicin and doxorubicin is 

defined by a minor structural difference, as shown in Figure 2. Overproduced by a number of 

strains, DAU is the immediate biosynthetic precursor of DOX in Streptomyces peucetius 

caesius ATCC 27952, the single strain reported to produce doxorubicin, and which complete 

genome was recently sequenced. However, to date, it proved not to be amenable for scaling 

up, as strain improvement techniques and genetic engineering have not delivered a cost-

effective fermentation process for DOX yet. Therefore, on the industrial scale, doxorubicin 

is prepared by semisynthesis from daunorubicin, through a chemical bromination at C-14, 

followed by displacement of the bromine by hydroxide with mild base treatment.13, 16, 17 

 

 

Figure 2. The first generation of anthracyclines: daunorubicin and doxorubicin. The 3-amino-2-deoxyglycosyl 

unit “daunosamine” is stressed. Conventional structural numbering and naming in accordance with Brockmann 

(1963), who described the isolation and elucidation of the first anthracycline compounds.18 

 

 

Both daunorubicin and doxorubicin are natural product glycosides derived from 

microbial polyketide biogenetic intermediates, sharing a polyhydroxy anthraquinone skeleton 

(rings B, C and D) fused to a fourth saturate substituted ring (A), altogether corresponding to 

the aglycone moiety. The side chain at C-9 differentiates DOX from DAU, the former holding 

an extra hydroxyl group at position 14. The hydroxylated tricyclic quinone system is the 

chromophore responsible for the red to orange colour characteristic of anthracyclines, which 

absorb around the 480 nm range of the visible light spectrum. Attached to ring A at the benzylic 

position 7 is the unique glycone moiety 3-amino-2,3,6-trideoxy-α-L-lyxo-hexopyranose, also 

known simply as daunosamine (DNS), an unusual amino deoxy sugar conserved in tens of 

anthracycline congeners and considered crucial for their anticancer activity.13, 18 
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Many other bioactive natural products contain glycosides, in which the carbohydrate 

residues are often essential, as illustrated in Figure 3. Some types of carbohydrates are 

repeatedly present in various classes of glycoconjugates, such as 2-deoxysugars,19 found in 

antiparasitic macrocyclic lactones (ivermectin B1a), aureolic acid antibiotics (chromomycin 

A3), and cardiotonic agents (digoxin), for example. In addition, aminosugars, besides occurring 

most abundantly in structural polysaccharides, such as glucosamine in chitin and galactosamine 

in chondroitin, also exist in many rare and complex natural product glycosides, as is the case of 

3-amino sugars in antibiotics like vancomycin, amphotericin B and erythromycin (Figure 3). 

Cytotoxic anthracyclines combine both structural features enclosed in the unique 3-amino-2-

deoxyglycosyl residue daunosamine.20  

 

 

Figure 3. Selected examples of glycoside drugs containing 2-deoxy and 3-amino-3-deoxy carbohydrates, 

highlighting the glycones. 
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1.2.1 Mechanisms of action and structure-activity relationship considerations 

 

Anthracyclines cytotoxic activity results from a strong inhibitory effect on nucleic acid 

synthesis, but there has been substantial controversy and debate over their exact molecular 

mechanisms of action. It is now generally recognised that anthracyclines act through a 

combination of multiple mechanisms and that the most consistent are, namely: induction of 

oxidative stress, intercalation into DNA, and more importantly, poisoning of topoisomerase II 

enzyme (Top2).15, 21 

The formation of reactive oxygen species (ROS) induced by anthracyclines can be 

initiated by one-electron reductions of either the quinone into semi-quinone or chelated ferrous 

into ferric ions. These electron transfers trigger enzyme-mediated reduction-oxidation (redox) 

cycles that ultimately produce very destructive hydroxyl radicals, causing protein alkylation, 

lipid peroxidation, and particularly direct DNA damage and cross-links, followed by all 

downstream cellular cascades leading to cell death (Figure 4). Interestingly, the ability of 

anthracyclines to boost ROS production is also largely associated with their toxic effects, 

predominantly on myocardial tissue.15, 22, 23 

 

 

Figure 4. Schematic main pathways of anthracycline-induced and iron catalysed oxidative stress generation. Fp: 

flavoprotein, GSH/GSSH: reduced/oxidised glutathione, NAD(P): nicotinamide adenine dinucleotide 

(phosphate), SOD: superoxide dismutase. Adapted from Sterba (2013).22 
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Owing to their aglycone planar structure, comprised by a polyaromatic system, 

anthracyclines are capable of intercalating DNA. More specifically, rings B and C from the 

anthraquinone moiety stack between neighbouring base pairs, pushing them apart to result in 

bidirectional positive torsion of the double helix. Ring D occupies the major groove, while ring 

A and daunosamine project into the minor groove, as shown by the interaction of doxorubicin 

with a short DNA sequence in a crystalline structure, illustrated in Figure 5.24, 25 Although 

intercalation itself can distort DNA and possibly interfere with the nuclear functions, it is 

considered necessary but not sufficient for the optimal cytotoxic activity of the anthracyclines, 

in particular at the in vivo concentrations elicited by therapeutic doses.15, 22 

 

a) 

 

b) 

 

c) 

 

Figure 5. Crystallographic complex of two doxorubicin molecules with DNA sequence CGATCG, PDB 1P20. 

Adapted from 25 Lateral views from the minor groove (a) and major groove (b) perspectives; c) helix axial view 

projected through the anthracycline plane. Illustrations generated with web-based NGL Viewer.26 

 

 

Intercalation becomes essential as part of the primary mechanism of action of 

anthracyclines, the poisoning of topoisomerase II enzyme. Observing other Top2 poisons, an 

obvious shared structural feature is the polyaromatic intercalating moieties (Figure 6).27 

Topoisomerase II is a nuclear enzyme that adjusts the torsion state of DNA, which tends to form 

supercoiled structures during replication and transcription over the cell cycle. To relief 

supercoiling tension, Top2 promotes transient breaks in both strands of a duplex DNA, passing 

an intact DNA double helix through the open gap, and then reseals the broken strands. In specific 

recognition sites, Top2 cleaves one phosphodiester bond on each strand of DNA and covalently 

binds to the 5ʹ OH of DNA backbone through the active site tyrosyl group, stabilising the broken 

strands in a cleavable complex. After unknotting, the enzyme promotes relegation of the broken 

strands and releases the restored duplex DNA (Figure 7).27-29 
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Figure 6. Anticancer drugs that target topoisomerase II. Intercalating moieties are essential for the poisoning of 

Top2 and are conserved in different poisons. 

 

 

Anthracyclines stabilise the cleavable complex between Top2 and DNA, trapping the 

covalent intermediate into a ternary drug-DNA-enzyme complex, which prevents 

topoisomerase from properly regenerating the broken phosphodiester bonds. These drugs 

subvert the physiological enzyme functions, converting topoisomerase into a DNA-breaking 

nuclease, which leads to genomic instability and triggers apoptotic cell death.15, 23, 30-32  

 

 

Figure 7. Catalytic mechanism of topoisomerase II. A transesterification occurs between the enzyme tyrosyl 

residue and DNA phosphodiester, breaking the DNA backbone bond and the forming a covalent enzyme–DNA 

intermediate. It allows another DNA chain to cross, after which the reversal reaction re-establishes the 

phosphodiester bond. Anthracyclines stabilise the intermediate in a ternary complex, poisoning the enzyme.  

 

 

In this mechanism of action, while the planar aromatic aglycone stacks between DNA 

base pairs, the glycosyl unit plays a crucial role, projecting through the helix groove to bridge 

the interaction with topoisomerase II and stabilise the ternary complex, the basic amino group 

being determinant for the stabilisation and binding affinity (Figure 8). Changing the 
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configuration of daunosamine to the β anomer modifies the mode of binding. Blocking the 

amino function with amide group reduces cytotoxicity, but the replacement at C-3ʹ with a 

small group such as hydroxyl retains comparable activity while averting multidrug 

resistance.31, 33 Conformational and crystallographic studies show that daunosamine is the 

most flexible domain in anthracyclines, possibly adopting numerous stable conformations 

for an optimal fit of the sugar at the interface between DNA and topoisomerase. Thus, 

modifications in the amino sugar are not only tolerable regarding bioactivity, but also of 

potential interest in drug development.33, 34 

 

 

Figure 8. Anthracycline domains relevant for the binding to DNA and topoisomerase enzyme, and consequently 

to the pharmacological activity. 

 

 

1.2.2 Limitations of anthracyclines 

 

Despite their widely acknowledged efficacy, anthracyclines clinical use is significantly 

limited by their toxicity, the most serious side effects manifesting in the myocardial tissue. 

Chronic cardiomyopathy is dose-dependent and develops in 5-20% of patients receiving 

cumulative doses higher than 500 mg/m2 of doxorubicin and 900 mg/m2 of daunorubicin. 

Within months or years after treatment, symptomatic congestive heart failure evolves, which 

is severe, progressive, irreversible, usually refractory to conventional therapy, and associated 

with high mortality rates.6, 15, 35 

The mechanisms underlying anthracycline-induced cardiotoxicity are complex, 

multifactorial, and not fully elucidated yet. The most accepted is the generation of reactive 

oxygen species in cardiomyocytes, which cells are particularly susceptible to free radical 

damage due to their deficiency in catalase and dismutase enzymes. ROS are overproduced by 

one-electron reductions, mediated by chelated iron and subsequent redox cycles of 
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flavoproteins (NAD(P)H oxidoreductases) (Figure 4). The biotransformation of anthracyclines 

involves the two-electron reduction of the C-13 carbonyl into secondary alcohol (doxorubicinol 

or daunorubicinol), via sequential metabolism by aldo-ketoreductase and carbonyl reductase 

enzymes. These metabolites greatly accumulate in cardiomyocytes, and are particularly harmful 

to these cells, especially regarding iron-dependent mechanisms. Mitochondrial dysfunction, 

calcium misbalance and apoptosis induction are other alterations involved in anthracycline 

cardiotoxicity.15, 35-39 Moreover, Top2β isoform present in cardiomyocytes was shown to 

mediate doxorubicin-induced heart damage, whilst Top2α isoform overexpressed in cancers 

cells is the molecular target of anthracycline therapeutic activity.40, 41 

A second major limitation related to anthracyclines is the development of resistance by 

certain cancer cells, which can be rendered by several specific inherent or acquired factors. 

For example reduced expression or activity of topoisomerase II, decreasing enzyme-mediated 

DNA damage; overexpression of superoxide dismutase enzyme, reinforcing cell defences 

against oxidative stress; suppression or mutation of p53, affecting apoptotic signalling 

pathways to prevent cell death. More importantly, multidrug resistance through altered 

membrane transport is the primary mechanism behind resistance to anthracyclines, exploited 

by cancer cells to evade the toxic effects of chemotherapeutics.42 

In multidrug resistant cells, active drug efflux is mediated by proteins of the ATP 

binding cassette family, markedly P-glycoprotein (P-gp) and MRP transporters, which are 

overexpressed on the cell surface. These efflux pumps are capable of recognising and expelling 

not only the drug which induced the resistance but a great diversity of drugs without any 

structural or functional similarity. Anthracyclines are known substrates for such nonspecific 

transporters, decreasing intracellular drug concentrations, diminishing its effectiveness and 

thus resulting in drug resistance. 43-45 

 

1.2.3 New generation anthracycline and other analogues 

 

In the pursuit for better anthracyclines that could overcome the cardiotoxicity and 

resistance limitations of the parent drugs, thousands of analogues have been isolated or 

synthesised, over the past decades, including modifications in the tetracyclic rings, the side chain 

and the amino sugar. The initial rationale was to avoid alterations in the general architecture of 

the molecule and the chemical functionalities, to retain the structural requirements for action, 

giving rise to second-generation anthracyclines, among which epirubicin and idarubicin proved 

to be clinically useful and are the most prominent derivatives.46 
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Epirubicin is a doxorubicin analogue in which the configuration of the C-4ʹ hydroxyl 

group is inverted, so the substituent lies in the equatorial orientation (Figure 9). It was first 

synthesised by glycosylation of the aglycone with a protected L-acosamine (3-amino-2,3,6-

trideoxy-α-L-arabino-hexopyranose), but further development allowed to perform 

epimerisation directly on the anthracycline glycoside. Epirubicin is about 30% less cardiotoxic 

than DOX, owing to differences in the pharmacokinetic profile, through extensive 

detoxification as a 4ʹ glucuronide, without affecting the antitumour properties of the drug. 

Because it is better tolerated, cumulative doses threshold is roughly twice as much as for 

doxorubicin.15, 46 

 

 

Figure 9. Second-generation anthracyclines. 

 

 

Idarubicin is the 4-demethoxydaunorubicin (Figure 9), prepared through glycosylation 

of the non-natural 4-demethoxydaunorubicinone. Originally produced by total synthesis, the 

aglycone could also be obtained semi-synthetically from daunorubicinone. This drug can be 

administered orally and shows a broader spectrum of activity compared to DAU, including not 

only leukaemias but also some solid tumours, probably by increased lipophilicity and cellular 

uptake.15, 46 



23 

 

Despite the numerous efforts, only some other analogues reached the stage of clinical 

development and even fewer achieved approval for marketing.15, 35 Semi-synthetic 

pirarubicin (4ʹ-tetrahydropyranyl-doxorubicin, Figure 9) is considered less cardiotoxic than 

DOX and exhibits activity against some doxorubicin-resistant cell lines. Aclarubicin is 

claimed to have reduced cardiotoxicity than DOX and DAU, but only moderate 

improvement in terms of drug resistance. This trisaccharide anthracycline from natural 

origin (Streptomyces galilaeus), comprised by a variant aglycone structure (Figure 9), has 

different mechanisms of action, including inhibition of Top2 before DNA breakage and 

histone eviction. These drugs became registered only in a few countries, and do not play a 

significant role in global terms.8, 15, 35, 47, 48 

As for the third-generation anthracyclines undergoing clinical development, some are 

emerging as promising drug candidates. Nemorubicin (PNU 152243) is a semi-synthetic 

doxorubicin derivative having a more lipophilic 2-(S)-methoxy-4-morpholinyl at the 3ʹ 

position (Figure 10), discovered by lead optimisation within a series of morpholinyl 

anthracyclines.49 In the preclinical phase, it was intensely potent, active against drug-resistant 

cell lines and xenografts, and not cardiotoxic. It is believed to be bioactivated by P450 CYP3A 

and to induce DNA strand breaks primarily through topoisomerase I cleavage.50-52  

Sabarubicin (MEN 10755) derives from the glycosylation of 4-demethoxy-

doxorubicinone with a disaccharide, resulting in a glycoside in which a 2,6-dideoxy-α-L-lyxo-

hexopyranosyl residue is positioned between the aglycone and daunosamine (Figure 10), 

differently from the natural anthracycline disaccharides, which carry the aminosugar as the first 

moiety directly attached to the aglycone. The elongated glycone permits the second sugar to 

interact both at the minor groove and with a DNA base. It is less cardiotoxic than doxorubicin, 

but it does not show the ability to overcome transport-mediated resistance. 46, 47, 52 

Amrubicin (SM‐5887) is a totally synthetic anthracycline analogue, developed through 

a simplification approach. In comparison with daunorubicin, it lacks the 4-methoxy group of 

the aglycone and the 3ʹ amino group of the carbohydrate, which is a minimalist version of 

daunosamine. On the other hand, an amino group appears at position 9, in replacement to the 

hydroxyl group. It is a prodrug, with the amrubicinol (13-OH) metabolite being more cytotoxic 

than the parent drug. Overall, it is less cardiotoxic than doxorubicin and epirubicin.52, 53 
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Figure 10. Third-generation anthracyclines. 

 

 

Specific changes, substituting the amino function in daunosamine by azide, for instance, 

demonstrated to overcome resistance in specific cancer cells. The 3ʹ-azido derivatives of 

daunorubicin, doxorubicin and epirubicin (Figure 11) were synthesised from the parent drug 

and retained antiproliferative activity against drug-sensitive human cancer cell lines of 

leukaemia (K562) and breast cancer (MCF-7). The first two compounds were further active 

against drug-resistant cell lines K562/Dox and MCF-7/Dnr, by averting P-glycoprotein binding 

and active efflux, with consequential intracellular accumulation. Flow cytometry and molecular 

modelling showed that the chemical modification, from positively ionisable amino group to the 

more electron-dense and linearly arranged azido group, abolished key interactions with P-

glycoprotein. These azides were no longer substrates to P-gp efflux transporter, and were 

considered new leads for the development of innovative anthracyclines43, 44, 54, 55 Although the 

azido group is not found in natural products, it is present in many bioactive compounds, 

including approved drugs such as azidocillin and azidamfenicol antibacterials, and zidovudine 

antiviral. 

 

 

Figure 11. Anthracycline 3ʹ-azido derivatives, some of which can overcome P-gp mediated resistance. 
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1.3 Glycodiversification and glycosylation reactions 

 

The discovery of novel anthracyclines with wider anticancer spectrum, better heart 

tolerability and less prone to resistance remains a necessity. Many of the structural variations 

in new generation anthracyclines took place on the carbohydrate moiety, indicating that the 

glycone could be successfully replaced without losing the anticancer activity, and at the same 

time modulating other properties, such as pharmacokinetics, toxicity, and resistance profile. 

Because anthracyclines are glycoside drugs with demonstrated tolerance to glycone 

modification, they are promising candidates to the so-called glycodiversification approach. This 

stands for the replacement of the carbohydrate unit of a bioactive glycoside by sequential 

glycosidic cleavage, protection, re-glycosylation and deprotection steps, enabling the access to 

series of glycosides of interest (Figure 12).56, 57 

 

 

Figure 12. Glycodiversification strategy of natural glycosides, enabling the synthesis of libraries of novel 

glycoside derivatives. Adapted from Ritter (2003).57 

 

 

This strategy is benefited by the possibility to work out the complexity of the 

carbohydrate separately, avoiding the valuable polyfunctional aglycone being exposed to 

unfavourable reaction conditions. Glycodiversification has been successfully applied to several 

classes of glycoconjugate drugs, such as the macrolide antibiotic erythromycin, the 

glycopeptide antibiotic vancomycin, the antiparasitic avermectins and the antifungal polyene 

amphotericin B (Figure 3).20, 56, 57 
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Based on this fruitful approach, it would be interesting to explore a variety of sugars in 

combination with anthracycline aglycones, with the glycosylation reaction playing a central 

role in connecting the two moieties. The chemical formation of a glycosidic bond is generally 

recognised as a challenging reaction, involving the linkage of a glycosyl acceptor, usually 

through a nucleophilic hydroxyl group, to the electrophilic anomeric carbon of a glycosyl donor 

equipped with a leaving group. A multitude of factors affects the efficiency and stereoselectivity 

of the glycosylation reaction, including the configuration of the carbohydrate moiety, the 

protecting groups on the substituents, the anomeric leaving group, the promoter system, the 

solvents, etc.58 

The most important outcome to control in a glycosylation reaction is the 

stereoselectivity of the glycosyl bond. It is primarily governed by the anomeric effect, which is 

a stereoelectronic factor describing the tendency of a polar C-1 substituent, adjacent to the 

oxygen atom in the tetrahydropyran ring, to prefer the axial orientation instead of the equatorial 

one, despite the latter being favoured by lesser steric hindrance. These improbable observations 

can be rationalised by the following orbital interaction and electrostatic models. The 

hyperconjugation of one of the non-bonding electron pairs from the endocyclic oxygen atom 

with the anti-ligand orbital * from the anomeric carbon provides electronic stabilisation. The 

superimposition is efficient when the orbitals are parallel, which is only enabled when the 

anomeric bond is in the axial orientation, and the lowest unoccupied molecular orbital has a 

syn-periplanar relationship with one of the oxygen n orbitals (Figure 13a). Electrostatically, the 

dipole-dipole interaction between the endocyclic oxygen lone pairs and the electrons of the 

anomeric substituent is strongly repulsive when it is positioned in the equatorial orientation, but 

these destabilising interactions do not exist when it is in the axial orientation, and the dipoles 

are opposite (Figure 13b). 59, 60 

 

 

Figure 13. The anomeric effect explained by a) the orbital interaction model, and b) the electrostatic model. 
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In some cases, the anomeric effect can be outrivaled by other factors, reversing the 

stereo preference of the forming glycosidic bond from the axial to the equatorial orientation. 

The most relevant of these factors is known as the neighbouring group participation, in which 

the substituent at C-2 influences the outcome of the glycosylation reaction. After anomeric 

activation upon the departure of the leaving group, the anomeric effect prevails if the 

neighbouring group is non-participant, as is the case of ethers, silyl ethers and azides, and the 

resulting glycoside is predominantly axial (Figure 14a). When the neighbouring group holds an 

acyl functionality, such as esters, amides and carbamates, that can stabilise the transient cation 

through a dioxolenium- or oxazoline-like intermediate, the bottom face is occupied, and the 

nucleophile can only attack by the top face. This effect is also called anchimeric assistance and 

results mostly in equatorial-oriented glycoside with high stereoselectivity (Figure 14b). In spite 

of these directing effects, it is noteworthy that they are not absolute, and commonly a small 

amount of the opposite anomer is also produced, which can be negligible or not. 60, 61  

Protecting groups in the glycosyl donor, which have the primary function of preventing 

undesired side reactions, can also interfere by rendering the glycosyl donor more reactive 

(“armed”, with electron donating groups) or less reactive (“disarmed”, with electron 

withdrawing groups), or even influence on the conformation of the intermediate through steric 

effects, favouring a particular stereo outcome.60, 62 As every glycosylation reaction is unique, a 

balance of these factors, combined with solvent, temperature, selection of anomeric leaving 

group and activation reagents, must be individually optimised.60, 63, 64 

 

 

Figure 14. Neighbouring group effect on the glycosylation reaction stereoselectivity. a) Non-participating group 

at C-2 does not influence, and the anomeric effect governs the formation of the axial glycoside. b) Participating 

group at C-2 provides anchimeric assistance, reversing the stereoselectivity to the formation of the equatorial 

glycoside. NG: neighbouring group; P: protecting group; R, Rʹ, Rʺ: alkyl/aryl. 
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Encouraged by the therapeutic potential of anthracyclines as anticancer agents, and the 

possibility to develop novel derivatives that could retain antitumor efficacy with reduced 

toxicity and resistance, given their comprehensive structure-activity relationship, this work 

envisioned to exploit glycosylation reactions within a glycodiversification strategy to 

synthesise novel anthracycline derivatives coupled to azido glycosides. 
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5 CONCLUSION 

 

The proposed glycodiversification route, involving cleavage of the glycosidic bond in 

daunorubicin and doxorubicin, the regioselective protection of latter, and the reaction with 

glycosyl moieties allowed to get a series of novel anthracycline protected glycosides, including 

2-azido glycosides 45, 46, 47, 50, 52, 2-deoxyglycosides 53, 54, 55, 57, 59, 60, and 6-azido-

2,6-dideoxy glycoside 56, achieving and extending the structural diversity originally planned. 

The best glycosylation methodologies were the trimethylsilyl trifluoromethane-

sulphonate catalytic activation of 2-azido glycosyl imidates, and the cooperative thiourea-

phosphoric acid organocatalysis for glycal donors. 

Deprotection of compounds 50, 57 and 60 afforded, respectively, 2-azido glucoside 51, 

the daunorubicin counterpart of target compound 1, 2-deoxyglucoside 58 and 2-

deoxygalactoside 61. Some deprotection reactions are to be optimised, in order to produce a 

variety of final products from the available protected glycosides, including the deprotected form 

of 6-azido galactoside 56, the structurally closest analogue of target compound 2. The synthesis 

of 3ʹ-azido-anthracyclines 3 and 4 was successfully reproduced from literature protocols, to 

serve as a comparison to the novel target compounds. 

3ʹ-azido-doxorubicin 3 showed comparable potency to the parent doxorubicin in 

antiproliferative assays against A431 cells. Compound 61α was 10 to 1000 fold less potent than 

the parent daunorubicin in antiproliferative assays against HeLa, MDA-MB-231 e MCF-7 cell 

lines, reinforcing the interest for testing the azido-containing derivatives against the same panel 

of cancer cells. 

A model of human cardiomyocytes derived from induced pluripotent stem cells could 

not be standardised for evaluating the synthesised compounds. An adequate experimental 

model still lacks for the assessment of their cardiotoxicity, which is to be addressed by means 

of collaboration. 
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