
UNIVERSIDADE DE SÃO PAULO  

FFCLRP - DEPARTAMENTO DE BIOLOGIA  

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA  

 

  

  

 

Patterns of morphological evolution in the skull of turtles: contributions from digital 

paleontology, neuroanatomy and biomechanics 

Padrões de evolução morfológica no crânio das tartarugas: contribuições da 

paleontologia digital, neuroanatomia e biomecânica 

 

 

Gabriel de Souza Ferreira 

 

 

 

 

 

 

 

  

RIBEIRÃO PRETO - SP  

2019 



UNIVERSIDADE DE SÃO PAULO  

FFCLRP - DEPARTAMENTO DE BIOLOGIA  

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA  

 

  

  

Patterns of morphological evolution in the skull of turtles: contributions from digital 

paleontology, neuroanatomy and biomechanics 

Padrões de evolução morfológica no crânio das tartarugas: contribuições da 

paleontologia digital, neuroanatomia e biomecânica 

 

 

Gabriel de Souza Ferreira 

Supervisor: Prof. Dr. Max Cardoso Langer 

Co-supervisor: Profa. Dra. Madelaine Böhme  

 

  

            Tese apresentada à Faculdade de Filosofia, 

Ciências e Letras de Ribeirão Preto da USP, 

como parte das exigências para a obtenção do 

título de Doutor em Ciências, Área: 

BIOLOGIA COMPARADA.  

  

  

RIBEIRÃO PRETO - SP  

2019 

 



Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio 

convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte 

 

 

 

 

 

 

FICHA CATALOGRÁFICA 

 

 

 

 

 

          Ferreira, Gabriel de Souza 

Patterns of morphological evolution in the skull of turtles: 

contributions from digital paleontology, neuroanatomy and 

biomechanics. 

190 p. : il. ; 30cm 

 

Tese de doutorado, apresentada ao Departamento de Biologia da 

Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP – 

Área de concentração: Biologia Comparada. 

Orientador: Langer, Max Cardoso. 

Co-orientadora: Böhme, Madelaine  

1. Computed tomography. 2. Digital endocast. 3. Finite-Element 

Analysis. 4. Testudinata. 5. Skull. 



Name: Ferreira, Gabriel de Souza 

Title: Patterns of morphological evolution in the skull of turtles: contributions from digital 

paleontology, neuroanatomy and biomechanics. 

 

 

Thesis presented to the Faculdade de Filosofia, 

Ciências e Letras de Ribeirão Preto da 

Universidade de São Paulo to obtain a 

doctorate in Sciences, Comparative Biology 

area, and to the Mathematisch-

Naturwissenschaftlichen Fakultät der 

Eberhard Karls Universität Tübingen to obtain 

a doctorate in Natural Sciences (Dr. rer. Nat.) 

 

Approved in: 

 

 

Examination board 

 

Prof. Dr. ________________________ Institution: _________________________ 

Verdict: _____________________  

Prof. Dr. ________________________ Institution: _________________________ 

Verdict: _____________________  

Prof. Dr. ________________________ Institution: _________________________ 

Verdict: _____________________  

Prof. Dr. ________________________ Institution: _________________________ 

Verdict: _____________________  

Prof. Dr. ________________________ Institution: _________________________ 

Verdict: _____________________  

 



 

 
i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In nature we never see anything isolated, but everything 

in connection with something else which is before it, 

beside it, under it and over it 

Johann Wolfgang von Goethe 

 

 

Doubt is not a pleasant condition, but certainty is absurd 

François Voltaire 

 



Ferreira – Patterns of morphological evolution in the skull of turtles 

 

 
ii 

 

Acknowledgements 

I am very grateful to my supervisor Max Langer, who offered me a space in his lab 

for the past ten years and immensily contributed to shape my career path until now. Max not 

only helped me think through paleo-problems, but also about career options and personal 

matters, always being present and giving support when I needed. I also thank my PhD co-

supervisor in Tübingen, Prof. Dr. Madelaine Böhme, who accepted and welcomed me at the 

Senckenberg Institute and Universität Tübingen for a whole year, offering me not only a 

space to work, but also interesting discussions on various subjects. I am very grateful to my 

“unofficial” co-supervisor, Dr. Ingmar Werneburg, who has supported me from the 

beginning of my PhD, helping already when I was writing my doctoral research project and 

now, during this agitated last year. He granted me an invaluable amount of time during my 

stay in Tübingen, and also after I returned to Brazil, through several Skype calls and email 

exchange. All the conversations and discussions with them were very productive and 

insightful and, no doubt, they shaped not only the way I think about paleontology, 

evolutionary biology and science, but also about my life. I would also like to thank Juliana 

Sterli, who was my co-supervisor during my Master dissertation and with whom I spent six 

months working in Trelew. I learned a lot with you and you also had an importat role in 

defining my career. To you, my sincere thanks! 

I gratefully acknowledge the agreement FAPESP (São Paulo Research Foundation) 

and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for granting 

me the funding for my PhD project and my stay at the Universität Tübingen (grant numbers 

2014/2539-5 and 2016/03934-2) and support by the Center for Biodiversity Documentation 

(Centro para Documentação da Biodiversidade), Department of Biology, FFCLRP, 

University of São Paulo, Brazil. This thesis constitutes part of the project 'Core-facility for 

the conservation of scientific documentation: biological collections and high technology 

research in comparative morphology' (CT-INFRA 01/2013), financed by the Funding 

Authority for Studies and Projects (FINEP), Ministry of Science, Technology, Innovations 

and Communication, Brazilian Federal Government. 



Ferreira – Patterns of morphological evolution in the skull of turtles 

 

 
iii 

 

I acknowledge the contribution of the following colleagues for discussion, 

collaboration, reviewing, collection or facility access, etc.: A. C. Arruda-Campos (Monte 

Alto, Brazil), A. Tröscher (Tübingen, Germany), A. Kupfer (Stuttgart, Germany), A. Rincón 

(Caracas, Venezuela), A. Solórzano (Caracas, Venezuela), B. Simpson (Chicago, USA), C. 

A. Francisco (Monte Alto, Brazil), C. Mehling (New York, USA), C. Pfaff (Viena, Austria), 

D. J. Button (London, UK), D. Silva, (Monte Alto, Brazil), D. Brinkman (New Haven, USA), 

D. Schwarz (Berlin, Germany), D. Kizirian (New York, USA), E. Cadena (Bogotá, 

Colombia), E. Almeida (Ribeirão Preto, Brazil), F. A. Carbonaro (Bauru, Brazil), F. V. Iori 

(Monte Alto, Brazil), G. S. Bever (New York, USA), I. G. Danilov (St. Petersburg, Russia), 

I. Ruf (Frankfurt, Germany), J. Prochel (Tübingen, Germany), J. Ziermann (Washington DC, 

USA), J. Cundiff (Boston, USA), J. Carrillo (Zürich, Switzerland), J. Hinz (Tübingen, 

Germany), J. Kriwet (Viena, Austria), K. Tighe (Washington DC, USA), K. Mahlow (Berlin, 

Germany), L. E. Sabino (Araraquara, Brazil), L. Vonnahme (New York, USA), M. S. 

Magalhães (Manaus, Brazil), M. de la Fuente (San Rafael, Argentina), M. Sánchez-Villagra 

(Zürich, Switzerland),  P. S. R. Romano (Viçosa, Brazil), R. Garbin (Fribourg, Switzerland), 

R. P. Ghilardi (Bauru, Brazil), R. Schoch (Stuttgart, Germany), R. Diaz Jr. (Riverside, USA), 

R. Hirayama (Tokyo, Japan), R. Butler (Birmingham, UK), R. Benson (Oxford, UK), R. 

Diogo (Washington DC, USA), S. Bandyopadhyay (Kolkata, India), S. Evers (Fribourg, 

Switzerland), S. Chapman (London, UK), S. Lautenschlager (Birmingham, UK), S. S. Nihei 

(São Paulo, Brazil), S. Walsh (Edinburgh, UK), T. Kohlsdorf (Ribeirão Preto, Brazil), T. 

Scheyer (Zürich, Switzerland), V. Volpato (Frankfurt, Germany), W. G. Joyce (Fribourg, 

Switzerland), W. Maier (Tübingen, Germany). 

To all the PaleoLab past and present members for the uncountable hours of coffee 

breaks, Cantina do Seu Zé, bandejões, PaleoNatais and the endless and coolest (and 

sometimes also useless) discussions on an increadible diversity of topics. In particular, to my 

friends Tomate, Wafa, Julio, Simone, Mariela, Squirtle, Bruninho, Schumy, Fezão, 

Marquinho, Roque, Annie, who were part of my life during (very) different stages, and to the 

more recent coming, Bruna, Gustavo, Fellipe, Silvio, João, Chico, Gabriel, you became very 

rapidly an important part of my life. To all my Tübingen colleagues and friends, in particular 

Márton, Eme, Alex, Antonio, Anna, Priscila, Zeina, Melina, you helped me to have a great 

time during my German year. I am very thankful to all of you! 



Ferreira – Patterns of morphological evolution in the skull of turtles 

 

 
iv 

 

To all my friends in Americana, Nacim, Diógenes, Giu, Danilo, Gui, and in Ribeirão 

Preto, from Tiana’s lab, in particular Melissa, Gäelle, Nathalia, Aline, Gaga. To Gabriela, for 

your partnership and love during all these years, you have a special place in my heart, no 

matter what. To all 45ers, in particular Frango, Mestre, Ursa, Ket, Luigi, Zuado, Canjica, 

Garfo, MX, Paulinha, all of you. To Letícia, who notwithstanding I’ve found (or you found 

me?) in this troubled period, readly offered me happiness, companionship and love, pure 

love. Finally, to all my family, in particular my parents Ana and Gil, my grandparents, Vó 

Cida, Vó Peê and Vô Nésio, and my tia Cristina, who always supported and believe in me, 

since I was a little kid, with a lot of hair on my head. Thank you all, very much, for your 

companionship, friendship, and love, lots of love, through all those years! 

 

 

O amor da gente é como um grão, 

morre e nasce trigo, vive e morre pão 



Ferreira – Patterns of morphological evolution in the skull of turtles 

 

 
v 

 

English Abstract  

In the current framework of Evolutionary Biology, Paleontology has an important role to 

play. The fossil record represents a fundamental aspect in studies on the evolution of 

morphology, since from its study it is possible to retrieve reliable data on many pertinent 

aspects, e.g., rates of evolution, the role of mass extinctions on species diversity, the polarity 

of character changes, and a glimpse into morphotypes that don’t exist nowadays. At the same 

time, new tools and methods, such as computed tomography, digital reconstructions, and 

Finite-Element Analysis, known collectively as digital or virtual paleontology, have brought 

novel possibilities on how to formulate and answer paleontological questions. In this Thesis, 

I employ digital paleontological techniques to analyze the patterns of morphological 

evolution of the skull of turtles and, based on these data, I provided novel interpretations of 

the neuroanatomical and functional relations of specific cranial traits to the whole skull 

architecture. Organized in four chapters, an overview of the osteological, muscular, 

developmental, and functional evolution of the craniocervical system of turtles is provided. 

By applying computed tomography and other 3-D digital methods, I performed 

reconstructions of the jaw adductor musculature and the neuroanatomical structures of one 

of the earliest turtles, Proganochelys quenstedti, to investigate the early evolution of the 

adductor chamber and the sensorial anatomy in this taxon. A new extinct side-necked turtle 

species, Yuraramirim montealtensis, is described, and its brain, inner ear, and neurovascular 

system were reconstructed in order to provide an account of the paleoneuroanatomy in one 

of the major turtle groups, the pleurodires. For the last chapter, I performed Finite-Element 

Analyses based on 3-D digital models of a series of extinct and extant taxa, together with 

hypothetical simulated morphotypes, to analyze the relation between muscle stress 

distribution patterns and skull architecture in the group. A scenario of progressive correlation 

between neck and skull morphological modifications is presented, which may be related to 

the great diversification of turtles during the Jurassic. 

Keywords: computed tomography; digital endocast; Finite-Element Analysis; Testudinata; 

skull 
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Resumo em Português 

No estado atual da Biologia Evolutiva, a Paleontologia possui um importante papel. O 

registro fossilífero representa um aspecto fundamenteal em estudos da evolução da 

morfologia, uma vez que, por meio de seu estudo, é possível recuperar dados confiáveis 

acerca de muitos importantes aspectos, e.g., taxas de evolução, o papel das extinções em 

massa na diversidade de espécies, a polaridade de mudanças de caracteres e um vislumbre de 

morfótipos que não mais existem atualmente. Ao mesmo tempo, novas ferramentas e 

métodos, como tomografia computadorizada, reconstruções digitais e análises de elementos 

finitos, conhecidos coletivamente como paleontologia digital ou virtual, trouxeram novas 

possibilidades acerca de como formular e responder perguntas paleontológicas. Nesta Tese, 

eu utilizo técnicas da paleontologia digital para analizar os padrões de evolução morfológica 

do crânio das tartarugas e, com base nestes dados, forneço novas interpretações sobre as 

relações neuroanatômicas e funcionais de características cranianas específicas para com a 

arquitetura craniana como um todo. Organizada em quatro capítulos, uma visão geral sobre 

a evolução osteológica, muscular, ontogenética e funcional do sistema craniocervical das 

tartarugas é apresentada. Aplicando tomografia computadorizada e outros métodos digitais 

3-D, realizei reconstruções da musculature adutora da mandíbula e de estruturas 

neuroanatômicas de uma das mais antigas tartarugas, Proganochelys quenstedti, para 

investigar a evolução inicial da câmara adutora e anatomia sensorial neste táxon. Uma nova 

espécie de tartaruga pleurodira, Yuraramirim montealtensis, é descrita, e seu cérebro, ouvido 

interno e sistema neurovascular foram reconstruídos fornecendo informações sobre a 

paleoneuroanatomia em um dos principais grupos de tartarugas, Pleurodira. No último 

capítulo, foram conduzidas análises de elementos finitos baseadas em modelos digitais 3-D 

de uma série de táxons extintos e viventes, além de morfótipos hipotéticos simulados, para 

analizar a relação entre padrões de distribuição de estresse gerados por contração muscular e 

arquitetura craniana no grupo. Um cenário de correlação progressiva entre modificações 

morfológicas no pescoço e no crânio é apresentado, que pode estar relacionado à grande 

diversificação das tartarugas durante o Jurássico. 

Palavras-chave: tomografia computadorizada; moldes digitais; análise de elementos 

finitos; Testudinata; crânio  
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Deutsche Zusammenfassung 

Im gegenwärtigen Rahmen der Evolutionsbiologie, übernimmt die Paläontologie eine 

wichtige Rolle. Der Fossilbericht stellt ein unerläßliches Fundament für Untersuchungen zur 

Evolution morphologischer Strukturen dar, da man aus ihm zuverlässige Daten zu 

zahlreichen relevanten Fragestellungen erhalten kann: so zu Evolutionsraten, zur Rolle von 

Massenaussterbe-Ereignissen für die Vielfalt der Arten; zur Polarität von 

Merkmalsveränderungen; sowie zum Verständnis von Morphotypen, die heute nicht mehr 

existieren. Gleichzeitig haben neue Methoden, wie die Computertomographie, digitale 

Rekonstruktionen und Finite-Elemente Analysen – die in ihrer Vielfalt als digitale oder 

virtuelle Paläontologie bezeichnet werden – neue Möglichkeiten hervorgebracht, um 

paläontologische Fragen zu formulieren und zu beantworten. In der vorliegenden Arbeit 

verwende ich digitale paläontologische Techniken, um die Muster der morphologischen 

Evolution des Schildkrötenschädels zu analysieren. Darauf basierend entwickle ich neue 

Interpretationen neuroanatomischer und funktioneller Beziehungen von speziellen cranialen 

Merkmale zur gesamten Schädelarchitektur. In vier Kapiteln wird ein Überblick der 

osteologischen, entwicklungsbiologischen und funktionellen Evolution des craniocervicalen 

Systems bei Schildkröten vorgestellt. Unter Anwendung der Computertomographie und 

anderen digitalen 3-D Methoden erstellte ich Rekonstruktionen der 

Kieferadduktorenmuskulatur und neuroanatomischer Strukturen bei einer der ältesten 

Schildkröten, Proganochelys quenstedti, um die frühe Evolution der Adduktorenkammer und 

der Sinnesanatomie zu untersuchen. Eine neue, anzestrale Seitenwinder-Schildkröte, 

Yuraramirim montealtensis, wird beschrieben und die Anatomie ihres Gehirns, Innenohrs 

und des neurovaskulären Systems wird rekonstruiert, um einen Beitrag zur 

Paläoneuroanatomie einer der größten Schildkrötengruppen, der Pleurodiren, zu bieten. Für 

das letzte Kapitel führte ich, basierend auf 3-D Modellen von einer Reihe ausgestorbener und 

rezenter Taxa sowie hypothetischer und simulierter Morphotypen, Finite-Elemente Analysen 

durch, um das Verhältnis zwischen den Mustern der Muskelkraftverteilung und der 

Schädelarchitektur zu analysieren. Ein Szenario zunehmender Korrelationen zwischen der 

Hals- und Schädelmorphologie wird vorgestellt. Sie stehen womöglich im Zusammenhang 

mit der enormen Diversifizierung der Schildkröten im Jura. 
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Schlüsselbegriffe: Computertomographie; digitale Schädelausgüsse; Finite-Elemente 

Analyse; Testudinata; Schädel 
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1 Introduction 

1.1. Historical background and Macroevolution 

Macroevolution is a historical phenomenon, exciting not 

because it can be fitted into a particular mold, but because 

each major event is unique and worthy of detailed study in its 

own right. Every major transition is an intriguing problem to 

be solved, and each origin and radiation a mystery of its own 

Robert L. Carroll (1997) 

 

Since the 1858 paper “On the tendency of species to form varieties; and on the 

perpetuation of varieties and species by natural means of selection” by Charles Darwin and 

Alfred Russel Wallace, the theory of evolution has been the “greatest unifying theory in 

biology” (Mayr 1963). As in any research program (in the sense of Lakatos 1976) though, a 

series of methodological and conceptual advances has constantly revisited and modified the 

original framework (Müller 2017). Nevertheless, the central (or the “hard”) core of the 

original theory remained untouched, i.e. the assumption that all organisms denscent from a 

common lineage. The second central tenet of the original Darwinism from the end of the 19th 

century, natural selection as the major evolutionary driver and creative force (Pigliucci & 

Müller 2010), has been controversial at beginning (Bowler 1983), and somewhat modified 

recently (Laland et al. 2015). Also, the mechanisms of heredity and the sources of variation 

which natural selection can act on were initially unknown and various speculative attempts 

(even by Darwin himself with the theory of pangenesis; Amundson 2005, p. 144) made to 

identify this important evolutionary factor failed until the “rediscovery” of Mendel’s work in 

the beginning of the 20th century. It was up to R. Fisher (1918), J. B. S. Haldane (1932) and 

S. Wright (1931) to work on the mathematical basis for the unification of Mendelian genetics 

and Darwinian natural selection into the theory of population genetics. This, in turn, became 
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the basis in the 1930s and 1940s for the very successful movement that came to be known as 

the Modern Synthesis (Pigliucci & Müller 2010). 

The Modern Synthesis aimed to revise the conceptual framework of the theory of 

evolution, putting population genetics at its central core (Amundson 2005). This required a 

joint work of researchers on multiple areas of biology, including systematics, zoology, botany 

and paleontology (Pigliucci & Müller 2010) to develop the concepts that became the core 

assumptions in the field (Laland et al. 2015). According to Futuyma (1986) those 

assumptions were: (i) random genetic mutations and recombinations are the source of 

variation in natural populations; (ii) evolution occurs by populational changes in gene 

frequency, caused by genetic drift, gene flow, and natural selection, the last being the only 

explanation for adapation; (iii) small, gradual phenotypic changes result from genetic 

variance; (iv) the result of gradual phenotypic change and reproductive isolation of 

populations is diversification (speciation); and (v) the accumulation of those 

microevolutionary processes results in evolution of higher taxonomic groups, i.e. 

macroevolution (Pigliucci & Müller 2010; Laland et al. 2015). 

The last one (i.e. the relation between micro- and macroevolution) was always a 

contentious issue for paleontologists. One of the “co-architects” of the Modern Synthesis, the 

paleontologist G. G. Simpson (Amundson 2005), proposed the concept of tachytelic 

evolution (Simpson 1944). This faster, large scale (i.e. taxonomic levels higher than species) 

evolutionary process, together with the developmental processes proposed by R. 

Goldschmidt (1940), would open the path to a distinction between micro- and 

macroevolution, that was promptly rejected in favor of the core assumptions of the Modern 

Synthesis (Pigliucci & Müller 2010). Nervertheless, it became clear that Paleontology (and 

developmental biology; Goldschmidt 1940; Rieppel 2001, 2017) does not exclusively yield 

evidence for gradual, slow phenotypic changes; it actually shows plenty of examples 

(Eldredge & Gould 1972; Carroll 1997; Rieppel 2017) on the contrary: morphological 

(phenotypic) change can, sometimes, occur at a fast pace. The clear mismatch between the 

fossil record and the exclusive gradual accumulation of small changes was only tackled again 

nearly 30 years later by N. Eldrege and S. J. Gould (Eldrege, 1971; Eldredge & Gould 1972; 
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Gould & Eldredge 1977) that elaborated the theory of Punctuated Equilibria to explain the 

sudden (geologic) appearance of distinct, new species. 

 

Figure 1.1. Representation of an example of the evolutionary “flow” that connects biological entities, including 

the relationship between ontogeny and phylogeny. Modified from Maier (1999), who formulated the holistic 

organism concept. 

In addition to the theory of Punctuated Equilibria, the late 1970s and early 1980s 

witnessed other advances that seemed to contradict the central core of the Modern Synthesis. 

First, the publication of Ontogeny and Phylogeny by S. J. Gould (1977) brought back the 

concept of heterochrony as a mechanism of evolutionary change (Alberch et al. 1979; 

McNamara 1982; Klingenberg 1998), and, second, the discovery of the Homeobox (Hox) 

genes (Lewis 1978; Gehring 1985, 1998), which specify the identity of segments, revealed 

those genomic regions as fundamental sources of extensive reorganizations of body plans 

(Gehring & Hiromi 1986). Those marked the beginning of profound theoretical and 

methodological changes in evolutionary biology, with the development of further concepts—

such as developmental plasticity (Via & Lande 1985; Pigliucci 2001), developmental 

constraints (Maynard Smith et al. 1985; Beldade et al. 2002), and evolvability (Wagner & 

Altenberg 1996; Wagner & Draghi 2010)—and new research programs—such as Evo-Devo 
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(Raff 2000; Müller 2007). Some authors have called for a new synthesis of evolutionary 

thought, the so-called Extended Evolutionary Synthesis (Pigliucci 2007; Carroll 2008; 

Laland et al. 2014, 2015; Müller 2017), which could incorporate all those new advancements 

and overcome the strict “gradualism, externalism and gene centrism” of the Modern 

Synthesis (Pigliucci & Müller 2010). 

It is becoming increasingly difficult to advocate that macroevolution is solely 

explained by the gradual accumulation of microevolutionary change. The possibility that 

morphology can be channeled by inherent properties of development, with considerable 

phenotypic variation resulting from small genetic mutations (e.g. facilitated variation; 

Gerhart & Kirschner 2007), and that changes in environmental conditions can be 

incorporated into developmental features (part of niche construction theory; Badyaev & Uller 

2009; Odling-Smee 2010), constitute, in some cases, better explanations for the observed 

macroevolutionary patterns than the microevolutionary processes of selection, drift, mutation 

and gene flow (Laland et al. 2015). Also, historical, contingent events, such as mass 

extinctions, can drive evolution and diversification in directions that cannot be directly 

extrapolated from microevolutionary processes (Maynard Smith 1984; Gould 2002; Carroll 

1997; Jablonski 2005, 2017). For example, the Cretaceous/Paleogene mass extinction, 

completely extinguishing the then dominant non-avian dinosaurs, opened the way for 

mammals to explore “niches” previously occupied by the former, leading to mammalian 

ecological dominance (among terrestrial vertebrates) during the Cenozoic (Smith et al. 2010; 

Archibald 2011; even though the mammalian lineage experienced an adaptive radiation 

already during the Jurassic; Close et al. 2015). Data gathered exclusively from neontological 

studies could hardly provide evidence for this large-scale faunal turnover, which led to the 

establishment of the mammalian diversity as we know it today. Borrowing the idea from 

Deleuze & Guattari (1987), the evolutionary process should be viewed as a flow, in which all 

observed biological entities are contingent and, as such, can only be fully understood taking 

into account their past and the historical phenomena that led to their current status. Like the 

river mouth is the sum of all previous events, its spring, its tributaries, the environments they 

cross, etc., lineages and taxa are the result of their ontogenies, natural history, and 

phylogenetic evolutionary history (Fig. 1; Maier 1999; Sánchez-Villagra 2012). The identity 

of a trait, a population, or a lineage results (and emerges) from the network of historical and 
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present connections it possesses with other traits, populations, or lineages (an equivalent 

point made for homologies by G. Wagner 2007, 2014). In this sense, paleontology has a key 

role not only in documenting the past diversity, but also in revealing macroevolutionary 

processes that shaped the evolutionary history of organisms. 

1.2. How Paleontology can contribute to Evolutionary Biology? 

The palaeontologists have too long been 

missing from the high table. Welcome back. 

John Maynard Smith (1984) 

 

A common thread to all those recent advancements is the focus on the evolution of 

form. At the dawn of the evolutionary thinking, in the late 19th and early 20th century, 

evolutionary morphology was a strong research program (Amundson 2007) aiming to 

understand organic form (Nyhart 1995), with well-known names such as E. Haeckel, C. 

Gegenbaur, and G. de Beer. However, the then absence of contemporary methods to answer 

the more integrated questions that were emerging and the increasing prevalence of the 

Modern Synthesis substantially obscured the evolutionary morphology approaches 

(Amundson 2005, 2007). For the late R. Raff, the recent advancements in the direction of 

revisiting an evolutionary morphology research program represent a clear change of focus in 

evolutionary biology (Amundson 2003; Wagner 2014): the research program of the Modern 

Synthesis was interested in species and the new, revived interest in evolutionary morphology 

is concerned with bodies (Raff 1996). In this context, Punctuated Equilibria, Evo-Devo, and 

the Extended Evolutionary Synthesis “brought morphology back to center stage in 

evolutionary biology” (Hall 2003). 

The return of morphology to the focus of evolutionary biology marks an important 

ontological change in a long-lasting debate between functionalist and structuralist views of 

evolution (Hughes & Lambert 1984; Amundson 2005; Wagner 2014). This is very important 

because it adds layers of complexity in the kinds of explanations that we employ to 

understand biological phenomena (Futuyma 2017). S. J. Gould and R. C. Lewontin, using a 
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beautiful metaphor, explained that: some traits of living organisms are not the sole result of 

adaptation (the functionalist explanation), but, as the spandrels of the dome of St. Mark’s 

Basilica in Venice, they might have an architectural, structural role, that preceeds its 

apparent function (Gould & Lewontin 1979). The research program of the Extended 

Evolutionary Synthesis tries to incorporate this reasoning by considering both functional and 

structural processes when approaching evolutionary questions. 

Most of the core assumptions of the Extended Evolutionary Synthesis are related to 

developmental mechanisms and how those produce the observed patterns of form in 

organisms (Hall 2003; Laland et al. 2015). In this framework, Müller (2007) recognized the 

following four major research programs: i) comparative embryology and morphology; ii) 

evolutionary developmental genetics; iii) experimental epigenetic; and iv) theoretical and 

computational programs. In the first of those, paleontology is supposed to contribute through 

the “characterization of large-scale patterns of morphological evolution” (Müller 2007, p. 

943), providing “details of anatomical variation over hundreds of millions of years” that can 

be compared to data on extant taxa, whether that is derived from anatomy, development, or 

any other evolutionary biology field. Paleontology is our only window to long-gone body 

designs (Raff 2007), offering the record of evolutionary change patterns, through which we 

can understand how the evolutionary processes acted in deep time to produce those forms 

(Carroll 1997; Smith 1998; Sánchez-Villagra 2012). Questions about the origin of new 

structures and body plans, how organisms reached their current disparity levels, and how fast 

evolutionary change occurred—all pertinent matters in the current theoretical framework of 

evolutionary biology—can only be satisfactorily answered when one also takes the fossil 

record into account (Carroll 1997; Raff 2007). 

Two examples might illustrate how paleontology, by informing us about evolutionary 

patterns, helps understanding the evolutionary processes. All post-Devonian tetrapods 

possess a maximum of five digits in their autopodia (except in cases of pathological 

polydactyly; e.g. Welscher et al. 2002). Embryological studies identified five-digit anlagen 

in taxa that lost their digits (Galis et al. 2001) and showed that re-evolution of digits is always 

limited to a count of five (Kohlsdorf & Wagner 2006; Kohlsdorf et al. 2010; Siler & Brown 

2011), suggesting a possible relation between autopodium development and pentadactyly. 
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However, the fossil record shows that the three earliest tetrapods, Acanthostega gunnari, 

Ichthyostega stensioei and Tulerpeton curtum, possessed more digits, respectively eight, 

seven, and six, respectively (Wagner 2014). That is, paleontology conclusively shows that 

pentadactyly estabilized after the autopodium evolved (Wagner & Chiu 2001), suggesting 

that five digits, although highly conserved among later tetrapods, is not a condition strictly 

related to the mechanism that defines autopodium identity (Wagner 2014). The second 

example comes from the jaws and ears of mammals. It’s been known for nearly two centuries 

that the mammalian middle ear ossicle named malleus develops from the posterior part of 

Meckel’s cartilage, which ossifies into the articular bone in reptiles (Raff 2007). It might be 

tempting to consider this as a singular, unique event of morphological innovation given its 

complex gene expression during ontogeny (Tucker et al. 2004) and the observation that all 

mammals posses three middle ear ossicles and a single-bone lower jaw (Luo et al. 2011). 

However, the fossil record has shown us that, although the distinct lower jaw articulation to 

the skull appeared just once in the mammalian lineage, the incorporation of these ossicles 

into the middle ear happened at least three times (Raff 2007; Luo et al. 2011, 2017; 

Lautenschlager et al. 2018b), an insight that could hardly be gained from developmental 

evidence alone. 

The dynamics of populations of extant species, the genetic network and 

developmental processes that give identity to morphological structures (Wagner 2014) all 

can, and should, be studied from experimental data on extant organisms, because 

developmental patterns are “genetically programmed and cyclical” (Raff 2000). Processes 

such as natural selection, genetic drift, and phenotypic plasticity likely occur at the level of 

population across all geographical limits and time scales, but many other aspects that are only 

visible on larger time scales (Carroll 1997) are not repeatable and, as such, cannot be studied 

by the experimental science methods (Cleland 2001, 2002). Evolution as a whole, however, 

is “non-programmed and contingent” (Raff 2000), that is, a handful of historical processes 

acted (and still act today) on the macroevolutionary level, e.g. extinctions and past climatic 

conditions. The patterns left by those processes are fundamental for the full comprehension 

of evolution and they can only be studied from the fossil record. Among those, R. L. Carroll 

identified five evolutionary phenomena that are particularly prone to be investigated from a 

paleontological perspective (Carroll 1997): (1) the origin of major evolutionary novelties; (2) 
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the extremely irregular occupation of the adaptive landscape; (3) the apparent faster rates of 

evolution during the origin of groups in comparison to the rest of their evolutionary history; 

(4) the cause and nature of major radiations; and (5) the causes and significance of mass 

extinction on the evolution of biodiversity. Of course, all these issues would benefit from 

experimental studies on extant organisms, but their explicit historical components require 

taking into considerion the effect of large-scale changes as shown by the fossil record. 

1.3. Digital paleontology: how modern approaches can tackle old 

problems 

Virtual paleontology is no longer a niche undertaking; 

these techniques are now at the core of the discipline. 

M. Sutton and colleagues (2017) 

 

In the past 30 years, paleontology has been revolutionized by the fast increase in 

computational power and accessibility of new technologies. In the 1990s, the term 

Computational Paleontology started to be applied to a set of new tools, techniques, and 

methods, e.g. virtual modelling, computer simulations and, digital imaging (Elewa 2011), 

that soon became almost standard practice in the field (Sutton et al. 2017). This has given a 

boost to different types of macroevolution studies based on paleontological data, such as 

those testing evolutionary models of diversification (Crouch et al. 2019; Varela et al. 2019), 

biogeography (Poropat et al. 2016; Carbonaro et al. 2018; Ferreira et al. 2018a), and character 

evolution (Brusatte 2011; Lee et al. 2014; Brocklehurst 2017; Benson et al. 2018). Geometric 

morphometrics and disparity analyses are other types of approaches that were substantially 

stimulated by the development of computational paleontology (Reyment 2011; Close et al. 

2015; Godoy et al. 2018). Additionally, studies of macroecological patterns, e.g. changes in 

diversity through time associated to morphological traits (Wagner et al. 2018) or climatic 

changes or extinctions (Lowery et al. 2018; Ezcurra & Butler 2018), and functional analyses 

of locomotion using digital models (Pierce et al. 2012; Sellers et al. 2017; Nyakatura et al. 

2019) have multiplied in recent years. 
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One of the fastest evolving and widely used developments in computational 

paleontology is the set of tools gathered under the name of digital or virtual paleontology 

(Elewa 2011), defined as “the study of fossils through three-dimensional (3-D) digital 

visualizations” (Sutton et al. 2014, 2017). This includes several techniques and methods for 

obtaining digital images from body or trace fossils of plants, invertebrates, vertebrates, and 

microfossils (Rahman & Smith 2014), and transforming them into 3-D models that can be 

posteriorly manipulated in various ways. Even though the first studies using radiographic 

images of fossils date back to the 1980s (e.g. Haubitz et al. 1988; and the use of X-ray images 

dates even further back, e.g. Kuhn-Schnyder 1974), a huge raise in the use of those tools 

happened in the last two decades related to the increasing availability of X-ray computed 

tomography (CT) (Sutton et al. 2017). Digital paleontology techniques have enormous basic 

benefits in paleontological research due to the very nature of fossils, which are commonly 

fragile, incomplete and/or disarticulated, hampering the extraction of information 

(Lautenschlager & Rücklin 2014; Lautenschlager 2016; Sutton et al. 2017). Also, 

transforming the usually unique and frail fossils into digital models, that can be stored, 

replicated and printed at low costs, has additional important outcomes, facilitating outreach 

and scientific communication (Rahman et al. 2015), and the access and dissemination of 

fossil data that can be accessed by other researchers (Lautenschlager 2014; Sutton et al. 

2017). 

A number of imaging techniques are available for extracting information from fossils, 

e.g. magnetic resonance imaging (MRI; Clark et al. 2004), synchrotron X-ray tomographic 

microscopy (Donoghue et al. 2006), and surface-based techniques (e.g. laser scanning and 

photogrammetry; Falkingham 2012), but one of the most used are X-ray computed 

tomography and micro-tomography (CT and µCT, respectively) (Sutton et al. 2017). 

Computed tomography is a type of non-destructive tomographic technology that creates a 

series of 2-D projections (cross-sections) of a fossil (or any other object) taken at different 

angles, creating a dataset of ‘slices’ that can be visualized and manipulated in specific 

softwares (Abel et al. 2012; Sutton et al. 2017). Aside from the previously mentioned 

practical advantages of using CT data, the possibility of isolating portions of interest of an 

object (e.g., a specific bone or structure) and of making use of methods for virtual restoration 

to infer “in-life” morphologies of deformed or incomplete specimens (Lautenschlager 2016) 
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opened the way for countless applications in evolutionary (especially functional) studies, 

such as quantitative analyses of functional morphology (e.g., multibody dynamics analysis, 

MDA; Lautenschlager et al. 2018b), hydrodynamic flow modelling (Gutarra et al. 2019), and 

even paleohistological (Giles et al. 2013) and developmental analyses (Rücklin et al. 2012, 

2014). 

 

Figure 1.2. Summary of Finite-Element Analysis (FEA). (A) Main steps from obtaining a digital image of the 

original fossil specimen to the final results of a FEA exemplified by a model of the skull of Erlikosaurus 

andrewsi. (B) Relation between stress and strain and factors affecting (and being affected by) those. Modified 

from Rayfield (2007, Fig. 1) and Cunningham et al. (2014, Fig. 1). 

Tomographic data also allow anatomical 3-D reconstruction of internal structures 

(Donoghue et al. 2006; Cunningham et al. 2014), such as endocasts of brain and inner ear 

cavities, as well as canals, sulci, and sinuses (Witmer et al. 2008; Porter & Witmer 2015). 

This type of data, commonly inaccessible without digital paleontological techniques 

(Lautenschlager & Rücklin 2014), provide invaluable empirical information on extinct 

organisms (Giles & Friedman 2014; Balanoff et al. 2016) that can be used to better 

understand their sensorial evolution and paleobiology (e.g. Yi & Norell 2015; Lautenschlager 

et al. 2018a), and other morphological features (e.g. Rollot et al. 2018). The workflow of 

acquiring, isolating, and generating 3-D models of endocasts is very straightforward 
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(described in detail in Balanoff et al. 2016): 1) the specimen is scanned using any 

tomographic method, such as CT-scan; 2) the structure of interest (e.g., brain cavity or nerve 

canal) is identified in the 2-D slices; 3) segmentation (i.e., digitally “painting”) of the 

structure proceeds, using appropriate softwares; and 4) a surface model is generated from the 

segmented object which is used for visualization, measurements, or other analyses. The non-

destructive nature and relative fast methods for creating digital endocasts have fueled an 

increased interest in comparative paleoneuroanatomy, an fruitful way to study 

macroevolutionary patterns (e.g., Walsh et al. 2013; Lautenschlager et al. 2018a). 

Functional analyses are noteworthy applications of 3-D digital models of biological 

structures obtained through CT-scan, because they present a vast potential to inform on the 

behavior and ecology of extinct organisms (Barrett & Rayfield 2006). Among those, a 

technique applied in engineering and orthopedics, Finite Element Analyses (FEA), has 

recently become one of the most used methods for biomechanical analyses in Paleontology 

(Rayfield 2007; Bright 2014; Cunningham et al. 2014). The FE (Finite Element) method 

(described in detail by Rayfield 2007 and Bright 2014) consists in applying virtual loads and 

constraining anchors (called boundary conditions) to a digital three or two-dimensional 

representation of a structure of interest. This structure is divided into a finite number of 

discrete elements, which form a network (the finite element mesh) of interconnected (through 

nodes between the elements) pieces, and to which specific material properties (that represent 

the elasticity of the material) are assigned. The interplay between architectural geometry, 

material properties, and boundary conditions yield nodal displacements, which are used to 

calculate strain (stretch per unit length) and stress (load per unit area) on each node of the 

mesh object. The results of these calculations can then be summarized and represented by 

colored plots of a strain and stress index (tension/compression distortion or von Mises stress, 

a function that measures how stress distort a material), vector plots of the orientation of the 

resulting loads, or animations of structural deformations (Rayfield 2007). 

The application of FEA in paleontology (and morphological studies in general) are 

far-reaching, being a very useful technique to infer performance in extinct organisms, i.e., 

when specific forces (such as locomotor or feeding related forces; e.g. Porro et al. 2013) may 

cause a musculoskeletal system to collapse or deform to a point that it can fail (Bright 2014). 
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The array of issues that can be tackled by FEA is broad, ranging from the function of specific 

structures, to questions pertaining to the constraints and adaptations of the musculoskeletal 

system, and even to reverse engineering approaches to infer potential functions of particular 

structures (Rayfield 2007). Emily Rayfield recognized two general lines of applications of 

FE models in vertebrate morphological research, the inductive and the hypothetical-deductive 

approaches (Rayfield 2007). In the inductive approach boundary conditions are set and the 

pattern of stress distribution is assessed on focus models (Bright 2014). This approach is 

useful to test whether (and how) form and function are related in these specific cases, 

allowing to investigate the structure in individual taxa (such as the specific role of the 

masseter-like muscle in Psittacosaurus lujiatunensis; Taylor et al. 2017) and also to perform 

validation and sensitivity analyses (Rayfield 2007). The hypothetical-deductive approach, on 

the other hand, is a hypothesis-testing method in which FEAs are run on models that can, 

potentially, falsify a given hypothesis (Rayfield 2007). This method has a great potential to 

test evolutionary trend questions (Bright 2014), such as the role of the palate vacuities closure 

in temnospondyls (Lautenschlager et al. 2016), of the cranial sinuses in the mammalian face 

(Farke 2008; Tanner et al. 2008), the change in cranio/mandibular articulation in mammals 

(Lautenschlager et al. 2018b), or the protruding faces of Neanderthals (Wroe et al. 2018). In 

the hypothetical-deductive approach, digital manipulation techniques (Lautenschlager 2016) 

are very useful, as they give us the possibility to generate hypothetical morphologies and test 

particular functional predictions of a given hypothesis (Lautenschlager et al. 2016; Chapter 

5 of this thesis). In summary, the combination of cutting-edge technology in imaging (e.g., 

CT scanning) and functional analyses (e.g., FEA) in Paleontology possess an invaluable 

potential to approach evolutionary questions. 

1.4. Turtles as models of vertebrate evolution 

In vertebrate paleontology, it might well be the origin of 

turtles, and the correlated evolution of the turtle shell, 

that constitute (one of) the mystery of mysteries 

Olivier Rieppel (2013) 
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The shell, the toothless jaws with beaks and the clumsy and slow locomotion, even 

from the outside, make turtles “one of nature’s most immediately recognizable life forms” 

(Adler 2007). From “the inside”, they may look even more different: their unfenestrated 

skulls (unique among extant reptiles; Ferreira & Werneburg 2019; Chapter 2 of this thesis), 

their extremely mobile necks (Werneburg et al. 2015a), the anatomical composition of the 

carapace and plastron (Nagashima et al. 2009), their scapular and pelvic girdles inside the 

thoracic cage (Lyson & Joyce 2012), and their highly conserved cervical and trunk vertebral 

count (Böhmer & Werneburg 2017) are but a few of the morphological modifications of 

turtles that makes them one of the most intriguing vertebrate groups from a 

macroevolutionary perspective. At the same time that their very unique morphology leaves 

no room for doubts on their monophyly, it also makes it difficult to establish homologies 

with other reptiles (Carroll 2013), hampering the assessment of the group’s origin and 

making the phylogenetic origin of turtles one of the oldest debates in vertebrate paleontology, 

lasting for more than 200 years (Rieppel 2013, 2017). 

Pre-cladistic classifications strongly relied on skull traits, especially the temporal 

openings (fenestrae), to define the relationships of tetrapods (Werneburg 2019). In all those 

early classifications, the unfenestrated temporal region was considered as “primitive”, the 

stock from which single- or double-fenestrated amniotes (Synapsida and Diapsida, 

respectively) have arisen (Gardiner 1982). Because the oldest known turtles, such as 

Proganochelys quenstedti, from the Late Triassic of Germany (Gaffney 1990), had an 

anapsid skull morphology (i.e., without temporal fenestrae) (Baur 1889; Hay 1905; Watson 

1914; Williston 1917), and some extant turtles also possess a full coverage of the adductor 

chamber (e.g. Dermochelys coriacea; Schumacher 1972), all those early classifications 

placed turtles together with other anapsid reptiles (Osborn 1903; Williston 1917; Gregory 

1946; Olson 1947; Romer 1956; see Ferreira & Werneburg 2019; Chapter 2 of this thesis for 

a detailed summary of early classifications). Even though critiscisms to the heavy weight 

placed on the temporal fenestrae were already made several times (e.g., Goodrich 1916; 

Gardiner 1982), the first large-scale analyses of amniote relationships using computer-

assisted cladistic analysis (Gauthier et al. 1988) supported the pre-cladistic classifications, 
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with turtles as ancestrally anapsid non-diapsid reptiles (in this particular analysis, together 

with Captorhinidae). 

 

Figure 1.3. Diversity of temporal morphology among amniotes, highlighting the three main types of temporal 

fenestrae and the bone arrangement surrounding them. (A) the parareptile Milleretta rubidgei; (B) the synapsid 

Eothyris parkeyi; (C) the diapsid Euparkeria capensis; (D) one of the earliest turtles Proganochelys quenstedti. 

While an apparent consensus existed from the late 1970s to the early 1990s that turtles 

were not diapsids (Løvtrup 1977; Gardiner 1982; Gauthier et al. 1988; Lee 1993, 1996, 1997; 

Laurin & Reisz 1995), the closest taxon to turtles varied from captorhinids (Gauthier et al. 

1988), to procolophonids (Laurin & Reisz 1995) and pareiasaurs (Lee 1993). The first 

cladistic study to retrieve turtles as diapsids was that of Rieppel & deBraga (1996), in which 

they appeared closest to sauropterygians, a group of marine diapsids. Subsequent analyses 

using the same data matrix (deBraga & Rieppel 1997; Rieppel & Reisz 1999) seemed to 

confirm those results, which agreed with earlier classifications that did not strongly relied on 

temporal fenestrae anatomy (e.g. Goodrich 1916, 1930; Boulenger 1918; Broom 1924; 

Lakjer 1926; DeBeer 1937; Hofsten 1941). Molecular-based phylogenetic analyses also 

revealed a signal of turtles as diapsids, but almost always closer to archosaurs than to 

lepidosaurs (Zardoya & Meyer 1998, 2001; Hedges & Poling 1999; Mannen & Li 1999; 

Crawford et al. 2012; Hedges 2012; Wang et al. 2013; the only exception being a turtle + 

squamate clade found by Lyson et al. 2012). A common trait of these morphological analyses 

from the 1990s (Lee 1993, 1996, 1997; Laurin & Reisz 1995; Rieppel & deBraga 1996; 

deBraga & Rieppel 1997; Rieppel & Reisz 1999) was that they extended their databases to 

include a higher number of postcranial characters, i.e., they tried to get away from the 
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temporal fenestrae-based classifications. Yet, the results didn’t converge to any point; on the 

contrary, the array of possible sister-taxa to turtles increased. 

These conflicting results are probably a consequence of the extremely modified body 

plan of the group, specially the turtle shell, which—as mentioned above—hinders the 

establishment of homologies among amniotes. This complex structure is formed by a dorsal 

and a ventral portion, the carapace and the plastron, respectively (Fig. 1.3) and has attracted 

much attention and generated intensive debate for more than 200 years (e.g., Cuvier 1799; 

Saint-Hilaire 1809; Meckel 1824; Rathke 1848; Goette 1899; Vallén 1924; Gilbert et al. 

2001; Scheyer et al. 2008, 2013; Hirasawa et al. 2013). Even though other tetrapods may 

possess carapace-like structures (e.g., some extinct crocodiles, dinosaurs and armadillos), the 

turtle carapace is fundamentally different from any other known structure, because it is 

directly linked to the dorsal vertebrae and ribs, preventing any movement of the rib cage or 

intercostal muscles (Hirasawa et al. 2013; Wagner 2014; Lyson et al. 2014). Even more odd 

is the encapsulation of scapular girdle inside the thoracic cage; a unique feature among 

tetrapods which possess the scapular blade either anterior to or outside the thoracic ribs 

(Lyson & Joyce 2012; Nagashima et al. 2012). 

The turtle carapace is formed by a midline row of small bones, the neural plates, and 

laterally to that two parallel rows of flat and wide bones, the costal plates. Surrounding this 

inner structure, a series of small elements, the peripheral plates, link the anterior nuchal plate 

to the posterior pygal and suprapygal plates (Zangerl 1969). The exoskeletal origin of these 

external elements is broadly accepted (Hirasawa et al. 2013; but see Lyson et al. 2013 for a 

reinterpretation of the nuchal bone), but regarding the inner (neural and costal) plates, there 

is a lot of controversy. Since G. Cuvier interpreted them as derived from the expansion of the 

vertebral neural arches and ribs (i.e., exclusively endoskeletal derivatives; Cuvier 1799), and 

K. G. Carus opposed this idea, suggesting a composite structure derived from the fusion of 

endoskeletal elements to overlying exoskeletal ossifications, the osteoderms (Carus 1834), 

no consensus has been reached on the morphological and developmental origin of the 

carapace (until recently, see below). Those two ideas came to be known as the de novo and 

the composite hypotheses, respectively (Joyce 2015). Historically, researchers with a 
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developmental background (e.g., Vállen 1942) favored the de novo hypothesis, whereas 

those paleontology-inclined preferred the composite hypothesis (e.g., Joyce et al. 2009). 

Although not very informative to this issue (until recently, see below), the fossil 

record seemed to support the composite hypothesis. Proganochelys quenstedti was for a long 

time the earliest known turtle, and even though it already had a complete turtle shell (in the 

sense of Joyce et al. 2004), its neck and tail were covered by osteoderms. The description of 

Chinlechelys tenertesta, from the Late Triassic of USA, seemed to confirm this view, due to 

the poor association between its ribs and the overlying costal bones (Joyce et al. 2009). Also, 

some results of morphology-based phylogenetic analyses suggested turtles evolved from 

reptiles in which a dorsal coverage of osteoderms was frequent (e.g. pareiasaurs or 

sauropterygians: discussed by Lee 1993 and Rieppel & deBraga 1996). 

On the other hand, developmental biology was obtaining opposite conclusions. Early 

observations (e.g. Rathke 1848; Vállen 1942) could not evidence any dermal ossifications 

contributing to the neural and costal plates during the ontogeny of the carapace. More recent 

histological and developmental analyses also confirmed the absence of dorsal osteoderm 

formation, but suggested a third hypothesis, in which the entrance of the ribs into the dermis 

induced osteogenesis of the surrounding dermal tissue (Gilbert et al. 2001; Cebra-Thomas et 

al. 2005). A subsequent comparative developmental analysis contradicted those observations 

though, and concluded that the neural and costal plates are solely derived from vertebral 

neural arches and ribs, respectively, by extensive outgrowths of bone tissue around the rib 

cartilage (Hirasawa et al. 2013). Regardless of the specific process that leads to bone 

apposition surrounding the rib cartilaginous primordia, developmental data do not support 

the fusion of the endoskeletal elements to overlying dermal ossifications. 

The most important contribution from developmental biology, though, was the 

identification of the carapacial ridge (Burke 1989, 1991; Nagashima et al. 2007). In general, 

the precursor cells of the trunk ribs of amniotes migrate during development from the somites 

on the axial domain to the lateral body wall, resulting in ventrally curved ribs. The turtle ribs, 

on the other hand, are flat and laterally directed, which is the result of the turtle-specific 

carapacial ridge, directing the development of those precursor cells into the axial domain 

(Fig. 1.4; Nagashima et al. 2012) and preventing them from entering the lateral body wall, a 
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process called axial arrest (Burke 1989). The morphological structure and the development 

between the axial and abaxial domains of the embryonic body, as well as the (partially) 

similar gene expression during the development of the carapacial ridge highlight a 

resemblance to the apical ectodermal ridge (AER), the signaling center of the developing 

limb bud (Burke 1989, 1991; Gilbert et al. 2001; Cebra-Thomas et al. 2005; Nagashima et 

al. 2007), and suggest that its signaling pathway might have been co-opted from limb 

development and expressed in a novel manner in the ancestral turtle (Kuraku et al. 2005). 

The carapacial ridge is the developmental event that completely modifies the ancestral 

reptilian body plan into the turtle body plan. By encircling the dorsal portion of the embryonic 

body, forming a disc, it also induces the fan-shaped arrangement of the turtle ribs, folding 

the lateral body wall inward, resulting in extremely modified muscles that develop prior and 

after to the rib expansion (Nagashima et al. 2009). This novel rib arrangement also spreads 

the anteriormost ribs anteriorly, and the posteriormost posteriorly, secondarily covering the 

anteriorly placed scapular blade dorsally (Nagashima et al. 2009, 2012). 

Even though a less detailed scenario is currently known for the morphological and 

developmental origins of the plastron, recent research presented important advancements 

(Cherepanov 1997; Cebra-Thomas et al. 2007, 2013; Rice et al. 2016). Most extant turtles 

possess nine bones in the plastron (Zangerl 1969), but stem-turtles, e.g. Proganochelys 

quenstedti (Gaffney 1990), and pleurodires (Vieira et al. 2009) usually possess eleven. From 

those, the three anterior plates, the epiplastra and entoplastron, are thought to be derived from 

the clavicles and interclavicles, respectively (Cherepanov 1997; Lyson et al. 2013) and the 

posterior plates have been associated with modified paired abdominal ribs, the gastralia 

(Romer 1956; Gaffney 1990; Kuratani et al. 2011), even though a distinct type of ossification 

(forming bone spicules) is characteristic of plastral bones (Rice et al. 2016). It has been 

shown that those plates have an important contribution from neural crest cells (Cebra-

Thomas et al. 2007, 2013; Gilbert et al. 2007) and that their appearance suppresses the 

development of a sternum in the ventral part of the embryonic turtle body and is concomitant 

with that of the carapacial ridge (Rice et al. 2016). Thus, albeit more work needs to be done 

to better understand the nature of the plastron, its appearance also seems to be related to the 

evolutionary novelty of turtles, the carapacial ridge (Kuratani et al. 2011). 
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Figure 1.4. Recent advancements from (A–C) developmental biology and (D–G) paleontology that provided a 

more detailed account on the origin of the turtle carapace. (A–C) Embryonic development of the turtle carapace: 

(A) cross-sections on amniote embryos; (B) schematic drawing of the carapacial ridge development and its 

relation to the arrangement of the ribs. Note the fan-shaped arrangement being acquired during ontogeny; (C) 

schematic drawing of the scapular blade position in relation to the developing ribs. Note the ribs covering 

dorsally overlaying the scapula during ontogeny. (D–G) Fossil findings of reptiles recently associated to the 

turtle lineage: (D) Eunotosaurus africanus (Late Permian of South Africa); (E) Pappochelys rosinae (Middle 

Triassic of Germany); (F) Eorhynchochelys sinensis (Late Triassic of China); and (G) Odontochelys 

semitestacea (Late Triassic of China. Abbreviations: ax, axial domain; cr, carapacial ridge; lbw, lateral body 

wall; n, notochord; nt, neural tube; rpc, rib precursor cells; sc, scapular; tv, thoracic ribs. Composite figure 

based on modifications of Nagashima et al. (2007, 2012), Li et al. (2008, 2018); Lyson et al. (2016), and Schoch 

& Sues (2017).  

Interestingly, in that same period, paleontological findings also contributed to the 

issue of the origin of the shell (Fig. 1.4D–G). The finding of Odontochelys semitestacea from 

the Late Triassic of China, a proto-turtle (term used here to mean a non-Testudinata pan-

Testudines; sensu Joyce et al. 2004) with marginal teeth, a complete plastron, and broad and 

flattened free ribs (Li et al. 2008), brought important insights on the timing of appearance of 

turtle traits. First, the broadening of the ribs preceeded their incorporation into the carapace. 
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Second, the plastron of O. semitestacea is completely formed, but the carapace is incipient, 

suggesting that even if their developmental timing coincides in extant taxa (Rice et al. 2016) 

their phylogenetic (and hence historical) origin did not. Finally, the ribs are flat (Li et al. 

2008) i.e., they are axially arrested and do not enter the lateral body wall, but they do not 

grow in a fan shape to overlay the scapular girdle. This suggests that during the embryonic 

development of O. semitestacea the carapacial ridge might have been ephemerous and/or 

incomplete, not forming a carapacial disc that would attract the ribs’ growth anteriorly and 

posteriorly (Nagashima et al. 2009, 2012; Kuratani et al. 2011). The additional findings of 

Pappochelys rosinae (Schoch & Sues 2015, 2017) and Eorhynchochelys sinensis (Li et al. 

2018) as well as the reinterpretation of Eunotosaurus africanus as a potential proto-turtle 

(Lyson et al. 2010, 2013; Bever et al. 2015), all of which show broad and free ribs that enter 

the lateral body wall and do not possess a plastron, seemed to confirm the decoupling of 

plastron and carapace formation, as well as that of the broadening of the ribs and their axial 

arrest. 

The sequence of events (paleontological contribution) and the ontogenetic 

mechanisms (evo-devo contribution) that led to the origin of the turtle shell illustrates the 

acquisition of a true evolutionary novelty (Müller & Wagner 1991; Nagashima et al. 2009; 

Kuratani et al. 2011; Wagner 2014). Its appearance completely reorganized the ancestral 

reptilian body plan in this lineage, not only modifying the ribs and dorsal vertebrae, but also 

completely reorganizing the whole turtle body. The musculoskeletal alterations related to the 

encapsulation of the scapular girdle and extensive reorganization of musculature related to 

the limb muscles (explained by the hypothesis of folding of the lateral body wall; Nagashima 

et al. 2009, 2012; Kuratani et al. 2011), the division of function between the hypaxial muscles 

and the dorsal ribs that led to the development of their unique ventilatory system (Lyson et 

al. 2014), the constraint on the number of cervical and thoracic vertebrae (Böhmer & 

Werneburg 2017), and even modifications on the skull, such as the emarginations 

(Werneburg 2015), mode of palatoquadrate fixation (Werneburg & Maier 2019), and the 

skull architecture (Chapter 5 of this Thesis) are thought to be related to the emergence of the 

turtle shell. A detailed review of the skull morphology, development and its modifications 

from a reptilian body plan are discussed in Chapter 2 of this thesis. 
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It has been suggested that dinosaurs are good model organisms for investigating 

macroevolutionary questions, because of their extensive fossil record, variety of 

morphological adaptations, and (relative) phylogenetic stability and diversity (Weishampel 

et al. 2004). Turtles possess all those characteristics as well. The earliest true turtle 

(=Testudinata, sensu Joyce et al. 2004) dates back to the Late Triassic (~220 Myrs; Gaffney 

1990; Szczygielski & Sulej 2016), and a not so numerous, but informative stem-lineage is 

currently known, illustrating the acquisition of several of their novel characters (Li et al. 

2008, 2018; Lyson et al. 2014; Schoch & Sues 2015, 2017). The fossil record is well-

documented, with several extinct lineages known (Joyce et al. 2016; Evers & Benson 2019) 

before the (potential) adaptive radiation that originated the crown-group Testudines (Sterli & 

de la Fuente 2010). Testudines, in its turn, is a relatively diverse clade, also with a long and 

well-known fossil record (aprox. 170 Myrs, from the Middle Jurassic; Sterli et al. 2019) that 

includes noteworthy morphological and ecological disparity of both extinct and extant taxa 

(Foth & Joyce 2016; Foth et al. 2017; Rhodin et al. 2017). A consensus on the general 

phylogenetic framework has also been achieved more recently (Joyce 2007; Rabi et al. 2013; 

Cadena & Parham 2015; Joyce et al. 2016; Evers & Benson 201), including the relationship 

between the extant lineages (Crawford et al. 2015; Pereira et al. 2017) Also, the existence of 

extant taxa that can be manipulated in experimental studies, e.g. developmental analyses (e.g. 

Cebra-Thomas et al. 2007, 2013; Hirasawa et al. 2013; Werneburg & Maier 2019), can reveal 

evolutionary patterns and mechanisms that may then be reassessed by historical studies, e.g. 

paleontology (e.g. Nagashima et al. 2009; Böhmer & Werneburg 2017; Szczygielski 2017; 

Chapter 5 of this thesis). All the above-mentioned reasons highlight the potential of turtles 

as an excellent model for macroevolutionary analyses, a value that has been shown by recent 

large-scale analyses of macroevolutive patterns in the group (e.g. Jaffe et al. 2011; Uyeda & 

Harmon 2014; Nicholson et al. 2015, 2016; Rodrigues & Diniz-Filho 2016; Rodrigues et al. 

2019). 

1.5. Objectives and overview of Chapters 2 to 5 

Through the use of digital paleontology techniques of computed tomography, virtual 

3-D reconstruction, and Finite-Element Analyses, the research project presented in this thesis 
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had two main objectives: (1) to analyze the patterns of morphological evolution of the turtle 

skull; and, based on those, (2) to provide novel interpretations of the neuroanatomical and 

functional relations of specific cranial traits (e.g., jaw adductor musculature, brain size and 

shape, and skull rigidity) to the whole skull architecture. 

In Chapter 2 an overview of the osteological, muscular, developmental, and 

functional evolution of the craniocervical system of turtles is presented. During the evolution 

of this taxon, both the skull and the neck were extremely modified in relation to those of the 

earliest turtles, such as the earliest Testudinata Proganochelys quenstedti. The neck increased 

in length and mobility, and developed two systems of retraction in the crown-lineages 

(Werneburg et al. 2015a, b). This, in turn, was correlated to modifications on the skull, such 

as the various patterns of dermatocranial bone reduction in Testudines (Werneburg 2015) 

and their mode of palatoquadrate fixation (Werneburg & Maier 2019; Chapter 5 of this 

Thesis). Aside from that, several other important modifications were identified along the 

evolution of the stem-lineage, e.g. changes in carotid circulation, enlargement of the otic 

chamber, posterior expansion of the adductor chamber, and the development of a trochlear 

system (Gaffney 1975, 1979; Joyce 2007; Sterli & de la Fuente 2010; Rabi et al. 2013). Some 

of those traits, such as the trochlear system and the adductor chamber, are directly related to 

the jaw adductor musculature (Schumacher 1973). Therefore, a 3-D digital reconstruction of 

the external and internal adductor musculature of Proganochelys quenstedti is presented and 

the modifications seen in cryptodires and pleurodires (represented by models of the 

cryptodire Pelodiscus sinensis and the pleurodire Pelomedusa subrufa) are discussed. This 

Chapter also summarizes the main issues pertaining the morphological evolution of the 

craniocervical system of turtles and sets the questions that will be tackled for the following 

contributions in this thesis (among others). 

Chapter 3 is a study on the sensorial evolution at the dawn of turtle evolution, using 

micro-computed tomography (µCT) and digital reconstructions of endocasts of the brain, 

nasal cavity, endosseous labyrinth, and cranial arteries and nerves of Proganochelys 

quenstedti. These data were used to infer the ecology in this taxon and to compare it with 

other turtles (also reconstructed or based on the literature) and other reptiles as well, using a 

morphospace approach with geometric morphometrics. This was the first attempt to explore 
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large-scale comparisons of neuroanatomy among different reptilian groups, and with the 

available data we concluded that P. quenstedti strongly relied on the olfactory sense in life, 

a characteristic of terrestrial turtles (Paulina-Carabajal et al. 2017). The evidence presented 

in this Chapter further supports those from other sources, e.g., limb and shell anatomy and 

paleoenvironments in which early turtles were found, confirming that the earliest true turtle 

was a terrestrial taxon, but also show that, from a paleoneuroanatomical perspective, there 

are no evidences that it could have been a fossorial animal (Lyson et al. 2016). 

In Chapter 4, I present the description of a new fossil pleurodire turtle, Yuraramirim 

montealtensis, from the Late Cretaceous of Monte Alto, Brazil. A comparative description 

of its skull is presented and a phylogenetic analysis conducted, which retrieved it as a member 

of Peiropemydidae, the sister taxon to the crown-lineage Podocnemididae (Ferreira et al. 

2018a). I also present the first paleoneuroanatomical study of an extinct pleurodire based on 

µCT data, with the reconstruction of the endocasts of the brain, endosseous labyrinth and 

cranial canals (for arteries and nerves), which are described and compared to other turtles 

(including some pleurodires; Hopson 1979). This represents an important step towards a 

better comprehension of neuroanatomical evolution in pleurodires and turtles in general, and 

presents important data that can be used in broader studies (see also Chapter 3). 

Finally, in Chapter 5, functional analyses using Finite-Element Analyses (FEA) are 

presented to evaluate the consequences of evolutionary changes in the turtle skull architecture 

to the patterns of stress distribution. Computed tomographic data of stem and crown turtles 

were used to reconstruct digital models of the skull and jaw adductor musculature of eleven 

taxa. Four additional models were generated using digital manipulation techniques, to model 

hypothetical morphotypes and test the functional consequences of specific traits, such as the 

change from a kinetic to an akinetic skull morphology, the origin of the temporal crests and 

posterior expansion of the adductor chamber, and the trochlear systems of cryptodires and 

pleurodires. Using inductive and hypothetico-deductive approaches for the FEAs (Rayfield 

2007), previous functional hypotheses were evaluated and a scenario of progressive 

correlation between skull and neck traits is presented, which could be related to the great 

diversification of turtles during the Jurassic. 
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Chapter 2 

Evolution, diversity, and development of the craniocervical 

system in turtles, with 3D reconstruction of the jaw 

musculature of the oldest turtle Proganochelys quenstedti 

 

 

 

 

 

 

 

A modified version of this chapter is published as: 

Ferreira, G., & Werneburg, I. (2019). Evolution, diversity, and development of the 

craniocervical system in turtles with special reference to jaw musculature. In J. Ziermann, R. 

R. Diaz Jr, & R. Diogo (Eds.) Heads, Jaws and Muscles: Evolution, Development, 

Anatomical Diversity and Function (pp. 171–206). Heidelberg: Springer. doi: 10.1007/987-

3-319-93560-7_8. 
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2 Evolution, diversity, and development of the craniocervical system 

in turtles, with 3D reconstruction of the jaw musculature of the oldest 

turtles Proganochelys quenstedti 

Abstract 

Turtles are one of the most enigmatic groups of vertebrates with their highly modified 

body plan and, as such, attracted the attention of researchers for a long time. Aside from the 

obvious and odd turtle shell, the head in this group shows also great changes in comparison 

to that of other amniote groups. Since the skull has been considered one of most important 

body regions when analyzing the phylogenetic relationships of amniotes, the distinct turtle 

head morphology is one of the key features in defining their position among reptiles. Here, 

we review the current knowledge of the turtle head, summarizing the general morphology of 

the skull and neck as well as the different anatomical modifications characteristic of the main 

lineages of extant and extinct turtles. We explore the main questions that have been raised 

while studying those issues, for instance the origin and diversity of the temporal 

emarginations (dermal bone reductions), the different neck-retraction mechanisms and their 

influence on the shape of the head, and the anatomy and development of the jaw adductor 

musculature and its relations to some characteristics features of the turtle skull, such as its 

akinesis and the origin of the trochlear mechanisms in cryptodires and pleurodires. 

Additionally, using 3-D models and ancestral state reconstructions, the arrangement and 

gross morphology of the jaw adductor musculature in Proganochelys quenstendti, the earliest 

turtle with a complete shell, is inferred, an important step towards the understanding of the 

evolution of those muscles in turtles. Finally, I suggest that more integrative approaches, 

considering anatomical, developmental and paleontological data, and employing modern 

techniques in morphological and functional anatomic analyses (such as μCT scanning and 

finite element analysis) have a great potential to answer the still numerous open questions 

about the evolution of the turtle head. 

Keywords: Testudinata, Proganochelys quenstedti, neck retraction, temporal openings, 

trochlear mechanism  
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2.1. Origin of turtles 

The phylogenetic position of turtles among amniotes has been a highly debated issue 

for the last 150 years (Rieppel 2008; Joyce 2015) and much of this controversy is related to 

the greatly modified body plan of these reptiles, especially in their postcranium (Scheyer et 

al. 2013). The body of turtles is encapsulated inside a bony shell and, consequently, most 

anatomical parts, such as their limbs, girdles, and their respiratory system, were severely 

modified with the emergence of this structure (Nagashima et al. 2012). Several lines of 

investigation, including paleontological (Li et al. 2008; Lyson et al. 2010; Lyson and Joyce 

2012; Lyson et al. 2013; Lyson et al. 2014; Lyson et al. 2015; Schoch & Sues 2015) and 

developmental studies (Burke 1989; Clark et al. 2001; Cebra-Thomas et al. 2005; Gilbert et 

al. 2001; Gilbert et al. 2007; Gilbert et al. 2008; Loredo et al. 2001; Kuratani et al. 2011; 

Nagashima et al. 2007; Nagashima et al. 2009; Nagashima et al. 2013; Nagashima et al. 2015; 

Rieppel 2013), contributed to this debate, and now we have a comprehensive scenario for the 

origin of the shell, from a phylogenetic and ontogenetic perspectives (Nagashima et al. 2012; 

Joyce 2015; Rice et al. 2016; Ferreira 2016). 

Nevertheless, the phylogenetic origin of turtles remains somewhat controversial (Fig. 

2.1). Traditional classifications of amniotes (fully land-adapted tetrapods with a cleidoic 

eggs) have considered the temporal region of the skull as the most important character for 

defining large group interrelationships (e.g., Osborn 1903; Williston 1917; Gregory 1946; 

Olson 1947). Of special importance was the number of openings, the so-called fenestrae, in 

the temporal skull region. Using this feature, Osborn (1903) divided amniotes (and some 

non-amniotes) in two main lineages: the ‘Synapsida’, with one or no fenestra, and the 

‘Diapsida’, with two fenestrae in the temporal region (Rieppel 2000). Later, Williston (1917) 

modified Olson’s (1947) definition of ‘Synapsida’ by classifying the amniotes without 

temporal openings as another group that he called ‘Anapsida’, a group from which 

fenestrated reptiles presumably arose. In all those early classifications, the turtle skull was 

considered “primitively” anapsid (Baur 1889; Cope 1896; Hay 1905; Watson 1914), and the 

group was classified as synapsid (Osborn 1903) or anapsid (Williston 1917). Later and more 

comprehensive classifications considering both extant and extinct taxa (Gregory 1946; Olson 

1947; Romer 1956) included not only turtles, but also diadectomorphs (stem amniotes), 
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capthorhinids (stem diapsids), and placodonts (stem lepidosaurs, although they have large 

upper temporal fenestra), into ‘Anapsida’; together with pareaisaurs and procolophonids, 

these groups were united as ‘Cotylosauria’. Today, the cotylosaurs are considered a 

paraphyletic assemblage of early amniotes and non-amniotes (e.g., seymouriamorphs; Laurin 

2002), but those traditional classifications were highly influential on later phylogenetic 

studies, that grouped turtles along with different anapsid reptiles such as capthorhinids 

(Gaffney 1980), pareiasaurs (Lee 1995, 1997), and procolophonids (Laurin and Reisz 1995). 

 

Figure 2.1. Phylogenetic tree of Reptiliomorpha based on Laurin and Reisz (1995), with the skulls of 

representative taxa of each lineage plotted in lateral view with highlighted temporal region bones. A, Seymouria 

sanjuanensis; B, Eothyris parkeyi; C, Milleretta rubidgei; D, Scutosaurus karpinskii; E, Procolophon 

trigoniceps; F, Captorhinus aguti; G, Euparkeria capensis; H, Palatodonta bleekeri; I, Sphenodon punctatus; 

J, Archosauromorpha; K, Lepidosauromorpha. The skull on the bottom depicts the stem turtle Proganochelys 

quenstedti and the blue circles and dotted lines point to previously proposed relationships of turtles: a, 

Millerettidae (e.g., Lyson et al. 2010); b, Pareisauria (e.g., Lee 1993); c, Procolophonidae (e.g., Laurin & Reisz 

1995); d, Captorhinidae (e.g., Gaffney and Meylan 1988); e, stem Diapsida (e.g., Werneburg & Sánchez-

Villagra 2009); f, Diapsida (e.g., Neenan et al. 2013); g, Archosauria (e.g., Wang et al. 2013); h, Sauropterygia 

(e.g., Rieppel & Reisz 1993); i, Lepidosauria (e.g. Müller 2003). The numbers represent selected possible 

synapomorphies for the respective clades (based on Laurin & Reisz 1995 and Müller 2003): 1, large 

posttemporal fenestra; 2, supratemporal bone small or absent; 3, long interpterygoid vacuity; 4, upper temporal 

fenestra; 5, lower temporal fenestra; 6, loss of lower temporal bar. 

Despite this influential view that considered turtles as “primitive” amniotes, survivors 

of an extinct lineage of reptiles (the ‘Parareptilia’ of Gauthier et al. 1988 or ‘Anapsida’ of 

Laurin & Reisz 1995), several alternative early studies raised doubts about those affinities. 

Based on postcranial characters, Goodrich (1916) suggested close affinities btween turtles 
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and other living reptiles within Sauropsida (= crown Reptilia, including birds). Goodrich 

(1930), Boulenger (1918), and Broom (1924), also emphasized that the arrangement of the 

bones in the temporal region of turtles is not comparable to that of other anapsid reptiles. 

They concluded that this morphology in turtles has been secondarily acquired (see also 

Müller 2003). Ontogenetic (de Beer 1937; Hofsten 1941) and of jaw adductor muscle 

anatomy studies (Lakjer 1926) revealed several features shared by turtles and other extant 

diapsids (Rieppel 2000). Some phylogenetic studies based on morphological characters also 

retrieved turtles closely related to diapsids, either to Lepidosauromorpha—a lineage that 

comprises tuataras, lizards, snakes, and the extinct marine reptiles, the sauropterygians 

(deBraga & Rieppel 1997; Rieppel & Reisz 1999)—or to Archosauromorpha—a lineage that 

includes crocodiles and birds, among others (Løvtrup 1977, 1985; Gardiner 1993). Molecular 

based phylogenetic reconstructions usually result in a closer relationship to one of the diapsid 

clades as well, more commonly archosaurs (Zardoya & Meyer 1998, 2001; Hedges & Poling 

1999; Mannen & Li 1999; Hedges 2012; Wang et al. 2013). 

Most recent studies that examine fossils of extinct amniotes also support the view of 

turtles as diapsids. In one of the oldest turtles, Proganochelys quenstedti (Gaffney 1990), 

marginal teeth were absent, the preorbital region was short, and the temporal region was 

completely closed. The proto-turtle Odontochelys semitestacea (Li et al. 2008), although not 

defined as a member of Testudinata (sensu Joyce et al. 2004) due to the lack of a complete 

turtle carapace, is closer to this lineage than to other reptiles and greatly contributed to the 

debate of the origin of the turtle shell (Nagashima et al. 2009). Although retrieved together 

with turtles deeply nested within Diapsida (Li et al. 2008), the anapsid skull of O. 

semitestacea did not help to clarify how the transition from a diapsid to an anapsid skull 

could have happened. However, reinterpretations of the skull of Eunotosaurus africanus 

(Bever et al. 2015), a reptile known since the 19th century (Seeley 1892) and recently 

considered part of the turtle stem-lineage due to morphological similarities of their 

postcranial skeleton (Lyson et al. 2010), as well as the recent descriptions of Pappochelys 

rosinae (Schoch & Sues 2015) and Eorhynchochelys sinensis (Li et al., 2018), provided some 

scenarios for this transition. However, the positioning of those taxa along the stem lineage of 

turtles and the morphological interpretation of their temporal skull region remains open to 

debate and some phylogenetic analyses, including E. africanus and turtles have retrieved a 
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parareptilian affinity for this clade as well (e.g., Lyson et al. 2010; Lee 2013). As such, the 

turtle skull continues to be a controversial and very important morphological structure to 

understand not only the relationship of the different turtle lineages, but also their origin 

among amniotes. 

In a recent study, the original dataset of Laurin & Reisz (1995) was expanded by 

adding new information on the parareptilian clade Mesosauria and updating other 

information. The analysis resulted in a paraphyletic assemblage of parareptiles with 

mesosaurs being the sister taxon to eureptilians with the remainder of parareptiles, including 

turtles (as sister to pareiasaurs), nested inside diapsids (Laurin & Piñeiro 2017; but see 

MacDougall et al. 2018). This result could resolve the obstacle why turtles have shown both 

parareptilian as well as diapsid affinities in previous studies; however, further fossils need to 

be included to this analysis in the future to strengthen this hypothesis. 

2.2. Cranial diversity of extant and fossil taxa 

Compared to those of early reptilian lineages, the skulls of turtles are highly modified, 

which makes it difficult to trace their morphological origin. Most of the features directly 

affects the morphology of the adductor chamber, but are not limited to this region of the skull. 

For example, one of the most unusual characters is the absence of teeth and the presence of 

keratinous ramphotecae (horny beaks) over the upper and lower jaws, similar to that of birds 

(Romer 1956). The Late Triassic (ca. 215 Myr) stem-turtle Proganochelys quenstedti 

presumably already had rhamphotecae and, although palatal teeth were still present (as in 

some other turtles such as Kayentachelys aprix and Sichuanchelys palatodentata, Gaffney et 

al. 1987; Joyce et al. 2016), marginal teeth were lost. The also Late Triassic (ca. 220 Myr) 

proto-turtle Odontochelys semistetacea had marginal and palatal teeth (Li et al. 2008), so the 

rhamphotecae should have been present in the common ancestor between P. quenstendti and 

all other turtles. The recent discovery of Eorhynchochelys sinensis finally proofed that 

ramphothecae were developed at the dawn of turtle evolution (Li et al. 2018). 

From a superficial perspective, the skull of extant turtles is greatly expanded posterior 

to the orbits (temporal region) and greatly shortened anterior to them (preorbital region) 

(Romer 1956). A shortened preorbital region of the skull is also seen in Pr. quenstedti, but, 



 Patterns of morphological evolution in the skull of turtles – Chapter 2 

 

 
30 

 

as in other stem turtles such as Australochelys africanus (Gaffney & Kitching 1994) and 

Palaeochersis talampayensis (Rougier et al. 1995), the temporal region is not elongated as 

in crown turtles (Gaffney 1990). O. semitestacea, on the other hand, possessed a more 

elongated skull, both in the temporal and in the preorbital regions (Li et al. 2008). In all these 

proto- and stem-turtles the dermal roof is completely closed above the adductor chamber, 

without fenestrae or any deep marginal reduction, resulting in an anapsid morphotype 

(Werneburg 2012). The bones forming this dermatocranial covering are the jugal, 

quadratojugal, postorbital, squamosal, and parietal. A largely reduced supratemporal is 

putatively identifiable in O. semitestacea, Pr. quenstedti, and Pa. talampayensis (Rougier et 

al. 1995; Gaffney 1990; Li et al. 2008). In fact, reduction of dermal bones in the skull of 

turtles is recurrent: the supratemporal is lost in all other turtles, there is no sign of lacrimal, 

tabular, or postparietal bones, the postfrontal is fused with the postorbital, and the nasals are 

reduced or lost in many groups (Romer 1956). Several of those bones are commonly found 

in the skull of parareptiles which, in addition to the different shape of the jugal and 

quadratojugal of Pr. quenstedti (i.e., an elongated jugal and a short but high quadratojugal), 

led some authors to propose that the anapsid condition of the turtle skull is, actually, a 

secondary derivation (e.g., Goodrich 1930; Müller 2003). That means that in the ancestral 

lineage of turtles, the plesiomorphic temporal fenestrae were closed and their absence is not 

evidence of a closer relationship to other anapsid reptiles. The potential closure of the 

temporal fenestrae in turtle evolution would not be very surprising since increasing evidence 

suggests that changes in this region, the appearance and disappearance of fenestrae, 

frequently occurred among Reptilia, including parareptiles (Müller 2003; Tsuji and Müller 

2009). Additionally, the three fossil taxa putatively assigned to the turtles’ stem lineage prior 

to the divergence of O. semitestacea and Testudinata, Eorhynchochelys sinensis (ca. 230 

Myr), Pappochelys rosinae (ca. 240 Myr) and Eunotosaurus africanus (ca. 260 Myr) (Li et 

al. 2018; Bever et al. 2015; Schoch & Sues 2015), suggest that those still had one or two 

temporal fenestrae (with the lower one opened ventrally), resembling the condition in crown-

diapsid reptiles (Bever et al. 2015; Bever et al. 2016; Schoch & Sues 2015; Schoch &Sues 

2016). If the relationship of those taxa is further confirmed, then the closure of the fenestrae 

in the turtle lineage would have occurred simultaneously with the first steps of acquisition of 

the shell, in the common ancestor of Eo. sinensis, O. semitestacea and Testudinata. 
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Figure 2.2. Diversity of turtle skull (phylogenetic hypothesis based on Joyce et al. 2016) with posterodorsal 

(orange) and anteroventral (blue) emarginations highlighted. Upper case letters indicate the large groups A, 

Meiolaniformes; B, Baenidae; C, Pelomedusidae; D, Podocnemididae; E, Chelidae; F, Sinemydidae; G, 

Trionychia; H, Chelonioidea; I, Chelydridae; J, Kinosternidae; K, Testudinidae; L, Geoemydidae; M, 

Emydidae; N, Platysternidae. Lower case letters indicate the following taxa: a, Odontochelys semitestacea (in 

dorsal view); b, Proganochelys quenstedti; c, Australochelys africanus; d, Kayentachelys aprix; e, Meiolania 

platyceps; f, Kallokibotion bajazidi; g, Plesiobaena antiqua; h, Pelusios sinuatus; i, Podocnemis expansa; j, 

Emydura macquarii; k, Chelodina expansa; l, Sinemys gamera; m, Lissemys punctata; n, Chelonia mydas; o, 

Dermochelys coriacea; p, Macrochelys temmincki; q, Kinosternon subrubrum; r, Testudo graeca; s, Cuora 

trifasciata; t, Pseudemys concinna; u, Terrapene ornata; v, Emys orbicularis; x, Platysternon megacephalum. 

The numbers represent selected synapomorphies for the respective clades (based on Sterli & de la Fuente 2010, 

Rabi et al. 2013, and Werneburg et al. 2015a): 1, opisthotic tightly sutured to squamosal; 2, basipterygoid 

process sutured; 3, interpterygoid vacuity partially or completely closed; 4, processus inferior parietalis closing 

foramen nervi trigemini; 5, crista supraoccipitalis posteriorly developed; 6, posterodorsal emargination 

developed; 7, processus trochlearis oticum; 8, processus trochlearis pterygoidei and pleurodiran trochlear 

mechanism; 9, pleurodiran neck retraction; 10, cryptodiran trochlear mechanism; 11, cryptodiran neck 

retraction mode. Pictures from different sources (see Werneburg 2012 for details). 

Although the condition among proto-turtles older than Eo. sinensis remains unknown, 

it is certain that in the stem lineage to the crown clade Testudines, the plesiomorphic state is 
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an anapsid skull. Most taxa diverging prior to the origin of Testudines had a closed temporal 

region, surrounding the adductor chamber by bone (Werneburg 2012). This condition, 

however, was modified several times in different turtle lineages, and most extant taxa show 

a largely reduction in bones that arch above the adductor chamber (Zdansky 1923; Romer 

1956; Rieppel 1993; Werneburg 2012). The type of dermatocranial reduction of turtles is, 

nevertheless, different from that found in other living reptiles that exhibit fenestrae. The 

temporal skull reduction in turtles is named emargination (Fig. 2.2), which presents marginal 

excavations either at the ventrolateral border of the skull or at the dorsal margin of the 

posttemporal fenestra (Romer 1956; Kilias 1957; Rieppel 1993; Werneburg 2012). The 

former is known as ventrolateral (sensu Werneburg 2013b) or cheek emargination and 

proceeds by usually reducing the jugal and quadratojugal bones. The latter is known as 

posterodorsal (sensu Werneburg 2013b), occiput, or temporal emargination, shown as 

reductions primarily of the parietal and squamosal. The extent of these emarginations varies 

greatly among different turtles (Fig. 2.2) but, in their general constitution, they can be used 

to characterize the main turtle clades (Werneburg 2012). 

Most cryptodires possess a well-developed posterodorsal emargination (Fig. 2.2), 

with the exception of the big-headed turtle Platysternon megacephalum and of sea turtles 

(Chelonioidea), in which it is only shallow or almost not present (Romer 1956; Werneburg 

2012). Likewise, the anteroventral emargination is absent or very shallow in several taxa, 

such as Pl. megacephalum, sea turtles, and snapping turtles (Chelydridae), but can be 

moderately to well-developed in other cryptodires, such as in Terrapene ornata, in which it 

is confluent with the posterodorsal emargination (Zdansky 1923; Werneburg 2012). In 

pleurodires, the degree of emargination is also variable (Fig. 2.2). In chelids, there is a large 

anteroventral emargination, sometimes merged with the shallow posterodorsal excavation, 

as seen in Chelodina (Romer 1956; Kilias 1957; Gaffney 1979). In pelomedusids and 

podocnemidids, there is only a shallow anteroventral emargination, but the former shows 

also a well-developed posterodorsal excavation, similar to that found in several cryptodires, 

while in podocnemidids there is a larger dermatocranial coverage with shallow posterodorsal 

emarginations (Romer 1956; Werneburg 2012). Among extinct turtle lineages (Fig. 2.2), 

xinjianchelyids and sinemydids usually possess deep posterodorsal and moderate 

anteroventral emarginations (Rabi et al. 2014; Zhou & Rabi 2015), and pleurosternids and 
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baenids have moderate posterodorsal and moderate to well-developed anteroventral 

emarginations (Gaffney 1975; Joyce & Lyson 2015). However, these general descriptions 

may apply only to the most common members in each of these clades, and the development 

of the emarginations in individual taxa can be highly variable (Zangerl 1948; Gaffney 1979; 

Werneburg 2012). 

 

Figure 2.3. The trochlear mechanism in (A, A') the cryptodire Pelodiscus sinensis, and in (B, B') the pleurodire 

Pelomedusa subrufa. The external jaw muscle portions partes profundus (19) and superficialis (21) originate, 

respectively, on the supraoccipital (so.cr) and squamosal (sq.cr) crests in the upper temporal fossa (utf) and 

insert to the coronoid process (co.pr) of the lower jaw. On this course (simplified in A and B by the purple 

line), they bend (circle) around the expanded otic chamber (ot.ch), turning their fibers almost vertically in the 

lower temporal fossa. This bending is realized by the processus trochlearis oticum (pto) in Cryptodira, and by 

the processus trochlearis pterygoidei (ptp) on Pleurodira. The simplified view (A, B) with just one line neglects 

the complexity indicated by the more realistic 3D reconstruction of the whole muscle mass (A', B'). 

Numerous factors have been raised to explain the repeated evolution of 

dermatocranial bone reductions (see Werneburg 2012), either forming fenestrae or 

emarginations, including phylogenetic constraints (particularly in cases when a whole clade 
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possess the same pattern, such as synapsids or trionychids; Kilias 1957), reducing skull 

weight (Frolich 1997), skull dimensions (Tarsitano et al. 2001), diet (Versluys 1919), ear 

anatomy, and jaw muscle bending mechanism (in the case of turtles; Karl 1997), plasticity 

of bones influenced by internal forces on the skull (Kilias 1957; Frazzetta 1968; Tarsitano et 

al. 2001), and environmental pressures (Gaupp 1895; Nick 1912; Zdansky 1923). The most 

common of those, however, are the anatomy and function of the jaw adductor musculature 

(Gregory & Adams 1915; Zdansky 1923; Rieppel 1993; Werneburg 2012). In this case, the 

contraction of the jaw musculature would pressure the bones and bony bars in the temporal 

region resulting in the modification of this area (discussed by Werneburg 2012). More 

recently, Werneburg (2015) showed that the neck-bending mechanisms are strongly 

correlated to type and degree of temporal skull reduction in turtles. It is more likely, however, 

that no single factor alone causes the reduction of the dermatocranial bones, but actually that 

several of those in conjunction influence the shaping of the temporal region in turtles and 

other amniotes (Werneburg 2012). 

Reductions of the dermatocranial coverage of the adductor chamber may have 

become possible after the reinforcement of the attachment of the braincase to the palate and 

the ear capsule (i.e., palatoquadrate-related structures) in the stem lineage of turtles (Gaffney 

1990; Eßwein 1992; Sterli & de la Fuente 2010; Werneburg 2012; Werneburg & Maier 

2019). Pr. quenstedti, O. semitestacea and Eo. sinensis possess robust basipterygoid 

processes that articulate with the pterygoid ventrolaterally (Rabi et al. 2013), which results 

in a less rigid, possibly kinetic, basicranial articulation as found in stem amniotes and stem 

tetrapods (Gaffney 1979; Rabi et al. 2013). In addition, the parietal of Pr. quenstedti does not 

develop a descending process anterior to the trigeminal nerve foramen, that would connect 

the pterygoid ventrally (as it does in crown turtles), and the opisthotic is not strongly sutured 

to the quadrate (Gaffney 1990). As such, the dermatocranial temporal bone coverage may 

have been the only structure giving mechanical support to the quadrate while developing 

stronger bite forces in stem turtles (Werneburg 2012). A suture between the parabasisphenoid 

and the pterygoid is already seen in A. africanus and Pa. talampayensis (Rabi et al. 2013), 

providing evidence for the trend to increasingly strengthening the contact between the 

braincase and palate by the basipterygoid articulation (Fig. 2.2). These changes preceded the 

closure of the interpterygoid vacuities realized by an extension of the contact between the 
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pterygoids and an anterior extension of the parabasisphenoid (Sterli & de la Fuente 2010), 

the development of the descending process of the parietal, and the sutural contact between 

the opisthotic and the quadrate (Eßwein 1992; Werneburg & Maier 2019). All those features 

made the skull more rigid in crown turtles, releasing the temporal region from supporting the 

jaw articulation (quadrate-articular) during biting movements, and allowing the development 

of posterodorsal and anteroventral emarginations (Romer 1956; Werneburg 2012). 

Closure of the interpterygoid vacuity and the reinforcement of the basipterygoid 

articulation had consequences on the carotid circulation in turtles, as well (Sterli et al. 2010; 

Müller et al. 2011; Rabi et al. 2013). The internal carotid artery in most amniotes bifurcates 

into cerebral and palatal branches before the former pierces the parabasisphenoid and enters 

the pituitary fossa, and the latter continues anteriorly and ventral to the braincase. In 

squamates and parareptiles (similar to birds and some sauropterygians, also), however, the 

internal carotid enters the braincase and only afterward the do the cerebral and palatal 

branches separate from each other (Müller et al. 2011). Among turtles, two general patterns 

can be identified: (1) in stem-turtles such as Pr. quenstedti (Gaffney 1990), the cerebral 

branch separates from the palatal branch before entering the skull, and (2) in all crown turtles, 

it is ventrally floored by bone and bifurcates inside the skull (Sterli & de la Fuente 2010; 

Sterli et al. 2010). Several variations of those two basic morphotypes exist in turtles (Sterli 

& de la Fuente 2010; Sterli et al. 2010; Müller et al. 2011; Rabi et al. 2013; Rollot et al. 

2018), but the increasing ossification of the parabasisphenoid-pterygoid articulation and the 

posterior projection of the pterygoid, closing the interpterygoid vacuities, enclose the carotid 

arteries inside the skull (Sterli et al. 2010; Rabi et al. 2013); this is also seen in therapsids, 

sauropterygians, and crocodyliformes, which also evolved more rigid skulls (Romer 1956; 

Rabi et al. 2013; Werneburg & Maier 2019). 

The stronger attachment of the quadrate to the braincase and to the palate is also 

thought to be related to the trochlear mechanism, a structure specific to turtles (Schumacher 

1954b, a, 1954/55, 1956; Gaffney 1975; Werneburg & Maier 2019) (Fig. 2.3). All crown 

turtles possess an enlarged otic chamber, with the quadrate forming a wall that separates the 

middle ear into two distinct portions: the cavum tympani (laterally) and the cavum acustico-

jugulare (medially) (Gaffney 1979). This separation is not seen in the stem turtles Pr. 
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quenstedti or A. africanus (Gaffney 1990; Gaffney & Kitching 1995), but in Kayentachelys 

aprix it is already formed (Sterli & Joyce 2007). Enlargement of the quadrate, which becomes 

cup-shaped and forms the otic chamber, fills a large portion of the adductor chamber and 

separates it into upper and lower temporal fossae. This condition imposes an obstacle to the 

course of the jaw musculature from its origin on the skull roof to its insertion on the coronoid 

process of the lower jaw (Fig. 2.3), which, as a consequence, is redirected around the otic 

chamber by a pulley system, named trochlear mechanism (Schumacher 1956, 1973; Gaffney 

1975, 1979; Joyce 2007). The pressure thought to be exerted by the trochlea during jaw 

movements can only be accommodated because of the more rigid skull of crown turtles. 

Although all crown turtles developed the same solution to this problem of limited 

space, two different mechanisms are found in Cryptodira and Pleurodira (Fig. 2.3), each 

enabling a similar pulley system. The former developed its trochlea on the anterodorsal 

aspect of the otic chamber itself—called processus trochlearis otici—and the quadrate and 

prootic may form a protuberant or roughened surface (Schumacher 1954b; Gaffney 1975; 

Joyce 2007). Where the coronar aponeurosis of the external jaw adductors (see below) 

contacts this bony process, a sesamoidal cartilago transiliens (Schumacher 1954a, 1956) or a 

bony os transiliens in Gopherus polyphemus (Ray 1959; Bramble 1974) is developed. In this 

true articulation, cryptodires develop a gliding joint, surrounded by a capsule that involves 

the cartilage and the bone process (Schumacher 1973; Gaffney 1979). On the other hand, 

pleurodires develop their trochlea anterior to the otic chamber, around an enlarged flange of 

the pterygoid, called processus trochlearis pterygoidei (Schumacher 1973; Gaffney 1975; 

Joyce 2007). The coronar aponeurosis also develops a transiliens cartilage in the contact to 

this process of the pterygoid in pleurodires, but there is no joint capsule around them. 

Alternatively, a fold of the oral mucosa (the ductus angularis oris) is enlarged in pleurodires 

(Fuchs 1931) and forms a pocket that extends between the processus trochlearis pterygoidei 

and the transiliens cartilage and provides a lubricated surface over which the structure glides 

(Schumacher 1973; Gaffney 1979). These differences led Gaffney (1975) to conclude that 

these trochlear mechanisms are nonhomologous structures that arose independently in 

cryptodires and pleurodires. However, the analysis of new fossils as well as the growing 

support for a long stem lineage to Testudines, including several taxa previously considered 

cryptodires (e.g., Joyce 2007; Sterli et al. 2010; Joyce & Sterli 2012; Rabi et al. 2013) suggest 
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that a cryptodiran-like trochlear mechanism is the plesiomorphic condition for the crown 

turtles (Joyce & Sterli 2012). Considering this, Joyce (2007) proposed a scenario for the 

evolution of the pleurodiran trochlear mechanism through a transfer of function from the 

processus trochlearis otici to the processus trochlearis pterygoidei with a hypothetical 

ancestor possessing both types of trochleae (Joyce 2007; Joyce & Sterli 2012). However, this 

has been criticized elsewhere (e.g., Gaffney & Jenkins 2010; Werneburg & Maier 2019) for 

its lack of functional (see Chapter 6 of this Thesis) and paleontological support, since there 

is no known extinct taxon that could represent this intermediate condition. Furthermore, 

preliminary observations suggest that the trochlear mechanism, at least in pleurodires, may 

be related to other features of the skull, such as larger origin sites for the pterygoid muscles, 

aside from redirecting the external muscles around the otic chamber. 

Regardless of the origin of the trochlear mechanism in turtles, its appearance 

represented a new possibility for enabling more powerful muscle function in limited space 

caused by the expanded otic chamber. With the pulley system, the external adductor muscles 

became delimited into two parts, one behind the trochlea with horizontally oriented fibers 

closer to the muscle’s origin on the skull, and another in front of the trochlea with vertically 

oriented fibers closer to the muscle’s insertion to the lower jaw (Schumacher 1973; Gaffney 

1975; Joyce 2007; Werneburg 2013a). In several taxa, the supraoccipital and the squamosal 

develop elongated projections posteriorly in the latter part of the adductor chamber (Sterli & 

de la Fuente 2010; Werneburg 2012). These posterior crests increase the area for fiber 

attachment and by the subsequent elongation of muscle fibers, increase the generation of 

muscle power of the external adductors. It is important to note that all these modifications in 

the turtle skull (stronger attachment of the braincase to the palate and the skull roof, the 

development of temporal emarginations, the extension of supraoccipital and squamosal 

crests, as well as the origin of trochlear mechanisms) occur after the Jurassic (ca. 200 Myr). 

Additionally, these changes occurred in the clade containing the last common ancestor of 

Meiolaniformes and Testudines (Sterli & de la Fuente 2010; Rabi et al. 2013), highlighting 

the correlation between a more rigid skull and stronger and more robust jaw muscles in turtles 

(Werneburg & Maier 2019). 
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2.3. Importance of the turtle neck 

To understand the diversity of the turtle skull, it is particularly important to consider 

postcranial characteristics as well. Obviously, a highly integrated functional chain exists 

among the carapace, neck, and skull (Werneburg 2015). The functional origin of the turtle 

shell has been controversially. If turtles evolved from marine ancestors, heavy abdominal 

ribs (gastralia) could have permitted controlling buoyancy (Schoch & Sues 2015) resulting 

in the primary emergence of a plastron as seen in Odontochelys semitestacea (Li et al. 2008: 

but see Reisz & Head 2008; Scheyer et al. 2013). The carapace might have evolved as a 

defensive structure (Romer 1956), but recently, Lyson et al. (2016) hypothesized that turtles 

might have had fossorial ancestors in which a strong ossification of the whole body would 

have developed to withstand external pressure of the soil when digging; curiously, however, 

other fossorial vertebrates reduce ossifications and form a slender body (Gauthier et al. 2012). 

Whatsoever the origin of the shell was, the emergence of a stiffened bony armor influenced 

a great set of anatomical features, including the ventilatory system (Lambertz et al. 2010; 

Lyson et al. 2014) and the whole locomotory apparatus (Walker 1973; Joyce et al. 2013b).  

In addition to the limbs and girdles, the cervical region also had to correspond with 

such a comprehensive stiffening of the turtle body. Crown turtles evolved a great flexibility 

of their neck, which, as compensation, enables fast and elaborated nutrition strategies (Herrel 

et al. 2008). As such, neck mobility and feeding behavior seem to be strongly connected 

(Natchev et al. 2015). In some forms, particularly in chelids, the neck may be longer than the 

shell, and many taxa, including trionychids and kinosternids, are able to stretch their heads 

completely over the carapace for defense or hunting purposes. Related to such great mobility 

of the neck, the cervical vertebrae of extant turtles are highly modified compared to that of 

other reptiles, including stem turtles (Williams 1950; Werneburg et al. 2015b).  

A unique feature among all vertebrates is the ability of turtles to retract their neck and 

head inside the shell. Each of the two major extant turtle groups evolved a highly specialized 

mode of retraction, but both fold their neck in a S-shape manner (Werneburg et al. 2015b). 

In a horizontal plane, pleurodires lay their head and their neck below the anterior edge of the 

carapace. Cryptodires, in contrast, retract their necks in a vertical plane and withdraw them 

even between the shoulder girdles (Herrel et al. 2008). Cervical ribs, which were still present 
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in stem turtles, are reduced in extant taxa throughout ontogeny, enhancing mobility and 

facilitating neck retraction into the shell and between the shoulder girdles (Werneburg et al. 

2013). Pr. quenstedti and Meiolania platyceps, like most other stem turtles, have relatively 

compact cervical vertebrae and short necks, and, as such, they were hypothesized to have 

performed only limited mobility (Gaffney 1985; Gaffney 1990; Jannel 2015). However, 

Werneburg et al. (2015a) have shown, using radiographs, CT scan images, and 

morphometrics, that also those stem turtles might have even been able to laterally tuck their 

neck below the anterior edge of the carapace similarly to pleurodires, but in a simpler manner. 

Protective osteoderms on dorsal surface of the neck of this stem turtle support the hypothesis 

that defense might have been the major reason for the emergence of neck retraction. It must 

be noted, however, that stem turtles were mostly terrestrial herbivores as the reduction of 

marginal teeth and presence of keratinized ramphothecae clearly indicate. The movements 

that later allowed neck retraction might have evolved initially in relation to this feeding 

behavior, enabling those turtles to pull down plants while maintaining the cumbersome body 

steady (compare to extant land tortoises, in which, however, the limbs also “still” support; 

Natchev et al. 2015). Recently, Anquetin et al. (2017) hypothesized that in the early evolution 

of crown turtles a specialized foraging strategy under water (suction feeding) might have 

been related to increased neck mobility in general and might have enforced the origin of the 

cryptodiran neck retraction. In both of these scenarios, the protective function of retracting 

the neck and head inside the shell would be an exaptation of the high mobility already present 

(Anquetin et al. 2017). 

Specialized neck muscles, linked to neck retraction, have evolved in turtles, and, as 

for some skull features (see above), a more rigid skull may be related to their appearance. 

The major neck retractor, m. retrahens collique (Werneburg 2011), broadly attaches to the 

basicranium, in which an immobile basicranial articulation support stronger forces. Dorsal 

neck muscles attach to the temporal skull region and are in close topographic relation to the 

external jaw musculature. One of the major challenges in future turtle research is establish to 

homology of turtle neck musculature with that of other amniotes (Gasc 1981; Werneburg 

2011) as several reorganizations must have occurred in relation to the novel movement 

abilities of turtles (Werneburg et al. 2013). 
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Figure 2.4. Scenario for the origin of the anapsid skull and temporal emargination in turtles as proposed by 

Werneburg (2015). The 3d models were built using CAD software Rhinoceros 3D (McNeel & Associates, 

2003). Further information on the models can be found in Werneburg et al. (2015). All models are shown in 
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left lateral (left column), oblique dorsolateral (middle column), and ventral (right column) view. (A) In the 

ancestral diapsid condition (visualized by Sphenodon punctatus), the selected neck muscles contact the shoulder 

girdle posteriorly and stabilize the head anteriorly. (B) In stem turtles (exemplified by Proganochelys 

quenstedti), the trapezius (81/82 of Werneburg 2011) and sternocleidomastoideus (52, = m. plastrosquamosus 

in turtles) muscles lost contact to the shoulder girdle (see Lyson et al. 2013) and posteriorly attach to the 

carapace and plastron respectively. Stem turtles were already able to simple retract their head and neck inside 

the shell (Werneburg et al. 2015a, b). For that, large tension forces of the trapezius and sternocleidomastoideus 

muscles acted on the temporal skull region. As a response to withstand those forces and to maintain skull 

integrity, the infratemporal (ift) and supratemporal fenestrae (stf) were closed in the potential diapsid ancestor 

of Testudinata. (C) Cryptodirans (exemplified by Graptemys pseudogeographica) retract their neck in a vertical 

plane inside the shell. For that, strong dorsal neck musculature (82, a cryptodiran derivative of m. trapezius, = 

m. carapacocervicocapitis medialis pars capitis) acts on the temporal skull region. To withstand those neck 

forces, which largely increased compared to those of stem turtles, marginal posterodorsal emarginations 

(pd.em) evolved providing broader insertion sites and better distributing neck tension forces. (D) In 

pleurodirans (exemplified by the chelid Phrynops hilarii), the pleurodiran derivative of m. trapezius (81, = m. 

carapacocervicocapitis medialis pars capitis) inserts to the base of the skull. As such, neck muscles do not have 

a comparable influence on the temporal region as in cryptodires. In pleurodires, several neck muscles enable 

large lateral neck movement (exemplified by 57, m. collosquamosus) and might influence the shaping of the 

skull. The origin of the anteroventral emargination (av.em)–in pleurodires and cryptodires alike–is not fully 

understood (see Werneburg 2015). However, the extent of both anterovental and posterodorsal emarginations 

appear to influence each other enabling–associated to particular skull dimensions–a stable, bridge-like 

construction. The reduction of the dermal armor in the temporal region is certainly associated with a number of 

intrinsic and extrinsic factors (Werneburg 2012), which need to be identified and quantified in the future. 

Homology, function, and diversity of turtle neck musculature is hardly understood and require comprehensive 

research programs in the future. As such, the hypothesis on neck muscle influence for shaping the turtle skull 

(Werneburg 2015) has to be understood only as a first attempt to incorporate this type of data. Models modified 

after Werneburg et al. (2015a, b). 

Werneburg et al. (2015a) tested the influence of neck mobility for shaping the 

temporal skull region in turtles and suggested that ventral flexing of the neck and the 

cryptodiran mode of retraction significantly influence the size of the posterodorsal 

emargination. As Werneburg (2013a) highlighted, jaw muscle attachments are highly 

dependent on bone arrangement, the indirect influence of neck mobility also for jaw muscle 

anatomy may have been underestimated. Werneburg (2015) has also shown that the 

expansion of posterodorsal and anteroventral emarginations are significantly and highly 

correlated to each other. When one emargination expands (e.g., influenced by neck mobility), 

the other shows a correlated change in size. The broad tendinous insertion of dorsal neck 

muscles to the posterodorsal region of the skull enables a better force distribution when 

moving the neck. Expanded supraoccipital and squamosal crests also provide broader 

attachment sites for the neck musculature. These observations led Werneburg (2015) to 

formulate a hypothesis for the origin of the anapsid skull in turtles (Fig. 2.4). 

Following this hypothesis, the stepwise emergence of the turtle shell (Li et al. 2008; 

Schoch and Sues 2015) was highly correlated with the increased mobility of the turtle neck. 
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The forces related to neck movement—via strong dorsal and ventral neck muscles—greatly 

influenced the shaping of the turtle skull. If the turtle ancestor actually had a diapsid 

morphology of the skull (Fig. 2.4), temporal fenestrae could have closed in response to the 

increased pulling force of the neck muscles, resulting in an anapsid condition. The skulls of 

Pappochelys rosinae (Schoch and Sues 2015), with its small dorsal fenestra, and the skull of 

Eunotosaurus africanus (Bever et al. 2015), in which only the ventral fenestra (which is 

ventrally open) and perhaps the dorsal fenestrae are present, could illustrate this stepwise 

closure of the skull opening. Later, among crown turtles (Testudines), necks became 

increasingly elongated (Williams 1950; Werneburg et al. 2015b) thereby enabling complex 

neck retractions. These further stressed the turtle skull resulting in the formation of the 

posterodorsal emargination, which distributed neck forces evenly in the skull. The 

anteroventral excavation developed as a counterpart to the posterodorsal one, enabling the 

integrity of the temporal skull region in a bridge-like construction. It is worth mentioning 

that the dorsal neck muscles in many pleurodires (related to horizontal neck retraction) insert 

near to the ear capsule, more laterally to the back of the skull than in cryptodires and other 

sauropsids. This means a less powerful force distribution to the dermal coverage of the 

adductor chamber and a less excavated posterodorsal emargination in many forms. In most 

pleurodires the anteroventral emargination is more prominent than in cryptodires. This might 

be related to the more flattened skull of many pleurodires, such as some Chelidae. 

2.4. General morphology of the cranial musculature in turtles 

Several authors in the last two centuries dissected and described cranial musculature 

in turtles. Some of them focused on specific taxa (Bojanus 1819; Ogushi 1913a), whereas 

others applied a comparative approach to understand the general structure and diversity of 

this part of the turtle body (Hoffmann 1890; Lakjer 1926; Poglayen-Neuwall 1953; 

Schumacher 1954b, a, 1954/55, 1956, 1973; Kilias 1957). However, those who took a 

comparative approach concluded that although turtles show a variety of diets and behaviors 

related to their diverse habitats (Ernst & Barbour 1992), the cranial muscles, and especially 

the jaw muscles, are highly conserved (e.g., Iordansky 1996). Although this is accurate in a 

general view and the observed variation is usually related to relative sizes of muscles and 



 Patterns of morphological evolution in the skull of turtles – Chapter 2 

 

 
43 

 

tendinous structures, some portions or entire muscles may be present or absent in different 

taxa (Werneburg 2011), resulting in more profound differences. 

 Muscles associated with the skull of turtles follow the general pattern of innervation 

by cranial nerves in gnathostomes (Edgeworth 1935; Diogo et al. 2008). Cranial nerves III–

XII are responsible for the movements of the muscles in the testudine head (Werneburg 

2011). Nn. oculomotorius (III), trochlearis (IV), and abducens (VI) innervate the muscles 

related to eye and eyelid movement, while the jaw depressor, superficial neck musculature, 

and some muscles related to the ear capsule are innervated by n. facialis (VII). The muscles 

related to the branchiovisceral region and to the larynx-related musculature are innervated by 

the glossopharyngeus (IX), vagus (X), and accessorius (XI) nerves, whereas n. hypoglossus 

(XII) innervates the musculature related to the hyoid apparatus, including the tongue. Some 

of those posterior nerves also innervate the neck musculature, although this region is mainly 

innervated by spinal nerves (Werneburg 2011). Finally, the most prominent muscle group in 

the turtle head, the jaw adductor musculature, is innervated by the trigeminal nerve (V) and 

represents the most-studied muscular complex in turtles (and in reptiles in general; Lakjer 

1926; Edgeworth 1935; Schumacher 1973; Diogo & Abdala 2010; Werneburg 2013a). This 

is mainly due to its direct relation to dietary preferences and feeding mechanisms 

(Schumacher 1973) and, putatively, to their relation to dermatocranial bone reductions 

(fenestrae and emarginations; see Werneburg 2012, 2013b). 

 In addition to the seven external eye muscles found in all tetrapods (two mm. obliqui, 

four mm. recti, and perhaps m. retractor bulbi), several others were described in reptiles and 

birds (Sauropsida) (Underwood 1970; Løvtrup 1985; Werneburg 2011). Their presence and 

variation among different sauropsid groups is in most cases related to the presence, extent, 

and mobility of the greatly developed “third eyelid”, the membrana nictitans (Werneburg 

2011). One of those, the m. pyramidalis (which is innervated by the n. abducens [VI]) 

(Edgeworth 1935; Werneburg 2011), has its origin on the medial surface of the eye bulbus 

and inserts via one tendon to the membrana nictitans and via a second tendon to the lower 

eyelid (Løvtrup 1985; Werneburg 2011). This muscle is of special interest because it is only 

found in crocodiles and turtles and, as such, represents a potential synapomorphy of a 

possible clade containing those taxa (Thomson 1932; Underwood 1970; Schumacher 1972; 
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Løvtrup 1985; Rieppel 2000, 2004; Eger 2006). However, extrinsic musculature of the eye 

is not well documented in most reptilian taxa, and greater taxon sampling and ontogenetic 

studies will be useful to clarify the homologies of these muscular units (Werneburg 2011; 

see also there for basic muscle terminology). A m. levator bulbi, innervated by the trigeminal 

nerve (V), is only found in rare cases and is reduced during ontogeny (see Werneburg 2011 

for discussion). In trionychian turtles, which have a moveable nose, particular nose muscles, 

also innervated by n. trigeminus (V), are present. 

Three main units are generally recognized in the jaw adductor musculature (the 

external, internal, and posterior muscles) and are established according to their relation to the 

n. trigeminus (V) branches (Luther 1914; Lakjer 1926; Schumacher 1973; Werneburg 2011). 

Among those, the external adductors are the strongest and most prominent in turtles, as in 

squamates (Rieppel 1980, 1984) and contrary to crocodiles (Schumacher 1973), and may be 

subdivided at least in three portions (Lakjer 1926): pars profundus, originating on the lateral 

wall of the braincase and on the supraoccipital crest; pars superficialis, lateral to the previous 

and originating on the lateral wall of the skull and squamosal crest; and pars medialis, more 

anteriorly located than the other portions, originating mainly on the quadrate surface 

anteriorly on the otic chamber (Werneburg 2011). These portions may not be clearly 

distinguishable in some turtles, and some variation of the relative size and shape of parts may 

occur (e.g., the pars profundus is slightly reduced in Dermochelys coriacea; Lakjer 1926; 

Schumacher 1972; Poglayen-Neuwall 1966). The general pattern is that the three portions 

fuse together anteriorly and insert to a large and strong tendon that attaches to the coronar 

process of the lower jaw, the so-called coronar aponeurosis (also called bodenaponeurose or 

central tendon; Schumacher 1973; Rieppel 1990; Werneburg 2011). This tendon is very 

important, not only because of its main function in transferring the main contraction forces 

of these muscles to execute the adductor movements in the lower jaw (Iordansky 1996), but 

also because in its ventral face the cartilage/os transiliens of the trochlear mechanism 

develops (Schumacher 1973). The position of this structure varies with the different trochlear 

processes, being on the dorsal and anterior surfaces of the prootic and quadrate in cryptodires 

and on the lateral pterygoid process (the processus trochlearis pterygoidei; Gaffney 1979) in 

pleurodires (Schumacher 1973; Werneburg 2011). It develops as a sesamoid cartilage (or 
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bone in Gopherus polyphemus; Ray 1959), meaning it likely arises as a result of mechanical 

stress (Ray 1959; Bramble 1974; Iordansky 1994) across this structure. 

An additional jaw adductor muscle, the m. zygomaticomandibularis, may be found in 

the clade Trionychia which includes soft-shelled turtles (Trionychidae) and the pig-nosed 

turtle (Carettochelys insculpta) (Ogushi 1913a; George & Shah 1955; Dalrymple 1975; 

Werneburg 2011). Analogously to the masseter muscle of mammals, this muscle originates 

ventrally and laterally on the jugal and the quadratojugal on the “zygomatic bar” and inserts 

laterally to the lower jaw, near the insertion of the external adductors (Werneburg 2011, 

2013a, b). Based on its position relative to the other external adductors, some authors have 

described this unit as part of the pars superficialis of the external musculature (Lakjer 1926; 

Poglayen-Neuwall 1953). Indeed, this muscle in trionychids is comparable to the postorbital 

head of the pars superficialis found in some turtles with a stronger postorbital/temporal 

region, such as snapping (Chelydridae) and sea turtles (Chelonioidea) (Rieppel 1990; 

Werneburg 2011; Jones et al. 2012). In the chelonioid Caretta caretta, this head can be 

almost completely separated from the rest of the pars superficialis (Jones et al. 2012), 

becoming very similar to the topology of m. zygomaticomandibularis in trionychids. 

However, whether these results of convergent evolution or actually represent homologous 

structures remains unresolved, and comparative anatomical and developmental studies 

should be conducted in order to test this hypothesis (Werneburg 2011). 

The internal and posterior adductors form a fan-shaped arrangement of muscles 

spanning in the lower temporal fossa of turtles, below the external adductor layer 

(Schumacher 1973). The internal adductors, located anteriorly to the posterior adductor in 

this fan, may be subdivided into two main portions, the partes pseudotemporalis and 

pterygoideus. The latter is the anterior-most portion and originates on the dorsal, lateral, and 

ventral surfaces of the pterygoid bone, reaching the palatine near the orbit cavity and the 

parietal on the medial wall of the temporal fossa (Werneburg 2011). The fibers of pars 

pterygoideus insert on the posteromedial surface of the lower jaw near the jaw joint 

(Iordansky 2010) either directly or by the subarticular (internal) tendon (Schumacher 1973) 

and/or the pterygoidal aponeuroses (Schumacher 1973; Werneburg 2011). 
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The pars pseudotemporalis is the central portion of the muscle series (Lakjer 1926; 

Schumacher 1973; Rieppel 1990) and originates mainly on the descending process of the 

parietal bone. It inserts directly or via the subarticular aponeurosis on the medial surface of 

the lower jaw anteriorly to the insertion of pars pterygoideus (Werneburg 2011). A third and 

smaller part of the internal adductors, the pars intramandibularis, can be found in several 

turtles. It originates from a tendon that connects it to the pars pseudotemporalis, the so-called 

Zwischensehne (Poglayen-Neuwall 1953; Schumacher 1973; Iordansky 1994, 1996) and in 

this case the latter does not attach to the lower jaw, but to the zwischensehne. The pars 

intramandibularis inserts laterally to Meckel’s cartilage, inside fossa primordialis of the 

lower jaw (Werneburg 2011). 

The pars pseudotemporalis may be closely associated to the posterior adductor in 

some turtles (Werneburg 2011), which led some authors to consider it as a portion of m. 

adductor mandibulae posterior (Schumacher 1954a, 1954/55; Hacker 1954). However, the 

innervation patterns of both structures and their development are completely different 

(Poglayen-Neuwall 1953; Poglayen-Neuwall 1954; Poglayen-Neuwall 1966; Werneburg 

2011) which suggest they are of different identity. Finally, the posterior adductor originates 

mainly on the anterior surface of the quadrate medially to m. adductor mandibulae externus 

pars medialis and inserts directly, with its own tendon, or via the subarticular aponeurosis, 

on the posteromedial surface of the lower jaw, near the insertion sites of the internal 

adductors (Werneburg 2011). 

2.5. Development of jaw musculature 

The adductor musculature in turtles starts to develop as a single homogeneous cell 

aggregation (Fig. 2.5) that surrounds the mandibular (V3) branch of the trigeminal nerve. 

Although there is no sign of compartmentalization in this aggregate, the portion lateral to the 

nerve branch will develop into the external adductor and the one medial to it into the internal 

and posterior adductors (Rieppel 1990; Tvarožková 2006). At early stages this cluster of cells 

is restricted anteroposteriorly, the medial portion of which extends anteriorly to the pterygoid 

process of the palatoquadrate (i.e., known only for the cryptodire Chelydra serpentina), 

posteriorly to the quadrate cartilage, dorsally to a level below the Gasserian ganglion (where 
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the trigeminal foramen will be formed), and posteroventrally to Meckel’s cartilage (Rieppel 

1990; Tvarožková 2006). Contrary to the development in squamates (e.g., Podarcis; Rieppel 

1987b), the portion that will differentiate into the external adductors begins to extend 

posterodorsally before the posterodorsal extension of the prospective internal adductors 

(Rieppel 1990). 

Subsequently (at stage 15; Rieppel 1990), both rudiments (internal and external) 

begin to differentiate and become compartmentalized (Fig. 2.5). For the external adductors 

the differentiation of the coronar aponeurosis (Lakjer 1926; Schumacher 1973) subdivides 

their anlage into medial (pars profundus) and lateral (partes superficialis and medialis) 

portions. These rudiments continue to extend posterodorsally across the paroccipital process 

of the chondrocranium until they finally reach their origin sites, when the parietal, postorbital, 

and jugal ossifications are already expanded (Rieppel 1990; Tvarožková 2006). The medial 

portion, the prospective pars profundus, follows the posterior elongation of the supraoccipital 

crest, attaching to it. The lateral portion also extends posteriorly and, although some fibers 

become attached to the quadrate and others continue their posterior elongation; the superficial 

and medial parts will become compartmentalized only later during ontogeny (Rieppel 1990). 

The internal adductors, distributed between the mandibular branch of the trigeminal 

nerve (laterally) and the ascending process of the palatoquadrate (medially) (as typical for all 

reptiles; Lakjer 1926; Edgeworth 1935), start to become compartmentalized by the 

development of an anterior ventromedial projection, which will become the anlage of the 

partes pterygoidei (Rieppel 1990). This portion grows first posteroventrally to the lower jaw 

and then anteriorly to the dorsal and ventral surfaces of the developing pterygoid 

(Tvarožková 2006). Another projection extends dorsally along the lateral flange of the 

parietal and represents the prospective pars pseudotemporalis. In contrast to squamates 

(Rieppel 1987b), both parts do not become fully separated and share during all development 

a horizontal tendinous structure (the anlage of the subarticular aponeurosis; Werneburg 

2011), that divides the partes pterygoidei ventrally and the pars pseudotemporalis dorsally 

(Rieppel 1990). However, distally they become well separated, with the pterygoid portions 

elongating anteromedially and the pseudotemporalis dorsally (Fig. 2.5). The former also 

extend posteroventrally to attach to the lower jaw, near the jaw joint, and the 
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pseudotemporalis elongates ventrally to reach the Meckel’s cartilage (by the 

intramandibularis muscle in taxa that possess it; Rieppel 1990). 

 

Figure 2.5. Schematic drawings (A–C) representing three stages of development of the muscles in Chelydra 

serpentina, based on Rieppel (1990), and histological slices with Azan-staining after Haidenhain (Mulisch & 

Welsch 2015) of Emydura subglobosa embryos (D–F) in different stages (D, Y15; E, Y17; F, Y18; Wolfgang 

Maier collection Tübingen; Y = Yntema staging system, Yntema 1968). Development starts from an 

indistinguishable muscle cell mass (mcm) around the mandibular branch (V3) of the trigeminal nerve anlage 

(n.tg). It extends from near the Gasserian ganglion (gg) dorsally and to the Meckel’s cartilage (mc) ventrally 

(A, D). The cell aggregate progressively differentiates (B, E, F) into two portions lateral and medial to the V3, 

which will become the external (m.ex) and internal (m.in) muscles, respectively. The latter also becomes 

progressively projected anteriorly and dorsally, which will differentiate into the pterygoid portions and the 

pseudotemporalis/posterior muscle anlage (C). Note how the initial cell mass is connected to the ventrally 

located intermandibularis muscle (31) in C. serpentina (A) and how they become distinct latter during 

development (B–C). Additional abbreviations: cor.apo, coronar aponeurosis; enc, encephalon; eyc, eye 

capsule; oc, otic capsule; or.c, oral cavity; pp, palatal process; pt, pterygoid; q, quadrate cartilage; V1, V2, 

ophthalmic and maxillary branches of trigeminal nerve, respectively. 
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Two muscles, the posterior adductor and the intramandibularis, feature noteworthy 

ontogenies in turtles relative to to other reptiles. The former develops not from its own 

rudiment, but rather from the m. internus anlage in Testudines, after the 

compartmentalization of the pterygoideus rudiment (Rieppel 1990; Tvarožková 2006). The 

anlage of the internal muscles, posterior to the pterygoideus rudiment, in its dorsal expansion, 

begins to surround the exit of the maxillary and mandibular branches from the Gasserian 

ganglion until it is finally pierced by those branches. The portion of this rudiment anterior to 

the trigeminal mandibular branch corresponds to the pseudotemporalis anlage, while the 

posterior adductor develops from the posterodorsal portion behind the mandibular branch 

(Rieppel 1990). This corresponds to the topological criteria proposed by Lakjer (1926) to 

identify the adductor muscle portions. In contrast, in lepidosaurs (Rieppel 1987b) the 

posterior adductor differentiates from the external anlage and becomes topologically 

equivalent to the posterior muscle of turtles. While most authors consider those as posterior 

adductors based on its adult topology, origin, and insertion sites (Lakjer 1926; Poglayen-

Neuwall 1953; Schumacher 1973; Werneburg 2011), from a developmental perspective, it 

seems that they are analogous, not homologous (Rieppel 1990). 

The intramandibularis, in contrast, starts its development in Chelydra serpentina 

(Rieppel 1990; Tvarožková 2006) in the ventral part of the same homogeneous cell 

aggregation (Fig. 2.5), deep to the mandibular branch of the trigeminal nerve, in continuity 

to another bunch of cells ventromedially to the Meckel’s cartilage. The latter corresponds to 

the intermandibularis rudiment that will expand between the two rami of the lower jaws 

(Rieppel 1990). It becomes gradually separated from the intramandibularis anlage, which 

attaches dorsally to the Meckel’s cartilage and remains continuous to the dorsal 

pseudotemporalis rudiment. This close association to the pseudotemporalis and, earlier, to 

the intermandibularis, is also found in crocodiles (Schumacher 1973; Rieppel 1990), but 

differs from the development of the intramandibularis in lizards. In the latter group, this 

muscle develops closer to the Meckel’s cartilage as an anterior extension of the posterior 

adductor, rather than the internal adductor anlage (Rieppel 1987). As for the posterior 

adductors, the intramandibularis of turtles and squamates seem to be nonhomologous 

structures from a developmental point of view, but evidence suggests that this portion is also 
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not related to the crocodilian intramandibularis, since only few taxa nested deep within 

Cryptodira develop it (Werneburg 2011, 2013a). 

2.6. Functional anatomy of jaw muscles and feeding 

The movements related to feeding in turtles are generally executed by a set of motions 

by the jaws, neck, and forelimbs (Bramble 1974; Dalrymple 1977; Iordansky 1987, 1996). 

Some variation can be observed among turtles feeding in terrestrial environments or under 

water, but the generalized behavior includes the jaws closing to hold the prey and the 

forelimbs and neck moving to tear it in smaller pieces that can be swallowed (Iordansky 

1996). The feeding behavior of extant aquatic turtles involves movements of the head 

towards the prey and a suction feeding mechanism (Schumacher 1973; Lemell et al. 2002), 

followed by the closure of the jaw holding the prey (Natchev et al. 2015). Some aquatic 

turtles have the suction mechanism extremely well developed, swallowing the food item 

without grabbing it with their jaws (e.g., Chelus fimbriatus and Apalone spinifera; Lemell et 

al. 2002; Anderson 2009), but most turtles use only a weak suction flow and, hence, holding 

the prey with the closure of jaws is an important part of the feeding behavior (Natchev et al. 

2015). 

Although stem turtles most probably occupied terrestrial habitats, the ancestral 

testudine was certainly aquatic (Joyce 2015), and the mode of feeding seen in extant 

terrestrial turtles (Testudinoidea) evolved independently several times from aquatic ancestors 

(Summers et al. 1998; Natchev et al. 2009). Most testudinoids (i.e., Emydidae and 

Geoemydidae) use their jaws to grab food items (known as “jaw prehension”) on land or in 

water (Bels et al. 1997; Bels et al. 2008; Summers et al. 1998; Heiss et al. 2008; Natchev et 

al. 2009; Stayton 2011). However, the exclusive terrestrial tortoises (Testudinidae) 

developed a different way to grab food items in which they first touch the food with their 

tongue (“tongue prehension”), and then they bring them to the mouth (Wochesländer et al. 

1999; Bels et al. 2008). Natchev et al. (2015) proposed a four-stage scenario in which this 

terrestrial feeding behavior might have originated from an aquatic ancestor. First, amphibious 

but predominantly aquatic turtles might have explored terrestrial environments and taken 

food items with their jaws, but would have to drag the food into the water to swallow it (as 
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seen in some emydids; Weisgram 1985; Stayton 2011). In the second step, these turtles might 

have still been able to use hydrodynamic mechanisms to swallow food underwater but might 

also use their tongue to swallow food items, allowing complete intake of food on land (a 

behavior that has been documented for the geoemydid Cuora; Heiss et al. 2008; Natchev et 

al. 2009; Natchev et al. 2010). The ability to swallow underwater would have been lost during 

the third stage (seen in Manouria emys; Natchev et al. 2015). Finally, tortoises started to use 

their tongues to grasp food items on land (Weisgram 1985; Wochesländer et al. 1999; Bels 

et al. 2008). How stem turtles fed is still a controversial issue, but the apparent completely 

terrestrial behavior (Joyce et al. 2004; Scheyer and Sander 2007; Joyce 2015; Lautenschlager 

et al. 2018) and the presence of palatal teeth (Gaffney et al. 1987; Gaffney 1990; Joyce et al. 

2016) suggest they held and processed food items with their jaws (Matsumoto & Evans 

2017). 

Thus, the mechanisms of closure of the lower jaw are extremely important for feeding 

behavior in turtles, and bite force or speed of closure may vary, depending on diet. The main 

force component of adduction of the lower jaw is generated by the large external adductors 

(Schumacher 1973; Iordansky 1996). Although originating posteriorly (mainly on the walls 

of the temporal fossa, supraoccipital and squamosal crests) and running anteriorly in a 

horizontal plane, this large muscle mass is redirected by the trochlear mechanism and inserts 

almost vertically on the coronoid process, providing an adduction as well as a retraction 

component to the lower jaw (Iordansky 1996). This force vector is compensated by the 

internal pterygoid muscles which, originating anteriorly mostly on the pterygoid and 

inserting near to the jaw joint produce a protraction component (Schumacher 1973; Iordansky 

1996, 2010). Finally, the internal pseudotemporalis and the posterior adductor run almost 

entirely vertically relative to their insertion point and generate more adductive forces. This 

results in a strong adductor vector during lower jaw closure (Schumacher 1973; Iordansky 

1996). It is important to highlight that these force vectors were hypothesized simply based 

on the topological position of the different muscular units in some turtle taxa (e.g., Iordansky 

1996). A comparative approach using biomechanical models to infer direction and strength 

of muscle vectors, considering more taxa with different muscle arrangements, would provide 

a more detailed view of the functions developed by the adductor musculature in turtles 

(Chapter 5 of this thesis). 
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The size and shape of the adductor muscles are greatly affected by the shape of the 

skull, which can expand or limit the relative areas of origin and insertion of those muscles. 

Bite force (Herrel et al. 2002) and skull shape morphometric analyses of durophagous (i.e., 

eaters of hard food items) turtles (Claude et al. 2004) found that higher skulls tend to produce 

more powerful bites. At the same time, aquatic turtles feeding on fast and elusive preys 

usually rely on powerful suction mechanisms, produced mostly by an increase in buccal 

volume associated with movements of the hyoid apparatus (Lemell et al. 2002; Lemell et al. 

2010) and a rapid lowering of the floor of the buccal cavity. Increasing any dimension of the 

skull can generate larger buccal volumes, but increasing height can compromise the ability 

to withdraw the head inside the shell. Considering this, Herrel et al. (2002) proposed that 

specialized suction feeding turtles, such as Chelus fimbriatus (Lemell et al. 2002) and 

Apalone spinifera (Pritchard 1984), have relatively flattened skulls with expanded posterior 

and lateral regions, permitting those turtles to still maintain their neck retraction mechanism 

but compromising their bite performance (Herrel et al. 2002). Nevertheless, some taxa, such 

as Phrynops geoffroanus and Pelusios castaneus, seem to combine suction feeding with a 

strong bite force (Lemell & Weisgram 1997; Herrel et al. 2002) even with relatively flat 

skulls. Thus, it seems likely that, aside from general skull proportions, different factors (e.g., 

different fiber types, differences between relative size of the internal and external muscles) 

also affect the force and speed of contraction of the jaw adductors in turtles. 

2.7. Evolution of cranial musculature 

Approximately 40 of the 356 known species of extant turtles (Rhodin et al. 2017) 

have been dissected and had their jaw musculature described, including at least one 

representative of each main lineage (Fig. 2.2) of Testudines (Werneburg 2011). These data 

allowed for a comprehensive study that considers the evolution of this region of the turtle 

head, such as that of Werneburg (2013a). In that study, the variation of the jaw muscles 

observed in several taxa was included into a taxon-character matrix to investigate the general 

trends during the evolution of turtles and ancestral state reconstructions for jaw muscle 

anatomy in the last common ancestor of Pleurodira, Cryptodira, and Testudines were 

provided. For the present chapter, 3-D models were created (see details on Figures captions) 
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for the skulls and jaw muscles of a cryptodiran and a pleurodiran turtle, Pelodiscus sinensis 

(Fig. 2.6) and Pelomedusa subrufa (Fig. 2.7), respectively, to compare topology, origin, and 

insertion of their jaw muscles to the reconstructed ancestral conditions of Cryptodira and 

Pleurodira. Using the predicted states for the Testudines crown-node, I also inferred and 

plotted the jaw musculature on a 3D model of the skull of Proganochelys quenstedti (Fig. 

2.8) (scan data from Werneburg et al. 2015a). 

As suggested by Werneburg (2013a), modelling reconstructed states for Testudines 

onto a stem turtle, such as Pr. quenstedti, should be interpreted tentatively because those 

states are inferred for a different node on the turtle tree and we usually cannot directly access 

soft tissue data in extinct taxa. However, this represents a first step towards a better 

understanding of the adductor chamber in stem and ancestral turtles (Pr. quenstedti, 

Cryptodira and Pleurodira ancestors) and may be useful to infer general trends that occurred 

during the evolution of these lineages. Careful analyses of bone surfaces in the adductor 

chamber and on the lower jaw (e.g., Araújo & Polcyn 2013, Witzmann & Werneburg 2017) 

and internal bone structures, such as Sharpey’s fibers (e.g., Scheyer & Sander 2007), to 

identify attachment sites could provide direct evidence about the arrangement of the jaw 

musculature in stem turtles. That being said, I describe below first the jaw musculature in 

cryptodires and pleurodires, considering the changes between the ancestral condition and that 

of the chosen extant taxa, and then in Pr. quenstedti, commenting on the general 

transformations of the jaw musculature from stem to crown turtles. 

2.7.1. Jaw muscles in Cryptodira 

The extant cryptodire chosen for jaw muscle visualization, Pelod. sinensis (Fig. 2.6), 

belongs to Trionychia, a clade that forms the sister taxon to all other cryptodires based on 

molecular data (Shaffer 2009; Guillon et al. 2012; Crawford et al. 2015). In many regards, 

Trionychia show plesiomorphic skull conditions, however, a list of unique characters also 

exists (Vitek & Joyce 2015). Their skulls possess long supraoccipital and squamosal crests 

and a broad adductor chamber that affect not only the condition of the external adductors, 

but also that of the internal and posterior adductors. In Pelod. sinensis, one of the best 

described trionychid species regarding its jaw muscles (Ogushi 1911, 1913a, b, 1914), the 

partes profundus and superficialis of the external adductor have extended their origins far 
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posteriorly due to its elongated crests, but also to other bones when compared to the 

reconstructed ancestral cryptodiran condition. The pars profundus extends its origin to the 

postorbital, opisthotic, and prootic beyond the ancestral cryptodiran origins on the parietal 

and supraoccipital, and the pars superficialis in Pelod. sinensis originates on the 

quadratojugal, jugal, and opisthotic (Ogushi 1913a; Lakjer 1926; George & Shah 1955), in 

addition to the squamosal and quadrate as in the ancestral cryptodire (Werneburg 2013a). 

Furthermore, the origin of both portions is strengthened by several tendinous sheets, 

extending from the coronar aponeurosis to the supraoccipital and squamosal crests of 

trionychids (Schumacher 1956; Werneburg 2011). The pars medialis (Fig. 2.6A′), which lies 

ventral to those parts and originates more anteriorly than the other portions of the external 

adductors (Werneburg 2013a), remained attached to the anterior surfaces of the quadrate and 

squamosal in the ancestral cryptodire, but in Pelod. sinensis it extends its origin 

posteroventrally near to the jaw joint on the quadrate, below the tympanic cavity (Ogushi 

1913a; Werneburg 2011). All three portions fuse distally during their course to the insertion 

sites on the dorsal and lateral aspects of the lower jaw in all cryptodires (Werneburg 2011). 

The three portions overlay a strong tendinous bundle, the coronar aponeurosis, which 

inserts to the coronoid process on the lower jaw of all turtles (Werneburg 2011). Although 

all cryptodires possess a trochlear articulation on the external surface of the otic chamber 

(Schumacher 1973; Gaffney 1975), there is variation among the different groups on the 

components of this mechanism (i.e., the surface of the bones, the size and shape of the tendon 

structure, and the type of gliding joint or surface developed between them). In Pelod. 

sinensis, the quadrate and prootic form an anterodorsal projection onto the lower temporal 

fossa, pushing the trochlear articulation to a position right above the high coronoid process 

of the lower jaw where the coronar aponeurosis inserts. As in the ancestral cryptodiran 

condition, several fibers surrounding the coronar aponeurosis also insert directly to the dorsal 

and lateral surfaces of the lower jaw. In the ancestral cryptodire, the direct fibers were 

restricted to the coronoid bone, but in Pelod. sinensis they expand anteriorly and posteriorly 

to the surangular and dentary (Ogushi 1913a; Werneburg 2013a). The m. 

zygomaticomandibularis, found only in Trionychia and not in the ancestral cryptodire 

(Werneburg 2011), originates with two heads lateral to the external adductors in Pelod. 

sinensis (Ogushi 1913a). The anterior head originates anteriorly on the medial and ventral 
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surfaces of the jugal and quadratojugal in the postorbital bridge (Werneburg 2013a), and the 

posterior head covers it, attaching to the ventral and lateral aspects of this bone bridge but 

also on the temporal fascia and the anterolateral surface of the quadrate. The heads run 

ventrad and fuse on their way to insert broadly, partly via a tendon but mostly directly into a 

lateral depression of the dentary and surangular (Ogushi 1913a; Werneburg 2011, 2013a). 

 

Figure 2.6. Digital three-dimensional reconstruction of the jaw adductor and depressor musculature of the 

cryptodire Pelodiscus sinensis based on Ogushi (1913), Schumacher (1954), and Werneburg (2011, 2013a) 

made with CAD software Rhinoceros 3D (Robert McNeel & Associates, 2003). Skull with solid (A, B) and 

transparent (A'–A''', B'–B'', C–C''') textures in left lateral view (left column), dorsal (middle column), and 

ventral (right column) view. (A) All jaw adductor and depressor muscles plotted. (A') M. 

zygomaticomandibularis (22; numbers following the proposal of Werneburg 2011) removed. (A'') 22, all 



 Patterns of morphological evolution in the skull of turtles – Chapter 2 

 

 
56 

 

external adductor (m. add. mandibulae ext.) portions, and m. depressor mandibulae (man.) (45) removed. (A''') 

22, all ext. add. portions, 45, m. add. man. internus (int.) pars pseudotemporalis (23), and m. add. man. posterior 

(29) removed. (B) Dorsal view with all adductor and depressor muscles plotted. (B') m. add. man. ext. pars 

profundus (19) and superficialis (21) removed. (B'') All external adductor portions, 22, 23, 29, and 45 removed. 

(C) Ventral view with all adductor and depressor muscles plotted. (C') 22 and 45 removed. (C'') 22, 45, and 

all external adductor portions removed. (C''') 22, 23, 29, 45, and all external adductor portions removed. 

Additional abbreviations: 17, m. add. man. ext. pars medialis; 26, m. add. man. int. pars pterygoideus dorsalis; 

27, m. add. man. int. pars pterygoideus posterior; 28, m. add. man. int. pars pterygoideus ventralis; ot.ch, otic 

chamber; pd.em, posterodorsal emargination; po.br, postorbital bridge; so.cr, supraoccipital crest; sq.cr, 

squamosal crest. 

The arrangement of the internal adductors (Fig. 2.6A′′, A′′′) of Pelod. sinensis is 

influenced by the broad horizontal plate of the pterygoid that extends posteriorly to the 

quadrate and by the anterodorsal projection of the prootic and quadrate described above. The 

fibers of the pterygoid muscle, as in the ancestral cryptodire, run posteriorly from their origin 

on the pterygoid and palatine, mostly above the horizontal plate of the pterygoid (Werneburg 

2011). The enlarged plate of trionychids supports broader pterygoid muscles as well, in 

contrast to that found in other cryptodires, such as the marine turtle Lepidochelys kempii 

(Jones et al. 2012) and the snapping turtle Chelydra serpentina (Rieppel 1990). In Pelod. 

sinensis these are more robust, and the dorsalis portion reaches also the descending process 

of the parietal (Fig. 2.6B′′). The pars pseudotemporalis also expands its origin anteriorly to 

reach the posteroventral face of the frontal (Ogushi 1913a; Werneburg 2013a), differing from 

the ancestral cryptodiran condition, in which this muscle portion originated only on the 

descending process of the parietal. As in all turtles, the pars pseudotemporalis is very closely 

related to the posterior adductor (Rieppel 1990), which originates posteriorly to the former 

(Fig. 2.6A′′) on the quadrate and prootic in the reconstructed ancestral cryptodire and in 

Pelod. sinensis. 

All the internal adductors insert to the medial aspect of the posterior half of the lower 

jaw (Fig. 2.6C′′), in the region between the coronoid process and the retroarticular process 

near the jaw joint, mainly via tendinous structures (Schumacher 1973; Werneburg 2011). The 

insertions in Pelod. sinensis and in the ancestral cryptodire do not differ much. The pars 

pseudotemporalis runs ventrad and inserts entirely to the subarticular aponeurosis, which 

inserts to the prearticular, surangular, and articular, and to which some fibers of the pterygoid 

portions and of the posterior adductor also insert. Most fibers of the posterior muscle, 

however, insert directly to the medial surfaces of the articular and prearticular. The pterygoid 

muscles insert on a broader area (Fig. 2.6A′′) ranging from the coronoid to the articular on 
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the retroarticular process (pars pterygoideus posterior) via the subarticular aponeurosis and 

direct fibers. Although seemingly absent in trionychids (Werneburg 2013a), in several other 

cryptodires and in the ancestral cryptodiran condition, the pterygoid muscles develop their 

own tendon (pterygoid aponeurosis = lamina anterior of the subarticular aponeurosis of 

Schumacher 1973), to which several fibers insert (Werneburg 2011, 2013a). Lastly, the m. 

depressor mandibulae has almost the same condition in Pelod. sinensis and in the ancestral 

cryptodire, originating on the ventral and lateral surfaces of the squamosal, running ventrad, 

and inserting to the posterior and ventral faces of the articular on the retroarticular process 

via the retroarticular tendon (Werneburg 2013a). In Pelod. sinensis, however, it originates 

with two heads that fuse distally, and may insert to the surangular also (Ogushi 1913a). 

2.7.2. Jaw muscles in Pleurodira 

Among the three major side-necked turtle lineages, Chelidae, Podocnemididae, and 

Pelomedusidae (Gaffney & Meylan 1988), the skull of the latter is relatively similar (in many 

general aspects) to that of some cryptodire turtles (Fig. 2.7). It is dorsoventrally flattened, but 

not as much as in some chelids (e.g., Chelodina oblonga, Gaffney 1977). It has large 

posterodorsal and shallow-to-moderate anteroventral emarginations, and its supraoccipital 

and squamosal crests are posteriorly elongated (but not as extremely as in trionychids). As 

such, the skull of pelomedusids may be morphologically closer to that of the pleurodiran 

ancestors than the skulls of Chelidae and Podocnemididae. Indeed, by comparing the 

condition of Pelomedusa subrufa (Schumacher 1954b) to that of the reconstructed ancestral 

states for the jaw musculature of the Pleurodira node we find only some minor variations 

(Werneburg 2013a). 

The external adductors in the ancestral pleurodires originated (Werneburg 2013a) on 

the parietal and supraoccipital, extending posteriorly to cover the crista supraoccipitalis (pars 

profundus), on the medial faces of the quadrate and squamosal, spanning to the lateral wall 

of the upper temporal fossa (pars superficialis), and to the anterior face of the quadrate (pars 

medialis). Their fibers fuse together soon after their origin and inserts to the coronar 

aponeurosis, which runs anteroventrad underneath the muscle layers and bends over the 

processus trochlearis pterygoidei where it develops a transiliens cartilage and forms a gliding 

surface on the dorsal aspect of that bone. Most fibers insert via the coronar aponeurosis on 
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the dorsal and lateral aspects of the coronoid process, but some fibers of the partes profundus 

and superficialis insert directly to the coronoid, whereas some fibers of the pars medialis pass 

directly to the dorsal and lateral surfaces of the surangular, posteriorly to the other portions. 

In Pelom. subrufa, the only modifications from this morphology are the anterior expansion 

of the superficialis origin also to the quadratojugal, postorbital, and parietal and its insertion 

more posteriorly, with some fibers also reaching the surangular (Schumacher 1954b; 

Iordansky 1996). 

 

Figure 2.7. Digital three-dimensional reconstruction of the jaw adductor and depressor musculature of 

Pelomedusa subrufa based on Schumacher (1954b; 1954/55) and Werneburg (2011, 2013a) made with CAD 

software Rhinoceros 3D (Robert McNeel & Associates, 2003). Skull with solid (A) and transparent (A'–A'', 
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B–B'', C–C''') textures in left lateral (left column), dorsal (middle column), and ventral (right column) views. 

(A, B, C) Skulls with all jaw adductor and depressor muscles plotted. (A', B', C') All external adductor (m. 

add. mandibulae ext.) portions and m. depressor mandibulae (man.) (45; numbers following the proposal of 

Werneburg 2011) removed (45 plotted in B'). (A'', B'', C'') All external adductor muscles, 45, m. add. man. 

internus (int.) pars pseudotemporalis (23) and m. add. man. posterior (29) removed. Additional abbreviations: 

17, m. add. man. ext. pars medialis; 19, m. add. man. ext. pars profundus; 21, m. add. man. ext. pars superficialis; 

26, m. add. man. int. pars pterygoideus dorsalis; 27, m. add. man. int. pars pterygoideus posterior; 28, m. add. 

man. int. pars pterygoideus ventralis; 30, m. add. man. posterior pars rostralis; av.em, anteroventral 

emargination; ot.ch, otic chamber; pd.em, posterodorsal emargination; so.cr, supraoccipital crest; sq.cr, 

squamosal crest. 

Similarly, the internal and posterior adductors maintain, with some small changes, the 

inferred ancestral condition for pleurodires in Pelom. subrufa. The pars pterygoideus dorsalis 

originated anteriorly on the dorsal faces of the pterygoid and palatine, entering the tunnellike 

structure formed by the pterygoid ventrally and the postorbital and parietal dorsally (= sulcus 

palatino-pterygoideus of Gaffney et al. 2006) and inserting also on its medial wall (Fig. 

2.7A″) on the descending process of the palatine (Schumacher 1954b, 1954/55). The pars 

pterygoideus ventralis originated on the dorsal and lateral aspects of the pterygoid, bordered 

laterally by the processus trochlearis pterygoidei. The pars pterygoideus posterior originated 

on the dorsal and ventral surfaces of the pterygoid, posteriorly to the origins of the partes 

pterygoideus ventralis and dorsalis (Fig. 2.7B″). In Pelom. subrufa, the pars pterygoideus 

posterior expands its origins to the ventral aspect of the skull (Fig. 2.7C”), a trend that is 

observed to a greater extent in podocnemidids. In Podocnemis expansa, for example, the pars 

pterygoideus posterior inserts inside a cavity (cavum pterygoidei sensu Gaffney et al. 2006) 

formed by the pterygoid ventrally and the basisphenoid, quadrate, and prootic dorsally 

(Schumacher 1954a, 1973; Gaffney 1979). 

As mentioned above, the pars pseudotemporalis and the posterior adductor are much 

integrated in pleurodires, as in cryptodires (Werneburg 2011), and are positioned anteriorly 

and posteriorly, respectively, to the mandibular branch (V3) of the trigeminal nerve (Lakjer 

1926; Schumacher 1973; Werneburg 2011). The former originates, in the reconstructed 

pleurodire ancestor, on the descending process of the parietal, ran ventrad and inserted on the 

subarticular aponeurosis (together with some fibers of the partes pterygoidei), which inserted 

on the medial aspect of the prearticular (Werneburg 2013a). In Pelom. subrufa (Fig. 2.7A′) 

the origin of the pars pseudotemporalis extends to the prootic also, above the foramen nervi 

trigemini (Schumacher 1954b, 1954/55; Iordansky 1996). The posterior adductor originates 

broadly on the anterior surfaces of the quadrate and prootic in the ancestral pleurodire. It is 
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more restricted laterally in Pelom. subrufa (Fig. 2.7B′), reaching only the anterolateral 

surface of the prootic (Werneburg 2013a). In both Pelom. subrufa and the ancestral 

pleurodire, the posterior adductor fibers run ventrad and insert to the medial face of the 

surangular on the lower jaw. Similarly, to the ancestral condition of cryptodires, the m. 

depressor mandibulae of the ancestral pleurodire originated only with one head but develops 

a second head (Fig. 2.7A) in Pelom. subrufa (Schumacher 1954b, 1954/55; Iordansky 1996). 

On the other hand, the depressor mandibulae origin site is broader in all pleurodires, spanning 

from the ventral and lateral surfaces of the squamosal to the opisthotic in the ancestral 

condition and in Pelom. subrufa also on the medial face of the quadrate. In the latter, it runs 

ventrad and inserts to the posterior surface of the articular, but in the inferred pleurodire 

ancestor it inserted more broadly, via a retroarticular tendon to the retroarticular process of 

the lower jaw. 

2.7.3. Jaw muscles in Proganochelys quenstedti 

Although the skull of Proganochelys quenstedti may seem similar to that of some 

crown turtles, especially to those with a full dermal bone covering such as sea turtles, there 

are several important differences that most likely made its jaw musculature distinct from the 

crown turtle general pattern (Fig. 2.8). Pr. quenstedti lacked supraoccipital and squamosal 

crests (Gaffney 1990), which, together with the smaller otic chamber than that of crown 

turtles, suggest a more vertical orientation of the external adductors inside the closed 

adductor chamber. As inferred from the reconstructed pattern of Testudines ancestor, the pars 

profundus originated on the dorsal plate of the parietal and on the lateral aspect of the 

supraoccipital occupying around half of the upper temporal fossa (Fig. 2.8B). The pars 

superficialis was likely attached, based on our reconstruction, to the medial faces of the 

quadrate and the squamosal (certainly, it also expanded to the medial face of the 

quadratojugal, jugal, and postorbital as in extant sea turtles, but this we could not reconstruct 

with the available data), mostly on the lateral braincase wall, and possibly some fibers to the 

roof of the adductor chamber. This arrangement is very similar to that of diapsids, such as 

Sphenodon punctatus (Jones et al. 2009) and Alligator mississippiensis (Holliday & Witmer 

2007), except for the pars medialis. The inferred position for this muscle in the ancestral 

Testudines resembles that of other turtles, and in Pr. quenstedti it should also be similar, 
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based on the arrangement of the surrounding structures. The site of origin for the pars 

medialis likely was much more restricted than that of the other portions of the external 

adductors, only on the anterior surface of the quadrate (Fig. 2.8A) and extending slightly onto 

the lateral wall of the adductor chamber. This is more similar to the condition of A. 

mississippiensis (Holliday & Witmer 2007), in which it is also restricted to the anterior face 

of the quadrate, than to that of S. punctatus, in which it has a broad origin on the posttemporal 

bar, near to the insertion of pars profundus (Jones et al. 2009). 

The external adductor fibers in Pr. quenstedti ran ventrad to insert to the dorsal and 

lateral aspects of the lower jaw (Fig. 2.8A), on the low coronoid process, the dentary, and the 

surangular. Although all extant turtles possess a coronar aponeurosis to which most fibers of 

the external adductors attach, we cannot assure if it was present in Pr. quenstedti, because 

the conditions in the outgroup representatives are diverse. The coronar aponeurosis of 

lepidosaurs (Lakjer 1926; synonyms = basal aponeurosis, Jones et al. 2009, 

bodenaponeurosis see Werneburg 2013b) develops in a different way than that of turtles, 

namely between the internal and external adductor anlagen (Rieppel 1987b, 1990) and is 

shared only by the profundus and medialis portions of the external adductors (Jones et al. 

2009). Among archosaurs, a similar structure could not be identified in birds and, although 

crocodiles possess a tendon shared by all external adductors, as in turtles (potential 

synapomorphy), it is significantly folded (due to the suturing of the quadrate to the braincase; 

Holliday & Witmer 2007) and shared also by the posterior adductor (Iordansky 1994; 

Holliday & Witmer 2007; Werneburg 2013b). It is important to note that the coronar 

aponeurosis would not form a transiliens cartilage in Pr. quenstendti. The almost vertical 

arrangement of the external adductors in the adductor chamber of Pr. quenstedti, confirmed 

by our reconstructions (Fig. 2.8A), suggests that it was not affected by the otic chamber in 

its course to the lower jaw, so there was no mechanical stress on the coronar aponeurosis to 

develop a transiliens cartilage (also present on the internal muscles of crocodiles and possibly 

temnospondyls; Tsai & Holliday 2011; Witzmann & Werneburg 2017) as found in crown 

turtles. 

The internal and posterior adductors of Pr. quenstedti were certainly more restricted 

than in crown turtles (Fig. 2.8A′), especially by two features of its skull. First, this stem turtle 
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lacked a descending process of the parietal, which contributes to the secondary lateral 

braincase wall anteriorly in extant turtles (Gaffney 1990; Eßwein 1992), and from which 

most of the pars pseudotemporalis and some fibers of the pars pterygoideus dorsalis 

originates (Werneburg 2011). Secondly, Pr. quenstedti possessed very large eyes relative to 

the size of the rest of the skull (Gaffney 1990, fig. 41, p. 51; Fig. 2.8), which most likely 

limited the space available for the anterior expansion of the pterygoid muscle portions. This 

also results in a much more restricted adductor chamber in comparison to crown turtles and, 

hence, the internal adductor should have been smaller as well. The pterygoid muscle portions 

should have been more integrated than in other turtles, given their topology: they all 

originated more or less in a gradient on the dorsal surface of the pterygoid (Fig. 2.8B′′). The 

dorsalis portion is more anteriorly located extending on a dorsal depression, just posterior to 

the border of the foramen palatinum posterius (Gaffney 1990). It was followed by the 

ventralis, which would have originated on the lateral border of the pterygoid as well, and by 

the posterior portion, originating also on a small dorsal projection near the suture with the 

quadrate. The ancestral state reconstruction does not support a ventral origin of any portion 

of the pterygoid muscle for the ancestral Testudines (Werneburg 2013a). Given the presence 

of teeth on the ventral surface of the pterygoid bone in Pr. quenstendti (Gaffney 1990), this 

was likely the same state in this taxon and other stem turtles (compare to Witzmann & 

Werneburg 2017). Thus, the extension of the pterygoid origin to the ventral aspect of this 

bone should have happened at least two times in Testudines, one within Cryptodira, in 

Americhelyidia (sensu Joyce et al. 2013a), and one within Pleurodira, among 

Pelomedusoides (Werneburg 2013a). 

In Pr. quenstedti, the pars pseudotemporalis likely originated anteriorly to the prootic 

foramen (Fig. 2.8A′), on the small and thin process of the parietal that closed it anteriorly and 

contacted the basisphenoid ventrally, near the processus clinoideus (Gaffney 1990). It may 

have been continuous to the origin of the posterior adductor, which attached to the anterior 

faces of the prootic and quadrate, medial to the origin of the pars medialis of the external 

adductor (Fig. 2.8B′). If so, this would not differ much from the condition seen in several 

extant turtles in which the pseudotemporalis and posterior are highly integrated (Werneburg 

2011) and can only be distinguished as separate unities by the passage of the mandibular 

branch (V3) of the trigeminal nerve that pierces this muscle mass (Lakjer 1926; Rieppel 
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1990). The main difference would be that pars pseudotemporalis in Testudines extends more 

anteriorly than that of Pr. quenstedti, following the anteroventral expansion of the descending 

process of the parietal, which approaches the palate in the former. In the ancestral Testudines 

the posterior adductor originated on the prootic and quadrate, probably reaching the pars 

pseudotemporalis. However, in Pr. quenstedti it is unclear if this condition was present, given 

the open foramen nervi trigemini forming a groove that extends to the prootic foramen 

(Gaffney 1990). It is plausible that in this stem turtle the origin of the posterior adductor and 

that of the pars pseudotemporalis were separated by that space between the prootic and 

trigeminal nerve foramina. A well separated pars pseudotemporalis and a posterior adductor 

can be seen in archosaurs (Holliday & Witmer 2007) and lepidosaurs (Jones et al. 2009) and, 

if this was the case in Pr. quenstedti also, a greater integration between those muscles would 

be a feature acquired during the evolution of turtles. This had the possible advantage of them 

acting as one united powerful muscle vector during jaw closure. 

The insertions of the internal and posterior adductors in the ancestral Testudines and 

Pr. quenstedti roughly corresponded to that of crown turtles. The pars pseudotemporalis 

inserted via the subarticular aponeurosis on the medial and dorsal surfaces of the prearticular, 

inside the Meckel’s fossa. A pars intramandibularis, as found in some extant turtles 

(Werneburg 2011), was most likely absent. Some fibers of the partes pterygoidei shared the 

subarticular aponeurosis, but a pterygoidal aponeurosis was most likely present in the 

ancestral Testudines (Werneburg 2013a) and some fibers would also insert directly on the 

medial surfaces of the prearticular and articular. The posterior adductor inserted above the 

insertion sites of the pterygoid portions and posterior to the pseudotemporalis insertion (Fig. 

2.8A′), also on the prearticular and articular, closer to the jaw joint. Finally, the m. depressor 

mandibulae originated with only one head on the ventral and lateral aspects of the squamosal 

in the ancestor of Testudines and likely also on lateral portions of the opisthotic in Pr. 

quenstedti. The depressor mandibulae ran ventrad (as in all turtles) to insert posteriorly on 

the retroarticular process of the articular bone (Fig. 2.8A), possibly via the retroarticular 

aponeurosis and direct fibers. 
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Figure 2.8. Digital three-dimensional reconstruction of the jaw adductor and depressor musculature of 

Proganochelys quenstedti made with CAD software Rhinoceros 3D (Robert McNeel & Associates, 2003). Skull 

with transparent textures in left lateral (left column), dorsal (middle column), and ventral (right column) views. 

(A, B, C) Skulls with all jaw adductor and depressor muscles plotted. (A', B', C') All external adductor (m. 

add. mandibulae ext.) portions and m. depressor mandibulae (man.) (45; numbers following the proposal of 

Werneburg 2011) removed (note: m. add. man. externus pars medialis in B'). (A'', B'', C'') All external 

adductor muscles, 45, m. add. man. internus (int.) pars pseudotemporalis (23), and m. add. man. posterior (29) 

removed. Additional abbreviations: 17, m. add. man. externus (ext.) pars medialis; 19, m. add. man. ext. pars 

profundus; 21, m. add. man. ext. pars superficialis; 26, m. add. man. int. pars pterygoideus dorsalis; 27, m. add. 

man. int. pars pterygoideus posterior; 28, m. add. man. int. pars pterygoideus ventralis. 
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Extant turtles do not show a m. levator pterygoidei, a muscle, which connects the 

primary braincase wall with the pterygoid and enables movement of the palate in reptiles 

with kinetic skulls. A rudimentary anlage of this muscle, however, was found in the emydid 

cryptodire Emys orbicularis (Fuchs 1915). A kinetic basicranial articulation was likely 

present in Pr. quenstedti (Gaffney 1990) and other stem turtles (Rabi et al. 2013), which is 

further supported by the recapitulation of this embryonic structure in an extant species. 

The ancestor of Testudines possessed more robust external adductors relative to the 

internal and posterior adductors, as in all other turtles (Iordansky 1996; Schumacher 1973; 

Werneburg 2011), and likely the same condition was found in Pr. quenstedti. Lepidosaurs 

show the same relation (Jones et al. 2009), while in archosaurs the opposite is observed 

(Holliday & Witmer 2007). Regarding the portions of the external adductors, all turtles 

(including Pr. quenstedti) show a greater integration between the partes medialis and 

superficialis (Rieppel 1990; Werneburg 2011), contrasting to the condition in lepidosaurs, in 

which the partes medialis and profundus are more closely related (Jones et al. 2009; Daza et 

al. 2011; Diogo & Abdala 2010). The strong coronar aponeurosis of turtles is developed 

between the external adductor layers, as in crocodiles, contrasting to the condition in 

lepidosaurs, in which it develops between the internal and external rudiments (Rieppel 1987a, 

1990; Holliday & Witmer 2007; Jones et al. 2009). More integrated pseudotemporalis and 

posterior adductor, on the other hand, are features exclusive to turtles, whereas in archosaurs 

and lepidosaurs these parts are more extensively separated (Holliday & Witmer 2007; Jones 

et al. 2009). In addition to other features reported by previous studies supporting relationships 

of turtles either with archosaurs [i.e., external eye pyramidalis muscle (Werneburg 2011) and 

closely related internal and posterior adductors and inter-/intramandibularis (Rieppel 1990; 

Werneburg 2011)] or with lepidosaurs [i.e., the compartmentalization of m. 

intramandibularis from the internus anlage (Rieppel 1990; Werneburg 2011)], available data 

seem to present a mosaic of archosaurian and lepidosaurian features in the turtle head 

musculature. This may suggest that these are actually simplesiomorphies retained 

alternatively in those groups and in turtles and, as such, do not support closer relationships 

with either archosaurs or lepidosaurs. 
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The homology of specific parts of the jaw musculature (i.e., the different portions of 

the external, internal, and posterior adductors) between different extant sauropsid groups 

(archosaurs, lepidosaurs, and turtles) is still poorly understood (Holliday & Witmer 2007; 

Werneburg 2011). This is largely due to the fact that we can only directly assess the 

morphology of the muscles of extant reptilian taxa, which diverged from each other and 

started to diversify as early as in the Permian (approximatelly 300-250 million years ago; 

Mulcahy et al. 2012). Hence, using ancestral state estimates in conjunction with detailed 

anatomical analyses of fossils that aim to reconstruct the jaw musculature in extinct taxa will 

provide real potential to help resolving these issues. The known skull material of Pr. 

quenstedti does not have well-preserved surfaces in this region, so it is difficult to infer sites 

of muscle attachment with sufficient detail to musculature reconstruction (see Witzmann & 

Werneburg 2017). Nevertheless, further analysis of additional stem turtles can generate more 

data on those potential attachment sites expanding our knowledge of the early evolution of 

the jaw musculature in turtles. 

2.8. Concluding remarks 

Although turtles have attracted the attention of researchers for a long time, important 

aspects of their evolution are still debated. New anatomical, paleontological, and 

developmental data have the potential to increase our understanding of the nature of certain 

derived morphological structures, such as the turtle shell (Nagashima et al. 2012; Li et al. 

2008). Additionally, considerable controversy still surrounds the phylogenetic origin and the 

interrelationship of turtles among reptiles. In this context, the turtle skull presents one of the 

most promising structures among to resolve those open questions. 

One of the open questions is the multiple origins of turtle temporal emarginations and 

dermatocranial bone reductions in amniotes, in general. For many years (Zdansky 1923; 

Romer 1956; Kilias 1957), the bulging of the jaw adductor muscles was thought to be the 

primary responsible for those reductions, but current interpretations suggest that other factors 

might also be related to them. In the case of turtles, the modifications induced by the origin 

of the shell and alternate mechanisms of neck retraction seem to play prominent roles in the 

emergence of emarginations (Werneburg et al. 2015a; Werneburg et al. 2015b; Werneburg 
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2015). However, variation among taxa with similar neck retraction mechanisms (such as 

chelids and pelomedusids) suggests other factors may also contribute to shape their 

morphology. Additionally, one can ask if the factors shaping the temporal emarginations in 

turtles also affect the repeated origin of temporal openings in other amniotes. New studies of 

functional morphology (e.g., finite element analyses), allied to comparative developmental 

analysis focusing on those structures, may help to clarify their role and evolution in the 

amniote head. 

Developmental studies with larger samples can also be useful to assess some putative 

synapomorphies of turtles with other amniotes. For example, the m. pyramidalis of the eye 

is found only in turtles, crocodiles, and birds and is used as morphological evidence 

supporting the prevailing results of molecular phylogenetics that place turtles closer to 

archosaurs (Rieppel 1990; Eger 2006). Although morphologically they seem to be 

homologous structures, their ontogenetic origin has never been studied in a more 

comprehensive reptile framework. At the same time, the pattern of differentiation of the 

posterior adductor and intermandibularis muscles in turtles are more similar to those of 

crocodiles than to that of squamates (Rieppel 1987b, 1990). Further support or rejection of 

these primary statements of homology may be obtained via studies of the ontogeny of these 

structures in turtles. To date, muscle development has been studied in detail only in Chelydra 

serpentina (Rieppel 1990). However, though Tvarozkova (2006) studied other taxa, she had 

access to only a few embryos at later stages of development, and although Edgeworth (1935) 

studied three other turtle species, this was done only superficially. 

Several other evolutionary questions remain open. For example, the relation of the m. 

zygomaticomandibularis in Trionychia to the other adductors and to structures in other 

turtles, such as the postorbital head of the pars superficialis in chelydrids and chelonioids 

(Werneburg 2011; Jones et al. 2012), can be an important issue, revealing new 

synapomorphies that can contribute to the debated interrelationships of cryptodiran clades 

(Sterli 2010). Also, functional anatomical analyses of this muscle may also contribute to 

broader questions, since the repeated evolution of comparable structures in other non-related 

taxa, such as parrots, mammals and in the dinosaur Psittacosaurus (Schulman 1906; Tokita 

2004; Taylor et al. 2016), suggests specific functional roles for this muscle unit, perhaps 
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related to particular feeding preferences. The trochlear mechanism found in the adductor 

chamber of turtles is another debated evolutionary question. The employment of functional 

models (e.g., finite element analyses) to further explore its role during the contraction of the 

external adductors would be a worth contribution (Chapter 6 of this Thesis), especially 

considering the different morphotypes found in cryptodires and pleurodires. Their origin is 

relevant to understand whether or not stem turtles had a trochlear mechanism and, if so, how 

its anatomy presented. Was it similar to that of cryptodiran taxa only in its position (on the 

outer surface of the otic chamber) or in other aspects (e.g., bone projections and synovial 

capsule like the cryptodiran trochlea)? Or, how did the pleurodiran mechanism evolve? Was 

it independently acquired or derived from a cryptodiran-like mechanism of stem turtles? And 

if the latter is more likely, did the pleurodiran ancestors possessed an intermediate stage with 

two trochleas (as hypothesized by Joyce 2007)? Those questions can be approached 

comparatively from the perspective of developmental data (comparing the ontogeny of those 

structures in pleurodires and cryptodires), functional and structural anatomy of extant species 

(comparing the mechanisms in different taxa to see how much variation exists), and 

paleontology (to evaluate the condition in extinct turtles), i.e., in sum, a ‘holistic organism 

approach’ (Maier & Werneburg 2014). 

Finally, the presented approach to reconstruct the jaw musculature in Proganochelys 

quenstedti, combining 3-D models with ancestral state reconstructions (Werneburg 2013) is 

an important step toward the understanding of the evolution of jaw muscles in turtles and 

amniotes in general. This approach has been already used elsewhere with other groups, such 

as temnospondyls (Lautenschlager et al. 2016; Witzmann & Werneburg 2017) and 

sauropterygians (Araújo & Polcyn 2013; Foffa et al. 2014) to understand the evolution of 

some morphological structures and the biomechanics of their skulls and should be more 

applied when considering the questions highlighted above. 
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Sensory evolution and ecology of early turtles revealed by 

digital endocranial reconstructions 
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3 Sensory evolution and ecology of early turtles revealed by digital 

endocranial reconstructions 

Abstract 

In the past few years, new fossil finds and novel methodological approaches have prompted 

intensive discussions about the phylogenetic affinities of turtles and rekindled the debate on 

their ecological origin, with very distinct scenarios, such as fossoriality and aquatic habitat 

occupation, proposed for the earliest stem-turtles. While research has focused largely on the 

origin of the anapsid skull and unique postcranial anatomy, little is known about the 

endocranial anatomy of turtles. Here, I provide 3-D digital reconstructions and comparative 

descriptions of the brain, nasal cavity, neurovascular structures and endosseous labyrinth of 

Proganochelys quenstedti, one of the earliest stem-turtles, as well as other turtle taxa. The 

results demonstrate that P. quenstedti retained a simple tube-like brain morphology with 

poorly differentiated regions and mediocre hearing and vision, but a well-developed olfactory 

sense. Endocast shape analysis indicates that an increase in size and regionalization of the 

brain took place in the course of turtle evolution, achieving an endocast diversity comparable 

to other amniote groups. Based on the new evidence presented herein, I further conclude that 

P. quenstedti was a highly terrestrial, but most likely not fossorial, taxon. 

Keywords: neuroanatomy; sensory adaptation; digital endocast; stem turtles; turtle origin 
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3.1. Introduction 

Turtles (Testudinata sensu Joyce et al. 2004) are a diverse group of reptiles with an 

unusual ‘bauplan’ fundamentally different from that of other amniotes. Unique 

morphological characters, including the anapsid cranial configuration, which lacks temporal 

fenestrations, and the presence of a bony shell formed by a dorsal carapace and a ventral 

plastron have long obfuscated the phylogenetic affinities of turtles (Rieppel 2007; Lyson et 

al. 2010). While most molecular studies have recovered turtles nested within diapsid reptiles 

and often as a sister-group to Archosauria (birds and crocodiles) (Hedges & Poling 1999; 

Wang et al. 2013; Field et al. 2014), most studies based on comparative anatomy have placed 

turtles outside of Diapsida (Gauthier et al. 1988; Lee 1997; Werneburg & Sánchez-Villagra 

2009; Neenan et al. 2013; Scheyer et al. 2017) or alternatively inside Lepidosauromorpha 

(deBraga & Rieppel 1997; Rieppel & Reisz 1999; Li et al. 2008; Liu et al. 2011). The scant 

fossil record of stem-turtles (i.e. non-Testudines Testudinata) has further obscured the 

evolutionary origin of this group. Recent discoveries of new species and reanalysis of 

existing specimens with novel methodological approaches (e.g. computed tomography and 

digital visualization) have provided new data to the debate of turtle ancestry (Li et al. 2008; 

Bever et al. 2015; Schoch & Sues 2015). These studies found support for the diapsid origin 

of turtles and produced potential evidence for closure of the temporal fenestrae early in their 

evolutionary history (Schoch & Sues 2015; Lyson et al. 2016; Werneburg 2015). 

Regarding the environmental origin of the group, although all Triassic turtles were 

clearly terrestrial (Joyce 2015), data provided by recently described taxa have painted an 

ambiguous picture regarding the paleoecological setting in which the Testudinata ancestors 

evolved. While the earliest known potential proto-turtle (i.e. non-Testudinata Pantestudines) 

Eunotosaurus africanus (ca. 260 Ma) has been found in terrestrial environments (Lyson et 

al. 2016), the somewhat younger Pappochelys rosinae (ca. 240 Ma) and Odontochelys 

semitestacea (ca. 220 Ma) were retrieved from lacustrine and deltaic deposits and were 

considered to have been semi-aquatic (Li et al. 2008; Rieppel 2013; Schoch & Sues 2015). 

In the last two taxa, the dorsoventrally flattened, expanded ribs and thickened gastralia have 

been interpreted as adaptations for buoyancy control in an aquatic environment (Schoch & 

Sues 2015). In contrast, the morphology of the ribs, as well as the more rigid body wall, 
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powerful forelimbs and triangular skull, have been considered to represent adaptations to 

fossoriality in E. africanus (Lyson et al. 2016). On the other hand, the type localities of both 

P. rosinae and O. semitestacea have also yielded terrestrial taxa (Joyce 2015; Schoch & Sues 

2017) and, in fact, terrestrial diapsid remains are dominant at the type locality of the former 

(Schoch & Sues 2015). Additionally, Joyce (2015) argued in favor of Odontochelys 

semitestacea as a terrestrial proto-turtle, based on its phalangeal formula. Hence, terrestrial, 

fossorial and semi-aquatic habits have all been suggested for the early stages of turtle 

evolution, before the origin of the protective shell characteristic of the definitely terrestrial 

stem-turtles (Joyce & Gauthier 2004; Scheyer & Sander 2007; Joyce 2015). 

While research on early turtles has focused largely on the acquisition of the anapsid 

condition and the evolution of the postcranial anatomy employing comparative morphology, 

histology and genetics, little is known about the endocranial anatomy of stem-turtles (or 

indeed turtles in general). Using micro-computed tomography (µCT) scanning and digital 

visualization, I provide here a reconstruction of the endocranial anatomy of Proganochelys 

quenstedti, one of the earliest testudinates from the Late Triassic of Germany. I further 

compare the reconstructed brain anatomy with different stem- and crown-turtles (Testudines) 

and other vertebrate taxa using endocast outline analysis to elucidate related anatomical and 

ecological aspects of turtle origins. 

3.2. Materials and Methods 

For digital reconstruction of endocranial anatomy (brain, inner ear, neurovascular 

structures, nasal cavity) two specimens of Proganochelys quenstedti from the Late Triassic 

of Germany were studied: MB 1910.45.2 (Museum für Naturkunde Berlin) from the 

Baerecke and Limpricht Quarry, Halberstadt (Jaekel 1918), and SMNS 16980 (Staatliches 

Museum für Naturkunde Stuttgart) from the Plateosaurus-quarry in Trossingen (Gaffney 

1990). Both specimens consist of nearly complete and articulated cranial skeletons. MB 

1910.45.2 shows substantial taphonomic artifacts in the form of anteroposterior shearing and 

some moderate mediolateral crushing and deformation. However, these artifacts only 

marginally affect the braincase and the digital reconstruction of the various endocranial 

structures (see Results for more details). 
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MB 1910.45.2 was CT scanned at the Leibniz-Institut für Zoo- und Wildtierforschung 

Berlin/Germany (IZW) using a Toshiba Aquilon ONE medical CT scanner. Scanning 

parameters were set at 225 kV and 300 µA resulting in an image stack of 512 x 512 x 213 

pixels and a voxel size of 2.0 mm per slice. The dataset was subsequently ‘upsampled’ (1024 

x 1024 x 426 pixels, 0.5 mm effective voxel size) by averaging the existing slice data. This 

process does not increase the actual resolution of the data, but provides more slices available 

for segmentation permitting clearer identification of features and resulting in smoother 

surface models. 

SMNS 16980 was scanned at the Riedberg Campus of Goethe-Universität 

Frankfurt/Germany using a Phoenix Nanotom m scanner. Due to its relatively large size, the 

specimen was scanned in three stages. The resulting image stacks were combined into a 

single stack with 3583 x 4011 x 5658 pixels and a voxel size of 0.025 mm per slice. The 

dataset was subsequently downsampled (870 x 954 x 1161 pixels, 0.1 mm voxel size) to 

permit further processing and segmentation. 

Datasets for both specimens were imported into Avizo 8 (Visualisation Science 

Group) for the segmentation of endocranial structures. Due to poor grayscale attenuation (in 

particular for SMNS 16980), segmentation was performed manually using the paintbrush and 

interpolation tools in the Avizo segmentation editor (both reconstructions performed by the 

first author for consistency following Balanoff et al. 2016). 3-D surface models and volumes 

were created to visualize the endocranial components. In addition, surface models of the 

individual structures were downsampled to a degree that allowed for small file sizes but 

preserved all details, and were exported as separate OBJ-files for the creation of the 

interactive 3-D figures provided in the supplementary material (see link on the first page of 

this chapter) as outlined in Lautenschlager (2014b) using Adobe 3D reviewer (Adobe 

Systems Inc.). 

To provide a basis for comparisons, the endocranial anatomy of nine extant turtles 

and of one additional stem-turtle, Naomichelys speciosa (FMNH PR273), was reconstructed 

in the manner described above. FMNH PR273 was scanned at the Institut für 

Naturwissenschaftliche Archäologie at the Universität Tübingen at a resolution of 0.1 mm 

resulting in an image stack of 1068 x 1382 x 622 pixels. The following extant species were 
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scanned at the Steinmann-Institut für Geologie, Mineralogie & Paläontologie/Rheinische 

Friedrich-Wilhelms-Universität Bonn/Germany and at the Museum für Naturkunde 

Berlin/Germany: Podocnemis unifilis (SMF 55470), Chelodina reimanni (ZMB 

Herpetologie 49659), Emydura subglobosa (PIMUZ lab# 2009.37), Pelodiscus sinensis 

(IW576-2), Chelonia mydas (ZMB 37416 MS), Macrochelys temminckii (TCGT, Teaching 

collection Geowissenschaften Towisse), Emys orbicularis (WGJ 1987a), Platysternon 

megacephalum (SMF 69684), Malacochersus tornieri (SMF 58702). Data derived from the 

reconstructions was further used for a shape analysis of brain morphology. 

Due to the absence of unambiguous and consistently identifiable landmarks on the 

endocast across different amniote taxa, outline shape analysis was performed to quantify 

morphological differences. Although this approach uses only two-dimensional outlines (in 

contrast to three-dimensional landmarks), it allows quantification of shape data for 

geometries lacking homologous landmarks (Haines & Crampton 2000). For shape analysis, 

a sagittal cross-section through the surface model of each brain (i.e., digital cast of the 

endocranial cavity) was produced in Avizo for each reconstruction. Contours of the two-

dimensional cross-sections were imported into tpsDig2.16 (Rohlf 2010), digitized and saved 

as 1000 x/y-coordinate pairs. All outline data were subsequently analyzed in PAST 3.17 

(Hammer et al. 2001) using fast Fourier transformation (FFT) and principal components 

analysis (PCA) with the hangle module as outlined in Crampton & Haines (1996) and 

Lautenschlager (2014a). Outlines were smoothed ten times to eliminate pixel noise, and 23 

Fourier harmonics were found to describe the outlines of all sampled taxa sufficiently 

(average Fourier power > 99%) (see also online supplementary material). In addition to the 

reconstructed endocasts, further outlines of 52 taxa were collected from the literature 

(Hopson 1979; Franzosa 2004; Neenan & Scheyer, 2012; Bona & Paulina-Carabajal 2013; 

Carabajal et al. 2013; George & Holliday 2013; Herrera et al. 2013; Holloway et al. 2013; 

Laaß et al. 2017; Paulina-Carabajal et al. 2017; von Baczko & Desojo 2016; Lautenschlager 

& Butler 2016; Jirak & Janacek 2017; Pierce et al. 2017; and Digimorph) for different turtle, 

archosauromorph, lepidosauromorph and other amniote taxa (for list of taxa see Table S2 on 

supple). These outlines were redrawn in Adobe Illustrator to ensure sufficient resolution for 

the digitization process. For PCA, each taxon was assigned to a phylogenetic and an 

ecological (marine, freshwater, terrestrial, fossorial) group. To test for significant differences 
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between those groups, I also conducted a non-parametric MANOVA test (Anderson 2001) 

using PC scores representing 95% of total variance transformed into an Euclidean distance 

matrix, replicated with 10000 permutations and compared using Bonferroni correction for 

the post-hoc analyses. 

3.3. Results 

3.3.1. Endocranial anatomy 

The reconstruction of MB 1910.45.2 (Figs. 3.1A–3.1D) provided most details of the 

endocranial anatomy, but exhibited some moderate medio-lateral deformation. In 

comparison, the reconstruction of SMNS 16980 (Fig. 3.1E–3.1H) showed no obvious 

artifacts, but the poor grayscale contrast permitted only a few structures (i.e. brain, pituitary 

fossa and some cranial nerves) to be visualized. In combination, both specimens allowed for 

a detailed reconstruction of most endocranial components. 

The brain endocast is anteroposteriorly elongate and straight in both specimens, with 

only moderate cephalic and pontine flexures (Fig. 3.1B, 3.1F). The endocasts are tubular and 

mediolaterally narrow without prominent expansion or constriction of the fore-, mid- or 

hindbrain regions. The close similarity of these features in both specimens confirms that this 

morphology is natural and unlikely to be a result of taphonomic deformation. The olfactory 

nerve (CN I) contributes approximately a third to half of the full endocast’s length, but a clear 

distinction between the base of the olfactory nerve and the cerebral hemispheres is not visible. 

The olfactory bulbs are only weakly reproduced by the ventral surfaces of the nasals. Cerebral 

hemispheres or distinct optic lobes are not visible in either specimen, suggesting that both 

structures were very small and/or that the venous sinus and the dura mater obscured the 

underlying morphology. 
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Figure 3.1. Endocranial anatomy of Proganochelys quenstedti specimens (A–D) MB 1910.45.2 and (E–H) 

SMNS 16980. Endocast and nasal cavity (A, B) in situ in left lateral oblique view with bone rendered semi-

transparent and isolated endocast in (B, F) left lateral, (C, G) dorsal and (D, H) ventral views. Abbreviations: 

car, carotid artery; dur, dural peak; endo, brain endocast; lab, endosseous labyrinth; nas, endocast of nasal 

cavity; pit, pituitary fossa; I, olfactory nerve; II, optic nerve canal; III, oculomotor nerve canal; IV, trochlear 

nerve canal; V, trigeminal nerve canal; VI, abducens nerve canal; VII, facial nerve canal; IX-XI shared canal 

for the glossopharyngeal, vagus and spinal accessory nerve; XII, hypoglossal nerve canal. 

The midbrain region is confluent with the forebrain and only weakly demarcated. The 

only distinguishing feature is a dorsal expansion extending above the level of the olfactory 

nerve. This dural peak or cartilaginous rider (Zangerl 1960; Gaffney & Zangerl 1968; 

Paulina-Carabajal et al. 2017) is more prominently developed in MB 1910.45.2 (Fig. 3.1B). 

In SMNS 16980, the dorsal expansion is shallower and somewhat separated from the main 

body of the midbrain by a bony margin, suggesting that this structure corresponds to the 

cartilaginous portion of the supraoccipital, which ends abruptly anteriorly in Proganochelys 

quenstedti (Gaffney 1990). The pituitary fossa is visible in SMNS 16980 and forms a pendant 

pocket, projecting ventrally from the main body of the midbrain endocast. 
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Figure 3.2. Comparative endocranial anatomy of different stem-Testudines and pleurodiran taxa. Original 

reconstructions and redrawn endocasts (Plesiobaena antiqua from Gaffney 1982; Meiolania platyceps from 

Paulina-Carabajal et al. 2017; Yuraramirim montealtensis from Ferreira et al. 2018b) in left lateral view. 

Topology based on Joyce et al. (2016), Guillon et al. (2012) and Ferreira et al. (2018a). Heat mapping on 

branches based on the ratio (CE/BL) between cubic root of endocast volume and basicranial length (Table 3.1). 
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Figure 3.3. Comparative endocranial anatomy of different pan-cryptodiran taxa. Original reconstructions and 

redrawn endocasts (Plesiochelys etalloni from Carabajal et al. 2013; Gopherus berlandieri from Paulina-

Carabajal et al. 2017) in left lateral view. Topology based on Joyce et al. (2016), Guillon et al. (2012). Heat 

mapping on branches based on the ratio (CE/BL) between cubic root of endocast volume and basicranial length 

(Table 3.1). 
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The hindbrain region is anteroposteriorly short and not constricted mediolaterally 

between the endosseous labyrinths. Floccular lobes are not visible. Posteriorly, the hindbrain 

exits the braincase through the foramen magnum, which is oval and wider than high in SMNS 

16980 and slightly higher than wide in MB 1910.45.2. The latter may be the result of the 

mediolateral compression of this specimen. 

The nasal cavity is very enlarged when compared to the other sampled taxa (Figs. 

3.2–3.3; Table 3.1). The strong lateral compression of MB 1910.45.2 may be responsible for 

the seemingly increased volume, and, hence, the reconstruction of the nasal cavity in SMNS 

16980 is considered here as more reliable. Usually, three portions of the nasal cavity can be 

identified in turtles and other reptilians (Parsons 1959, 1970; Halpern 1992; Paulina-

Carabajal et al. 2017): the vestibulum nasi, which connects the nasal chamber to the external 

nares; the ductus nasopharyngeus, connecting the nasal chamber to the choanae; and the 

cavum nasi proprium, the chamber itself, bounded anteriorly by the vestibulum, 

posteroventrally by the ductus, and posterodorsally by the olfactory nerve (CN I). The ductus 

nasopharyngeus can be distinguished from the rest of the nasal cavity in P. quenstedti as two 

ventrolateral projections (Fig. 3.1). A proper duct (at least not bounded by bone) was not 

expected, since the choanae in P. quenstedti are very extensive, and occupy almost the whole 

ventral surface of the nasal cavity. The vestibulum on the other hand is short, as in most other 

turtles (Paulina-Carabajal et al. 2017), connected to the large cavum nasi proprium, which 

constitutes most of the nasal cavity. The cavity as a whole is considerably broad and also 

high in comparison (Figs. 3.2–3.3) to several other taxa (Carabajal et al. 2013; Paulina-

Carabajal et al. 2017). 

The endosseous labyrinth is reconstructed only for MB 1910.45.2, as the grayscale 

attenuation did not allow differentiation of the bony housing in SMNS 16980. It is 

dorsoventrally compressed and compact. The anterior and posterior semicircular canals are 

smalland anteroposteriorly longer than high and have low internal radii. The crus communis 

is also very low in comparison to other taxa (Carabajal et al. 2013; Mautner et al. 2017; 

Paulina-Carabajal et al. 2017; Ferreira et al. 2018b, Chapter 4 of this thesis) which results in 

an almost horizontal orientation of the anterior and posterior semicircular canals (Fig. 3.4). 

The lateral semicircular canal barely extends laterally from the vestibulum. The cochlear duct 
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is expanded ventrally, but short. The canal of the fenestra ovalis is clearly visible projecting 

anterolaterally from the vestibulum. 

Table 3.1. Measurements and ratios for sampled taxa. ASC-PSC, angle between anterior and posterior 

semicircular canals; BL, basicranial length; CE/BL, cubic root of endocast volume/basicranial length; CE/SL, 

cubic root of endocast volume/skull length; EV, endocast volume; NV, nasal cavity volume; N/E, nasal 

cavity/endocast volume ratio; OR, olfactory ratio; SL, skull length. 

Taxon 
SL 

[mm] 

BL 

[mm] 

EV 

[mm³] 

NV 

[mm³] 
N/E CE/SL CE/BL 

OR 

[%] 

ASC-

PSC 

Proganochelys 175 148.75 8170.84 12209.34 1.49 11.51 13.54 62.5 107° 

Proganochelys 97 85.36 3790.56 3709.39 0.98 16.07 18.27 57.14 - 

Naomichelys 117 103.50 9805.97 4077.77 0.42 18.29 20.68 15-19 79° 

Podocnemis 67 51.32 1732.45 531.57 0.31 17.93 23.40 13.39 81° 

Chelodina 36 36.00 760.10 140.84 0.18 25.35 25.35 11.34 98° 

Chelonia  112 80.64 7077.93 2667.23 0.38 17.14 23.81 31.65 94° 

Macrochelys 120 105.88 9583.53 3568.33 0.37 17.70 20.06 38.18 88° 

Platysternon 60 46.43 898.13 314.33 0.35 16.08 20.78 28.23 82° 

Malacochersus  35 40.92 1364.13 669.45 0.49 31.69 27.11 16.06 86° 

Emys  31 30.42 668.07 118.54 0.18 28.20 28.74 17.31 102° 

Emydura  35 35.00 1556.29 160.65 0.10 33.11 33.11 9.80 90° 

Pelodiscus  59 39.48 707.23 444.09 0.63 15.10 22.57 20.25 79° 

The proximal portion of the majority of cranial nerves could be reconstructed for MB 

1910.45.2 (Fig. 3.1), whereas only some of the larger nerve canals are visible in SMNS 

16980. The optic nerves (CN II) exit the braincase through two large (3 mm in diameter each) 

foramina anteriorly and ventrally from the cerebral region of the endocast in MB 1910.45.2. 

Posterior and lateral to CN II, the oculomotor (CN III) and possibly the trochlear nerve (CN 

IV) (Gaffney 1990) originate ventrolaterally. In SMNS 16980, CN II-IV could not be 

reconstructed. The foramina through which those three cranial nerves (II-IV) exit the 

braincase are formed by the laterosphenoid (= “pleurosphenoid”) (Gaffney 1990; Bhullar & 

Bever 2009). This is the second P. quenstedti specimen with a preserved laterosphenoid, 

however the fact that this ossification is severely crushed hampers any further comment on 

the morphology of this ossification. The trigeminal nerve (CN V) is large (ca. 6 mm in 

diameter) and exits the braincase laterally in both specimens through the prootic foramen. 

Based on both specimens (as well as other specimens described by Gaffney 1990) we confirm 

that this foramen is surrounded exclusively by the prootic bone, contrary to Bhullar & 

Bever’s (2009) interpretation that the laterosphenoid would form its anterior margin. A 
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separation of the ophthalmic branch (CN V1) is apparent on the right side in MB 1910.45.2, 

but this could be a result of the high degree of distortion of this specimen. 

Table 3.2. Summary of the results of the principal component analyses of the brain outlines of different turtle 

specimens and other groups. 

PC Eigenvalue 
% 

variance 

% 

cumulative 

variance 

1 0.01042 41.4 41.4 

2 0.00464 18.5 59.9 

3 0.00298 11.8 71.7 

4 0.00174 6.9 78.7 

5 0.00137 5.5 84.1 

6 0.00093 3.7 87.8 

7 0.00067 2.6 90.5 

8 0.00042 1.7 92.1 

9 0.00032 1.3 93.4 

10 0.00028 1.1 94.5 

11 0.00021 0.8 95.4 

The abducens nerve (CN VI), clearly visible in both specimens, originates from the 

ventral surface of the endocast. It pierces the basisphenoid through the foramen nervi 

abducens and enters laterally the pituitary fossa, which is bottomed by the sella turcica 

(Gaffney 1990). Posterior to CN V, the facial nerve (CN VII) exits the braincase laterally 

through the prootic. In MB 1910.45.2, a distal branching of CN VII outside the braincase 

wall is visible, also on the prootic bone. The vestibulocochlear nerves (CN VIII) could not 

be reconstructed in either specimen. The foramina for the CN VIII branches are usually very 

small and may lie on cartilaginous structures (Gaffney 1979), so they are not expected to 

leave unambiguous traces on fossilized skulls. The glossopharyngeal (CN IX), vagus (CN X) 

and accessory nerves (CN XI) originate immediately posterior to the endosseous labyrinth 

and exit the braincase though the anterior jugular foramen in MB 1910.45.2. Although the 

sutures are not very clear, this foramen is thought to be formed by the exoccipital, 

basioccipital and opisthotic in P. quenstedti (Gaffney 1990). In SMNS 16980, a large nerve 

canal originates in a more dorsolateral position (Fig. 3.1). Due to the low resolution, it is 

unclear whether this canal represents the anterior jugular foramen or parts of the longitudinal 

sinus, though the latter is more likely. The hypoglossal nerve (CN XII) is transmitted through 
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a single foramen on each side of the basioccipital (posterior to the jugular foramen) in both 

specimens. 

Table 3. Results of one-way PERMANOVA test (10000 permutations) with 95% of variance (PC1-PC11), 

excluding Proganochelys and Diadectes (for phylogenetic groups only). 

Phylogenetic groups 

Permutation N 10000   
Total sum of squares (SQ) 1,901   
Within-group SQ 1,599   
F 3,653   

p 1.00E-01   

  Testudinata Archosauromorpha Lepidosauromorpha 

Testudinata    
Archosauromorpha 0.8423   
Lepidosauromorpha 0.003 0.0005999  

Synapsida 0.327 0.1056 0.4488 

    

Ecological groups 

Permutation N 10000   
Total SQ 77   
Within-group SQ 72   
F 1   

p 0.1656   

  Terrestrial Aquatic Marine 

Terrestrial    
Aquatic 1   
Marine 0.252 1  

Fossorial 0.6485 1 0.8387 

3.3.2. Endocast outline analysis 

The morphology of the endocast of Proganochelys quenstedti was compared to 

different turtles and other amniote taxa using shape analysis. The PCA results show that the 

first three PCs account for 71.7% (Table 3.2) of the brain endocast outline shape variation 

(Figs. 3.5–3.6). In no PC plot is there clear separation between either the phylogenetic or the 

ecological groups considered. However, the PERMANOVA tests supports that 

Lepidosauromorpha differs significantly from Archosauromorpha (p = 0.0006) and from 

Testudinata (p = 0.003) although these tests find no significant differences between the 

ecological groups (Table 3.3). The outgroup Diadectes is recovered consistently in a position 
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inside the morphospace occupied by other groups, whereas P. quenstedti is displaced from 

the occupied area in all plots; however, on the PC1 axis, Kawingasaurus is even more 

displaced in the positive direction (Fig. 3.5–3.6). P. quenstedti is distant from other turtles 

and the minimum spanning-tree (see Supplementary Material) places it closer to the 

lepidosauromorphs Placodus and Chalarodon, and to the archosauromorph Pseudopalatus, 

on the PC1/PC2, PC1/PC3 and PC2/PC3 plots, respectively. With regard to the ecological 

morphospaces, P. quenstedti is similarly found in a position outside all the groups, except on 

the PC1/PC3 plot, on which it is inside the fossorial morphospace and very close to the 

terrestrial one (Fig. 3.5). 

3.4. Discussion 

3.4.1. Ancestral condition for Testudinata 

Even though more taxa have been assigned to the turtle stem-lineage recently (Li et 

al. 2008; Lyson et al. 2010; Schoch & Sues 2015), Proganochelys quenstedti remains one of 

the most important stem-turtles, given its phylogenetic position as the earliest shelled turtle 

with a completely preserved skull (Parsons 1959, 1970; Halpern 1992; Joyce et al. 2016). Its 

endocast is a relatively simple structure when compared to that of crown-turtles (Carabajal 

et al. 2013; Mautner et al. 2017; Paulina-Carabajal et al. 2017; Ferreira et al. 2018b, Chapter 

4 of this thesis). It has a tube-like shape, with only small pontine and cephalic flexures and 

poorly differentiated brain regions. As in other amniotes, the portion between the fore- and 

midbrain is the most voluminous, but this is achieved exclusively by an increase in height, 

since the endocast is nearly constant in width over its entire length (Fig. 3.1). Another striking 

feature is the pendant pituitary fossa, which is very common in archosaurs (Witmer et al. 

2008; Lautenschlager & Butler 2016; Araújo et al. 2017; Pierce et al. 2017), but does not 

occur in extant turtles, in which the dorsum sellae and the sella turcica are aligned, 

positioning the pituitary fossa approximately at the same level as the posterior portions of the 

endocast (Figs. 3.2–3.3). Although the pituitary fossa of turtles can also house other smaller 

structures (e.g. internal carotid and abducens nerve) the size of the pituitary gland should be 

at least partially responsible for the larger size of the fossa in P. quenstedti. A similar 

condition was found for sauropod and theropod dinosaurs (Witmer et al. 2008), in which 
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enlarged pituitary glands have been linked to larger body sizes (Edinger 1942). While P. 

quenstedti reached a carapace length of at least 67 cm (based on MB 1910.45.2) (Gaffney 

1990), it was not one of the largest turtles, being much smaller than some extant turtles (e.g. 

up to 150-200 cm in Chelonia mydas and Pelochelys cantorii) (Angielczyk et al. 2015) and 

meiolanids (Gaffney 1996). Turtles included in our sample that are comparable in size to P. 

quenstedti, such as Podocnemis unifilis and Macrochelys temminckii (up to 68 and 66 cm of 

carapace length) (Angielczyk et al. 2015), and also Chelonia mydas, do not show a pendant 

pituitary fossa (Figs. 3.2–3.3). An alternative explanation is that it is not the pituitary fossa 

that is larger in P. quenstedti, but rather the brain that was comparatively smaller. Indeed, in 

our sample, this taxon has the lowest value for the ratio endocast volume/basicranial length 

(Table 3.1), supporting the hypothesis that the brain increased in size during turtle evolution. 

The brain endocast in turtles does not seem to be consistent with general skull 

anatomy. Taxa with higher/lower and wider/thinner endocasts do not possess similar skull 

proportions, which seem more related to the size and shape of the adductor chamber and the 

associated supraoccipital and squamosal crests (Fig. 3.7). Proportional changes observed in 

the adductor chamber throughout the turtle lineage rather reflect the distinct volume and size 

of the external jaw adductor musculature in different taxa (Claude et al. 2004; Foth & Joyce 

2016; Foth et al. 2017; Ferreira & Werneburg 2019, Chapter 2 of this thesis). Also, the 

position of the exits of the cranial nerves change only slightly, even with profound changes 

in the arrangement of related structures such as the eyes and muscles. For example, in P. 

quenstedti the external jaw adductor musculature innervated by the trigeminal nerve (CN V3) 

is vertically oriented and entirely positioned anteriorly to the quadrate (Ferreira & Werneburg 

2019, Chapter 2 of this Thesis), while in crown-turtles it extends far posteriorly, following 

the enlargement of the supraoccipital and squamosal crests (Poglayen-Neuwall 1953; 

Werneburg 2011, 2013). However, the relative position of the exit of CN V remains roughly 

the same through turtle evolution when compared to the remainder of the endocast and the 

surrounding bones (Fig. 3.7). Hence, the actual change that occurs when the muscles expand 

posteriorly involves only growth and reorientation of distal V3-branches and not a 

repositioning of the trigeminal nerve foramen (Poglayen-Neuwall 1953; Schumacher 1973). 
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Figure 3.4. Inner ear and otic region anatomy of Proganochelys quenstedti. Digital reconstruction of the right 

endosseus labyrinth of P. quenstedti in (A) right lateral, (B) dorsal, and (C) anterior views. Skulls of (D) P. 

quenstedti and (E) Eubaena cephalica in posterior view, redrawn from Gaffney (1990) with opisthotic and 

stapes coloured in green and blue, respectively. Skulls of (F) Sphenodon punctatus, (G) Emydura macquarii, 

and (H) P. quenstedti in lateral view, redrawn from Ferreira & Werneburg (2019), with quadrate coloured in 

red. Note the larger proportion of the stapes and its contact with the quadrate bone in P. quenstedti, and its 

slender and tall quadrate, similar to that of S. punctatus, and distinct from the round one of other turtles, that 

completely encloses the tympanic membrane. Abbreviations: asc, anterior semicircular canal; cc, crus 

communis; ex, exoccipital; fo, fenestra ovalis; lsc, lateral semicircular canal; pa, parietal; psc, posterior 

semicircular canal; qu, quadrate; sq, squamosal; ves, vestibulum. 

3.4.2. Sensory capabilities of Proganochelys quenstedti 

The endosseous labyrinth of Proganochelys quenstedti is slightly distinct from that 

of crown-turtles in being more compact and robust, with short and thick semicircular canals 

and a low crus communis resulting in almost horizontally oriented canals (Fig. 3.4). The 
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anterior and posterior semicircular canals (ASC and PSC, respectively) are nearly at the same 

level as the lateral semicircular canal (LSC), whereas in other turtles the first two run dorsally 

in relation to the last (Carabajal et al. 2013; Mautner et al. 2017; Paulina-Carabajal et al. 

2017; Ferreira et al. 2018b, Chapter 4 of this thesis). The angle between the ASC and LSC is 

also very wide (Table 3.1), with similar values to meiolaniids and tortoises (Paulina-

Carabajal et al. 2017). This combination of features suggests that the semicircular canals of 

P. quenstedti were not very sensitive during movements within the sagittal (head moving up 

and down) and coronal planes (head tilt) (Brichta et al. 1988; Spoor et al. 2007; David et al. 

2010). Instead, the LSC was likely more effective in stabilizing gaze during yaw movements 

(head moving left and right). Thus, the labyrinth anatomy of P. quenstedti indicates this 

species was slow and non-agile (Spoor et al. 2007; David et al. 2010), compatible with a 

highly terrestrial and possibly fossorial lifestyle. This is also tentatively indicated by its 

position in morphospace outside of, but close to, terrestrial and fossorial groupings in the 

shape analysis (Fig. 3.6). 

Although P. quenstedti cervical vertebrae were capable of a certain level of mobility 

(Werneburg et al. 2015a), its short neck coupled with the relatively low carapace, strong 

osteoderms on the dorsal neck surface and cervical ribs (Gaffney 1990) imply restricted 

mobility along the same planes (sagittal and coronal) (Werneburg et al. 2015a, 2015b) 

indicated by its labyrinth morphology. Crown turtles, however, evolved longer necks and 

several taxa are capable of complex and, sometimes, very fast neck and head movements 

(Poglayen-Neuwall 1953; Herrel et al. 2008; Werneburg et al. 2015a, 2015b). This could be 

related to the apparent increase in size of the semicircular canals in crown turtles (Spoor 

2003; Spoor et al. 2007) when compared to those of P. quenstedti (although when compared 

to more agile reptiles, all turtles possess short canals; Witmer et al. 2008). 
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Figure 3.5. Two dimensional morphospace plots of brain endocast outlines based on the first three PC axes 

using a priori defined phylogenetic groups. Diadectes is shown as a black cross, Proganochelys quenstedti 

(SMNS 16980) in bold. The symbols are used to identify the clade to which a point was assigned. Different 

vertebrate groups are indicated by convex hulls. 
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Figure 3.6. Two dimensional morphospace plots of brain endocast outlines based on the first three PC axes 

using a priori defined ecological groups. Diadectes is shown as a black cross, Proganochelys quenstedti (SMNS 

16980) in bold. The symbols are used to identify the clade to which a point was assigned. Different vertebrate 

groups are indicated by convex hulls. 
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Hearing was likely not well-developed in P. quenstedti, given the small overall size 

of the endosseous cochlear duct (Walsh et al. 2009) in comparison to other turtles. Even 

though its quadrate does not form the characteristic lateral round structure that encloses the 

cavum tympani in crown-turtles (Figs. 3.4F–H), it possibly had a tympanic ear similar to 

those of extant squamates and cheloniids, in which the tympanum is supported by both bone 

and connective tissue (Henson 1974; Gaffney 1990). However, the stapes of P. quenstedti 

was much stouter than that of crown-turtles (Figures 3.4D–E), and possibly articulated with 

the quadrate (Gaffney 1990), suggesting that it was not as effective as the thin vibratory 

element characteristic of extant amniotes with tympanic hearing, including modern turtles 

(Baird 1970; Clack 1997). As proposed by Clack (1997) for diapsids, elongation of the 

paraoccipital process of the opisthotic and its tight suturing to the squamosal, which occurred 

in the group including all testudinates but Proganochelys quenstedti (Sterli et al. 2010), may 

have completely released the stapes from its ancestral structural function (connecting the 

quadrate to other elements of the braincase) during turtle evolution. 

The nasal cavity of P. quenstedti represents at least 42.2% of the total endocast 

volume (Table 3.1), fitting in the volume spectrum of terrestrial turtle taxa, which ranges 

from 29-43% in tortoises and 58.5-64% in meiolaniids (Carabajal et al. 2013). Larger nasal 

cavities have been related to occupation of arid environments, thermoregulation, sound-

production or higher olfactory capabilities (Parsons 1959, 1970; Paulina-Carabajal et al. 

2017). In P. quenstedti, the cavum nasi proprium represents most of the volume of the nasal 

cavity and extends far dorsally and posteriorly. Within the nasal cavity, sensory epithelium 

occurs only on the cavum walls (Parsons 1970), and, as such, the cavum’s relative size could 

be used as a proxy for inferences about olfactory capability in extinct reptiles. This 

connection, however, should be interpreted cautiously, due to the possible relation between 

cavum size and other functions, such as thermoregulation or vocalization (Bourke et al. 2014; 

Paulina-Carabajal et al. 2017). 

The size and volume of the olfactory bulbs have been shown to be related to a greater 

reliance on the olfactory sense in mammals and birds (Bang 1971; Bang & Wenzel 1985; 

Healy & Guilford 1990; Gittleman 1991). In a series of studies, the olfactory ratio (ratio 

between olfactory bulb and cerebral hemisphere maximum diameters; OR values) were used 
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as a proxy to study olfactory acuity and capacity in theropod dinosaurs (including birds) and 

crocodilians (Zelenitsky et al. 2009, 2011). More recently this has also been applied to turtles 

(Paulina-Carabajal et al. 2017), showing that tortoises and meiolaniids (both terrestrial taxa) 

have the highest OR values (36-62% and 20-45%, respectively). Even though OR may not 

be an exact measure of olfactory acuity it is currently the best available proxy and its use for 

a variety of reptilian taxa (Zelenitsky et al. 2009, 2011; Paulina-Carabajal et al. 2017) makes 

it a useful comparative metric. Here, the OR is shown to be even higher in P. quenstedti, 

between 57-62% (Table 3.1), but in this case, these values may be also related to the less-

developed cerebral hemispheres rather than to larger olfactory bulbs. Nevertheless, the large 

nasal cavity in association with the high OR values supports the presented hypothesis that 

olfaction was possibly the most developed sense in P. quenstedti. 

3.4.3. Evolution of the turtle brain endocast 

In the shape analysis, Proganochelys quenstedti is not contained in the morphospace 

occupied by any of the considered phylogenetic groups (Fig. 3.5). There is extensive overlap 

in the PCA plots, but, at the same time, the PERMANOVA test shows a separation between 

Lepidosauromorpha, Testudinata and Archosauromorpha (Table 3.3). These results suggest 

that all amniotes (excluding dinosaurs and mammals) share a similar plesiomorphic brain 

endocast morphology, but that those lineages evolved in different directions in the 

morphospace. 

Comparing general ecological groups (freshwater, marine, terrestrial and fossorial) 

provided similar results, with extensive overlap among the occupied morphospaces (Fig. 

3.6). P. quenstedti is contained in the morphospace occupied by the fossorial group on the 

PC1/PC3 plot, but it falls outside every group on the other plots. Additionally, the statistical 

tests do not support significant differences between any of the considered groups (Table 3.3). 

On the other hand, the minimum spanning trees (see Supplementary Material) show that even 

when inside the fossorial morphospace P. quenstedti is closest to Placodus, a marine 

lepidosauromorph, and Pseudopalatus, an aquatic archosauromorph. A phylogenetic 

proximity to Sauropterygia (the lepidosauromorph lineage that includes Placodus) has been 

proposed previously (deBraga & Rieppel 1997) and is associated with the hypothesis that 

turtles originated in marine environments (Joyce & Gauthier 2004; Joyce 2015). The 
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proximity of P. quenstedti and Placodus in our PC1/PC2 plot (Fig. 3.6) may recall this 

hypothesis, but the poor sampling of sauropterygians together with the extensive overlap 

between all groups (phylogenetic and ecological) suggests this might not be a robust 

interpretation. 

 

Figure 3.7. Overall skull shape and proportional relation to cranial structures in different turtle taxa. Brain 

endocast and adductor chamber plotted in left lateral (first and third rows) and dorsal (second and fourth rows) 

views. Note the similar position of the trigeminal nerve exit regardless of the changes in surrounding structures. 

The shape analysis presented here is the first attempt to explore the evolution of 

neuroanatomy in amniotes with a quantitative approach. Even though the results do not 

support inferences about lifestyles from neuroanatomical data, the significant separation 

between some of the considered phylogenetic groups (Fig. 3.5, Table 3.3) seems promising. 

There are some caveats in the sample used in this study (e.g. few marine reptiles, synapsids 

and early amniotes) that can be easily overcome with the increasing use of computer 

tomography in paleontological and anatomical studies. The approach using sagittal cross-

section outlines could have also influenced the results, since there is a loss of information 

when the 3-D endocast is simplified to a 2-D outline. 

More recently, Lyson et al. (2016) thoroughly analyzed the morphology of 

Eunotosaurus africanus, identifying some osteological correlates that led them to conclude 

that it was likely well-adapted for fossoriality. The authors also identified some of those 

correlates (e.g. large claws) in other proto- (e.g. Odontochelys semitestacea) and stem-turtles 
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(Proganochelys quenstendti and Palaeochersis talampayensis), concluding that “fossoriality 

played an important role in the early evolution of turtles” (Lyson et al. 2016). Although in 

the PC1/PC3 plot (Fig. 3.6) P. quenstedti is contained in the fossorial morphospace, the 

minimum spanning tree (see online supplementary material) shows it to be closest to the 

terrestrial non-fossorial taxon Chalarodon and the statistical analyses do not support any 

significant differences between the considered groups (Table 3.3). While the shape analyses 

do not shed light on this problem conclusively, other sources of data are more convincing. 

Proganochelys quenstedti fossils were found in continental deposits (Gaffney 1990) and 

analyses of forelimb proportions (Joyce & Gauthier 2004) and paleohistology (Scheyer & 

Sander 2007) support it as a terrestrial turtle. The morphology of its endosseous labyrinth 

with short semicircular canals oriented at high angles to each other and the large cavum nasi 

proprium (Parsons 1970; David et al. 2010; Paulina-Carabajal et al. 2017) agree with these 

previous studies, strongly supporting the interpretation that P. quenstedti was a well-adapted 

terrestrial turtle. However, since its vestibule is not particularly large, in contrast to the 

condition of truly fossorial taxa (Yi & Norell 2015) or of the semi-fossorial tortoise Gopherus 

(Paulina-Carabajal et al. 2017), the present data suggest it was likely not a fossorial taxon. In 

P. quenstedti, the relatively enlarged vestibule in comparison to the other turtles in this study 

results from the relatively small semicircular canals. Thus, even if fossoriality had an 

important role during the early evolution of shell components (Lyson et al. 2016), the present 

data suggests the complete turtle shell first appeared in a terrestrial taxon, with no evident 

link to fossoriality (at the Testudinata node). 

If we assume that the relatively simple morphology of P. quenstedti closely resembles 

that of the testudinate ancestors, some trends can be inferred for the evolution of endocranial 

structures in turtles. An increase in overall encephalization, for example, with longer and 

more voluminous endocasts in relation to skull length is found already in the stem-turtle 

Naomichelys speciosa and continues in crown-turtles (Figs 3.2–3.3). Some regions became 

more pronounced as well. In N. speciosa, meiolaniids (Paulina-Carabajal et al. 2017), 

Plesiochelys etalloni (Carabajal et al. 2013) and all other crown-turtles (Mautner et al. 2017; 

Ferreira et al. 2018b, Chapter 4 of this thesis) the cerebral hemispheres are clearly 

distinguishable from the remainder of the endocast and are wider in relation to skull and 

endocast length than in P. quenstedti (Figs. 3.2–3.3). The olfactory bulb can also be seen in 
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the endocasts of some taxa, e.g., Testudo graeca and Plesiochelys etalloni (Carabajal et al. 

2013; Paulina-Carabajal et al. 2017). However, this does not seem to be a general trend but 

rather one of the features that show noteworthy variations among crown-turtles, as are the 

degree of development of the cephalic and pontine inflexions and the sizes of the nasal cavity 

and the orbits. Considering that the brain of P. quenstedti was a simple tube-like structure 

with poorly differentiated regions, an increase in size and in regionalization of the brain took 

place later during the course of turtle evolution, similarly (although in a much lesser degree) 

to the trend observed during bird evolution (Balanoff et al. 2013), and achieved an endocast 

diversity comparable to other groups of amniotes, such as lepidosaurs and archosaurs 

(excluding dinosaurs; Figs. 3.5–3.6). Indeed, extant turtles possess high brain weights in 

relation to body weight, comparable to that of crocodiles (Gürtürkün et al. 2016), but that 

was not the ancestral condition of the group based on our analyses. Given the recurrent results 

of phylogenetic analyses suggesting that turtles have parareptilian affinity (e.g. Laurin & 

Piñeiro 2017), it is important to sample the endocast diversity in that clade and explore the 

similarities between turtles and all other reptilian lineages. The simpler brain structure 

together with the large nasal cavity and nearly horizontal and short semicircular canals of the 

inner ear supports a picture of P. quenstedti as a terrestrial but most likely not fossorial turtle, 

with likely mediocre hearing and vision, but a well-developed olfactory sense. 
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Chapter 4 

Cranial osteology, phylogenetic position and neuroanatomy 

of a new Cretaceous pleurodire turtle: Yuraramirim 

montealtensis 
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4 Cranial osteology, phylogenetic position and neuroanatomy of a 

new Cretaceous pleurodire turtle: Yuraramirim montealtensis 

Abstract 

A high diversity of land vertebrates is known from the Late Cretaceous deposits of the Bauru 

Basin, Brazil, including at least five turtle taxa, all belonging to the clade Podocnemidoidae. 

Some of the richest fossil sites of this basin are in the area of Monte Alto-SP, which yielded 

several squamate, dinosaur, and crocodyliform taxa. Yet, the single turtle reported so far from 

this area was only briefly described. Here, I describe another specimen, a partial skull, found 

in outcrops of the Adamantina Formation. The comparative description of the skull and its 

inclusion in a phylogenetic study, supports the proposal of a new taxon, Yuraramirim 

montealtensis, representing a lineage (Peiropemydidae) so far known only from the Marília 

Formation of the Bauru Basin and the early Paleocene of Bolivia. The digitally reconstructed 

endocast and inner ear of the new taxon were also described, as not previously done for a 

fossil pleurodire, and provides data that can be used for larger scale sutides of 

neuroanatomical evolution of turtles. 

Keywords: Podocnemidoidae; inner ear; neuroanatomy; carotid circulation; digital 

reconstruction 
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4.1. Introduction 

The Late Cretaceous deposits of the Bauru Basin have yielded a high diversity of land 

vertebrates, including anurans, lizards, crocodylomorphs, non-avian and avian dinosaurs, and 

mammals (e.g. Bertini et al. 1993; Alvarenga & Nava 2005; Brito et al. 2006; Bittencourt & 

Langer 2011; Martinelli & Nava 2011; Báez et al. 2012). The record of freshwater turtles is 

also rich, including five valid taxa, namely Bauruemys elegans (Suárez 1969), Cambaremys 

langertoni França & Langer 2005, Peiropemys mezzalirai Gaffney et al. 2011, Pricemys 

caiera Gaffney et al. 2011, and Roxochelys wanderleyi Price 1953, two dubious taxa, 

“Podocnemis” harrisi Pacheco 1913, and “Podocnemis” brasiliensis Staesche 1937, and 

more fragmentary records that may represent additional taxa (e.g. Gaffney et al. 2011; 

Kischlat 2015; Menegazzo et al. 2015; Hermanson et al. 2016; but see Romano et al. 2013 

for other taxonomic interpretations). All Bauru group turtles belong to the stem-based clade 

Podocnemidoidae (França & Langer 2006; Podocnemididae of Gaffney et al. 2011), a side-

necked turtle lineage that includes the crown-group Podocnemididae and its sister-clade 

Peiropemydidae (see Phylogenetic Definition and Comments below). 

Deposits of the Adamantina and Marília formations crop out extensively in the area 

of Monte Alto, São Paulo, Brazil, and their study has been chief to improve the knowledge 

of the vertebrate fauna of the Bauru Basin. The fossil record in the region includes 

notosuchian (Pinheiro et al. 2008; Andrade & Bertini 2008; Iori & Carvalho 2009, 2011), 

peirosaurid (Carvalho et al. 2007), and trematochampsid crododyliforms (Iori & Garcia 

2012), titanosaur (Bertini et al. 2001; Santucci & Arruda-Campos 2011) and theropod 

dinosaurs (Mendez et al. 2014; Tavares et al. 2014), as well as squamates (Fachini & Iori 

2009; Fachini & Hsiou 2011). A single turtle specimen from the area, assigned to Pleurodira, 

has been briefly reported in a conference abstract (Iori & Carvalho 2010) and was recently 

fully described (Ferreira et al. 2018b). 

Here, I present an additional turtle specimen from the Late Cretaceous deposits of 

Monte Alto, an almost complete skull, that represents a new podocnemidoid taxon, 

Yuraramirim montealtensis (Ferreira et al. 2018b). Its osteology and neuroanatomy are 

described here and the taxon is included in a phylogenetic analysis. 
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4.2. Geological Settings and material 

The Bauru Basin (Fig. 4.1) is a large depression developed during the Cretaceous in 

the southeastern portion of the South American Plate (Fernandes & Coimbra 1996). The 

filling-up of this basin occurred under semi-arid to arid climatic conditions, between the 

Aptian and the Maastrichtian (Batezelli 2015). Two of its lithostratigraphic units crop out in 

the area of Monte Alto-SP, the Adamantina and Marília formations. Although the 

stratigraphy and age of the Bauru Basin units are controversial, there is a broad consensus 

that the Adamantina Fm. is older than the Marília Fm. (for a recent review on the issue, see 

Menegazzo et al. 2016). 

The specimen described here was collected from a sites in the area of Monte Alto that 

yield the sandy fluvial/lacustrine deposits of the Adamantina Formation (Fernandes & 

Coimbra 1994, 1996; Dias-Brito et al. 2001; Batezelli et al. 2003, 2005). MPMA 04-0008/89 

comes from the “Barreiro” site, along road SP-333, at the entrance to “Sítio da Serra”, type-

locality of the crocodyliform Barreirosuchus franciscoi (Iori & Garcia 2012). This site 

exposes an approximately 50 m thick sequence, composed mostly of the Adamantina 

Formation topped by the Marilia Formation. The specimen described herein, along with 

bivalve, fish, crocodyliform, and sauropod dinosaur remains were recovered from the basal 

bed (Iori & Garcia 2012), mostly composed of lightly cemented fine reddish sandstones, with 

sparse carbonate nodules. In the same bed, disarticulated post-cranial remains of at least three 

other turtles were also found (MPMA 04-0009/89, MPMA 04-0014/89 and MPMA 04-

0017/89). The turtle skeletons disarticulated during the biostratinomic phase, but remained 

concentrated in the same area. 
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Figure 4.1. Location of the Bauru Basin on a South American map (top left), São Paulo state map showing the 

surface distribution of the stratigraphic units of the basin (bottom left), and map of the Monte Alto region 

highlighting the localities where the described fossil was found together with the other specimen described in 

Ferreira et al. (2018b). 

4.3. Methods 

A phylogenetic data-matrix with 39 taxa and 95 characters (see Nexus file on the 

online supplementary material link on the first page of this chapter) was compiled using the 

original matrix of Gaffney et al. (2011), with the addition of MPMA 04-0008/89, Bairdemys 

thalassica (Ferreira et al. 2015), and 21 characters from other sources (see online 

supplementary material; Gaffney et al. 2006; Meylan et al. 2009; Cadena et al. 2012; Dumont 

Junior 2013; Cadena 2015; Ferreira et al. 2015). As MPMA 04-0008/89 is clearly a 

representative of the Podocnemidoidae, based on the presence of the processus trochlearis 

pterygoidei and cavum pterygoidei, I used this data-matrix that focuses on this lineage, 

instead of more inclusive ones (e.g. Gaffney et al. 2006; Cadena 2015). The matrix was 

analyzed in TNT v. 1.5 (Goloboff et al. 2008), with Chelidae set as the primary outgroup and 

parsimony as the search criterion (“traditional search” with 1.000 replicates, hold 20, random 

seed = 0, collapse of zero length branches). Functions implemented in TNT were employed 

to summarize the most parsimonious trees (MPTs) in strict consensus, as well as to calculate 

Bremer support and Bootstrap (GC, 1000 replicates; Goloboff et al. 2003) values. 
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Micro CT-scan images were obtained using a SkyScan 1176 at Faculdade de 

Odontologia de Araraquara (FOAr-UNESP), with 721 projections over 360º, exposure time 

of 540 ms, voltage of 90 kV, current of 275 µA, and a resolution of 17 μm per pixel. NRecon 

v. 1.6.9.8 and DataViewer v. 1.5.0 were used to process the cross-sectional images. 

Materialise Mimics Research edition version 18.0 was used for digital reconstructions and 

measurements of the skull bones and endocasts of the brain and inner ear. 

4.3.1. Institutional Abbreviations  

AMNH, American Museum of Natural History, New York, USA; CPPLIP, Centro 

de Pesquisas Paleontológicas “Llewellyn Ivor Price”, Peirópolis, Uberaba, Brazil; MCT 

(DGM), Museu de Ciências da Terra, Divisão de Geologia e Mineralogia, Departamento 

Nacional de Produção Mineral, Rio de Janeiro, Brazil; MCZ, Museum of Comparative 

Zoology, Harvard University, Cambridge, Massachusetts, USA; MN, Museu Nacional, 

Universidade Federal do Rio de Janeiro, Brazil; MPMA, Museu de Paleontologia “Prof. 

Antonio Celso de Arruda Campos”, Monte Alto, Brazil; LPRP/USP, Laboratório de 

Paleontologia de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. 

4.4. Systematic Paleontology 

Pleurodira Cope 1864 

Pelomedusoides Broin 1988 

Peiropemydidae nomen translatum ex Peiropemydodda Gaffney, Meylan, Wood, 

Simons & Campos 2011 

4.4.1. Phylogenetic Definition 

Peiropemydidae refers to the branch-based clade that includes all taxa more closely 

related to Peiropemys mezzalirai Gaffney et al. 2011, and Lapparentemys vilavilensis (Broin 

1971) than to Podocnemis expansa (Schweigger 1812). 
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Figure 4.2. Yuraramirim montealtensis, MPMA 04-0008/89. Outlines and photographs of the skull in (a, b) 

dorsal, (c, d) right lateral, (e, f) ventral, (g, h) anterior, (i, j) left lateral, and (k, l) posterior views. Abbreviations: 

ii and vii, epidermal scutes (sensu Ferreira et al. 2015); ap, antrum postoticum; bo, basioccipital; bs, 

basisphenoid; cc, cavum cranii; cm, condylus mandibularis; cpt, cavum pterygoidei; ex, exoccipital; fpc, fossa 

precolumellaris; fpp, foramen palatinum-posterius; fr, frontal; ica, incisura columella auris; ju, jugal; mx, 

maxilla; op, opisthotic; pa, parietal; pal, palatine; pf, prefrontal; pm, premaxilla; po, postorbital; pt, pterygoid; 

ptp, processus trochlearis pterygoidei; qj, quadratojugal; qu, quadrate; so, supraoccipital. 
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4.4.2. Comment 

Peiropemydodda was used by Gaffney et al. (2011) to refer to the clade (infrafamily) 

formed by Peiropemys mezzalirai, Pricemys caiera and Lapparentemys vilavilensis, which 

was included in the family Podocnemididae. The latter name was used in a more inclusive 

manner than more recent usage (e.g. Romano et al. 2014; Cadena 2015), which justified the 

use of the suffix –odda for the infrafamily Peiropemydodda. As Podocnemididae is now more 

commonly used to refer to the crown-clade including the extant lineages of Podocnemis sp., 

Erymnochelys madagascariensis, and Peltocephalus dumerilianus (Joyce et al. 2004), the 

infrafamily Peiropemydodda is not anymore, a subdivision of Podocnemididae, justifying the 

translation of that name to Peiropemydidae, as defined above. I suggest that the name 

Peiropemydodda remains with its original meaning, as diagnosed by Gaffney et al. (2011), 

to include only Peiropemys mezzalirai, Pricemys caiera and Lapparentemys vilavilensis. 

Yuraramirim gen. nov. 

4.4.3. Type species 

Yuraramirim montealtensis sp. nov. 

4.4.4. Etymology 

Composition of two Tupi (a Brazilian native language) words: yurara, meaning 

“turtle”, and mirim, meaning “small”. 

4.4.5. Diagnosis 

A small Podocnemidoidae based on the right angle formed by the processus 

trochlearis pterygoidei and the cavum pterygoidei; a Peiropemydidae based on the 

anteroventral emargination projecting above the ventral level of the orbit (Gaffney et al. 

2011). Compared to other peiropemydid and Bauru Group turtles, it is similar in size to 

Bauruemys elegans, but smaller than all other peiropemydids; the skull is roughly the same 

height along its entire length, as in Peiropemys mezzalirai and Lapparentemys vilavilensis, 

differing from that of Bauruemys elegans; the rostral tip of the basisphenoid is acute as in 

Pricemys caiera, but not in Bauruemys elegans and Peiropemys mezzalirai; the foramen 

palatinum posterius is formed by the palatine and pterygoid, differing from Peiropemys 
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mezzalirai; the fossa precolumellaris is very large as in Peiropemys mezzalirai, in contrast to 

Pricemys caiera; skull dermal scute vii (sensu Ferreira et al. 2015; same as interparietal scute) 

has the anterior margins on the frontal and lateral edges converging posteriorly as in 

Bauruemys elegans, Lapparentemys vilavilensis and Peiropemys mezzalirai, but differing 

from the latter two by an anterior notch on the midline, as also found in Bauruemys elegans. 

Yuraramirim montealtensis sp. nov. (Figs. 4.2–4.6) 

4.4.6. Material 

Holotype MPMA 04-0008/89 (Figs. 4.2–4.6), a partial skull lacking both premaxillae 

and squamosals, most of the maxillae, and portions of several other bones (see Comparative 

Description) housed at the Museu de Paleontologia “Prof. Antonio Celso de Arruda 

Campos”, Monte Alto, Brazil. 

4.4.7. Etymology 

The name refers to Monte Alto municipality where the holotype was found. 

4.4.8. Diagnosis 

As for genus. 

4.4.9. Type stratum and locality 

Reddish sandstones of the Late Cretaceous Adamantina Formation, exposed at the 

entrance to “Sítio da Serra” (S 21° 15’ 06.9’’, W 48° 33’ 10.4’’), Monte Alto-SP, Brazil. 

4.5. Description 

The skull of MPMA 04-0008/89 is 35 mm long as preserved, much smaller than other 

peiropemydids (e.g. the holotype of Peiropemys mezzalirai is approximately 90 mm long 

excluding the crista supraoccipitalis, and the specimen AMNH 14444 referred to 

Lapparentemys vilavilensis is 96 mm long). The adductor chamber is completely filled by 

matrix, but parts of its roof were imprinted in the sandstone, forming a natural endocast (Fig. 

4.2). The skull is relatively high at the orbital region, with a value of 0.80 for the height at 
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orbit/largest height ratio, approaching the condition of Lapparentemys vilavilensis (AMNH 

14444) and Peiropemys mezzalirai (MCT 147), which have 0.69 and 0.79 ratios, 

respectively, whereas that of Bauruemys elegans (Kischlat & Azevedo 1991) ranges from 

0.50 (MCZ 4123) to 0.55 (MCT 1753). Some epidermal scute sulci are poorly preserved, but 

various features can be observed: based on the preserved borders, scute vii (sensu Ferreira et 

al. 2015) possibly formed a small and equilateral triangle with smooth edges similar to that 

of Peiropemys mezzalirai and Lapparentemys vilavilensis, but the anterior sulcus shared with 

scute ii on the frontal and postorbital has an anterior notch on the midline, as in Bauruemys 

elegans (Gaffney et al. 2011); part of the posterior edge of scute ii is preserved on the 

postorbital, but its extension cannot be determined. 

Prefrontal.—The prefrontal is partially preserved and it is therefore possible to 

identify its posterior contact with the frontal. The bone forms the anteromedial edge of the 

orbit, as in most podocnemidoids. The interorbital distance is similar to that of Bauruemys 

elegans, Peiropemys mezzalirai, and Lapparentemys vilavilensis (Gaffney et al. 2011), and 

the large orbit is directed dorsolaterally as in other peiropemydids. 

Frontal.—As in most podocnemidoids, the frontal contacts the prefrontal anteriorly, 

the other frontal medially, the postorbital posterolaterally, and the parietal posteriorly. It has 

an almost squared dorsal outline, with subparallel lateral and medial edges, as in Bauruemys 

elegans and differing slightly from Lapparentemys villavilensis and Peiropemys mezzalirai, 

which have diverging lateral and medial edges. The anterior and posterior edges are also 

subparallel, as in Peiropemys mezzalirai, but not in Hamadachelys escuilliei, Lapparentemys 

villavilensis, and most Bauruemys elegans specimens (although some have subparallel edges, 

e.g. MCZ 4123 in Gaffney et al. 2011: fig. 13), in which the frontal-prefrontal suture projects 

anteromedially. The frontal forms the anteromedial margin of the orbit, as in other 

podocnemidoids. 
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Figure 4.3. Micro-CT scan reconstructed 3-D models of the skull in (a) dorsal view without parietal, frontal 

and prefrontal bones, (b) anterior view, (c) oblique right lateral view, and isolated basisphenoid and pterygoid 

bones in (d) oblique left lateral and (e) dorsal views. Abbreviations: ap, antrum postoticum; bo, basioccipital; 

bs, basisphenoid; cc, cavum cranii; cm, condylus mandibularis; cnv, canalis nervi vidiani; cpt, cavum 

pterygoidei; ex, exoccipital; facci, foramen anterius canalis caroticus interni; fcl, foramen caroticus laterale; 

fm, foramen magnum; fnt, foramen nervi trigemini; fnv, foramen nervi vidiani; fpc, fossa precolumellaris; fpp, 

foramen palatinum-posterius; fr, frontal; ica, incisura columella auris; ju, jugal; mx, maxilla; op, opisthotic; 

pa, parietal; pal, palatine; pf, prefrontal; pm, premaxilla; po, postorbital; pt, pterygoid; ptp, processus 

trochlearis pterygoidei; qj, quadratojugal; qu, quadrate; rbs, rostrum basisphenoidale; scv, sulcus cavernosus; 

so, supraoccipital sot, septum orbitotemporale; spp, sulcus palatino-pterygoideus; st, sella turcica. 
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Parietal.—Only the horizontal parietal plate is exposed in MPMA 04-0008/89 and its 

posterior margin is not completely preserved (Fig. 4.2A). However, the limits of the 

posterodorsal emargination are preserved in the natural cast of the adductor chamber, and it 

reached half the length of the cavum tympani, as in Bauruemys elegans and Pricemys caiera, 

in contrast to the more extensive emargination of Hamadachelys escuilliei and the less 

extensive ones of Lapparentemys vilavilensis and Peiropemys mezzalirai (Tong & Buffetaut 

1996; Gaffney et al. 2011). The parietal plate meets the frontal anteriorly, the postorbital 

anterolaterally, the quadratojugal posterolaterally, and the other parietal medially, as seen in 

other podocnemidoids (Gaffney et al. 2011). As in other peiropemydids, the medial suture 

between the parietals extends posteriorly, and the supraoccipital either does not take part of 

the skull roof, or has only a slight exposure on it (Gaffney et al. 2011). With the help of micro 

CT images (Fig. 4.3), it is possible to identify the sutures of the processus inferior parietalis 

with the prootic posterolaterally, on the dorsal surface of the otic chamber, the supraoccipital 

posteriorly, and the pterygoid anteriorly. As in most other podocnemidoids, the parietal of 

MPMA 04-0008/89 forms the dorsal margin of the foramen nervi trigemini (Fig. 4.3C), along 

with the prootic posteriorly and the pterygoid anteriorly (Gaffney et al. 2011). 

Jugal.—The jugal is fractured on both sides (Fig. 4.2) of MPMA 04-0008/89. 

Nevertheless, it is possible to identify some of the contacts seen in most pelomedusoids: with 

the maxilla anteriorly, the postorbital dorsally, and the quadratojugal posteriorly (Gaffney et 

al. 2006, 2011). Also, part of the ventral margin of the left jugal is preserved and, together 

with the natural cast of the quadratojugal on the right side (Fig. 4.2C), allows inferring the 

extension of the anteroventral emargination, which is composed by the jugal and 

quadratojugal, as in other pelomedusoids (Gaffney et al. 2006, 2011). This emargination 

surpasses the ventral level of the orbit dorsally (about half the height of the cavum tympani), 

as seen in Peiropemys mezzalirai and Lapparentemys vilavilensis, and is likely 

synapomorphic of Peiropemydidae (unknown in Pricemys caiera), differing from the less 

extensive anteroventral emarginations of Hamadachelys escuilliei and Bauruemys elegans, 

which do not surpass the ventral margin of the orbit (Tong & Buffetaut 1996; Gaffney et al. 

2011). 
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Quadratojugal.—The quadratojugal has preserved contacts with the postorbital 

anteromedially, the parietal medially, the quadrate posterolaterally, and possibly the jugal 

anteriorly, as in other peiropemydids. The suture with the squamosal is not preserved and 

that with the quadrate follows the anterior curvature of the cavum tympani, as in other 

pelomedusoids (Gaffney et al. 2006, 2011). Compared to other non-Podocnemididae 

podocnemidoids, the quadratojugal of Yuraramirim montealtensisis more similar to those of 

Hamadachelys escuilliei, Peiropemys mezzalirai and Lapparentemys vilavilensis, differing 

from that of Bauruemys elegans, in which it is antero-posteriorly compressed (Tong & 

Buffetaut 1996; Gaffney et al. 2011). 

Postorbital.—The postorbital is antero-posteriorly elongated, forming the 

posterodorsal margin of the orbit and contacting the frontal medially, the parietal 

posteromedially, the quadratojugal posterolaterally, and the jugal laterally (Fig. 4.2I, J). This 

differs from the very reduced postorbital of the different species of Podocnemis, which is 

sometimes not even exposed in dorsal view (Gaffney et al. 2011). In Yuraramirim 

montealtensis it has a ventral projection that forms most of the septum orbitotemporale, 

contacting the jugal ventrolaterally and the pterygoid ventrally at the anterior base of the 

processus trochlearis pterygoidei, where it forms the posterodorsal part of the sulcus palatino-

pterygoideus roof (Fig. 4.3B, C), as in other pelomedusoids (Gaffney et al. 2011). In the 

anterior part of the septum orbitotemporale, the postorbital contacts the frontal 

dorsomedially, the jugal ventrolaterally, and the palatine ventromedially (Fig. 4.3B, C). 

Maxilla.—Only small fragments of the right maxilla are preserved in MPMA 04-

0008/89. It is possible to identify its contact to the jugal posterodorsally and to the palatine 

posteroventrally (Fig. 4.2C). 

Palatine.—The anterior portion of the palatine is not preserved and only the posterior 

part of the horizontal plate is exposed in MPMA 04-0008/89, with the vertical structures 

covered by matrix. It contacts the maxilla anterolaterally, its counterpart medially, and the 

pterygoid posteriorly. The palatine appears to be exposed on the orbital floor (Fig. 4.2A), 

covering the medial part of the maxilla, as typical of non-Podocnemididae Podocnemidoidae, 

but not very clear in Peiropemys mezzalirai. The foramen palatinum posterius reaches the 

palatine-pterygoid suture (Figs. 4.2E, 4.3A) as in Lapparentemys vilavilensis and some 
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specimens of Bauruemys elegans, differing from Peiropemys mezzalirai, in which it is 

restricted to the palatine (Gaffney et al. 2011). The position of this foramen, however, may 

be variable within the same taxon, as is the case in B. elegans (Gaffney et al. 2011). 

Quadrate.—As in other pleurodires, the quadrate of Yuraramirim montealtensis 

forms the entire cavum tympani (Gaffney 1979; Gaffney et al. 2006, 2011), contacting the 

lateral surface of the quadratojugal anteriorly. On the roof of the otic chamber, the quadrate 

contacts the prootic anteriorly and the opisthotic posteromedially (Fig. 4.3A, C). The fossa 

precolumellaris is very large, as in Peiropemys mezzalirai, and larger than those of other non-

podocnemidid podocnemidoids (Tong & Buffetaut 1996; Lapparent de Broin 2000; Gaffney 

et al. 2011). The antrum postoticum is also well-developed (Fig. 4.2K, L), comparable in size 

to those of Podocnemis unifilis and Galianemys emringeri (Gaffney et al. 2006, 2011). The 

incisura columellae auris is completely closed by the contact of the dorsal and ventral 

processes of the quadrate, as in other Podocnemidoidae (Gaffney et al. 2011). 

As in other pelomedusoids, the ventral surface of the quadrate of Yuraramirim 

montealtensis meets the basioccipital posteromedially and the basisphenoid medially, its 

anteromedial projection contacting the pterygoid (Fig. 4.2E, F). It also forms part of the roof 

of the cavum pterygoidei, where it contacts the pterygoid anterolaterally, the prootic 

anteromedially, and the basisphenoid posteromedially, as typical of podocnemidoids 

(Lapparent de Broin 2000; Gaffney et al. 2011). Although the condylus mandibularis is not 

preserved in MPMA 04-0008/89, it is possible to infer that it was anterior to the 

basisphenoid-basioccipital suture, as in all other known podocnemidoids, except for some 

Stereogenyina (Gaffney et al. 2011; Ferreira et al. 2015). Very little is preserved of the 

posterior surface of the quadrate. Only an outline of the fenestra postotica is seen (Fig. 4.2K), 

which is wide as in other podocnemidoids, differing from the slit-like fenestra of 

Cearachelyini (Gaffney et al. 2006).  

Pterygoid.—As in most podocnemidoids, the pterygoid of Yuraramirim 

montealtensis contacts the palatine anteriorly, its counterpart medially, the quadrate 

posterolaterally, and the basisphenoid posteromedially. As synapomorphic for pleurodires, 

the pterygoid forms the processus trochlearis pterygoidei laterally, which is nearly 

perpendicular to the midline in MPMA 04-0008/89. This latter condition is typical of Pan-
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Podocnemididae, compared to Chelidae or Pelomedusidae (Gaffney et al. 2006, 2011). Yet, 

the angle formed by the lateral margin of the process is almost 90°, as in Podocnemis 

expansa, Portezueloemys patagonica, Peltocephalus dumerilianus, Peiropemys mezzalirai, 

and other podocnemidids (de la Fuente 2003; Gaffney et al. 2011; Cadena 2015), whereas 

that angle is more oblique in Bauruemys elegans, Lapparentemys vilavilensis, Hamadachelys 

escuilliei, Cearachelys placidoi, and most bothremydids (Tong & Buffetaut 1996; Lapparent 

de Broin 2000; Gaffney et al. 2011). The pterygoid of Yuraramirim montealtensis also forms 

a well-developed pterygoid flange, typical of Podocnemidoidae (França & Langer 2006), 

developing a complete cavum pterygoidei (Fig. 4.2E, 4.3E). The thin plate that forms the 

floor of the cavum pterygoidei is very fragile and usually broken in fossil specimens (Gaffney 

et al. 2011), but it is partially preserved in MPMA 04-0008/89 (Fig. 4.2F). 

The cavum pterygoidei is also formed by the basisphenoid, prootic, and quadrate, in 

addition to the pterygoid, as in all podocnemidoids (Gaffney et al. 2011). Its anterior opening 

is large and corresponds to the foramen caroticum laterale (Fig. 4.3D), which is enlarged in 

Yuraramirim montealtensis, as in other peiropemydids and Podocnemis spp. (Gaffney et al. 

2011). The cavity is roofed by the prootic and, hence, not continuous to the canalis 

cavernosus as in Peltocephalus dumerilianus and Erymnochelys madagascariensis 

(Lapparent de Broin 2000; Gaffney et al. 2011). Anteriorly to the foramen cavernosum 

formed by the prootic and the quadrate, the sulcus cavernosus extends on the dorsal surface 

of the pterygoid, running laterally to the rostrum basisphenoidale (Fig. 4.3E). The foramen 

caroticum laterale also opens in this sulcus (Gaffney 1979). Finally, the very small foramen 

nervi vidiani can be seen in the 3-D model as a perforation on the pterygoid inside the cavum 

pterygoidei as in other podocnemidoids (Gaffney et al. 2011), lateral to the foramen 

caroticum laterale (Fig. 4.3D). The canal for this branch of the facialis nerve (Gaffney 1979) 

could only be reconstructed partially; it extends anteriorly along the pterygoid, but its 

anteriormost portion cannot be determined (Fig. 4.3E). 
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Figure 4.4. Digital endocasts of the brain with associated cranial nerves and blood vessels in (a) left lateral, (b) 

dorsal, and (c) ventral views, and of the endosseous labyrinth with the columella auris in (d) right lateral, (e) 

dorsal, and (f) anterior views. On the brain endocast models only the right labyrinth is showed for better 

visualization. Abbreviations: a.a, anterior ampulla; ap, antrum postoticum; asc, anterior semicircular canal; 

ccv, canalis cavernosus; ce.c, cerebral branch of internal carotid; cer, cerebral hemisphere; col, columella auris; 

col.f, columella auris footplate; cpt, cavum pterygoidei; cr, cartilaginous ridge; cru, crus communis; cst, canalis 

stapedio-temporalis; fo, fenestra ovalis; lag, lagena; lsc, lateral semicirular canal; med, medulla oblongata; ofb, 

olfactory bulbus; oft, olfactory tract; p.a, posterior ampulla; pa.c, palatal branch of internal carotid; pit, pituitary 

fossa; psc, posterior semicircular canal; V, trigeminal nerve; VI, abducens nerve; VII, facialis nerve; VII.p, 

palatine (or vidian) branch of VII. 
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Supraoccipital.—The supraoccipital is not exposed on the skull roof of MPMA 04-

0008/89 (Figs. 4.2A, 4.3C). This matches the condition of all known Peiropemydidae, the 

parietals of which cover almost the entire dorsal surface of that bone, in contrast to other 

podocnemidoids such as Bauruemys elegans and the different species of Podocnemis 

(Gaffney et al. 2011). Other parts of the supraoccipital of MPMA 04-0008/89 are covered by 

matrix and can only be seen in the micro CT images (Fig. 4.3). The bone forms the dorsal 

edge of the foramen magnum, contacting the exoccipitals posteroventrally, the prootic 

anterolaterally, the opisthotic posterolaterally, and the parietals anterodorsally (Fig. 4.3C). 

Exoccipital.—The exoccipital of MPMA 04-0008/89 contacts the supraoccipital 

dorsally, the opisthotic laterally, and the basioccipital ventrally (Fig. 4.2K, L). The contact 

with the quadrate cannot be seen in this specimen, but the exoccipitals form the lateral edges 

of the foramen magnum. The foramina nervi hypoglossi are not preserved and the foramen 

jugulare posterius seems partially preserved on its right side (Fig. 4.2K), but it is not clear if 

it is continuous with the fenestra postotica as in Bauruemys elegans and Portezueloemys 

patagonica (de la Fuente 2003; Gaffney et al. 2011), or closed as in peiropemydids and 

podocnemidids (Gaffney et al. 2011). 

Basioccipital.—In ventral view, the basioccipital of MPMA 04-0008/89 contacts the 

basisphenoid anteriorly and the quadrate laterally (Fig. 4.2F). The posterior most portion of 

the bone is not preserved and the contacts with the opisthotic and exoccipital are not clearly 

seen (Fig. 4.2K). Although not entirely preserved, the tubercula basioccipitale are smoother 

than in Bauruemys elegans and the different species of Podocnemis and the space between 

the tubercula appears to be wider than in those taxa (Gaffney et al. 2011), and more similar 

to the condition found in Lapparentemys vilavilensis and Peiropemys mezzalirai (Fig. 4.2E, 

F). 

Prootic.—Most of the prootic is covered by matrix in MPMA 04-0008/89, but the 

micro-CT scan images and the 3-D reconstructions reveal its contacts and several structures 

(Fig. 4.3). As in all podocnemidoids, the prootic is completely covered in ventral view by the 

pterygoid, except inside the cavum pterygoidei, in which it forms the dorsomedial portion of 

its roof (Gaffney et al. 2011) and contacts the basisphenoid medially, the quadrate laterally, 

and the pterygoid anterolaterally. On its dorsal portion it also contacts the opisthotic 
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posteriorly, the supraoccipital posteromedially, and the parietal anteromedially. Together 

with the parietal and pterygoid, it forms the border of the foramen nervi trigemini, which 

opens laterally on the fossa temporalis inferior, as in other pleurodires (Gaffney et al. 2006, 

2011). 

Due to the poor contrast between fossil and matrix some smaller structures are 

difficult to identify in the micro-CT images. The foramen nervi facialis in the prootic inside 

the cavum pterygoidei, as found in Pricemys caiera, Peiropemys mezzalirai, and other 

podocnemidoids (Gaffney et al. 2011) could not be identified. On the other hand, the canalis 

cavernosum, between the prootic and quadrate, as well as the canalis stapedio-temporalis, 

could be completely reconstructed. The former starts posteriorly, in the fenestra postotica, 

and extends anteriorly to the foramen cavernosus, bordered by the prootic medially and 

quadrate laterally, following on the pterygoid as the sulcus cavernosus. The canalis stapedio-

temporalis, branches from nearly half-way the length of the canalis cavernosus, carrying the 

arteria stapedialis to the foramen stapedio-temporalis (Gaffney 1979). The latter is also 

bordered by the prootic and quadrate, opening dorsally on the external surface of the otic 

chamber on the fossa temporalis superior, as in other podocnemidoids (Gaffney et al. 2011). 

Opisthotic.—Only small parts of the opisthotic of MPMA 04-0008/89 are visible, but 

its dorsal surface can be seen in the micro-CT images (Fig. 4.3). It is possible to identify the 

contacts to the prootic anteriorly, supraoccipital medially, exoccipital posteromedially, and 

quadrate laterally, as in other podocnemidoids (Tong & Buffetaut 1996; Lapparent de Broin 

2000; Gaffney et al. 2011). 

Basisphenoid.—The basisphenoid differs from that of most non-podocnemidid 

podocnemidoids (Suárez 1969; Tong & Buffetaut 1996; Lapparent de Broin 2000), except 

for Pricemys caiera, in having an acute anterior tip exposed in ventral view (Fig. 4.2E, F). 

This could be an ontogenetic variation, as the sutural contact between the pterygoids could 

extend posteriorly to cover that tip in older specimens. As in other podocnemidoids, the 

basisphenoid of Yuraramirim montealtensis has a pentagonal shape (Fig. 4.2E). It contacts 

the pterygoids anteriorly and, inside the cavum pterygoidei, a small ventral exposure of the 

prootic anterolaterally. It also contacts the quadrate laterally and the basioccipital posteriorly. 
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The latter suture is smoother than in Bauruemys elegans (Suárez 1969) and similar to those 

of peiropemydids (Gaffney et al. 2011). 

On the dorsal surface of the basisphenoid of Yuraramirim montealtensis, as revealed 

by our 3D model (Fig. 4.3E), the rostrum basisphenoidale projects anteriorly over the dorsal 

surface of the pterygoids. Posteriorly, the sella turcica is preserved on the midline and its 

posterolateral walls are pierced by the foramen anterius canalis carotici interni, through 

which the internal carotid artery enters the cavum cranii (Gaffney 1979). The foramen nervi 

abducentis is smaller and opens slightly posterior to the foramen anterius canalis carotici 

interni, also laterally on the basisphenoid and inside the cavum pterygoidei. 

Cranial endocast.—The brain endocast reconstructed for MPMA 04-0008/89 exhibits 

a tubular shape (Fig. 4.4A), as in other known extinct and extant turtles (Zangerl 1960; 

Gaffney 1977; Wyneken 2001; Paulina-Carabajal et al. 2013, 2017; Mautner et al. 2017). 

The medulla oblongata is located slightly below the level of the cerebral hemispheres, similar 

to the extant Dermochelys coriacea, Malacochersus tornieri, and Macrochelys temminckii, 

as well as to the extinct Corsochelys haliniches (Hopson 1979; Paulina-Carabajal et al. 2013; 

Mautner et al. 2017). Yet, in these taxa and in Yuraramirim montealtensis the braincase 

elements are found almost in the same horizontal plane (Fig. 4.4A), differing from the 

condition of other podocnemidoid turtles such as Bothremys cooki and Chedighaii barberi 

(Hopson 1979; Gaffney et al. 2006), and some sea turtles (Wyneken 2001), in which the 

pontine and cephalic flexures of the brain position the medula oblongata well below the 

cerebral hemispheres (Hopson 1979). The latter are easily discernible in MPMA 04-0008/89 

and more laterally expanded than in Plesiochelys etalloni, as also seen in Bothremys cooki 

and Corsochelys haliniches (Hopson 1979). The olfactory bulbs project laterally just anterior 

to the cerebral hemispheres, and the endocast continues anteriorly forming the slender 

olfactory tract (Fig. 4.4A, B). Projecting ventrally from the ventral surface of the endocast it 

is possible to identify the pituitary cast, in which the pituitary gland is located (Fig. 4.4A). 

Dorsal to the cerebellum, a subtle subtriangular area is found (Fig. 4.4A, B), 

corresponding to the cartilaginous ridge (Paulina-Carabajal et al. 2013), or cartilaginous 

“rider” (Gaffney & Zangerl 1968; Gaffney 1982). Among extinct turtles, Bothremys cooki, 

Corsochelys haliniches, and the baenid Plesiobaena antiqua (Hopson 1979; Gaffney 1982), 
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as well as meiolaniids (Paulina-Carabajal et al. 2017) seem to possess a more prominent 

version of this ridge, as in Yuraramirim montealtensis, but not in Plesiochelys etalloni 

(Paulina-Carabajal et al. 2013). 

Only some of the cranial nerves could be reconstructed in MPMA 04-0008/89 (Fig. 

4.4). The canal for the trigeminal nerve (V) projects laterally from the endocast, 

posteroventrally to the cerebral hemispheres and dorsally to the pituitary cast (Fig. 4.4A). 

The facialis nerve (VII) leaves the endocast more posteriorly, just anterior to the endosseous 

labyrinth, and extends laterally inside the prootic, to the canalis cavernosus (Fig. 4.4B, C). 

The latter, after branching off from the dorsal canalis stapedio-temporalis (Fig. 4.4A), 

extends anteromedially. As in peiropemydids and Podocnemis spp. (Gaffney et al. 2011), it 

turns into the sulcus cavernosus after leaving the foramen cavernosum, where it 

communicates with the ventral cavum pterygoidei (Fig. 4.4A). The canalis cavernosus 

contains the lateral head vein in pleurodires (Gaffney 1979), which runs anteriorly through 

the sulcus cavernosus, lateral to the rostrum basisphenoidale (Fig. 4.3E). The canal for the 

palatine (or vidian) branch of the facialis nerve (Gaffney 1979) could be partially identified 

inside the pterygoid. It leaves the anterior wall of the cavum pterygoidei and extends 

anteriorly (Figs. 4.3E, 4.4C). A small canal anteroventral to the nerve facialis could be 

identified in the micro-CT scan images, and could correspond to the abducens nerve (VI), 

which runs anteriorly (Paulina-Carabajal et al. 2013). 

Finally, the cerebral and palatine branches of the internal carotid leave the cavum 

pterygoidei anteromedially and anteriorly, respectively (Fig. 4.4C), as in all peiropemydids 

and podocnemidids (Gaffney et al. 2011). The cerebral artery enters the pituitary fossa on the 

basisphenoid, and the palatine artery runs anteriorly to the sulcus cavernosus on the dorsal 

surface of the pterygoid (Figs. 4.3E, 4.4C). Thus, the split between the two branches of the 

internal carotid artery occurs inside the cavum pterygoidei, floored by the pterygoid flange, 

which extends ventrally to that split (Gaffney et al. 2011). As in all crown-turtles, the split of 

the internal carotid artery is, therefore, floored by bone (Sterli et al. 2010; Müller et al. 2011), 

but this occurs in an open space (i.e. inside the cavum pterygoidei), and not within its own 

canal (the canalis carotici interni; Gaffney 1979). The patterns of carotid circulation are well 
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documented in cryptodires and stem-turtles (Albrecht 1976; Sterli et al. 2010; Müller et al. 

2011; Rabi et al. 2013), but descriptions or both extant and extinct pleurodires are still lacking 

 

Figure 4.5. Strict consensus tree resulting from the phylogenetic analysis. Yuraramirim montealtensis (bold) is 

recovered inside the Peiropemydidae clade, along with Peiropemys mezzalirai, Pricemys caiera, and 

Lapparentemys vilavilensis. The arrows highlight the branch-based clades (A) Peiropemydidae, (C) 

Podocnemidinae, and (D) Erymnochelydinae, and the circle indicates the node-based clade (B) 

Podocnemididae. 

Inner ear.—The digitally reconstructed inner ear of Yuraramirim montealtensis 

shows a morphology that generally resembles that of other turtles (Wever 1978; Walsh et al. 

2009; Paulina-Carabajal et al. 2013, 2017): the semicircular canals are dorsoventrally low, 

subequal in size, and their cross-section is sub-eliptical, with a globose lagena (Fig. 4.4D). 

The inner ear cast is 9.2 mm long. The anterior (ASC) and posterior (PSC) 

semicircular canals are not as dorsoventrally low as in Plesiochelys etalloni (Paulina-

Carabajal et al. 2013), meiolaniids (Paulina-Carabajal et al. 2017), and some other 

cryptodires (e.g. Chelonoidis nigra, Chelonoidis chilensis, Trachemys scripta, and 

Carettochelys insculpta; Georgi & Sipla 2008; Paulina-Carabajal et al. 2017), but more 

elevated as in Gopherus berlandieri, Chelydra serpentina and Malacochersus tornieri 



 Patterns of morphological evolution in the skull of turtles – Chapter 4 
 

 
115 

 

(Walsh et al. 2009; Mautner et al. 2017; Paulina-Carabajal et al. 2017). The vertical canals 

(ASC and PSC) are elongated in the anteroposterior axis (Fig. 4.4), which could indicate an 

aquatic behaviour according to Georgi & Sipla (2008). As in Plesiochelys etalloni and most 

known turtles (Paulina-Carabajal et al. 2013, 2017), the crus communis is located at the 

midline of the vestibular organ (Fig. 4.4). The angle formed between the ASC and the PSC 

is 87.8º, wider than that described for Plesiochelys etalloni or Trachemys scripta (Paulina-

Carabajal et al. 2013), but lower than that of any terrestrial taxa (Paulina-Carabajal et al. 

2017). The lateral semicircular canal (LSC) is the thickest (1.1 mm) of the three, as in 

Plesiochelys etalloni, followed by the ASC (0.8 mm) and the PSC (0.6 mm). The ASC is 

slightly more elongated than the PSC (2.2 mm and 2.1 mm, respectively). As in Plesiochelys 

etalloni (Paulina-Carabajal et al. 2013), the anterior ampulla is well developed whereas the 

posterior is much slender (Fig. 4.4E), in contrast to that of several testudinids (Paulina-

Carabajal et al. 2017). 

The lagena in Yuraramirim montealtensis is well-developed ventrally (Fig. 4.4D), 

similarly to those of Plesiochelys etalloni, Gopherus berlandieri, and Testudo hermanni, in 

contrast to those of Rhinoclemmys funerea and Kinixys belliana (Paulina-Carabajal et al. 

2013, 2017), in which this region is more rounded. The fenestra ovalis is smaller than that of 

Malacochersus tornieri (Mautner et al. 2017). The columella auris is preserved on both sides 

(Fig. 4.4), except for the distal portion. Its shaft is thinner than in Plesiochelys etalloni, and 

projects anterolaterally, in contrast to the posterolaterally projection of the latter (Paulina-

Carabajal et al. 2013). The foot plate is broad and concave medially, towards the fenestra 

ovalis. 

4.6. Discussion 

The phylogenetic analysis found six most parsimonious trees (MPTs) with 238 steps 

each (see online supplementary material). The MPTs differ in the relative position of some 

outgroup taxa (i.e. Araripemys barretoi, Pelomedusidae), as well as Hamadachelys escuilliei 

and Portezueloemys patagoinica, and some species of Podocnemis. All most parsimonious 

trees (Fig. 4.5) shows Yuraramirim montealtensis nested within Peiropemydidae, in a 

polytomy including Peiropemys mezzalirai and the clade formed by Pricemys caiera and 
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Lapparentemys vilavilensis. Peiropemydidae is supported by an anteroventral emargination 

reaching above the ventral level of the orbit (ch. 13, state 2). The scoring of Yuraramirim 

montealtensis in the data matrix differs from that of Peiropemys mezzalirai by two 

conditions: the foramen palatinum posterius on the palatine-pterygoid suture, rather than 

restricted to the palatine (ch. 37) and a larger antrum postoticum (ch. 40). The size of the 

antrum postoticum also sets the taxon apart from Pricemys caiera and Lapparentemys 

vilavilensis. The larger foramen nervi abducentis (ch. 65) of the former and the shallow fossa 

precolumellaris (ch. 41) of the latter also differentiate those peiropemydids from 

Yuraramirim montealtensis. Those distinct features, associated with its smaller size and 

stratigraphic provenance further supports the assignment of MPMA 04-0008/89 to a distinct 

peiropemydid taxon. As such, it extends the record of Peiropemydidae to pre-Maastrichtian 

times (Fig. 4.6), with the clade surviving until the early Paleocene (Broin 1971, 1991; 

Gaffney et al. 2011). 

Although some authors used Computed Tomography to study osteological traits (e.g. 

Brinkman et al. 2006; Lipka et al. 2006; Sterli et al. 2010; Cadena & Jaramillo 2015; Lively 

2015) of extinct turtles, only four other studies were published so far with digital 

reconstructions of endocasts of soft tissue organs (Georgi & Sipla 2008; Paulina-Carabajal 

et al. 2013, 2017; Mautner et al. 2017). Indeed, this is the first study to employ these tools to 

assess the inner ear and neuroanatomy of an extinct pleurodire. The endocast and inner ear 

of Yuraramirim montealtensis are similar to those of other turtles. However, some differences 

are noted, such as the position of the medulla oblongata almost on the same level as the 

cerebral hemispheres (Fig. 4.4A), whereas the condition in the bothremydids Bothremys 

cooki and Chedighaii barberi (Hopson 1979) resembles that of sea turtles (Wyneken 2001), 

in which the medulla oblongata is located well below the cerebral hemispheres, with stronger 

pontine and cephalic flexures. Those differences could be related to the adaptations of 

bothremydids to marine environments, as suggested by some authors (e.g. Gaffney et al. 

2006; Rabi et al. 2012; Joyce et al. 2016). However, with such a small sample, especially for 

pleurodires, it is premature to infer phylogenetic or behavioural trends from the 

neuroanatomy of fossil turtles. Future, more comprehensive studies may employ the data 

presented here to better explore the evolution of those organs in Pleurodira and Testudines. 

A detailed account of the cranial nerves and arteries in Yuraramirim montealtensis was also 
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provided. As noted above, the patterns of carotid circulation in turtles has been mainly 

studied in stem-turtles and cryptodires. Given that several phylogenetic characters are related 

to the circulatory and nerve systems, such as skull foramina and canals (e.g. Joyce 2007; 

Sterli et al. 2010; Müller et al. 2011; Gaffney et al. 2006, 2011; Rabi et al. 2013), this study 

adds new data to understand the patterns in Pleurodira. 

 

Figure 4.6. Stratigraphic plot of non-Podocnemididae podocnemidoids. Black bars represent their temporal 

distribution; skulls and carapaces indicated the preserved skeletal parts; dotted rectangle highlights Bauru Basin 

taxa. Age of the Bauru Basin taxa based on Batezelli (2015) 

4.7. Conclusions 

A partial skull from the Late Cretaceous Adamantina Formation represents the first 

extinct pleurodire and one of the few fossil turtles to have its neuroanatomy described based 

on digitally reconstructed endocast and inner ear. The large antrum postoticum and fossa 
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precolumellaris, the foramen prepalatinum formed by the pterygoid and palatine, and the 

triangular dermal scute vii with an anterior notch on the midline, as well as its smaller size 

and distinct stratigraphic provenance, support the assignment of this specimen to a new taxon, 

Yuraramirim montealtensis, placed inside Peiropemydidae in our phylogenetic analysis. This 

fossil extends the range of that clade to pre-Maastrichtian times. 
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5 Feeding biomechanics suggests progressive correlation of skull 

architecture and neck evolution in turtles 

Abstract 

The turtle skull is a highly modified structure compared to other reptiles and has, together 

with the complete reorganization of the body in consequence of the origin of the shell, 

hampered our understanding of the group’s origin. During the evolution of turtles, a series of 

modifications changed their kinetic, anapsid, and compact skull into an elongated structure 

devoid of cranial kinesis and with temporal bone reductions. Following the posterior 

expansion of the temporal crests and muscle origin sites, a pulley system (called trochlear 

mechanism) developed in order to divert the muscle fibers around the enlarged otic chamber. 

All those modifications were thought to be strongly correlated to functional adaptations, 

especially to bite performance. Here, I conduct a series of Finite Element Analyses (FEAs) 

to test this hypothetical framework and provide a new view on the evolution of the turtle 

skull. The results do not support a relation between the akinetic nature of the skull or the 

trochlear mechanism with higher bite forces. Yet, the FEAs show that those modifications 

changed the skull architecture into an optimized structure, more resistant to higher loads in a 

skull largely adapted to neck mobility. With those results, I propose an evolutionary scenario 

of progressive correlation, started by the origin of the shell, in which a rearrangement of neck 

morphology is associated to the akinetic skulls in turtles, triggering the other modifications 

which, in turn, allowed a second wave of neck evolution, resulting in the longer and more 

flexible necks, characteristic of modern turtles. 

Keywords: functional morphology, computer modelling, finite element analysis, 

Testudinata, craniocervical system 
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5.1. Introduction 

The vertebrate skull is a complex composite of various and highly integrated adaptive 

structures, directly related to feeding, behavior, and ecology. The skull of turtles strongly 

differs from that of other reptiles (Rieppel 1993; Ferreira & Werneburg 2019, Werneburg 

2019) and, together with the reorganization of the postcranium by the origin of the shell 

(Nagashima et al. 2012), it is one of the reasons that hamper our assessment of their 

phylogenetic origin (Scheyer et al., 2013; Joyce 2015). The anapsid skull (although 

secondarily acquired; Müller 2003; Schoch & Sues 2016) was altered by marginal reductions 

of temporal bones (called emarginations; Fig. 5.1; Gaffney 1979; Werneburg 2012), which 

superficially resemble excavated temporal fenestrae of other amniote groups (Rieppel 1993, 

Werneburg 2019). Also, the cranial kinesis of early stem-turtles (e.g., Proganochelys 

quenstedtii: Gaffney 1990) was later lost by a series of modifications (Fig. 5.2) similarly to 

the akinetic conditions of mammals and crocodiles (Sterli & de la Fuente 2010; Werneburg 

& Maier 2019): (a) the fixation of the palatoquadrate to the braincase, by suturing the joint 

between the parabasisphenoid to the pterygoid found in early turtles (Fig. 5.1F–G; Sterli & 

de la Fuente 2010; Rabi et al. 2013); (b) fixation of the snout by extensive ossification of the 

secondary palate, reduction of the foramen palatinum-posterius, and closure of the 

interpterygoid vacuities (Fig. 5.1F; Werneburg & Maier 2019); and (c) development of a 

secondary lateral braincase wall by a descending process of the parietal (and 

plesiomorphically also by the epipterygoid in cryptodires) that reaches the pterygoid 

ventrally (Gaffney 1979). 

Those parallels between turtles, mammals, and other reptiles can, at first, be thought 

to have evolved by similar processes or to be affected by common factors. However, the 

development of fully akinetic skulls, for example, was influenced by the specific mammalian 

breathing and chewing mechanisms of neonates (Thomasson & Russel 1986; Maier et al. 

1996), and by the outstanding high bite forces of crocodilians (Preuschoft & Witzel 2002, 

2005; Erickson et al. 2003), illustrating the multiple and taxon-specific factors for the origin 

of the similar morphological traits. Yet, the reduction of temporal coverage, which is thought 

to be related to jaw muscle performance in most reptiles (Rieppel 1993; Werneburg 2012, 

2019, Werneburg et al. 2019), seems to be largely correlated to various degrees of neck 
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flexibility and retraction capabilities of different turtle lineages (Werneburg et al. 2015a, b, 

Werneburg 2015). Recently, Werneburg & Maier (2019) presented evidence for an influence 

of neck movements during embryonic development on the fixation of the palatoquadrate to 

the braincase in turtles and, consequently, on a comprehensive reduction of intracranial 

kinesis. These observations suggest that the reorganization of the neck muscles and the 

development of high flexibility and neck retraction related to the origin of the shell might 

have had profound influences on the peculiar skull architecture of turtles (Werneburg 2015). 

Importantly, the rapid diversification of the group since the Middle Jurassic (Shaffer et al., 

1997; Danilov & Parham 2008; Sterli 2010; Joyce et al. 2013) followed the acquisition of 

akinetic, emarginated skulls and longer, more flexible necks (Sterli & de la Fuente 2010; 

Werneburg et al. 2015a, b), perhaps representing a case of adaptive radiation (Simpson 1953; 

Foote 1997). 

In contrast to most other amniotes, turtles also possess horizontal adductor muscle 

fibers (Schumacher 1973; Werneburg 2011, 2013), which extend along the posterior 

expansion of the adductor chamber (Schumacher 1973, Rieppel 1993; Werneburg 2011, 

2013, Ferreira & Werneburg 2019). This is associated with their unique trochlear system, 

which redirects those fibers around the enlarged otic chamber (Gaffney 1975; Joyce 2007; 

Sterli & de la Fuente 2010) and anteriorly reorients them to insert vertically to the lower jaw 

(Schumacher 1973; Werneburg 2011). This pulley system includes hard and soft tissue 

components: a transiliens cartilage (or bone; Ray 1959) that slides on a bone surface, 

facilitated by a synovial capsule or an infold of the mouth cavity (Schumacher 1973; Gaffney 

1975; Ferreira & Werneburg 2019). Crown-group turtles are composed of two main clades, 

the Cryptodira and Pleurodira (Gaffney et al. 1991; Pereira et al. 2017), each developing the 

trochlea in different positions—the former by a roughening or a process on the otic chamber 

itself (Fig. 5.1D) and the latter by a lateral projection of the pterygoid (Fig. 5.1E) 

(Schumacher 1973; Gaffney 1975), derived from the external process of the pterygoid, found 

in other turtles (Fig. 5.1B). Historically, the position of the trochlea has been used to assign 

fossil turtles to one of these two clades (Gaffney 1975; Gaffney et al. 1991). However, more 

recent phylogenetic analyses (Joyce 2007; Cadena & Parham 2015; Joyce et al. 2016; Evers 

& Benson 2019) have consistently retrieved a longer stem-lineage to both crown-groups and 
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the “cryptodiran”-type trochlea (Fig. 5.1D) already appeared along the turtle stem, being 

likely present in the pleurodiran stem lineage before they developed their own type (Fig. 

5.1E; Joyce & Sterli 2012). Both the origin of a pulley system and its subsequent modification 

in pleurodires has been tentatively explained on functional grounds. The origin of the 

mechanism would trigger the posterior elongation of adductor fibers along with 

supraoccipital and squamosal crests as origin sites, resulting in stronger bites (Sterli et al., 

2010). The pterygoid expansion would position the trochlea more anteriorly, allowing the 

fibers to insert more vertically to the lower jaw, which would result in a more efficient force 

transfer system (Joyce 2007). The reinforcement of the skull in turtles has also been 

suggested to have enabled the development of a higher muscle volume and to withstand 

higher bite forces (Sterli & de la Fuente 2010). However, none of these hypotheses have so 

far been tested with biomechanical models. 

Although mechanical adaptation to functional needs may be considered the main 

explanation for bone shape, it is more plausible to also account for phylogenetic, ontogenetic, 

and architectural constraints that bound the actual extent to which skeletal structures can be 

functionally optimized (Rayfield 2007). In this framework, Finite Element Analysis (FEA) 

may be used to model biomechanical behavior and deformation of interconnected complex 

structures and to explore the loading history that shaped the morphology of a given structure 

during its evolutionary history (Lautenschlager et al. 2013, 2016; Rayfield 2007). Here I 

aimed to assess the functional significance of changes in turtle skull architecture during 

feeding, using 3-D models segmented from micro-CT scans (Fig. 5.1) and a series of FEAs. 

For such, we tested (i) whether reduced basipterygoid mobility and longer adductor chambers 

develop higher bite forces (Sterli & de la Fuente 2010), (ii) whether the origin of the trochlear 

mechanisms is related to biomechanical advantages for the cranial structures (Joyce 2007; 

Sterli & de la Fuente 2010), and (iii) whether an akinetic skull, by redistributing stress, 

enabled the reduction of temporal bone coverage in turtles (Werneburg 2015). 
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Figure 5.1. Skull morphology of (A–C) Eubaena cephalica, (D) Pelodiscus sinensis, (E) Pelomedusa subrufa, 

(F) Proganochelys quenstedti, and (G) Emys orbicularis in (A) dorsal view without temporal roof, (B, F, G) 

ventral view and (C–E) left lateral view. Main course of external adductor muscles and trochlea location are 

plotted in purple (cryptodiran, D) and yellow (pleurodiran, E) lines and circles, respectively. Dotted curves 

represent the edges of the emarginations. Abbreviations: ave, anteroventral emargination; bpj, basipterygoid 

joint; bpp, basipterygoid process; bps, basipterygoid suture; cop, coronoid process; ct, tympanic cavity; epp, 

external process of the pterygoid; fpp, foramen palatinum posterius; ipv, interpterygoid vacuity; oc, otic 

chamber; otp, otic trochlear process; pde, posterodorsal emargination; pt, pterygoid bone; ptp, pterygoid 

trochlear process; ps, parabasisphenoid; soc, supraoccipital crest; sqc, squamosal crest; ts, triturating surface. 
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5.2. Material and Methods  

5.2.1. Specimens & skull models 

Specimens of Proganochelys quenstedti (SMNS 16980), Kayentachelys aprix (TMM 

43670-2), Eubaena cephalica (DMNH 96004; Rollot et al. 2018), Pelodiscus sinensis (IW 

576-2), Platysternon megacephalum (SMF 58702), Emys orbicularis (WGJ 1987a), 

Terrapene ornata (FMNH 23014), Chelodina reimanni (ZMB Herpetologie 49659), 

Emydura subglobosa (PIMUZ lab# 2009.37), Pelomedusa subrufa (IW 938-1), and 

Podocnemis unifilis (SMF 55470) were µCT-scanned and imported into Avizo 8 

(Visualization Science Group) for manual segmentation and digital reconstruction. In order 

to represent more accurately their inferred life morphology (Gaffney 1990; Sterli & Joyce 

2007; Gaffney & Jenkins 2007), the data of Pr. quenstedti and K. aprix required moderate 

reconstruction. Breaks and cracks were digitally removed, distortions and deformations were 

corrected and missing elements were reflected, following the protocol outlined by 

Lautenschlager (2016). In addition to the eleven standard models described above, four 

additional hypothetical models were also created in Avizo: (1) Pr. quenstedti with a 

basipterygoid suture, (2) Pr. quenstedti with a supraoccipital crest, (3) Pr. quenstedti with a 

basipterygoid suture and a supraoccipital crest, and (4) Eu. cephalica with a pterygoid 

trochlear process and explicitly modeled trochlea. Surface files for the final 17 models were 

generated in Avizo. 

5.2.2. Mesh Models and FEA 

The surface models were imported into Hypermesh (Version 11; Altair Engineering) 

to create solid mesh FE models consisting of ~2,000,000 four-noded tetrahedral elements 

(tet4) and to set boundary conditions. Material properties were assigned for the cranial bones 

fibrous connective tissue. Extant analogs for alligator bone (E = 20.49 GPa, υ = 0.40) (Zapata 

et al. 2010) and connective tissue (E = 0.09 GPa, υ = 0.30) (Porro et al. 2013) were used with 

both materials treated as isotropic and homogeneous. 

Areas of origin sites and main fiber course for the eight jaw adductor muscles (nine 

for Pelodiscus sinensis, including the m. zygomaticomandibularis; Werneburg, 2011; 

Ferreira & Werneburg 2019), obtained from the literature (Werneburg 2013) and personal 
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observations, were used to assign force vectors to the FE models. To calculate contraction 

force values for each muscle in our models, I used muscle cross-sectional area based on PTA-

stained μCT-scan data of all extant taxa (except Pelomedusa subrufa, for which we 

substituted for Pelusios niger SMNS 4625 specimen). The models were constrained from 

rigid body motion in all directions (X, Y, Z) at the occipital (five nodes) and mandibular 

condyles (four nodes on each side), reflecting attachment to the vertebral column and the 

lower jaw. To simulate bilateral biting at different analogous positions, additional constraints 

(one node on each side) were applied to the maxilla, at the tip of the snout near the suture to 

the premaxilla. An additional set of models was created simulating the effect of the trochlear 

mechanism on the underlying bone during attrition of the transiliens cartilage. For this 

purpose, the vectors of the jaw muscles on both sides of the trochlea (i.e. cranial attachment 

to trochlea and trochlea to mandibular attachment) were obtained for each taxon. Load force 

exerted by the trochlea was calculated as the vector perpendicular to the resultant vector of 

the jaw muscles and the trochlea. However, explicitly simulating the trochleae in both 

pleurodires and cryptodires, does not change the overall pattern of stress distribution. For 

those reasons, the discussion focuses on the results of the simpler models (called ‘standard 

models’), i.e. models without simulated trochleae in those groups. 

All models were imported into Abaqus (Version 6.10; Simulia) for analysis and 

postprocessing. Biomechanical performance for each taxon/model was assessed via von 

Mises and tensile/compressive stress contour plot outputs, reaction forces (=bite forces) at 

the bite points and per-element average stress values. 

5.2.3. Institutional abbreviations 

DMNH, Denver Museum of Nature and Science, Denver, USA; FMNH, Field 

Museum of Natural History, Chicago, USA; IW, Ingmar Werneburg Private Collection, 

Tübingen, Germany; PIMUZ, Laboratory collection of Paläontologisches Institut und 

Museum der Universität Zürich, Switzerland; SMF, Senckenberg Museum Frankfurt, 

Germany; SMNS, Staatliches Museum für Naturkunde Stuttgart, Germany; TMM, Texas 

Memorial Museum, Austin, USA; WGJ, Walter G. Joyce Private Collection, Fribourg, 

Switzerland; ZMB, Zoologisches Museum Berlin, Germany. 
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5.3. Results 

5.3.1. General stress distributions 

Stress (force per area) is generated by the interplay of a physical structure, material 

properties, defined constraints, and applied force. Depending on the direction of deformation, 

stress can be described as tension or compression or alternatively as a single scalar 

approximation of the three main principal stresses (von Mises stress) to estimate material 

failure (Rayfield 2007). The von Mises stress contour plots (Figs. 5.2–5.4) and average stress 

measures (Fig. 5.5) show overall lowest stress magnitudes in the early stem turtles 

Proganochelys quenstedti and Kayentachelys aprix. Localized stress hotspots aside from the 

constrained points (i.e., occipital and mandibular condyles and bite points; Fig. 5.3) can be 

seen anteriorly, inside the orbit (Fig. 5.2A–B), and on the palate, between the foramen 

palatinum posterius and the triturating surface (Fig. 5.3). Additionally, in Pr. quenstedti, the 

basipterygoid joint is more loaded than the overall stress pattern (Fig. 5.3), presenting higher 

degrees of compression (Fig. 5.6). 

Extant turtles and Eubaena cephalica are characterized by increased magnitudes of 

overall stress in comparison to early stem turtle models (Fig. 5.5). In all of those models, 

regardless of clade affinity (i.e., Pleurodira, Cryptodira, or Paracryptodira; Fig. 5.2), the 

dorsal surface of the otic chamber is highly loaded, the basipterygoid suture shows less stress 

in relation to the rest of the skull, and the bar between the external nares and the orbit is 

highly loaded (as is also seen in Pr. quenstedti). In Pelodiscus sinensis and Chelodina 

reimanni (Fig. 5.3) the parabasisphenoid and the basioccipital, which have a more open and 

interdigitated suture in these taxa, is another stress hotspot. Taxa with extensive ventrolateral 

emarginations (i.e., C. reimanni, Terrapene ornata, and Emydura subglobosa) show an 

increased load laterally on the quadrate, inside the tympanic cavity (Fig. 5.2). Cryptodires 

(except for Pelod. sinensis) and Eu. cephalica, show higher compression anteriorly on the 

pterygoid and palatine than pleurodires (Figs. 5.3, 5.6). Chelodina reimanni and T. ornata, 

both turtles that lost their temporal bridges (Werneburg 2012, 2013b) show higher levels of 

overall skull stress (Figs. 5.2–5.3, 5.5). The trochlear process in pleurodires, as well as the 

external process of the pterygoid in cryptodires, show very light loads, but in Eu. cephalica, 

this region is highly stressed (Fig. 5.3). Although the dorsal surface of the otic chamber is 
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more loaded than the overall stress distribution, the trochlear process is not particularly 

stressed in cryptodires and in Eu. cephalica, even when an extra trochlea, on the pterygoid is 

explicitly simulated on this region (Fig. 5.7D–H). 

 

Figure 5.2. Time-calibrated phylogeny of turtles (modified from Joyce et al. 2016) and Von Mises stress contour 

plots for taxa analyzed in this study. Bold lines represent the stratigraphical distribution. (A) Proganochelys 

quenstedti, (B) Kayentachelys aprix, (C) Eubaena cephalica, (D) Podocnemis expansa, (E) Pelomedusa 

subrufa, (F) Chelodina oblonga, (G) Emydura subglobosa, (H) Pelodiscus sinensis, (I) Platysternon 

megacephalum, (J) Emys orbicularis, (K) Terrapene carolina. Contour plots are scaled to 5 MPa peak stress. 

1a, enlarged otic chamber, but shallow tympanic cavity; 1b, enlarged otic chamber and deep tympanic cavity 

(largest); 2, adductor chamber extending posterior to otic chamber; 3a, basipterygoid process sutured and facing 

ventrally (low possible kinesis); 3b, basipterygoid process sutured and facing laterally (lower possible kinesis); 

3c, basipterygoid process absent (definitive akinesis); 4, secondary lateral braincase wall; 5a, reduced 

interpterygoid vacuities; 5b, closed interpterygoid vacuities; 6, reduced foramen palatinum posterius; 7, reduced 

temporal roof by emarginations; 8, trochlear process; *, reversals. Dotted curves represent the margins of the 

emarginations. The purple “i” and the blue “ii” rectangles represent the first and second proposed selective 

regimes described below and on Fig. 5.9. 

5.3.2. Simulations in Proganochelys and Eubaena 

To test the effects of suturing the basipterygoid joint (Fig. 5.1F–G), a Pr. quenstedti 

model simulating a fixed joint was digitally created. The simulation (Fig. 5.7A–E) has little 

effect on the stress distribution in relation to its original model’s contour plots (Figs. 5.2–
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5.4). Besides a slight increase in overall stress, especially on the skull roof, the most 

significant change is seen on the parabasisphenoid, which experiences much less stress than 

in the original model and in the area around the foramen palatinum posterius that shows 

slightly decreased loads in this hypothetical model (Fig. 5.7A, E). 

Similarly, modeling a supraoccipital crest (Figs. 5.7B–F) to simulate the posteriorly 

extended origin sites of external jaw adductors found in later turtles (Fig. 5.2), results only 

in minor differences: the skull roof is somewhat more loaded, with more concentrated areas 

of stress on the parietal/frontal and postorbital/frontal sutures, and a less stressed cheek area 

(jugal/quadratojugal). More importantly, the basipterygoid articulation and the 

parabasisphenoid as a whole are more stressed in comparison to the original model. A third 

hypothetical, with both modifications (Fig. 5.7C–G) show a similar pattern to that only with 

the sutured basipterygoid articulation (Fig. 5.7A–E). 

An additional model was also modeleld, with a pterygoid trochlea on the Eu. 

cephalica original model to simulate the intermediate morphology with two trochleae as was 

proposed by Joyce (2007). In contrast to the Pr. quenstedti models, the Eu. cephalica 

simulation (Fig. 5.7D–H) shows more significant effects. The external process of the 

pterygoid shows a much higher load when this trochlea is simulated (Fig. 5.7D) associated 

also to a change from compression to tension loads (Fig. 5.7H). The cheek region is under 

less stress (Fig. 5.7D) in comparison to the original model (Fig. 5.2C), but the border of the 

anteroventral emargination is slightly more compressed. Noteworthy, the basipterygoid joint 

shows a relief in compression when a pterygoid trochlea is present (Fig. 5.7H). 

5.3.3. Bite forces and efficiency 

Estimates for models simulating the trochlea (otic in cryptodires and pterygoid in 

pleurodires) show only slight decreases in bite force with the trochlea (1–15%) in relation to 

the standard models (i.e., models without the explicitly modeled trochlear mechanism), 

except for Platysternon megacephalum, in which there was a 44% decrease in the estimated 

bite force (Fig. 5.8B). Yet, the decrease in bite efficiency was higher in the models with a 

trochlea: 12–25%, and a 46% decrease for Pl. megacephalum (Fig. 5.8B). Cryptodires and 

pleurodires do not clearly differ in their range of bite efficiency (i.e., bite force divided by 

muscle force) (Fig. 5.8A), as within-group variation is higher than among-group variation 
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(especially for pleurodires). Chelodina reimanni and Em. subglobosa are the least bite 

efficient models, whereas Eu. cephalica and Po. unifilis are the most bite efficient models. 

The bite efficiency (as well as the bite forces) of the stem turtles fell into the spectrum of the 

analyzed extant taxa (Fig. 5.8). 

5.4. Discussion 

5.4.1. No increase of bite force in turtle evolution 

It has been thought that the origin of the trochlear mechanism in turtles enabled a 

biomechanical advantage with more efficient bite performances (Joyce 2007; Sterli & de la 

Fuente, 2010). These, in turn, would be related to the great diversification the group 

experienced right after (Fig. 5.2), beginning at the Middle Jurassic (Shaffer et al., 1997; 

Parham & Hutchison 2003; Danilov & Parham 2006; Joyce et al. 2013, 2016; Evers & 

Benson 2019). In this scenario, the trochleae appeared only after a series of modifications 

related to the origin of fully akinetic skulls in the clade including Kallokibotion bajazidi and 

Testudines (Joyce et al. 2016) (Fig. 5.2). These changes included the fixation of the braincase, 

palatoquadrate, and snout, and the development of an extensive secondary lateral wall of the 

braincase (Sterli & de la Fuente 2010; Werneburg & Maier 2019). Both the development of 

the trochlea and the posterior elongation of the supraoccipital and squamosal crests would be 

adaptive innovations related to increasing muscle power and bite forces. As such, turtles 

lacking both, such as Kayentachelys aprix (Sterli & Joyce 2007), were considered not as 

powerful biters when compared to modern turtles (Sterli & de la Fuente 2010). 
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Figure 5.3. Von Mises stress contour plots for sampled taxa in ventral view. Contour plots are scaled to 5 MPa 

peak stress. Red and black arrows represent the bite and constrained points, respectively. Dotted curves 

anteriorly and posteriorly, identify the triturating surface and the basipterygoid articulation/suture. 

The skull of Proganochelys quenstedti was still kinetic, but a trend towards the 

complete akinetic skull of Testudines began early along the stem lineage (Sterli & de la 

Fuente 2010; Rabi et al. 2013). The first modifications can already be seen in K. aprix (Figs. 

5.2B, 5.3), in which the closure of the interpterygoid vacuities and reduction of the foramen 

palatinum posterius stiffened the snout and the basipterygoid articulation was sutured (Sterli 

& Joyce 2007), at least decreasing movement in this region. The FEA models show that those 

areas were under high stress in Pr. quenstedti and that in Kay. aprix and other testudinates, 
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they became less stressed at the same time that more extensive sutures developed (Fig. 5.3). 

However, unlike in the case of crocodilian evolution (Preuschoft & Witzel 2002, 2005; 

Erickson et al. 2003), skull stiffening in turtles is associated only with a moderate increase 

in bite forces (Fig. 5.8B). Similarly, the posterior elongation of the adductor chamber that 

occurred later than the node from which Kay. aprix split (Fig. 5.2) does not seem to have 

considerably increased bite forces and efficiency, in opposition to what was previously 

thought (Sterli & de la Fuente 2010): estimates based on the present models show K. aprix 

inside the spectrum of Testudines (Fig. 5.8) and simulating a supraoccipital crest on a Pr. 

quenstedti model (Fig. 5.7B, F) does not result in higher bite force values either. The 

distribution of bite force and bite efficiency shows no clear differences between stem turtles 

without supraoccipital and squamosal crests, and crown turtles with them (Fig. 5.8). This 

might seem contra-intuitive since the posterior elongation of the adductor muscles seems to 

result in longer and hence stronger fibers. However, 1.) the concomitant enlargement of the 

otic chamber in turtles (Gaffney 1979; Joyce 2007) decreased the available volume inside 

the adductor chamber, so posterior elongation emerged as a mean to compensate for it. Also, 

2.) even though bite force can be altered by several and non-mutually exclusive means, 

including the arrangement of muscle fibers and altering the composition of muscle fiber types 

(Gans et al. 1985), it is well-known that a trade-off related to fiber length exists between 

force and speed (Herrel et al. 2002). Moreover, 3.) even if the posterior elongation of the 

adductor chamber resulted in a volume increase, this was achieved by an increase in fiber 

length, which is also related to changes in speed, not necessarily to force only (Schenk & 

Wainwright 2001). This might explain why more powerful bite force is not seen in turtles 

with posterior crests both in the FE models (Fig. 5.8) and in experimental studies (Herrel et 

al. 2002). 
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Figure 5.4. Von Mises stress contour plots for sampled taxa in dorsal view. Contour plots are scaled to 5 MPa 

peak stress. 

Finally, explicitly simulating the trochlea (in the otic chamber in cryptodires and in 

the pterygoid in pleurodires) in the models actually decreases the estimated bite force (Fig. 

6.8B), which can be explained by the physical attributes of the trochlea, according to which 

part of the muscle force will be lost during attrition of the transiliens cartilage (Schumacher 

1973) to the bone surface of the trochlear process. At the same time, empirical studies show 

that turtles possess similar bite forces to other reptiles (Herrel et al., 2002) (except for 

crocodiles), so, there is no support to believe that the origin of the supraoccipital and 
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squamosal crests and the (otic) trochlear system along the stem to modern turtles resulted in 

more powerful jaws in comparison to their non-turtle ancestors. However, the changed line 

of action of the external jaw adductor muscles (Schumacher 1973; Iordansky 1996; Ferreira 

& Werneburg 2019) due to the presence of a trochlear mechanism likely has a more 

substantial effect on the lever mechanics of the mandible. This might be affected by the 

height and by the anteroposterior position of the trochlea (i.e., on the otic chamber or on the 

pterygoid), which might change the position of the insertion site and, hence, the lever on the 

lower jaw. While this increased efficiency is focused in the mandible, the skull structure 

might have experienced no or little negative effects despite of the increased loads acting on 

it. 

 

Figure 5.5. Average von Mises stress (MPa per element), i.e., total sum of skull stress divided by the number 

of osseous elements in the skull. 

5.4.2. Neck retraction triggers a series of skull modifications 

A common line of reasoning proposes that the posterior elongation of the adductor 

chamber was a consequence of the hypertrophy of the otic region, which restricts space inside 

the adductor chamber (Schumacher 1973; Gaffney 1975; Joyce 2007; Sterli & de la Fuente 

2010). This, though, raises the question of why turtles developed posteriorly (Romer 1956; 

Ferreira & Werneburg 2019) rather than dorsally expanded skulls, a much more common 

strategy of fiber elongation in reptiles? Considering that extant macrocephalic turtles with 

high skulls, e.g., Platysternon megacephalum (Fig. 5.2I) and Chelonia mydas (Jones et al., 

2012), are incapable to fully retract their head and neck inside their shells (Werneburg 2015; 

Werneburg & Maier 2019), this likely represented a functional constraint during turtle 
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evolution. We hypothesize that the origin of posterior crests was also related to the need to 

(at least) maintain ancestral bite performances in a system that accommodates neck 

retraction. In other words, high, dorsoventrally expanded skulls would be negatively selected 

in a case in which hiding the head and neck is a protective advantage (Herrel et al. 2002). 

Also, developing a trochlear system in the hypothesis I present here was the only solution to 

accomplish the posterior elongation, since, in this manner, the otic chamber would be on the 

course of the muscle fibers. 

 

Figure 5.6. Tension/compression plots for the taxa analyzed in this chapter. Models in dorsal and ventral view 

on the left and right, respectively. All models are scaled to 5 to -5 MPa peaks stress. 

Building on previous hypotheses (Werneburg et al., 2015a, b; Werneburg 2015; 

Werneburg & Maier 2019), I suggest a more detailed scenario for the evolution of the highly 
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modified turtle skull. I propose a progressive correlation between skull architecture and neck 

evolution (Fig. 5.9), that incorporates two phases of distinct selective regimes. The first, 

related to increased neck mobility and skull stiffening, occurring early in turtle evolutionary 

history (α in Figs. 5.2, 5.9) and the second, closer to the diversification of crown Testudines 

(β in Figs. 5.2, 5.9), related to the posterior elongation of the adductor chamber and the pulley 

system, and longer necks. 

α) The present results show that the fixation of the snout and the basipterygoid 

articulation, as well as the development of a secondary lateral wall of the braincase (i & ii in 

Fig. 5.9) during the first phase of turtle evolution stabilized those regions which were more 

fragile (Fig. 5.3) during feeding movements, even though the skull as a whole was more 

heavily built and stress resistant (Fig. 5.2–5.4). Both areas were under high stress in Pr. 

quenstedti and became alleviated in Kay. aprix (Fig. 5.3). The Pr. quenstedti hypothetical 

model with a sutured basipterygoid joint also shows reduced stress around this contact, even 

when the supraoccipital crest is also modeled (Fig. 5.7A, C) supporting this observation. 

However, simply stiffening the skull in turtles does not result in higher bite forces and the 

present estimates do not support a higher force or efficiency in modern turtles in comparison 

to earlier testudinates (Fig. 5.8). As such, these biomechanical analyses do not support an 

increase in bite force as the main factor related to the development of cranial akinesis in 

turtles, in opposition to crocodiles or temnospondyls (Preuschoft & Witzel 2002, 2005; 

Erickson et al. 2003; Witzmann & Werneburg 2017). At the same time, mounting evidence 

has been presented for an extensive influence of increased neck mobility—and consequent 

muscle reorganization—on the fixation of the palatoquadrate to the braincase (Werneburg & 

Maier 2019), and I here propose that this influence might have triggered the path to complete 

akinetic skulls in turtles (Fig. 5.9) very early in their evolution (K. aprix node in Fig. 5.2). 
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Figure 5.7. Von Mises stress (A–D) and tension/compression (E–H) contour plots in ventral (top row) and left 

lateral (bottom row) views for hypothetical models of Proganochelys quenstedti with (A, E) basipterygoid 

suture, (B, F) supraoccipital crest, and both basipterygoid suture and supraoccipital crest (C–G), and of 

Eubaena cephalica with a pterygoid trochlea (D–H). Contour plots are scaled to 5 MPa peak stress. Dotted 

curves in ventral view, anteriorly and posteriorly, identify the triturating surface and the basipterygoid 

articulation/suture, and in lateral view the anteroventral and posterodorsal emarginations. Abbreviations: ptp, 

pterygoid trochlear process; soc, supraoccipital crest.  

β) Even though the results do not support an increase in bite force related to the 

elongation of the adductor chamber, they evidence that elongation might have occurred in 

response to a decrease in volume due to the enlarged otic chamber (iii in Fig. 5.9). The first 

steps of otic chamber enlargement can be seen as early as in K. aprix (Sterli & Joyce 2007), 

which also shows an incipient elongation of the posttemporal region (Joyce 2007). The 

presence of a shell, though, represented a constraint on higher skulls due to the need for 

tucking the head and short neck for protection (Herrel et al. 2002; Werneburg et al. 2015a, 

b). Thus, posteriorly expanding the supraoccipital and squamosal crests (v in Fig. 5.9) was 

the only way to balance the decreased volume inside the adductor chamber, but with it, the 

enlarged otic chamber is on the direct course of the muscle fibers (Schumacher 1973; Joyce 
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2007). The fixation of the palatoquadrate to the braincase resulted in higher overall stress 

values on the turtle skull (Fig. 5.2–5.3), maybe because of the loss of elasticity that could 

buffer the loads in the whole structure (sensu Werneburg et al. 2019). Yet, at the same time, 

the stiffening created an optimized solution in the sense of higher maximal load resistance 

with minimized material (Fig. 5.5). Also, a more resistant skull enabled the quadrate to 

withstand the compression forces exerted by a trochlear mechanism on its surface (vi in Fig. 

5.9) (Gaffney 1975; Rieppel 1990; Joyce 2007; Sterli & de la Fuente 2010), which finally 

made the posterior expansion of the adductor chamber possible and a shift of the bite 

efficiency to the mandible without negatively impacting the skull. This opened another 

evolutionary path, allowing skulls to become relatively flatter (iv in Fig. 5.9), and thus 

creating the second selective regime of skull modifications (β in Figs. 5.2, 5.9). 

 

Figure 5.8. (A) Box plot of bite efficiency for Cryptodira, Pleurodira, and stem-turtles. Estimates for models 

with and without trochleae explicitly simulated left and right, respectively. (B) Bite force estimates for sampled 

taxa. Note there is no separation of the range of bite efficiency values among species. 

5.4.3. Reduction of the temporal skull coverage 

The walls of the adductor chamber in early testudinates exclusively provided the 

origin sites for the external jaw adductors (Ferreira & Werneburg 2019). As such, they could 
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not be reduced, even though this region may not have been structurally necessary, as 

evidenced by the low stress distribution on it (Fig. 5.2A–B). With the potential to evolve 

longer and flatter skulls created by skull stiffening (i, ii & iv in Fig. 5.9)—which can be seen 

early in the Jurassic xinjianchelyids (Rabi et al. 2013) (Fig. 5.2)—the muscle origin sites are 

shifted away from the adductor chamber roof to the supraoccipital and squamosal crests 

(Werneburg 2011, 2013; Ferreira & Werneburg 2019). This and the optimization for 

minimizing material (described above) enabled the development of marginal reductions of 

temporal bones (vii in Fig. 5.9) (Sterli & de la Fuente 2010; Werneburg et al., 2013; Ferreira 

& Werneburg 2019) which, in turn, freed stronger attachment sites for more complex neck 

muscles (viii in Fig. 5.9) (Werneburg 2015). 

Also, the stabilization of the quadrate was originally obtained by the temporal 

coverage, and the fixation of the braincase releases it from this function (Werneburg 2012; 

Werneburg & Maier 2019). This event in itself did not diminish, but actually increase stress 

on specific areas of the temporal roof, especially around the contacts of the jugal, 

quadratojugal, and squamosal (Fig. 5.4), a pattern also found in extant taxa with secondarily 

extensive temporal coverages, e.g., Podocnemis unifilis and Pl. megacephalum (Fig. 5.2D, 

I). In most turtles, those areas correspond to the temporal bridge that is almost always 

maintained between the anterolateral and posterodorsal emarginations (Werneburg 2013; 

Ferreira & Werneburg 2019), suggesting they are important structural components of the 

turtle skull. The few taxa lacking those bridges, e.g. C. reimanni and T. carolina, show higher 

degrees of total stress (Figs. 5.2–5.3), supporting this hypothesis. Consequently, also more 

complex neck movements and retraction modes benefit from more extensive emarginations 

and broader bridges, which serve as strong and stable neck muscle attachment sites, and, in 

this way, only a certain part of the temporal coverage can be reduced. The increased 

ossification and reduction in regions that were ancestrally submitted to high or low loads, 

respectively, illustrate the powerful tool FEA can be for detecting morphological 

evolutionary patterns in complex structures. 

5.4.4. The pterygoid trochlear in pleurodires 

The muscle (Werneburg 2011, 2013; Ferreira & Werneburg 2019) and skull 

reorganization (Sterli & de la Fuente; Rabi et al. 2013; Werneburg & Maier 2019) related to 
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the pterygoid trochlea in pleurodires do not result in more efficient bites either (contra Joyce 

2007) (Fig. 5.8). Also, cranial competence (i.e., the capacity to sustain stress) is not 

compromised by the presence of the pterygoid trochlea and other morphological changes. 

Hence, the presence of a pterygoid trochlear has no substantial effect on the bite force when 

looking at the skull, which possesses several other (competing) functions, aside from biting. 

It is possible, though, that an increase in efficiency can be retrieved from the lower jaws (due 

to changing the position and, to a lesser degree, the angle of attack of the jaw musculature), 

which are the main functional device for biting. Thus, it can be assumed that the hypothesized 

increase in bite force is solely achieved by redirecting the muscle insertion angle on the lower 

jaws; a hypothesis that will be tested by further FEAs based on lower jaw models. The 

pterygoid trochlea is actually related to a less stressed basicranium and cheek region (Figs. 

5.2–5.3). The hypothetical model of Eubaena cephalica with a ‘pleurodiran’-like trochlea 

(Fig. 5.7D–H) also shows a slightly reduced load on these regions. 

In cryptodires and some late stem-turtles, e.g., Meiolania platyceps and Kallokibotion 

bajazidi (Gaffney 1975, 1983) (Fig. 5.2), the pterygoid is posteriorly expanded and closes 

the cranio-quadrate space (Joyce 2007). In pleurodires, neck forces during embryonic 

development reorient the palatoquadrate cartilage and prevent the pterygoid from traveling 

so far posteriorly. Thus, the cranio-quadrate space is closed by the formation of appositional 

bone, a process called the “Esswein fixation” (Werneburg & Maier 2019). This different 

mode of fixation and, consequently, of skull architecture, seems to be related to a distinct 

stress distribution on the external process of the pterygoid: in cryptodires and Eu. cephalica, 

this pterygoid process is more loaded than in pleurodires (Fig. 5.3), even when a pterygoid 

trochlea is explicitly simulated (Fig. 5.7D–H). This, in turn, might have triggered this process 

to expand and to assume the function of the trochlea in Pleurodira, which decreased stress on 

the parabasisphenoid and basioccipital, keeping efficiency. I hypothesize that even lower 

loads on the basicranium of pleurodires during biting enabled the expansion of neck muscles 

onto its ventral surface (Werneburg 2011, 2015; Werneburg & Maier 2019) and reduction of 

the cheek bones (Werneburg 2015) in this group. This association can be further explored by 

future FEA on additional skull models including neck musculature, for which, however, first 

of all, basic research on neck muscle anatomy has to be performed and fundamental 

homology issues have to be resolved (Werneburg 2011). 
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Figure 5.9. Scenario of progressive correlation between neck and head during turtle evolution. The origin of 

the turtle shell initiates the first selective regime (α) in which muscle rearrangements enable more flexible necks 

that overcome the lack of mobility in consequence of the shell, but also exert distinct compression and tension 

loads on the skull, which is solved by an increasing stiffness [through palatoquadrate fusion, closure of 

basipterygoid region (i), secondary braincase lateral wall (ii) formation]. The new, stiffened skull architecture 

can withstand higher loads at the same time allowing material reduction in the temporal region, opening the 

path to a second selective regime (β). Longer and flatter skulls (iv) evolve, together with posterior expansion 

of the supraoccipital and squamosal crests (v), also influenced by the enlargement of the otic chamber (iii) that 

reduced the available volume inside the adductor chamber. Both of these triggered the appearance of a trochlear 

mechanism (vi) on the outer surface of the otic chamber. The expansion of the temporal crests (v) offered 

broader insertion sites for the neck musculature, supporting a second round of neck evolution, resulting in longer 

necks and modern types of neck retraction (viii). Temporal emarginations (vii) evolve in response to new forces 

generated by more powerful neck musculature. 

5.5. Conclusions 

In conclusion, the Finite Element Analyses of turtle skulls do not support previous 

hypotheses about a relation between the origin of cranial akinesis and higher bite forces and 

a more efficient bite related to the pleurodiran trochlear system. Yet, they do show that this 

new skull architecture, redistributes stress and creates a structure optimized to resist higher 

loads with less material and supports the trochlear mechanism to maintain mandibular bite 

force without negatively impacting the skull. In this manner, a chain of progressive 

correlation (Fig. 5.9) between the reorganization of the muscles related to the turtle’s high 

neck mobility (Werneburg et al. 2015b) and the fixation of the palatoquadrate related to the 

akinetic skull is stunning. I present a scenario of associations based on our FEA and the 
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available paleontological evidence (Fig. 5.9): the origin of the turtle shell is related to the 

evolution of increased neck mobility that compensates the stiffened body and neck retraction 

protects the head. The associated topological changes of neck muscles are buffered by the 

fusion of the palatoquadrate to the braincase and consequent closure of the basipterygoid 

articulation, which was particularly under high stress during bite movements (Fig. 5.3). The 

stiffened skull withstands higher loads while also accommodating bone reduction, freeing 

the potential to acquire more diverse architectures, including longer and flatter heads. 

Posterior elongation of the skull, trochlear mechanisms and the potential to evolve temporal 

emarginations, in turn, enabled the path to another round of modifications on the neck, with 

muscles attaching to stronger temporal bridges closer to the origin of Testudines. Finally, the 

potential for the development of more diverse skull architectures and longer and flexible 

necks opened new adaptive paths for the great diversification turtles experienced since the 

Jurassic. 
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6 Conclusions of this Thesis 

6.1. Chapter 2: 

• Even though turtles have been a subject of intensive research for the last 200 years, 

several important aspects of their morphological, developmental, and phylogenetic 

evolution are still heavely debated. The overview presented in Chapter 2 summarizes 

important issues of morphological evolution of the craniocervical system of turtles, 

some of which tackled by further contributions of my thesis. 

• Developmental studies, for example, might be conducted in the future to assess the 

potential homology of some traits in turtles and other reptiles, e.g. the eye muscle 

pyramidalis and the pattern of differentiation of the posterior adductor and 

intermandibularis muscles (similar to those in archosaurs). Ontogenetic studies on 

muscle development are in general rare for turtles, and constitute an area of expansion 

that can potentially help answering important question regarding the origin of some 

of the group’s traits. 

• The repetitive origins of temporal emarginations have been correlated to neck 

mobility and systems of neck retraction, but variation among taxa with similar types 

of neck retraction (e.g., pleurodires) hint at the possibility that there might be other 

factors affecting this feature. Those factors may also affect the evolution of temporal 

fenestration in other reptiles, being thus of broader interest. Biomechanical analyses 

(e.g. FEA) are a promising approach to assess that issue, and also the function of the 

m. zygomaticomandibularis in Trionychia. Muscles analogous to this are found in 

distantly related lineages (mammals, some birds, and the dinosaur Psittacosaurus), 

suggesting that there might be a relation to specific feeding behaviors. 

• The reconstruction of the jaw adductor musculature in the earliest turtle 

Proganochelys quenstedti, combining anatomy, ancestral state reconstruction and 3-

D modeling, constitute an important step towards understanding the evolution of jaw 
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muscles in turtles and amniotes in general. The resulting models might also be used 

to understand the functional implications of other traits, such as the trochlear 

mechanism, the posteriorly elongated temporal crests, and the akinetic skull (as done 

in Chapter 5 of this thesis). 

6.2. Chapter 3 

• The presented 3-D digital reconstructions and comparative descriptions of the 

endocast of the brain, nasal cavity, endosseous labyrinth, and neurovascular structures 

of P. quenstedti (and ten additional turtles) in Chapter 3 allowed the interpretation of 

the neuroanatomy during the initial steps of the evolution of the turtle lineage. 

Proganochelys quenstedti possessed a simple tube-like brain with poorly 

differentiated regions and likely mediocre hearing and vision, but a large nasal cavity, 

suggesting a well-developed olfactory sense. 

• Morphological comparisons to other turtles indicate an increase in size and 

regionalization of brain structure in the group. The morphospace approach to 

investigate the endocast shape along the evolution of turtles in a larger scale, 

including other amniotes, as well as the morphology of the endosseous labyrinth of 

P. quenstedti, do not provide evidence for a fossorial habit, but support its 

interpretation as a land-dwelling turtle. 

6.3. Chapter 4 

• A new fossil pleurodire, Yuraramirim montealtensis, from the Late Cretaceous of the 

Adamantina Formation, Brazil, was presented. The new material was described 

comparatively and included in a phylogenetic analysis showing its affinity to 

Peiropemydidae, the sister-clade to the crown Podocnemididae. 

• The endocasts of the brain, endosseous labyrinth and neurovascular system were 

reconstructed based on µCT images, so that Y. montealtensis represents the first fossil 

pleurodire to have its neuroanatomy analyzed based on digital reconstructions. Noted 

differences (e.g., degree of pontine and cephalic flexures) to the endocasts of other 
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pleurodires, such as Bothremys cooki and Chedighaii barberi, which are similar to 

extant sea turtles, may be associated to a tentative marine habit of the latter. However, 

neuroanatomical studies of fossil turtles (specially including pleurodires) are still 

scarce to make reliable large-scale conclusions. The data provided in Chapter 4 is an 

important contribution to our understanding of this subject, including patterns of 

carotid circulation. 

6.4. Chapter 5 

• The previous hypotheses on the relation between (1) the akinetic skull and stronger 

bite forces and (2) a more efficient bite and the pleurodiran trochlear system are not 

confirmed by the functional analyses presented in Chapter 5. 

• On the other hand, the Finite-Element Analyses (FEAs) showed that the 

morphological modifications related to the new skull architecture of turtles, 

redistributed stress, creating an optimized structure, capable of resisting higher loads 

with less material and supporting the new loads exerted by the trochlear mechanisms. 

• The presented chain of progressive correlations between skull and neck changes 

connects the reorganization of the neck musculature to the turtle’s high neck mobility 

and to the fixation of the palatoquadrate, which is itself related to the lack of cranial 

kinesis in the group. 

• The sequence of events documented by the fossil record, in association with the 

results of the FEAs, permits the proposition of the following scenario: increased neck 

mobility compensates the clumsy and less mobile body of turtles due to the origin of 

the shell, and neck retraction protects the head; associated topological changes of 

neck musculature are buffered by the palatoquadrate fixation and the related loss of 

cranial kinesis; a rigid and optmized skull opens the path for novel skull architectures; 

the associated posterior elongation of the adductor chamber, the trochlear 

mechanisms, and the potential for marginal bone reductions on the skull roof, enabled 

the path, closer to the diversification of Testudines, for a new series of neck change, 

with muscles attaching to new areas on the skull. New skull architectures and longer 

and more flexible necks might have been associated with the great diversification of 
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crown turtles since the Jurassic, a hypothesis that should be tested by analyses of 

macroevolutionary patterns. 
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