• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
Documento
Autor
Nome completo
Renato Pereira Orenha
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Ribeirão Preto, 2017
Orientador
Banca examinadora
Galembeck, Sergio Emanuel (Presidente)
Bickelhaupt, Friedrich Matthias
Guerra, Célia Fonseca
Hamlin, Trevor
Lourenço, Ricardo Vessecchi
Machado, Francisco Bolivar Correto
Título em inglês
Computational study of ruthenium-nitrosyl compounds
Palavras-chave em inglês
Chemical bond
Energy decomposition analysis
Nitric oxide
Relativistic effects
Resumo em inglês
The discovery of the chemical properties related to the physiological and pathophysiological processes of the nitric oxide molecule has advanced scientific research concerning the control of NO availability in the biological environment. Complexes involving ruthenium and other ligands, such as amine and tetraazomacrocycles, have been used as models because they display properties like stability to air oxidation, solubility in water, and low cytotoxicity against host cells. Given the peculiar properties of nitric oxide, we first conducted a computational experiment based on the molecular orbital diagram of NO (Chapter 3). Then, we performed exercises of computational quantum chemistry involving the monocation (NO+) and monoanion (NO-) of NO. These exercises were presented to students at the end of their undergraduate studies or at the beginning of their postgraduate studies. The students started the experiment by exploring the Lewis structures of NO+, NO, and NO- along with the molecular orbital diagram of NO, to obtain a correlation with different properties like bond lengths and atomic charges. Next, they compared the calculated bond lengths and vibrational frequencies with experimental results found in Internet databases, which allowed them to discuss the differences they visualized. In addition, distinct approximations helped to calculate partial atomic charges. The students verified that it is difficult to determine this parameter because it is not physically observable and does not rely on any quantum mechanical operator to determine its quantity. The dipole moment calculated for NO, 0.153 D, by using B3LYP/631+G(d,p) level is close to the most accepted experimental data. This value contrasts with a recent determination of this parameter indicating that the negative charge concentrates on the nitrogen atom. The students finished the experiment by dealing with two topics of relevant interest to computational chemistry: (i) investigation of the behavior of some properties; for instance, atomic charges and spin densities, in relation to the basis set increment, and (ii) calculation of accurate electronic energies from extrapolation of the basis set pcn, n = 2-4, to infinity. Given the relevance of the nitric oxide molecule and the important role of water as solvent in the biological environment, we undertook a computational study of the interaction of NO, NO+, and NO- with H2O: [NO.H2O], 0, [NO.H2O]+, 0+, and [NO.H2O]-, 0- (Chapter 4). The geometries optimized for these clusters indicated that the NO.H2O interaction depends on the total charge: (ON.HOH), (NO-.HOH), and (ON+.OH2). The atomic spin densities along with the frontier molecular orbitals representation demonstrated that NO goes from 0 to 0+ or 0- in the oxidation or reduction processes, respectively, and that both processes occur on the nitrogen atom. The quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and natural bond-bond polarizability (NBBP) methods helped to quantify the electronic delocalization level between NO and H2O: 0+ > 0 > 0-, to show a predominantly ionic character for the intermolecular interactions, but a primarily covalent character for the intramolecular chemical bonds. Energy analyses carried out by the natural bond orbital (NBO) and localized molecular orbital energy decomposition (LMOEDA) methods for the interaction between NO and H2O in the complexes 0, 0+, and 0- demonstrated a more favorable interaction in 0- than in 0+ and 0, as revealed by the former method. However, the latter method indicated more negative total interaction energy for 0+ in relation to 0- and 0 because of its predominantly electrostatic component. Analysis of the electrostatic potential surfaces furnished a clear and direct explanation for the relative position of the monomers. Additionally, this analysis showed that the Coulombic attraction between the water molecule and the charged complexes NO+ and NO- is larger than in the case of the complexes with NO. Accordingly, we investigated the complexes cis-[RuCl(NO)(NH3)4]+, 1; cis-[RuCl(NO)(NH3)4]2+, 2; cis-[RuCl(NO)(NH3)4]3+, 3; trans-[RuCl(NO)(NH3)4]+, 4; trans-[RuCl(NO)(NH3)4]2+, 5; trans-[RuCl(NO)(NH3)4]3+, 6; [Ru(NO)(NH3)5]+, 7; [Ru(NO)(NH3)5]2+, 8; and [Ru(NO)(NH3)5]3+, 9 to improve our understanding of the nature of Ru-NO chemical bond and of the influence of the total charge, nature, and relative position of simple ligands on NO release from these complexes (Chapter 5). According to the analysis of charges conducted by the QTAIM and NBO methods along with the molecular orbital representation, the first chemical reduction of complexes 3 and 6 to complexes 2 and 5, respectively, occurs in the pi orbital of Cl, whereas the second reduction, from complexes 2 and 5 to complexes 1 and 4, respectively, and the overall reduction process complex 9 --> complex 8 --> complex 7 takes place in the pi* orbital of NO. In addition, geometric parameters, wavenumbers related to bond stretching, and analysis of electron density by the QTAIM and NBO methods showed that the thermodynamic stability of the Ru-NO bond in complexes 1-6 increases in the first reduction (on going from total charge 3+ to 2+), but it decreases in the second reduction (on going from 2+ to 1+). For complexes 7-9, the stability of the Ru-NO bond decreases in the first reduction, but it increases in the second reduction. This is because interaction between NO and Ru is more favorable in complex 7 than interaction between NO and Ru in complex 8. For NO, the bond order decreases upon reduction of the total charge in the three classes of complexes: 1-3, 4-6, and 7-9. For the complexes containing the chlorine atom, it is possible to observe that the chloride group increases the electron density and provides a more favorable electrostatic interaction in the Ru-NO bond as compared to the complexes containing amine only. The results also indicate increased stability of the Ru-NO bond in complexes 1-3 as compared to complexes 4-6. As a result, the electrostatic interaction between Cl and NO is larger in complexes 1 and 3 as compared to complexes 4 and 6, respectively. We investigated the influence of the Effective Core Potential (ECP) in relation to the treatment involving all the electrons along the scalar relativistic effects obtained by the secondorder Douglas-Kroll-Hess (DKH2) approximation by analyzing the geometric parameters of complexes 1-9 and trans-[RuCl(NO)(NH3)4], 10. By using the ECP basis set, we determined the energies of reduction (A: 2-->1, B: 3-->2, C: 5-->4, D: 6-->5, E: 8-->7, and F: 9-->8), isomerization (G: 1-->4, H: 2-->5, and I: 3-->6), and Cl negative trans influence (J: 7+Cl- --> 10+NH3, K: 8+Cl- --> 5+NH3, and L: 9+Cl- --> 6+NH3) with the computational methods: RI-MP2, RI-SCS-MP2, OO-RI-MP2, OO-R-ISCS-MP2, M06-L, M06, M06-2X, M06-HF, BP86-D3BJ, BP86, B2PLYP, LC-wPBE, and B3LYP. We adopted the CCSD(T) method as reference (Chapter 6). For the statistical analysis, we used the following parameters: minimal negative deviation, Dneg(Min); maximum positive deviation, Dpos(Max); medium absolute deviation, MAD; and rootmeansquare, RMS. In addition to these results, we used values relative to the computational model used as reference, CCSD(T)/def2TZVP, or even a comparison with the experimental results. The geometric parameters obtained with ECP were very close to the values obtained with DKH2 - we achieved MARD values of 1.4 and 0.4% for the bond lengths and angles, respectively. Besides that, the calculated data had MARD values close to 4% as compared to the X-ray experimental results for bond lengths and MARD values close to 3% for the bond angles. These results are acceptable, despite deviation intervals of (5%) - 9% for r, and (5%) - 7% for <. Concerning the reaction energies, the B2PLYP method gave the closest values in relation to those obtained by CCSD(T) in A-I, whereas B3LYP showed the best performance in the proposed chemical reactions J-L. We also studied the nature of the Ru-NO and Ru-NO2 bonds in the compound fac-[Ru(NO)Cl2(3N4,N8,N11(1-carboxypropyl)cyclam)]+ as well as its derivatives obtained upon changes in pH by the computational model B3LYP/ccpVDZ with pseudopotential ECP28MDF for ruthenium. The electronic structure was analyzed with the aid of the density overlap regions indicator (DORI), QTAIM, ELF, and NBO methods (Chapter 7). The DORI method identified a region where the electron density of Ru and NO or NO2 overlapped, which indicated the presence of the Ru-NO or Ru-NO2 chemical bond. The QTAIM and ELF methods showed that these bonds have low covalent character. Investigation of the electron density demonstrated that the number of electrons shared between Ru and NO increases on going from complex 11 to complex 12, when carboxyl group is deprotonated. However, this number decreases with increasing pH and formation of complex 13, from deprotonation of N(2), and complex 14, with conversion of Ru-NO to Ru-NO2. By using NBO, we also observed interaction between the localized d orbitals of Ru and the pi* orbital of NO or NO2. This interaction is related to the pi backdonation process, which is more favorable to the stabilization of complexes 11-14 than the interaction between the sigma NBOs of NO or NO2 with the d-sigma orbital of Ru, associated with the donation route. Successively, the second order stabilization energy involving the NBOs with symmetry increases on going from complex 11 to complex 12 due to the decreased energy difference and increased overlap between these localized orbitals. The opposite trend is observed on going from complex 12 to complexes 13 and 14, in agreement with previous results. We examined the Ru-NO bond mechanism in the complex trans-[RuCl(NO)(NH3)4]2+ (Chapter 8). Then, we obtained the geometry of this compound and the bond dissociation energy (-Delta-E) of the decompositions trans-[RuCl(NH3)4]+ + NO+, trans-[RuCl(NH3)4]2+ + NO, and trans-[RuCl(NH3)4]3+ + NO by using the computational models ZORA-BP86/TZ2P and BP86/TZ2P, to evaluate how the ZORA approximation influenced treatment of the relativistic effects. Both computational models agreed well with the geometric parameters obtained by X-ray diffraction in the literature. Nevertheless, the values of -Delta-E were significantly different, so we adopted the ZORA-BP86/TZ2P model in the subsequent discussions. The dissociation trans-[RuCl(NH3)4]+ + NO+ gave the lowest -Delta-E, which agreed with a value for the Ru-NO bond angle close to 180º and is typical of trans-[Ru(NO)L(NH3)4]n+ that are EPR silent. We used this decomposition along with the Kohn-Sham molecular orbital theory in combination with the energetic decomposition analysis to highlight some important characteristics of the Ru-NO bond mechanism. Investigation of the negative trans influence of the Cl- group on Ru-NO revealed a favorable interaction energy for the interaction between trans-[RuCl(NH3)4]+ and NO+ - in this structure, the interaction term of the pi orbital counterbalances the electrostatic repulsion and the Pauli repulsion. We also studied the Ru-NO bond in the absence of the Cl- group for trans-[Ru(NH3)4]2+ and NO+. The interaction is repulsive because electrostatic repulsion predominates in relation to the attractive contribution of the interaction of the pi orbital. We also analyzed the RuCl bond in the absence of NO+ for trans-[Ru(NH3)4]2+ and Cl. The interaction is attractive due to the considerable value of the favorable electrostatic term. Investigation of the synergism between the processes of sigma donation and pi backdonation present in Ru-NO showed that this synergism accounts for the increased stability of this bond. The pi component is essential for maintenance of this chemical bond
Título em português
Estudo computacional de compostos rutênio-nitrosilo
Palavras-chave em português
Análise de decomposição energética
Efeitos relativísticos
Ligação química
Óxido nítrico
Resumo em português
A descoberta das novas propriedades químicas da molécula de óxido nítrico, relacionadas principalmente a processos fisiológicos e fisiopatológicos, promoveu um avanço nas pesquisas científicas ligada ao controle da disponibilidade desta molécula em meio biológico. Sendo que compostos, que possuem especialmente rutênio e ligantes, tais como, amina e tetraazomacrocíclicos são utilizadas como modelo devido a suas propriedades como, por exemplo, estabilidade frente à oxidação promovida pelo ar, solubilidade em água e baixa citoxicidade contra células hospedeiras. Assim, devido às propriedades peculiares do óxido nítrico, foi realizado em primeiro lugar um experimento computacional baseado no diagrama de orbitais moleculares do NO e em exercícios de química quântica computacional envolvendo também seu monocátion (NO+) e monoânion (NO) (Capítulo 3). Os estudantes iniciaram este experimento explorando as estruturas de Lewis de NO+, NO e NO junto ao diagrama de orbitais moleculares do NO obtendo uma correlação com diferentes propriedades, por exemplo, comprimentos de ligação, e cargas atômicas. Em seguida, os valores dos comprimentos de ligação e frequências vibracionais calculados foram comparados com os dados experimentais encontrados em bancos de dados na internet, permitindo uma discussão a respeito das diferenças observadas. Em seguida, distintas aproximações foram utilizadas para o cálculo das cargas atômicas parciais demonstrando a dificuldade na determinação deste parâmetro, uma vez que este não é uma observável física e, consequentemente, não há um operador mecânico quântico para a obtenção desta grandeza. Além disso, o momento de dipolo calculado do NO, 0,153 D, com B3LYP/631+G(d,p), é próximo ao valor experimental, mais aceito, em contaste a uma recente determinação que indica uma carga negativa concentrada no sentido do átomo de nitrogênio. O experimento termina com dois tópicos de grande interesse para a química computacional. Onde, em primeiro lugar, foi realizada uma investigação de como propriedades, tais como, cargas e densidades de spin atômicas se comportam com o aumento do conjunto de base. E em segundo lugar, o cálculo de energias eletrônicas precisas foi possível com a extrapolação do conjunto de base pcn, n = 24, para n igual a infinito. Dada à relevância da molécula de óxido nítrico e o papel da água como solvente em meio biológico, também foi realizado o estudo computacional da interação entre NO, NO+, e NO com H2O: [NO.H2O], 0, [NO.H2O]+, 0+, e [NO.H2O], 0 (Capítulo 4). Onde, as geometrias otimizadas destes clusters indicam que a interação NO.H2O depende da carga total: (ON.HOH), (NO.HOH) e (ON+.OH2). Sendo que as densidades de spin atômicas e a forma dos orbitais moleculares indicam que a partir de 0 para 0+ ou 0 os processos de oxidação ou redução, respectivamente, ocorrem sobre o NO, ou mais especificamente sobre o átomo de nitrogênio. Logo, os métodos quantum theory of atoms in molecules (QTAIM), electron localization function (ELF) e natural bondbond polarizability (NBBP) permitem quantificar o nível de deslocalização eletrônica entre o NO e o H2O: 0+ > 0 > 0, e mostram um caráter predominantemente iônico para as interações intermoleculares, porém, primariamente covalente para as ligações químicas intramoleculares. Destarte, a analise energética obtida junta aos métodos natural bond orbital (NBO) e localized molecular orbital energy decomposition (LMOEDA) para a interação entre NO e H2O nos complexos 0, 0+, e 0 demostra ser mais favorável em 0 do que 0+, e 0 quanto a influência mútua dos orbitais naturais de ligação, ao passo que o segundo método designa uma energia de interação total mais negativa para 0+ em relação a 0,e 0, devido ao seu componente eletrostático predominante. Para concluir, a análise das superfícies de potenciais eletrostáticos fornece uma explicação direta e clara a respeito da posição relativa dos monômeros. Em seguida, a atração de Coulomb entre a molécula de água e os compostos carregados NO+ e NO é mais favorável frente ao NO. Por conseguinte, considerando compostos capazes de controlar a disponibilidade do NO, foram investigados os seguintes complexos: cis[RuCl(NO)(NH3)4]+, 1, cis[RuCl(NO)(NH3)4]2+, 2, cis[RuCl(NO)(NH3)4]3+, 3, trans[RuCl(NO)(NH3)4]+, 4, trans[RuCl(NO)(NH3)4]2+, 5, trans[RuCl(NO)(NH3)4]3+, 6, [Ru(NO)(NH3)5]+, 7, [Ru(NO)(NH3)5]2+, 8, e [Ru(NO)(NH3)5]3+, 9, de modo estudar a natureza da ligação química RuNO sobre a influência da carga total, bem como, da natureza e posição relativa de ligantes simples (Capítulo 5). Desta forma, em primeiro lugar, a partir da analise das cargas obtidas pelos métodos QTAIM e NBO em conjunto com a representação dos orbitais moleculares, temos que a primeira redução química em 3-->2 e 6-->5 ocorre sobre o orbital do átomo de Cl, ao passo que a segunda redução em 2-->1 e 5-->4, bem como, em 9-->8-->7 é sobre o orbital * do NO. Em seguida, os parâmetros geométricos, números de onda vibracionais de estiramento, e a analise da densidade eletrônica pelos métodos QTAIM e NBO mostram que a estabilidade termodinâmica da ligação RuNO nos compostos 16 aumenta na primeira redução, a partir de 3+ para 2+, contudo, diminuem na segunda redução, a partir de 2+ para +. Para os compostos 79, a estabilidade de RuNO diminui com a primeira redução da carga total, mas, aumenta na segunda redução. Sendo que o último processo é explicado pela interação entre o NO, e o Ru ser mais favorável em 7, do que o NO e o metal em 8. Para NO, uma diminuição da ordem de ligação é visualizada com a redução da carga total nas três classes de complexos: 13, 46 e 79. Em 16, a comparação das moléculas 1 e 4 frente a 8, assim como, 2 e 5 em relação a 9 demonstra que a influência negativa do grupo cloreto relativo a contribuição do ligante amina promove uma maior densidade eletrônica e mais favorável interação eletrostática na ligação RuNO. Adicionalmente, os resultados indicam um aumento da estabilidade em RuNO para 13 comparado a 46, devido à interação eletrostática entre Cl, e NO, apesar da densidade eletrônica nesta ligação química ser maior somente em 1 e 3 frente a 4 e 6, respectivamente. A seguir, foi realizado um estudo da influência do Effective Core Potential (ECP) em relação ao tratamento envolvendo todos os elétrons junto aos chamados efeitos relativísticos escalares por meio da aproximação secondorder DouglasKrollHess (DKH2). Isto foi realizado por meio da analise dos parâmetros geométricos dos complexos metálicos: 19 e trans[RuCl(NO)(NH3)4], 10. A partir das geometrias otimizadas com o conjunto de base com ECP, também foram avaliadas as energias das reações químicas de redução (A: 2-->1, B: 3-->2, C: 5-->4, D: 6-->5, E: 8-->7 e F: 9-->8), isomerização (G: 1-->4, H: 2-->5 e I: 3-->6), e influência trans negativa do Cl (J: 7+Cl --> 10+NH3, K: 8+Cl --> 5+NH3 e L: 9+Cl --> 6+NH3) junto aos seguintes métodos computacionais: RIMP2, RISCSMP2, OORIMP2, OORISCSMP2, M06L, M06, M062X, M06HF, BP86D3BJ, BP86, B2PLYP, LCwPBE, e B3LYP. Sendo que o método CCSD(T) foi adotado como referência (Capítulo 6). Para a análise estatística foram utilizados os seguintes parâmetros: desvio negativo mínimo, Dneg(Mín), desvio positivo máximo, Dpos(Máx), desvio absoluto médio, DAM, e raiz quadrada do erro quadrático médio, RQEQM. Além destes parâmetros, foram empregados também valores relativos ao modelo computacional adotado como referência, CCSD(T)/def2TZVP, ou mesmo frente a resultados experimentais. Agora, os parâmetros geométricos obtidos com ECP frente à DKH2 apresentam valores próximos como pode ser destacado pelos valores do desvio absoluto médio relativo, DAMR, de 1,4 e 0,4% para os comprimentos e ângulos de ligação, respectivamente. Em adição, os dados calculados frente aos resultados experimentais de raiosX apresentam pequenos valores de DAMR, próximos a 4% para os comprimentos de ligação, e 3% para os ângulos de ligação, apesar do intervalo de desvios serem de (5%) 9% para r, e (5%) 7% para <. Para as energias das reações químicas propostas, o método B2PLYP apresentou resultados mais próximos ao obtido pelo CCSD(T) para AI, enquanto que o método B3LYP apresentou as energias mais próximas às obtidas com o método de referência para JL. Também foi estudada a natureza das ligações RuNO e RuNO2 no composto fac[Ru(NO)Cl2(3N4,N8,N11(1carboxipropil)cyclam)]Cl H2O ((1carboxipropil)cyclam) = 3(ácido 1,4,8,11tetraazociclotetradecan1il)propiônico), e em seus derivados junto as modificações do pH, por meio do modelo computacional B3LYP/ccpVDZ com pseudopotencial relativístico ECP28MDF para o Ru. Onde a analise da estrutura eletrônica foi realizada através dos métodos density overlap regions indicator (DORI), QTAIM, ELF e NBO (Capítulo 7). O método DORI permitiu se identificar uma região de recobrimento de densidade eletrônica entre o Ru e NO ou NO2 indicando a presença das ligações químicas RuNO e RuNO2. Os métodos QTAIM e ELF mostraram que estas ligações possuem um baixo caráter covalente. A analise da densidade eletrônica mostrou que o numero de elétrons compartilhados entre Ru e o NO aumenta a partir de 11 para 12, com a desprotonação do grupo carboxílico, porém, diminui com o aumento de pH e formação de 13, a partir da desprotonação de N(2), e 14, com a conversão da ligação RuNO para RuNO2. O método NBO também possibilitou determinar a interação entre os orbitais localizados d do Ru com * do NO ou NO2, relacionada ao processo de retrodoação , como mais favorável para a estabilização dos compostos 1114 frente à interação entre os NBOs do NO ou NO2 com d do Ru, pautada ao processo de doação . Sendo que a energia de estabilização de segunda ordem envolvendo os NBOs de simetria aumenta em 11-->12, devido à diminuição da diferença de energia e o aumento do recobrimento entre estes orbitais localizados. Entretanto, foi observada uma tendência contrária para 12-->13-->14, concordando com os resultados prévios. O mecanismo da ligação RuNO foi analisado a partir do complexo trans[RuCl(NO)(NH3)4]2+ (Capítulo 8). A geometria deste composto e a energia de dissociação de ligação (E) para as decomposições: trans[RuCl(NH3)4]+ + NO+, trans[RuCl(NH3)4]2+ + NO, e trans[RuCl(NH3)4]3+ + NO, foram obtidas junto aos modelos computacionais: ZORABP86/TZ2P e BP86/TZ2P, com o objetivo da avaliar a influência da aproximação ZORA no tratamento dos efeitos relativísticos. Os resultados mostraram que ambos os modelos computacionais apresentam uma boa concordância com os parâmetros geométricos obtidos por difração de raiosX que foram encontrados na literatura. Entretanto, os valores de E apresentaram uma diferença mais acentuada, e o modelo ZORABP86/TZ2P foi adotado nas seções seguintes deste estudo. Outro ponto é que a menor E foi obtida para trans[RuCl(NH3)4]+ + NO+, concordando com o ângulo de ligação RuNO próximo a 180º típico de compostos trans[Ru(NO)L(NH3)4]n+ que não apresentam sinais de EPR. Sendo assim, esta decomposição foi utilizada junto à teoria do orbital molecular de KohnSham em combinação com analise de decomposição energética para destacar algumas características do mecanismo da ligação RuNO. Assim sendo, na ligação RuNO sobre a influência trans negativa do Cl, estudada por meio da interação entre trans[RuCl(NH3)4]+ e NO+, temos uma energia de interação favorável porque, nesta estrutura, o termo de interação orbital contrabalança a repulsão eletrostática e a repulsão de Pauli. Por outro lado, a ligação RuNO na ausência do grupo Cl foi estudada através da interação entre trans[Ru(NH3)4]2+ e NO+, demostrando ser repulsiva devido a predominância da repulsão eletrostática frente a contribuição atrativa da interação orbital . Agora, a ligação RuCl na ausência de NO+, analisada a partir da interação entre trans[Ru(NH3)4]2+ e Cl, é atrativa devido ao considerável valor do termo eletrostático favorável. Ainda, o estudo do sinergismo entre os processos de doação e retrodoação presentes em RuNO mostrou que este é responsável por aumentar a estabilidade desta ligação. Porém, a retrodoação demonstrou não ser somente a mais importante, mas, também fundamental para a manutenção desta ligação química
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-10-18
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.