• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.59.2014.tde-29012015-164416
Documento
Autor
Nome completo
Olavo Henrique Menin
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
Ribeirão Preto, 2014
Orientador
Banca examinadora
Martinez, Alexandre Souto (Presidente)
Greco Junior, Paulo Celso
Leoni, Renata Ferranti
Mossin, Eduardo André
Tinós, Renato
Título em português
Eficácia em problemas inversos: generalização do algoritmo de recozimento simulado e função de regularização aplicados a tomografia de impedância elétrica e ao espectro de raios X
Palavras-chave em português
física médica
funções generalizadas
métodos computacionais
otimização estocástica
Resumo em português
A modelagem de processos em física e engenharia frequentemente resulta em problemas inversos. Em geral, esses problemas apresentam difícil resolução, pois são classificados como mal-postos. Resolvê-los, tratando-os como problemas de otimização, requer a minimização de uma função objetivo, que mede a discrepância entre os dados experimentais e os obtidos pelo modelo teórico, somada a uma função de regularização. Na maioria dos problemas práticos, essa função objetivo é não-convexa e requer o uso de métodos de otimização estocásticos. Dentre eles, tem-se o algoritmo de recozimento simulado (Simulated Annealing), que é baseado em três pilares: i) distribuição de visitação no espaço de soluções; ii) critério de aceitação; e iii) controle da estocasticidade do processo. Aqui, propomos uma nova generalização do algoritmo de recozimento simulado e da função de regularização. No algoritmo de otimização, generalizamos o cronograma de resfriamento, que usualmente são considerados algébricos ou logarítmicos, e o critério de Metropolis. Com relação à função de regularização, unificamos as versões mais utilizadas, em uma única fórmula. O parâmetro de controle dessa generalização permite transitar continuamente entre as regularizações de Tikhonov e entrópica. Por meio de experimentos numéricos, aplicamos nosso algoritmo na resolução de dois importantes problemas inversos na área de Física Médica: a determinação do espectro de um feixe de raios X, a partir de sua curva de atenuação, e a reconstrução da imagem na tomografia de impedância elétrica. Os resultados mostram que o algoritmo de otimização proposto é eficiente e apresenta um regime ótimo de parâmetros, relacionados à divergência do segundo momento da distribuição de visitação.
Título em inglês
Efficiency in inverse problems: generalization of simulated annealing algorithm and regularization function applied to electrical impedance tomography and X-rays spectrum
Palavras-chave em inglês
computational methods
generalized functions
medical physics
stochastic optmization
Resumo em inglês
Modeling of processes in Physics and Engineering frequently yields inverse problems. These problems are normally difficult to be solved since they are classified as ill-posed. Solving them as optimization problems require the minimization of an objective function which measures the difference between experimental and theoretical data, added to a regularization function. For most of practical inverse problems, this objective function is non-convex and needs a stochastic optimization method. Among them, we have Simulated Annealing algorithm, which is based on three fundamentals: i) visitation distribution in the search space; ii) acceptance criterium; and iii) control of process stochasticity. Here, we propose a new generalization of simulated annealing algorithm and of the regularization function. On the optimization algorithm, we have generalized both the cooling schedule, which usually is algebric or logarithmic, and the Metropolis acceptance criterium. Regarding to regularization function, we have unified the most used versions in an unique equation. The generalization control parameter allows exchange continuously between the Tikhonov and entropic regularization. Through numerical experiments, we applied our algorithm to solve two important inverse problems in Medical Physics: determination of a beam X-rays spectrum from its attenuation curve and the image reconstruction of electrical impedance tomography. Results show that the proposed algorithm is efficient and presents an optimal arrangement of parameters, associated to the divergence of the visitation distribution.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-03-18
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • MENIN, O. H., ROLNIK, V., and MARTINEZ, A. S. Boundary element method and simulated annealing algorithm applied to \ electrical impedance tomography image reconstruction. Revista Brasileira de Ensino de Física , 2013, vol. 35, p. 2304.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.