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Resumo
PENA, R. F. O. Emergência de flutuações de atividade em modelos de redes
corticais com populações neurais heterogêneas. 2018. 163 f. Tese (Doutorado -
Programa de Pós-graduação em Física aplicada à Medicina e Biologia) - Faculdade de
Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto
- SP, 2018.

Em modelos de redes corticais com neurônios pulsantes, os mecanismos responsáveis
pela emergência e impacto de flutuações de atividade neuronal ainda não estão
completamente entendidos. Neste trabalho, modelos computacionais de redes corticais
foram utilizados para investigar como flutuações rítmicas e não-rítmicas surgem e
suas possíveis consequências. Foram estudadas redes com dois tipos de topologia:
aleatória e hierárquica modular, esta última inspirada em evidências experimentais
para a arquitetura cortical. Foram utilizados três diferentes modelos simplificados
de neurônios: integra-e-dispara, Izhikevich e integra-e-dispara exponencial com
adaptação. Primeiramente, estudou-se a ocorrência de atividade auto-sustentada
em redes hierárquicas modulares compostas por populações de neurônios de classes
eletrofisiológicas distintas. Nesses modelos, os padrões de atividade auto-sustentada de
longa duração são oscilatórios e seu tempo de vida depende do nível hierárquico e da
mistura de neurônios na rede. Em seguida, estudou-se o efeito da introdução de ruído
sináptico em modelos de redes aleatórias. Observou-se o aparecimento de alternância
intermitente entre atividade rítmica e não-rítmica com características similares a estados
corticais síncronos e assíncronos, respectivamente. Desenvolveu-se a extensão de uma
abordagem reducionista para redes neuronais homogêneas, em que um esquema iterativo
auto-consistente é usado para que um único neurônio gere trens de disparo com
propriedades estatísticas de segunda ordem similares às de uma rede, para o caso de
redes neuronais heterogêneas. Mostrou-se que essa abordagem captura situações em que
flutuações de atividade lentas emergem. Finalmente, utilizou-se o esquema reducionista
e ferramentas de teoria de informação para estudar a emergência de flutuações de
atividade lentas e sua propagação em redes hierárquicas modulares. Os resultados
mostram que a propagação de informação pela rede depende do número de módulos,
sugerindo que há um nível hierárquico ótimo para a propagação de informação. Os
estudos feitos contribuem para aprofundar o entendimento da relação entre estrutura e
composição neuronal em modelos de redes corticais e indicam mecanismos de emergência
e manutenção de flutuações de atividade nessas redes.

Palavras-chave: 1. sistemas dinâmicos. 2. redes complexas. 3. córtex cerebral.

4. neurociência computacional. 5. ruído. 6. flutuações.
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Abstract
PENA, R. F. O. Emergence of activity fluctuations in cortical network
models with heterogeneous neural populations. 2018. 163 f. Thesis (Ph.D. -
Postgraduate program in Physics applied to Medicine and Biology) - Faculty of
Philosophy, Sciences and Literature, University of São Paulo, Ribeirão Preto - SP, 2018.

In cortical network models with spiking neurons, the mechanisms responsible for
the emergence and impact of neuronal activity fluctuations are not yet completely
understood. In this work, computational models of cortical networks were used
to investigate how rhythmic and non-rhythmic fluctuations arise and their possible
consequences. Networks with two types of topology were studied: random
and hierarchical modular, this latter inspired on experimental evidence about
cortical architecture. Three different simplified spiking neuron models were used:
integrate-and-fire, Izhikevich, and integrate-and-fire with adaptation. Initially, the types
of self-sustained activity patterns that emerge in hierarchical modular networks with
mixtures of electrophysiological neuronal classes were studied. In these models, the
long-duration self-sustained activity patterns are oscillatory and their lifetime depend
on the hierarchical level of the network and its neuronal composition. Next, the effect
of the introduction of synaptic noise in random networks was studied. These networks
displayed intermittent alternations between rhythmic and non-rhythmic activity patterns
with characteristics similar to synchronous and asynchronous cortical states, respectively.
A reductionist approach for homogeneous neuronal networks, in which an iterative
self-consistent scheme is used so that a single neuron spike train generates second-order
statistical properties similar to the ones of a network, was extended to heterogeneous
networks. It was shown that this reductionist scheme captures situations in which
slow activity fluctuations emerge. Finally, the reductionist scheme and information
theoretical tools were used to study the emergence of slow activity fluctuations and
their propagation through hierarchical modular networks. The results show that the
information propagation in the network depends on the number of modules, suggesting
an optimal hierarchical level for information propagation. The studies done contribute to
deepen the understanding of the relationship between structure and neuronal composition
in cortical network models, and point to mechanisms of emergence and maintenance of
activity fluctuations in these networks.

Key-words: 1. dynamical systems. 2. complex networks. 3. cerebral cortex.

4. computational neuroscience. 5. noise. 6. fluctuations.
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Chapter 1

Introduction

1.1 General introduction

Humanity seeks the understanding of natural phenomena that happens in the

world around us (the external world) from as early as its own existence. The study

of different patterns, abstractions, and the use of logic, which pertains to the field of

mathematics, is known to be done by the Greeks in the 3rd century BC for example.

The field of physics, which could be seen as little younger than mathematics, has as

major goal the understanding of nature. Although questions concern motion, space,

or even time, the final objective is to understand how the universe behaves.

On the contrary, neuroscience differs from these fields in some aspects. The

first, and perhaps most important difference, is that neuroscience is not seeking the

understanding of the external world; instead, it pursues the understanding of our

brain. It may be the only science which allows the real understanding of what is

happening in the universe that comprises our minds. Through the studying of neural

physiology, neural anatomy, psychology, computational modeling, etc., we seek as

ultimate goal to understand what is our brain doing. A second difference is the

age of neuroscience. Although some attempts in understanding the brain have been

made throughout the whole human history, substantial advances in the field did

not start until the late 1890s when Camillo Golgi developed the staining procedure

with silver chromate allowing a better visualization of individual neurons. The silver

chromate staining allowed Santiago Ramón y Cajal to propose the neuron doctrine

which states that the brain has the neuron as its functional unit (Guillery, 2005).

Several attempts have been made since that founding moment to move

1
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forward our understanding of the brain. Nevertheless, little is known. As it was

well described by the Austrian-American neuroscientist Eric Richard Kandel (Nobel

Prize in Physiology or Medicine), aspects of neuroscience are the “ultimate challenge”

for the biological sciences (Kandel, Schwartz, Jessell, et al., 2000). In that sense,

scientists with different backgrounds (including the author of this thesis) see that

the final goal of neuroscience will not be achieved by an individual scientist working

in a single discipline, but by a collective effort of scientists from varied fields:

from biological sciences to mathematics, physics, and computational science; from

different laboratories around the world.

This work focus on the understanding of biological phenomena through the

view of computational and theoretical neuroscience. Efforts were made towards

the understanding of brain phenomena via the understanding of brain models. In

particular, we investigate how fluctuations in neuronal activity emerge in networks

of spiking neurons and what are their consequences. We focus on the cerebral cortex

where heterogeneous neuronal populations are known to exist.

1.2 Goals

The goal of this work was to study the emergence of activity fluctuations

in cortical network models with heterogeneous neuronal populations. All neuron

models and network architectures were chosen to generically represent the cerebral

cortex. Heterogeneity was achieved in different directions: topologically by

considering networks with hierarchical and modular structure, or intrinsically

to the neurons by introducing cells with different firing properties. Rhythmic

and non-rhythmic activity fluctuations were studied and mechanisms to generate

these fluctuations were linked to synaptic and network noise, types of neurons

or topological attributes. Possible implications such as self-sustained activity or

propagation of information received special attention during the development of this

thesis. Methods of mean-field analysis, dynamical systems analysis, and information

theory were developed and applied.
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1.3 Contribution

Most theoretical studies of cortical network dynamics have concentrated on

networks with non-modular architecture and homogeneous neuronal composition,

usually described by unstructured networks with Erdős-Rényi topology (Erdős &

Rényi, 1959) populated by leaky integrate-and-fire neurons (Gerstner, Kistler, Naud,

& Paninski, 2014). The main contribution of this thesis was to extend these

studies to networks with a more elaborate architecture, namely hierarchical modular,

which captures elements of the organization of the cortical brain network (Meunier,

Lambiotte, & Bullmore, 2010), composed of heterogeneous neuronal populations

with distinct firing patterns, modeled by two-dimensional integrate-and-fire neurons

(Gerstner et al., 2014). The network models studied here exhibit a rich repertoire

of dynamic activity patterns, and this thesis describes, analyses and explains the

underlying mechanisms of some of these patterns for the first time.

1.4 Organization of the thesis

The structure of this thesis was inspired on the “traditional complex”

arrangement (Paltridge, 2002), where general introduction and methods are followed

by studies presented in different chapters with their own introduction, methods,

results, and discussion sections. In the end, general conclusions are presented. A

summary of the internal structure of each chapter follows:

• In Chapter 2, we review the background and literature. We go through basic

neuroscience modeling justifying the use of simplified models as the ones we

will employ here. We introduce the reader to basic notions of phase-plane

analysis which will be useful for the questions addressed in this thesis.

• In Chapter 3 we present our general methods. There, we explain all the

statistical measures used along the thesis. Although the common measures are

placed here, in each chapter we also include a more specific methods section.

• In Chapter 4, the first chapter with results, we investigate mechanisms behind

the transient oscillatory activity observed in the models. Many of these results
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have been published elsewhere (Tomov, Pena, Zaks, & Roque, 2014; Tomov,

Pena, Roque, & Zaks, 2016). Using interpretations based on single-neuron

and network dynamical systems analyses, we explain why this activity starts

and the reason for its eventual complete cessation.

• In Chapter 5 we study how synaptic noise affects spontaneous dynamics in

networks with multiple neuron subtypes. Results from this chapter have

already been published (R. F. O. Pena, Zaks, & Roque, 2018). We localize

the population activity patterns in a two-dimensional parameter diagram,

and explain the intermittent dynamics observed in a particular region of the

diagram.

• In Chapter 6 we introduce an iterative scheme to describe second-order

statistics of a neuron. These results help us to understand how

slow-fluctuations build up in a network model from the point of view of a

single neuron. Results from this chapter have also been published (R. F. Pena,

Vellmer, Bernardi, Roque, & Lindner, 2018).

• In Chapter 7 we finish the presentation of our results by discussing how

a hierarchical and modular topology works together with slow activity

fluctuations to enhance activity propagation through the network. These

results have not yet been published but a manuscript is under preparation.

The thesis organization was done in a way that each chapter can be read

independently, but we suggest reading the Methods section first in Chapter 3. Every

chapter has its own introduction and a brief summary of specific methods for the

questions that are addressed.

1.5 Scientific publications derived from this thesis

During the studies of the author of this thesis aiming for his Ph.D., he

published, as first-author or co-author, a number of articles in peer reviewed journals.

Some of them are directly related to this thesis, but some are not. The latter are the

product of his curiosity and intensive discussions with his supervisor, other professors

and close colleagues to whom he is thankful. A complete list with all articles that the
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Ph.D. candidate published during his studies (from 2014 to 2018) is displayed below.
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Chapter 2

Background to the study and
review of the literature

2.1 The cerebral cortex

The cerebral cortex is the brain region on which we focus in this thesis. It is

a structure of the brain of mammals and comprehends its outermost sheet.

The cortex is responsible for many cognitive and higher brain functions

(Kandel et al., 2000; Tranel, Cooper, & Rodnitzky, 2003; Bear, Connors, & Paradiso,

2007). It is divided into two brain hemispheres which contain four anatomical lobes:

frontal, parietal, temporal, and occipital. Each lobe is related to a different function,

some examples are: the frontal lobe is associated with control of movements and

planning; the parietal lobe is associated with somatic sensations; the temporal lobe

is associated with hearing and language comprehension; the occipital lobe is related

to vision.

The full cortical connectivity at the different scales spanned by it (local

circuits to inter-area network) has not been completely determined, as well as

their possible functions. Attempts have been made to characterize the cortical

anatomy (Thomson, West, Wang, & Bannister, 2002; Binzegger, Douglas, & Martin,

2004; Greenberg, Houweling, & Kerr, 2008; Potjans & Diesmann, 2014). These

studies reveal that vertically the cortex is organized in layers where each layer

has an enormous neuronal diversity. The cortical layers connect among themselves

according to very specific patterns. Horizontal connections are revealed by different

techniques, e.g. diffusion MRI, which can measure white matter spreading, and

8
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show a modular organization (Bassett et al., 2010). It is debated whether a modular

organization allows parallel processing of information in the cortex, but it does create

a heterogeneous organization in the sense that populations are clustered.

Through techniques involving electrophysiological recordings it has been

possible to classify neurons based on their responses to current inputs (Connors,

Gutnick, & Prince, 1982; McCormick, Connors, Lighthall, & Prince, 1985), and

attribute these neurons to given locations in intricate cortical topology (Binzegger

et al., 2004). The majority of excitatory neurons in the cerebral cortex are pyramidal

and may fire regularly (with or without adaptation) or exhibit an initial burst. On

the other hand, most of the inhibitory neurons are basket cells which usually fire

with faster frequencies (Shepherd, 2003). Undoubtedly, the cerebral cortex contains

heterogeneous neuronal populations.

2.2 Modeling

Theoretical and computational modeling of brain components are not

only techniques but comprise a field of research, referred to as computational

neuroscience. This field has been largely developed with the intent to investigate and

explain several phenomena of the brain. Since the study of the brain is challenging

and involves different spatial and temporal scales (Sejnowski, Churchland, &

Movshon, 2014), it is not surprising to observe in the literature different types of

models on completely different scales as well.

In the following, we will give a background on neuronal and network modeling

as well as on dynamical systems analysis, which will be useful for the reader along

the thesis.

2.2.1 Neuron Models

We will start by distinguishing between different types of neuronal modeling.

There are two main approaches to take when modeling a neuron: biophysical and

simplified (see Fig. 2.1 for a schematic explanation of the different types of modeling).

The biophysical type of modeling was introduced by the famous work of

Hodgkin and Huxley (Hodgkin & Huxley, 1952), which describes action potentials
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Figure 2.1: Different approaches to model neurons. Left: Biophysical
modeling takes into account ionic channels and because of that has a close biophysical
correspondence. Right: Simplified modeling takes into account only the dynamical features
to generate a spike and is used to make mathematical analysis such as the ones involving
dynamical systems.

in the squid giant axon. The Hodgkin and Huxley equations outline the ionic

mechanisms underlying an action potential and, by coupling the equations for the

different ion channels in a neuronal membrane one can create a neuron model with

a close biophysical correspondence and make testable predictions.

The simplified modeling approach is interested in reproducing the dynamics

of an action potential without necessarily having a biophysical correspondence

behind it. This type of modeling has several advantages but also some disadvantages

when compared to biophysical modeling. Whereas one can achieve a relatively good

neuron model with a simple RC circuit coupled with some spike detector (see Fig. 2.1

right) or by the combination of simple differential equations, these models lack

ionic currents which can be experimentally tested. In this thesis, we only focus on

simplified neuronal models as we are mostly interested in the single-neuron spiking

behavior and on the population behavior. In the following, we will review how

simplified models are usually established.

In the class of simplified models that we will treat here, the continuous time

evolution of an action potential is not modeled and only the subthreshold dynamics
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is described. Because of this, a discontinuity is added to the neuron model and an

update rule is introduced which is identified with a reset in the membrane voltage

whenever it reaches a certain threshold. Such artifice allows a simplified dynamics

which is, in general, easier to be handled.

The first simplified neuron model that we shall describe is the

integrate-and-fire neuron model (Lapicque, 1907; Gerstner et al., 2014). This

particular neuron model has been a standard choice among the neuroscience

community that uses simplified neuron models. It is a very simple model and yet

very powerful. Its equation reads:

τmv̇(t) = f(v) + input + update rule. (2.1)

When v(t) > vth, a spike is emitted and, after a refractory period of τR,

the voltage is reset to v(t) = vr. The parameter τm in Eq. (2.1) is the membrane

time constant, which may be different depending on the electrophysiology of the

neuron. The input current may come from different sources (scaled by the membrane

resistance R), and is denoted by RI(t).

The choice of the function f(v) is very important to model the correct and

desired behavior. Some examples are:

• f(v) = 0: perfect integrate-and-fire (PIF);

• f(v) = −v: leaky integrate-and-fire (LIF);

• f(v) = v2: quadratic integrate-and-fire (QIF);

• f(v) = −v + ∆T exp(
v − vth

∆T

): exponential integrate-and-fire (EIF);

• f(v) = fitting from an experimental data.

Although these neurons are computationally efficient and analytically

tractable, they lack some basic features presented in real neurons such as

spike-frequency adaptation. One can overcome these limitations by introducing

a second variable in the equations, which describes a time-dependent current. With
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this second variable the model reads:

τmv̇ =f(v)− u+ input + update rule

τuu̇ =g(v, u) + update rule. (2.2)

This second variable in Eq. (2.2) allows a much richer repertoire of behaviors.

The u variable provides a negative feedback to the voltage variable v, which works

as a memory of the spiking activity of the neuron and produces adaptation in the

firing rate. In most cases, the second variable (which we will usually call simply

u-variable) is chosen in order to have a linear relation with the voltage. Besides, the

first variable v changes accordingly to the type of behavior that one aims to model.

The name of the model is taken in accordance with the function f(v). The most

accepted choices for f(v) are:

• f(v) = −v: linear adaptive integrate-and-fire (adaptive LIF);

• f(v) = αv2 + βv + γ : quadratic adaptive integrate-and-fire, or Izhikevich

neuron model (Izhikevich, 2003);

• f(v) = exponential function : adaptive exponential integrate-and-fire (AdEx

model) (Brette & Gerstner, 2005; Gerstner et al., 2014).

As an example which will be largely used in this thesis, we present the

Izhikevich neuron model:


v̇ = αv2 + βv + γ − u+ I(t)

u̇ = a(bv − u),

(2.3)

where α, β, and γ are experimentally fitted to mimic the spiking initiation of a

cortical neuron. Observe that the input is time dependent and identified by I(t).

In addition, note that here we have g(v, u) = a(bv − u). Whereas the parameter a

describes the time scale of the u-variable, the parameter b describes the sensitivity of

the u-variable to subthreshold oscillations in the voltage membrane v. In this regard,

small (large) a results in slow (fast) recovery, and large b results in subthreshold
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oscillations. At the threshold v(t) = vth, which usually is taken at 30 mV for the

Izhikevich model. The update rule reads
v(t) → c,

u(t) → u(t) + d,

(2.4)

where c is the reset voltage (vr) and d is added to the u-variable whenever a spike

occurs.

The parameters that are used to generated the neuronal diversity in this type

of model are displayed in table 2.1.

α β γ a b c d

RS 0.04 5 140 0.02 0.2 -65 8

CH 0.04 5 140 0.02 0.2 -50 2

IB 0.04 5 140 0.02 0.2 -55 4

FS 0.04 5 140 0.1 0.2 -65 2

LTS 0.04 5 140 0.02 0.25 -65 2

Table 2.1: Parameters from the Izhikevich model that characterize five
electrophysiological cell classes used in the simulations.

Examples of neurons that are possible to generate with these parameters

are given in Fig. 2.2. In A is presented a regular spiking neuron (RS), in B a

chattering (CH), in C a fast spiking neuron (FS), and in D a low-threshold spiking

neuron (LTS). While RS and CH are excitatory neurons, FS and LTS are inhibitory

neurons. The intrinsically bursting neuron (IB) is an excitatory cell very similar

to the RS neuron with the difference that there is an initial bursting prior to the

regular behavior.

2.2.2 Phase plane description

To understand the dynamical mechanisms behind these simplified neuron

models, it is fundamentally important to describe them in a geometric way. This

helps to understand the possible outcomes of the neuron model if stimulation is
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Figure 2.2: Spiking patterns for electrophysiological cell classes modeled by the
Izhikevich formalism. A excitatory neuron RS. B excitatory neuron CH. C inhibitory
neuron FS. D inhibitory neuron LTS. Plots where produced with constant I = 6.

applied without the need of solving analytically its differential equations. To do

that, we include a phase space description of some important features from these

neuron models which might also introduce the reader to basic tools of dynamical

systems.

2.2.2.1 Leaky integrate-and-fire neuron model

The LIF neuron model contains only one variable and has its dynamics

easily described by its one dimensional phase space (see Eq. (2.1)). By setting

the derivative to zero, i.e. v̇ = 0, one can easily calculate its fixed point

v∗ = RI(t)

where the superscript ∗ identifies the fixed point, i.e. when the derivative v̇ = 0 we

have v = v∗. Therefore, the fixed point is completely determined by the input in the
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LIF neuron model. As an example, if we set the input RI = 30 mV, the trajectory

will always be attracted to this value. Since the system tends to evolve attracted

to this point we call this particular fixed point an attractor. Given that we want a

spiking neuron we have to complete this description introducing a reset mechanism

at some threshold value (update rule). In this example, we choose vth = 20 mV and

vr = 10 mV.

With this LIF neuron model we always have a voltage trace fluctuating mostly

between vr = 10 mV and vth = 20 mV, being the trajectory attracted towards

v∗ = 30 mV. The velocity of this attraction can be well changed by the arrival of

synaptic inputs which, in very large and sparse networks, are usually quasi-random1.

In Fig. 2.3 we show an example of such neuron model and its phase plane analysis. In

Fig. 2.3A the neuron does not receive stimulation and because of that the trajectory

is trapped at the fixed point at v∗ = 0 mV. As the input is incremented to RI =

30 mV in Fig. 2.3B we observe a shift of the fixed point to v∗ = 30 mV where the

trajectory is attracted and a fire-and-reset rule applies (see the complete description

in the legend of this figure).
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Figure 2.3: Leaky integrate-and-fire behavior in a phase plane. Green curve:
dv/dt. Black circle: v∗. Red dotted lines: reset voltage and spike threshold, respectively.
A: When stimulation is absent, the fixed point is v∗ = 0 mV and the trajectory stays at
this point. Observe that the fixed point is determined by the zero crossing dv/dt. B: By
making RI = 30 mV the fixed point is changed to v∗ = 30 mV and the trajectory is now
attracted to this point. Since there is a threshold at vth = 20 mV the neuron is reset to
vr = 10 mV every time the trajectory crosses vth. C: Voltage series of the same trajectory
in B.

1 Quasi-random points fill the space more uniformly than uncorrelated random points. They
are evenly distributed. This is the case of synaptic inputs which are subjected to refractoriness.
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2.2.2.2 Izhikevich neuron model

In the Izhikevich neuron model, by setting the derivatives to zero we can

identify two nullclines which we will refer as v-nullcline or ū and u-nullcline or u∗.

These are identified by the following equations:


ū = αv2 + βv + γ + I(t)

u∗ = bv.

(2.5)

Observe that only ū is time-dependent due to I(t). As I increases, spiking

behavior can emerge due to a bifurcation which is basically a qualitative change in

the structure of this system due to the increment of I.

In general, four types of bifurcations are used to classify this excitable

system (Izhikevich, 2007): saddle-node bifurcation, saddle-node on invariant

circle bifurcation, subcritical Andronov-Hopf bifurcation, and supercritical

Andronov-Hopf bifurcation.

• In a saddle-node bifurcation, a stable fixed point (the node) and an unstable

fixed point (the saddle) approach each other as the bifurcation parameter

moves towards the bifurcation point. At the bifurcation point the two fixed

points annihilate each other and the trajectory is forced to follow the flow

determined by the system dynamics. For example, if there is an unstable fixed

point in another region of the phase space the trajectory may be attracted to

a limit cycle around this fixed point (if the flow is bounded) and the resulting

behavior can be interpreted as a series of spikes with a given frequency.

• The saddle-node on invariant circle bifurcation is a saddle-node bifurcation in

which the trajectory is attracted to a limit cycle that passes very close to the

point where the node and saddle collided. In this case, when the bifurcation

parameter is a little above the transition point the resulting trajectory has

very low velocity around the colliding region and the ensuing spiking behavior

has a correspondingly very low frequency.
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• An Andronov-Hopf bifurcation happens when a stable fixed point loses

stability and turns into a limit cycle as the bifurcation parameter passes

through the bifurcation point. If the limit cycle is unstable and shrinks into the

stable fixed point, the type of bifurcation is called subcritical Andronov-Hopf.

If, due to the instability of the newborn fixed point, the trajectory goes towards

a limit cycle of larger amplitude this is interpreted as a spiking behavior.

• The supercritical Andronov-Hopf bifurcation happens when the limit cycle

that appears through the Andronov-Hopf bifurcation is stable. This limit cycle

is created from a stable fixed point which, in turn, becomes an unstable one.

When the bifurcation parameter is a little above the bifurcation point, stable

oscillations have low amplitude and those are interpreted as subthreshold

oscillations.

Understanding the different types of bifurcations that occur in a neuron

model is very helpful because one can use this understanding to predict its behavior

upon an input.

In the case of the Izhikevich system, two different bifurcations happen when

the input current I(t) is increased and those depend on the relation of the parameters

a and b (Izhikevich, 2000). If b < a there is a saddle-node bifurcation, if b > a there

is a subcritical Andronov-Hopf bifurcation.

As an example, we show the case of the saddle-node bifurcation and how two

electrophysiological classes (RS and CH) can be explained through its phase plane

analysis. Here, the input current I(t) control the saddle-node bifurcation which is

responsible for the creation of the fixed points. When there is no input, the nullcline

ū, which is a quadratic equation and so has a parabolic shape, crosses u∗ creating

two fixed points, a stable and an unstable one. When the input is positive, ū is

shifted upwards and at some point, both fixed points collide and annihilate in a

saddle-node bifurcation freeing the trajectory to grow in voltage. We do not allow

an infinitely grow by resetting at the threshold. If the trajectory enters the parabola,

due to the time-scale separation the velocity will suddenly become very low and the

trajectory will be trapped for some transient time. At some point it will be able to

escape and develop further spikes.
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The interplay of ū, u∗, and the reset values c and d are exactly what will

shape the different electrophysiological classes. At Fig. 2.4 we show an example of

how the behavior of the neuron can change drastically, from RS to CH, by playing

with these features.
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Figure 2.4: Phase plane for isolated RS and CH neurons. Green curves: nullclines. A:
I=0. Nullclines intersect at states of equilibrium. Red circle: stable equilibrium. B and
C: Phase portraits at I=10. Blue curves: trajectories. Vertical red lines: values of v at
the threshold vth and reset c. B: Regular spiking neuron. C: Chattering neuron.

Distinctions between the two types at the example in Fig. 2.4 proceed, on

the one hand, from different (controlled by parameter d) increments of the variable

u after each spike, that are considerably higher for the RS neuron and, on the other

hand, from difference in the reset value c. The effect is clearly seen in the plots: in B

the RS neuron is instantaneously reset to a position above the parabola, whereas the

CH neuron performs several cycles (spikes) until the value of u becomes sufficiently

large to exceed the nullcline ū.

Another very interesting feature important to our discussion is named

rebound spiking. Markedly, this comes exclusively from the particular LTS neuron

which can be distinguished from the other neurons in the event of a negative input.

After the injection of a negative pulse, LTS neurons are able to spike and this

phenomenon will be very important to understand some network mechanisms later

on. This may also happen in other neurons depending on the parameter b. To

explain how this happens in the Izhikevich dynamical system, we use here a phase

space description as shown in the Fig. 2.5.

In the panel at Fig. 2.5 A we can see the dynamics during the injection of the

negative current pulse with the voltage starting at it’s resting state (black square
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Figure 2.5: Effect of rebound in the phase plane for isolated LTS neuron. Green curves:
nullclines. Thick blue curves: trajectories. Vertical red lines: values of v at the threshold
Vpeak and reset c. A) Dynamics while receiving negative current. B) Dynamics right after
the removal of the negative stimuli. C) Rebound spike.

in the figure). The v-nullcline is shifted downwards and a hyperpolarization follows.

When the current is taken out (panel B), the v-nullcline goes back to the normal

position. However, at this moment the trajectory is outside the parabola and free

to evolve. It quickly develops a spike due to the fast dynamics (panel C).

Due to the parameter b in the LTS neuron, which is different from the other

neurons, the inclination of the u-nullcline is higher and the fixed point determined

by the crossing of the two nullclines is much lower. This effect increases drastically

the chance to observe a rebound and that makes the LTS neurons unique. This kind

of behavior is well known in electrophysiological experiments and is used to identify

LTS cells among others with the help of negative inputs.

2.2.3 Network Models

In possession of a neuron model as described above, we replicate it into several

copies which may differ by intrinsic parameters giving rise to sets of neurons. These

sets and subsets of neurons may interact through synaptic connections and this

constitutes a network model. The way these interactions happen defines a topology.

In this thesis, we concentrate on different topologies as we discuss below.

2.2.3.1 The random network

Here we explain the modeling of a random network. We start with a

physiologically motivated ratio of excitatory to inhibitory neurons 4:1; for every
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pair of randomly chosen neurons i and j, the probability of connection i → j is

ε = 0.01, autapses are not allowed. Also named connectivity, the probability ε

is independent of the type of neuron (see first panel in Fig. 2.6 for the adjacency

matrix, also referred as connectivity matrix) with connections in the same color.

This model is also referred as an Erdős-Rényi graph (Erdős & Rényi, 1959) which

is a standard choice in many studies of networks, giving its simple nature it allows

easy computational and mathematical analysis.

2.2.3.2 The hierarchical and modular network (HMN)

A hierarchical and modular network (HMN) is a common choice of topology

for a brain network. Anatomical evidence (Boucsein, Nawrot, Schnepel, & Aertsen,

2011) suggests a hierarchical and modular structure where neurons are grouped into

modules (clusters where connections are denser) and connections are more likely to

be found between close modules than between faraway ones. To put it another way,

modules are encapsulated in a hierarchical topology. This structure is present in

both meso- and macroscopic scales, i.e. not only neurons but also regions organize

in a hierarchical and modular way (Binzegger et al., 2004; Kaiser & Hilgetag, 2010;

Voges, Schüz, Aertsen, & Rotter, 2010).

There are several algorithms that allow the generation of a HMN, here the

HMN is generated by the following top-down algorithm (Kaiser & Hilgetag, 2010;

Wang, Hilgetag, & Zhou, 2011): We start from the random network and we assign

to this network the hierarchical level H = 0. At the next step, we randomly divide

all neurons into two modules of equal size. All connections within the modules

are preserved. Since inhibitory connections between the modules are not allowed, all

such links are rewired: cut (detached from postsynaptic neurons) and redirected back

into the modules of their presynaptic neurons, where they are attached randomly.

We say that inhibitory neurons are rewired with probability Rin = 1. The fate of

each excitatory link between the modules is decided at random: with probability

Rex = 0.1 a connection is retained, and with probability (1 − Rex) = 0.9 it is cut

and rewired back into the module with the presynaptic neuron. In this way, we

obtain two modules, sparsely interconnected by excitatory links, and assign to this

network the level H = 1. This procedure is repeated iteratively to generate other
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levels of hierarchy H. In this algorithmic, a network with a hierarchical level H has

2H modules.

figuras/fig_slow_fluct/HMN.png

Figure 2.6: Exemplary networks with different hierarchical levels constructed
by the top-down procedure. Upper row: Connectivity matrices for hierarchical levels
H = 0, 1, and 2. Bottom row: Schematic representation of the network for the different
levels H = 0, 2, and 3 containing 211 excitatory neurons.

Some examples of HMNs are displayed in Fig. 2.6. In the first row of Fig. 2.6

we present a visualization of the connectivity of a subset of excitatory neurons, it is

possible to observe that as H increases, not only the number of modules increases

but also the hierarchy: modules are encapsulated in groups of larger modules which

communicate with other large groups through sparse excitatory connections. In the

second row of Fig. 2.6 we can observe an adjacency matrix, note that whereas the

inhibitory neurons are local the long-range connections are exclusively excitatory

which is a feature of the cerebral cortex (Bosking, Zhang, Schofield, & Fitzpatrick,

1997; Battaglia, Brunel, & Hansel, 2007).

2.3 Fluctuations, oscillations, and noise

Neurons and networks may exhibit fluctuations, oscillations, and noise. In

the light of the clarification and distinction among these close attributes, we shall

define their meaning and possible sources.

We start with the definition of fluctuations. According to the Oxford

dictionary (en.oxforddictionaries.com accessed June 9, 2018), fluctuation means

“An irregular rising and falling in number or amount; a variation”, in that sense

we understand for our purposes as fluctuation a non-rhythmic variation of the

signal. Adjacent to that, the definition of oscillation is close but not the same, the

aforesaid dictionary uses fluctuation to define oscillation where it states “Variation

or fluctuation between two states, limits, opinions, etc”. In that sense, we see that

oscillations are a more periodic form of fluctuations. We understand for our purposes

that rhythmic fluctuations are oscillations and non-rhythmic fluctuations will be

simply fluctuations.

en.oxforddictionaries.com
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Conversely, noise may cause fluctuations. Neurons are subject to many

different sources of noise (Faisal, Selen, & Wolpert, 2008). These generators of noise

are responsible for several changes in the neuronal system. In fact, it is controversial

if noise is a true signal or even if it has some function despite disturbing the signal,

although there are several examples that have already demonstrated the importance

of noise in neuroscience (Benzi, Sutera, & Vulpiani, 1981; Shu, Hasenstaub, Badoual,

Bal, & McCormick, 2003).

Among the different sources of noise, the ones which we are mainly interested

in this thesis and act on the stochasticity of spiking are channel noise, synaptic noise,

and network noise. Although we do not explore all of them, we depict below their

sources for comparison.

• Channel noise comes from the stochasticity of ionic channels which are

submitted to random openings and closings. This type of noise becomes very

important in processes that involve signal transduction like mechano-receptors

of the auditory system or receptors of the olfactory scheme which are processes

governed by a large population of ion channels.

• Synaptic noise is a source of noise that may come from different origins. For

instance, spiking transmission may failure and this creates some unreliability

in the signal transmission that acts as synaptic noise. Another factor might be

the spontaneous release of neurotransmitters that happens from time to time.

Due to the very large number of synapses, spontaneous transmission is quite

often observed. Moreover, there is a variability in synaptic amplitude which

is due to the number of synaptic transmitters that vary from vesicle to vesicle

that is freed in the synaptic cleft during a synaptic event.

• Network noise is considered the largest source of variability of spiking. Since

brain networks are large in number of neuronal components and the number

of inputs in a given cell is huge, there is a quasi-random arrival of synaptic

input which is treated as a noise source.

In this thesis, we will show that noise established in different forms act on

neurons and how it can cause not only non-rhythmic but also rhythmic fluctuations.



Chapter 3

General methods

3.1 Measures

In this section, we introduce neuron and network measures that will be used

below for characterization of the results.

Several of the statistics inspected in this work are based on spike-trains,

which are defined as sums of Delta functions

x(t) =
∑
i

δ(t− ti), (3.1)

where ti is the time instant of the ith spike (we also denote the spike-train with

a subscript xj(t) to indicate that it belongs to a jth neuron when adequate). The

instantaneous firing rate ν is the (generally time-dependent) average of the spike

train, ν = 〈x(t)〉, and can be determined for a specific neuron within the network

by an average over different runs with randomized initial conditions. In practice,

we often average the rate over the population (if appropriate, i.e. if the neurons are

statistically equivalent) which is indicated by 〈.〉 (ensemble average) and over time:

ν =
1

T

T∫
0

〈x(t)〉 dt. (3.2)

The network time-dependent firing rate is defined as

r(t; ∆t) =
1

N∆t

N∑
j=1

∫ t+∆t

t

xj(t
′)dt′, (3.3)

23
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where we fix the time window ∆t = 1 ms.

For the calculation of spectral measures, we define the Fourier transform by

x̃(f) =

∫ T

0

dte2πiftx(t), (3.4)

where T is our time window and is set in our simulations to a standard value of

T = 2 s if not mentioned otherwise. In the simulations, we generally neglect a

transient period of 1 s before extracting the statistics over the next T seconds (we

will indicate the value of T).

We will use two power spectra: the spike train power spectrum and the

voltage time series power spectrum. The first one is defined for each neuron j as

Sxx,j(f) =
〈x̃jx̃∗j〉
T

, (3.5)

where x̃∗j is the complex conjugate of x̃j. Note that 〈.〉 represents an ensemble

average. The power spectrum of the voltage time series is obtained in the same way,

replacing in Eq.(3.5) the spike train xj(t) by the voltage time series vj(t). In the

case of the spike train power spectrum, the units are 1/s whereas the units of the

voltage spectrum are mV2/Hz.

An average over a subset that includes K neurons renders the average power

spectrum:

S̄ =
1

K

∑
j∈K

Sxx,j(f). (3.6)

We note that the spike-train power spectrum saturates for infinite frequency

at the firing rate, lim
f→∞

S̄(f) = ν (Lindner, 2009; Grün & Rotter, 2010). Besides,

two important statistical measures can be extracted from the spike-train power

spectrum. The first is the Fano factor FF which is defined as the variance of the

spike count N =

∫ T

0

dt x(t) over its mean, an expression that can be related to the

power spectrum at zero frequency:

FF =
〈∆N2〉
〈N〉

=
Sxx(f → 0)

ν
. (3.7)

The second statistical measure is the correlation time τc. Following (Neiman,

Yakusheva, & Russell, 2007) and (Wieland, Bernardi, Schwalger, & Lindner,

2015), we consider the spike train’s correlation function c(τ) = 〈x(t)x(t+ τ)〉 −
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〈x(t)〉 〈x(t+ τ)〉 (note that here 〈.〉 indicates a time average) and its continuous part

ĉ(τ) = c(τ) − νδ(τ) to define the correlation time as an integral over the squared

and normalized ĉ(τ)

τc =

+∞∫
−∞

dτ

[
ĉ(τ)

ĉ(0)

]2

=

+∞∫
−∞

df
(Sxx(f)− ν)2

ν4
, (3.8)

an integral which in turn can be related to an integral over the power spectrum via

the Parseval theorem1 on the right side.

We quantify the degree of oscillatory activity in the network via the spectral

entropy Hs (Blanco, Garay, & Coulombie, 2013; Sahasranamam, Vlachos, Aertsen,

& Kumar, 2016). Spectral entropy is computed from the power spectrum of

time-dependent firing rate in Eq.(3.3) as

Hs =
−
∑

k Srr(fk) logSrr(fk)

logNb

, (3.9)

where Nb is the number of frequency bins and Srr(fk) is the value of the normalized

(i.e.
∑
k

Srr(fk) = 1) power spectrum of the network time-dependent firing rate

r(t; ∆t) at the kth bin. In our simulations we use Nb=1000. In the case of

broadband noise activity, the power spectrum of the network firing rate is flat and

the spectral entropy is maximal: Hs = 1. If, in contrast, all power is concentrated at

one frequency, a case of single-frequency network oscillations, the spectral entropy

vanishes: Hs = 0.

To quantify the degree of synchrony in the network, we use the phase

locking value (PLV ) which is a standard measure to evaluate phase synchronization

(Lachaux, Rodriguez, Martinerie, & Varela, 1999; Celka, 2007; Rosenblum,

Pikovsky, Kurths, Schäfer, & Tass, 2001; Aydore, Pantazis, & Leahy, 2013; Lowet,

Roberts, Bonizzi, Karel, & De Weerd, 2016). Unless otherwise stated, the time

average used to calculate the PLV is always taken over a simulation interval of T =

2000 ms. We define the PLV as the average over K neuron pairs and T sample

time points:

PLV =
1

K

K∑
{ij}

∣∣∣∣∣
T∑
t

ei∆Φxy(t)

∣∣∣∣∣ , (3.10)

1 The Parseval theorem states that the integral of the square of a function is related to the
integral of the square of the same function Fourier transformed.
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where ∆Φxy(t) are the phase differences ρxΦx(t)−ρyΦy(t) from two randomly chosen

spike-trains (x(t), y(t)) that are obtained using the Hilbert transform. The values

ρx and ρy define the frequency ratio and, expecting similar firing rates, we set

ρx = ρy = 1. The PLV is bounded between 0 (asynchrony) and 1 (synchrony).

3.2 Numerical integration and computational
platform

Numerical integration of the differential equations was performed by different

numerical methods depending on the network and neurons involved. In Chapter 4,

we used the 4th order Runge-Kutta method with step size h = 0.01 ms. In Chapter 5,

where there are equations involving noise, the differential equations were integrated

with the Heun algorithm (Mannella, 2002) with step size h = 0.01 ms. In Chapters 6

and 7, we used the Euler method with step size h = 0.1 ms. We used C++ and

Python to write the computational codes, and Matlab and XMgrace to visualize and

analyze the results. In addition, different Python packages were used to analyze and

visualize results such as Brian 2, SciPy, NumPy, Matplotlib, Pandas, and NetworkX.

We employ parallel computing techniques when necessary to speed up simulations.

Simulations were performed with the use of the NeuroMat cluster (FAPESP

project 2013/07699-0) which is composed of 4 computational nodes each one with

2 CPUs Xeon E5-2650 v3 (20 physical cores with addition of 20 virtual cores), 128

GB RAM, 2 TB HDD, and 3.2 TB HDD shared.



Chapter 4

Emergence of oscillatory
activity in a self-sustained
environment

4.1 Introduction

This chapter focus on the description of oscillatory self-sustained activity

(SSA). This regime corresponds to rhythmic fluctuations (see Sect. 2.3). Our

goal is to obtain a general understanding of how oscillatory dynamics emerge in

a self-sustained setup, as well as understand how SSA is influenced by a hierarchical

and modular topology and by a mixture of neuronal components.

Self-sustained activity is a spontaneous and persistent activity observed

in many situations in the brain. Regimes of SSA may be found ranging from

asynchronous to synchronous activity and this depends on different factors. For

instance, during anesthesia or slow-wave sleep SSA is usually observed in an

oscillatory regime (Steriade, Nunez, & Amzica, 1993; Contreras & Steriade, 1995).

During wakefulness, SSA is observed in an asynchronous regime with neurons firing

irregularly. Recordings of SSA include in vivo cortical slab preparations (Timofeev,

Grenier, Bazhenov, Sejnowski, & Steriade, 2000) and in vitro slices (Plenz & Aertsen,

1996; Sanchez-Vives & McCormick, 2000; Shu, Hasenstaub, & McCormick, 2003).

We will start by describing the experimental methodology necessary to

obtain the SSA. We proceed by investigating different characteristics of SSA

that are obtained by varying the parameters. We also relate the dynamics of

the single-neurons during the SSA to the dynamics of the global system, i.e.

27
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the entire network. Using a phenomenological approach, we explain when the

transient dynamics will start and when it will end as well as why modularity favors

sustainment of activity.

4.2 Methods

In this Chapter, we will be working with the Izhikevich neuron model and

different electrophysiological classes.

Every connection in the network is created by a conductance-based synaptic

model. Upon a synaptic event coming from a presynaptic neuron, the conductance

of the postsynaptic j neuron (Gex/in
j (t)) is incremented by a gex/in amount which

is followed by an exponential decay with time constant τex/in. This behavior is

described by

dG
ex/in
j (t)

dt
= −

G
ex/in
j (t)

τex/in

+ gex/in

∑
i

δ(t− ti), (4.1)

where we separate among excitatory/inhibitory conductances.

In the neuron, synaptic current is disturbed as it dependents on Gex/in
j (t):

Isyn,j(t) = Gex
j (t) (Eex − vj) +Gin

j (t) (Ein − vj) , (4.2)

where Eex/in represent the reversal potentials and characterize excitatory/inhibitory

effects.

We adopt the parameters Eex = 0 mV, Ein = −80 mV, τex = 5 ms and

τin = 6 ms (Dayan & Abbott, 2001; Izhikevich & Edelman, 2008).

We will be exploring networks containing N = 210 neurons in different

hierarchical levels. We use powers of 2 due to ease the use of the hierarchical

and modular network construction algorithm. For every network, we tried different

neuronal compositions: the excitatory:inhibitory ratio is always 4:1. From the

excitatory neurons, RS is always present and a certain percentage (which will always

be indicated) will be either CH or IB. The inhibitory neurons may be of the FS

or LTS type. A summary of the models used in this Chapter is identified in the

Table 4.1.
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Models considered in this part

Populations Excitatory (mixture of RS,CH, or IB) and inhibitory (FS or LTS)

Neuron models Izhikevich

Synapse models Conductance-based, event-driven with exponential decaying

Network Random and hierarchical and modular

Network size N = 210, Nex = (4/5)N

Connectivity Random with ε = 0.01 and rewiring R = 0.9

Initial conditions Vary according to: time of stimulation tstim, proportion of

stimulated neuron Pstim, and amplitude of stimulation Istim

External input Absent

Table 4.1: Summary of models used in Chapter 4.

As we are interested in evaluating SSA, we define a measure to extract the

sustainment of activity in a network. Let’s start defining that for a given neuron i

the time of the last spike in its spike-train as

tlast
i = max {ti}. (4.3)

For the network lifetime (δ) we take the maximum tlast
i from the set of neurons

in the network

δ = max {tlast
i : i = 1, . . . , N}. (4.4)

4.2.1 Ensemble of initial conditions

After having constructed the network and populated the nodes with neurons,

the dynamics should be initiated somehow. If no initial stimulation is applied to

the network we would not observe any activity and the voltage series of all neurons

would not leave a fixed point at the resting state. Together with that, the initial

investigation has a lot of uncertainties about the structure of the network’s phase

space where the dynamics should oscillate.

Given that the number of equations involved in the network is high enough to

make it difficult a complete analytical analysis without simplifications, we base our
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study on statistical descriptions. Supported by distributions in a sufficiently large

ensemble of initial conditions that change in their preparation, we will investigate

dynamical behavior of the network.

For the preparation of ensembles we do not choose initial conditions at

random in the high-dimensional phase space of the network: a representative

sampling would be hardly available computationally. Instead, we start at the state

of rest and vary in duration of stimulation tstim, intensity of initial stimulation Istim,

and proportion of stimulated neurons in the network Pstim. A representation of this

method is displayed in Fig. 4.1.

Rest

Figure 4.1: Representation of the ensemble of initial conditions. The idea is
to draw a set of different initial conditions that will lead the system to the physiological
oscillatory state and leave its dynamics evolving freely. We vary tstim, Istim, and Pstim.

4.3 Results

4.3.1 Exploring the space of possibilities

We would like to start exploring our system by examining the lifetime

dependencies in a diagram spanned by gin (abscissas axis) and gex (ordinates axis).

To build such diagram we discretized on a 50 × 50 grid with ∆gex = 0.002 and

∆gin = 0.02, where every point is simulated with 10 different initial conditions. In

Fig. 4.2 we present these results for an exemplary network with level H = 1 and

populated by 20% of the excitatory neurons being of CH type and the inhibitory

neurons of the LTS type.
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Figure 4.2: Values of δ on the parameter plane of synaptic strengths.
Simulations were carried out in a network with hierarchical level H = 1, 20% of excitatory
neurons of the CH type, inhibitory neurons of the LTS type. Left: Parameter plane gex−gin

discretized on a 50×50 grid with ∆gex = 0.002 and ∆gin = 0.02. Every point is simulated
10 times with parameters Pstim = 1/2, 10 ≤ Istim < 20 and tstim = 100 ms. Points are
interpolated. Right: Raster plots taken at the (gex, gin) points indicated in the left plot.

Results presented in the diagram in Fig. 4.2 are similar to other combinations

of electrophysiological classes and hierarchical levels (differences will be discussed

below). For all combinations of (gex, gin), there was no case of non-oscillatory SSA

recorded and, in all cases where SSA was observed, it was oscillatory. The examples

of rasters in the right of Fig. 4.2 demonstrate the latter effect, it is also possible to

observe a small difference between the modules. Regarding the diagram, its major

characteristic is the fragmented shape located in the upper right corner, possibly

due to the small number of initial conditions studied so far.

A key feature observed is that there is some sensitivity to initial conditions,

i.e. lifetime of SSA has some probability and, in addition, this probability grows as

the strengths (gex, gin) are increased. High sensitivity to initial conditions is a feature

of chaos. However, in this area of the diagram (gex, gin) chaos is not an attractor

due to the fact that after some short period the activity ceases. Systems in which,

for a given set of initial conditions, chaos is present for a short period followed by an

abrupt cessation of the chaotic dynamics are known as systems exhibiting transient

chaos. (Lai & Tél, 2011).
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A second property of transient chaos is the existence of an escape rate κ, i.e.

in a sufficiently large ensemble of initial conditions, the lifetimes δ should follow an

exponential distribution where the number n(T ) of systems with lifetime larger than

T approximately obeys

n(T ) ∼ e−κT , (4.5)

where κ is the escape rate. For an ensemble of transiently chaotic trajectories, the

value of τdec = κ−1 defines the characteristic time of decay of SSA in ms.

To evaluate if an escape rate is indeed a property of our system, we took

different points (gex, gin) from the diagram in Fig. 4.2 and ran a sufficiently large

number of initial conditions with varying Pstim, Istim, and tstim: Pstim = 1, 1/2, 1/8,

1/16, Istim = 8,9,...,20, and tstim = 50,52,...,300 ms, totalizing 6552 different initial

conditions. In Fig. 4.3 we present these results.

0 1000 2000
0

0.046

0 1000 2000
0

0.036

0 1000 2000
0

0.0290

0 1000 2000

lo
g(

)

0 1000 2000 0 1000 2000

= 2.6x10-3 = 4.3x10-3 = 6.9x10-3

gex = 0.15 gex = 0.12 gex = 0.08

Figure 4.3: Distributions of δ for varying initial conditions. Inhibitory
conductances fixed at gin = 0.7, excitatory ones have their values displayed atop. Other
parameters are as in Fig. 4.2. Each panel contains normalized distributions of n(T ).
Insets: ordinate values on the logarithmic scale for the same histograms, straight lines are
fitted exponential dependencies, values of κ are displayed in each inset.

Different properties can be extracted from Fig. 4.3. In the first place, the

escape rate is present and has some dependency on the synaptic coupling. For a

fixed gin, as gex is increased κ is decreased, i.e. the probability of having long-living

SSA increases. Despite this example, we have also verified that the same effect

happens with varying gin for a fixed gex. The fact that a distribution is behind

every (gex, gin) combination makes it difficult to delineate a border among SSA and

non-SSA regimes, that is why the diagram in Fig. 4.2 has a fragmented shape. As
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we did, the best option seems to be an evaluation of the κ values. In addition,

in absence of inhibition (gin = 0) or very little excitation (gex = 0.05) it was not

observed any case of long-living SSA in the tested initial conditions.

The effects observed: sensitive dependence of individual trajectories on

initial conditions, and exponential distribution of lifetimes in the large ensemble

of trajectories are indeed two characteristic attributes of the so-called transient

chaos (Lai & Tél, 2011), and, based on this, we conjecture that the oscillatory

self-sustained activity in the network is transiently chaotic.

Regarding the different hierarchical levels and combinations of neuronal

classes, as the general behavior depicted in the diagram of Fig. 4.2 is rather similar,

with small differences, we will summarize below the observations:

• Increase of level H increases the magenta region in the diagram where

long-living SSA is observed.

• If the second excitatory population (despite the RS group) is of the CH type,

there is an enlargement of the (gex, gin) area where long-living SSA is observed.

• If the second excitatory population is of the IB type, there is no prominent

difference in the (gex, gin) diagram.

• Changing inhibitory neurons FS to LTS increases in great proportion the

long-living SSA region.

An extended investigation is presented in Table 4.2 where values of κ were

obtained for selected combinations of (gex, gin) chosen to be located in the upper

right corner in the diagram of Fig. 4.2, different mixtures of neurons, and H (see

legend). The results of the table show that it is not only the region of long-living

SSA that is enlarging but each (gex, gin) point is becoming more likely to exhibit

longer SSA when CH proportion or H is increased. Moreover, the effect of changing

LTS to FS neurons is also easily observed in Table 4.2.

Regions in the parameter space where the combination (gex, gin) is increased

beyond the values displayed here correspond to non-realistic firing rates, above

70 Hz, in comparison with firing rates found in cortical neurons (Softky & Koch,

1993; Maimon & Assad, 2009; Haider, Häusser, & Carandini, 2013). While looking
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LTS FS

(gex, gin) (gex, gin)

H (0.12,0.7) (0.15,0.7) (0.12,1) (0.15,1) (0.12,0.7) (0.15,0.7) (0.12,1) (0.15,1)

RS
0 0.0053 0.0083 0.0022 0.0048 0.0164 0.0181 0.0140 0.0138

1 0.0029 0.0043 0.0014 0.0019 0.0111 0.0138 0.0080 0.0097

2 0.0021 0.0017 0.0011 0.0011 0.0045 0.0028 0.0037 0.0028

20%CH
0 0.0075 0.0031 0.0049 0.0022 0.0134 0.0082 0.0095 0.0084

1 0.0037 0.0022 0.0023 0.0017 0.0109 0.0088 0.0094 0.0081

2 0.0017 0.0008 0.0013 0.0007 0.0045 0.0028 0.0034 0.0025

40%CH
0 0.0009 — 0.0008 0.0006 0.0062 0.0016 0.0056 0.0021

1 0.0009 — 0.0008 0.0005 0.0079 0.0045 0.0071 0.0046

2 0.0002 0.0008 0.0006 0.0007 0.0008 0.0005 0.0007 0.0005

20%IB
0 0.0092 0.0091 0.0078 0.0096 0.0198 0.0210 0.0176 0.0203

1 0.0073 0.0078 0.0041 0.0058 0.0149 0.0183 0.0129 0.0144

2 0.0036 0.0022 0.0023 0.0017 0.0055 0.0037 0.0043 0.0036

40%IB
0 0.0111 0.0081 0.0085 0.0076 0.0201 0.0199 0.0214 0.0186

1 0.0112 0.0094 0.0073 0.0082 0.0176 0.0194 0.0160 0.0159

2 0.0050 0.0024 0.0033 0.0019 0.0065 0.0041 0.0048 0.0038

Table 4.2: Values of κ computed by simulating 106 different initial conditions and varying
the neuronal composition, hierarchical level, and (gex, gin) combination. The indication
‘—’ means that SSA was not reported. The network contains 4:1 excitatory/inhibitory
neurons where the inhibitory are either LTS or FS. The excitatory are always RS and
some percentage of CH or IB (0%,20%,40%). These mixtures of neurons are indicated in
the columns and rows of the table.

at individual traces, it was possible to identify that the non-realistic firing rates were

mostly due to CH and LTS neurons which could achieve frequencies around 600 Hz.

In this regard, we consider not necessary to study these regions in this work and

that is why they were eliminated.

4.3.2 The inner dynamics

Here and in the next sections of this chapter, we study only networks with

fixed gex=0.15 and gin=1 parameters so that we guarantee high probability of
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Figure 4.4: SSA state in a network of hierarchical level H=0 with LTS inhibitory
neurons and a mixture of excitatory neurons: 80%RS and 20%CH. A) Raster plot:
spiking activity of the network within 700 ms. B),C),D) Evolution of variables for three
exemplary neurons. Top panels: voltage v, middle panels: recovery variable u, bottom
panels: synaptic conductances Gex (in blue) and Gin (in red). Neurons # 406 and # 100
are excitatory RS. Neuron # 18 is inhibitory LTS. E) Distributions of mean firing rates for
all neurons in the network: for the whole duration of the SSA state (upper histogram), for
the epochs of high network activity (middle histogram), and for the epochs of low network
activity (bottom histogram). Positions of three neurons shown in B),C) and D) in these
distributions are indicated by arrows.

long-living SSA appearance. We shall look at the inner dynamics of SSA from the

point of view of its individual participants. Fig. 4.4 presents a typical oscillatory

SSA state in the network. Its top panel (Fig. 4.4A) shows the raster plot of the

system, and the panels below show time series representing the dynamical states of

three sample units: two excitatory neurons and one inhibitory neuron (respectively,

Fig. 4.4B, Fig. 4.4C, and Fig. 4.4D) aligned with the raster plot. For each of the

neurons we plot the membrane potential v, the membrane recovery variable u as

well as the synaptic conductances Gex/in.

Although both excitatory neurons belong to the same RS type, their behavior

is remarkably different. Neuron #406 exhibits irregular spiking at low firing rate

(∼ 14Hz), seemingly uncorrelated with epochs of high global network activity. This
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low frequency can be understood, taken into account the dominating presynaptic

inhibitory input: the spikes always occur when the excitatory conductance exceeds

the inhibitory (seeGex/in in Fig. 4.4B, where the inhibitory input is represented in red

and the excitatory in blue). The time series of the membrane potential v(t) confirms

that during the epochs of high global network activity the neuron is developing an

“up” state with depolarized membrane potential (e.g. the range between 580ms and

620ms in Fig. 4.4). During such epochs, global activity enhances both inhibitory and

excitatory synaptic conductances, but the former is larger and, hence, for most of

the time the spiking is hampered. Fig. 4.4E shows that this neuron shares a typical

firing rate of the whole ensemble and lies at the peak of the firing rate distribution:

the majority of the RS neurons behaves similarly.

In contrast, neuron #100 exhibits bursting-like behavior, strongly correlated

with global network activity. Its firing rate is ∼86Hz, if estimated over the whole

length of simulation; the actual firing rate, restricted to epochs of high global network

activity, reaches 150Hz, while no spike occurs during the inactive epochs. This unit

represents a more exotic subclass of RS neurons: they possess unusually high firing

rates and, in fact, behave like CH neurons. Notably, within the distribution of the

firing rates, neuron #100 is not placed at the very end, since that distribution

includes also “genuine” CH neurons that naturally tend to have higher spiking

frequencies. In the same network, this exotic behavior was also observed for LTS

neurons (cf. Fig. 4.4D); in the corresponding architectures it was found for FS and

IB neurons as well.

The RS neuron #100 is, in a sense, an extreme case: it does not receive any

inhibitory presynaptic input from the network and, as shown in Fig. 4.4, always

behaves like a CH neuron. There are, however, numerous RS neurons that receive

inhibitory input but nevertheless tend to have higher firing frequencies than the

typical neuron #406: they can exhibit bursting-like behavior within one epoch of

high global network activity, while producing few spikes within another epoch or

even completely skipping it (not shown here). Similar behavior of RS neurons

naturally embedded in a network was observed empirically in (Kang & Kayano,

1994; Steriade, 2001) where “work in cortical slices also showed that regular spiking

neurons may develop their type of discharges into those of fast-rhythmic-bursting
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neurons by repeated application of depolarizing current pulses.” Chattering behavior

has also been reported for inhibitory neurons in cortical slices (Steriade, Timofeev,

Dürmüller, & Grenier, 1998; Steriade, 2004), contradicting the common opinion

that chattering-like spiking patterns occur only in pyramidal neurons (Gray &

McCormick, 1996).

A closer comparison shows that the spiking patterns of the inhibitory and the

excitatory neurons, albeit qualitatively similar, bear apparent distinctions: as a rule,

an epoch of high activity for the LTS neuron in the panel D) starts earlier, breaks

up later and is “denser” (contains more spikes) than for its RS counterpart from the

panel C). As their name tells, the LTS neurons need less presynaptic excitatory input

in order to spike. Hence, the lower excitatory input generated by their environments

at the beginning and at the end of active epochs suffices to sustain their firing.

4.3.3 The global dynamics: a phenomenological approach

Ensembles of trajectories created with the help of the above procedure

where initial conditions are chosen with different Pstim, tstim, and Istim yield global

characteristics of dynamics but say only a little about the local structure of the

phase space in the neighborhood of the chaotic set. To resolve this structure, we

create an auxiliary ensemble in the following way.

1. At fixed parameter values we take from the ensemble a single orbit with SSA

lifetime larger than 2000 ms (over 20 subsequent epochs of high global activity);

this ensures that the orbit stays close to the chaotic set sufficiently long. Below,

we call this orbit a reference trajectory R(t).

2. On R(t), we choose fifty equidistant positions Pk, k = 1, .., 50 at the time

values

Pk = R(t0 + k∆t), (4.6)

with t0=370ms and ∆t=7ms. The offset ensures that by the time t0 the

reference trajectory has reached the region of the chaotic set (this has been

established visually from the irregular shape of oscillations). The choice of

∆t enables us to have within each epoch of global activity and subsequent

inactivity ≈15 positions Pk: a reasonably dense covering of R(t).
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3. In each position the system is perturbed six hundred times, by stimulating

for 3 ms each eighth neuron with the external input current Iext=10. For

every perturbation the 128 stimulated neurons are chosen at random. The

stimulation interval is much shorter than the characteristic time of the system

≈ 100ms, therefore within it the perturbed orbits stay sufficiently close to the

reference trajectory.

4. After the perturbation the system is left to evolve freely, and the resulting

lifetime δ is recorded.

This local procedure creates 50 sets of “secondary” initial conditions, each

one with 600 points close to one of Pk. Since, by construction, all these sets lie

at different locations along the reference trajectory, they provide information about

local dynamics near the chaotic state, and, in particular, on the rates of escape from

it.

In Fig. 4.5A we show the raster plot of the reference trajectoryR(t) with the

perturbation positions Pk in blue lines where the local perturbations were generated

at each (t0 + k∆t). In Fig. 4.5 B we present the projection of R(t) and Pk on the

plane of two artificial collective coordinates 〈v〉 and 〈u〉: instantaneous mean values

of, respectively, voltage and membrane recovery variable over all 210 neurons.

In Fig. 4.5 C1–C4 we present lifetime distributions δ for some of the

perturbation positions Pk. Unlike Fig. 4.3, the distributions are non-monotonic

and exhibit local maxima (peaks), which means that trajectories leave the chaotic

set in specific places (an effect not observed when choosing initial conditions as at

the beginning of this Chapter). Furthermore, if vicinities of all segments of the

reference trajectory would offer the same possibility of immediate escape to the

state of rest, the lifetimes δ of trajectories originating from different local sets would

be comparable. Our numerical data unambiguously state that this is not the case.

Rather, they indicate that escape occurs only from a relatively small local region

responsible for the instability, to which we shall refer as a “hole”. In Fig. 4.5 B

the approximate location of this region is indicated in gray. Each passage of the

ensemble of trajectories past the “hole” results in the loss of some approximately

constant proportion of the ensemble; these orbits leave the ensemble and soon land
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Figure 4.5: Probing the neighborhood of the chaotic set. Panel A contains
the raster plot of the spiking activity in the network during the motion on the reference
trajectory. Blue lines: positions of perturbation along the reference trajectory R(t). n(t)
values of first peaks in all perturbation positions Pk are represented inside the raster plot as
a red curve with black circles. Panel B shows the reference trajectory R(t) on the phase
plane of averaged values of voltage and membrane recovery variable. Pluses: positions
of perturbations Pk along R(t). Gray region: approximate location of the “hole” (see
explanations in the text). R: state of rest. Panels C1–C4 are exemplary distributions of
lifetimes at some perturbation positions Pk.

at the state of rest. Ensembles of trajectories that start at local sets situated near

the entrance to the “hole” tend to have shorter average lifetimes than ensembles

that originate from local sets situated far from it. This latter statement can be

well observed in the red curved graphically represented together with the raster plot

in Fig. 4.5 A. Following the raster plot, one can see passages through the “hole”

as the first peak of n(T ) in every position of Pk where n(T ) suffers an apparent

discontinuity and is shifted upwards.
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4.3.4 Hierarchy

In Sect. 4.3.1 we commented that our observations show that lifetime δ

increases if the hierarchical and modular levelH is increased. Given the explanations

of the “hole” in Sect. 4.3.3, here we explain this lifetime increase with H in terms of

the “hole”.

Each module can be seen as a random network, sparsely connected to other

modules. Depending on its neuronal composition, each module can sustain activity

for a certain time, whereas sparse excitatory coupling enables the modules to activate

each other in alternating succession. Hence, there is a probability that each module,

before decaying itself to rest, (re)activates a neighboring one. This viewpoint

conforms with the above phenomenological analysis when we assume that every

module possesses its own “hole”. If a module falls into its “hole” while a neighboring

module is still active, there is a chance that the former will be reactivated by

the latter. Hence, for activity to die out, the modules should enter their “holes”

approximately simultaneously; asynchrony between the modules would sustain the

activity.

This effect is illustrated by the sample raster plot in Fig. 4.6 for a network

with four modules (H = 2). The blue lines indicate beginnings of epochs of high

network activity within a module, and the red lines denote the respective ends of

these epochs. By the time ≈ 300 ms the modules 3 and 4 stop firing; slightly later,

the firing in them is (non-simultaneously) resumed, apparently under the influence

of the still active module 1. Observing further evolution of the network we see that

the SSA in the modules 3 and 4 ceases completely at t ≈ 500 ms for more than 100

ms, before being reactivated by signals from modules 1 and 2.

The chances of reactivation depend on the number of excitatory connections

from the active module to the inactive one. While constructing the network (cf.

Sect. 2), we can make a distinction between the hierarchically close and hierarchically

distant modules: in the considered example, the excitatory connectivity between

the close modules is nearly twice as high as between the distant ones. Hence, for

hierarchically close modules the probability of mutual reactivation in the case when

one of them falls into the “hole” is distinctly higher than for the modules that are

hierarchically distant.
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Figure 4.6: Synchronization and temporal shifts between modules. The network
of modularity level H=2, consists of LTS inhibitory neurons and RS excitatory neurons.
A) Sample raster plot of activity in a network. The blue and red lines indicate, respectively,
the beginning and end of epochs of high network activity.
B) Histograms of the difference ∆ij between the ends of the last active epoch in the modules
i and j (i, j=1, 2, 3, 4) from 4×103 trials

This conjecture is corroborated by Fig. 4.6 that represents the histograms of

temporal differences ∆ij between the endpoints of the last active epochs, respectively,

in modules i and j (i, j=1, 2, 3, 4). The histograms were computed for all pairs of

modules over 212 different initial conditions.

Conversely, if we compare the time differences between the moments when the
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modules enter their “holes” in the very last activity epoch, the probability to observe

a noticeable time difference is higher for modules that are hierarchically distant. This

is confirmed by the distributions of ∆12 and ∆34 from Fig. 4.6 (bottom).

Summarizing, the explained mechanism of stabilization of SSA is twofold:

1) through excitatory intermodular connections, the modules are able to mutually

reactivate each other, so that cessation of activity in one of them can be reversed

due to the influence of the neighboring modules.

2) due to the sparseness of connections between the modules, the coupling between

them is too weak to induce the full synchrony. Therefore, the events (onset and decay

of the active epoch) in different modules do not coincide in time. As a consequence,

when activity decays in one of the modules, it is often still present in one or several

of the other modules, and there are good chances that the neighbors will awake the

dormant module to a new activity.

In this situation, an increase of the overall connectivity would enhance the

first aspect but definitely lower the second one. Higher intermodular connectivity

can impose synchrony which will be harmful in the long run: when activity in all

modules synchronously halts, nobody is left to initiate the revival.

4.4 Discussion

In this Chapter, we studied small networks of 210 neurons. The networks

were populated by different electrophysiological classes in which 20% of the neurons

were always inhibitory and 80% excitatory. We varied mixtures of neurons and the

level H of the hierarchical and modular architecture.

The results of simulations show that after the end of stimulation the network

displays a series (from several to several hundreds) of alternating epochs of global

activity and inactivity that, on the level of separate neurons, do not reproduce each

other and seem completely irregular. The series is followed by abrupt relaxation

to the state of rest: in fact, activity is transiently self-sustained. Dynamics was

aperiodic; the interval between the starting points of consecutive epochs of activity

was typically in the range from 100 to 110 ms.

Remarkably, the entire duration of the process, as well as the number of
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the observed epochs of high activity, were highly sensitive to initial conditions:

a minor variation in e.g. the length or strength of the initial stimulation often

replaced a process with only a few such epochs by a process with several dozens of

alternating onsets and breakdowns of activity, or vice versa. There seemed to be no

precursor of the forthcoming termination of SSA: the last epochs of global activity

qualitatively differed from all preceding ones neither in amplitude, nor in duration.

We conjectured that the observed oscillatory SSA states were transiently chaotic.

In fact, during the active phase, projections of trajectories in the phase space

of the system remind typical examples of deterministic chaos. The trajectory in

Fig. 4.5 B is reminiscent e.g. of the Rössler attractor (Rössler, 1976). However,

conventional indicators of chaos like Lyapunov exponents and fractal dimensions

of the chaotic set are hardly applicable here due, first, to the high order (> 3000

variables) of the dynamical system and, second, to the finite lifetime of individual

trajectories, which in many cases is too short to gather sufficient statistics. Hence,

we were forced to use indirect evidence for our conclusions on the character of

dynamics: our judgments were based on distributions of the activity lifetimes in the

network. We interpret the lifetime as the length of the time interval between the

end of stimulation and the firing of the very last spike anywhere in the network.

We characterized the lifetime decay by an exponential fitted decay time constant κ.

Variation of parameters gex and gin results in variation of the value of κ, but the

exponential character of the distribution persists.

To interpret the behavior in the high-dimensional phase space of the model,

we used the phenomenological idea of a relatively small and confined “hole” through

which trajectories may escape from the chaotic set during their evolution. This

allowed us to explain qualitatively the global oscillations in the network and their

unpredictable breakdowns at the ends of the high activity phases, as well as the

exponential distributions of the SSA lifetimes. Reasoning along the same lines,

we explained the facilitating effect of modularity upon SSA. Hierarchically distant

modules tend to have higher degrees of asynchrony during their activities, and

therefore tend to fall into their “holes” at different times. Hence, a rise in the

hierarchical level of the network, by increasing the number of modules, enhances

intermodular asynchrony and the likelihood of maintaining the SSA. Important
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for the effectiveness of the modularity effect is the sparseness of intermodular

connectivity.

Overall, the results of this Chapter elucidate the dynamics of the system and

how self-sustained oscillatory activity takes place in it.



Chapter 5

Dynamics of oscillatory
spontaneous activity in random
networks with multiple neuron
subtypes and synaptic noise

5.1 Introduction

Simultaneous recordings from large neuronal populations disclose complex

spatio-temporal firing patterns characterized by rhythmic oscillations with variable

degrees of synchrony (Buzsáki & Draguhn, 2004; Bonifazi et al., 2009; Uhlhaas et

al., 2009; Colgin, 2011). Recent evidence suggests that in the cortex these patterns

range from a “synchronized” state, characterized by low-frequency oscillation in

the population firing rate and up/down switching in the single-neuron membrane

potential, to a “desynchronized” state, marked by a roughly constant population

firing rate and irregular single-neuron firing (Harris & Thiele, 2011; Vyazovskiy et al.,

2011; Sachidhanandam, Sreenivasan, Kyriakatos, Kremer, & Petersen, 2013; Miller,

Ayzenshtat, Carrillo-Reid, & Yuste, 2014; Okun et al., 2015; Jercog et al., 2017).

Synchronous states are more prominent during slow-wave sleep and anesthesia

whereas asynchronous firing activity is prevalent in the states of wakefulness

and REM sleep (Steriade, Timofeev, & Grenier, 2001; El Boustani, Pospischil,

Rudolph-Lilith, & Destexhe, 2007; Greenberg et al., 2008; Sanchez-Vives, Massimini,

& Mattia, 2017). Notably, the degree of synchrony in cortical and subcortical

regions varies with time, often with intermittent switches between synchronous

45
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and asynchronous states (Ahn & Rubchinsky, 2013; Hahn et al., 2017; Ahn &

Rubchinsky, 2017).

There is a widespread assumption that prevalence of synchrony or asynchrony

in the network activity depends on the relative strength of excitatory and inhibitory

synaptic inputs (van Vreeswijk, Sompolinsky, et al., 1996; Amit & Brunel, 1997b;

Renart et al., 2010; Landau, Egger, Dercksen, Oberlaender, & Sompolinsky, 2016).

In the context of networks of leaky integrate-and-fire (LIF) neurons, the balance

between average excitatory and inhibitory synaptic inputs is known to result in

quantitative characteristics of network activity that resemble those of asynchronous

cortical states (Brunel, 2000; Mattia & Del Giudice, 2002; Cessac & Viéville, 2008;

Vogels & Abbott, 2005; Kumar, Schrader, Aertsen, & Rotter, 2008; Wang et al.,

2011; Litwin-Kumar & Doiron, 2012; Kriener et al., 2014; Ostojic, 2014; Potjans &

Diesmann, 2014). In the absence of such balance, the network displays behaviors

akin to synchronous cortical states (Vogels, Rajan, & Abbott, 2005).

Networks in which the nodes feature more complicated dynamics than LIF

neurons and are able to reproduce intrinsic firing patterns of contrasting cortical

neurons, e.g. based on the Izhikevich (Izhikevich, 2003, 2007) or the AdEx (Brette

& Gerstner, 2005; Gerstner et al., 2014) models, demonstrate higher diversity of

temporal patterns. In the region of parameter space where inhibitory synaptic

strength exceeds excitatory synaptic strength, mixtures of neurons with different

individual firing characteristics perform collective spontaneous oscillations that

resemble the alternation of up and down states observed in the synchronized cortical

state (Tomov et al., 2014, 2016). This suggests that not only synaptic balance of

excitation/inhibition but also heterogeneities in the neuronal composition of the

network may have an impact on the dynamic pattern of the network.

Yet another factor, capable of influencing the interplay between oscillatory

and non-oscillatory states, is the intrinsic randomness of synaptic channels. More

specifically, stochasticity expressed by synaptic noise originates from spontaneous

neurotransmitter release in the synaptic cleft which generates miniature excitatory

(inhibitory) postsynaptic potentials, the so-called mEPSPs (mIPSPs) or simply

minis (Kavalali, 2015; Pulido & Marty, 2017). Characteristics of miniature

postsynaptic potentials as amplitude and frequency have been demonstrated to
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depend on the sleep/wake state (Liu, Faraguna, Cirelli, Tononi, & Gao, 2010).

From the theoretical point of view, synaptic noise has been used in cortical models

as a source of transitions between different dynamical network states (Compte,

Brunel, Goldman-Rakic, & Wang, 2000; Renart, Brunel, & Wang, 2003; Holcman

& Tsodyks, 2006; Moreno-Bote, Rinzel, & Rubin, 2007; Parga & Abbott, 2007).

Previous work has shown that up-down oscillations can appear in different

setups. One of them considers neurons with an adaptive variable, within e.g.

AdEx (Destexhe, 2009) or Izhikevich (Tomov et al., 2014) formalism. Another

setup uses noise to provoke the switching between the two states (Holcman &

Tsodyks, 2006; Jercog et al., 2017). Here, by combining adaptation with noise,

we show that noise is not mandatory for the up-down oscillations but favors their

occurrence when it is present. In this study we demonstrate that a network of

Izhikevich neurons with stochastic synaptic inputs displays a rich variety of dynamic

states with different levels of oscillations and degrees of synchrony. We locate

these states in the parameter space spanned by the ratio between inhibitory and

excitatory synaptic increments and the synaptic noise magnitude. As expected, noise

transforms the transient dynamics observed in previous studies into persistent states

with well established properties. Independently of network composition and relative

inhibitory synaptic strength, for low intensities of synaptic noise the persistent states

are asynchronous and non-oscillatory. For higher noise magnitudes, the type of

persistent state depends on the relative inhibitory synaptic strength.

Remarkably, in the region of the parameter space where inhibitory synaptic

increments are greater than excitatory synaptic increments the persistent state

displays intermittent spontaneous transitions between two dynamic regimes: an

active state characterized by rhythmic alternations of tonic firing and silence, and

a quiescent state characterized by low-rate irregular network firing. In the active

state, the average neuronal membrane voltage oscillates between depolarized and

hyperpolarized states in a manner that resembles cortical up/down oscillations,

whereas in the quiescent state the average membrane potential remains close to the

resting value. We characterize this intermittent state by means of firing rates, power

spectra, voltage series, and explain the observed phenomena in terms of the behavior

of network-embedded neurons viewed in their single-neuron phase subspaces.
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This work extends previous studies on activity pattern dynamics in random

networks of LIF neurons to random networks with more involved on-site dynamics.

To test the validity of our observations against the change of the chosen neuronal

model, we performed similar computations for the same networks composed of the

AdEx neurons, reproducing all basic effects found for the Izhikevich model. This

paves way to a broader conjecture that two-dimensional neuron models with a slow

recovery variable can naturally account for oscillations between depolarized and

hyperpolarized states, mimicking up/down states. In this context, the synaptic

noise can transform transient oscillatory network activity into a persistent complex

state with intermittent switches between two different dynamic regimes.

5.2 Methods

5.2.1 Neuron and network model

In this Chapter we work with a standard random network model where

directed connections between every two nodes exist with a fixed probability ε. To

keep cortical sparseness we have chosen a low connection probability ε = 0.01 and

size N = 210. This renders the expected number of incoming connections per node

(average in-degree) ε(N−1) ≈ 10. The network is mixed: it includes both excitatory

and inhibitory nodes. The sizes of excitatory and inhibitory subpopulations are

taken in the proportion 4 : 1 (Brunel, 2000). Each network node is a neuron modeled

by the Izhikevich formalism (Izhikevich, 2003) (see description in Chapter 2) with

parameters that ensure diverse dynamics on the individual level.

Our choice of the Izhikevich neuronal model is based on its ability to mimic,

by means of setting the appropriate values of parameters a, b, c, d, the behavior of

neurons from different electrophysiological classes (Nowak, Azouz, Sanchez-Vives,

Gray, & McCormick, 2003; Contreras, 2004). Among those, we concentrate in this

study on the excitatory regular spiking (RS) and chattering (CH) neurons, and on

the inhibitory fast spiking (FS) and low-threshold spiking (LTS) neurons. In Fig 2.2

one can see examples of individual dynamics for different classes: the neuronal

types differ in frequency, adaptation, and in rheobase current. We consider network

compositions where all inhibitory neurons belong to the same class: all of them are
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either of the LTS type or of the FS type. In the excitatory subpopulation we take the

case when all neurons belong to the RS type, and the case when the RS neurons are

mixed with CH. A thorough discussion of different aspects of the Izhikevich neuron

model can be found in (Izhikevich, 2007).

In this chapter, the last term in the first equation of Eq.(2.3), which

is the synaptic current described by Eq.(4.2), has the addition of the synaptic

noise. For that, we note that the current is controlled by conductances Gex/in
j and

reversal potentials Eex/in, responsible for excitatory/inhibitory effects. Whenever

an excitatory (inhibitory) neuron spikes, an increment gex (gin) is added to the

conductances Gex (Gin) of all its postsynaptic neurons; thereafter the conductances

decay exponentially with time constant τex/in. This is well known as a conductance

based synaptic model, described by the differential equation

dG
ex/in
j (t)

dt
= −

G
ex/in
j (t)

τex/in

+ gex/in

∑
i

δ(t − ti) +
√

2Dnjξj(t), (5.1)

where summation is performed over all time instants ti of preceding presynaptic

spikes. We adopt the same parameters as in (Tomov et al., 2016): Eex = 0 mV,

Ein = −80 mV, τex = 5 ms and τin = 6 ms.

The last term in Eq.(5.1) is the synaptic noise source. Since, for

simplification, the noise sources are treated as being independent or weakly

correlated, a superposition of a large number of such inputs is approximated by

a simple Gaussian white noise process. We assume that ξj is Gaussian with zero

mean and unit variance: 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = δ(t − s). Note that in spite

of the zero mean of the Gaussian process, the mean value of the synaptic input

current Isyn,j stays non-zero which, in its turn, is determined by both G
ex/in
j and

Eex/in. So, the Gaussian process only has the effect of causing displacements in

the synaptic current but does not act as a driving force. Concerning the variance,

since the sum of independent random normally distributed variables is normally

distributed as well, the overall variance of the stochastic process for a neuron j is

chosen to be proportional to the total number of excitatory/inhibitory inputs nj that

this neuron receives. Thereby, for neurons with different numbers of presynaptic

partners, the intensity of the noisy input is different. Altogether, evolution of

conductances for each neuron consists of the stochastic Ornstein-Uhlenbeck process
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(Uhlenbeck & Ornstein, 1930) in the time intervals between the presynaptic spikes

and of discontinuous jumps upwards of the size gex/in at the instants of arrival of those

spikes. This stochastic model, similar to the point-conductance model described in

(Destexhe, Rudolph, Fellous, & Sejnowski, 2001), has its power-spectral density and

variance completely determined (Gillespie, 1996). In distinction to (Destexhe et al.,

2001), in our case randomness is generated within the synapses and is, in general,

non-Poissonian.

The complete set of parameter values used in the simulations of this study

is summarized in Table 5.1. Note that that the values of parameters α, β, γ in the

voltage equation are shared by all neuronal types.

Common parameters in Eq.(2.3) α β γ vth [mV]

0.04 5 140 30

Parameters of Eq.(2.3) for

different firing patterns a b c [mV] d

Excitatory RS 0.02 0.2 -65 8

Excitatory CH 0.02 0.2 -50 2

Inhibitory FS 0.1 0.2 -65 2

Inhibitory LTS 0.02 0.25 -65 2

Synaptic parameters gmax
ex gmax

in τex [ms] τin [ms] Eex [mV] Ein [mV]

0.15 1 5 6 0 -80

Network parameters size N ratio exc:inh connectivity

210 4:1 ε = 0.01

Table 5.1: Parameters used in the simulations.

5.2.2 PLV

In our simulations, we constructed parameter space plots of the synchrony

index PLV for different numbers K of neuron pairs and observed a saturation in

the plots for increasing values of K above 50. This indicates that PLV becomes

independent of the number of neuron pairs forK ≥ 50. To ensure this independence,
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in computations we took K = 60. See Chapter 3 for a description of the PLV

measure.

5.2.3 Numerically integrating the synaptic equations

The numerical integration of the stochastic differential equations involved in

this chapter is done with the help of the Heun’s method (Mannella, 2002). The

Heun’s method for stochastic differential equations is an improved Euler’s method

or sometimes referred as a two-stage Runge-Kutta method. The method can be

described as follows:

• Consider a given system of stochastic differential equations such as ẋi =

fi(x) + gi(x)ξ(t), where the stochastic process ξ(t) is identified as a Gaussian

zero-mean unit-variance, i.e. 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = δ(t− s).

• At the level of the discretization, we consider that the integration time step

is called h and we introduce a stochastic variable Yi with zero-mean and

unit-variance. Due to discretization at every time step h, we skip some period

in time and, because of that, we have to define a stochastic variable that will

take into account the amount added by the Gaussian variable. One easily

can identify this amount by observing that the sum of Gaussian variables is

still a Gaussian variable with its statistics, mean and variance, completely

determined by the sum of the former ones. To enumerate, if A ∼ N (µA, σ
2
A)

and B ∼ N (µB, σ
2
B), then Z = A + B with Z ∼ N (µA + µB, σ

2
A + σ2

B). Last

but not least, we define

Zi(h) =
√
hYi, (5.2)

and with that, we keep correct statistical properties: zero-mean and a sum of

variances.

• Finally, the Heun’s method reads

xi,aux = x(0) +
√

2DZi(h) + foh

xi(h) = x(0) +
√

2DZi(h) +
h

2
(fo + f(xi,aux)), (5.3)
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where fo = f(x(0)).

5.3 Results

5.3.1 Preliminaries and the deterministic setup

To single out the effects caused by the introduction of synaptic noise, we

first characterize the system in the non-perturbed state, i.e. in the absence of noise.

Below, we refer to this case as the deterministic setup.

At the chosen parameter values the global state of rest is stable. Since in

the deterministic setup no activity can be excited from that state without an initial

disturbance, we start simulations by applying brief electric stimulation to arbitrarily

selected neurons. Different stimuli are constructed by varying

• the amplitude of the input current from Istim = 10 to Istim = 20;

• the duration of the input current from tstim = 50 ms to tstim = 300 ms; and

• the proportion of stimulated neurons: 1, 1/2, 1/4, 1/8, 1/16.

The initial kick provided by brief stimulation has a sole role to put the

system into a state other than rest. After the stimulation ends, the network is

left to evolve freely and its dynamics is recorded. Eventually all trials end up in

the state of rest. In most cases evolution is not a straightforward decay but a long

dynamical transient; its duration strongly (by several orders of magnitude) varies,

depending on the initial conditions. On discarding the cases where the free activity

was shorter than 400 ms, we are left with a set of trials in which the network

displayed long-living self-sustained activity; duration of the latter stage justifies a

closer look at its intrinsic characteristics.

We have studied different combinations of the conductance increments

(gin, gex) and observed rather distinct behavior as shown in Fig 5.1. The choice

of gex and gin directly affects the network balance and shapes thereby its dynamics

(Vogels et al., 2005).

Depending on the ratio gin/gex, the self-sustained activity displayed by the

network belongs to one of two categories outlined in (Tomov et al., 2014). The first



5.3 - Results 53

one, shown in the left column of Fig 5.1, is a relatively constant network activity

state where neurons spike in an asynchronous and non-oscillatory fashion. For the

given example, this is confirmed by the high value of the spectral entropy (Hs = 0.87)

and the low phase locking value (PLV = 0.39). The reason for the constant network

activity can be seen from the behavior of the voltage traces for two randomly selected

neurons at the bottom of the left column of Fig 5.1: the neurons fire irregularly, but

their firing rates are so high that the collective activity is constant.

The second category, shown in the right column of Fig 5.1, is an oscillatory

state (Hs = 0.39) characterized by regular periods of high mean firing rate

intercalated with periods of very low firing. The average voltage indicates that the

bulk of neurons is fluctuating between depolarization and hyperpolarization. The

PLV for this state is higher (PLV = 0.60) indicating that neurons fire/stay silent

with a higher degree of synchrony. Voltage traces for two randomly picked neurons

(see bottom plot in the right column of Fig 5.1) show bursts of closely spaced spikes

during high activity phases intercalated with periods of hyperpolarization below the

reset value during low activity phases. This behavior was explained by us earlier

(Tomov et al., 2016) in terms of the dynamics of the recovery variable u in the single

neuron phase plane of the Izhikevich neuron.

The example given in the middle column of Fig 5.1 illustrates the transition

between the two above categories. This transition occurs when the inhibitory

synaptic increment overcomes the excitatory synaptic increment as reported in

(Tomov et al., 2014). The network activity in the transition region looks as a mixture

of constant and oscillatory activity, with intermediate values of the synchrony

(PLV = 0.45) and oscillatory activity (Hs = 0.56) indexes. Voltage traces for

two randomly chosen neurons (bottom of middle column) show high firing rates like

in the first category (a tendency for constant activity), but now there are short

periods of activity break like in the second category (oscillatory activity).

Naively, gin/gex = 4 may seem to be a balanced situation, as reported

elsewhere (Brunel, 2000). Here, however, we are dealing with neurons from different

electrophysiological classes, and their firing rates differ as well. In addition,

we are using a conductance based synaptic model where the synaptic current is

voltage-dependent. In that sense, the mean time-averaged synaptic input for a
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given neuron j can be roughly estimated as

Ij(t) ≈ gexCexνexτex(Eex − 〈v〉)− ginCinνinτin(Ein − 〈v〉), (5.4)

where Cex/in are the numbers of excitatory/inhibitory inputs to neuron j, νex/in

are the mean firing rates of the excitatory/inhibitory populations, and 〈v〉 is a

representative voltage. The expression in Eq.(5.4) elucidates that the notion of

“balance” is subtle, and its reduction to just gex/in and Cex/in may be misleading.

Usually, when LIF neurons are considered, equal mean firing rates of excitatory

and inhibitory neurons, as well as equal relaxation times τex,in are assumed, hence

the balance requires only that gin/gex = Cex/Cin, which, in the widely studied

situation with the number of excitatory connections four times higher, results in

gin/gex = 4. In contrast, in a network like ours, with νin > νex, there is no balance at

gin/gex = 4, instead there is a voltage dependent input current: if 〈v〉 is depolarized
(hyperpolarized), negative (positive) currents drive the neuron.

Time [ms] Time [ms] Time [ms]

PLV = 0.3874 PLV = 0.4505 PLV = 0.6026 H
s

H H
s s

g g g gg g

Figure 5.1: Self-sustained firing pattern changes under variation of gin/gex

ratio in the deterministic setup. The network is composed of RS and LTS
neurons. Each column represents a combination of gin/gex indicated atop together with
the corresponding spectral entropy Hs and synchrony index PLV . From top to bottom:
raster plot, network firing rate, average voltage and voltage traces of two arbitrarily selected
neurons (in black and red respectively).

Altogether, these preliminary examples confirm that the deterministic setup,

depending on the ratio gin/gex, is able to generate oscillatory or constant activity. In
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the following, we concentrate on the oscillatory situation, when inhibition overcomes

excitation.

In Fig 5.2 we present an exemplary simulation in the deterministic setup and

extended statistics from the set of long-lived realizations with synaptic increments

gex = 0.15 and gin = 1 (this set contains 487 simulations, thus allowing good

statistics). In this case the majority of neurons oscillates between a depolarized

state and a hyperpolarized state, well visible in Fig 5.2 B and on the bimodal

distribution in Fig 5.2F, computed from the entire set of simulations with varied

initial stimulation. For individual neurons these preferred subthreshold membrane

potentials are known as “up” and “down” states (Wilson, 2008), and in the context of

the ensemble of neurons it seems natural to view these two states as collective “up”

and “down”, respectively. As seen in Fig 5.2 A-E, a typical period of oscillations is

close to 100 ms (f ≈ 10 Hz).

For a typical neuron in the ensemble, Figs 5.2 D-E illustrate the temporal

evolution of the voltage and the membrane recovery variable, respectively, during

the same simulation. There is strong correlation between firing of this neuron and

the periods of high activity of the whole network, although some other neurons also

fire when the network activity is low. These latter are inhibited during the high

activity epochs and become disinhibited when the overall network activity is low.

We have shown elsewhere the importance of this disinhibitory effect to sustain the

long-lived activity of the network in the oscillatory situation (Tomov et al., 2016).

Remarkably, not only the voltage series in Fig 5.2 D features two different

states (a hyperpolarized one and a depolarized one) but also the membrane recovery

variable, which clearly grows when the network activity is high and slowly relaxes

when the activity is low. This is a global phenomenon: in all simulations there are

peaks of the variable u. In the distribution shown in Fig 5.2 G, the maximum is

broad due to the time-scale separation of the variables: u is slower than v and its

relaxation takes much longer. In (Tomov et al., 2016) we have shown the importance

of the recovery variable for the breakdown of global high-activity epochs, which

produces the up and down oscillatory pattern.

Fig 5.2 H presents a histogram of durations in collective up and down states.

The term “up” refers here to different states in which the network activity is above
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Figure 5.2: Up and down network oscillations in the noiseless case when
gin > gex. The network is composed of 16%CH, 64%RS and 20%LTS neurons, with
(gex, gin) = (0.15, 1). Panels A-C show the raster plot for half of the neurons in the
network, average voltage and time-dependent firing rate from a sample simulation with
long-lived self-sustained activity. Panels D-E show the voltage v and membrane recovery
variable u extracted from a sample neuron in this simulation. Histograms F-G show the
distributions of average v and average u based on data from all long-lived simulations.
In the box plots above the histograms the red lines and the pluses denote, respectively,
the median and the mean. Histogram H presents the distribution of stay duration in the
collective up and down states based on all simulations, as well as mean and standard
deviation; the outlier is indicated by the star in the end of the distribution.

20% of its average value, whilst the voltage for the majority of neurons is at a

depolarized value. A collective “down” state is identified whenever the bulk of the

neurons reaches a hyperpolarized state close to −80 mV.

Recall that eventually the system ceases to oscillate, and voltages of all

neurons invariably converge to the rest value.
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5.3.2 Setup with synaptic noise

Introduction of synaptic noise drastically changes one important aspect, both

in the individual and in the collective dynamics: the state of rest, albeit formally

stable, ceases to be the ultimate attractor. A neuron is an excitable system, and in

the noisy setup it is just a matter of time when a sufficiently strong fluctuation (or

a cumulative effect of many fluctuations) drives it across the spiking threshold. For

an ensemble this implies disordered sporadic firing of its members, which, under

favorable conditions, can turn into ordered collective activity. If deterministic

aspects dominate in dynamics, this activity will temporarily end in the state of

rest, only to be recreated by new fluctuations.

5.3.2.1 Isolated neurons

Consider an individual neuron that obeys Eq.(2.3) with the synaptic current

I given by Eq.(4.2) and synaptic conductances Gex/in governed by Eq.(5.1) with

noisy input. An isolated neuron, by definition, has no synaptic inputs; nevertheless,

stochastic fluctuations of its synaptic conductances can result in action potentials.

In this situation, to study the influence of noise on the resting neuron we, without

loss of generality, set nj = 1 in Eq.(5.1). Take the initial conditions for the neuron

at its state of rest and set its synaptic conductances to zero, so that the initial

current is absent. As time goes on, the conductance evolves stochastically; to ensure

that it stays positive, we impose a reflecting condition at zero (which, in the long

run, very slightly shifts upwards the mean value of ξ(t)). As a result, a stochastic

current I(t) is generated. As long as I(t) is absent or sufficiently small, the neuron

stays at rest. As soon as the instantaneous current I exceeds the critical value

Icrit(t) =
(β − b)2

4α
− γ, with α, β, γ, b being the parameters of the Izhikevich model

(2.3), the state of rest disappears (the mechanism is explained below in Sect. 5.3.4),

the voltage variable v starts to grow monotonically, and the neuron fires.

Since presynaptic inputs are absent in this isolated neuron description

(see Eq. 5.1), computation of the first firing time for an isolated neuron turns

into a variant of the mean first passage time problem (Siegert, 1951) for the

Ornstein-Uhlenbeck process. Numerically, we find this quantity by averaging over a

sufficient number of trials.
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Regarding dependency of Icrit(t) on the electrophysiological class, we note

that the parameters α, β and γ are common for all classes, leaving b as the only

parameter that matters. In this context, b determines the current threshold value.

Furthermore, three of the four considered neuronal classes share the same value of b,

whereas the LTS neuron has a higher value of b, ensuring early initiation of spikes.

Hence, it suffices to compare two neurons: LTS and e.g. RS. In Fig 5.3 we plot the

computed dependences of the time of first spike on the synaptic noise intensity.
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Figure 5.3: Average time of first spike for the Izhikevich neuron model driven
by synaptic noise. D: noise intensity. Blue curve: RS neuron. Red curve: LTS neuron.

Notably, from the point of view of the random network, each curve in Fig 5.3

shows the behavior for all neurons of its respective kind, regardless of their in-degree:

according to Eq.(5.1), an increase of the in-degree (in other words, of the number of

independent Gaussian noises acting upon the synapse) rescales the variance and is

therefore equivalent to the corresponding increase of D at constant degree. Recall

that in the studied networks most of the neurons have in-degree ≈ 10. Altogether,

the influence of the number of synaptic connections is clear: the higher the in-degree,

the higher the variance of the input noise, the faster the neuron crosses the threshold

and emits a spike.
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5.3.2.2 Network with weak synaptic noise

We begin the discussion of synaptic noise in the network by presenting a

case where its introduction induces activity with properties strongly different from

those in the deterministic setup. For the same set of parameter values as in the

deterministic case of Fig 5.2, instead of initial stimuli, we add in accordance with

Eq.(5.1) small (D = 2.5 × 10−6) stochastic fluctuations to the synaptic variables.

This results in activity with very low firing rates, exemplified in panels A-C of

Fig 5.4. The high spectral entropy (Hs = 0.82) and the very low synchrony (PLV =

0.0298) indicate a non-oscillatory and asynchronous type of activity. The voltage

distribution in Fig 5.4 D stands in contrast to the deterministic case: it is unimodal,

the maximum lies at the mean, and the relevant voltage values are close to the resting

potential. The firing rates in Fig 5.4 E are close either to 1 Hz (excitatory neurons)

or to 8 Hz (inhibitory neurons). The state of the network in the weak synaptic noise

setup corresponds well to the so-called asynchronous irregular (AI) state (Brunel,

2000; Vogels et al., 2005).

5.3.3 Onset and classification of intermittent oscillatory and
quiescent activity in the synaptic noise setup

Here we describe various collective states induced in the network by synaptic

noise. Experience gained from the study of the deterministic setup allows us to

expect that, along with the synaptic noise intensity D, the crucial parameter in

this context is the ratio gin/gex: the proportion between inhibitory and excitatory

synaptic strengths (Brunel, 2000; Girones & Destexhe, 2016). We start by exploring

the behavior of the spectral entropy Hs and the synchrony measure PLV in the

two-dimensional diagram spanned by parameters gin/gex and D (Fig 5.5).

As seen in the diagrams in Fig 5.5, both gin/gex and D are responsible for

shaping the activity pattern of the network. Let us begin with the diagram for

spectral entropy in Fig 5.5 A. For weak synaptic noise (D / 5× 10−6) the network

displays non-oscillatory behavior independently of the ratio gin/gex. For the narrow

horizontal band defined by 5 × 10−6 / D / 10−5, the state of the network is

oscillatory and the degree of oscillatory activity is higher for gin/gex / 2. On the

other hand, for D ' 10−5 the situation is inverted and the region determined by
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Figure 5.4: Asynchronous irregular state in the presence of weak synaptic
noise. The network, composed of 16%CH, 64%RS and 20%LTS neurons, evolves without
initial stimulation. Synaptic increments: (gex, gin) = (0.15, 1). Intensity of synaptic noise:
D = 2.5 × 10−6. Panels A-C present, respectively, raster plot for half of the neurons in
the network, average voltage and time-dependent firing rate for the network. Above them
the values of Hs and PLV are cited. Panels D-E are histograms with distributions of
average voltage and firing rates. For the firing rates, excitatory and inhibitory populations
are presented separately, as indicated in the titles of E.

gin/gex / 2 displays non-oscillatory activity while most of the remainder of the

diagram features oscillatory activity. Within this latter part of the diagram, increase

of both noise and inhibitory synaptic strength lowers the degree of oscillatory activity

until in the upper right corner the activity turns non-oscillatory.

Now let us turn to the diagram for the synchrony PLV in Fig 5.5 B. The

region of weak synaptic noise (D / 5 × 10−6) displays asynchronous behavior

independently of gin/gex. Under such weak noise firing remains an individual event

for noise-perturbed neurons, rather than a collective effect. Along the narrow

horizontal band of the diagram determined by 5× 10−6 / D / 10−5, the synchrony

index has mostly intermediate values with a narrow high-synchrony region around
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Figure 5.5: Spectral entropy Hs and synchrony index PLV for the synaptic
noise setup. Two-dimensional space where ordinate represents the synaptic noise
intensity D and abscissa, the ratio of synaptic increments gin/gex. The coordinate mesh is
linear (from 0.5 to 7) with respect to gin/gex and logarithmic with respect to the synaptic
noise intensity (from D = 1× 10−6 to D = 1× 10−2). Panel A: Colors represent spectral
entropy Hs (values close to zero correspond to oscillatory states and values close to 1
correspond to non-oscillatory states). Panel B: Colors represent synchrony evaluated by
means of the phase locking value PLV (values close to zero correspond to asynchronous
states whereas values close to 1 correspond to synchronous state).

gin/gex ≈ 4. In the remainder of the diagram the behavior along horizontal scans in

the diagram is roughly the same: in the entire region determined by gin/gex / 2.5

the activity is asynchronous, whereas outside that region the degree of synchrony

has intermediate values.

The combined information in the two diagrams of Fig 5.5 is qualitatively

summarized in a schematic diagram drawn in Fig 5.6. The states in this diagram

are denoted in accordance with two measures of network activity in Fig 5.5: Hs

quantifies the degree of oscillatory activity and PLV quantifies the degree of

synchrony. Selected samples from the different regions are also displayed on the

right of Fig 5.6 to show the time-dependent network firing rates for the corresponding

combinations of Hs and PLV .

The region of weak synaptic noise lies at the bottom of the diagram in

Fig 5.6. The type of network activity there is asynchronous non-oscillatory, already

described in subsection 5.3.2.2. It is similar to the asynchronous irregular (AI)

activity observed in networks of LIF neurons (Brunel, 2000; Vogels et al., 2005).
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Figure 5.6: Network activity patterns in the synaptic noise setup. A schematic
representation of the D vs. gin/gex diagram of Fig 5.5 combining the information on
degree of oscillatory activity (Hs) and degree of synchrony (PLV ) disclosed in that figure.
The names of the activity types are given inside the regions bounded by full lines. The
synchronous non-oscillatory type is equivalent to the constant type used to describe network
states in the deterministic setup. The region marked as “transition" corresponds to
states with intermediate levels of oscillatory activity and synchrony. On the right side
of the diagram we present the time-dependent firing rate r(t; ∆t) of the network for six
selected (D, gin/gex) combinations. Numbers on the left-hand top of the panels indicate
the corresponding points in the diagram to the left.

The region stretches along the full length of the horizontal axis, indicating that the

generic features of the network activity for weak synaptic noise are insensitive to

the ratio between excitation and inhibition.

For stronger synaptic noise the structure of the diagram in Fig 5.6 is more

complex. The network displays synchronous oscillatory activity within an irregular

shaped region in the center of the diagram, adjoined by a narrow horizontal strip

in the bottom part. This is similar to the synchronous regular (SR) type of activity

found in networks of LIF neurons (Brunel, 2000; Vogels et al., 2005). In the

remainder of the third of the diagram where gin/gex < 2 the activity is asynchronous

non-oscillatory. Its pattern is similar to the constant pattern shown in the left

column of Fig 5.1. On the other hand, through the upper two-thirds of the diagram

for gin/gex > 2 the activity is synchronous non-oscillatory. Thus, for very strong

synaptic noise the network activity is non-oscillatory and can be synchronous or

asynchronous depending on the gin/gex ratio.

Finally, the diagram in Fig 5.6 includes the region marked as “transition". It
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contains most of the right third of the diagram, with the exception of the regions of

weak and strong synaptic noise mentioned above, and extends to the central part of

the diagram where it separates the synchronous oscillatory from the asynchronous

non-oscillatory regions. This corresponds to a region with intermediate degrees of

oscillatory activity (the greenish region in the diagram for Hs in Fig 5.5 A) and

synchrony (red-orange to yellow-orange colors in the diagram for PLV in Fig 5.5

B). Therefore, states in the transition region should occupy intermediate position

between constant and oscillatory states like the state in the middle column of Fig 5.1.

Interested in the behavior of the network in the transition region, we focus

here on a part of the diagram in Fig 5.6 determined by (gin, gex) = (1, 0.15), which

implies gin/gex ≈ 6.66, and 10−5 / D / 10−4. This corresponds to the greenish

(light orange) region on the lower right-hand side of the diagram for Hs (PLV )

in Fig 5.5 A (B). Spectral entropy and PLV here are both close to 0.5 meaning

that states with intermediate levels of oscillatory activity and synchrony may be

encountered.

In Fig 5.7 we illustrate dynamics for the point given by D = 1 × 10−5 and

(gin, gex) = (1, 0.15) in the diagram in Fig 5.6. This point is in the transition region

on the lower right-hand side of the diagram described above, which is characterized

by intermediate values of Hs and PLV.

Remarkably, a typical record of a long simulation trial in this region of

the diagram consists of alternating states (Fig 5.7): an oscillatory one, akin to

oscillations presented in the deterministic setup in Fig 5.2, and a state with very

low firing rates similar to the one in Fig 5.4. From time to time transitions between

these states occur, seemingly without any precursors. Compared to deterministic

simulations, an additional feature is distinct in the histogram of mean voltage: a

pronounced maximum at the state of rest. Accordingly, the temporal evolution

of voltage is organized around three characteristic values, instead of two known

from the deterministic setup. Three red dashed lines in Figs 5.7 B-C mark three

relevant states; from top to bottom, they denote depolarization, the state of rest and

hyperpolarization. Note that the histogram in B can be viewed as a combination of

the voltage histograms from Figs 5.2 and 5.4.

The average spectral entropy calculated over the quiescent/oscillatory states
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in Fig 5.7 is Hs = 0.74/Hs = 0.37, indicating non-oscillatory activity in the first

case and oscillatory activity in the second one.
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Figure 5.7: Intermittent transitions between active oscillatory and quiescent
regimes in the presence of synaptic noise. Plots generated for a network with
16%CH, 64%RS and 20%LTS neurons, D = 1× 10−5 and (gin, gex) = (1, 0.15). Panel A:
Raster plot for half of the neurons in the network. Panel B: voltage v histogram (left) and
time course of average voltage over all network neurons (right). Panel C: time-dependent
firing rate of the network. Panel D: Recovery variable u, histogram (left) and time course
of average recovery value over all network neurons.

We classify the observed states based on two attributes: network activity and

average voltage. Like previously, the average voltage series was used to detect the

up and down states (see Fig 5.2 H). The states close to rest are identified through

very low network activity,

In terms of activity, we introduce the following distinction:

• quiescent period is the time interval when the time-dependent firing rate of

the network r(t,∆t) is below its maximum by at least 20%, and most of the



5.3 - Results 65

single neurons have voltage values close to the resting state. During a quiescent

period there can be sporadic noise-induced spikes but no collective dynamics.

The state is similar to an asynchronous irregular (AI) state of networks of LIF

neurons (Brunel, 2000; Vogels & Abbott, 2005) with low firing rate, and to a

desynchronized cortical state as described in the Introduction.

• active period is the time interval when the network exhibits oscillatory

activity, alternating between high depolarized and hyperpolarized mean

voltage values: collective up and down states. Such behavior can be related

to the self-sustained activity developed in in vivo cortical slice preparations

and during slow-wave sleep and anesthesia (Steriade et al., 2001; Tomov et al.,

2016; Sanchez-Vives et al., 2017).

These definitions, in combination with the values of the average voltage,

facilitate identification of different collective states. Certain states that look very

similar on the raster plot turn out to differ in typical voltage values. For instance,

both the down state and the quiescent period feature in the raster plot almost no

activity, but can be easily discerned in terms of the average voltage.

In Fig 5.8 we show various regimes at different values of D. Three samples

corresponding to the time interval of 2 s are, from top to bottom: D = 0.5 ×
10−5, D = 1.5 × 10−5, and D = 4.5 × 10−5, respectively. In panels A1, B1, and

C1 green dots denote states with instantaneous voltage values close to the resting

state, blue dots denote hyperpolarized voltage (down state), and red dots denote

depolarized voltage (up state). The plot highlights the crucial role of synaptic noise

level in changes of typical duration at each of these states. It is easier to generate

oscillatory states (alternating between up and down states) when the network is

subjected to stronger synaptic noise. In contrast, the “green” states close to rest

(quiescent periods), prevalent at low synaptic noise amplitudes, occupy a much

smaller proportion of time when synaptic noise becomes sufficiently intensive.

Comparison of raster plots in Fig 5.8 indicates that when noise intensity

D is increased, the waves of activity start to merge. This hinders identification of

states, based on the raster plot alone. The spectral entropy and the synchrony index

increase with the noise intensity until a saturation is reached and then they slightly
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Figure 5.8: Increase of synaptic noise favors up-down oscillations. The network
has the same composition as in Fig 5.7 with varying synaptic noise intensity D. A: D =
0.5 × 10−5, B: D = 1.5 × 10−5, C: D = 4.5 × 10−5. In A1, B1, and C1 blue dots
correspond to depolarization (up state), red dots to hyperpolarization (down state), and
green dots to voltage near the resting state. A2, B2, and C2: raster plots for 200 neurons
in the network with corresponding Hs and PLV values atop each plot. A3, B3, and C3:
time-dependent firing rates.

decrease. We expect that at very high levels of noise the activity becomes constant

(synchronous non-oscillatory), with rather high firing frequencies (see the schematic

diagram in Fig 5.6).

In the frequency domain, variation of the noise level leads to redistribution of

power in the Fourier spectra of both the spike trains and the voltage series. Fig 5.9

presents spectra for the same noise intensities as in Fig 5.8: from top to bottom,

D = 0.5 × 10−5, D = 1.5 × 10−5, and D = 4.5 × 10−5. All spectra were averaged

over ensembles of 200 neurons, see Eq. (3.6). The shapes of spectral curves for

spike trains and for voltage values are similar; the only noticeable difference is the

somewhat faster decay at high frequencies in the voltage spectra. The left column

shows mixtures of RS and LTS neurons; the right column corresponds to networks

with RS and FS neurons. Under low levels of noise, spectral power is concentrated at

very low frequencies, waves of collective activity are quite rare and, when they occur,

they are mostly isolated events. On increasing the intensity D, waves of collective

activity become more frequent whereas the periods of quiescence get shorter. During

the periods of oscillatory activity, neurons are either firing at high frequency in the

up state or rarely firing in the down state. This results in the increase of spectral

power at low frequencies, with a distinct maximum near 10 Hz.
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Figure 5.9: Averaged power spectra at different noise intensities. Simulation
length: 10 s. Left column: network with inhibitory LTS neurons. Right column: network
with inhibitory FS neurons. Every panel (A,B,C,D) contains three subpanels displaying
three levels of noise intensity from top to bottom: D = 0.5 × 10−5, D = 1.5 × 10−5, and
D = 4.5×10−5. Black curves inA and C: averaged spectra of spike trains for 200 randomly
chosen neurons. Black curves in B and D: averaged spectra of voltage for the same 200
neurons. Green curves: moving average over 20 points. Peak values are indicated in the
plot and were evaluated from the green curves neglecting the zeroth frequency bin. In the
bottom panels we display the factor n for the 1/fn decay extracted between 10 and 200 Hz.

Comparison of left and right columns in Fig 5.9 shows that spectral curves

for networks with inhibitory LTS and FS neurons are similar. Comparing the peak

values indicated in the panels. we see that spectral power in the networks with FS

neurons is slightly higher.

Remarkably, these power spectra, computed for single neurons, bear
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resemblance to experimentally obtained spectral curves. In the case of the voltage

spectra (Figs. 5.9 B and 5.9 D), the 1/fn behavior is reported in experiments on

up-down states with n in the range 1 to 3 (Bédard & Destexhe, 2009; Millman,

Mihalas, Kirkwood, & Niebur, 2010; Baranauskas et al., 2011). Furthermore, our

results match the experimental observation that the spike-train power spectra have

striking differences in comparison to the voltage-series power spectra (Bair, Koch,

Newsome, & Britten, 1994) .

In the spike-train power spectra (Figs. 5.9 A and 5.9 C), there is no 1/fn

scaling. As the noise intensity D is raised, the value related to the zeroth frequency

bin of the spectra decreases. This indicates that irregularity is becoming less

apparent given that lim
f→0

S̄(f) is related to the Fano factor which is a measure of

irregularity (Middleton, Chacron, Lindner, & Longtin, 2003; R. F. Pena et al.,

2018).

Regarding the 1/fn scaling, observed both experimentally and theoretically

(Beggs & Plenz, 2003; Kinouchi & Copelli, 2006), in our case we see that noise

acts upon the scaling (cf. n values in Fig 5.9 B,D). It has been shown elsewhere

(Baranauskas et al., 2011) that the shape of up-down transitions in the membrane

potentials could be a determining factor for modulation of the 1/fn scaling with n =

2. Our observations provide support to this experimental evidence. At unbounded

growth of D, transitions should vanish, and, as a consequence, n decreases.

Additionally, increase of noise shifts the peak values and peak frequencies in

both spike-train and voltage power spectra; compare the peak values in different

subpanels. The existence of spectral differences where peaks becomes apparent or

not is well known to be present in the cerebral cortex during different states such as

slow wave sleep and wake (Buzsáki, 2006).

We have seen that synaptic noise enforces alternation of collective states and

influences durations of stay in each of them. Below, we explain how the dynamics of

a single neuron, embedded in the synaptic noise setup, is reflected in the collective

properties of activity, how the transitions are affected by the composition of the

network, and how the picture changes at different levels of noise.
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5.3.4 Single neuron phase plane description of the synaptic
noise setup

A deeper understanding of the single neuron behavior in the synaptic noise

setup can be gained from analysis of the course of its phase plane dynamics during

the simulation. Setting the derivatives v̇ and u̇ in Eq.(2.3) to zero renders the

nullclines of the voltage and the membrane recovery variable which we denote below

as ū and u∗, respectively.
u = ū = αv2 + βv + γ + I(t),

u = u∗ = bv.

(5.5)

with ū being a (time-dependent) quadratic parabola and u∗ a straight line. Synaptic

noise enters this configuration implicitly, through its contribution to the current I.

Under the employed parameter values (see Table 5.1 above) and I = 0, the

nullclines intersect in two points of the phase plane. These points correspond to

equlibria of the system; the left of them is stable: without input current, neuron

exhibits no activity. When the instantaneous value of the current is increased, the

nullcline ū is shifted upwards on the phase plane, and the equilibria move towards

each other. At the value Isn(t) =
(β − b)2

4α
− γ they merge and disappear in a

saddle-node bifurcation. Absence of equilibria is sufficient to ignite a spike: the

voltage grows until it reaches the threshold. In fact, if the value of the parameter

b exceeds that of the parameter a (this holds for all four considered neuronal

types), spiking starts at even weaker current: at IH =
(β − b)2 − (a− b)2

4α
− γ the

subcritical Andronov-Hopf bifurcation takes place, the equilibrium loses stability

and the solutions spiral out from its vicinity towards the spiking threshold. Recall

that the values of α, β, γ are common for all neuronal types (cf. Table 5.1). Hence,

the onset of spiking at IH is dictated for each type of neuron by the pertaining a

and b (the remaining parameters c and d characterize the reset and are irrelevant in

this context: a neuron that has made it to the reset, is already in the spiking state).

Evolution of every individual neuron is governed by its instantaneous location

on the phase plane with respect to the nullclines; its dynamics is affected not only

by its own state, but by the time-dependent (due to external and synaptic currents)
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position of the nullcline ū. This allows us to see the collective dynamics from the

local point of view of its individual participant; for it, the rest of the network is a

background mechanism that moves the nullcline ū upwards and downwards.

Remarkably, this motion is not always negligible in comparison to dynamics

of the neuron on the phase plane: on arrival of synaptic input, the nullcline ū is

swiftly shifted in the vertical direction. Sometimes this leads to spectacular effects:

a rapid fall of ū may drag it across the instantaneous position of the neuron on

the plane and thereby halt and reverse the developing action potential. Such events,

however, are seldom in a network like ours with its moderated connectivity, therefore

most of the time the vertical displacements of the nullcline ū stay noticeably slower

than the motion of the neuron.

With this local view in mind, we present in Fig 5.10 and Fig 5.11 the same

simulation as in Fig 5.7 focusing on the individual dynamics of two representative

neurons, arbitrarily picked among the populations of, respectively, the neurons that

fire only during the active periods and the neurons that fire throughout all stages

of evolution. As we will see, distinctions in the behavioral patterns can be traced

down to the phase planes of the neurons.

We begin from the neuron # 240 which fires only during the active periods,

showing it in the time range between 3800 ms and 4400 ms. We split this range,

which contains both active and quiescent states, into 6 smaller intervals ∆ti, each one

of either 50 or 100 ms duration. The upper panel in Fig 5.10 shows the entire range

and its breakdown into the set of ∆ti. The lower panels present for every ∆ti the

voltage series and the trajectory on the phase plane. Notably, in the hyperpolarized

(down) state below reset, the neuron typically is close to the instantaneous location

of ū, hence its motion is slow.

We summarize our observations as follows:

• Interval ∆t1: in the beginning, the neuron has just ended its evolution in an

up state and passes through a down state. There, the trajectory mostly stays

inside the parabola of the voltage nullcline ū below the reset value. Since

the system is located above nullcline u∗ of the recovery variable, the latter

decreases. The down state can be viewed as a period of relaxation where the

voltage is hyperpolarized. The trajectory slowly moves towards the state of
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ū

0

Figure 5.10: Single neuron phase plane depiction of a neuron that fires during
the active periods in the synaptic noise setup. Upper panel: a zoom of the
simulation from Fig 5.7, split into 6 time intervals ∆ti. The first 3 intervals have a
duration of 50 ms and the last 3 have a duration of 100 ms. Lower panels: voltage series
and dynamics on the phase plane of neuron # 240 in subsequent intervals ∆ti. Arrows
indicate the vectors (v̇, u̇); since v is much faster than u, the vectors are nearly horizontal.
Blue dashed line: the first half of evolution in a given ∆ti. Blue solid line: the last half of
evolution in a given ∆ti. Red circle: location of the neuron at the end of the time interval.
Black square: location of the state of rest with v = vrest and u = urest. Dotted red lines:
reset value of voltage and spike cutoff. Green lines: Nullclines ū and u∗, according to
Eq. (5.5). The location of the parabolic nullcline ū is time-dependent; its position at the
beginning (respectively, end) of ∆ti is shown with dashed (respectively, solid) green line.
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rest (marked as a black square in Fig 5.10).

• Interval ∆t2 : Before the trajectory arrives at the resting state, the neuron

receives excitatory input from its presynaptic partners and the voltage nullcline

ū is shifted upwards, then the neuron resumes the up state and fires several

times. The dynamics of ∆t1 + ∆t2 is largely repeated every ≈ 100 ms.

• Interval ∆t3: Since most of the neurons are firing, their recovery variables are

growing (recall that at every spike, d is added to the value of the variable u).

At very high u the negative feedback to the voltage variable v is so strong

that the neuron is forced to stop firing and follows the same path as in ∆t1

(see (Tomov et al., 2016) for a description of this effect). The majority of the

neurons in the network stops firing due to the same reason, and the network

does not supply synaptic input, hence the conductances Gex/in relax. As a

result, the nullcline ū lowers and the neuron approaches the state of rest.

• Interval ∆t4: This is the middle of a quiescent period. The zoomed

image shows how the neuron slowly moves towards the state of rest. The

membrane recovery variable u monotonically decays. Synaptic noise perturbs

the trajectory, but falls short of initiating a new up state.

• Interval ∆t5: the neuron crosses the nullcline u∗ of the recovery variable u.

The latter does not decrease anymore while the voltage is fluctuating due to

noisy synaptic input.

• Interval ∆t6: finally the noise and/or arrival of inputs from presynaptic

neurons are able to initiate a new active period.

The sequence of events in Fig 5.10 discloses a major role of the membrane

recovery variable u both in the transition from up state to down state and in the

subsequent initiation of the new active phase by the noisy input. Because of high

tonic firing during an up state, the total synaptic current into a neuron like #240 is

very intense and roughly constant (its fluctuation amplitude depends on the synaptic

noise level). Hence, the nullcline ū stays close to its highest position in the u-v

diagram while the neuron climbs towards it due to the increments received by its
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recovery variable u after each spike. Finally, the neuron gets inside the parabolic

nullcline ū, has its firing probability decreased and eventually stops firing. The fact

that the whole network enters a down state when this happens suggests that most

neurons behave like #240, i.e. they dominate dynamics in the network. Excursion

of the neuron to the left from the reset line while it is inside the parabola ū is the

mechanism responsible for the hyperpolarized voltages seen in the down states of

oscillatory regimes both in the deterministic (cf. Fig 5.1) and noisy (cf. Fig 5.7)

setups. During a quiescent period, the nullcline ū is dragged to the bottom of the

diagram putting the neuron close to rest. This explains the absence of hyperpolarized

voltages during quiescent periods (cf. Fig 5.7). In this situation the neuron is also

close to the nullcline u∗, so its eventual high jump to the region of the diagram

below the nullcline u∗ makes the neuron fire again and a new active period begins.

The behavior of the neuron #240 in Fig 5.10 somewhat mimics the overall

behavior of the network: it is highly active during up states of active periods and

silent during down states of active periods and quiescent periods. In the following,

we will refer to neurons of this type as “typical” in the sense that they represent the

behavior of the majority of the network nodes.

The firing pattern of typical neurons is contrasted by the behavior displayed

in Fig 5.11. There, we show dynamics of the neuron #69, chosen because of its

atypical behavior: it fires at all stages: in the up and down states of the active

period and during the quiescent period. Dynamical features of this neuron are

complementary to the ones of the typical neuron in Fig 5.10, and a combination of

the views given by them offers a deeper understanding of the mechanisms responsible

for the intermittent changes between active and quiescent states.

A summary of our observations for the “atypical” neuron reads as follows:

• Interval ∆t1: contrary to the typical neuron, # 69 starts its evolution with a

low value of the recovery variable u. This indicates that during the previous

up state the neuron did not fire much. The nullcline ū also begins this time

interval at a low position, meaning that it did not receive many increments.

This suggests that the neuron is heavily inhibited when the network is at a high

firing state, possibly being postsynaptic to a large pool of inhibitory neurons.

Hence, it is more likely that the neuron emits spikes during down states: there
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Figure 5.11: Single neuron phase plane depiction of a neuron that fires during
all periods in the synaptic noise setup. Each panel contains voltage series and
dynamics on the phase plane of neuron # 69 for the same time range (3800–4400 ms)
and the same six time intervals of 100 ms as for the neuron in Fig 5.10. Arrows in the
plot indicate (v̇, u̇). Blue dashed line: the first 50 ms of evolution. Blue solid line: the
last 50 ms of evolution. Red circle: location of the neuron at the end of the time interval.
Black square: location of the state of rest with v = vrest and u = urest. Dotted red lines:
reset value of voltage and spike cutoff. Green lines: Nullclines ū and u∗, according to
Eq (5.5). The location of the parabolic nullcline ū is time-dependent; its position at the
beginning (respectively, end) of ∆ti is shown with dashed (respectively, solid) green line.
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it receives less inhibition from its presynaptic neurons, which, like the typical

neuron in Fig 5.10, are relaxing toward rest. Due to synaptic noise or eventual

inputs from other similar neurons, the neuron # 69 fires at a low rate during

the down state.

• Interval ∆t2: When the network enters the up state (second half of the time

interval), the neuron is again strongly inhibited and emits fewer spikes than a

typical neuron.

• Interval ∆t3: The network up state continues and ends, whereas the neuron

has a low probability of firing.

• Interval ∆t4: This is the middle of the quiescent period. Note that by the end

of the time interval the nullcline ū moves down, indicating a net inhibitory

input to the neuron (an early sign of the recovery of network activity which

will come in the next time steps). Even weak synaptic noisy inputs can make

it fire. Since the firing rate depends on the synaptic noise level, the duration

of the quiescent period depends on it as well.

• Interval ∆t5: The situation is still as in the last time interval, but now we

see a clear sign of the strong inhibition received by the neuron. After a spike

in the first half of the time interval, when it is close to emitting a new spike,

the neuron receives a strong inhibitory kick which hyperpolarizes its voltage

and prevents the spike. The voltage grows again but another strong inhibitory

impulse serves for the next setback. The inhibitory inputs come from neurons

in the pool of presynaptic inhibitory neurons to # 69, which are starting to

“wake up" on the eve of a new active period. As a consequence of the inhibitory

inputs, the nullcline ū moves further down.

• Interval ∆t6: The network enters the up state of an active period and most

neurons are active again (like the typical # 240 in Fig 5.10). This makes

# 69 fire but because of the heavy inhibition, not at a high rate of the typical

neuron. Evidence of the strong increase in the inhibitory input received by

this neuron comes from the dramatic downward movement of the nullcline ū

out of the scale of the plot.
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Excitatory neurons like the one in Fig 5.11, which fire at low rates at

all periods, will be called here “quiet” neurons (elsewhere, in the context of the

deterministic setup, we called them “moderately active neurons” (Tomov et al.,

2016)). Quiet neurons are fewer than typical neurons; for the network of Fig 5.7,

they, on the average, constitute about a quarter of the population.

The sequence of events depicted in Fig 5.11 underscores the importance of

inhibition and synaptic noise in shaping the network activity during both down

states and quiescent periods. Strongly inhibited during up states, the quiet neurons

become disinhibited by the end of those states and serve as a source for most of the

spikes occurring during down states and quiescent periods. Thus, the firing pattern

in the down states and quiescent periods is basically due to the recurrent excitatory

synaptic connections among quiet neurons. The weak noise limit (cf. Fig 5.4)

discloses the nature of the intrinsic activity pattern generated by the population of

quiet neurons: it is highly asynchronous and non-oscillatory; remarkably, it is also

weak. This confirms, on the one hand, that the population of quiet neurons is small,

and explains, on the other hand, why the network activity during down states and

quiescent periods is asynchronous and irregular.

Due to the weakness of intrinsic activity of quiet neurons, the likelihood

that their pool can trigger a high firing (up) state in the network is low and the

synaptic noise level plays a pivotal role in controlling this likelihood. At low synaptic

noise level, the weak activity of the quiet neurons can restore the up state when

the network is at a down state, but this can be repeated generating a sequence

of up-down oscillations only for a short transient time. After the transient the

network enters a quiescent period: a persistent low activity regime characterized by

asynchronous non-oscillatory activity. When the network is in a quiescent period,

the activity of the quiet neurons is too weak to start a high firing state in the

network; a certain minimal synaptic noise level is necessary to trigger this state. In

the absence of this minimal synaptic noise level, the network activity remains in the

quiescent regime as seen in the diagrams of Figs 5.5 and 5.6. When the synaptic

noise intensity increases above minimum level, the recurrent excitation amongst

quiet neurons gets stronger, as well as the synaptic noise inputs to typical neurons,

and the probability of the network exiting a quiescent period increases.
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The above discussion highlights a fundamental difference between down

states and quiescent periods. In the weak synaptic noise regime, when the network

activity is dictated by quiet neurons, their weak agitation is able to restore a high

firing state in the network when the latter is in a down state but not when it

is in a quiescent period. This phenomenon bears some similarity to the behavior

observed previously by us in deterministic networks of two-dimensional nonlinear

integrate-and-fire neurons in the absence of external inputs (Tomov et al., 2014,

2016). There, the network state oscillates for a transient time between up and down

states, before decaying to rest (cf. the behavior of the network in the deterministic

setup in Sect. 5.3.1). The decay to rest always occurs when the state of the network

in its high-dimensional deterministic phase space passes through a particular region

of the phase space (a “hole”) which, when represented in the two-dimensional space

of average voltage 〈v〉 and recovery 〈u〉 variables, overlaps with the region traversed

by the network when it is in a down state (Tomov et al., 2016). The analogy

between down/rest state for the deterministic network without external input and

down/quiescent state for the network in the synaptic noise setup suggests a further

analogy between the hole in the high-dimensional phase space of the deterministic

network and a hole in the high-dimensional phase space of the stochastic network.

The difference is that when the network state in the stochastic high-dimensional

phase space falls into its corresponding hole it escapes to a quiescent state instead

of the resting state, and it can leave this quiescent state when the synaptic noise

intensity is above a minimum level.

To show that the recovery variable u has a stronger impact on the cessation

of activity than the inhibitory neurons, in Fig 5.12 we compare the effects of this

variable and the synaptic currents Isyn on the same neurons as in Fig 5.7. In Fig 5.12

we present for selected time points both variables (u, v) for 200 neurons randomly

picked from the network, and their total synaptic input Isyn.

The first row in Fig 5.12 refers to an up-down transition: For T = 3880 ms,

which is the middle of the up state, some neurons have high values of u (due to

the constant increments the u variable receives after each spike, cf. Eq. (2.4)) and

consequently strong negative feedback. The consequence of this negative feedback

is to hyperpolarize the neurons, which can be seen in the graphs for T = 3900 and
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Figure 5.12: Distribution of the neuron variables and synaptic current at
different moments of time. Data in each panel come from 200 neurons pooled together
from the same network simulation in Fig 5.7. For different time instants, indicated atop
every coupled subpanel, the figure presents scatter plots (left subpanel) of instantaneous
(v,u) values, indicated as a blue circles, and histograms (right subpanel) of instantaneous
Isyn values.

3920 ms where the voltages progressively move to the left of the graph. As to the

Isyn histograms, they are mostly dispersed around positive values (with a reduction

in the dispersion as T increases) indicating a low inhibitory activity. This confirms

an earlier observation that the inhibitory neurons are not the main responsibles for

the up-down transition (Tomov et al., 2016). The second row in Fig 5.12 refers to

the down-up transition: for T = 3940 ms, most neurons are hyperpolarized and

the synaptic currents are sharply concentrated around zero, confirming that very

few neurons (the quiet ones) are spiking, as shown in Fig 5.7. As time increases,

the distribution of neurons in the (v, u) plane becomes more disperse and the

voltages v move to depolarized values. This indicates that the neurons are free

(without negative feedback) to spike again. Meanwhile, the distribution of synaptic

currents widens-up and is dominantly excitatory (although there are some inhibitory

currents). The third row in Fig 5.12 refers to the quiescent state: from T = 4000

to 4040 ms, the variable u moves down and v moves to hyperpolarized values. As

observed in Fig 5.7 for the same condition, there are very few spikes. Only after

about 300 ms the voltages start to grow again and firing is re-started in a new active
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period.

5.3.5 Influence of synaptic noise upon different states

Having demonstrated in the previous section that synaptic noise affects

different phases of activity, we now proceed to a quantitative description. We

compute the average duration of active and quiescent periods in sufficiently long

(we take the value of 6× 105 ms) trials. Mean duration is an important measure to

characterize and model alternating states, e.g. in the course of transitions between

brain rhythms (Lo et al., 2002; Ahn & Rubchinsky, 2013).

Results of simulations confirm that the duration of stay in both active

and quiescent periods is affected by the synaptic noise level (Fig 5.13), but in a

twofold way: the growth of noise intensity lengthens active periods and shortens

the quiescent ones. This implies that synaptic noise influences transitions between

the states. Remarkably, the average duration of stay in the quiescent state rapidly

falls at the increase of small noise amplitude but seems to reach a certain saturation

at moderate noise intensities. Apparently, the minimal time that the neurons need

to organize a new collective activity is dynamically constrained by the network

topology and deterministic characteristic times in the phase space: in the studied

case it cannot be made lower than ≈ 80-100 ms.

Depending on the network composition, action of synaptic noise upon the

average duration of active and quiescent periods can be weaker or stronger. Although

the same common qualitative tendencies persist, quantitative aspects depend on

the types of participating neurons as well as on proportions between them. An

exemplary comparison is shown in Fig 5.14. Simulations with two types of inhibitory

neurons indicate that the LTS neurons, compared to the FS ones, seem to postpone

the termination of the active period (top left panel): at low noise the duration of

oscillatory activity is higher if LTS neurons are present. This implies that inhibitory

neurons influence the transition from active to quiescent period. In contrast, the

duration of the quiescent period (bottom right panel) displays no dependence on the

type of inhibitory neuron: the corresponding curves in the plot nearly coincide. This

indicates that the transition from quiescent to active period is regulated exclusively

by excitatory neurons. Indeed, since inhibitory neurons cannot excite a network,
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Figure 5.13: Synaptic noise intensity affects the mean duration of active and
quiescent periods. Curves show average durations of active and quiescent periods over
the simulation of 10 min as a function of synaptic noise intensity. All inhibitory neurons
are of LTS type. Synaptic noise intensity varies in the range 0.05× 10−5 ≤ D ≤ 5× 10−5

in discrete steps of size ∆D = 0.05× 10−5. Error bars: standard error.

every period of stay in the quiescent period should be interrupted by an excitatory

neuron, or by a group of excitatory neurons.

Introducing diversity among excitatory neurons, we observe certain

quantitative changes as well. By replacing 20% of RS neurons by CH neurons,

we obtain a network built of 16%CH, 64%RS and 20%LTS. This composition is

much less sensitive to the action of synaptic noise. The tendency of growth of active

periods under increase of noise is practically absent (see top left panel in Fig 5.14),

and at all values of D the average active period is shorter than the corresponding

silent one. As for the latter, however, there is a systematic shift. Compared to

the case when the whole excitatory population is of the RS type, in the mixture

with CH neurons the mean duration of quiescent periods decreases to lower values,

below 102 ms. This decrease is a combination of synaptic noise- and network-related

effects. A quiescent period ends whenever synaptic noise or some of the few quiet

excitatory neurons which fire during the quiescent period (or both) drives across the

firing threshold one of the majority of typical excitatory neurons which are at rest,
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Figure 5.14: Network composition influences the average duration of stay in
active and quiescent periods. A-B: Dependence of duration on noise intensity. Legend
in the plot indicates the network composition. Curves: average values over the simulation
of 10 min. Error bars: standard error. A: active periods. B: quiescent periods. The value
D = 3× 10−5, denoted by the arrow, is used for calculation of histograms in panels C1-2
and D1-2, characterizing distributions of stay duration in different periods. Stars at the
end of the histograms are outliers. Insets show logarithmic representations of the ordinate.

provided that this neuron is able to activate its postsynaptic neighbors and initiate

thereby a wave of activity. If the neighbors fail to fire, the quiescent period continues.

The mean time required for the first neuron to fire is the same for the RS and the

CH neuron (see Sect.5.3.2.1). However, the RS neuron issues just one isolated action

potential, whereas the CH neuron generates a series of spikes, raising with each of

them the conductances of its postsynaptic neighbors and creating thereby conditions

for their activation and subsequent collective spiking. In this sense, a burst of a CH

neuron has higher chances to initiate common activity than a spike of a RS neuron.

Therefore, in a network with CH neurons the quiescent periods end earlier. This

confirms our conjecture that excitatory neurons influence the length of quiescent

periods.

Histograms of duration of stay in the active period in Figs 5.14 C1-2

show exponential distributions but are somehow fractured (cf. the logarithmic

representations in the insets). Distributions of this kind have been reported

previously (Duc et al., 2015; Tomov et al., 2016). In the former case the authors

related cessation of activity to passages through a specific region in the phase space
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of their deterministic network (the “hole” mentioned above), explaining thereby the

quantization of cessation times. In our case, the behavior of the system is similar.

Assuming the picture of a hole in the network phase space through which the network

can escape from active to quiescent state, and a synaptic noise level high enough

to allow multiple transitions from quiescent to active state, the quantization of

active period durations can be explained keeping in mind that an active period is

made of up-down cycles, each one with the same approximate period T . Since the

escapes from active to quiescent state always occur at the end of an up-down cycle,

the duration of an active state can only increase by integer multiples of T . The

distributions of stay duration in the quiescent period, shown in Figs 5.14 D1-2,

possess exponential character as well, but without a fractured shape. This can be

explained by the non-oscillatory nature of the quiescent periods.

Let us have a look at shorter timescales: what happens inside the active

periods? How does noise influence the collective up and down states? In Fig 5.15

we show dependence of average durations of stay in the up and down states on the

noise intensity D, in the same range of D as in Figs 5.13 and 5.14. Whereas the

average stay in the down state gets shorter under the growth of noise, lifetime in

the up state almost does not change.
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Figure 5.15: Average duration of stay in the up and down states as a function
of noise intensity. The network contains RS excitatory neurons and either FS or LTS
inhibitory neurons. Curves: average values over the simulation of 10 min. Error bars:
standard error.
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The down state is the only state that is sensitive to the type of inhibitory

neuron. There is a clear shift upwards (see red and black curves) if the LTS

neurons are replaced with FS ones. This means that transitions from the down

state happen faster in the presence of LTS neurons. The sensitivity of the down

state can be related to the interpretation in (Tomov et al., 2016) where the cessation

of self-sustained oscillatory activity was assigned to passages through a small region

of instability (the hole), located in the phase space close to the down state. In our

current synaptic noise setup, the more noise, the higher the disturbance in the region

of instability at the down state and the shorter its lifetime.

5.3.6 Comparison with other neuron models

We expect the above results on intermittent transitions between states that

are active-quiescent and the role of noise upon these transitions to stay qualitatively

valid in networks based on other two-variable integrate-and-fire-type neuron models.

To support this conjecture, below we apply the same procedure as in Fig 5.7 to the

adaptive exponential integrate-and-fire (AdEx) model (Brette & Gerstner, 2005;

Gerstner et al., 2014).

The AdEx model is a two-variable neuron that differs from the Izhikevich

model by the equation for voltage: instead of a polynomial dependence on v, the

AdEx features the exponential one. To run the AdEx network under the same

conditions as the Izhikevich one without having to re-scale either the synaptic

variables or the noise amplitude, we write the AdEx equations so that the

input-frequency relationship and nullclines ū and u∗ are similar to the ones from

the Izhikevich model, leading to:
v̇ = −gL(v − EL) + gL∆T exp (

v − vT
∆T

)− 46− u+ I(t)

u̇ = a(b v − u),

(5.6)

where ∆T = 30, gL=1, vT = −65, and EL = c. The parameters (a,b,c,d) are

the same as in the Izhikevich model. Along with Eq. 5.6, the model includes the

fire-and-reset rule given by Eq. 2.4. A comparison of the Izhikevich nullclines to

the AdEx nullclines is performed in Figs 5.16 A and B where one can see that, for
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these chosen parameters and at the resting state (I = 0), the fixed points for the

two models are very close and the shape of the nullcline ū is similar.
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Figure 5.16: Intermittent transitions between active and quiescent regimes in
the presence of synaptic noise for network with AdEx neurons. The network is
composed of two AdEx neuron types: the excitatory (RS) and the inhibitory (LTS), in the
same proportion 4:1 as in the other networks of this work. Panels A and B: nullclines on
the phase plane, drawn for the Izhikevich and the AdEx models for RS (A) and FS (B)
neurons (see parameters in the text). Panel C: raster plot for a network simulation under
synaptic noise with D = 1 × 10−5. Panel D: averaged voltage histogram (left) and time
course of averaged voltage over all network neurons (right). Panel E: r(t; ∆t) extracted
from all neurons in the network. Panel F: Recovery variable u. Histogram (left) and
course of u(t) over all network neurons.

In Figs 5.16 C-F we see a qualitatively close behavior to Figs 5.7 A-D: raster

plots with r(t; ∆t) indicating that active (oscillatory) and quiescent (non-oscillatory)
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behaviors are switching sporadically, with voltages fluctuating among three different

positions (hyperpolarized, resting, and depolarized), and recovery variable u

oscillating and featuring accumulation depending on the period. A noticeable

difference however occurs when the average voltage in Fig 5.16 D for the AdEx

model is compared to the one in Fig 5.7 B for the Izhikevich model: for the AdEx

model the voltage does not stay long enough in the hyperpolarized or depolarized

states to create corresponding prominent peaks in the histogram (the peak for resting

voltage is much more prominent). This difference is related to the integration of the

AdEx neuron model, where the growth of voltage follows an exponential law, which

is much faster than the quadratic one. This effect is reflected as well in the average

voltage: the peaks and troughs are sharper than those for the Izhikevich neuron

model.

5.4 Discussion

Networks of LIF neurons have been extensively scrutinized in the literature

to understand their properties under different conditions (Brunel, 2000; Mattia &

Del Giudice, 2002; Vogels & Abbott, 2005; Cessac & Viéville, 2008; Wang et al.,

2011; Litwin-Kumar & Doiron, 2012; Kriener et al., 2014; Ostojic, 2014; Potjans

& Diesmann, 2014; Yim, Kumar, Aertsen, & Rotter, 2014; Landau et al., 2016;

Jercog et al., 2017; Tartaglia & Brunel, 2017). Much fewer works have been

devoted to systematic investigations of networks of other spiking neuron models.

Here we have studied networks of Izhikevich neurons in the presence of synaptic

noise. We have found in these networks a rich variety of activity patterns, consisting

of synchronous and asynchronous non-oscillatory states and oscillatory states with

variable degrees of synchrony. Moreover, these networks exhibit intermittent

noise-induced transitions between oscillatory and quiescent states. These transitions

are irregular and affected by the synaptic noise level and the network composition.

A systematic analysis of time series, plots of neuron spikes, firing rates,

average voltage and membrane recovery variable, and power spectra revealed the

characteristics of the oscillatory and quiescent states, similar to observed cortical

states (Steriade et al., 2001; El Boustani et al., 2007; Greenberg et al., 2008; Harris &
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Thiele, 2011; Sanchez-Vives et al., 2017): during oscillations the membrane voltages

of the neurons fluctuate between hyperpolarized (down) and depolarized (up) states

like in the so-called “synchronized" states seen in in vivo preparations and during

slow-wave sleep and anesthesia; in the quiescent state neurons display very low and

irregular spiking activity like in the so-called “desynchronized" states seen in quiet

rest. As far as we know, phenomena like oscillations between hyperpolarized and

depolarized states, and noise-induced intermittent transitions between oscillatory

and low activity regimes have not been reported in networks of LIF neurons.

By using the single neuron phase space representation of network dynamics

combined with statistical assessments of duration of stay in the oscillatory and

quiescent states, we were able to explain the roles played by synaptic noise and

network composition in the durations of these states and the transitions between

them. Besides, we also were able to explain the origin of the up and down oscillations

and the asynchronous non-oscillatory nature of the quiescent states.

Up and down states, in which the average voltage of network neurons

is, respectively, depolarized and hyperpolarized, occur during oscillatory (active)

periods in the network. They can be understood in terms of the single neuron

phase space in the same way as explained in the noiseless case (Tomov et al., 2016).

During an up state, when most of the neurons fire tonically, the parabolic-shaped

voltage nullcline is kept in the upper part of the phase plane while the recovery

variable moves steadily upwards due to neuronal firing. Eventually the neuron finds

itself inside the area bounded by the voltage nullcline; it is forced to move to the

hyperpolarized region of the phase plane and then downwards, relaxing towards

rest. This corresponds to a down state. In the latter, the activity of the network is

sustained by quiet neurons, which were inhibited during the up state and became

disinhibited during the down state. In the course of time, firing of the quiet neurons

is able to excite some of the relaxing post-active neurons; this triggers a new

wave of excitation in the network, starting the next up state. This mechanism

strongly depends on the recovery variable and its instantaneous increment (cf.

Eq.(2.4)), which causes spike-dependent adaptation (Izhikevich, 2007). Together,

they constitute a sort of intrinsic negative feedback mechanism which decreases

network excitability during the up state, as proposed by other authors in different
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contexts (Contreras, Timofeev, & Steriade, 1996; Sanchez-Vives & McCormick,

2000; Bazhenov, Timofeev, Steriade, & Sejnowski, 2002; Compte, Sanchez-Vives,

McCormick, & Wang, 2003; Hill & Tononi, 2005; Holcman & Tsodyks, 2006; Parga

& Abbott, 2007; Benita, Guillamon, Deco, & Sanchez-Vives, 2012; Chen, Chauvette,

Skorheim, Timofeev, & Bazhenov, 2012; Ghorbani, Mehta, Bruinsma, & Levine,

2012; Mattia & Sanchez-Vives, 2012; Jercog et al., 2017; Tartaglia & Brunel, 2017;

Levenstein, Buzsaki, & Rinzel, 2018).

The basic mechanism behind up and down oscillations is acting in both the

deterministic and the synaptic noise setups. Thus, up-down oscillations are caused

not by synaptic noise but by the intrinsic dynamics of the network. Disclosure of the

same basic dynamical properties in the network with AdEx neurons (Sect. 5.3.6)

allows to expect that this mechanism is common for networks populated by neurons

with adaptation variables. In line with what has been pointed out elsewhere (Harris

& Thiele, 2011; Mattia & Sanchez-Vives, 2012; Jercog et al., 2017), the up/down

oscillations result from an interaction between recurrent synaptic connections and

adaptation.

Interestingly, the comparison between networks populated with Izhikevich

and AdEx neurons indicates some differences between them: although the global

dynamical behavior of the two networks is similar, the local voltage profile of their

neurons is different (cf. Fig. 5.7 B and Fig. 5.16 D). To the best of our knowledge,

this is one of the first times in which the Izhikevich and AdEx neuron models are

compared through their effects on the network.

The major difference between the deterministic and the synaptic noise setups

is that in the deterministic case the oscillations are transient, while in presence of

noise they become persistent. But the durations of the up and down phases and an

up-down cycle are approximately the same, depending only on the characteristics of

network neurons.

The up-down oscillations can be seen as a sort of default activity mode

(Sanchez-Vives et al., 2017) of the system (at least in the region of the parameter

space considered here). In the deterministic, noiseless, setup this activity eventually

dies out, preceded, as we have shown, by the passage of the system through a

specific region of its phase space we called a “hole” (Tomov et al., 2016). Through
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the hole, located close to the domain traversed by the system during a down phase,

the system can escape the up-down oscillations and decay to rest. In the noiseless

case the system sooner or later gets into the hole and the network activity dies out.

In the synaptic noise setup, this hole-like region in the network’s high-dimensional

phase space still exists but because of the noise the system does not decay to rest

when it passes through it; instead, the system is dragged to the quiescent state.

As in the down state, in the quiescent state the network sustains activity,

internally generated by quiet neurons via their recurrent synaptic connections and

regulated by the synaptic noise level: it is weak for weak synaptic noise, and strong

for strong synaptic noise. Being dictated by noise, activity during a quiescent period

is asynchronous and irregular. Because of the passage through the hole the quiescent

state has, in general, a longer duration than the down state. Hence, typical neurons

which are relaxing in the hyperpolarized region of the single neuron phase space

have time to decay to the phase space region around rest. This explains why

during quiescent periods the average voltage is close to the resting voltage and is not

hyperpolarized as in the down states. For weak synaptic noise, activity generated by

the quiet neurons is insufficient to take the network out of the quiescent state: the

system remains inactive. For moderate to high synaptic noise intensities, activity of

quiet neurons gets stronger and even the neurons that are close to rest can fire, so

eventually the global activity is reignited and an up state commences.

The basic effect of the synaptic noise level is to increase/decrease the average

duration of the quiescent periods. In other words, synaptic noise can act as a

facilitator of transitions between quiescent and active states, and the intermittency

between these states results from the stochastic nature of the neuronal firing during

quiescent periods as well as from the irregularity of trajectory of the system in its

high-dimensional phase space (that determines whether it will hit a hole). Once the

system enters the hole, the duration of stay in the quiescent state depends on the

noise intensity. For very low noise, the system stays in the quiescent state essentially

forever, displaying only residual activity (see Fig 5.4). For moderate to high noise,

the system eventually leaves the quiescent state and the up-down oscillations resume.

The residence time in the quiescent state gets smaller as the synaptic noise intensity

increases. For very strong noise the system may not even enter the hole because,
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in such a case, both typical and quiet neurons have high probability of firing at all

moments. This explains the disappearance of quiescent periods in the high noise

regime. For still higher levels of synaptic noise intensity, even the down periods

disappear and the network features constant activity.

Our study also indicates that inhibition affects transitions from active to

quiescent periods and the duration of down states. Average stay in the down

states is shorter when the inhibitory neurons of the network are of the LTS type

than when they are of the FS type (cf. Fig 5.15). This may be related to

experimental evidence showing that inhibitory neurons control cortical oscillatory

up and down states (Sanchez-Vives et al., 2010). The authors of that study

progressively blocked inhibitory cells during a spontaneous up state and showed

that this blockage shortened the duration of up states and enlarged the duration of

down states. Since the LTS neurons respond to noise faster, a replacement of all LTS

neurons in the network by FS neurons can be viewed as a reduction of inhibition;

thereby, the corresponding increase of the average duration of down states relates

our observations in the model to the experimental evidence. Similar transitions from

the up to the down states have been studied before (Holcman & Tsodyks, 2006; Xu,

Ni, & Wang, 2016).

One of the objectives of our study was to check whether dynamics in the

network of neurons with adaptation is sensitive to the composition of the network

and the electrophysiological types of individual neurons. Generic qualitative features

of dynamics, like intermittent oscillations between active (up/down) and quiescent

states, shape of power spectra, etc, turned out to be persistent for all neuronal

subtypes as well as for their mixtures; on the individual level this can be traced

back to the common shape of the nullclines. At the same time, we established that

certain quantitative measures (like average durations) depend on the proportions of

neuron types.

For noise, there are many ways to enter a neural network model (Faisal et

al., 2008; Longtin, 2013; Destexhe & Rudolph-Lilith, 2012; Brochini et al., 2016;

McDonnell, Goldwyn, & Lindner, 2016). In this work we considered the variant

in which it affects the synaptic variables. By doing so, we were able to study

the effect of noise at the molecular level on the behavior of the system at the
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network level. Since noise at the synaptic level is related to fluctuations in the

release of neurotransmitters and the amplitude of miniature postsynaptic currents

(Rao et al., 2007; Liu et al., 2010; Tononi & Cirelli, 2014; Kavalali, 2015), which are

phenomena at scales of magnitude much smaller than the scale of voltage changes,

the weak noise intensities D we considered here capture very small noisy events.

Furthermore, because synaptic noise is filtered by the conductance variables, its

effect upon neuronal voltages is akin to colored noise input, which is more biologically

realistic than if noise were added, via e.g. Poisson processes, to neuron voltages

directly.

Our work captures mechanisms at different levels of neural processing with

potential contribution to current endeavors to model multiscale brain mechanisms

and their role on normal and pathological function (Mejias, Murray, Kennedy, &

Wang, 2016; Neymotin et al., 2016; Lytton et al., 2017; Schwalger, Deger, &

Gerstner, 2017). As an example, the synaptic noise-induced switches between

periods of oscillatory and irregular activity might give support to fast formation

and destruction of cell assemblies.



Chapter 6

An iterative heterogeneous
self-consistent scheme that
explains the emergence of slow
fluctuations

6.1 Introduction

The autonomous dynamics of recurrent networks of spiking neurons is an

important topic in computational neuroscience. Networks of randomly connected

excitatory and inhibitory integrate-and-fire (IF) neurons are often used in the

study of this problem, because this model is computationally efficient for numerical

simulations and even sometimes permits analytical insights (see e.g. (Abbott &

van Vreeswijk, 1993; Brunel, 2000; Lindner, Doiron, & Longtin, 2005; Richardson,

2009; Deger, Schwalger, Naud, & Gerstner, 2014)). Exploring the possible spike

statistics in such network models may help us to further our understanding of

healthy and pathological neural activity in different brain areas and brain states.

Moreover, understanding the autonomous (i.e. spontaneous) activity is also a

necessary prerequisite for the comprehension of the network response to external

signals and signal transmission and processing capabilities of the network in general.

Recurrent networks of IF neurons can already show a rich repertoire of

activity states (Brunel, 2000) shaped by pronounced synchronization and by

oscillations on which many computational studies have focused (see e.g. (van

Vreeswijk, Abbott, & Ermentrout, 1994; Hopfield & Herz, 1995; Ermentrout, Pascal,

91
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& Gutkin, 2001; Timme, Geisel, & Wolf, 2006; Ladenbauer, Augustin, Shiau, &

Obermayer, 2012)). One state that lacks obvious collective effects but still can

show a statistically rich behavior is the asynchronous state with low or absent

cross-correlations among neurons. This state is found in many network models

(van Vreeswijk et al., 1996; Brunel, 2000; Renart et al., 2010; Helias, Tetzlaff, &

Diesmann, 2014) and also in experimental recordings in different brain areas in the

awake and attentive animal (Poulet & Petersen, 2008; Harris & Thiele, 2011).

Although it is frequently assumed in theoretical studies, approximating the

asynchronous activity as Poisson spiking with a total lack of temporal correlations

is generally not justified. Despite the characteristic absence or weakness of spatial

correlations among neurons, neural spike trains in the asynchronous state can

still show a pronounced temporal correlation: experiments have revealed non-flat

(i.e. non-Poissonian) spike-train power spectra exhibiting reduced power at low

frequency (Edwards, Wakefield, & Powers, 1993; Bair et al., 1994), peaks attained

at frequencies close to the firing rate and multiples (Pesaran, Pezaris, Sahani,

Mitra, & Andersen, 2002) or increased power at low frequencies indicating slow

fluctuations or bursting (Bair et al., 1994). Some of these features (but also

additional ones) have been found for spike-train power spectra from neurons in the

sensory periphery (Neiman & Russell, 2011; Grewe, Kruscha, Lindner, & Benda,

2017) that lack synaptic input from other neurons but are subject to channel

noise and other signal-unrelated fluctuations. Theoretically, some (but not all) of

these spectral shapes can be already understood if we consider simple stochastic

models, e.g. a Poisson process with refractory period (Bair et al., 1994; Jarvis &

Mitra, 2001) or, more elaborate, integrate-and-fire models driven by white (Lindner,

Schimansky-Geier, & Longtin, 2002; Richardson, 2008; Vilela & Lindner, 2009b) or

colored noise (Middleton et al., 2003; Bauermeister, Schwalger, Russell, Neiman, &

Lindner, 2013; Droste & Lindner, 2017a).

Interestingly, even if completely deterministic neuron models are connected in

a random network, corresponding observations of random spiking can be made: the

total chaotic input from the network impinging on the single cell acts as an effectively

stochastic drive and the resulting spike-train power spectra exhibit in many cases a

non-trivial (in particular, non-flat, i.e. non-Poissonian) shape. Depending on cellular
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parameters as the reset value after spiking (Dummer, Wieland, & Lindner, 2014)

or on the strength of synaptic coupling (Ostojic, 2014; Wieland et al., 2015), the

spectrum can change drastically (e.g. from strongly peaked spectra to low-frequency

dominated spectra with a 1/fα form). How spike-train power spectra depend on

system parameters in a recurrent network is generally poorly understood (for some

effects of presynaptic refractoriness, slow presynaptic rate changes and short-term

synaptic plasticity, see (Schwalger, Droste, & Lindner, 2015), for effects of the

postsynaptic refractory period, see (Bair et al., 1994; Franklin & Bair, 1995)). Some

progress has been achieved though for a related but distinct statistics at a higher

modeling level, namely, the power spectrum of the population activity, for which

different approximations and numerical schemes have been put forward (Knight,

1972; Brunel & Hakim, 1999; Spiridon & Gerstner, 1999; Mattia & Del Giudice,

2002; Lindner et al., 2005; Trousdale, Hu, Shea-Brown, & Josic, 2012; Deger et al.,

2014; Schwalger et al., 2017). In this thesis we focus exclusively on single spike-train

power spectra.

According to early work by (Mari, 2000) and, particularly, by (Lerchner,

Sterner, Hertz, & Ahmadi, 2006), a strong theoretical argument against the

white-noise approximation is the self-consistency of the fluctuation statistics. If

we think of a homogeneous network of statistically equivalent neurons (identical

neural parameters and a fixed number of input connections as in the popular Brunel

network (Brunel, 2000)), the output statistics of a cell should be related to the input

statistics because in the network every driven cell is also a driving cell. In the simple

case of current-pulse-coupled IF neurons without a synaptic filter (homogeneous

Brunel network), the power spectrum of the input current should be proportional

to the power spectrum of the spike train generated by the neuron. As the output

power spectrum of a white-noise driven IF neuron is generally not flat (Poisson-like)

(Lindner et al., 2002; Vilela & Lindner, 2009a) and, contrary to some claims in the

literature, summing many presynaptic spike trains does not remove the temporal

correlations of the single process (Lindner, 2006), the flat white-noise spectrum

cannot be a self-consistent solution for the network neuron, unless all neurons are

poised deep in the subthreshold fluctuation-driven regime of very rare firing (rates

are smaller than 1Hz).
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The self-consistency of the temporal correlations of input and output in

random networks is not an entirely new idea: in statistical physics it has been used

to derive correlation functions of disordered spin systems (Sompolinsky & Zippelius,

1982; Eissfeller & Opper, 1992); in neuroscience, it was applied to random networks

of coupled rate units by (Sompolinsky, Crisanti, & Sommers, 1988) (for various

recent extensions, see (Aljadeff, Stern, & Sharpee, 2015; Kadmon & Sompolinsky,

2015; Mastrogiuseppe & Ostojic, 2017)). Generally, the self-consistency condition

of the asynchronous state can be employed to determine correlation functions or

power spectra without actually simulating the network but by simulating a single

element iteratively. If we make a Gaussian approximation for the incoming stream

of input spikes, we may ask how correlated (’colored’) this Gaussian noise has to

be to evoke a neural spike train with a temporal correlation proportional to that

of the driving noise; equivalently, we can ask about the proportionality of power

spectra. This idea can be translated into an iterative scheme that finds this solution

numerically (if it exists). Such a scheme has first been developed for a spin system

(Eissfeller & Opper, 1992); in the neural context it works essentially as follows

(Lerchner, Sterner, et al., 2006; Dummer et al., 2014): A single neuron is driven by

a Gaussian noise, the output spike train is recorded, its power spectrum is estimated

and serves to generate a new Gaussian noise to again stimulate the neuron in the

next generation (step in the iterative scheme). Repeating this procedure over a

few generations only, for a network with (nearly) balanced recurrent input and

moderate synaptic amplitudes, yields an excellent quantitative agreement with the

single-cell statistics of a neuron in a large network (Dummer et al., 2014) [(Lerchner,

Sterner, et al., 2006) used the equivalent correlation function]. The simplest version

of the procedure fails in the case of strong inhibition and is naturally restricted to

homogeneous networks, in which all neurons (excitatory and inhibitory ones) share

the same cellular and presynaptic connection parameters. Cortical neural networks

are strongly heterogeneous (Meunier et al., 2010; Tomov et al., 2014; Harrison,

Badel, Wall, & Richardson, 2015) and, hence, an extension of the method to cases

in which neural and connection parameters vary across the network is desirable.

The purpose of the present study is to extend the iterative scheme in several

directions. First, we develop a simple method to deal with the instability of the
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iterative scheme at strong recurrent inhibition, which makes the scheme applicable

to a much broader range of network parameters. Secondly, as sketched in Fig. 6.1,

we study a heterogeneous network, in which excitatory and inhibitory neurons have

different parameters (either cellular or with respect to their connectivity) or we

consider even several (more than two) populations, which differ in their parameters.

As indicated in Fig. 6.1, every population is then represented by a single cell in the

iterative scheme, and the input statistics to each cell in a certain generation will be

determined from all output spectra of the previous generation.

Network with two populations

of excitatory and inhibitory neurons
Iterative scheme: input for each neuron is generated using power spectra of the previous generation

0th generation 1st generation nth generation (n+1)th generation

S(f)

f

S(f)

f

S(f)

f

S(f)

f

S(f)

f

...

S(f)

f

S(f)

f

S(f)

f

Figure 6.1: Heterogenous network of excitatory and inhibitory neurons
differing in intrinsic parameters. Sketch of the network (left) and the corresponding
iterative scheme. where a single neuron is simulated to represent one population
(right).The input of a neuron in the next generation is composed of all power spectra
from the previous generations. The power spectrum of each population convergences after
the nth generation.

Our motivation for all these extensions of the method is twofold. For once,

in cases in which the single-neuron correlation statistics is of interest, e.g. for the

emergence of slow fluctuations in (Litwin-Kumar & Doiron, 2012; Ostojic, 2014;

Wieland et al., 2015), our extended scheme provides a numerically efficient method

that does not require large-network simulations. Hence, if the temporal correlation

statistics of the asynchronous state is studied, our results permit to explore the

role of network heterogeneity in shaping those correlations. The second purpose

of our study is to trigger interest in the self-consistent description of the Gaussian

colored noise generated by recurrent spiking networks. Showing that the numerical

scheme works in a physiologically relevant parameter regime can also be regarded

as a demonstration of the colored-Gaussian-noise approximation’s validity and may

encourage looking for an analytical description of the network noise via Markovian
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embedding (Schwalger et al., 2015).

This chapter is organized as follows. The next section ’Methods’ presents the

neuron and network models and shows how to stabilize the iterative procedure such

that it works also for strong recurrent inhibition and how to incorporate a synaptic

filter, and extends the scheme to the different heterogeneous cases. In the following

’Results’ section, we consider first the fluctuation statistics of the spike trains in the

so-called ’heterogeneous asynchronous state’ of a homogeneous network with strong

recurrent inhibition (Ostojic, 2014). Here we demonstrate that slow fluctuations

emerge due to their preferred amplification by the network. We review briefly the

effect of a synaptic filter and then turn to the different heterogeneous cases. All

power spectra found with the iterative scheme are compared to numerical simulations

of large and sparse networks. We conclude with a brief discussion of our findings.

6.2 Methods

In this section, we introduce the network model with the notation that will be

used in the remaining chapter. We also briefly explain the self-consistent iterative

scheme as known elsewhere (Dummer et al., 2014; Wieland et al., 2015) and we

follow explaining our extensions in the remaining subsections. Results start in the

next section.

6.2.1 Network model

Different network compositions are studied, many of which are based on

the work of (Brunel, 2000), specifically on his Model B, a heterogeneous random

network with fixed in-degree. In contrast to (Brunel, 2000), we use a larger number

of neurons, i.e. an excitatory population size NE = 105 instead of NE = 104.

Independently of the number of populations, there is always a mixture of excitatory

to inhibitory neurons with a ratio of 4:1, i.e. NI = γNE where γ = 0.25. Therefore,

the total network size is N = NE +NI .

The `th neuron from the network has the dynamics

ταv̇` = −v` +R (Iloc,` + Iext,α) . (6.1)
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The external input current to each neuron and its membrane time constant

depend on the population it belongs to which is here indicated by index α. The `th

neuron receives a fixed number of CE
` (CI

` ) excitatory (inhibitory) randomly selected

neurons connections from population α = {E, I}. The local input is described by:

RIloc,`(t) = τα

 CE∑̀
k=1

J`m`,k
xm`,k

(t− τD)− gα
CI∑̀
i=1

J`n`,i
xn`,i

(t− τD)

 ∗K(t), (6.2)

where gα is the ratio between average inhibitory and average excitatory synaptic

weights, which depends via α on the target neuron (α ∈ E, I) The number of

presynaptic neurons CE,I
` will be always constant. The excitatory (inhibitory) input

neurons are picked randomly from the network and the set of the neuron indexes

is denoted by m`,k and n`,i. The synaptic coupling strength (also called synaptic

weight or synaptic efficacy) will be constant, J`j = J . We fix the transmission delay

at τD = 1.5 ms unless otherwise indicated, and K(t) is a an optional synaptic filter.

In most cases, the filter is not used, which means K(t) = δ(t). Otherwise, it is a

simple exponential filter:

K(t) = θ(t)
exp (−t/τs)

τs
, (6.3)

where θ(t) is the Heaviside function and τs is the synaptic filter time. Note that

in the limit τs → 0, the case without synaptic filter is recovered. If not explicitly

stated otherwise, parameter values used in our simulations are given in Table 6.1.

6.2.2 The self-consistent scheme

In a large-scale recurrent network with sparse connectivity, we assume that

the major source of noise that a single neuron receives comes from the quasi-random

input from other cells in the network (see Sect. 2.3 for the different types of noise).

In such a scenario, we encounter the following problem of self-consistency: for any

arbitrary neuron picked in the network we should observe the same resulting activity,

i.e. the statistics extracted from the input spike-trains should be proportional to the

statistics (here identified by the second-order statistics given by autocorrelations) of

the output spike-trains. The problem is schematically described in Fig. 6.2.

The iterative self-consistent scheme developed by (Lerchner, Sterner, et al.,

2006) and (Dummer et al., 2014) is able to reproduce the single neuron spike-train
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PARAMETERS

Network connectivity parameters

Name Value Description

NE 105 Size of excitatory population

NI γNE Size of inhibitory population where γ = 0.25

CE 1000 Number of excitatory synapses per neuron

CI γCE Number of inhibitory synapses per neuron

Neuron parameters

Name Value Description

vth 20 mV Firing threshold

vt 10 mV Reset potential

τR 2 ms Refractory period

RIext 30 mV External input

Table 6.1: Summary of standard parameters for the iterative scheme with different
populations.

power spectrum for homogeneous populations close to the balanced regime. In this

procedure, in one generation a single neuron is stimulated with a colored noise

over many trials, the power spectrum of its spike-train is estimated, and using this

spectrum and the output firing rate, a new surrogate colored Gaussian noise is

generated which is used as the stimulus to the next generation. This procedure

is repeated iteratively until the mean value and the spectrum of the driving noise

matches in a self-consistent manner approximately to the firing rate and the power

spectrum of the resulting spike-train. In Fig. 6.3 we summarize the procedure.

6.2.3 Self-consistent scheme for a homogeneous population
– stabilization of the scheme for strong recurrent
inhibition

In the previous section, we presented a summary of the self-consistent scheme,

here we introduce our version of a heterogeneous self-consistent scheme. For further



6.2 - Methods 99

Figure 6.2: The problem of self consistency. In a homogeneous sparse recurrent
network, we expect that any neuron in the network should have the same second-order
statistics. This generates a problem of self-consistency: the input should correspond to the
output.

details of the homogeneous scheme we refer to (Dummer et al., 2014).

As previously stated, the version of the scheme by (Lerchner, Sterner, et

al., 2006) and (Dummer et al., 2014) is unable to reproduce self-consistently the

statistics of single neurons in a recurrent network with strong relative inhibition g.

More specifically, in cases where the inhibition is high, the scheme loses stability and

the measured firing rate ν oscillates as a function of the generations (Dummer et al.,

2014) [a numerical instability in the balanced case is reported in (Lerchner, Sterner,

et al., 2006), which is unrelated to the instability at strong recurrent inhibition]. As

a result, network regimes of low firing rate (such as those seen in cortex) cannot be

captured.

Here, we propose a method to ensure convergence even with strong recurrent

inhibition. We observed that the firing rate oscillations are around the target firing

rate, therefore we can use the average firing rate over all past n generations as input
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Iterative scheme: input for each generation is created 

0th generation 1st generation    nn

S(f)

f

S(f)

f

S(f)

f

...S(f)

f

Power spectrum

from spike-train
noise

Self-consistent
 conditionnth generation (n+1)th generation

...

using surrogate input with statistics 
from previous generations

Figure 6.3: Iterative self-consistent scheme. A neuron is introduced to a noise
input in the 0th generation. Then, statistics from its output are extracted and used to
produce input to the next generation of neurons. This procedure is iteratively repeated
until a self-consistent condition is achieved.

to the next generation.

ν̂n =
1

n

n∑
q=1

νq. (6.4)

This procedure stabilizes the scheme, see Fig. 6.4 for a numerical example. Note that

averaging over a higher number of past generations can yield a faster convergence

(cf. Fig. 6.4 (b) and (c)). The effect can be visualized using a similar approach

as in (Dummer et al., 2014): a map from the input rate to the output rate. We

calculate the output rate from the input rate with the approximation for synaptically

filtered white noise (Brunel & Sergi, 1998). The effect of the averaging over resulting

output rate and input can be captured by the functions νout,0 = νout(νin), νout,1 =

νout

(
νin + νout(νin)

2

)
,..., which are shown in Fig. 6.4 (d). These functions display

an increasingly flatter shape in the dependence on the initial firing rate illustrating

the stabilizing effect of the averaging.



6.2 - Methods 101

(a)

(b)

(c)

0

20

40

60
ν

[H
z]

scheme
recurrent

8

10

12

14

ν
[H

z]

0 5 10
generation

8

10

12

14

ν
[H

z]

(d)

Figure 6.4: Stabilization of the iterative scheme by averaging over previous
generations. (inhibition-dominated regime) Convergence of the firing rate in the iterative
scheme (blue line) using different procedures. Parameters are g=5.5, J=0.2 mV, τs =
10 ms, γ = 0.25, and RIext = 30 mV. Recurrent network (red line) is firing at ν =
9.1 Hz. (a) no average is considered, only the previous generation. (b) firing rate is
averaged over the past two generations. (c) firing rate is averaged over all past generations.
(d) visualization of the averaging procedure: firing rate resulting from i iterations of the
averaging procedure νout,i of a neuron driven by the firing rate νin (see text). The function
νout(νin) is approximated using the expression for a LIF neuron driven by synaptically
filtered white noise (Brunel & Sergi, 1998). The fixed point νin = νout,1 is unstable because
|dνout/dνin| > 1 (see (Dummer et al., 2014)). Few iterations suffice to yield a flat curve
indicating a stable fixed point.

The procedure of averaging the rate over the past generations will be used

only in cases of unstable convergence. Typically, if excitation and inhibition are

(nearly) balanced, the scheme is stable and we do not need to apply the averaging

procedure.

6.2.4 The self-consistent scheme for several populations

The self-consistent scheme for a homogeneous population can be generalized

in different ways. First of all, real networks consist of several types of neurons, that
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all differ with respect to their physiological parameters. A first important step is

to distinguish between excitatory and inhibitory neurons not solely with respect to

their postsynaptic effect but to endow inhibitory neurons also with different cellular

parameters (membrane time constant, leak potential, mean input current) than

excitatory cells. Generally, we distinguish between PE excitatory and P I inhibitory

populations. In the self-consistent scheme each population is represented by one

neuron.

6.2.4.1 Determination of the second-order statistics

In the situation considered here, every neuron in the network receives a fixed

number of inputs. First of all, the mean recurrent input to a given population α

is determined by the firing rates of the presynaptic neurons and by the connection

parameters in the network:

µα = ταJ

 PE∑
k

CE
k νE,k −

P I∑
k

gkC
I
kνI,k

 , (6.5)

where νE,k and νI,k are the excitatory and inhibitory firing rates determined by the

kth presynaptic neuron. Furthermore, by writing the effective input in the Fourier

domain, we can obtain the power spectrum of the effective input S̄α(f) to a neuron

in the α population given by:

S̄α(f) =

〈
RĨ(f)αRĨ

∗(f)α

〉
T

= τ 2
αJ

2

 PE∑
k

|K̃(f)|2CE
k S

E
k (f) +

P I∑
l

g2
l |K̃(f)|2CI

l S
I
l (f)

 , (6.6)

where SEk (f) and SIl (f) are the spike-train power spectra from the kth E and lth

I-cells that provide synaptic input to the population α, respectively, and K̃(f) is the

Fourier transformed synaptic filter in Eq. (6.3). Note that in order to distinguish

it from the output spectra, the input spectra to the population α is identified by a

bar, i.e. S̄α. If more than two populations are present, in Eq. (6.5) and Eq. (6.6)

their contributions are taken into account by the number PE and P I of populations.
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6.2.4.2 Gaussian approximation of the input

We want to use Eq. (6.5) and Eq. (6.6) to create an input with the same

first- and second-order statistics. For a large number of presynaptic neurons that

are only weakly correlated, this statistics will be approximately Gaussian by virtue

of the central limit theorem1. To generate an input to a neuron embedded in the αth

population with a prescribed power spectrum, we generate the Fourier transform

RĨG,α(f) =

√
S̄α(f)

2∆f
(η̃r + iη̃i) (6.7)

of a time-dependent function RIG,α(t) by drawing two independent Gaussian

numbers η̃r, η̃i with unit variance and zero mean in each frequency bin. The

frequency resolution is set by the length of the time window, ∆f = T−1. Finally,

we generate the time-dependent current RIG,α(t) by inverse Fourier transformation

of RĨG,α(f).

We start with Gaussian white noise as input as the 0-th generation in the

scheme and drive P neurons, where P = PE + P I is the number of populations.

The neurons are simulated over a number of trials, the output spike-trains are

measured and their power spectra, SE,Ik (f), are estimated (1st generation). For

the next generation, an input is created using the spike-train power spectra of the

first generation in the Gaussian approximation described above. The procedure

is repeated until the output power spectra matches the input power spectra, i.e.

self-consistency is achieved. In all simulations of the scheme we observed that

iterating up to the 30th generation and using 10,000 trials for each generation was

enough to reach a self-consistent solution, provided that the scheme converged for

the given parameters.

In summary, we simulate the single LIF neuron representing the population
1 This is evident for a finite synaptic filter, that leads to a summation of many independent

continuous functions. For delta synapses, we add up spike trains and so it becomes questionable,
how they can approach a Gaussian statistics. In this latter case we should consider the effect
of the summed shot noise on a dynamical system such as the integrate-and-fire neuron: the
sum over a small time interval (smaller than the membrane time constant but large enough to
collect many independent spikes from the presynaptic neurons) yields a spike count which can be
well approximated by a Gaussian variable; this is similar to the common diffusion approximation
(Tuckwell, 1988), which, however, additionally involves the assumption of a Poissonian input spike
train. In this sense, the Gaussian approximation can be applied to sums of spike trains.



6.3 - Results 104

α with

ταv̇α = −vα + µα +R[Iext,α + IG,α(t)]. (6.8)

6.3 Results

6.3.1 Homogeneous network with strong recurrent inhibition
and additional synaptic filtering

We would like to start with results for the inhibition-dominated network

(g > 4), in which firing rates are low. In this regime, the iterative scheme as proposed

by (Dummer et al., 2014) is highly unstable and we only obtain convergence with the

averaging procedure described in section 6.2.3. To demonstrate that the averaging

procedure works in such a situation, we consider in Fig. 6.5 the network studied by

(Ostojic, 2014) who found two contrasting asynchronous states when varying the

synaptic strength J .

In Fig. 6.5 (a) spike-train spectra for strong recurrent inhibition (g = 5) for

different values of J and different network sizes are shown. The power spectra of

these network simulations are close to those of the iterative scheme in most cases.

For weak coupling, the agreement between spectra is always good; discrepancies

for large J become smaller with increasing network size because cross-correlations

become less important in this limit. An additional reason for discrepancy is that the

Gaussian approximation becomes less accurate for strong synaptic strength. The

change in spike-train power spectra upon increase of the synaptic coupling does not

hinge on the specific nature of the subthreshold function in the IF model. If we

replace the leaky IF model by an exponential IF model (Fourcaud-Trocmé, Hansel,

van Vreeswijk, & Brunel, 2003) in the network and in the recurrent scheme, we

observe a similarly drastic change in low-frequency power if the synaptic strength

is doubled (inset of Fig. 6.5 (a)). Also for this single-neuron model the agreement

between spectra from the network and from the self-consistent scheme is fairly good.

When the coupling strength J increases, the firing rate first decreases and

then increases (Fig. 6.5 (d)). More interestingly, with increasing coupling we see a

transition from Poisson-like irregular firing (Fig. 6.5 (b)) to bursty firing of single

neurons (Fig. 6.5 (c)), i.e. periods of strong firing are separated by pauses. In the
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Figure 6.5: Large amplification of slow fluctuations explain heterogeneous
asynchronous state in a homogeneous network. Same set-up as in (Ostojic,
2014), τE = τI = 20 ms, RIext = 24 mV, γ = 0.25, τD = 0.55 ms, g = 5,
and τR = 0.5 ms. This is an unstable parameter region where the network fires at
low-frequency regime and high inhibition g = 5 is set. (a): single-neuron spike-train
power spectra from recurrent network (circles for NE =80,000 and squares for NE =8,000)
and self-consistent scheme (solid lines) for different values of J . Inset: power spectra for
a large network (NE = 100, 000) of exponential IF neurons (single-neuron dynamics is

τmv̇ = −v + ∆T exp(
v − vth

∆T
) +RI(t) where τE = τI = 20 ms, RIext = 30 mV, γ = 0.25,

τD = 0.55 ms, g = 5, τR = 0.5 ms, and ∆T = 0.2) for two different values of the
synaptic coupling, showing the same qualitative difference in low-frequency power as the
LIF networks. (b) and (c): raster plots containing 100 neurons from the LIF network
with NE =80,000 for J = 0.2 mV and J = 0.8 mV, respectively. (d), (e), and (f): firing
rate ν, correlation time τc, and Fano factor for different values of J for both recurrent
and self-consistent scheme evaluated in a simulation of T = 100 s.

latter state one can observe a broad distribution of spike counts, and that is why

this state has been referred to as heterogeneous asynchronous state (Ostojic, 2014).

In terms of the power spectrum this transition becomes manifest as an amplification

at low frequencies (Wieland et al., 2015); correspondingly the Fano factor increases

(Fig. 6.5 (f)). Together with the minimum in the correlation time (Fig. 6.5 (e))

(attained at a coupling where the Fano factor is about unity), our results confirm

that the transition described by (Ostojic, 2014) in the inhibition-dominated regime

is essentially the same as the one observed and explained by (Wieland et al., 2015)

for the balanced case g = 4.

In summary, the results in Fig. 6.5 indicate that the emergence of a new

heterogeneous asynchronous state for strong synaptic coupling can be explained
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only using the properties of a single neuron and the self-consistency condition, here

demonstrated by our iterative single-neuron scheme.

We now investigate the effect of a finite synaptic filter, Eq. (6.3). Not

surprisingly, a pronounced synaptic filter (large τs) leads to a long time scale in the

network dynamics, as revealed by the increased power at low frequencies (Fig. 6.6).

The synaptic filter, Eq. (6.3) is scaled such that the total charge per input spike

remains constant. Therefore, an increased time constant for the exponential decay

renders the postsynaptic response smaller in amplitude and longer in duration. This

longer duration of postsynaptic responses extends the range of temporal correlations

in the input to the neuron, which in turn causes the slow fluctuations in the neuron’s

activity. The resulting power spectrum (Fig. 6.6 (a)), especially for long synaptic

time constant, looks similar to that of a colored-noise driven perfect IF model (see

Fig.9 in (Middleton et al., 2003)). We emphasize that the emergence of the slow time

scale is here imposed by the long-lasting synaptic filter which is in marked contrast to

the network amplification of slow fluctuations for strong synaptic coupling discussed

before in Fig. 6.5.
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Figure 6.6: Self-consistent scheme also works for a network with synaptic
filtering. (a) Effect of τs on the recurrent network and iterative scheme, the plot displays
power spectra for different values of τs. This is an inhibition-dominated regime with
exponential synapses and J = 0.2 mV. In this region, the network fires at low firing
rates. In (b-c) we fix τs at 10 ms and show Fano factor and correlation time τc for
different values of J for both recurrent and self-consistent scheme. Other parameters as
in Fig. 6.5.
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We also verified that the synaptic filter does not change qualitatively

the emergence of slow fluctuations for strong coupling (i.e. the heterogeneous

asynchronous state discussed above). Using τs = 10 ms we still see the characteristic

strong increase in Fano factor (Fig. 6.6 (b)) and a minimum in the correlation time

(Fig. 6.6 (c)).

6.3.2 Networks with different parameters for excitatory and
inhibitory neurons

In the following, we return to the limit of instantaneous synapses τs → 0,

i. e. K(t) = δ(t), and introduce different parameter values for excitatory neurons

(E-cells) and inhibitory neurons (I-cells). First of all, in order to test whether the

applicability of the scheme hinges on the exact value of crucial parameters, we choose

a small change of the membrane time constant between E and I-cells: τI = 19 ms

and τE = 20 ms. Secondly, we make the relative strength of recurrent inhibition,

gE and gI , different for the two populations in order to see whether the generalized

iterative scheme with two neurons can cope with this heterogeneous situation.

In Fig. 6.7 we show power spectra obtained from simulations of the recurrent

network and of the iterative scheme for different combinations (gE, gI). In Fig. 6.7

(a) the two populations are statistically rather different with an E-cell firing rate of

νE = 3.2 Hz whereas I-cells fire at νI = 9.7 Hz. Both spectra are well reproduced

by the iterative scheme and show a “green” shape (in the colored noise lingo, this is

white minus red noise). That means, the spectra exhibit a dip at low frequencies, but

this is much more pronounced for the I-cells. Even when we increase the difference

in recurrent inhibition and the two types of neurons fire at lower frequencies of

νE = 0.1 Hz and νI = 7.4 Hz, the agreement of the spectra from the iterative

scheme and from the network simulations is excellent (Fig. 6.7 (c)). If we choose

the relative recurrent inhibition to be the same, the neural dynamics differ only

by the small difference of the membrane time constants, which does neither cause

significant differences in the firing rates (νE = 128.9 Hz and νI = 129.9 Hz) nor in

the shape of the power spectra (cf. Fig. 6.7 (b)).

In order to explore the quality of the approximation systematically, we
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Figure 6.7: Example spectra for heterogeneous network of excitatory and
inhibitory neurons differing in their parameters. Comparison of power spectra
of the recurrent network with two different populations and the self-consistent iterative
scheme with two neurons. Parameters are in (a) (gE , gI) = (4.2, 4.0), in (b) (gE , gI) =
(3.7, 3.7), and in (c) (gE , gI) = (4.25, 3.6).

evaluated the discrepancy using the relative integrated error

∆ =

∫ fcut
0

df (Sxx,net(f)− Sxx,scheme(f))2∫ fcut
0

dfS2
xx,net(f)

, (6.9)

where fcut = 2νI (we use the inhibitory firing rate because it is usually higher).

In our scheme the assumption of weak cross-correlations among neurons in the

network is crucial - indeed we assume an infinitely sparse system that is in a perfectly

asynchronous state. This is, of course, a somewhat artificial limit and thus it is

interesting how, for a fixed number of connections (about 103), the squared deviation

as well as important statistics such as the Fano factor depend on the system size. In

Fig. 6.8 this dependence is illustrated for the case where gE = 4.2 and gI = 4.0, the

same parameters as in Fig. 6.7 (a). For the chosen connectivity, a minimal number

of NE = 20,000 E-cells seems to be required to reach a good approximation (relative

error below 1% for both E and I cells) with the self-consistent scheme. This plot
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illustrates that although sparsity is an important assumption for the self-consistent

determination of spike-train power spectra, it does not lead to the necessity to

consider exorbitantly large networks.
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Figure 6.8: Performance of iterative scheme improves with network size. The
performance of the iterative scheme depends on the network size. Curves were produced
for the case gE = 4.2 and gI = 4.0, same parameters as in Fig. 6.7 (a). (a) Relative
error dependence of the scheme for a network size NE evaluated with the integrated relative
error defined in Eq. (6.9). (b) Fano factor dependence where dotted line represents the
iterative scheme prediction and solid lines the recurrent network. (c) correlation time τc
dependence.

6.3.3 Networks with three distinct populations and distinct
modules

In principle, the proposed iterative scheme is applicable to any number

of populations. As long as the resulting activity is sufficiently asynchronous

(implying weak cross-correlations) and the synaptic strength is not excessively large
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(needed for the Gaussian approximation), the iterative scheme should converge to

a self-consistent result. Here we demonstrate that the extended scheme also works

for networks with more than two populations and study two cases: a network with

three distinct populations and a modular network.

An example of three populations is given by a combination of one excitatory

and two inhibitory populations (Fig. 6.9 (a)), biologically inspired by a cortical

network with excitatory regular spiking neurons (RS), inhibitory fast-spiking (FS)

and low-threshold spiking (LTS) neurons (see (Izhikevich, 2003) and (Tomov et

al., 2014) and references therein). Their firing rates are ordered such that νFS >

νLTS > νRS. This heterogeneous situation is achieved by changing both membrane

time constants, which are chosen to be τFS = 21 ms, τLTS = 20 ms, and τRS = 19

ms, and making one of the synaptic weights in the network (connecting RS neurons

to FS neurons) 1.4 times stronger (indicated by the thick arrow in Fig. 6.9(a),

left). This setting illustrates how heterogeneity of connectivity and membrane time

constants shape the power spectra statistics.

The resulting spectra are well captured by the iterative scheme; they all

display the effect of neural refractoriness by the dip at low frequencies (Bair et al.,

1994; Franklin & Bair, 1995) but to a different degree. The dip is most pronounced

for the fast spiking neurons; the regular spiking neurons fire with a statistics that is

closest to a Poisson process with a flat power spectrum.

According to a common view, the cortex possesses a modular structure

(Boucsein et al., 2011; Tomov et al., 2014, 2016), a feature that we take into account

in the next setup. We consider two different modules as shown in Fig. 6.9 (b). The

two modules are equal to each other with respect to the population size and each

consists of an E-I network with NE = 100,000 and membrane time constants τ = 20

ms, requiring the simulation of two neurons in total in the self-consistent scheme.

For module 1 and 2 we choose J = 0.1 mV and J = 0.27 mV, respectively. With this

choice, the two modules operate in different regimes: module 1 in a fast-fluctuation

mode with low Fano factor and peaked power spectrum, module 2 in a regime of

dominating slow fluctuations (cf. section 6.3.1). In module 2, we rewired 50% of the

connections so that they come from module 1, i.e. it receives 0.5CE excitatory inputs

and 0.5CI inhibitory inputs from module 1. This results in a highly heterogeneous
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Figure 6.9: Heterogeneous networks with more than two populations.
Comparison between power spectra of the recurrent network (solid lines) with the iterative
scheme (dashed lines). (a) Three different populations (RS, LTS, and FS) whereby the
inhibitory population is composed of LTS (NLTS = 0.25 × NE, CLTS = 0.25 × CE) and
of FS (NFS = 0.05 × NE, CFS = 0.05 × CE). Parameters are g = 4.0, τRS = 20 ms,
τLTS = 19 ms, τFS = 21 ms. We multiply the synaptic strength by 1.4 for the excitatory
weight to inhibitory neuron from population 2. (b) Modular network, modules 1 and
2 communicate through connections represented at the sketch in the left. Each module
contains 1.25 × 105 cells with E:I ratio 4:1. In both modules τ = 20 ms. At module 1
J = 0.1 mV and at module 2 J = 0.27 mV, for all modules g = 4.0. Module 2 exhibits a
spectral hump around 80 Hz which comes from the interaction with module 1.

situation which is reflected in the power spectrum of module 2: in contrast to the

behavior observed in Fig. 6.5, the power spectrum of module 2 contains an additional

hump around 80 Hz. The power spectra of all different neurons in this setup are

well represented by the iterative scheme, cf. Fig. 6.9 (b).

The result in Fig. 6.9 (b) demonstrates that the iterative scheme can capture

complex situations involving the interaction among different modules. The simulated

network contained in total 250,000 neurons and the iterative scheme reproduced the

single neuron correlation statistics with high accuracy using only two neurons.



6.4 - Discussion 112

6.4 Discussion

In this chapter we extended the self-consistent scheme described by (Dummer

et al., 2014) to situations with strong inhibition, synaptic filtering, and networks with

subpopulations of distinct neuron types. In all cases we employed the Gaussian

approximation. Despite these approximations, our comparison of the determined

spike-train power spectra with those found by numerical simulations of large and

sparse recurrent networks revealed a good quantitative agreement.

Admittedly, with an increasing number of subtypes of neurons, we loose some

of the numerical advantages of the scheme compared to a network simulation because

in order to get reliable estimates of the power spectrum, we have to simulate the

few neurons in each generation many times. If the convergence of the scheme is slow

then, adding up all neurons in all generations and all trials, we may have to simulate

in the end as many neurons as in the network (however, the typical bottleneck of

many simulations, to keep track of all synaptic connections, is still absent in the

scheme). It is thus questionable, whether much more complicated situations than

discussed here can be studied in depth by our scheme.

Another short-coming of the approach concerns cases in which neural

cross-correlations (a very vivid topic of current research, see (Doiron, Litwin-Kumar,

Rosenbaum, Ocker, & Josić, 2016)) cannot be neglected anymore or in which

weak cross-correlations still have a significant impact on the population activity

(Schneidman, Berry, Segev, & Bialek, 2006). There are different causes for

cross-correlations including common (shared) input, spatially homogeneous external

stimuli, and a slight overall synchronization in the network (some of which are

reviewed by (Helias et al., 2014; Doiron et al., 2016)). Not all of these factors can be

taken into account by extending the scheme to pairs of neurons that are stimulated

by correlated Gaussian noise processes2. We may still learn something from finding

situations in which neural cross-correlations can quantitatively be described by

extensions of the scheme to pairs of neurons in each generation.
2 For the simpler but still formidable problem of how neuron pairs respond to cross-correlated

Gaussian white noise sources, see, for instance, (Doiron, Lindner, Longtin, Maler, & Bastian, 2004;
de la Rocha, Doiron, Shea-Brown, Josic, & Reyes, 2007; Shea-Brown, Josić, de la Rocha, & Doiron,
2008; Ostojic, Brunel, & Hakim, 2009; Vilela & Lindner, 2009b; Deniz & Rotter, 2017).
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Nevertheless, the results and the approach put forward in this thesis are useful

in several respects. If the single-neuron statistics is of interest (because this is what is

recorded or this is what shows particularly interesting features), our method provides

a computationally cheap solution to calculate the spike-train power spectrum and

to study its dependence on cellular and network parameters without the need to

simulate a network. The scheme is particularly suited for the idealized case of a

perfectly asynchronous network that is difficult to study numerically because an

almost completely asynchronous state can be reached only in a very sparse, hence,

very large network. This case is interesting because it often permits analytical

calculations via a density equation for the membrane voltage (Knight, 1972; Abbott

& van Vreeswijk, 1993; Amit & Brunel, 1997a; Brunel, 2000; Mattia & Del Giudice,

2002) and thus our scheme might be useful for comparison to simpler theories.

As already mentioned in the introduction, we can regard our results as

a confirmation that the approximation of the synaptic input by a correlated

Gaussian noise is a reasonable one over a physiological range of parameters

for a sparse recurrent network in the asynchronous state. Using Markovian

embedding, an arbitrary colored Gaussian noise can be described by a (possibly

very high-dimensional) Ornstein-Uhlenbeck process, an idea that has been worked

out in the neural context by (Schwalger et al., 2015); for examples from the

physics literature, see, for instance, (Schimansky-Geier & Zülicke, 1990; Hänggi

& Jung, 1995; Siegle, Goychuk, Talkner, & Hänggi, 2010). Hence, a stochastic

mean-field theory in terms of the corresponding multidimensional Fokker-Planck

equation seems to be in reach, generalizing the successful framework of the diffusion

approximation, which was based on the Poissonian (white-noise) approximation

and thus led to a one-dimensional Fokker-Planck equation. A theory using the

colored-noise Fokker-Planck equation would faithfully reproduce the second-order

temporal correlations of the spiking neurons and, possibly, provide novel insights

into the bifurcation between asynchronous and synchronous states. This may be

particularly relevant for larger synaptic amplitudes (Ostojic, 2014; Wieland et al.,

2015), for which the color of the noise becomes more and more important.



Chapter 7

Enhancement of activity
propagation in hierarchical and
modular networks with slow
fluctuations

7.1 Introduction

Neural fluctuations are ubiquitous phenomena in the brain. There is ample

evidence that cortical neurons generate and receive temporally fluctuating rhythmic

and non-rhythmic signals that relate to behavior (Britten, Shadlen, Newsome, &

Movshon, 1993; Buzsáki & Draguhn, 2004; Buzsáki, 2006; Bonifazi et al., 2009;

Colgin, 2011). In particular, slow voltage fluctuations that emerge in single neurons

can upscale to influence network behavior with possible consequences to learning

processes like working memory (Brunel &Wang, 2001; Kane & Engle, 2002; Curtis &

D’Esposito, 2003; Mongillo, Barak, & Tsodyks, 2008; Leszczyński, Fell, & Axmacher,

2015). This problem is attractive from a theoretical standpoint, and has received

attention from the computational neuroscience community (Durstewitz & Deco,

2008; Ostojic, 2014).

The question of how fluctuations are generated in single neuron and network

models has been studied with different approaches. In a classic study of a random

network model composed of leaky integrate-and-fire (LIF) neurons (Brunel, 2000),

the interplay between relative inhibitory synaptic strength and external input can

lead to different dynamic activity regimes ranging from the asynchronous irregular

114
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(AI) state, with uniform population firing rate and irregular single neuron spikes, to

the synchronous regular (SR) state, where both the population and the single neuron

rate oscillate. The same network can display the so-called heterogeneous AI state

where individual neurons fire irregularly with intermittent bursts (Ostojic, 2014).

Using a self-consistent scheme that captures the spectral properties of network firing

in terms of a single neuron, it has been shown that heterogeneous AI bursts emerge

from slow fluctuations in single neuron firing (Wieland et al., 2015; R. F. Pena et al.,

2018). Nevertheless, few works have tackled the problems of how slow fluctuations

can emerge in a network composed of fast elements like neurons (Wieland et al.,

2015) and how these fluctuations influence information processing in the network

(Salinas & Sejnowski, 2001; Droste & Lindner, 2017b).

The cerebral cortex has a non-random anatomical structure (Mountcastle,

1997; Bullmore & Sporns, 2009; Kaiser & Hilgetag, 2010; Meunier et al., 2010)

and displays activity fluctuations at the level of both individual neurons and neural

populations. Many computational models have studied activity patterns that emerge

from networks with non-random topologies inspired on cortical anatomy (Izhikevich

& Edelman, 2008; Wang et al., 2011; Litwin-Kumar & Doiron, 2012; Potjans &

Diesmann, 2014; Tomov et al., 2014, 2016). Spontaneous neural firing that appear

in simulations of these models can display slow fluctuations. However, a mechanistic

explanation of the coupling between network topology and activity fluctuations is

still missing.

In this chapter we explore how topology and synaptic strength can work

together to generate and enhance slow activity fluctuations in a spiking network

model. We study networks with hierarchical modular topologies and find parameter

ranges for which slow fluctuations emerge. These fluctuations can appear and

be enhanced in two different ways: (i) by increasing the synaptic efficacy; and

(ii) by increasing the number of modules via the increase of the hierarchical

level. Interestingly, while mechanism (i) causes the build up of slow fluctuations

in individual neurons, mechanism (ii) causes slow fluctuations by increasing

single-neuron spike-train cross-correlations. Thus, although similar effects can

appear through increases in both synaptic strength and network hierarchical level,

the underlying mechanisms are different.
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Moreover, using information-theoretical measures we show that the slow

fluctuations enhance activity propagation in hierarchical modular networks. In

particular, we analyze information transmission between single neurons and between

modules, and show that the latter is not straightforwardly predictable from the

former, disclosing the complexity behind communication dynamics in such networks.

The remainder of this chapter is structured as follows. In the next section

we introduce the neuron and network models used in our simulations, and the

spike-train correlation and information-theoretical methods used to characterize

results. Next, we present the results section for networks with varying synaptic

strengths and hierarchical levels analyzed via the methods described. Finally, in the

last section we discuss our results and possible implications of them.

7.2 Methods

7.2.1 Neuron Model

In this Chapter we choose the leaky integrate-and-fire (LIF) neuron model

(Gerstner et al., 2014) (see Sect. 2). All parameters from the single-neurons and

network are displayed in Table 7.1.

7.2.2 Network

The hierarchical and modular network (HMN) is the subject of study here.

The construction of a HMN follows an algorithmic that creates different levels of

hierarchy (cf. (Tomov et al., 2014, 2016) and Sect. 2.2.3.2). In that sense, all

networks built in this work are classified in different hierarchical and modular levels

(H). The zeroth level is a standard Erdős-Rényi topology with N = 217 = 131, 072

neurons connected with a given connectivity ε = 0.01. The term ε is the ratio

between the expected number of connection by the number of neurons.

The following H ≥ 1 levels are build following the same algorithm: (i) the

network is divided in equal portions which will be different modules; (ii) connections

between the modules are rewired with probability Rex/in to excitatory/inhibitory

connections, respectively; (iii) connections within the modules are kept. This

procedure is iteratively repeated until the Hth hierarchical and modular level is
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PARAMETERS

Neuron parameters

Name Value Description

vth 20 mV Firing threshold

vr 10 mV Reset potential

τR 0.5 ms Refractory period

RIext 30 mV External input

Network connectivity parameters

Name Value Description

N 217 Size of excitatory population

ε 0.01 Connectivity

Rex 0.9 Excitatory rewiring probability

Rin 1 Inhibitory rewiring probability

Synaptic parameters

Name Value Description

J ∈ [0; 1] mV Excitatory efficacy

g 5 Relative inhibition

τD 0.55 ms Synaptic delay

Table 7.1: Summary of standard parameters in this chapter.

obtained.

7.2.3 Statistics

Here we define the specific measures used in this chapter. To evaluate the

spike train’s long-term variability we will use the Fano factor (FF ) as in Eq. (3.7).

Note that a large value of FF indicates an enhancement of slow fluctuations. In our

simulations, we extract FF from S̄xx(f) (the averaged spike-train power spectrum

over K neurons) since both are relate by lim
f→0

S̄xx(f) = ν × FF . From S̄xx(f) we

also extract the firing-rate by the relationship lim
f→∞

S̄xx(f) = ν (cf. (Grün & Rotter,

2010)).
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For spike-trains we compute the autocorrelation function

cxx(τ) =
1

K

∑
j∈K

(〈xj(t)xj(t+ τ)〉 − 〈xj(t)〉〈xj(t+ τ)〉) , (7.1)

which in our work is always an average over K = 10, 000 randomly chosen

neurons and normalized by cxx(0). Similarly, the cross-correlation function cxy(τ) is

computed by taking K = 10, 000 randomly chosen pairs of spike-train x(t) and y(t).

Following (Neiman et al., 2007; Wieland et al., 2015), we also extract the

correlation time τc from S̄xx(f) by means of the Parseval theorem as we defined in

Eq. (3.8).

To measure information flow in the network we make use of the well known

Transfer Entropy (TE)(Schreiber, 2000). This quantity measures how predictable

is the future of the spike train x(t) if we have knowledge about the spike train y(t)

in the present time (for simplicity we will denote the spike-trains at a given time t

by xt and yt). In other words, TE tells how much information of y is present in the

future of x, that is why it is commonly related to information flow, given that the

measure is asymmetric it also give a directional sense, i.e. whether information is

flowing from x to y or vice-versa.

Here we use a version of TE called delayed transfer entropy as described in

Ito et al. (2011) (Ito et al., 2011), and it is given by Eq. (7.2). The procedure

to evaluate it is done by taking four spike-trains yt, xt, and the spike train of the

receiving neuron shifted by a delay d (xt+d) and by the delay d + 1 (xt+d+1). In

the following, we simply have to determinate the probability p(yt), and the joint

probabilities p(yt+1, yt), p(xt, yt), and p(xt+1+d, xt+d, yt) to finally “plug” them into

Eq. (7.2)

TEy→x(d) =
∑

p(xt+1+d, xt+d, yt) log2

(
p(xt+1+d, xt+d, yt)p(yt)

p(yt+1, yt)p(xt, yt)

)
, (7.2)

where the summation is taken over the set of all possible combinations of symbols

for the spike-trains. Since the value of the spike-train in each time step is either 0

(for silence) and 1 (for a spike), for the joint probabilities p(xt, yt) we have 22 = 4

combinations, and for p(xt+1+d, xt+d, yt) we have 23 = 8 combinations. In Fig. 7.1 we

summarize the procedure to measure the delayed transfer entropy explained above

to measure the TEy→x. In Fig. 7.1(a) the spike-trains were made in such a way that
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whereas TEy→x is maximum for d = 2, TEx→y is maximum for d = 3 (cf. Fig. 7.1(c);

this was artificially generated by making x to fire two steps after y whereas y fires

three steps after x). The delay for which TE is maximum can be interpreted not

only as the time that information takes to go from y to x but also as the time delay

of a functional connection of this pair. In fact, many studies use this approach to

determine and retrieve the connectivity map of a network (de Abril, Yoshimoto, &

Doya, 2018).

1 0 00 1
0 0

0 0 1
00 0 0xt

yt

(a)

xt+d

yt

d

(b)

d+1
xt+d+1

(c)

0 0 0 0
1 0 0 1 0 0

1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
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0 2 3 4 5

Figure 7.1: Method to measure the delayed transfer entropy using the joint
probability distributions. (a) First we take two spike trains of a pair of neurons
embedded in the network. (b) Then we apply a delay d in one of them to determine the
joint probabilities distributions p(xt, yt) (indicated by the green arrow), p(xt+1+d, xt+d, yt)
(indicated by the red arrow), and p(yt+1, yt) (indicated by the blue arrow) then we estimate
the transfer entropy by “plugging” this distributions into Eq. (7.2), in (c) we show that TE
is maximized by the delay close to the time delay of the connection and the asymmetry of
the measure (TEy→x 6= TEx→y).

In the network, TE is taken by selecting K = 10, 000 randomly chosen pairs

of neurons. For each pair, TE was measured within the range d ∈ [200; 300] bins

which is a reasonable considering the spiking delay communication τD and the time

expected to observe an action potential rise. In the end, we extracted the averaged

TE over

〈TE(J)〉 =
1

K

∑
j∈K

max{TEj(d)}, (7.3)

where TEj is the Transfer Entropy for the jth pair.

To estimate information flow in the macroscopic level, we also use the transfer

entropy but taken from the activity r(t; ∆t) of the different modules. Here we
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take adjacent modules and compute the TE between them in such a way that

for each hierarchical level the mean information flow will be given by 〈TE(H)〉 =

1/(2H −1)
2H−1∑
i=1

TEi→i+1, where TEi→i+1 is given by Eq. (7.2) with d = 0. The main

reason for a delay zero is that here we are taking adjacent modules and that their

activity is sampled with ∆t = 1 ms (see Eq. (3.3)). Observe that to distinguish

from the spike-train transfer entropy we identify this one with a superscript (H),

i.e. 〈TE(H)〉. Since the activity of a module is continuous we used a kernel estimator

to estimate the joint probabilities (Schreiber, 2000).

To evaluate statistical dependency among modules, we extracted the mutual

information (de Abril et al., 2018) among adjacent modules as aforesaid for 〈TE(H)〉,
the mutual information reads

MI(x; y) =
∑
x∈xt
y∈yt

p(x, y) log2

p(x, y)

p(x)p(y)
. (7.4)

We will also measure multivariate mutual information using three module

activities, which can be written as

MI(x; y; z) =
∑
x∈xt
y∈yt
z∈zt

p(x, y, z) log2

p(x, y)p(x, z)p(y, z)

p(x, y, z)p(x)p(y)p(z)
, (7.5)

we average these quantities over a certain number of modules and identify them by

〈MI(H)〉.

7.3 Results

7.3.1 Slow fluctuations emerge in both Erdős-Rényi topology
and HMNs

We start our results section with a comparison of general characteristics

observed in the Erdős-Rényi topology and HMNs with varying synaptic strength.

According to observations elsewhere (Ostojic, 2014; Wieland et al., 2015; R. F. Pena

et al., 2018), in an AI state where neurons are firing without apparent correlation,

an increase of J creates a second type of AI activity which is characterized by a

build up of slow fluctuations (Wieland et al., 2015; R. F. Pena et al., 2018). At the
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level of the single neurons, cells in this latter regime have a rather heterogeneous

firing pattern with bursts of spikes intercalated with periods of silence.

In (Ostojic, 2014), aspects related with a better information processing in

the second type of AI pattern have been discussed. Here, by simulating several

configurations where combinations of J with H were our parameters, we obtained

different patterns as displayed in Fig. 7.2.
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Figure 7.2: Raster plots and activity representing different network behaviors
with varying J and H. Each pair of subpanel shows a raster plot with 2560 neurons and
activity r(t) taken over all neurons in the network. In the columns we present H = 0, 7,
and 9, respectively. Upper row: J = 0.2 mV. Bottom row: J = 0.8 mV. Specifically
for H = 7 and 9, the selected neurons to be presented in the raster plots follow the
same number of neurons per module to allow comparison, moreover the different modules
have their spike times presented with dots intercalated by black and gray to allow module
distinction.

In the first column of Fig. 7.2 we see the two types of asynchronous activity

as reported elsewhere (Ostojic, 2014). For J = 0.2 mV, neurons fire rather irregular

and no synchronous behavior is observed. As the synaptic strength increases to

J = 0.8 mV, the activity changes drastically to a more heterogeneous behavior where
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single-neurons tend to fire with intercalated bursts separated by short time windows

and the network time-dependent firing rate has a less homogeneous dynamics.

In the second and third column of Fig. 7.2 we compare activity dynamics in

hierarchical levels H = 7 and H = 9 as well as different values of J (from top to

bottom J = 0.2 mV and J = 0.8 mV). In both levels of hierarchy, a marked neuronal

and network dynamics appears as J increases following the same transition observed

in the Erdős-Rényi topology (H = 0). Interestingly, as H increases modules begin

to act more individually as can be noted by different spike patterns observed in

each module. In the following, we will argue that both HMN and high synaptic

efficacy J have advantages on information transmission due to the build up of slow

fluctuations that emerge in these setups.

In Fig. 7.3 we present extended statistics to show that there are similarities

in increasing either J or H. Comparisons of the spike-train power spectra in

Figs. 7.3(a,b) with varying J and H show that a similar effect of build up of slow

fluctuations emerge upon increasing of these parameters. However, the effect is

more pronounced for J than H, e.g. for fixed H = 0 note that changing J = 0.2 mV

to J = 0.8 mV the slow fluctuations (identified by initial values of the spectrum)

increase by 2 orders of magnitude, whereas for fixed J = 0.2 mV changing H from

0 to 9 slow fluctuations increase these values by 1 order of magnitude. The spectral

characteristics are similar to cortical neurons (Bair et al., 1994).

In Figs. 7.3(c–e) we present the dependency of the firing rate ν, Fano factor

FF and correlation time τc with J where the different curves correspond to different

H (colors correspond to the same values of H as in Figs. 7.3(a)). Similar results for

J and H = 0 were presented in (R. F. Pena et al., 2018) where a similar network

to ours was discussed. Here we see that while J increases (in Figs. 7.3(c–e)), FF

(indicative of long-term variability) also increases pointing to the build-up of slow

fluctuations. The ν and τc are non-monotonic for low H typically H < 7 where they

present a minimum value marking a transition from the two asynchronous behaviors

(compare raster plots in Fig. 7.2). For H > 7 the ν and τc have a marked change,

both curves become monotonic and the transition point disappears: only an increase

of ν and τc is observed as J increases.

The sets of Figs. 7.3(c–e) depict different characteristics. Increase of H
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Figure 7.3: Large amplification of slow fluctuations caused by both increase of
J and of H. (a) Spike-train power spectra computed for different values of H as indicated
in the plot for J = 0.2 mV and (b) J = 0.8 mV. (c–e) Firing rate ν, Fano factor FF , and
correlation time τc for different values of J and whereby H follows the same colors as in
(a,b). (f) Transfer entropy computed as in Eq. (7.3), shaded curves are standard errors.

produces undoubtedly slow fluctuations. However, different from J which enhance

slow fluctuations until some saturation value, the increase of hierarchy does enhance

slow fluctuations but the saturation value gets lower if hierarchy is increased at high

hierarchical level, i.e. too much hierarchy hinders slow fluctuations: observe that

for high J and high H, the higher the H the lower the FF .

So far, we have shown that it is possible to achieve slow fluctuations both by

increasing J or by increasing the hierarchical level. To characterize information flow

in the network, in Fig. 7.3, we show that for networks with low hierarchical level

(H ≤ 7), 〈TE〉 increases for J ' 0.4 mV, i.e., the regime where the network starts

to exhibit slow fluctuations. Furthermore, as H increases, values of 〈TE〉 increase
until we reach H = 8 which seems to behave as a transition point. In this exact

point, the shape of the 〈TE〉 curve becomes more linear and all values in the curve

are bigger than the ones observed for H < 8. For H = 9, 〈TE〉 exhibits even higher

values independently of J . These results are in accordance with what has been

reported elsewhere (Ostojic, 2014; Droste & Lindner, 2017b) on the enhancement

of information propagation in networks embedded in slow fluctuations regime.

We propose that, as H increases the modules start to act as a functional unit.

This effect is largely enhanced when high J and H are combined. By acting as a
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modular functional unit, it is easier for information to be transmitted throughout

the network. Note for example in Fig. 7.2 that networks with high J and H have

modules acting very differently from each other.

7.3.2 Effects of J and H on single neurons spike-train’s
autocorrelation and cross-correlation

We decided to investigate the spike-trains autocorrelation and the

cross-correlation in order to clarify the individual properties of neurons upon build

up of slow fluctuations as reported above. In Fig. 7.4 we present the obtained

cxx(τ) and cxy(τ) for different values of H and J (see caption in the figure). Note

that discussing the properties of the autocorrelation function reflects directly on

observations of the power spectrum, this happens because the power spectrum and

autocorrelation function are connected by the Wiener-Khinchin theorem S̄xx(f) =∫ ∞
−∞

cxx(τ)e−2πifτdτ .

Figure 7.4 demonstrates that although the increase of J increases spike-train

autocorrelation, its effect on the cross-correlation is not straightforward. For low

values of H, J has apparent very little effect on the cross-correlation function. This

indicates that at these parameters, an increasing on the synaptic efficacy J affects

mainly the single-neuron behavior which is in line with the idea that the network

activity is still asynchronous.

Next, at values of high H, J can affect cross-correlations. Observe that in the

cxy(τ) plot for high H an exponential decay starting at cxy(0) takes place indicating

that a more complex pattern emerges at population level which was not present at

H = 0. In addition, at high H the effect of J is slightly less pronounced at cxx(τ)

than it is in cxy(τ).

These results indicate that without a hierarchical and modular topology, the

build up of slow fluctuations affects mainly the single-neuron behavior but there is

nearly no population communication present. However, when the hierarchical and

modular topology is introduced, the build up of slow fluctuations also emerge but

different from H = 0, a population communication takes place. The latter is indeed

more advantageous for information propagation as indicated in our last section.

But why does spike-train’s cross-correlation increases with the hierarchical
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Figure 7.4: Spike-train autocorrelations cxx(τ) and cross-correlations cxy(τ) for
varying J and H. The cxx is extracted from K = 10, 000 randomly chosen neurons and
the cxy from K = 10, 000 randomly chosen pairs of neurons. First column: H = 0. Second
column: H = 8. First row: cxx(τ). Second row: cxy(τ). Red lines: J = 0.2 mV. Black
lines: J = 0.8 mV.

level? To understand that we have derived equations to investigate how the number

of connections is rewired. In our derivation we will not make any distinction among

excitatory/inhibitory connections keeping everything in general terms.

Let’s start with the network where H = 0, we note that the expected number

of connections in a neuron that comes from inside the module n(H=0)
in = Nε, where

the superscript indicates the hierarchical level H = 0.

In the next step, when H = 1, the algorithm tells that one should divide

the network and rewire its connections, this means that the expected number of

connections in the divided module will be half of the previous plus half of what the

probabilistic rewiring (which, by simplicity, will be denoted by R) of connections

provided, i.e.

n
(H=1)
in =

n
(H=0)
in

2
+
n

(H=0)
in

2
×R. (7.6)

In Eq. (7.6) we only show the average number of connections to a neuron

that comes from inside the same module, but we can also calculate the remaining
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connections that come from outside the module which is

n
(H=1)
out = n

(H=0)
in − n(H=1)

in = Nε− n(H=1)
in . (7.7)

Note that we can re-write Eq. (7.7) for any hierarchical level H > 0 because

the remaining outside connections will always the expected number of connections

inside minus what was rewired:

n
(H)
out = Nε− n(H)

in . (7.8)

For the 2nd hierarchical level, we follow the same procedure and obtain the

expression for n(H=2)
in , but now outside connections are also rewired:

n
(H=2)
in =

n
(H=1)
in

2
+
n

(H=1)
in

2
×R + n

(H=1)
out ×R

=
n

(H=1)
in

2
(1−R) +Nε×R. (7.9)

For hierarchical levels H + 1 > 2, we recursively apply the above equations

and obtained the expression

n
(H+1)
in =

Nε

2

[(
1−R

2

)H
+ 2R

H∑
k=0

(
1−R

2

)k]
. (7.10)

In summary, Eq. 7.10 gives the expected number of connections to a neuron

that come from its own module at the hierarchical level H + 1 > 2, and Eq. (7.8)

gives the respective connections that come from outside the module at any H > 0.

The set of Eqs. (7.6) – (7.10) can elucidate why cross-correlations increase

with in a module as H increases. By dividing the expected number of connections

inside a module by the number of neurons in the module we can obtain a rough

approximation of the connectivity inside the module (εin).

In Fig. 7.5(a) we show how the value of εin changes according to the

hierarchical level H, observe the clear exponential growth. More surprisingly, this

plot also gives us a hint that indeed cross-correlations play a major role in shaping

slow fluctuations in the hierarchical and modular network: as εin exponentially

increases so does the cross-correlations. In fact, it is expected that a random rewiring

of connections would lead to their exponential growth.
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Figure 7.5: Relation of connectivity and slow fluctuations. (a) Values of
connectivity inside a module (εin) as H increases (cf. Eqs. 7.6 – 7.10). (b) Spike-train
power spectra extracted for a small network of with N = 214 and H = 0 for different
values of ε.

In spite of that, to make really sure that cross-correlations are responsible for

increasing slow-fluctuations, we simulated small networks with N = 214 and H = 0

while varying the value of ε. This latter experiment has the purpose of checking how

slow fluctuations build up upon increasing connectivity as it happens along with the

increasing of H. In Fig. 7.5(b) we present the spike-train power spectra of such

experiment where one can see that in fact slow fluctuations start to build up as ε

increases (note the initial values on the left side of the power spectra).

7.3.3 Propagation and processing and information flow in
HMNs

Given the fact that a hierarchical and modular topology has an increased

graph complexity, and observing that slow fluctuations can be achieved as well

by the increase of J and ε, what could be the differences in communication and

processing related with the use of such an intricate topology? This section focus on

addressing this question and compares the single-neuron with the hierarchical and

modular structure.

First, we recall Fig. 7.3(f), where we have observed that increasing H causes

a significant enhancement in information flow calculated by selecting a randomly
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chosen number of neuron pairs, which can be interpreted as an increase in the

“usefulness” of a given spike train in predicting the future behavior of a second

one. Here, to contrast communication in micro- (single neurons) and macroscopic

(modules activity) levels, we evaluated information flow among modules activity

〈TE(H)〉 as explained in the Methods section.

In Fig. 7.6(a) we can observe that the communication between modules is

indeed very different from the one observed in Fig. 7.3(f). A most compelling

difference is the change in behavior for low H where a non-monotonic curve is

observed with a maximum close to J = 0.2 mV which decays for higher values of

J . For high H this behavior is somewhat mirrored, see for instance that for H = 7

the maximum in H = 5 became a minimum and that the curve starts to grow after

J ' 0.2 mV. As H increases even further, the through (peak for low H) vanishes

and only a monotonic behavior remains.

Despite these differences, similarities are still found. Clearly there is a

transition which changes the behavior of the 〈TE(H)〉 curves with both H and J

dependencies. In the case of H, one can observe that above and below H = 7 there

are two contrasting behaviors similar to Fig. 7.3(f). In addition, the build up of

slow fluctuations created by an increase of J also has an evident role in shaping the

curves which may differ if the network is constructed with low or high H. Overall,

the results in Fig. 7.6(a) express that a modular communication clearly takes place

in the HMNs and that this communication is influenced by a microscopic parameter

such as the synaptic strength J , although the single-neuron communication does not

necessarily reflect what takes place in the modular communication as is depicted by

Fig. 7.6(a).

The inset in Fig. 7.6(a) where we show the same data for each H in a boxplot

presents an interesting information. We see that at H = 6 the 〈TE(H)〉 is maximum

and little distributed. This indicates that at H = 6 the communication is robust

independently of J .

In the following, we remind the reader our discussion above where we argued

that the higher the H the more individually modules become in the network, i.e.

they start to work as functional units. To test this idea we computed the mutual

information among modules which can be interpreted as a measure of statistical
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Figure 7.6: Transfer entropy and mutual information among modules. The
measures are extracted among modules evaluated for different values of J , see legend for
H values in each curve. (a) 〈TE(H)〉 . (b) 〈MI(H)〉. (c) 〈Γ〉 .

dependency (de Abril et al., 2018). We present these results in Fig. 7.6(b) where

one can see that as H increases 〈MI(H)〉 decreases indicating that the modules are

acting more independently. Coupled with that, we see here how the synaptic efficacy

J also plays a role in raising statistical dependency among modules, in cases of high

hierarchy we see that for every configuration the higher the J the more dependent

the modules become. The latter is similar to low H but a transition point takes

place. These observations again suggest that the microscopic parameter J associated
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with the slow fluctuations make the modules more dependent. Thus, we suggest that

in our model slow fluctuations may endow modular statistical dependency.

We further analyzed how information is segregated in the network by

extracting a multivariate mutual information among three modules activity and

comparing it with the mutual information among pairs of the same modules

(Williams & Beer, 2010; Wibral, Lizier, & Priesemann, 2015; Chicharro & Panzeri,

2017), we call this measure Γ which reads

Γ = MI(H)(x; z) +MI(H)(y; z)−MI(H)(x; y; z), (7.11)

where for Γ it is possible to assume every real value. If Γ > 0 we have redundant

information, i.e. some information is repeated in different modules. Otherwise we

have synergy. This analysis is displayed in Fig. 7.6(c) where we show the averaged Γ

over the groups of every three adjacent modules. This measure shows that our HMN

has redundant information. We see that increasing J facilitates the emergence of

redundant information, nevertheless we see that increasing H removes redundancy.

7.4 Discussion

An interesting question in computational neuroscience has been the

investigation of different dynamics achieved by networks composed of spiking

neurons (Brunel, 2000; Renart et al., 2010; Wang et al., 2011; R. F. O. Pena et

al., 2018) and in particular the ones that enhance information processing such as

networks embedded in slow fluctuations (Litwin-Kumar & Doiron, 2012; Ostojic,

2014; Wieland et al., 2015). Structural characteristics and how they interact with

the dynamics are also of great interest (Sporns, Chialvo, Kaiser, & Hilgetag, 2004;

Reijneveld, Ponten, Berendse, & Stam, 2007) and, in this regard, a hierarchical and

modular topology faithfully represents generic characteristics of a cortical network

(Mountcastle, 1997; Kaiser & Hilgetag, 2010; Tomov et al., 2014). In this work, we

have constructed large-scale networks populated by spiking neurons with increasing

levels of hierarchy which we extracted information theory grounded measures. In

addition, we investigated how the synaptic efficacy affects the slow fluctuations build

up in these networks. Our goal was to analyze how the interplay of intrinsic neuronal
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parameters and topological features influences activity propagation.

Our main finding is that the hierarchical and modular topology creates an

effect of slow fluctuations, similar to the one created by an increase of synaptic

efficacy, which in turn shapes information propagation and processing through those

modules. Previous studies have shown that hierarchical and modular networks

are advantageous in the sense of activity sustainment (Tomov et al., 2014) and

can present critical behaviors (Wang et al., 2011) that are connected to optimal

transmissions (Kinouchi & Copelli, 2006), here we see that modularity may also

create optimal transmission. In particular, this does not necessarily happens due

to high magnitude of information transfer, but may happen at a transition point

in the level of hierarchical organization which endows a robust communication

independently of synaptic strength.

In the work of Ostojic (Ostojic, 2014), augmentation of the synaptic strength

creates a new type of asynchronous irregular activity which was argued by the

author as a regime that favors information processing capability. Notwithstanding,

in another work it was built an iterative scheme (Dummer et al., 2014) where only a

single neuron is simulated over several generations whereby its input is statistically

computed from the previous generation and this work was able to capture the

very same statistics as in the network of (Ostojic, 2014; R. F. Pena et al., 2018).

Our analysis of spike-trains’ autocorrelation and cross-correlation functions are in

accordance with the latter because they indicate no cross-correlation (population

behavior) build up as the synaptic efficacy grows, i.e. the regime of Ostojic (Ostojic,

2014) seems to be rich in the neuronal level but not in the network level. In this

way, our results show that an information propagation is unfavored in such a network

where neurons are statistically equal.

On the contrary, in our simulations when hierarchical and modular

architecture was increased, despite the similarities on build up of slow fluctuations

that were found to an increase of the synaptic coupling, the spike-trains’

cross-correlation function also increased. Recent studies have been putting forward

the influence of correlations in neurons (Galán, Fourcaud-Trocme, Ermentrout, &

Urban, 2006; Moreno-Bote, Renart, & Parga, 2008; Barreiro & Ly, 2018). Here,

our transfer entropy measure shows an undoubtedly increase in the information
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propagation of single-neurons at high hierarchical levels which we showed to be

related to the raise of cross-correlations through their rewiring process.

As one of the objectives of our work was to understand the topological

benefits for a hierarchical and modular structure, we compared the transfer entropy

taken from pairs of single-neurons’ spike-train and among modules. At high

hierarchical levels, we observed a marked difference in orders of magnitude indicating

that a communication over modules is preferred than through single-neurons. In like

manner, networks with higher hierarchical and modular structure seem to optimized

the communication through the population mechanisms. Surely, a signal sent from a

population will be noted whereas a signal sent from a single neuron may be subjected

to noise and other disturbances on its way.

In addition to that, we also saw that as hierarchy is increased modules start to

act more individually, as demonstrated by the mutual information extracted among

modules. In fact, it has been suggested elsewhere that activity in modular networks

provides functional segregation and integration (Sporns, Tononi, & Edelman, 2000;

Wang et al., 2011) which is certainly an advantage. To test this idea we evaluated the

multivariate mutual information which demonstrated that information is redundant

in the hierarchical and modular networks. Our analysis showed that the higher

the number of modules the less redundancy is found. Notably, redundancy can be

either seen as an advantage, so that information is robustly maintained, or as a

disadvantage in the sense that modules do not possess unique information.

Overall, we believe that our work captures with simple network modeling,

computational, and theoretical analyzes important properties for its communication

and processing. We put forward a crucial understanding of how slow fluctuations

build up in networks through individual and population mechanisms. Our study

can be well applied to future research focusing on the discernment of how cortical

networks optimize information processing and propagation.



Chapter 8

Conclusions

The work developed in this thesis had as objective the investigation of

the emergence of fluctuations in cortical network models with heterogeneous

populations. Heterogeneity was approached by either increasing topological

complexity or by adding different neuronal classes to the problem. In Sect. 2.3 we

defined differences among (i) rhythmic fluctuations, (ii) non-rhythmic fluctuations,

and (iii) noise. Having these differences stated, in each chapter we investigated (i–iii)

with the help of neuronal modeling.

• In Chapter 4 we started our work by investigating the global characteristics

of a network composed of different electrophysiological classes and varying its

hierarchical and modular level. We aimed parameter regions where rhythmic

(oscillatory) self-sustained activity appears. Our investigations showed the

role of both classes and topology in sustaining activity. In addition, we have

identified that the network displays transient chaos through statistical analysis

of its escape rate over a large ensemble of initial conditions. We observed that

trajectories leave the chaotic set in a very narrow unstable region which we

called “hole” in a phenomenological description. The concept of hole was used

to explain why higher levels of hierarchy sustain activity longer.

• In Chapter 5 we studied random networks with mixtures of different neurons

and showed how synaptic noise influences these networks. Our results show

that both rhythmic and non-rhythmic fluctuations emerge upon synaptic

noise inclusion. Markedly, the two types of fluctuations develop intermittent

transitions between each other which are regulated by the level of noise: if
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the noise amplitude is higher, rhythmic fluctuations are more apparent. The

development of such activity was carefully studied by means of dynamical

systems analysis. Results were compared with different neuronal models.

• In Chapter 6 we developed a reduced iterative self-consistent scheme to

describe second-order statistics without the use of costly simulations. This

consisted in an extension of the iterative scheme proposed by Lerchner,

Ursta, et al. (2006) and extended by Dummer et al. (2014). In this scheme,

instead of simulating a network, two single neurons were simulated for several

generations: in each generation, surrogate noise with statistics based on the

output of the previous generation was injected as input in the neurons. It was

shown that the the power spectra of the neurons converge to self-consistent

results in several situations. By using the iterative scheme we managed to

explain various scenarios where build up of slow fluctuations is found in

neurons, with special emphasis on scenarios where heterogeneities are in the

cells or inbuilt in modules.

• In Chapter 7 we investigated more specifically the emergence of slow

fluctuations. We observed that not only the synaptic strength but also

the hierarchical and modular levels are responsible for the build up of slow

fluctuations. We attributed the latter to an increase in cross-correlations

which was not observed in the former. We tried to link these observations with

advantages by means of information processing and measures of propagation

where we managed to find optimal hierarchical and modular levels and

synaptic strength amplitudes. These results bring new ideas on how the

interplay of topology and synaptic efficacy acts upon information processing

and information flow.

As future expectations, we believe that results from this thesis bring

new conceptual advances that could be potentially used and extended in several

directions that were not approached here:

• The results in Chapter 4 could be tested in experiments involving in vitro

or in vivo self-sustained activity where a phenomenological understanding of



8 - Conclusions 135

the existence of a “hole” could be advantageous. For instance, a sustained

pathological focus could be terminated with an application of a well oriented

input that would lead the system to its “hole”. Moreover, the results reported

in that chapter are restricted to very periodic behavior, further development

has to be made in the direction of aperiodic oscillations such as the ones that

are usually reported in several experiments (Wilson, 2008).

• Results from Chapter 5 could be extended to different types of noise, for

instance, additive noise in the voltage variables. Moreover, the analysis using

dynamical systems that was developed in that chapter could be used as a tool

to investigate network behavior generated by networks that differ only by their

neuronal composition. This is a study that deserves some attention, to the

best of our knowledge there is no such comparison in the literature.

• Further extensions of the iterative scheme developed in Chapter 6 can be

done as well. For example, they could include cross-correlations. This would

allow a wider range of situations which cannot be reproduced by the present

development.

• Results in Chapter 7 could be used to predict the propagation of inputs in a

network. The opposite has also some importance: breaking the propagation

of some pathological input indirectly by removing slow-fluctuations from

the network could be tested. This could be done by selecting inputs with

second-order statistics prescribed in a way that low frequencies would be

affected.

These are only examples of possible extensions, other ideas are reported in

the respective chapters.

Most of the results shown here were published in prestigious journals as

described in Chapter 1. In this regard, we believe that the results reported in this

thesis helped to move forward the knowledge on how fluctuations emerge in and

affect cortical network models.

In summary, we believe that the initial proposal was achieved justifying this

Ph.D. Thesis.
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