• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2016.tde-30092016-144225
Documento
Autor
Nome completo
Rodrigo Nunes Monteiro
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2016
Orientador
Banca examinadora
Fu, Ma To (Presidente)
Cavalcanti, Marcelo Moreira
Cruz, German Jesus Lozada
Lasiecka, Irena
Santos, Ederson Moreira dos
Título em inglês
Long-time dynamics of two classes of beam and plate equations
Palavras-chave em inglês
Exponential attractors
Global attractor
Partial differential equations
Thermoelasticity
Upper-semicontinuity
Resumo em inglês
In this thesis we will discuss the well-posedness and long-time dynamics of curved beam and thermoelastic plates. First, we considered the Bresse system with nonlinear damping and forcing terms. For this model we show the Timoshenko system as a singular limit of the Bresse system as the arch curvature l goes to 0 and under suitable assumptions on the nonlinearity we prove the existence of a smooth global attractor with finite fractal dimension and exponential attractors as well. We also compare the Bresse system with the Timoshenko system, in the sense of upper-semicontinuity of their attractors as l → 0. Second, we study a full von Karman system, this model accounts for vertical and in plane displacements. For this system we add a nonlinear thermal coupling and free boundary conditions. It is shown that the system, without any mechanical dissipation imposed on vertical displacements, admits a global attractor which is also smooth and of finite fractal dimension.
Título em português
Dinâmica a longo prazo de duas classes de equações de viga e placa
Palavras-chave em português
Atrator exponencial
Atrator global
Equações diferenciais parciais
Semicontinuidade
Termoelásticidade.
Resumo em português
Neste trabalho iremos discutir a existência, unicidade, dependência contínua e a dinâmica a longo prazo das soluções de um sistema de equações que modela a vibração de vigas curvas e um modelo de placas termoelásticas. Primeiro consideramos o modelo de Bresse com dissipação não linear e forças externas. Provamos que o sistema de Timoshenko pode ser obtido como limite do sistema de Bresse quando o arco de curvatura l tende para zero e sob algumas hipóteses, mostramos a existência de um atrator global com dimensão fractal finita. Também comparamos o sistema de Bresse com o sistema de Timoshenko no sentido da semicontinuidade de seus atratores quando o parâmetro l → 0. Na segunda parte estudamos o sistema de full Von Karmam. Neste modelo adicionamos efeitos térmicos e condições de fronteira do tipo livre. Mostramos que esse problema, sem dissipação mecânica no deslocamento vertical, também possui um atrator global regular com dimensão infinita.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-09-30
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.