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Abstract

Let f be a C2 local diffeomorphism, of a closed surface M without zero Lyapunov

exponents. We have proved that the number of ergodic hyperbolic measures of f with

SRB property is less than equal to the number of homoclinic equivalence classes. We use

an adaptation of Katok closing lemma for endomorphisms and prove ergodic criterion,

introduced in [HHTU], for endomorphisms.

We also prove some folklore results on uniqueness of SRB measures, in the presence

of topological transitivity.
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Resumo

Seja f um endomorfismo C2 non-singular (difeomorfismo local), de uma superf́ıcie

fechada M e µ uma medida probabilidade Borel f-invariante e ergódica com expoentes

de Lyapunov Não nulo. Nós provamos que o número de medidas hiperbólicas com pro-

priedade SRB é para f so menor ou igual ao número de classes equivalentes homocĺınicos.

Usamos uma adaptaão do closing lema de Katok por endomorfismos e provamos critrio

ergódico, introduzido em [HHTU], para endomorfismos. Também provamos alguns resul-

tados folclóricos em unicidade de medidas SRB, na presena de transitividade topológica.
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Introduction

According to the history of science, the birth of ”Chaos” goes to H.Poincaré and the

king of Sweden’s question on the stability of the solar system around 1889. However after

that, for at least seven decades we may observe no specific intention on chaotic dynamics,

but after the mid of twentieth-century when E. Lorenz put forward his work on weather

forecasting and give birth to attractors, determination of chaotic dynamics became one

of the most remarkable attempts. In fact, it is observed that even very simple systems

depending only on one variable, may behave as wild as a hurricane or a volcano performing

chaotic behavior. ”Changes in weather”, ”the planet orbits in the solar system”,[M2],

”population growth in ecology”, ”the dynamics of the action potentials in neurons” [RY],

”molecular vibrations” and a lot more, all are samples in nature not predictable but

depending to the initial conditions, deterministic.

Imagine a closed (compact connected boundaryless) Riemannian manifold with a uni-

formly ”hyperbolic” dynamics. The tangent space at every point decomposes in two

complementary subspaces, one expanding and the other contracting along the trajectory.

It is obvious that for such phase space, in the lack of enough space trajectories can not

travel separately and mixing together exhibit strange or chaotic behavior. The weakest

but most general type of hyperbolicity is the so called ”Non- Uniform Hyperbolicity”

introduced by Y. Pesin in 1970. However depending on the initial condition, it may hap-

pen wild uncontrollable trajectories, but almost all orbits of the system show a kind of

tameness like living in a uniformly hyperbolic world.[BP1]

Looking at the both, natural and artificial physical models, not all of them have the

property that their dynamics is invertible. The study of non-invertible (endomorphism)

maps nowadays have its own importance. By definition an endomorphism is a continuouse

map which is not necessarily invertible. In this work in special we deal with non- singular

endomorphisms or local diffeomorphism where always exist some small ball around each
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point of the space, diffeomorphically projecting on its image. Getting some idea about

the differences between invertible and non-invertible maps, we can look at the unstable

manifolds. They are one of the main objects related to chaos theory and depending

upon the past history of an orbit, not unique for endomorphisms. To approach chaotic

properties of an endomorphism, typically we define some inverse limit space. It is the

collection of the all possible total orbits in a phase space M . Although this space M f ,

does not admit a manifold structure but it is a compact metric sub-space of MZ and many

mathematical notions depending on pre-histores can be carried on it. In 1960s Shub [Sh]

introduced expanding maps and after that Mané-Pugh[] and Przytycki[P] found other

properties for Anosov endomorphisms (with uniform hyperbolicity). A remarkable result

shows that Anosov endomorphisms are not structurally stable.

In smooth ergodic theory, we study the ergodic properties of smooth dynamical sys-

tems on Riemannian manifold up to an invariant measure, specially one equivalent to

Riemannian volume. In this theory which provides a mathematical basis for the theory

of deterministic chaos, the two main tools are ”Lyapunov Exponents” and ”Metric En-

tropy”. First implement measures the asymptotic exponential behavior along the long

term orbit and the second, measures the complexity of the dynamics under the iterations.

In 1970s Sinai, Ruelle and Bowen introduced an invariant measure which is called SRB

measure. Their original work was on Axiom A and Anosov dynamical systems (uniform

hyperbolicity along all the orbits). These measures play an important role in the ergodic

theory of dissipative dynamical systems (not preserving the volume) and are the most

compatible measures in the occasion.

J.-M. Strelcyn, F. Ledrappier and L-S.Young in [LS] and [LY] have shown that for

f a C2 diffeomorphism on a compact Riemannian manifold, and for µ an f -invariant

Borel probability measure, metric entropy is equal µ-a.e. to the sum of positive Lyapunov

exponent. Moreover this so called ”Pesin entropy formula” holds if and only if µ is an

SRB measure. These results were generalized to other frameworks including deterministic

endomorphisms by the works of Qian, Xie and Zhu [QXZ]. New results can be still

scattered in this frame of studies.

In recent years F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi, R. Ures in

[HHTU] have shown the uniqueness of SRB measures for transitive C1+α diffeomorphisms

on compact surfaces. In this thesis, we investigate whether the same method of [HHTU]

works on C2 surface endomorphisms or not. A main part of their result can be translated

into the endomorphisms setting. Howbeit, there exist many subtle differences between

the two cases. For instance, the uniqueness of SRB measures which can be deduced
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using topological transitivity for diffeomorphisms, in our setting it may not be the case.

Although we do not have any example of topologically transitive surface endomorphism

with more than one SRB measure, a modification of Kan example may provide such new

phenomena. 1

With respect our main theorem, the number of SRB measures for surface endomor-

phisms(see definition 1.34) is bounded by the number of homoclinic equivalence classes.

In other words, we can control the number of SRB measures (Ergodic objects) by a

topological substance. More precisely, we prove that:

Theorem 0.1 (Main Theorem A). Let f : M → M be a C2 endomorphism over a

closed Riemannian surface M. Then,

]{Ergodic Hyperbolic Measures with SRB Property} ≤ ]{Homoclinic Equivalent Classes.}

For the definition of homoclinic equivalent class, see Chapter (1). There are some

other folkloric and simple results about the uniqueness of measures with SRB property

which we prove for the sake of completeness:

Theorem 0.2 (Theorem B). For f : M → M a topologically transitive C2 endo-

morphism over a closed Riemannian surface M, there exists at most one non-uniformly

expanding measure with SRB property.

Theorem 0.3 (Theorem C). Let f : M → M be a topologically transitive C2 partially

hyperbolic endomorphism with a continuous decomposition of the tangent bundle TM =

Es ⊕ Ecu. Then there exists at most one hyperbolic measure with SRB property.

The main problems we deal with through this work consist of:

☼ Non-uniform Hyperbolicity for endomorphisms;

☼ Closing lemma of Katok for endomorphisms;

☼ Ergodic Homoclinic Classes and ergodic criterion;

Chapter (1) of this thesis, gives a short survey on the theory of non-uniform hyper-

bolicity for endomorphisms. It contains some preliminaries on inverse limit space and we

bring the ”Multiplicative ergodic theorem” of Oseledets on natural extension as well as no-

tions about non-uniform hyperbolicity, Pesin blocks, Pesin stable-unstable sets, absolute

continuity, Lambda lemma and SRB property for endomorphisms.

1We would like to thank M. Andersson and J. Yang for observing us the possibility of the construction
of such examples.
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Chapter (2) is an adaptation of the Katok closing lemma for C2 endomorphisms of

a closed Rimannian surface. We define the Lyapunov charts and show that the proof of

closing lemma and consequences for endomorphisms.

Chapter (3) presents the definition of ergodic homoclinic classes for new setting and

bring the theorems and lemmas related to the ergodic criterion part of the [HHTU]

method. After that we prove the main theorem and theorems B and C.

Chapter (4) contains some examples and some problems, which we believe that theo-

rems can be applied.



Chapter

1

Non-uniform Hyperbolicity for

Endomorphisms

The theory of smooth dynamical systems with non-uniformly hyperbolic behavior, or

the theory of non-uniformly hyperbolic dynamical systems is due to Ya.B. Pesin in the

mid-1970. In this chapter we try to give a summary of this theory for endomorphisms

based on [QXZ] and [BP2].

1.1 Inverse Limit Space

Let M be a smooth Riemannian surface which is closed (compact connected and

without boundary). In this text by a C2 endomorphisms f : M →M we mean a local C2

diffeomorphism and we denote Mf (M) for the set of all f−invariant Borel probability

measures. As f is a local diffeomorphism, it always satisfies the following integrability

condition and we may omit it.

log | det dxf | ∈ L1(M,µ).

For f : M →M a C2 endomorphism, consider the compact metric space

M f = {x̃ = (xn) ∈
∞∏

−∞
M : f(xn) = xn+1, for alln ∈ Z},

equipped with the distance d̃ for x̃ = (xn), ỹ = (yn) ∈M f defined by
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d̃(x̃, ỹ) =
∞∑

n=−∞
2−|n|d(xn, yn). (1.1)

Where d is the distance on M induced by the Riemannian metric. Let π be the natural

projection from M f to M (i.e. π((xn)) = x0, ∀x̃ = (xn) ∈M f ,) and f̃ : M f →M f be the

shift homeomorphism. We may sometimes call x0 as the base point of a trajectory. It is

clear that the following diagram commutes i.e. π ◦ f̃ = f ◦ π.

M f f̃−−−→ M f

yπ
yπ

M
f−−−→ M

The map f̃ : M f → M f is called the inverse limit of f or the natural extension of

system (M, f) and the proper M f is the Inverse Limit Space. Notice that for a periodic

point p of f with period m, we may denote the unique corresponded periodic point on

M f , with p̄ = (...p fm−1(p) ...f(p) p, ...) ∈M f .

The map π induces a continuous map fromMf̃ (M
f ) toMf (M), usually denoted by π∗

i.e. for any f̃−invariant Borel probability measures µ̃ on M f , π∗ maps it to a f−invariant

Borel probability measure π∗ µ̃ on M defined as

π∗ µ̃(φ) = µ̃(φ ◦ π), ∀φ ∈ C(M).

The following proposition I.3.1 of [QXZ] or [OV] guarantees that π∗ is a bijection between

Mf̃ (M
f ) and Mf (M).

Proposition 1.1. Let f be a continuous map on M . For any f−invariant Borel probability

measure µ on M , there exists a unique f̃−invariant Borel probability measure µ̃ on M f

such that π∗µ̃ = µ.

Proof. Proof of this theorem is based on the next lemma.[QXZ]

Lemma 1.2. Let X and Y be two compact metric spaces, and T : X → X and S : Y → Y

measurable mappings on corresponding spaces. Suppose there is a continuous surjective

map h : X → Y such that S ◦ h = h ◦ T . Then for any S−invariant Borel probability

measure µ on Y , there is a T−invariant Borel probability measure ν on X such that

hν = µ.

Let us continue the proof of the proposition:
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As a consequence of Lemma 1.2, there is µ̃ ∈ Mf̃ (M
f ) such that π∗(µ̃) = µ. Since M f

is a compact subset of MZ defined as a shift space, so cylinders make a second countable

basis for it. Then µ̃ can be uniquely determined by its values on all cylinder sets. For

any subsets A0, A1, .., An ⊂M we define

µ̃([A0, A1, .., An]) = µ(A0 ∩ f−1A1 ∩ ... ∩ f−nAn),

where

[A0, A1, .., An] = {x̃ ∈M f |xi ∈ Ai, i = 0, 1, ..., n}

is a cylinder in M f . Observe that this definition coincides with π∗(µ̃) = µ. Suppose [A0]

be a cylinder in M f then π([A0]) = A0 and

π∗µ̃(A0) = µ̃(π−1(A0)) = µ̃([A0]) = µ(A0). (1.2)

Also taking any open B ⊂ M , then π∗µ̃(B) = µ̃(π−1(B)) = µ̃([B]) = µ(B) This ensures

that µ̃ is uniquely determined by µ and the proof is completed.

A circumstance of proposition 1.1 can be the following lemma.

Lemma 1.3. An f -invariant Borel probability measure µ is ergodic if and only if µ̃ is

ergodic.

Recalling following theorem( [KH])

Theorem 1.4 (Ergodic Decomposition). Let µ ∈ Mf (X) and (X,µ,B) a Borel

probability space. Let {µx}x∈X be the conditional probability measures with respect to

F := {E ⊂ B| f−1E = E}. Then

• µ =
∫
X
µxdµ(x);

• µx is invariant for µ-a.e. x ∈ X;

• µx is ergodic for µ-a.e. x ∈ X

Let us continue the proof of lemma.

Proof. We have the uniqueness of µ̃ from last proposition, then consider the following
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diagram which permutes f̃ and f .

M f f̃−−−→ M f

yπ
yπ

M
f−−−→ M

once µ̃ is ergodic then for each f -invariant subset A ⊂ M , we can easily observe that

π−1(A) is f̃ - invariant and by ergodicity of µ̃ then µ̃(π−1(A)) = π∗µ̃ = µ(A) is zero or

one. To show the inverse process let by contradiction suppose that µ is ergodic but µ̃ is

not ergodic. M f is a compact metric space and µ̃ ∈ Mf̃ (M
f ). By theorem 1.4 taking

F̃ = {Ẽ ⊂ B̃| f̃−1(Ẽ) = Ẽ} and write

µ̃ =

∫

Mf

µ̃x dµ̃(x̃)

where µ̃x is f̃−invariant and ergodic for µ̃−a.e. x̃ ∈ M f . By Proposition 1.1, the µ̃ is

unique f̃−invariant measure that π∗µ̃ = µ. Means

µ = π∗(µ̃) =

∫

Mf

π∗µ̃x dµ̃(x̃)

The projection of conditional probabilities µ̃x̃ either will be µ or gives some conditional

probabilities on F = π(F̃). In both situation it makes contradiction (respectively) with

proposition 1.1 or ergodicity of µ.

Let M be a compact metrizable space, f : M → M a continuous map and µ an

f−invariant Borel probability measure on M . For any finite partition η = {Ci} of M ,

define the entropy of η by

Hµ(η) = −
∑

i

µ(Ci) log µ(Ci). (1.3)

Let

hµ(f, η) = lim
n→∞

1

n
Hµ(η ∨ f−1η ∨ ... ∨ f−n+1η).

Then define the metric entropy of f with respect to µ as

hµ(f) = sup{hµ(f, η) : η is a finite partition of M}. (1.4)
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More information can be found in [W]. From the following proposition we have the

relation between the metric entropy of the two systems, (f, µ) and (f̃ , µ̃).[QXZ]

Proposition 1.5. Let f : M → M be a continuous map on the compact Riemannian

manifold M with an invariant Borel probability measure µ. Let M f be the inverse limit

space of (M, f), f̃ the shift homeomorphism and µ̃ the f̃−invariant Borel probability

measure on M f such that π∗ µ̃ = µ. then

hµ(f) = hµ̃(f̃). (1.5)

1.2 Multiplicative Ergodic Theorem

For Λ ⊂ M we set Λf = {x̃ = (xn) ∈ M f : xn ∈ Λ, for alln ∈ Z}. Before stating the

Oseledet’s Multiplicative ergodic theorem, we need to know the definition of a hyperbolic

set for endomorphisms.

Definition 1.6 (Hyperbolic Endomorphism-[P]). Let f be a C2 endomorphism. Put

Λ to be an f−invariant closed subset of M . Then Λ is called a Hyperbolic Set for

this endomorphism if there exists real constants C > 0 and 0 < µ < 1(and a continuous

Riemannian metric < ., . > on TM) such that for every f−trajectory x̃ = (xn)+∞
−∞ of

points in Λ (∀x̃ ∈ Λf) and for every integer n we have:

• TxnM = Es(x̃, n)⊕ Eu(x̃, n),

• Df(Es(x̃, n)) = Es(f̃(x̃), n) = Es(x̃, n+ 1),

‖Dfmxn(v)‖ ≤ Cµm‖v‖, for v ∈ Es
xn,

• Df(Eu(x̃, n)) = Eu(f̃(x̃), n) = Eu((̃x), n+ 1),

‖Dfmxn(v)‖ ≥ [Cµm]−1‖v‖, for v ∈ Eu
xn .

For m = 0, 1, .... where ‖ · ‖ denotes the Riemannian metric. This family of splitting

will be called hyperbolic.

We may define the hyperbolicity in term of the cone fields also [HG]. Suppose ‖.‖
denotes the Riemannian metric on M as above and End (M) be the set of all regular

endomorphisms on M equipped with the usual C1 topology.

Let E and F be two sub-bundles of TM satisfying TM = E ⊕ F . Define two cone

fields CE
α and C F

α on TM :
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CE
α (z) = {v ∈ TzM : v = (vE, vF ), ‖vF‖ < α‖vE‖}; (1.6)

C F
α (z) = {v ∈ TzM : v = (vF , vE), ‖vE‖ < α‖vF‖} (1.7)

Definition 1.7. An f−invariant subset Λ of M is said to be hyperbolic if TΛM has the

bundle splitting TΛM = E ⊕ F and there is α > α′ > 0 and λ > 1 such that, for any

x ∈ Λ and any unit vector v ∈ C F
α (x)

df(C F
α (x)) ⊂ C F

ά (f(x)), ‖df(v)‖ > λ,

and such that for any x ∈ Λ, any unit vector v ∈ CE
α (f(x)), and the diffeomorphism g on

a neighborhood of f(x) satisfying gf = idx on a neighborhood of x,

dg(CE
α (f(x))) ⊂ CE

ά (x), ‖dg(v)‖ > λ.

We say that f is an Anosov Endomorphism if f is hyperbolic on M . Also f is said

to be an Expanding Map if it is an Anosov map without contracting direction (Es = 0).

For x ∈M and f : M →M suppose v ∈ TxM . We put

λ(x, v) = limn→∞
1

n
log ‖dxfn(v)‖.

The number λ(x, v) is called the Lyapunov Exponent for v . For x ∈ M there are at

most (dimM)-numbers λ1(x), · · · , λr(x)(x) with −∞ < λ1(x) < · · · < λr(x) < ∞ , and a

filtration of subspaces

{0} = L0(x) ( L1(x) ( · · · ( Lr(x)(x) = TxM

(Where Li(x) = {v ∈ TxM : λ(x, v) ≤ λi(x), for 1 ≤ i ≤ r(x)}.)
and λ(x, v) = λi(x) holds for v ∈ Li(x)\Li−1(x), 1 ≤ i ≤ r(x) . The numbers λ1(x)

,· · · λr(x)(x) are called the Lyapunov Exponents at x. We set

mi(x) = dimLi(x)− dimLi−1(x)

for 1 ≤ i ≤ r(x) and it is the Multiplicity of Lyapunov exponent λi(x). Observe that r(x),

λi(x), mi(x) are measurable f -invariant functions with respect to any f -invariant Borel

probability measure µ and when µ is an ergodic measure, then these functions become
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constant almost everywhere and we may show them by λµi ,m
µ
i , r

µ. (Such information are

obtained by multiplicative ergodic theorem for differentiable maps [W],[Ch].)

1.2.1 Multiplicative Ergodic Theorem on Natural Extension

As a consequence of Oseledet’s theorem we have the following fundamental results on

M f [QXZ]. we may show it by MET .

Theorem 1.8. Let µ be an f -invariant Borel probability measure on M . We denote

by µ̃ the f -invariant Borel probability measure on M f such that π∗µ̃ = µ. Then for µ̃-

almost all x̃ = (xn) ∈ M f and n ∈ Z the tangent space TxnM splits into a direct sum

TxnM = E1(x̃, n) ⊕ · · · ⊕ Er(x0)(x̃, n) and exists −∞ < λ1(x̃) < · · · < λr(x̃)(x̃) < ∞ and

mi(x̃) (i = 0, 1, ..., r(x̃)), Such that:

1. dim Ei(x̃, n) = mi(x̃);

2. dxnf(Ei(x̃, n)) = Ei(x̃, n + 1), and dxnf |Ei(x̃,n) : Ei(x̃, n) → Ei(x̃, n + 1) is an

isomorphism. For v ∈ Ei(x̃, n)\{0},




limm→∞
1
m

log ‖dxnfm(v)‖ = λi(x̃);

limm→∞− 1
m

log ‖(dxn−mfm|Ei(x̃,n−m))
−1(v)‖ = λi(x̃);

3. if i 6= j then

lim
n→±∞

1

n
log sin∠(Ei(x̃, n), Ej(x̃, n)) = 0,

where ∠(V,W ) denotes the angle between subspaces V and W .

4. r(.), λi(.) and mi(.) are measurable and f̃−invariant. Moreover r(x̃) = r(x0), λi(x̃) =

λi(x0) and mi(x̃) = mi(x0) for all i = 1, 2, ..., r(x̃).(r(x̃) is the number of subspaces

on TxnM for some n ∈ Z and for fixed x̃ ∈M f .)

Observation 1.9. Any x̃ ∈ M f with above property is called a Lyapunov Regular

point (or just a Regular point) . By MET the set of all such regular points let us show it

by R̃, has a full µ̃ measure and is f̃−invariant.

Definition 1.10 (Hyperbolic Measure). We call an ergodic measure µ a hyperbolic

measure if:

• none of the Lyapunov exponents for µ are zero;
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• there exist Lyapunov exponents with different signs.

Observation 1.11. Notice that by number 4 of theorem 1.8, hyperbolicity of µ as a Borel

probability measure on M implies the hyperbolicity of µ̃ ∈ Mf̃ (M
f ). (Its corresponded

measure on M f through proposition 1.1)

1.3 Nonuniform-Hyperbolicity and Pesin Sets

In the nonuniform version of hyperbolicity (Pesin Theory), instead of prescribing

bounds for the expansion and contraction of vectors, we measure the asymptotic ex-

ponential behavior of points through long term derivatives.

Definition 1.12 (Non-Uniformly Hyperbolic Set). Let f : M → M be a C2 endo-

morphism of a compact smooth Riemannian manifold M . An f̃ -invariant Borel subset

Γ̃ ⊂M f is said to be non-uniformly hyperbolic if exists

(a) numbers λ, µ such that 0 < λ < 1 < µ;

(b) a number ε and Borel functions C,K : Γ̃→ (0,∞);

(c) subspaces Es(x̃, n) and Eu(x̃, n) for each x̃ = (xn) ∈ R̃, which satisfy the following

conditions ∀n ∈ Z:

1. TxnM = Es(x̃, n)⊕ Eu(x̃, n),

2.




dxnf E

s(x̃, n) = Es(f̃(x̃), n) = Es(x̃, n+ 1);

dxnf E
u(x̃, n) = Eu(f̃(x̃), n) = Eu(x̃, n+ 1);

3. the subspace Es(x̃, n) is stable:

for v ∈ Es(x̃, n) and m > 0, ‖dxnfm(v)‖ ≤ C(x̃)λmeε(m+|n|)‖v‖;

4. the subspace Eu(x) is unstable:

for v ∈ Eu(x̃, n) and m < 0, ‖dxnfm(v)‖ ≤ C(x̃)µmeε(|m|+|n|)‖v‖;

5. ∠(Es(x̃, n), Eu(x̃, n)) ≥ K(x̃);

6. C(f̃m(x̃)) ≤ C(x̃)eε|m|, K(f̃m(x̃)) ≥ K(x̃)e−ε |m|.

In above definition if Es(x̃, n) is trivial, then we call Γ̃ a non-uniformly expanding

set. By Multiplicative ergodic theorem or Oseledet’s theorem we could guarantee that

for every ergodic hyperbolic measure ν the set of Lyapunov regular points with nonzero

exponents contains a non-uniformly hyperbolic set of full measure. From now on we
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suppose R̃ to be this full measure set of regular points with non-zero Lyapunov exponents

that is non-uniformly hyperbolic. Moreover for the sake of simplicity we always suppose

our measures to be ergodic. let

M∗
erg(f) := The space of all ergodic hyperbolic measures.

Definition 1.13 (Non-Uniformly Expanding Measure). We call an ergodic measure

µ a non-uniformly expanding measure if both of the Lyapunov exponents are positive in

µ−a.e.

For a µ ∈M∗
erg(f) let introduce the Pesin Blocks. They let the behavior of Lyapunov

exponents along the orbit of their points become under good controls. In other words ”As

we will see in next chapter under some metric change, they can be supposed as objects

indicating uniformly hyperbolic behavior.”

Assume

Es(x̃, n) =
⊕

λ(x̃)<0

Ei(x̃, n) & Eu(x̃, n) =
⊕

λ(x̃)>0

Ei(x̃, n).

Definition 1.14 (Pesin Blocks). Given λ, µ, χ,>> ε > 0,1 ≤ k ≤ dimM and for all

l > 1, we define a Pesin block ∆̃k
χ,l(λ, µ, ε) of M f consisting of x̃ = (xn) ∈ M f for which

there exists a sequence of splittings TxnM = Es(x̃, n)⊕ Eu(x̃, n), n ∈ Z, satisfying:

• dimEu(x̃, n) = k ;

• dxnf(Es(x̃, n)) = Es(x̃, n+ 1), dxnf(Eu(x̃, n)) = Eu(x̃, n+ 1);

• for m ≥ 0, for v ∈ Es(x̃, n) and w ∈ Eu(x̃, n);




‖dxnfm(v)‖ ≤ el

χ
100 e−(λ− χ

100
)me( χ

100
|n|)‖v‖, ∀n ∈ Z, n ≥ 1

‖(dxn−mfm|Eu(x̃,n−m))
−1(w)‖ ≤ el

χ
100 e−(µ− χ

100
)me( χ

100
|n−m|)‖w‖,∀n ∈ Z, n ≥ 1;

and if 1 ≤ k ≤ dimM − 1 then

• sin ∠(Es(x̃, n), Eu(x̃, n)) ≥ e−l
χ

100 e−( χ
100

)|n|.

Pesin blocks have some nice properties:

☼ they are closed and therefore compact (due to compactness of M f );

☼ ∆̃k
χ, l ⊂ ∆̃k

χ, l+1 and f̃±(∆̃k
χ, l) ⊂ ∆̃k

χ, l+1;

☼ the subspaces Es(x̃, n) and Eu(x̃, n) of TxnM depends on x̃ continuously over ∆̃k
χ, l.
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Observation 1.15. In compare with definition 1.12 we see that in definition 1.14, we

have λ = e−(λ− χ
100

), µ = e−(µ− χ
100

) and ε = χ/100. Moreover, as we deal with hyperbolic

ergodic measures with ”SRB property”(see definition 1.34). By ergodicity assumption the

Lyapunov exponents become a constant value for µ̃−a.e. point x̃ ∈ R̃. Therefore in the

rest of the work we can suppose the χ in definition of a Pesin block to be

χ = min
i
|λi(x)|, for 1 ≤ i ≤ 2(= dimM).

Since dimM = 2 by SRB property assumption of the measure, the k in definition 1.14

is always equal to one or two. Except chapter 3 in proof of theorem B that Pesin blocks

become two dimensional and we will mention that k is not one, we are assuming k = 1

in the rest of the work. With no creating of ambiguity we may ignore χ and k from the

notation of Pesin blocks and show them by ∆̃l. Moreover we are always assuming the

Pesin blocks having positive measure.

1.4 Pesin Stable-Unstable Manifolds

After the works of Pesin on developing a general theory on stable and unstable mani-

folds for diffeomorphisms [BP1],P.-D Liu and M. Qian developed a rigorous related theory

for random diffeomorphisms and using similar techniques as given in [LQ], Sh. Zhu proves

an unstable manifold theorem on non-invertible differentiable maps of finite dimension.

Here we bring some important parts of Sh. Zhu work and we introduce the global stable

and unstable sets useful in next chapters.[QXZ],[QZ]

Definition 1.16 (Local Unstable Manifold). For x̃ ∈ R̃, λi(x̃) > 0, we call W u
loc(x̃) a

local unstable manifold of f at x̃ when exists a k−dimensional C2 embedded sub-manifold

of M , such that there are numbers λ > 0, 0 < ε < λ/200, 0 < C, and for any y0 ∈ W u
loc(x̃),

there exists a unique ỹ = {yn}n∈Z ∈M f such that π(ỹ) = y0 and ∀n ∈ N,

d(y−n, x−n) ≤ C e−n(λ−ε) d(x0, y0)

Moreover we define the local unstable set of f̃ at x̃ = (xn) as

W̃ u
loc(x̃) := {ỹ ∈M f : y0 ∈ W u

loc(x̃), d(y−n, x−n) ≤ C e−n(λ−ε) d(x0, y0)}.

Observation 1.17. It is remarkable that by above definition π(W̃ u
loc(x̃)) = W u

loc(x̃).
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W̃u(x̃1)

W̃u(x̃2)

W̃u(x̃3)

π

Wu(x̃1)

Wu(x̃2)

Wu(x̃3)

Wu(x)
x

Figure 1.1: Unstable set and unstable manifolds of different trajectories .

Definition 1.18 (Unstable Manifold). The unstable manifold of f corresponding to

x̃ ∈ R̃ is defined as

W u(x̃) = {y0 ∈M | ∃ỹ ∈M f with πỹ = y0, and limn→+∞
1

n
log d(x−n, y−n) < 0}} (1.8)

and we will write

W̃ u(x̃) = {ỹ ∈M f |limn→+∞
1

n
log d(x−n, y−n) < 0}. (1.9)

Notice that the unstable manifold corresponded to a trajectory x̃ ∈ R̃ can be defined as

the union of an increasing sequence of images of C1 embedded disks:

W u(x̃) =
∞⋃

n=0

fn(W u
loc(f̃

−n(x̃))). (1.10)

Definition 1.19 (Global Unstable Set). We define the global unstable set of f at a

point x, as

W u(x) :=
⋃

x̃∈π−1(x)∩R̃

W u(x̃). (1.11)

For x ∈M and r > 0, let define TxM(r) = {η ∈ TxM | ‖η‖ < r}.
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Proposition 1.20. For any Pesin block ∆̃l on M f , there is a continuous family of C1

embedded k- dimensional discs {W u
loc(x̃)}x̃∈∆̃l

on M, together with positive numbers λl, εl <

λl/200, rl < 1, αl, βl such that the following properties hold for each x̃ ∈ ∆̃l:

• There is a C1 map hx̃ : Ox̃ → Es
x̃, where Ox̃ is an open subset of Eu

x̃ which contains

{η ∈ Eu
x̃ : |η| < αl} satisfying

(a) hx̃(0) = 0, Dhx̃(0) = 0;

(b) Lip(hx̃) ≤ βi ;Lip (Dhx̃) ≤ βl, where Dhx̃(.) : η → Dhx̃(η);

(c) {W u
loc(x̃)} = expx0

(Graph(hx̃)).

• Let W−n(x̃) = W u
loc(f̃

−nx̃) then W−n+1 ⊂ fW−n(x̃) for all n ≥ 1. Let ρ0 > 0 be a

positive real number such that the exponential map expx : TxM(ρ0) → B(x0, ρ0) :=

{y ∈M |d(y, x) < ρ}) is a C∞ diffeomorphism for every x ∈M . Then exist numbers

rl ∈ (0, ρ0/4), εl ∈ (0, 1) such that

• For any r ∈ [rl/2, rl] and each x̃ ∈ ∆̃l, if z̃ ∈ B̃∆̃l
(x̃, εlr) := {ỹ ∈ ∆̃l| d̃(x̃, ỹ) < εlr},

then W u
loc(x̃1) ∩B(x0, r) is connected and the map

z̃ 7→ W u
loc(z̃) ∩B(x0, r)

is continuous from B̃∆̃l
(x̃, εlr) to the space of subsets of B(x0, r)(endowed with the

Hausdorff topology);

Observation 1.21. By above proposition we assume ∀x̃ ∈ ∆l the size of W u
loc(x̃) is

bounded away from zero and exists some αl > 0 such that size(W u
loc(x̃)) ≥ αl.

Theorem 1.22. For any x̃ ∈ R̃ that λi(x̃) < 0 for some 1 ≤ i ≤ dimM , there exists a

sequence of C2 embedded dim Es(x̃)−dimensional discs {Wn}+∞
n=0 satisfying some similar

results as proposition 1.20 for stable manifolds(sets)such as:

• For each n ∈ Z+ there exists a C2 map

hf̃n(x̃) : On(x̃)→ Eu(f̃n(x̃)),

where On(x̃) is an open subset of Es
f̃n(x̃)

, such that hx̃(0) = 0, Dhx̃(0) = 0 and

Wn(x̃) = expf̃n(x̃)(graph(hx̃));

• f Wn(x̃) ⊂ Wn+1(x̃);

• ∀x̃ ∈ ∆l the size of W s
loc(x̃) is bounded away from zero and exists αl > 0 such that

size(W s
loc(x̃)) ≥ αl.
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x
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Figure 1.2: Stable sets and local stable manifolds.

and we may define

W s(x̃) = {y ∈M |limn→+∞
1

n
log d(fny, fnx) < 0}, if λi(x) < 0 for some 1 ≤ i ≤ dimM

and otherwise W s(x̃) = {x0}. In the other word for every x̃ ∈ R̃ with λi(x̃) < 0

W s(x̃) =
+∞⋃

n=0

f−n(Wn(x̃)).

Observation 1.23. We call W s(x̃) the Stable Set of f corresponded to x̃ ∈ π−1(x)(for

some base point x ∈ M). Notice that ∀x̃ ∈ π−1(x) all trajectories have the same forward

orbit. This means that in fact stable sets are independent of the choice of pre-images and

for any ỹ ∈ π−1(x) we have

W s(ỹ) = W s(x).

Therefore we may use the notation W s(x) instead of W s(x̃). As it is observable in fig 1.2,

stable sets are expressed as a countable union of C1 curves on M .

1.5 Absolute Continuity and Conditional Measures

An important notion behind the criteria used in [HHTU] and consequently this work,

is absolute continuity. Let ζ be a partition of the manifold M . We call ζ a measurable

partition if the quotient space M/ζ is separated by a countable number of measurable

sets. This section also plus some changes is from chapter V of [QXZ].
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We have the following definition for absolute continuity of measures:

Definition 1.24 (Absolute Continuity). Given a measurable space (X,B), we say

that for µ and ν two measures on (X,B), ν is absolutely continuous with respect to µ if

ν(A) = 0 for any A ∈ B such that µ(A) = 0. The absolute continuity of ν with respect to

µ is usually denoted by ν � µ.

Definition 1.25. Let X be a compact metric space and P be any measurable partition

of X. Suppose π : X → P is the map associating to each x ∈ X the atom P ∈ P that

contains x and let µ̂ = π∗µ. Then a system of conditional measures of µ with respect to

P is a family (µP )P∈P of probability measures on X such that

• µP (P ) = 1 for µ̂−almost every P ∈ P.

• For any given continuous φ : X → R, the function P →
∫
φ dµP is measurable and∫

φ dµ =
∫

(
∫
φ dµP )dµ̂(P ).

Theorem 1.26 (Rokhlin [R1]). If P is a measurable partition, then there exists some

system of conditional measures of µ relative to P.

A corollary of the definition of conditional measure is the following basic proposition

from [QXZ],[LQ].

Proposition 1.27. Let (X,B,m) be a Lebesgue space and let P be a measurable partition

of X. If ν is another probability measure on B which is absolutely continuous with respect

to m, then for ν−almost all x ∈ X the conditional measure νP (x) is absolutely continuous

with respect to mP (x).

Now Let ∆̃l, be an arbitrarily chosen Pesin block and x̃ ∈ ∆̃l. For x ∈ ∆l = π(∆̃l)

and for sufficiently small r > 0 put

U∆l
(x̃, r) = expx̃{η ∈ TxM : ‖η‖x̃ < r} (1.12)

(Definition of ‖.‖x̃ is given in next chapter and exp : TxM → B(x, r) ⊂M.)

and F∆l
(x̃, r) the collection of all local stable-manifolds W s

loc(y) passing through y ∈
W u
loc(x̃) and x̃ ∈ ∆̃l.

Definition 1.28. Sub-manifold W of M is called transversal to F∆l
(x̃, r) if the following

holds true:
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• W ⊂ U∆l
(x̃, r)(r can be found through 1.20) and exp−1

x̃ W is the graph of a C1 map.

• W intersects W s(y) ∈ F∆l
(x̃, r) at exactly one point and this intersection is transver-

sal, i.e. TzW ⊕ TzW s(y) = TzM where z = W ∩W s(y).

Moreover for a periodic point p when W is a part of p̄-unstable manifold intersecting the

stable set transversally, we say that exists a transversal homoclinic point. (Recall that

p̄ = (...p fm−1(p) ...f(p) p, ...) for m being the period of p.)

Consider now two sub-manifolds W 1 and W 2 transversal to (x̃, r). By theorem 1.22,

{W s
loc(y)}y∈Wu

loc(x̃) is a continuous family of C1 embedded disks with size(W s
loc(y)) > α1.

There exist two open sub-manifolds Ŵ 1 and Ŵ 2 such that we can well define a so-called

Holonomy map that

H : Ŵ 1∩F∆l
(x̃, r) −→ Ŵ 2 ∩ F∆l

(x̃, r) (1.13)

z 7−→ Ŵ 2 ∩W u
loc(y). (1.14)

Whenever z = Ŵ 1 ∩W s
loc(y) and y ∈ ∆l.

Definition 1.29. The family F∆l
(x̃, r) is said to be absolutely continuous if every

holonomy map constructed as above is absolutely continuous with respect to mW 1 and

mW 2.(i.e. holonomy maps are measurable and take Lebesgue zero sets of W 1 into Lebesgue

zero sets of W 2.)

There are results from [LQ](theorem iii,5,1) that ensures the absolute continuity of

the family F∆l
(x̃, r).

1.5.1 Lambda Lemma

We use Lambda lemma in different places during the proof of main theorem.

Definition 1.30 (Homoclinic Equivalent Classes). Two hyperbolic periodic points p and q

are in a transversal homoclinical relation if W s(O(p)) t W u(q̄) 6= ∅ 6= W s(O(q)) t W u(p̄)

and it is denoted by p ∼ q. The class of all such periodic points in a transversal homo-

clinical relation with some hyperbolic periodic point p, we call Homoclinic Equivalent

Class of p and denote it by [p].

Lemma 1.31 (λ−Lemma[R2]). If p is a hyperbolic fixed point of map f , and Σ is

an embedded C1 sub-manifold of M intersecting W s
δ (p) transversally, near p then for n

large enough fn(Σ) contains an embedded manifold Σn which is C1−close to W u
δ (p̄) where

p̄ = (...pppp...) ∈M f .
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1.6 SRB Property and Main Results

Let f : M → M a C2 endomorphism and M closed Riemannian manifold and µ ∈
Mf (M). The f̃ -invariant Borel probability measure on M f corresponding to µ we denote

it with µ̃.

Definition 1.32 (Unstable Partition Sub-Ordinate to W u). A measurable partition

ζ of M f is said to be subordinate to W u manifolds of (f, µ) if for µ̃-a.e. x̃, ζ(x̃) has the

following properties:

• π|ζ(x̃) : ζ(x̃)→ π(ζ(x̃)) is bijective

• There exists a k(x̃) dimensional C2 embedded sub-manifold Wx̃ of M , such that

Wx̃ ⊂ W u(x̃), π(ζ(x̃)) ⊂ Wx̃ and π(ζ(x̃)) contains an open neighborhood of x0 in

Wx̃, this neighborhood being taken in the topology of Wx̃ as a sub-manifold of M .

Using the local unstable sets W̃ u
loc(x̃) of f in M f , it is possible to construct a suitable

measurable partition of M f subordinate to W u-manifolds. For this purpose the following

σ−algebra will be considered:

Bu = {B ∈ Bµ̃(M f )| x̃ ∈ B implies W̃ u(x̃) ⊂ B.}

Where Bµ̃(M f ) is the completion of B(M f ) with respect to µ̃. It fact it consists the

measurable subsets of M f which are unions of some global unstable sets.

Following proposition of [QZ] shows that there exists a measurable partition of M f

sub-ordinate to W u-manifolds of f .

Proposition 1.33. There exists a measurable partition η of M f which has the following

properties:

• f̃−1η ≥ η

• ∨+∞
n=0 f̃

−nη is equal to the partition into single points.

• B(
∧+∞
n=0 f̃

nη) = Bu, µ̃−mod 0, where B(η) is the σ-algebra consisting of all measur-

able η-sets for a measurable partition η of M f .

Definition 1.34 (SRB Property). We say that the f -invariant measure µ has the SRB

property, if for every measurable partition ζ of M f subordinate to W u-manifolds of (f, µ)

we have, for µ̃-a.e. x̃ ∈M f ,

π(µ̃ζx̃) ≺≺ mu
x̃,
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Ṽ ⊂ Mf
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x

Figure 1.3: SRB Property

where {µ̃ζx̃}x̃∈Mf is a canonical system of conditional measures of µ̃ associated with ζ,

π(µ̃ζx̃) is the projection of µ̃ζx̃ under π|ζ(x̃) : ζ(x̃)→ π(ζ(x̃)) and mu
x̃ denotes the Lebesgue

measure on W u
loc(x̃) induced by its inherited Riemannian structure.

In In figure 1.3, let Ṽ ⊂ M f a Borel subset with µ̃(Ṽ ) > 0. Suppose that Ṽ is the

disjoint union of a continuous family W̃ u− discs in the form of W̃ u
loc(x̃) from proposition

1.33. Then µ̃ux̃ is the conditional probability measure of µ̃ on the element of partition

containing x̃.

We also have the following Pesin entropy formula for endomorphisms from [QZ].

Theorem 1.35. Let f be a C2 endomorphism on M with an f−invariant Borel probability

measure µ satisfying the integrability condition (??). Then the entropy formula holds

hµ(f) =

∫

M

Σi λi(x)+mi(x) dµ(x) (1.15)

if and only if µ has the SRB property.

There is an Important Remark in this work that we use it in different part of the

proves of theorems. We bold it here.

Place η as a measurable partition of M f sub-ordinate to W u of f with respect to µ

a hyperbolic ergodic measure with SRB property. Let {µ̃ux̃} be the canonical system of

conditional measures of µ̃ associated with partition η and mu
x̃ be the Lebesgue measure

on Wx̃ induced by its Riemannian structure as a sub-manifold of M . Let

Ju(x̃) := |det(dxf |Eux̃ )|

for µ̃−a.e x̃ ∈ M f . Then we can define a density function ρx̃ for πµ̃ux̃ with respect to mu
x̃
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such that

Θ(x̃, ỹ) :=
ρ(x̃)

ρ(ỹ)
=

+∞∏

k=1

Ju(f̃−k(x̃))

Ju(f̃−k(ỹ))
.

By lemma VII.9.1 of [QXZ]:

Lemma 1.36. For µ̃−a.e.x̃, ỹ the Θ(x̃, ỹ) is well-defined Lipschitz function on η(x̃) and

is uniformly bounded away from 0 and ∞ on η(x̃).

Observation 1.37 (Important Remark). F. Ledrappier and L.-S. Young [LY] showed

first for diffeomorphisms that for measures which accept Pesin entropy formula, the densi-

ties dµux/dm
u
x are given by strictly positive functions that are C1 along unstable manifold.

(µux is the unstable conditional measure and mu
x the induced Lebesgue inherited from Rie-

mannian structure.) Using above lemma on endomorphisms, from now on we assume

the unstable conditional measures on M , to be similar with Lebesgue W u−conditionals

induced from Riemannian structure.

1.6.1 Ergodic Component and SRB Property

However the base of this work is settled on the assumption of ergodic hyperbolic

measures, but also in the lack of ergodicity for measures, using ergodic decomposition

theorem [KH], theorem 3.17 and proposition 1.39 we can obtain the same result. We use

Margulis-Ruelle inequality which is an important concept that connects metric entropy

with Lyapunov exponents. Following theorem II.1.1 of [QXZ] gives a version of Margulis-

Ruelle inequality for C1 maps.

Theorem 1.38. Lef f be a C1 map of a compact, smooth Riemannian manifold M . If µ

is an f -invariant Borel probability measure on M , then

hµ(f) ≤
∫

M

∑

i

λ+
i (x)mi(x) dµ(x),

where −∞ < λ1(x) < · · · < λr(x) <∞ are Lyapunov exponents of f at x and mi(x) is the

multiplicity of λi(x) for each i = 1, 2, .., r(x).

Proposition 1.39. Almost all ergodic components of µ are hyperbolic and SRB.

Proof. The hyperbolicity is easy to see because if not it is possible to find a positive

measure set, where µ is not hyperbolic and this is a contradiction. For SRB property

case, we know that by ergodic decomposition and Margulis-Ruelle inequality, there exists
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a probability measure µ̂ in the space of all probability measures with supp in ergodic

measures M(f), such that hµ =
∫
M(f)

hν dµ̂(ν) ≤
∫ ∑

i λ
+
i (x) dµ counting multiplicities.

From the other side by theorem VII.1.1 of book [QXZ] µ has SRB property if and only if

hµ(f) =

∫

M

∑

i

λ+
i (x) dµ(x).

They clearly imply that µ̂-almost every ν will satisfy the entropy formula and so it has

SRB property.
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Chapter

2

Katok Closing Lemma

In this chapter we are going to give the definition of Lyapunov metrics near regular

points which give us the facility of considering the linear parts of f along the trajectory

of such a point as a uniformly hyperbolic operator. After that we will see the Katok

version of closing lemma for non-singular endomorphisms (local diffeomorphisms), and

consequently the existence of transversal homoclinic intersection for a hyperbolic periodic

point derived from closing lemma. This construction is mostly based on Katok’s paper

[K1]. The proof is similar to diffeomorphism case.

2.1 Lyapunov charts

Let f be a C2− endomorphism of a closed Riemannian surface M . Assume that we

have a non-empty Pesin Block ∆̃l for l > 1. We can change the metric on ∆̃l so that f |∆̃l

looks uniformly hyperbolic. This happens by replacing the induced Riemannian metric

on TxnM (x̃ = (xn) ∈ ∆̃l) by a new metric. It removes the need for constants elχ/100 in

measuring the hyperbolicity of each ∆̃l. Let choose real numbers 0 < λ́ < µ́ < ∞ such

that

λ́ = λ− 2ε, µ́ = µ− 2ε. (2.1)

We can define the new metric < ., . >′x̃ as:

< vs, ws >
′
x̃:=

∞∑

m=0

< dfm(vs), df
m(ws) >xn e

2λ′m; (2.2)
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where vs, ws ∈ Es(x̃, 0), and

< vu, wu >
′
x̃:=

∞∑

m=0

< df−m(vu), df
−m(wu) >x−n e

2λ′m; (2.3)

where vu, wu ∈ Eu(x̃, 0). Now for (v, w) ∈ Tx0M that v = vs + vu, w = ws +wu, let define

< v,w >′x̃:= max{< vs, ws >
′
x̃, < vu, wu >

′
x̃}. (2.4)

The new metric induces a new norm ‖.‖′x̃ on Tx0M :

‖vs‖′x̃ = (
∞∑

m=0

e2λ′m‖dx0f
m(vs)‖2)1/2,

‖vu‖′x̃ = (
∞∑

m=0

eµ
′m‖(dx0f

m|Eu(x̃,0))
−1(vu)‖2)1/2,

‖v‖′x̃ = max{‖vs‖′x̃, ‖vu‖′x̃}.

Observe that above series converges. For instance if x̃ ∈ ∆̃l then by 2.1 and definition

1.14 taking ε = χ
100

,

‖vs‖′x̃2
=

∞∑

m=0

e2(λ−2ε)m‖dx0f
m(vs)‖2

≤
∞∑

m=0

e2(λ−2ε)me2εle−2(λ−ε)m‖vs‖2

= ‖vs‖2e2εl(
∞∑

m=0

e−εm)2 (2.5)

⇒ ‖vs‖′x̃ ≤ ‖vs‖e
lχ
100

∞∑

m=0

e
−χ
100

m <∞.

Similarly for ‖vu‖′x̃. As it was mentioned in above lines, the new metric exhibits

a local ”hyperbolicity” which is independent of x̃ ∈ ∆̃l. For example we see that for

vs ∈ Es(x̃, 0), vu ∈ Eu(x̃, 0):

‖dx0f(vs)‖′f̃(x̃)
≤ e−

98
100

χ‖vs‖′x̃,
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‖dx0f(vu)‖′f̃(x̃)
≥ e

98
100

χ‖vu‖′x̃.

Also exist the following estimate on the norms (‖.‖ is the induced Riemannian norm

on TxM).
1

2
‖v‖ ≤ ‖v‖′x̃ ≤ al‖v‖ ∀x̃ = (xn) ∈ ∆̃l (2.6)

where al = C e
lχ
100 which C =

∑∞
n=0 e

− χ
100

n. The right hand estimate is observable through

2.5 and for the left hand estimate we observe that if v = (vs, vu) ∈ TxM then ‖v‖2 ≤
(‖vs‖+ ‖vu‖)2. Using the definition of Lyapunov norm we have

‖vs‖ ≤ ‖vs‖′x̃ and ‖vu‖ ≤ ‖vu‖′x̃.

Without any loss of generality suppose that in 2.4, ‖v‖′x̃ = ‖vs‖′x̃. Then

‖v‖2 ≤ ‖vs‖′x̃2
+ ‖vs‖′x̃2

+ 2‖vs‖′x̃‖vs‖′x̃ = 4‖v‖′x̃2 ⇒ 1

2
‖v‖ ≤ ‖v‖′x̃.

The ‖.‖′x̃ is called Lyapunov Norm. The following proposition 2.3 of [K1] is about the

existence of Lyapunov charts.(Figure 2.1)

Proposition 2.1. There exists a number r > 0 so that for every point x̃ ∈ (R̃ =
⋃
l ∆l)

we can find a neighborhood B(x̃) around the point x = π(x̃) and a diffeomorphism Φx̃ :

Br ×Br → B(x̃)(Br is Euclidean closed r-disc around the origin in R). Also there exists

a family of C1 maps Fx̃ : Br ×Br → R× R satisfying the following properties:

1. Φx̃(0) = π(x̃);

2. Fx̃(z) = Φ−1

f̃(x̃)
◦ f ◦ Φx̃(z) (for z = (u, v) ∈ Br ×Br);

3. Fx̃ has the form:

Fx̃(u, v) = (Ax̃ u+ h1
x̃(u, v), Bx̃ v + h2

x̃(u, v),

such that:

h2
x̃(0, 0) = h2

x̃(0, 0) = 0, dh1
x̃(0, 0) = dh2

x̃(0, 0) = 0

and

‖Ax̃‖ ≤ e
−99
100

χ, ‖Bx̃‖ ≥ e
99
100

χ.

(all the norms are considered as Euclidean.)
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x̃ f̃(x̃)

x f(x)

Φx̃ Φf̃(x̃)

Fx̃ = Φ−1
f̃(x̃)

◦ f ◦ Φx̃

f

π

f̃
Mf

M

R2R2

0

Figure 2.1: Lyapunov Charts

For z ∈ Br×Br let hx̃(z) = (h1
x̃(z), h2

x̃(z)), then ‖(dhx̃)z1− (dhx̃)z2‖ ≤ Υ al ‖z1−z2‖
where Υ is an absolute constant.

4. the metric ‖.‖′x̃ depends continuously on x̃ over any set ∆̃l.

5. for any z ∈ M the decomposition TzM = dΦx̃R× dΦx̃R depends continuously on x̃

for such x̃ ∈ ∆̃l that z ∈ B(x̃).

We may diminish the size of the neighborhood B(x̃) and change it to R(x̃) = Φx̃(Bηl×
Bηl). Let suppose

λ(χ) = max{1/2, e−99
100

χ, } (2.7)

then for x̃ ∈ ∆̃l,

ηl =
(1− λ(χ))2

100
(2 Υ)−1(a−1

l ).

For z = (u, v) ∈ Φ−1
x̃ (R(x̃)) using above estimation we gain the following estimate for the

non-linear part of Fx̃.

‖(dhx̃)z‖ ≤ Υal‖z‖ ≤
(1− λ(χ))2

100
(2.8)

(Notice that ηl is not depending on x̃ ∈ ∆̃1.)

This new R(x̃) is called standard x̃−box or Lyapunov chart.
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Figure 2.2: unstable manifolds for x̃1 6= x̃2 such that π(x̃1) = π(x̃2) = x.

2.2 Admissible Manifolds

Fix some 0 < h ≤ 1 and for some x̃ ∈ ∆̃l when necessary we can shrink R(x̃)

uniformly to R(x̃, h) = Φx̃(Bh ηl ×Bh ηl). Then for 0 < γ < 1, δ ≥ 0, 0 < h ≤ 1, the set of

one-dimensional admissible (s, h, x̃)−manifolds and one dimensional admissible(u, h, x̃)−
manifolds near the point x on R(x̃, h), will be defined respectively as:

Sγ,δ,hx̃ = {Φx̃(graph φ)|φ ∈ C1(Bs
h ηl
, Bu

h ηl
), ‖φ(0)‖ ≤ δ, ‖d φ‖ ≤ γ} (2.9)

Uγ,δ,h
x̃ = {Φx̃(graph φ)|φ ∈ C1(Bu

h ηl
, Bs

h ηl
), ‖φ(0)‖ ≤ δ, ‖d φ‖ ≤ γ}. (2.10)

Let d(., .) be the distance function generated by the given Riemannian metric on M ,d̃(., .)

the corresponding distance function on M f as defined in 1.1 and d′x̃(., .) the Lyapunov

distance generated by metric < ., . >′x̃.

Following proposition shows that for a γ and any sufficiently small δ then Uγ,δ,h
x̃ is

f−invariant and every admissible manifold belonging to that, is expanding. For χ > 0

and λ = λ(χ), let γ = γ(χ) = 1−λ
20

we will have:

Proposition 2.2. Suppose that x̃ ∈ ∆̃1, δ ≤ hηl/2 and N ∈ Uγ,δ,h
x̃ .

• f(N) ∩R(f̃(x̃), h) ∈ Uλγ,δ( 1+λ
2

),h

f̃(x̃)
;

• for any two points y1, y2 ∈ N ;

d′
f̃(x̃)

(f(y1), f(y2)) > (
1

2λ
+

1

2
)d′x̃(y1, y2)

Proof. The proof will be similar as the proof of proposition 2.4 of [K1].

Lemma 2.3. For any l > 1, β < 1/4, 0 < h ≤ 1 there exists a number α = α(χ, l, β, h)
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s.t. if x̃, ỹ ∈ ∆̃l and d̃(x̃, ỹ) ≤ α, N ∈ U4βγ, h β ηl, h
ỹ resp. (N ∈ S4βγ, h β ηl, h

ỹ ) then N is an

admissible (u, h, x̃)−manifold (resp.(s, h, x̃)−manifold) near the point x.

Proof. Fix a small Pesin block ∆̃l for some l > 1 such that x̃, ỹ ∈ ∆̃l. Using properties

of Pesin blocks and 2.1 we see that Lyapunov charts depend continuously on x̃ over ∆̃1.

When d̃(x̃, ỹ) ≤ α then by definition of admissible manifolds we see that N not only is

an admissible (u, h, ỹ)−manifold (resp.(s, h, ỹ)−manifold) near the point y but also an

admissible (u, h, x̃)−manifold (resp.(s, h, x̃)−manifold) near the point x.

Proposition 2.4. Let x̃ ∈ ∆̃l, 0 < h ≤ 1. Then any admissible (s, h, x̃)-manifold near

the point x intersects any admissible (u, h, x̃)-manifold near to x at exactly one point and

the intersection is transversal.

Proof. – (i) Existence: Let K = Φx̃(graph (ψ)), L = Φx̃(graph (ψ̄)) be an admissible

(s, h, x̃)- manifold and an admissible (u, h, x̃)- manifold near x respectively, such that:

ψ ∈ C1(Bs(hηl/2), Bu(hηl/2)) and ψ̄ ∈ C1(Bu(hηl/2), Bs(hηl/2)).

Let us consider the map ψ̄ ◦ ψ : B(hηl/2))→ B(hηl/2)). Since this map is continuous it

has a fixed point u0 (by the Brower fixed point theorem). Thus, ψ̄(ψ(u0)) = u0 or:

(u0, ψ(u0)) = (ψ̄(ψ(u0)), ψ(u0)). (2.11)

But (u0, ψ(u0)) ∈ graphψ and (ψ̄(ψ(u0), ψ(u0)) ∈ graph (ψ̄) therefore 1.14 implies

that:

Φx̃(u0, ψ(u0)) ∈ K ∩ L.

(ii) Uniqueness. Let (u0, v0) ∈ graphψ ∩ graph (ψ̄). If (u, v) ∈ graphψ then following

inequalities hold:

‖v − v0‖ ≤ γ‖u− u0‖ (2.12)

‖v − v0‖ ≥ γ−1‖u− u0‖. (2.13)

Since γ < 1, the inequalities 2.12 and 2.13 are satisfied simultaneously only for u = u0,

v = v0.

(iii) Transversality. Once more let (u0, v0) ∈ graph (ψ) ∩ graph (ψ̄). If θ = (θ1, θ2) ∈
T(u0,v0)graph (ψ) then:
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‖θ2‖ ≤ γ‖θ1‖. (2.14)

If θ = (θ1, θ2) ∈ T(u0,v0)graph (ψ̄) then:

‖θ2‖ ≥ γ−1‖θ1‖.

Thus if θ ∈ T(u0,v0)graph (ψ) ∩ T(u0,v0)graph (ψ̄) then by 2.13 and 2.14 we have θ = 0.

This means that the intersection is transversal.

2.3 Katok closing lemma for Endomorphisms

Let µ be an ergodic invariant measure for an endomorphism f : M →Mwith non-zero

Lyapunov exponents.

Lemma 2.5. (Main Lemma-) Let f be a C2 endomorphism of a compact Riemannian

surface M . For any positive numbers l, δ there exists a number % = %(l, δ) > 0 such that

if for some point x̃ ∈ ∆̃l (Pesin block) and some integer m one has

f̃m(x̃) ∈ ∆̃l and d̃(x̃, f̃m(x̃)) < %, (2.15)

then there exists a point z ∈M and z̄ ∈M f such that z = π(z̄) and

• fm(z) = z and f̃m(z̄) = z̄;

• dfm(x, z) < δ;( dfm is defined as dfm(x, z) = max0≤i≤m−1 d(f ix, f iz).)

• the point z is a hyperbolic periodic point for f and its W s
loc(x) and W u

loc(z̄) manifolds

are admissible manifolds near the point x respectively.

Let fix some number β > 1+λ(χ)
10

, and for some 0 < h ≤ 1 assume that d̃(x̃, f̃m(x̃)) < α.

Where α = α(χ, l, β, h) comes from lemma 2.3. Remember that for a Pesin block, the

Lyapunov metrics depend continuously on x̃. Then for any 0 < τ < 1, we can find the %

in a way that for ∀ỹ1, ỹ2 ∈ R(x̃, h):

τ <
d′x̃(ỹ1, ỹ2)

d′
f̃m(x̃)

(ỹ1, ỹ2)
< τ−1. (2.16)
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Proof. The proof of closing lemma for an endomorphism of a compact connected surface

M in general is similar to the diffeomorphism case. Using the same method as in Katok’s

paper summarizing some details, we try to give the general idea of the proof in 3 steps.

• Step 1: Define Φx̃(0) = x and denote by A0 and B0 the following manifolds:

A0 = Φf̃m(x̃)(Bhηl × {0}) ∈ S0,0,h

f̃m(x̃)
, B0 = Φx̃({0} ×Bh ηl) ∈ U0,0,h

x̃ .

A0 and B0 are respectively admissible (s,h,f̃m(x̃)) and (u,h,x̃) manifolds near x

(Lemma 2.3). Notice that they can be extended to some B̃0 ∈ Uγ,0,h
x̃ and Ã0 ∈∈

Sγ,0,hx̃ for some small γ > 0 and we continue denoting them by A0 and B0.

Lets choose some Lyapunov charts made through the forward orbit of x̃ and back-

ward orbit of f̃m(x̃) lets define the manifolds Ai0, B
i
0 for i = 1, 2, ...,m− 1 as:





A1
0 = f−1

f̃m(x̃)
(A0) ∩R(f̃m−1(x̃), h),

A2
0 = f−1

f̃m−1(x̃)
(A1

0) ∩R(f̃m−2(x̃), h),
...

Ai0 = f−1

f̃m−i−1(x̃)
(Ai−1

0 ) ∩R(f̃m−i(x̃), h), for i = 1, 2, ...,m− 1





B1
0 = f(B0 ∩R(x̃, h))

B2
0 = f(B1

0 ∩R(f̃(x̃), h))
...

Bi
0 = f(Bi−1

0 ∩R(f̃ i−1(x̃), h)), for i = 1, 2, ...,m− 1

And let

A1 = f−1

f̃−1(x̃)
(Am−1

0 ) ∩R(x̃, h) (2.17)

B1 = f(Bm−1
0 ) ∩R(x̃, h) (2.18)

Notice that f−1Ai0 may have different pre-images. We take the one which has

intersection with chosen Lyapunov chart and to be more clear, in context we are

denoting it as f−1

f̃m(x̃)
. Moreover again by Lemma 2.3 when d(x, fm(x)) is small

enough then A1 and B1 become admissible manifolds near x. (figure 2.3)

Now using induction we can define An, A
1
n, ..., A

m−1
n , Bn, B

1
n, ..., B

m−1
n , n = 1, 2, ...

in the following way
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Figure 2.3





A1
n = f−1

f̃m(x̃)
(An) ∩R(f̃m−1(x̃), h),

Ain = f−1

f̃m−i−1(x̃)
(Ai−1

n ) ∩R(f̃m−i(x̃), h),
...

An+1 = f−1

f̃−1(x̃)
Am−1
n ∩R(x̃, h), i = 2, ...,m− 1

(2.19)





B1
n = f(Bn ∩R(x̃, h))

Bi
n = f(Bi−1

n ∩R(f̃ i−1(x̃), h)), i = 2, ..,m− 1
...

Bn+1 = f(Bm−1
n ) ∩R(x̃, h)

(2.20)

Am, Bm are respectively admissible stable and unstable manifolds near to x. By

Proposition 2.4 we know that every admissible (s, h, x̃)−manifold Ak, k ≥ 1 near

the point x, intersects any other admissible (u, h, x̃)−manifold Bl, l ≥ 0 near x in

exactly one point and their intersection is transversal. We denote this points of

transversal intersections by zk,l. Obviously x = z10 and fm(x) = z01. (Figure2.3)

Lemma 2.6. If k ≥ 1, l ≥ 0 then fm(zk, l) = zk−1, l+1.
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Proof. We need to show that

1. fmzk, l ∈ Ak−1

2. fmzk, l ∈ Bl+1

By definition zk, l = Ak ∩ Bl which means zk, l ∈ Ak, that implies fmzk, l ∈ fmAk ⊂
fm−1Am−1

k−1 ⊂ ... ⊂ Ak−1. For 2, it is enough to show that for i = 1, ...,m− 1:

f izk, l ⊂ Bi
l .

If this happens then fm−1zk, l ⊂ Bm−1
l and fmzk, l ⊂ f(fm−1zk, l) ⊂ f(Bm−1

l ). But

since fmzk, l ⊂ Ak−1 ⊂ R(x̃, h) then fmzk, l ∈ Bl+1 = f(Bm−1
l ) ∩ R(x̃, l). To see

that f izk, l ⊂ Bi
l , by induction on i, suppose f i−1zk, l ∈ Bi−1

l and use the definition

2.20.

Assume we choose τ in 2.16 to be

τ > (1/2 + 1/2λ)−1/100

(λ = λ(χ) is the same as, in the proposition 2.1.) For every k1, k2 ≥ 1, l ≥ 0:

d′x̃(zk1,l, zk2,l) ≤ λ′d′x̃(zk1−1,l+1, zk2−1,l+1) (2.21)

where λ′ = λ′(χ,m) = (1/2 + 1/2λ)−m+1/100 < 1.

Through the construction of zk,l we have f izk,l ∈ Bi
l ∩ R(f̃ i(x̃), h). The Bl is an

admissible (u, h, x̃)− manifold near the point x. Remind that by Proposition 2.2,

for y1, y2 ∈ Uγ(χ),δ,h
x̃ where δ ≤ hηl/2 and γ =

1− λ
20

:

d′
f̃(x̃)

(f(y1), f(y2)) > (1/2λ+ 1/2)d′x̃(y1, y2). (2.22)

Now using 2.22 and lemma 2.16 and the fact that f izk,l ∈ Bi
l ∩R(f̃ i(x̃), h):

d′x̃(zk1−1,l+1, zk2−1,l+1) ≥ τd′
f̃mx̃

(zk1−1,l+1, zk2−1,l+1)

≥ τ(1/2 + 1/2λ)md′x̃(zk1,l, zk2,l)

≥ λ́−1d′x̃(zk1,l, zk2,l).

In a similar way is possible to see that 2.21 works for k ≥ 0, l1, l2 ≥ 1 and we have
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the following two inequalities:




d′x̃(zk1,l, zk2,l) ≤ λ′d′x̃(zk1−1,l+1, zk2−1,l+1)

d′x̃(zk,l1 , zk,l2) ≤ λ′d′x̃(zk+1,l1−1, zk+1,l2−1)
(2.23)

Lemma 2.7. limk→∞ d′x̃(zk,k−1, zk−1,k) = 0.

Proof. By triangular inequality we have that

d′x̃(zk,k−1, zk−1,k) ≤ d′x̃(zk,k−1, zk−1,k−1) + d′x̃(zk−1,k−1, zk−1,k). (2.24)

Let estimate each term in the right-hand part of inequality:

The points zk,k−1 and zk−1,k−1 belong to the admissible (u, h, x̃)−manifold Bk−1.

From lemma 2.6 we have fmzk, l = zk−1, l+1, then:




fm(k−1)zk−1, k−1 = z0, 2k−2 ∈ B2k−2

fm(k−1)zk, k−1 = z1, 2k−2 ∈ B2k−2.
(2.25)

For every i = 0, ..., k − 2 by 2.23:

d′x̃(zk−1−i, k−1+i, zk−i, k−1+i) ≤ λ′d′x̃(zk−2−i, k+i, zk−1−i, k+i)

and so:




d′x̃(zk,k−1, zk−1,k−1) ≤ λ́k−1d′x̃(z1,2k−2, z0,2k−2) ≤ 2ηlhλ́

k−1

d′x̃(zk−1,k−1, zk−1,k) ≤ λ́k−1d′x̃(z2k−2,1, z2k−2,0) ≤ 2ηlhλ́
k−1

(2.26)

Going back to 2.24 reminding that λ′ < 1 implies:

lim
k→∞

dx̃(zk, k−1, zk−1, k) = 0.

Using above lemmas, when k → ∞, the two sequences zk−1,k and zk,k−1 k = 1, 2, ...

converge to some z ∈ R(x̃, h). In other words

fmz = lim
k→∞

fmzk,k−1 = lim
k→∞

zk−1,k = lim
k→∞

zk,k−1 = z.

Consequently we have z̄ = (...z f(z) ...fm−1(z) z ...) which is periodic with the same
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period. This proves the first item of the Main Lemma.

• Step 2: Since we had f izk,l ∈ f−1(Bi+1
l ) = Bi

l ∩R(f̃ i(x̃), h) and f is continuous,

f i(z) = lim
k→∞

f izk,k−1 ∈ R(f̃ i(x̃), h).

Consequently (for a chosen µ-ergodic measure and χ = min |λj|, j = 1, 2 as ηl

is considered to be a constant not depending on x̃ ∈ ∆̃ =
⋃
χ,l ∆l(χ, l)) taking

η(f̃ i(x̃)) = r,

d′
f̃ i(x̃)

(f ix, f iz) ≤ 2hηl ≤ 2hr.

The M is compact and 2.6 estimate says that exists K = 1/2 thus for any ỹ ∈ ∆̃l

and every two points w1, w2 ∈ R(x̃, 1):

d(w1, w2) < K−1d′ỹ(w1, w2).

Therefore:

dfn(x, z) ≤ max
0≤i≤n−1

d(f ix, f iz) ≤ d′
f̃ i(x̃)

(f ix, f iz) ≤ 2K−1hr

Now taking h < δ
r

we obtain the second item of the Main Lemma.

• Step 3: The last step of the proof is showing the hyperbolicity of dzf
n. As z stays

near to the Pesin block along its orbit, hence a natural conclusion is that, he picks

up enough hyperbolicity, even may belong to ∆l. To show this fact Katok uses cone

method that to avoid of prolonged calculations we shall omit the counts and may

bring some parts in Appendix A.

Assuming the hyperbolicity of dzf
n (Appendix), we need to show that the local

stable- unstable manifolds of z are admissible manifolds. Katok shows for diffeo-

morphisms the case of local stable manifolds and the same can happen for stable

manifolds of endomorphisms too. We bring the proof for local unstable manifolds

in a x̃−chart view and the rest can be viewed in step 7 of [K1]. The general

idea for this part comes from looking at extended Ak, Bk, (k = 0, 1, ...) admissible

(1, x̃)−manifolds with x̃ ∈ ∆̃l. Define the following set:
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Ux̃ : = {Wj|(u, 1, x̃)− admissible unstable manifolds near x}
= {Φx̃(graph(ψi))|ψi ∈ C0(Bηl/2, Bηl/2)}.

Let W1,W2 ∈ Ux̃, then we can define the metric

ρ(W1,W2) = max
u∈Bηl/2

‖ψ1(u)− ψ2(u)‖

which provides a C0- topology with closure U x̃ compact. Consequently exists a sub-

sequence Bnl , (l = 1, 2, ...) of Bn, (n = 0, 1, ..) such that converges to some manifold

B ⊂ Ux̃ in this C0-topology. Showing that B is contained in the local unstable

manifold of z̃ we conclude that locally near z the manifold W u(z̃) would have the

following form:

W u
loc(z̃) = Φx̃(graphψ)

where ψ ∈ C0(Bηl/2, Bηl/2) ⊂ B ⊂ Ux̃.

Lemma 2.8. For w ∈ B we will have

– f−mn
f̃m(x̃)

w ∈ R(x̃, 1), n = 1, 2, ...;

– for some constants C > 0, λ̂ < 1 : d(f−mn
f̃m(x̃)

w, f−mnz̃ z) < C λ̂mnd(w, z).

Proof. Before entering in the proof of lemma, recall that x̃ is the recurrent point of

closing lemma belonging to ∆̃1 and exists some integer m and % = α > 0 such that

d̃(x̃, f̃m(x̃)) < α. fixing some n. Exists a sequence of points wl ∈ Bnl such that

w = liml→∞wl. By 2.20 we see that:

Bnl ⊂ R(x̃, 1)⇒ f−mn
f̃m(x̃)

w ∈ R(x̃, 1).

and using 5.1, 2.6 and 2.16:

d(f−mn
f̃mx̃

w, z) = d(f−mn
f̃mx̃

w, f−mn
f̃mx̃

z) ≤ d′
f̃m(x̃)

(f−mn
f̃m(x̃)

(w), f−mn
f̃m(x̃)

(z))

< 2τ−1 d′x̃(f
−mn
f̃m(x̃)

(w), f−mn
f̃m(x̃)

(z))

< 2τ−1(
1

2
+

1

2λ
)−mn d′

f̃m(x̃)
(w, z)

< 2τ−1al(
1

2
+

1

2λ
)−mn d(w, z).
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Taking λ̂ = ( 1
2λ

+ 1
2
)−1 < 1 and C = 2τ−1al > 0 we reach to the second item of

the lemma. This lemma specially helps to conclude that B is contained in the local

unstable manifold of z̄. Therefore locally near z the manifold W u(z̄) will have the

following form:

W u
loc(z̄) = Φx̃(graphψ)

where ψ ∈ C0(Bηl/2, Bηl/2) ⊂ B ⊂ Ux̃.

This ends the last step of the proof of closing lemma.

2.4 Hyperbolic Periodic Orbits and Horseshoe

We say that a compact f -invariant set Γ is a horseshoe of f if there exist positive

integers l, m and subsets Γ0, · · · , Γm−1 of M such that

Γ = Γ0 ∪ · · · ∪ Γm−1, f(Γi) = Γi+1 (mod−m),

and the inverse limit f̃m|Γ̃0
: Γ̃0 → Γ̃0 of fm|Γ0 : Γ0 → Γ0 is topologically conjugate to a

full-shift in l-symbols. Here Γ̃0 is defined as

Γ̃0 = {x̃ = (xn) ∈M f : xn ∈ Γ0, for all n ∈ Z}.

In a similar way as for diffeomorphisms, we can claim that the following theorems are

valid for endomorphisms. Let

Perh(f) = {p ∈ Per(f) : p is hyperbolic and has transversal homoclinic point.}

Theorem 2.9. Let f : M →M a C2 endomorphism of a compact Riemannian manifold.

Assume that ν is a hyperbolic f -invariant measure, then Suppν ⊂ Per(f). Where Per(f)

is the set of hyperbolic periodic points.

Proof. For ν a hyperbolic f−invariant measure, we can consider its unique f̃− invariant

measure ν̃ on M f that π∗(ν̃) = ν. Suppose ỹ be a point belonging to supp ν̃ and π(ỹ) = y.

Let take B(ỹ, ε) with ν̃(B(ỹ, ε)) > 0 and choose ∆̃l in a way that ν̃(B(ỹ, ε) ∩ ∆̃l) > 0.

Considering the % in closing lemma, we can choose V ⊂ B(ỹ, ε) ∩ ∆̃l with ν̃(V ) > 0

and diameter less than %. Now applying the Poincare recurrence theorem and Closing

lemma, we find z̄ a hyperbolic periodic point belonging to V . Once ν̃(B(ỹ, ε)) > 0, then



2.4 Hyperbolic Periodic Orbits and Horseshoe 39

ν(B(y, ε)) = ν̃(π−1(π(B(ỹ, ε)))) ≥ ν̃(B(ỹ, ε)) > 0 and we can conclude that the hyperbolic

point z = π(z̄) ∈ B(y, ε) and Suppν ⊂ Per(f).

Theorem 2.10. Let ν be a non-atomic hyperbolic measure. Then

• Suppν is contained in the closure of the set of hyperbolic periodic points that have

transverse homoclinic points;

• if ν is ergodic then Supp ν is contained in the closure of the set of transverse homo-

clinic points of exactly one hyperbolic periodic point.

Proof. Fix x̃ a point in Supp ν̃ and take B̃(x̃, ε/4) in such a way that for l > 0, then

ν̃(B̃(x̃, ε/4)∩∆̃l) > 0 and B̃(x̃, ε/4) ⊂ ∆̃l . We take two distinct points x̃1, x̃2 ∈ B̃(x̃, ε/4).

Using Poincar recurrence theorem and closing lemma, for some smaller disjoint balls

around each of these points, we show that exists z̄1 6= z̄2 hyperbolic periodic points. By 2.5

and 2.4, exists W u(z̄i) as (u, 1, x̃)-admissible and W s(z̄i) as (S, 1, x̃)-admissible manifolds

which intersect transversally in exactly one point. The existence of these transversal

intersections can guarantee that z1, z2 ∈ M are transversal homoclinic points (they are

the projections of z̄1 and z̄2). In fact once we have these transversal intersections using

λ−lemma, we can show that z1, z2 are transversal homoclinic points. To prove the second

statement it is enough to show that the closure of the set of transverse homoclinic points

of a periodic point in M is f -invariant. More details in theorem 15.4.3 of [BP2] or theorem

4.2 of [K1].

Theorem 2.11. Let f : M →M be a C2 endomorphism. Suppose that f has a continuous

non-atomic hyperbolic measure. Then there exists a hyperbolic horseshoe for f .

Proof. The existence of a horseshoe is an immediate consequence of last theorem.
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Chapter

3

Ergodic Homoclinic Classes and

Proof of Theorems

The notion of ergodic homoclinic classes comes from works of [HHTU]. F. Rodriguez

Hertz, M. Rodriguez Hertz, A. Tahzibi and R. Ures, defined this notion proving the

uniqueness of SRB measures for surface transitive diffeomorphisms. Here we will define

them in a similar way for endomorphisms.

3.1 Ergodic Homoclinic Classes.

For f : M → M a C2 non-uniformly hyperbolic endomorphism on a smooth closed

Riemannian surface M . We can define the Ergodic Homoclinic Class (EHC) for a hyper-

bolic periodic point p ∈M with period n, as Λ(p) := Λs(p) ∩ Λu(p), where

Λs(p) := {x ∈ R|W s(x) t W u(p̄) 6= ∅}, (3.1)

and

Λu(p) := {x ∈ R|W u(x) t W s(O(p)) 6= ∅}. (3.2)

Where R = π(R̃) from Oseledet’s theorem and W s(O(p)) =
⋃n
i=0W

s(f i(p)). Notice that

W s(x) = W s(x̃) by Observation 1.23. Similarly for p̄ = (...p1 p2 ... pn p1 p2...) ∈ M f we
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may define the inverse limit ergodic homoclinic class (ẼHC)as Λ̃(p̄) := Λ̃s(p̄) ∩ Λ̃u(p̄).

Λ̃(p̄) := {x̃ ∈ R̃|∃n ≥ 0 s.t.W u(x̃) t W s(O(p)) 6= ∅, W s(f̃n(x̃)) t W u(p̄) 6= ∅}.

Suppose µ is a hyperbolic f -invariant Borel probability measure. By Theorem 1.1 exists

the unique f̃−invariant measure µ̃ on M f corresponding to µ. Observe that by Definition

π(Λ̃(p̄)) = Λ(p).

Take x̃ ∈ ∆̃l a recurrent point in the support of µ̃ restricted to the Pesin block ∆̃l.

Use closing lemma to find a hyperbolic periodic point p̄. We prove two crucial lemmas

about the Ergodic homoclinic class of p̄.

Lemma 3.1. µ̃(Λ̃(p̄)) > 0 and µ(Λ(p)) > 0;

Let B̃ be a small ball around x̃ such that µ̃(B̃ ∩ ∆̃l) > 0 . By the last item in the

closing lemma 2.5, W u(p̄) and W s(p̄) are respectively admissible manifolds near to x. By

continuity of stable and unstable manifolds in the Pesin blocks and using propositions

2.3,2.4, choosing B̃ small enough, for any point ỹ ∈ B̃∩ ∆̃l, we have that the by transver-

sality arguments ỹ ∈ Λ̃(p̄). The second claim in the lemma is clear from the definition of

µ̃. (see 1.1)

Lemma 3.2. Λ̃(p̄) is f̃−invariant and Λ(p) is forward-invariant.

We will show that Λ̃(p̄) is f̃−invariant and the second claim is a simple consequence

of definition. Firstly let us prove that f̃(Λ̃(p̄)) ⊂ Λ̃(p̄). Recall that Λ̃(p̄) = Λ̃s(p̄) ∩ Λ̃u(p̄)

and Λ(p) = Λs(p) ∩ Λu(p). Without of loss of generality suppose that p is a hyperbolic

fixed point, then:

x̃ ∈ Λ̃u(p̄)⇒ W u(x̃) t W s(p) 6= ∅
⇒ f(W u(x̃)) t W s(p) 6= ∅
⇒ W u(f̃(x̃)) t W s(p) 6= ∅
⇒ f̃(x̃) ∈ Λ̃u(p̄).

x̃ ∈ Λ̃s(p̄)⇒ W s(x) t W u(p̄) 6= ∅
⇒ f(W s(x)) t W u(p̄) 6= ∅
⇒ W s(f(x)) t W u(p̄) 6= ∅
⇒ f̃(x̃) ∈ Λ̃s(p̄).
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Now we prove that Λ̃(p̄) ⊂ f̃(Λ̃(p̄)). We divide the proof into two steps:

• Λ̃u(p̄) ⊂ f̃(Λ̃u(p̄)): Take x̃ = f̃(f̃−1(x̃)) ∈ Λ̃u(p̄). Let us verify that f̃−1(x̃) ∈
Λ̃u(p̄) or by definition W u(f̃−1(x̃)) t W s(p̄) 6= ∅. By contradiction suppose that

W u(f̃−1(x̃)) t W s(p̄) = ∅. So,

f(W u(f̃−1(x̃))) t f(W s(p̄)) = ∅
⇒ W u(x̃) t W s(p̄) = ∅.

which yields a contradiction.

• Λ̃s(p̄) ⊂ f̃(Λ̃s(p̄)): Once again taking x̃ = f̃(f̃−1(x̃)). We need to prove that ∃n ≥ 0

such that W s(f̃n−1(x̃)) t W u(p̄) 6= ∅. By contradiction, suppose that

W s(f̃n−1(x̃)) t W u(p̄) = ∅
⇒ W s(f̃n(x̃)) t W u(p̄) 6= ∅.

which yields a contradiction.

Finally observe that π(Λ̃(p̄)) = π(f̃(Λ̃(p̄)) = f(π(Λ̃(p̄))) ⇒ f(Λ(p)) = Λ(p). Using λ-

lemma we have the following result.

Lemma 3.3. If p and q are two homoclinically related periodic points, then Λu(p) = Λu(q).

Proof. We will show that Λu(p) ⊂ Λu(q). Let take x ∈ Λu(p) and obtain that x ∈ Λu(q)

and vise-versa. For simplicity we suppose that p and q are hyperbolic fixed points. As

x ∈ Λu(p) means for some x̃ ∈ R̃, W u(x̃) t W s(p) 6= ∅. To say that x ∈ Λu(q), we need

to show W u(x) t W s(q) 6= ∅. For this purpose we use λ-lemma for a small disc around

W u(x̃) t W s(p) 6= ∅. Then exists some large k that makes some part of fk(W u(x̃))

sufficiently C1 close to W u(p̄) in a way that using p ∼ q,

fkW u(x̃) t W s(q) 6= ∅ (3.3)

Observe that by definition W u(f̃k(x̃)) = fk(W u(x̃)) and fk(W s(q)) = W s(q),∀k ∈ Z+.

Now we claim that also happens W u(x̃) t W s(q) 6= ∅. that is because if not, W u(x̃) t

W s(q) = ∅, and fk(W u(x̃)) t fkW s(q) = ∅ which contradicts the 3.3.

the same process can be done for showing Λu(q) ⊂ Λu(p), and therefore Λu(p) = Λu(q)

and the proof ends.
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x

p

q

Figure 3.1: Lambda-lemma

3.2 Ergodic Criterion.

In this section we are going to show that if Λ(p) for p ”some hyperbolic periodic

point” has positive measure, then it coincide with a hyperbolic ergodic component which

contains p. Before giving the main theorem of this part we need to remember once again

that f is not invertible necessarily and this may do not give enough information through

Birkhoff Ergodic Theorem on M . For this reason we will write the inverse limit version

of BET on natural extension of system (M, f).

Definition 3.4 (Density Point). Let (X, d) a metric space and µ any Borel probability

measure and Bε(x) is a ball around x for any small ε > 0 (in metric topology). We call x

the density point of a subset A ∈ B(X) if:

lim
ε→0

µ(Bε(x) ∩ A)

µ(Bε(x))
= 1.

Theorem 3.5 (Birkhoff Theorem for Natural Extension[M4]). Let f̃ : M f → M f be the

lift homeomorphism on inverse limit space of f and µ̃ the unique f̃ -invariant lift measure

of a Borel probability f -invariant measure µ on M . Let φ̃ ∈ C(M f ) a continues function

on M f . For µ̃ almost every point x̃ ∈M f we have lim 1
n

∑n−1
j=0 φ̃(f̃ j(x̃)) exists and goes to

some φ̄(x̃) that is a µ̃- integrable function with φ̄ ◦ f̃ = φ̄ and moreover
∫
φ̄dµ̃ =

∫
φ̃dµ̃.

In particular if µ is ergodic on M , then φ̄ is constant µ̃ .a.e.
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Observation 3.6. By Birkhoff theorem on Natural Extension which we may denote it as

B̃ET , we see that for any given f̃ -invariant µ̃ as above, and φ̃ ∈ C(M f ),

φ̄±(x̃) = lim
n→±∞

1

n

n−1∑

j=0

φ̃(f̃ j(x̃))

µ̃−a.e. exists and moreover almost every point x̃ ∈M f , φ̄±(x) is f̃ -invariant and φ̄+(x̃) =

φ̄−(x̃).

Lemma 3.7 (Typical points for continuous functions). There exists an invariant set J̃ of

typical points with µ̃(J̃) = 1 such that for all φ̃ ∈ C(M f ), if x̃ ∈ J̃ then for all ω̃ ∈ W̃ s(x̃)

and µ̃ a.e.ω̃ ∈ W̃ u(x̃),

φ̄+(x̃) = φ̄+(ω̃).

Proof. Let us consider the following full measure set of typical points:

S̃0 = {x̃ ∈M f : φ̄+andφ̄− are well − defined at x̃ and φ̄+ = φ̄−}.

Recall that µ̃ almost everywhere point in S̃0 is regular. For almost all x̃ ∈ S̃0, we have

that µ̃ux̃ almost everywhere ζ̃ ∈ W̃ u
loc(x̃) then ζ̃ ∈ S̃0. Since if not, then would exist a

µ̃−positive measure Ã ⊂ M f of points that are not typical. To see more precisely, look

at A = π(Ã), the projection of Ã on M . It will have some µ−positive measure subset

B that the elements do not belong to S0 = π(S̃0). In fact for every such x ∈ A, there is

a subset Bx ⊂ W u
loc(x̃)\S0 with µux̃(Bx) > 0 that considering a density point y of A and

integrating along a transverse small disk T , we obtain B ⊂M\S0 that

µ(B) =

∫

T

µux(Bx) dµT > 0.

This is an absurd because firstly the existence of such B contradicts with µ(S0) = 1 and

secondly if you look at the pre-image of this set, by definition µ̃(π−1(B)) = µ(B) > 0 and

π−1(B) ∩ S̃0 = ∅. Which contradicts with B̃ET too.

Now let

S̃1 = {x̃ ∈ S̃0 : µ̃ux̃ − almost everywhere ζ̃,∈ W̃ u(x̃), ζ̃ ∈ S̃0}.

For all x̃, ζ̃ ∈ S̃1, we have

φ̄+(x̃) = φ̄−(x̃) and φ̄+(ζ̃) = φ̄−(ζ̃). (3.4)

On the other hand from continuity of φ̃ we know that φ̄−(ζ̃) = φ̄−(x̃) for all ζ̃ ∈ W̃ u(x̃)}.
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This plus 3.4 conclude that φ̄+(ζ̃) = φ̄+(x̃). As S̃1 is an f̃−invariant set,( by B̃ET , φ̄

is f̃−invariant) we take J̃ = S̃1. Notice that φ̃ is a continuous function and using the

definition of stable sets, φ̄+ becomes constant on W̃ s
loc(x̃).

Lemma 3.8. Given φ̃ ∈ L1(M f ), there exists an invariant set S̃φ̃ ⊂ M f with µ̃(S̃φ̃) = 1

such that if x̃ ∈ S̃φ̃ then µ̃ux̃−a.e ỹ ∈ W̃ u(x̃) satisfies

φ̄+(ỹ) = φ̄+(x̃).

Proof. Given φ̃ ∈ L1(M f ), as C(M f ) is dense in L1(M f ) therefore we can take a sequence

of continuous functions φ̃n converging to φ̃. By B̃ET , µ̃−a.e x̃, φ̄+
n (x̃) exists and φ̄+

n (x̃)

converges to φ̄+(x̃). As M f is a compact metric space so exists a subsequence φ̄+
nk

such that

µ̃−a.e x̃ converges to φ̄+(x̃). The intersection of this set of almost everywhere convergence

with the set S̃1 of lemma 3.7 for every of φ̄+
nk

gives us the desired S̃φ̃.

Following two theorems play important roles in this chapter.

Theorem 3.9. Let f : M →M a C2 endomorphism over a compact manifold M equipped

with a hyperbolic measure µ with SRB property. So if µ̃(Λ̃(p̄)) > 0,then

Λ̃u(p̄) ⊂◦ Λ̃s(p̄).

Proof. First remind that by definition Λ̃(p̄) := Λ̃u(p̄) ∩ Λ̃s(p̄) where

Λ̃u(p̄) := {x̃ ∈ R̃|π(x̃) = x, W u(x̃) t W s(p) 6= ∅}; (3.5)

Λ̃s(p̄) := {x̃ ∈ R̃|π(x̃) = x, ∃n ≥ 0, s.t W s(f̃n(x̃)) t W u(p̄) 6= ∅}. (3.6)

To show Λ̃u(p̄) ⊂◦ Λ̃s(p̄) µ̃- a.e. It is enough to show that x̃ ∈ Λ̃u(p̄) ∩ S̃1Λ̃s
implies

x̃ ∈ Λ̃s(p̄).

Let take ỹ ∈ Λ̃s(p̄) an auxiliary point in a way that for l > 0 both x̃, ỹ lies in the same pesin

block ∆̃l and ỹ ∈ supp(µ̃|∆̃l∩Λ̃s(p̄)). As ỹ ∈ Λ̃s(p̄) then by definition W s(y) t W u(p̄) 6= ∅.
Take s ∈ W s(y) t W u(p̄) 6= ∅ then d(fn(s), fn(y))

n→∞−−−→ 0. It says that for large enough n

and some δ > 0 small, the d(W u(p̄), fn(y)) < δ/2. Let continue the proof using following

two small lemmas.

Lemma 3.10. If exists a µ̃ux̃- positive measure subset, of W̃ u(x̃) belonging to Λ̃s(p̄), then

x̃ ∈ Λ̃s(p̄).
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Proof. The Λ̃s(p̄) is f̃−invariant and 1Λ̃s(p̄) = 1Λ̃s(p̄) ◦ f̃ . This implies that if x̃ /∈ Λ̃s(p̄)

then µ̃ux̃ − a.e.ỹ ∈ W̃ u
loc(x̃) does not belong to Λ̃s(p̄).

Lemma 3.11. If exists some m ∈ N such that a µ̃u
f̃m(x̃)

- positive measure subset, of

W̃ u(f̃m(x̃)) belong to Λ̃s(p̄),then x̃ ∈ Λ̃s(p̄).

Proof. This comes from the fact that x̃ ∈ S̃1Λ̃s
and S̃1Λ̃s

is an f̃−invariant set. The rest

will be a corollary of last lemma.

Now let continue the proof of the theorem 3.9. Recall fn(y) from beginning part of

proof, using Poincaré recurrence theorem, let choose n in a way that f̃n(ỹ) ∈ ∆̃l and

put α := fn(y). By definition x ∈ Λu(p) and W u(x̃) t W s(p) 6= ∅ and α is such that

W s
δ (α) t W u(p̄) 6= ∅. Using λ- lemma we find some large m that fm(x) ∈ ∆l and

W u(f̃m(x̃)) t W s
δ (α) 6= ∅. (∗)

By hypothesis µ is hyperbolic with SRB property and π∗(µ̃ux̃) � mu
x̃. Let call π∗(µ̃ux̃) =

µux̃. The conditional measures are similar (continuous) with respect to mu
x̃, the Lebesgue

measure on W u
x̃ . We want to find a positive µ̃ux̃− subset of W̃ u(x̃) such that belongs to

Λ̃s(p̄). Using lemma 3.11 it is enough to find it on local unstable manifold of some iterate

of x on M and then looking at its pre-image on M f .

α

Bδ(α)

Wu(p̄)

fm(x)

y

pW s
loc(p)

x

Wu(x̃)

Figure 3.2: Ergodic criterion
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For this purpose, remind that ỹ ∈ Supp(µ̃|∆̃l∩Λ̃s(p̄)) and α is a point of ∆l = π(∆̃l).

Consider the ball B̃δ(α̃) around α̃. Covering B̃δ(α̃) with measurable sub-ordinate partition

with respect to W u, exists some density point z̃ ∈ ∆̃l such that looking at W̃ u(z̃), the

µ̃uz̃ (S̃|Λ̃s(p̄) ∩ ∆̃l ∩ B̃δ(α̃)) > 0. We call this set Z̃. The Z̃ ⊂ W̃ u
loc(z̃) and projects on

W u(z̃) ∩ Bδ(α) which contains z = π(z̃) where Bδ(α) := π(B̃δ(α̃)). Looking at the local

stable foliation passing through the points belong to Z, we have

mu
f̃m(x̃)

(Z∗) > 0⇒ µu
f̃m(x̃)

(Z∗) > 0.

Where Z∗ is the set obtained on W u(f̃m(x̃)) through stable holonomy and by definition

µ̃u
f̃m(x̃)

(π−1(Z∗)) = µu
f̃m(x̃)

(Z∗) > 0.

Which completes the proof and says that x̃ ∈ Λ̃s(p̄).

Corollary 3.12. An immediate conclusion of the above theorem will be that

Λu(p) ⊂◦ Λs(p).

Theorem 3.13. Let f : M →M be a C2 endomorphism over a compact manifold M and

µ any measure with SRB property. If µ̃(Λ̃(p̄)) > 0 for a hyperbolic periodic point p̄,then

µ̃|Λ̃(p̄) is an ergodic component of µ̃.

Proof. For simplicity once again let assume that p̄ is a hyperbolic fixed point. As

µ̃(Λ̃(p̄)) > 0, taking any f̃− invariant continuous function φ̃ : M f → R, we show that

µ̃-a.e. points in Λ̃(p̄)∩ J̃ (J̃ is the set of typical points from 3.7) are φ̄+−constant. Which

implies the ergodicity of µ̃|Λ̃(p̄). Let choose arbitrary x̃, ỹ ∈ ∆l ∩ Λ̃(p̄) ∩ S̃1 := Γ̃ for some

l > 0. Without loose of generality we may assume that such x̃, ỹ are in the support of

µ̃|Λ̃(p̄). Using Poincar recurrence theorem these points come back infinitely many times

to Γ̃.

Table 3.1: Optimal information

∈ x̃ ỹ
Λ̃s(p̄) W s(x) t W u(p̄) 6= ∅ W s(y) t W u(p̄) 6= ∅
Λ̃u(p̄) W u(x̃) t W s(p) 6= ∅ W u(ỹ) t W s(p) 6= ∅
J̃ = S̃1 µux̃ .a.e.ω ∈Wu

loc(x̃)⇒φ̂+(x) = φ̂+(ω) µuỹ .a.e.ω ∈Wu
loc(ỹ)⇒φ̂+(y) = φ̂+(ω)

Recall the definition of ẼHC as visible in table 3.1. Then
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• ỹ ∈ Λ̃s(p̄) and for some large iterate n, it happens that f̃n(ỹ) ∈ Γ̃ as well as

W s
δ (fn(y)) t W u(p̄) 6= ∅ for some δ > 0 small.

• x̃ ∈ Λ̃u(p̄) and using λ−lemma similar to the proof of last theorem we can find

some iterate m of x̃ such that belongs to Γ̃ and W u(f̃m(x̃)) is C1 enough close to

W u(p̄).(Let it be δ/2 close.)

Again considering the table 3.1 Let B̃δ(f̃
n(ỹ)) be a small ball around point f̃n(ỹ) ∈ Γ̃

and cover the ball by a measurable partition sub-ordinate with respect to W u.(µ is a

measure with SRB property.) Looking at Bδ(f
n(y)) the projection of B̃, it is covered

by parts of unstable manifolds containing fm(x) and fn(y). Considering µ̃−a.e elements

of Pesin blocks as density points, we can find some z̃ ∈ B̃δ(f̃
n(ỹ)) ∩ Γ̃ that µ̃uz̃−a.e.

η̃ ∈ W̃ u(z̃)⇒ φ̄+(z̃) = φ̄+(η̃). Let show the set of all such η̃, with Z̃. Behold that

µuz̃ (Z) = µ̃uz̃ (π
−1(π(Z))) ≥ µ̃uz̃ (Z̃) > 0, Z = πZ̃.

The Z becomes a subset of W u
loc(z̃) ∩ Bδ(f

n(y)) and using local stable lamination

through the points of Z = π(Z̃) we can find a µu
f̃nx̃

-positive subset Z∗ ⊂ W u
loc(f̃

m(x̃))

that φ̂+(fmx) = φ̂+(z) = cte for z ∈ Z. Now µ̃u
f̃m(x̃)

(π−1(Z∗)) = µu
f̃nx̃

(Z∗) > 0 and as

they belong to W̃ s(z̃), ∀z̃ ∈ Z̃, then by Lemma 3.7 and 3.11 and considering a similar

process on W u
loc(f̃

n(ỹ)), we can confirm that φ̄+(x̃) = φ̄+(ỹ) = cte for µ̃−a.e. x̃ ∈ Γ̃. This

proves that µ̃|Λ̃(p̄) is an ergodic component.

Observation 3.14. In above theorem φ̂ is supposed to be Birkhoff forward sum for the

f−invariant φ(x) = φ̃[x̃]. Where x̃ ∈ π−1(x) and [x] contains all the pre-images projecting

on x. The φ in this way is well defined and it is possible to show that by f̃− invariance

of φ̃ then

∀ỹ ∈ [x̃]⇒ φ̃(ỹ) = φ̃(x̃).

3.3 Proof of Theorems

The proves of theorems B and C are somehow similar to the last step of the proof of

the main theorem. First we bring the proof of main theorem and after that in last two

subsections the proves of theorems B and C are accessible.
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3.3.1 Proof of the Main Theorem

Following the method of [HHTU] and using above implements we see that ergodic

homoclinic classes are in a close relationship with ergodic components of a measure.

In fact for any two hyperbolic ergodic measure µ and ν with SRB property, we show

that they are supported on the ergodic homoclinic class of some periodic point showing

them respectively with pµ and pν and once the periodic points are in the same homoclinic

equivalent class, then the measures become the same. Briefly we can say that the strategy

of the proof consists of three steps:

• Finding p̄µ̃ and p̄ν̃ ;

• Λ̃(p̄µ) = Λ̃(p̄ν);

• µ and ν are the same.

Theorem 3.15 (Main Theorem A.). Let f : M → M be a C2 endomorphism over a

closed Riemannian surface M . Then,

]{Ergodic Hyperbolic Measures with SRB Property} ≤ ]{Homoclinic Equivalent Classes.}

Proof. Let remind the definition of p ∼ q from definition 1.30 and take [p] the homoclinic

equivalent class of p. For every pµ, qν ∈ [p], (periodic points corresponding to ergodic

measures µ and ν) they are in a transversal homoclinical relation. Then proposition 3.16

and theorem 3.18 will guarantee the intersection of the basin of two measures supported

on Λ(pµ) and Λ(qν). This, proves the equality of measures up to homoclinic equivalent

classes.

Proposition 3.16. If p and q are two homoclinically related periodic points, then Λ(p) =

Λ(q).

Proof. Lemma 3.3 plus theorem 3.9 implies the proposition.

Theorem 3.17. f : M → M a C2 endomorphism over a compact manifold M equipped

with a hyperbolic measure µ with SRB property. Then for any ergodic component ν of it,

there exists a hyperbolic periodic point p such that ν(Λ(p)) = 1.

Proof. Suppose that ν is an ergodic component of a hyperbolic measure µ with SRB

property. In proposition 1.39 we have seen that ergodic components are also hyperbolic

with SRB property. By Theorem 1.1 and lemma 1.3 we conclude the existence of the
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unique ergodic ν̃ push-forwarding on ν. In section 3.1 we observed that µ̃(Λ̃(p̄)) > 0 and

we have shown that Λ̃(p̄) is f̃− invariant. They all together dispatches ν̃(Λ̃(p̄)) = 1 and

consequently ν(Λ(p)) = 1.

Theorem 3.18. Let µ and ν be ergodic measures with SRB properties such that µ̃(Λ̃(p̄)) =

ν̃(Λ̃(p̄)) = 1 for some hyperbolic periodic points p, then µ = ν.

Proof. Let B(µ̃) and B(ν̃) be respectively the basins of µ̃ and ν̃, where they are the

inverse limit measures corresponding to µ and ν.

B(µ̃) = {x̃ : limn→∞
1

n

n−1∑

0

φ̃(f̃ i(x̃)) =

∫
φ̃ dµ̃ ∀ φ̃ ∈ C(M f )};

B(ν̃) = {x̃ : limn→∞
1

n

n−1∑

0

φ̃(f̃ i(x̃)) =

∫
φ̃ dν̃ ∀ φ̃ ∈ C(M f )};

By hypothesis µ̃(Λ̃(p̄)) = ν̃(Λ̃(p̄)) = 1 and by B̃ET 3.5, we can define Bµ̃ and Bν̃ such

that µ̃(Bµ̃) = ν̃(Bµ̃) = 1. They are as following:

Bµ̃ = {x̃ : limn→±∞
1

n

n−1∑

0

φ̃(f̃ i(x̃)) =

∫
φ̃ dµ̃ ∀ φ̃ ∈ C(M f )};

Bν̃ = {x̃ : limn→±∞
1

n

n−1∑

0

φ̃(f̃ i(x̃)) =

∫
φ̃ dν̃ ∀ φ̃ ∈ C(M f )};

It means µ̃ (resp.ν̃)-a.e. point x̃ ∈ Λ̃(p̄) belongs to Bµ̃ (resp.Bν̃). If we show that

B(µ) ∩ B(ν) 6= ∅ or equivalently Bµ ∩ Bν 6= ∅ then we are done. (Two ergodic measures

that their basin has intersection, are the same.)

Let cover the Λ̃(p̄)∩Bµ̃ with sub-ordinate partition with respect to unstable manifolds.

Take x̃ ∈ Λ̃(p̄) a point which µ̃ux̃(Bµ̃ ∩ Λ̃(p̄)) = 1. By SRB property of µ and remark 1.37

we will have mu
x̃(Bµ ∩ Λ(p)) = 1 where Bµ := π(Bµ̃).

There exists some ∆̃l, l ≥ 1 a Pesin block for ν̃|Λ̃(p̄) near p̄ that considering ỹ ∈ ∆̃l∩∆̃(p̄)

a ν̃− density point of Bν̃ ∩Bδ(p̄), then mu
ỹ(Bν ∩∆l) > 0. Here Bν := π(Bν̃),∆l = π(∆̃l).

By Poincaré recurrence theorem ỹ returns back infinitely many times to ∆̃l ∩ Bν̃ and

consequently y to ∆l ∩ Bν . Moreover ỹ ∈ Λ̃(p̄), so exists some large iterate n that

α̃ = f̃n(ỹ) such that W u(α̃) becomes δ/2-close to W u(p̄) in a similar way that has been

explained in ergodic criteria section. Figure 3.2



52 Ergodic Homoclinic Classes and Proof of Theorems

From the other side x̃ ∈ Λ̃(p̄) and x belongs to Λu(p). Using λ-lemma we may find

some large iterate of x̃ (call it m) such that W u(f̃m(x̃)) becomes near enough to W u(p̄)

in a way that for a positive νuα̃-measure z ∈ ∆l ∩Bν then W s
δ (z) t W u(f̃m(x̃)) 6= ∅.

The stable lamination on a Pesin block is absolutely continuous [QXZ] and it implies

that mu
f̃m(x̃)

(Bν ∩∆l) > 0. Also mu
f̃m(x̃)

(Bµ) = 1 which both together implies Bµ ∩Bν 6= ∅
which finishes the proof.

Theorem 3.18 and proposition 3.16 assert the proof of main theorem and demons

trates that the number of the measures with SRB properties are equal with the number

of homoclinic equivalent classes where Λ̃(p̄µ̃) = Λ̃(q̄ν̃).

3.3.2 Proof of Theorem B

We see that for non-uniformly expanding endomorphisms similar to the diffeomor-

phisms case [HHTU], it occurs the uniqueness of the measure with SRB property.

Theorem 3.19 (Theorem B.). For f : M → M a topologically transitive C2 endo-

morphism over a closed Riemannian surface M , there exists at most one non-uniformly

expanding measure with SRB property.

Proof. Let (f, µ) and (f, ν) be two C2 topologically transitive endomorphism of non-

uniformly expanding type and µ, ν two ergodic f−invariant Borel probability measures

with SRB property. By definition a topologically transitive map has this property that

for any two open sets U, V ⊂M exists some n ∈ N that fnU ∩V 6= ∅. For any continuous

map φ : M → R let B(µ) and B(ν) be the basin of measures µ and ν.

By Birkhoff Ergodic theorem for continuous map 3.5 we have µ(B(µ)) = 1 and

ν(B(ν)) = 1. From the other side we have µ̃ and ν̃ the corresponded ergodic mea-

sures on the inverse limit space 1.1,?? which by B̃ET their basin also become with total

measure.

By Proposition 1.33 there exists a measurable partition sub-ordinate to W u on M f .

Let consider this partition and disintegrate the µ̃ along the partition elements. µ̃ux̃ will

have full conditional measures on W̃ u
loc(x̃). By SRB property of µ and observation 1.37

we can claim that m([W u
loc(x̃) ∩B(µ)]c) = 0. As W u

loc(x̃) is an open subset of M , let take

U = W u
loc(x̃). Using the same process from ν, we can obtain another open set V such that

m([V ∩B(ν)]c) = 0.
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Now by transitivity of f , there exists some n ∈ N such that fn(U)∩V 6= ∅ and by the

fact that f is a local diffeomorphism, we obtain

m(fn(U ∩B(µ)) ∩ (V ∩B(ν))) > 0.

Therefore B(µ) ∩B(ν) 6= ∅ and this yields the unity of measures µ and ν.

3.3.3 Proof of Theorem C

In this section we try to give a simple definition of partially hyperbolic endomorphisms

and then giving the idea of the proof of the following theorem.

Definition 3.20. [T1] We call a C2 map f : M →M a partially hyperbolic endomorphism

if there are positive constants λ and C also a continuous decomposition of the tangent

bundle TM = Ecu ⊕ Es with dimEcu = dimEs = 1, such that

• ‖dfn|Es(z)‖ < e(λn−c) and

• ‖dfn|Ecu(z)‖ < e(−λn+c)‖dfn|Es(z)‖

for all z ∈ M and n ≥ 0. The sub-bundles Ecu and Es are called the central and stable

sub-bundle, respectively.

Theorem 3.21 (Theorem C). Let f : M →M be a topologically transitive C2 partially

hyperbolic endomorphism with a continuous decomposition of the tangent bundle TM =

Es ⊕ Ecu. Then there exists at most one hyperbolic measure with SRB property.

Proof. To prove the uniqueness of measure for this case, suppose that µ, ν are two ergodic

measures with SRB property. As it is known, their corresponded measures µ̃ and ν̃ are

ergodic and by B̃ET we have µ̃(R̃ ∩ B(µ̃)) = 1. Let take a measurable partition sub-

ordinate to W u from 1.33. By disintegration along this partition, there exist some W̃ u
loc(x̃)

for some x̃ ∈ R̃ ∩B(µ̃) such that for µ̃−a.e. ỹ ∈ W̃ u
loc(x̃), we have ỹ ∈ B̃(µ̃) ∩ R̃.

After projecting to the ambient manifold, we obtain π∗µ̃ux̃(B(µ)∩W̃ u
loc(x̃)) = 1. Now by

Remark 1.37 we have mu
x̃(B(µ)c) = 0. Consider Uµ :=

⋃
z∈Wu

loc(x̃)W
s
loc(z). By continuity

of stable foliation (which exist in the partially hyperbolic case, using Perron-Hadamard

technique [HPSh]) Uµ is almost open. This means that Uµ differs from an open set in a

Lebesgue zero subset.
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Using the same process we obtain Uν corresponding to measure ν. As f is topologically

transitive and local diffeomorphism, then exists some n ∈ N such that

m(fn(Uµ) ∩ Uν) > 0⇒ m(B(µ) ∩B(ν)) > 0

Which means B(µ) ∩B(ν) 6= ∅.



Chapter

4

Examples and Problems

Diffeomorphisms are simple example of endomorphisms where by results od [HHTU] it

happens the uniqueness of SRB measures. Examples of non-uniformly hyperbolic systems

with non-zero Lyapunov exponents that theorem applies on them, are Anosov endomor-

phisms with Ω(f) = M , where Ω(f) is the non-wandering set and M the ambient closed

Riemannian manifold. For such topologically transitive examples[P], using theorem C we

can show that the measures with SRB property becomes unique. M. Urbanski and C.

Wolf in [UW] also show the uniqueness of measures with SRB property for Axiom A,

including Anosov endomorphisms.

There are also Kan type examples due to I. Kan [K3], constructed on a cylinder. It

supports two homoclinical equivalent classes indeed two measures with SRB property. It

would be interesting to find more examples of non-uniformly hyperbolic dynamics with

non-zero Lyapunov exponents that are not uniformly hyperbolic or a diffeomorphism.

In what follows we bring some examples which we believe the theorems are applicable.

Example I is some explanation on Kan type examples. Example II is using Katok’s

”Slow down method” from [BP2] to construct a non- uniformly hyperbolic endomorphism

in the lack of a zero measure set of points with Lebesgue zero Lyapunov exponents.

Example III is some part of the Sumi’s article [S] on constructing a ”derived from Anosov”

endomorphism with one source, and example IV is taken from [CV] about non- uniformly

expandings.
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4.1 Example I

Consider F : S1 × [0, 1]→ S1 × [0, 1] of the form F (x, t) = (kxmodZ, fx(t)) where k

is some integer number with |k| ≥ 3. Then x 7−→ kxmodZ has at least two fixed points

denoted p and q. Assume F is C2 and

• F preserves the boundary components: fx(0) = 0 and fx(1) = 1;

• fp and fq has exactly two fixed points each, a source at t = 1 (respectively t = 0)

and a sink at t = 0 (respectively t = 1);

• |dxf(t)| < 3 at every point (x, t) ∈ S1 × [0, 1];

•
∫

log dxf(0) dx < 0 and
∫

log dxf(1) dx < 0.

Let also have a look at Kan’s original example:

F (x, t) = (3t, x+ x(1− x)cos(2π t)/32).

Figure 4.1: The Kan example with two intermingled basins, colored red and blue.[M3]

As we see this type of examples are constructed boundary preserving and with at

least two fixed points in each boundary region. Let take µ1 and µ2 correspondingly the

Lebesgue measures restricted to top and bottom boundaries. Let call the top boundary

∂1 and the bottom ∂2. Then µ1 = m|∂1 and µ2 = m|∂2 . It is not difficult to see that

both µ1 and µ2 are F−invariant probabilities. Item four of the general definition for Kan

type examples can guarantee that the chosen measures are hyperbolic too. Ina private

communication M. Anderson and J. Yang mentioned that, it may be possible to construct

such transitive examples on T 2 with two SRB measures. The idea is gluing two such Kan
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type examples in a subtle way.[A] We emphasize that, if the construction is possible then

it shows that the estimate in our main theorem is optimal.

An invariant probability measure is called a Physical Measure if its basin has posi-

tive Lebesgue measure. In the case of ergodic hyperbolic measures it is possible to show

that the physical measures and measures with SRB property become the same (Appendix

A). This definition of SRB measures is commonly used in different contexts.

Observation 4.1. Proposition 11.1 of [BDV], shows that every map satisfying above

items admits exactly two SRB measures with both basins dense and with positive Lebesgue

measure.

4.2 Example II

The first example of a diffeomorphism with nonzero Lyapunov exponent, which is not

an Anosov map, was constructed by Katok [K2]. The example was constructed up to

a ” surgery” on an area-preserving hyperbolic toral automorphism with two eigenvalues

0 < µ1 < 1 and µ2 > 1.

Starting with a hyperbolic toral endomorphism f induced by the matrixAn =

(
n 1

1 1

)

using the ”slow down” method near the origin, we can obtain a new map which is non uni-

formly hyperbolic endomorphism. The construction depends upon a real-valued ”bump”

function ψ which is defined on the unit interval [0, 1] with following properties:

1. ψ is a C∞ function except for the origin;

2. ψ(0) = 0 and ψ(u) = 1 for u ≥ r0 where 0 < r0 < 1;

3. ψ̇(u) > 0 for every 0 < u < r0;

Let fix n = 3 and denote by π̄ : R2 → T 2, the natural projection. Choose p ∈ T 2 a

hyperbolic fixed point (dpf has no eigenvalue of absolute value one) that π̄(0) = p. We

can introduce a coordinate system (s1, s2) obtained from the eigen-directions of A = A3

at 0. and some p̄ ∈ π−1(p) such that p̄ = (..., a−1, a0 = 0, a1, ...) for ai ∈ R2. Consider the

disk Dr centered at 0 of radius r.

Dr = {(s1, s2) : s2
1 + s2

2 ≤ r2}.

The f can be observed as the time-one map of a flow generated by following system of

differential equation.
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ṡ1 = s1 log µ1,

ṡ2 = s2 log µ2.
(4.1)

The answers of this one order system of equation differential considering the initial con-

ditions s1(0) = s1 and s2(0) = s2 becomes:




s1(t) = s1µ

t
1,

s2(t) = s2µ
t
2

(4.2)

Fix a sufficiently small number r1 < r and consider the time-one map g generated by

the following system of differential equations in Dr1 :




ṡ1 = s1ψ(s2

1 + s2
2) log µ1,

ṡ2 = s2ψ(s2
1 + s2

2) log µ2.
(4.3)

Suppose µ1 and µ2 are eigenvalues of A. Then by the choice of bump function we can

choose a well defined g of class C∞ in Dr1\{0} that coincide with f in some neighborhood

of the boundary ∂Dr1 . Therefore the map

G(x) =




f(x) ifx ∈ T 2\Dr1 ,

g(x) ifx ∈ Dr1 .

defines an endomorphism of the Torus T 2 which is the slow down of the map f at 0.

Put W u(p) and W s(p) the global unstable-stable sets of p or the projections of the

eigen-lines in R2 to T 2 corresponding to the eigenvalues µ1 and µ2. SetW = W u(p)∪W s(p)

and X = T 2\W .

Letting x = (s1, 0) ∈ Dr1 ∩W s and considering a vector v ∈ Tx0T
2 we will have:

λ(x, v) = limt→∞
log |s1(t)|

t

= limt→∞(log |s1(t)|)′ = limt→∞
ṡ1(t)

s1(t)

= limt→∞(ψ(s1(t)2) log µ1),

where 0 < µ1 < 1 and s1(t) is the solution of 4.3 with the initial condition s1(0) = s1. By

the choice of function ψ we see that λ(x, v) = 0 and similarly happens to λ(x, v) when

x ∈ W u. The set W is a zero measure everywhere dense subset of T 2 and for x ∈ X we
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have that Lyapunov exponents are nonzero.[BP1] In the other words, G is a non- Anosov

endomorphism. Such maps are also called Derived From Anosov.

The number of measures with SRB property depends on the number of the homoclinic

equivalent classes referring to our main theorem.

4.3 Example III

This example which is somehow similar to the last one, is due to N. Sumi [S]. H shows

that on the 2-torus T 2 there exists a C1 open set U of C1 maps such that every map

belonging to U is topologically mixing but is not Anosov.

Let f : T 2 → T 2 be a C2 endomorphism, and let p ∈ T 2 be a hyperbolic fixed point of

f . The p is a sink if all the eigenvalues of dpf are less than one in absolute value and p is

a source if all the eigenvalues of dpf are greater than zero in absolute value. A hyperbolic

fixed point is a saddle if p is neither a sink nor a source.(The same definition for periodic

points.)

Suppose that f has a saddle fixed point p. Fix p̄ ∈ R2 with π̄(p̄) = p where π̄ : R2 → T 2

and there is a lifting f̄ : R2 → R2 of f such that f̄(p̄) = p̄. Obviously f̄ is a diffeomorphism

and p̄ is a saddle fixed point of f̄ . For ε > 0 define W s
ε (p̄, f̄) = {x̄ ∈ R2 : |f̄n(x̄) − p̄| ≤

ε, (n ≥ 0)} and W u
ε (p̄, f̄) = {x̄ ∈ R2 : |f̄n(x̄)− p̄| ≤ ε, (n ≤ 0)}. Taking ε small enough

then W σ
ε (p̄, f̄) is a C1 curve for σ = s, u. There exists 0 < λ̄ < 1 satisfying




|f̄n(x̄)− p̄| ≤ λ̄n|x̄− p̄| (x̄ ∈ W s

ε (p̄, f̄), n ≥ 0),

|f̄−n(x̄)− p̄| ≤ λ̄n|x̄− p̄| (x̄ ∈ W u
ε (p̄, f̄), n ≥ 0)

(Hirsch and Pugh [HP]). Put p̃ = (...p p p ...) ∈ (T 2)f . Let Then by definition π̄(W σ
ε (p̄, f̄)) =

W σ
ε (p̃, f̄) and W σ

ε (p̃, f) is also a C1 curve.

Recall the definition of W σ(p̃, f) from past and observe that stable and unstable

manifolds at p̄ of f̄ are defined as

W s(p̄, f̄) = {x̄ ∈ R2 : lim
n→∞

|f̄n(x̄)− p̄| = 0}

and

W u(p̄, f̄) = {x̄ ∈ R2 : lim
n→−∞

|f̄n(x̄)− p̄| = 0}.

So we have

π̄W s(p̄, f̄) = W s(p̃, f), W u(p̃, f) = π̄W u(p̄, f̄).
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Once again let A = A3. Let 0 < λ < 1 < µ the eigenvalues of A and vu, vs the eigenvectors

for µ and λ with |vu| = |vs| = 1. Use the coordinates u1v
u + u2v

s on R2 and denote by

Eσ the span of the eigen-vector V σ (σ = s, u). For x̄ ∈ R2 the tangent spaces Tx̄R2 and

Tπ̄(x̄)T
2 can be identified with R2 that means we can also use (u1, u2)−coordinates on

them. Note that in this coordinate

dx̄π̄ =

(
1 0

0 1

)
: Tx̄R2 −→ Tπ̄(x̄)T

2.

Let r > 0 be small enough. Then π|Br(0)
is injective where Br(0) is the ball of radius r

about 0. Take a small ŕ with 0 < ŕ < r and let δ(s) be a bump function that

δ(s) =





0 if s ≥ r,

1 if s ≤ ŕ.

Now define φ̄t(x̄) = (u1, e
δ(|(u1,u2)|) tu2) for x̄ = (u1, u2) ∈ R2 = Eu ⊕ Es and put

φt(x) =




π̄ ◦ φ̄t ◦ (π̄|Br(0)

)−1(x) ifx ∈ π̄(Br(0)),

x ifx /∈ π̄(Br(0)).

Then the derivative at p0 = π̄(0) is dp0φt =

(
1 0

0 et

)
in the (u1, u2)−coordinates. Let

fA : T 2 → T 2 be the toral endomorphism induced by the matrix A. Since 0 < λ < 1 < µ,

fA is an Anosov differentiable map and p0 = π̄(0) is a saddle fixed point of fA. Define

f = φτ ◦ fA for a fixed τ such that µ > eτλ > 1. Note that in the (u1, u2)−coordinates

the derivative of f at p0 is dp0f = dp0φτ ◦dp0fA =

(
1 0

0 eτ

)
◦
(
µ 0

0 λ

)
=

(
µ 0

0 eτλ

)
,

and thus p0 is a source.

Let p̄0 = (..., p0, p0, p0, ...) ∈ (T 2)fA . Denoting by W s
0 (p̃0, fA) the arc-wise connected

component of W s(p̄0, fA) containing p̄0, then as p̄0 is a fixed point, f(W s
0 (p̄0, fA)) =

W s
0 (p̄0, fA). We see that p0 becomes a source fixed point for f which is a monotonically

growing function on W s
0 (p̄0, fA) ∩ Br(p

0). But the slope of the graph of f on W s
0 (p̄0, fA)

is less than one outside Br(p
0). Consequently the new map f more than p0 as a source,

will have two new saddle fixed points p1 and p2 in π̄(Br(0)) as well.

Proposition C of [K1] shows that W u(P̄ i) ∩W s(pi) becomes dense and f is topologi-

cally mixing. This example by one homoclinic equivalent class, due to our main theorem,

will consist of at most one measure with SRB property.
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4.4 Example IV

Using the similar method we can construct some non-uniformly expanding map on

torus T 2. Let f : T 2 → T 2 be a linear expanding map. Linear expanding maps are

topologically exact(for any x ∈M , and any ε > 0, then exist some n ∈ N that fn(Bε(x)) =

M). Fix some covering U by domains of injectivity for f and some U ∈ U containing a

fixed (or periodic) point p. Deforming f by a pitchfork bifurcation on U in a way that p

becomes a saddle for the perturbed local diffeomorphism g. In particular, we can do it

in the C2-topology and that g coincides with f in the U c where uniform expansion holds.

We take the deformation in a way that f is not too contracting in U . This can guarantee

that f still becomes topologically exact.[CV]So that by Theorem B there would exist at

most one measure with SRB property for that.

For more details and examples of this type we refer to [BDV],[LP] ,[HG],[V].



62 Examples and Problems



Chapter

5

Appendix A

In the last step of the proof of Katok Closing lemma for C2 endomorphisms (local

diffeomorphisms), we need to show that z is a hyperbolic periodic point. For 0 < γ < 1,

from proposition 2.2, let consider the following two cones as:

Cu
γ = {(w1, w2) ∈ R× R : ‖w1‖ ≤ γ‖w2‖};
Cs
γ = {(w1, w2) ∈ R× R : ‖w2‖ ≤ γ‖w1‖}.

On the sake of simplicity let us take m = 1. For x̃ ∈ ∆̃l, (u, v) ∈ Bηl × Bηl and γ = 1−λ
20

,

let w = (w1, w2) ∈ Cu
γ . Obtaining the hyperbolicity of z we need to show the following

three items:

• Exist expanding and contracting sub-spaces Eu(z̄), Es(z̄) that TzM = Eu(z̄)⊕Es(z̄);

• (dFz̄)C̃
u
γ ⊂ C̃u

γ̂ , & (dF−1
z̄ )C̃s

γ ⊂ C̃s
γ̂;

• ‖(dFz̄(w)‖′x̃ > Ĉ‖w‖′x̃, & ‖(dF−1
z̄ )(w)‖′x̃ > (Ĉ)‖w‖.

Where C̃u
γ = (Φx̃)(u,v)(C

u
γ ), C̃s

γ = (Φx̃)(u,v)(C
s
γ) and γ > γ̂ > 0, Ĉ > 1. First we

check item 3 and 2 then we see item 1. By definition for w = (w1, w2) ∈ Cu
γ then
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‖w‖ ≤ (1− γ)−1‖w2‖ and using proposition 2.1:

‖(dFx̃)(u,v)(w1, w2)‖ = ‖(Ax̃w1 +Bx̃w2) + (dhx̃)(u,v)(w1, w2)‖
≥ ‖Bx̃w2‖ − ‖Ax̃‖ − ‖(dhx̃)(u,v)‖‖w‖

≥ λ−1‖w2‖ − λ‖w1‖ −
(1− λ)2

100
‖w‖

≥ λ−1(1− γ)‖w‖ − λ γ‖w‖ − (1− λ)2

100
‖w‖

= (λ−1 − (
λ−1(1− λ)

20
+
λ(1− λ)

20
+

(1− λ)2

100
))‖w‖

> (
1

2
+

1

2λ
)‖w‖. (5.1)

By 2.7 we see that above inequality becomes valid. (Figure 5.1)

Figure 5.1

Similarly happens that

‖(dF−1
x̃ )(u,v)(w1, w2)‖ > (

1

2
+

1

2λ
)‖w‖. (5.2)

From proof of the first item of proposition 2.2 referred to Katok’s paper [K1], we see

that for λ as 2.7:

(dFx̃)(u,v)C
u
γ ⊂ Cu

λ γ, & (dF−1
x̃ )(u,v)C

s
γ ⊂ Cs

λ γ. (5.3)
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Now let consider the periodic point z, which here, we have assumed it to be a fixed point.

Put z = Φx̃(u, v), then from proposition 2.1,

dFz̄ = (dΦf̃(x̃))(u,v) ◦ (dFx̃)(u,v) ◦ (dΦ−1
x̃ )z (5.4)

= (dΦf̃(x̃))(u,v) ◦ (dΦ−1
x̃ )z ◦ (dΦx̃)(u,v) ◦ (dFx̃)(u,v) ◦ (dΦ−1

x̃ )z. (5.5)

Observe that in above equation, (dΦx̃)(u,v)◦(dFx̃)(u,v)◦(dΦ−1
x̃ )z is an operator from TzM →

TzM and (dΦf̃(x̃))(u,v) ◦ (dΦ−1
x̃ )z transforms the ‖.‖′x̃ norm into the ‖.‖′

f̃(x̃)
.

Since dΦx̃ is transforming the Euclidean norm from R2 to the norm ‖.‖′x̃, so the

properties 5.3 happens to C̃u
γ and C̃s

γ:

(dFz̄)C̃
u
γ ⊂ C̃u

λ̂ γ
& (dF−1

z̄ )C̃s
γ ⊂ C̃s

λ̂ γ
(5.6)

for some λ̂ < 1 which can be obtained by choosing a suitable small enough % in 2.15.

From 5.1 and 5.2 and taking τ in 2.16 equal with

τ =
1 + 1−λ

2

1 + 1−λ
2λ

(5.7)

then we see that for w ∈ C̃u
γ

‖(dFz̄)(w)‖′
f̃(x̃)

> (1 +
1

2
+

1

2λ
)‖w‖′x̃ ⇒5.7 ‖(dFz̄)(w)‖′x̃ > (1 +

1− λ
2

)‖w‖′x̃. (5.8)

and similarly for w ∈ C̃s
γ,

‖(dF−1
z̄ )(w)‖′x̃ > (1 +

1− λ
2

)‖w‖′x̃.

We can define respectively the following expanding and contracting sub-spaces:

Eu(z̄) :=
∞⋂

k=0

dF k
z̄ (C̃u

γ ), & Es(z̄) :=
∞⋂

k=0

dF−kz̄ (C̃s
γ), (5.9)

that Es(z̄)⊕ Eu(z̄) = {0}, and so TzM = Es(z̄)⊕ Eu(z̄).

Following proposition is a corollary of proposition 2.2.

Proposition 5.1. Suppose that x̃, fmx̃ (x) ∈ ∆̃1 Then for δ ≤ hη(l)/2, N ∈ U
γ(χ),δ,h
x̃ we

have:

• f−m
f̃mx̃

(N) ∩R(x̃, h) ∈ Uλ−mγ(χ),δ( 1+λ
2

)−m,h

x̃ ;
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• for any two points y1, y2 ∈ N ∈ Uγ(χ),δ,h

f̃m(x̃)
;

d′x̃(f
−m
f̃m(x̃)

(y1), f−m
f̃m(x̃)

(y2)) < (1/2 + 1/2λ)−md′
f̃m(x̃)

(y1, y2)

where ‖.‖′x̃ is the Lyapunov norm as defined in chapter 2.

Proof. Considering the proposition 2.2, for x̃ ∈ ∆̃1, δ ≤ hηl/2,

N ∈ Uγ,δ,h
x̃ ⇒ f(N) ∩R(f̃(x̃), h) ∈ Uλγ,δ( 1+λ

2
),h

f̃(x̃)
.

We can conclude that f−1

f̃m(x̃)
(N) ∈ Uλ−1γ,δ( 1+λ

2
)−1,h

x̃ .
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