• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2012.tde-30032012-105214
Documento
Autor
Nome completo
Giselle Antunes Monteiro
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2012
Orientador
Banca examinadora
Federson, Márcia Cristina Anderson Braz (Presidente)
Barbanti, Luciano
Fu, Ma To
Henriquez, Claudio Rodrigo Cuevas
Marconato, Suzinei Aparecida Siqueira
Título em inglês
Generalized linear differential equations in a Banach space: continuous dependence on parameters and applications
Palavras-chave em inglês
Dynamical equations on time scales
Functional differential equations
Generalized differential equations
Kurzweil-Stieltjes integral
Resumo em inglês
The purpose of this work is to investigate continuous dependence on parameters for generalized linear differential equations in a Banach space- valued setting. More precisely, we establish a theorem inspired by the clas- sical continuous dependence result due to Z. Opial. In addition, our second outcome extends, to Banach spaces, the result proved by M. Ashordia in the framework of finite dimensional generalized linear differential equations. Roughly speaking, the continuous dependence derives from assumptions of uniform convergence of the functions in the right-hand side of the equations, together with the uniform boundedness of variation of the linear terms. Fur- thermore, applications of these results to dynamic equations on time scales and also to functional differential equations are proposed. Besides these results on continuous dependence, we complete the theory of abstract Kurzweil-Stieltjes integration so that it is well applicable for our purposes in generalized linear differential equations. In view of this, our contributions are related not only to differential equations but also to the abstract Kurzweil-Stieltjes integration theory itself. The new results presented in this work are contained in the papers [26] and [27], both accepted for publication
Título em português
Equações diferenciais generalizadas lineares em espaços de Banach: dependência contínua com relação a parâmetros e aplicações
Palavras-chave em português
Equações diferenciais funcionais
Equações diferenciais generalizadas
Equações dinâmicas escalas temporais
Integral de Kurzweil-Stieltjes
Resumo em português
O objetivo deste trabalho é investigar a dependência contínua de soluções em relação a parâmetros para equações diferenciais lineares generalizadas no contexto de espaços de Banach. Mais precisamente, apresentamos um teo- rema inspirado no resultado clássico de dependência contínua obtido por Z. Opial. Nosso segundo resultado estende, para espaços de Banach, o provado por M. Ashordia no contexto de equações diferenciais lineares gen- eralizadas em dimensão finita. Em linhas gerais, a dependência contínua decorre da convergência uniforme das funções à direita das equações, junta- mente com a limitação uniforme da variação dos termos lineares. No mais, são propostas aplicações desses resultados em equações dinâmicas em escalas temporais e também em equações diferenciais funcionais. Além dos resultados em dependência contínua, completamos à teoria de integração abstrata de Kurzweil-Stieltjes de modo que esta se adeque aos nossos propósitos em equações diferenciais lineares generalizadas. Assim, nossas contribuições dizem respeito não apenas a equações diferenciais, mas também a teoria de integração abstrata de Kurzweil-Stieltjes em si. Os resultados originais apresentados neste trabalho estão contidos nos artigos [26] e [27], ambos aceitos para publicação
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
gisellerevisada.pdf (617.55 Kbytes)
Data de Publicação
2012-03-30
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.