• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-26032018-114004
Documento
Autor
Nome completo
Marcio Roberto Weissmann
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1997
Orientador
Banca examinadora
Godoy, Sandra Maria Semensato de (Presidente)
Fichmann, Luiz
Ladeira, Luiz Augusto da Costa
Título em português
Existência de Soluções Periódicas para uma Classe de Equações Diferenciais Funcionais Retardadas e Aplicações
Palavras-chave em português
Não disponível
Resumo em português
Estamos interessados no estudo da equação: - x(t) = λx(t) + λf(x(t-1)), λ > 0. (0.1) Sob algumas hipóteses gerais a respeito de f : R → R, nós primeiramente investigamos a existência de soluções periódicas lentamente oscilantes de (0.1). Em seguida, a existência de um contínuo ilimitado de tais soluções que aparece por bifurcação de Hopf é estabelecida. Finalmente, algumas aplicações a modelos biológicos e físicos são feitas.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
We are concerned with the equation: x(t) - λx(t) + λf(x(t - 1)), λ > 0. (0.1) Under some general hypotheses on f : R → R, we firstly state the existence of slowly oscillating periodic solutions of (0.1). After this, the existence of an unbounded continuum of such solutions that appears by Hopf bifurcation is established. Finally, some applications on biological and phisical models are made.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-03-26
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.