• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-24082018-105842
Documento
Autor
Nome completo
Antonio Carlos Nogueira
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1993
Orientador
Banca examinadora
Ruas, Maria Aparecida Soares (Presidente)
Asperti, Antonio Carlos
Baldin, Yuriko Yamamoto
Título em português
IMERSÔES JUSTAS DE VARIEDADES EM ESPAÇOS EUCLIDEANOS
Palavras-chave em português
Não disponível
Resumo em português
Uma aplicação f: M → Em, de um espaço topológico compacto e conexo em um espaço Euclideano é justa se para todo semi-espaço fechado h ⊂ Em, a inclusão f-1(h) → M induz um monomorfismo em Z2-homologia de Cech. Neste trabalho consideramos aplicações com esta propriedade, enfatizando o estudo de propriedades de imersões justas de variedades em espaços euclideanos. Para variedades de dimensão 2 justeza é equivalente a curvatura total absoluta sendo mínima. Nosso principal objetivo é discutir a existência de imersões justas para superfícies em E3. Segue do trabalho de N. Kuiper, e de um resultado recente de F. Haab, que todas as superfícies, exceto o plano projetivo (x = 1), a garrafa de Klein (x = O) e o plano projetivo com uma alça (x = -1), admitem imersão justa em E3. Estudamos também uma família genérica especial de aplicações justas C-estáveis do plano projetivo em E3.
Título em inglês
Tight embeddings in Euclidean and hyperbolic spaces
Palavras-chave em inglês
Not available
Resumo em inglês
A mapping f : M → Em, from a topological compact, connected space into Euclidean space is tight if for every closed semi-space h ⊂ Em, the inclusion f-1 (h) → M induces a monomorphism in Cech Z2-homology. In this work we consider mappings with this property, emphasizing the study of properties of tight immersions of manifolds into Euclidean space. For 2-manifolds tightness is equivalent to the total absolute curvature being minimal. Our main purpose is to discuss the existence of tight immersions for surfaces into E3. It follows from the work of N. Kuiper, and recent result of F. Haab that all surfaces admit a tight immersion, except the projective plane (x = 1), the Klein's bottle (x = 0) and the projective plane with one handle (x = -1). We also study a special generic family of C-tight mapping from the projective plane into E3.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-08-24
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.