• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2005.tde-24082015-105727
Documento
Autor
Nome completo
Angela Leite Moreno
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2005
Orientador
Banca examinadora
Federson, Márcia Cristina Anderson Braz (Presidente)
Carbinatto, Maria do Carmo
Neves, Aloisio Jose Freiria
Título em português
Dicotomias em equações diferenciais impulsivas
Palavras-chave em português
Não disponível
Resumo em português
Neste trabalho, tratamos da teoria fundamental de dicotomias para certa equação diferencial linear com impulsos a tempo pré-fixado. Consideramos condições necessárias e suficientes para a existência de dicotomia exponencial e dicotomia ordinária para esta equação e apresentamos algumas consequências destes fatos. Escrevemos abreviadamente EDI para significar equação diferencial impulsiva. Alguns dos resultados interessantes contidos neste texto estão descritos a seguir. Apresentamos algumas relações entre crescimento limitado e dicotomia exponencial para a EDI em estudo. Apresentamos, também, condições para a equivalência entre a existência de dicotomia exponencial para a EDI que tratamos e a admissibilidade de certos pares de funções para uma perturbação desta EDI. Em particular, se nossa EDI tiver uma dicotomia exponencial, então, dada certa perturbação limitada, obtemos uma EDI não-homogênea que admitirá solução também limitada e vale a recíproca. Nós contribuímos com este resultado provando o fato de que o espaço das funções limitadas pode ser substituído pelo espaço das funções limitadas com limite no infinito. Assim, se a EDI tiver uma dicotomia exponencial, então dada uma perturbação limitada com limite no infinito, a EDI perturbada admitirá uma solução também limitada e com limite no infinito e a recíproca é verdadeira. Outro resultado importante diz que se a EDI estudada for quase periódica e tiver uma dicotomia exponencial sobre R+, então ela terá uma dicotomia exponencial sobre toda a reta. E a nossa contribuição aqui se deu através de um resultado mais geral que diz que se a EDI tiver uma dicotomia sobre um intervalo finito de comprimento suficientemente grande, então ela terá uma dicotomia sobre toda a reta.
Título em inglês
Dichotomies in impulsive differential equations
Palavras-chave em inglês
Not available
Resumo em inglês
In this work we deal with the fundamental theory of dichotomies for a linear differential equation with pre-assigned moments of impulse effects. We consider necessary and sufficient conditions for the existence of each of two types of dichotomies for this equation: ordinary and exponential dichotomies, and we present some consequences of these facts. We write IDE for impulsive differential equation. Some interesting results are mentioned below. We present some relations between bounded growth and the existence of exponential dichotomy for the IDE in question. We also present the equivalence between the existence of an exponential dichotomy for our IDE and the admissibility of certain pairs of function for the IDE with a perturbation. In particular, if our IDE has an exponential dichotomy, then given certain bounded perturbation, we obtain a non-homogeneous IDE which admits a bounded solution and the converse holds. We contribute to this result showing that the space of bounded functions can be replaced by the space of bounded function with limit at infinity. This means that if our IDE has an exponential dichotomy, then for any bounded perturbation with limit at infinity, the perturbed IDE admits a bounded solution with limit at infinity and we also have a converse. Another interesting result says that if the IDE we study is almost periodic and has an exponential dichotomy on M+ then it also has an exponential dichotomy on E. We generalize this results proving that if our IDE has an exponential dichotomy on a finite interval of sufficiently large length, then the IDE also has an exponential dichotomy on R.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
AngelaLeiteMoreno.pdf (2.45 Mbytes)
Data de Publicação
2015-08-24
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.