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Abstract

In this thesis, we study locally strictly convex surfaces from the affine differential
viewpoint and generalize some tools for locally strictly submanifolds of codimension
2. We introduce a family of affine metrics on a locally strictly convex surface M in affine
4-space. Then, we define the symmetric and antisymmetric equiaffine planes associated
with each metric. We show that if M is immersed in a locally strictly convex hyper-
quadric, then the symmetric and the antisymmetric planes coincide and contain the affine
normal to the hyperquadric. In particular, any surface immersed in a locally strictly con-
vex hyperquadric is affine semiumbilical with respect to the symmetric or antisymmetric
equiaffine planes. More generally, by using the metric of the transversal vector field on
M we introduce the affine normal plane and the families of the affine distance and height
functions on M. We show that the singularities of the family of the affine height functions
appear at directions on the affine normal plane and the singularities of the family of the
affine distance functions appear at points on the affine normal plane and the affine focal
points correspond as degenerate singularities of the family of affine distance functions.
Moreover we show that if M is immersed in a locally strictly convex hypersurface, then
the affine normal plane contains the affine normal vector to the hypersurface. Finally,
we conclude that any surface immersed in a locally strictly convex hypersphere is affine
semiumbilical.






Resumo

Nesta Tese estudamos as superficies localmente estritamente convexas desde o ponto
de vista da geometria diferencial afim e generalizamos algumas ferramentas para subvar-
iedades localmente estritamente convexas de codimensao 2. Introduzimos uma familia de
métricas afins sobre uma superficie localmente estritamente convexa M no 4-espago afim.
Entao, definimos os planos equiafins simétrico e antissimétrico associados com alguma
métrica. Mostramos que se M é imersa em uma hiperquédrica localmente estritamente
convexa, entao os planos simétrico e antissimétrico sao iguais e contém o campo vetorial
normal afim & hiperquédrica. Em particular, qualquer superficie imersa em uma hiperqua-
drica localmente estritamente convexa é semiumbilica afim com relagao ao plano equiafim
simétrico ou antissimétrico. Mais geralmente, usando a métrica do campo transversal so-
bre M introduzimos o plano normal afim e as familias de fungoes distancia e altura afim
sobre M. Provamos que as singularidades da familia de fungoes altura afim aparecem
como dire¢oes do plano normal afim e as singularidades da familia de fungoes distancia
afim aparecem como pontos sobre o plano normal afim e os pontos focais correspondem as
singularidades degeneradas da familia de fungoes distancia afim. Também provamos que
se M é uma superficie imersa em uma hipersuperficie localmente estritamente convexa,
entao o plano normal afim contém o vetor normal afim & hipersuperficie. Finalmente,
concluimos que qualquer superficie imersa em uma hiperesfera localmente estritamente
convexa ¢ semiumbilica afim.
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CHAPTER 1

Introduction

The Erlanger Program by Sophus Lie and Felix Klein proposes that geometry (pro-
jective, affine, etc) is the theory of invariants of a transitive transformation group; more
precisely, it studies the properties of spaces that are invariant relative to those symmetries.

The main purpose of this thesis is the study of locally strictly convex surfaces from
the affine differential geometry viewpoint. We also generalize some concepts for locally

strictly convex submanifolds of codimension 2 in the affine context.

1.1 Why study locally strictly convex surfaces?

Our interest to study affine differential geometry of surfaces M C R* came from the
understanding of the asymptotic configuration of M near an inflection (point where the
two second fundamental forms are collinear). There is a conjecture (see [9]) that any
locally strictly convex surface homeomorphic to the sphere has at least two inflection
points. It is well known that a positive answer to this conjecture should imply a proof of
the celebrated Carathéodory conjecture that any convex compact surface M C R? has at
least two umbilic points (see for instance [2]).

Partial proofs for the conjecture in R* can be found in [8] for generic surfaces or in [14]
for semiumbilical surfaces in the Euclidean sense (i.e., there is a non zero normal vector
field whose shape operator is a multiple of the identity). The problem with the result
in [14] is that the semiumbilical condition is not affine invariant, although the conjecture
in R* itself is affine in nature. Surfaces immersed in an Euclidean hypersphere or surfaces
given by a product of two plane curves are examples of semiumbilical surfaces. How-
ever, surfaces immersed in other strictly convex hyperquadrics (like elliptic paraboloids

or hyperboloids of two sheets) are not semiumbilical in general.
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The affine differential geometry of hypersurfaces was developed by Blaschke (see |2,
10, 12]).

Concerning submanifolds of codimension 2 there are few results. Nomizu and Vrancken
in [13] developed an affine theory for surfaces in R*. They used the affine metric of Burstin
and Mayer [4], which is affine invariant, to construct the affine normal plane.

However, this affine metric and the corresponding affine normal plane present several
problems if the surface is locally strictly convex (i.e., at each point p € M there is a
tangent hyperplane with a non-degenerate contact which locally supports M).

The first point is that in order to define the affine metric, we need that the surface
is non-degenerate, in particular, M cannot has inflections. But it is well known that any
locally strictly convex compact surface M with Euler characteristic x (M) # 0 has at least
an inflection, because of the Poincaré-Hopf formula (see [11]).

Another point is that even if M is non-degenerate, the affine metric of Burstin and
Mayer is indefinite when M is locally strictly convex. This is the opposite of what you
expect, for instance, if M is contained in a locally strictly convex hypersurface N, then
the affine metric of N is positive definite.

Finally, if M is contained in a hypersurface N, you expect also some type of compati-
bility between the affine normals. This is important, for instance, if you want to consider
contacts of the surface with affine hyperspheres. However, the affine normal plane (of
Nomizu and Vrancken) to M does not contain the affine normal vector to N in general
(see Remark 4.17).

1.2 An equiaffine theory

We introduce a new family of affine metrics g¢ on a locally strictly convex surface
M C R* which are positive definite. Here, ¢ is a transversal vector field such that ¢ and
T,M span a local support hyperplane with non-degenerate contact at p. We show that
when M is immersed in a locally strictly convex hypersurface IV, then there is a natural
choice of ¢ in such a way that g, coincides with the Blaschke metric of N restricted to M.

For each affine metric g¢, we define the symmetric and the antisymmetric equiaffine
planes, by using analogous arguments to that of Nomizu and Vrancken in [13]. We also ob-
tain algorithms to compute these normal planes. The main result is that if M is immersed
in a locally strictly convex hyperquadric /N, then the symmetric and the antisymmetric
equiaffine planes coincide and contain the affine normal vector to N. As a consequence,
any surface contained in a locally strictly convex hyperquadric is affine semiumbilical

with respect to the symmetric or antisymmetric equiaffine planes. Another class of sur-
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faces with the same property are those given by a product of two plane curves, hence
our definition of affine semiumbilical surface has analogous properties as in the Euclidean

case.

1.3 Using singularity theory

With the aim of studying locally strictly convex surfaces M C R*, we introduce the
affine normal plane using the metric of transversal vector field g;. This affine normal
plane in general does not coincide with the affine normal plane of Nomizu and Vrancken
nor with the symmetric and antisymmetric equiaffine planes. Then, by using the metric
g¢ we introduce the families of affine distance and height functions on M.

It is natural to study the singularities of the family of affine distance and height
functions. It is known from the study of surfaces in 4-Euclidean space that the singularities
of the families of distance and height functions are related to the extrinsic geometry of the
surface. In our study, we find analogous results with the Euclidean case, by considering
the new affine normal plane and the singularities of the corresponding families of affine
distance and height functions on M. We also introduce the affine focal points as the
degenerate singularities of the family of affine distance functions and define the affine
normal curvature p, in the direction . We show that the function p, reaches its
extrema at the affine v-principal directions v and the wv-principal curvatures are given
by, (v).

When the surface M is immersed in a locally strictly convex hypersurface, then we
show that the affine normal plane contains the affine normal vector field to the hypersur-
face. In particular, any surface immersed in a locally strictly convex hypersphere is affine
semiumbilical (i.e., there is a vector field v on the affine normal plane such that S, is a
multiple of the identity). This result generalizes the main result in [16]: if M is immersed
in a locally strictly convex hyperquadric N, then the symmetric and the antisymmetric
equiaffine planes coincide and contain the affine normal vector to N. We also show that
the semiumbilical points on a surface are the points such that the affine normal curvature
1, () is a constant function. Finally we show that the product of two plane curves is an
affine semiumbilical surface. In this way, we have generalized the results of the Euclidean
case: surfaces immersed in hyperspheres and surfaces given by a product of plane curves

are semiumbilical.
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CHAPTER 2

Equiaffine structures on surfaces in R*

In this chapter we introduce an affine theory to study locally strictly convex surfaces

in R*, in other words, we define an affine metric and some equiaffine planes on the surface.

2.1 Basic affine geometry

The affine geometry studies the properties of the affine space (Definition 2.1) that are
invariant relative to the group of affine transformations (Definition 2.2). In this section

we recall the basic definitions of surfaces in R* (see [12,13]).

Definition 2.1. Denote by A"™! an (n+1)-dimensional affine space, by V' the real vector
space associated with A"*! and by 7 : A"*! x A"*! — V the mapping relating A"*! and
V' such that

1. for any three points p,q,7 € A" we have m(p,q) + 7(q,7) = 7(p,r),
2. for any p € A" and v € V there exists a unique ¢ € A"*! such that 7(p,q) = v.

The mapping 7 allows to define the affine structure of A"*! from the structure of V. It

is very suggestive to write pg = 7(p, q) = v.

Definition 2.2. Let A, Ay be affine spaces and Vi, V5, resp., their associated vector
spaces and m; : A; X A; — Vi. A mapping o . Ay — Ay is affine, if there exists a linear
mapping L, : Vi — V5 such that m(a(p), a(q)) = Lo(m1(p,q)) , ¥p,q € A;. The mapping
Ly, is uniquely determined and is called the linear mapping associated with .. The affine
mapping « is injective (surjective) if and only if L,, is injective (surjective). For A; = A,
it is defined the determinant of o to be det v := det L,,.
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We denote by R™ the (n + 1)-dimensional affine space associated with (n + 1)-
dimensional vector space R" ™ with the mapping (p,q) — Pl =q—p.

For the affine space R"™! we have the following affine transformation groups.

e The affine regular group:  a(n+1) := {a: R"™ — R"" /L, is regular}.

e The unimodular or equiaffine group :  s(n+1) :={a ca(n+1)/deta = 1}.

e The centroaffine group with center p € R"*':  3,(n+1) := {a € a(n+1)/a(p) = p}.

In particular one of the purposes of the affine differential geometry is the study
of properties of submanifolds M™ in n-affine space that are invariant under the group
of unimodular affine transformations s(n). Thercfore we recall some concepts as: affine

immersion, affine fundamental form and affine induced connection.

Let (R™** D) be the affine (n + k)-space with D the usual flat connection on R"+*
and let (M, V) a differentiable n-manifold M with V an affine connection.

Definition 2.3. A smooth immersion f : M — R"** is said to be an affine immersion
if: there is a smooth k-dimensional distribution o along f: p € M — o, a subspace of
Tty (R™*) such that

T (p) (Rn+k) = [(T,M) ® 0, (2.1)

and for all tangent vector fields X,Y on M,
(Dx £.Y)p = (fo(VxY))p + (WX, Y))y, (22)
where (VxY), € T,M and h(X,Y), € 0, for all p € M.

Since the distribution o: p € M — 0,, is smooth, cach point p has a local basis,

namely, a system of £ smooth vector fields &, ..., & on a neighborhood U of p such that

Oy :Span{gl(y)v“'7€k(y)}7 VZ/ el.

Note that the distribution ¢ may be regarded as a bundle of transversal k-subspaces.

Definition 2.4. The map (X,Y) € X(M) x X(M) — h(X,Y) defines for each point
p € M a symmetric bilinear map T,M x T,M — o,, by taking local extensions of the
tangent vectors. It is well known that the definition of h(X,Y) is independent of the local

extensions. The map h is called the affine fundamental form.
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Suppose a smooth manifold M, not provided with any particular affine connection, is
immersed into (R"** D). If we take a distribution of transversal subspaces as in (2.1),

then we can get a torsion-free affine connection V with (2.2) as defining equation.

Definition 2.5. Themap V : X(M)xX(M) — X(M) satisfies the conditions for covariant

differentiation, it is called the induced connection by o, ie. V = V(o).
Remark 2.6. As a result (M,V) — (R"** D) is an affine immersion.

Next we show basic concepts for surfaces in R* (see [13]).

Let R* be the affine 4-space and D the usual flat connection on R*. Let M C R* be
an immersed surface and let o be a transversal plane bundle on M. Then, for all p € M,
o, C T,R* is a plane such that

T,R*=T,M & o,
and for all tangent vector fields X,Y on M,
(DXY)p = (VXY)p + h(X, Y)pv

where (VxY), € T,M and h(X,Y), € 0, for all p € M.

We note that for p € M, there are &, & transversal vector fields defined on some
neighborhood U, such that: o, = span{{i(q),&2(q)}, Vq € U, (see Definition 2.3).

Then for tangent vector fields X,Y on M we have:

DxY = VxY + WX, Y)& + h%(X, V)&, (2.3)
Dx& = =51 X + 7 (X)& + 77 (X)&, (2.4)
Dx& = =% X + 1 (X)& + 75 (X)&, (2.5)

where V = V(o) is a torsion free affine connection, h', h? are bilinear symmetric forms,
S1,S9 are (1,1) tensor fields, and Tij are 1-forms on M. We call V the affine connection
induced by the transversal plane bundle o.

For a transversal vector field £, we can write
Dyé = —SeX + V¢,

where —S¢ X is the tangent component of Dx& and V¢ is the o-component of Dx¢. The
operator —S; is linear (in fact, a (1, 1)-tensor field) and is called shape operator. We also

call V* the affine normal connection induced by the transversal plane bundle o.
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Let @ be another transversal plane bundle and let &, and &, be other transversal

vector fields that locally span @.

Then we can write

51 = ¢E1 + 1/’52 + Zlv (2-6)
&= 051 + BEQ + Za, (2.7)

where ¢,1, p, 6 are local functions on M satisfying ¢f8 — ¢op # 0, and Z; and Z, are
tangent vector fields on M. Substituting Equations (2.6) and (2.7) into Equation (2.3),
we obtain

DxY = (VxY +h'(X,Y)Z, + h*(X,Y)Z5)

+HOR' (X,Y) + ph* (X, V)€, + (WA (X,Y) + Bh*(X,Y))Es.

On the other hand, we can write Equation (2.3) for £, and &,,
DyY =VyY + 7 (X, V)& + 1 (X,Y)E,.

By comparing we obtain, the following relations

VxY =VxY + X, Y)Z, + h*(X,Y)Z,, (2.8)
R(X,Y) = oh (X, Y) + ph2(X,Y), (2.9)
RA(X,Y) = h (X, Y) + BRA(X,Y). (2.10)

In the study of the affine differential geometry of surfaces in R* it is important to
consider the following equations which appear in [13]: the equation of Gauss (2.11), the
Equations of Codazzi (2.12), (2.13), (2.14) and (2.15), and the Equations of Ricci (2.16),
(2.17), (2.18) and (2.19).

R(X,Y)Z = h' (Y, 2)S1 X + h2(Y, 2)S, X — h'(X, 2)S,Y — h*(X, Z2)S,Y. (2.11)

(Vxh)(Y, Z) + 1 (X)RNY, Z) + ) (X)RA(Y, Z), (2.12)
(VxhH(Y, 2Z) + 2(X)RNY, Z) + T2 (X)hA(Y, Z), (2.13)
(VxS1)Y — (VyS)X = =1 (Y)S1 X + 7H(X)S1Y — 72(Y) S, X + 72(X)S,Y,  (2.14)
(VxS)Y — (VyS)X = -1 (V)1 X + 75 (X)S1Y — 75 (V)X +73(X)SY.  (2.15)

RYX,81Y) — hNY, 51 X) = dri (X, Y) + 72(Y) 1 (X) — 75 (V)7T2(X), (2.16)
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RA(X,S5Y) — RA(Y, 52 X) = dr2(X,Y) + 1y (V) 7E(X) — 72 (V)73 (X), (2.17)

WX, 1Y) = B2(Y, $1.X) = dri (X, V) + 7y (V)7 (X) — 7 (V)7 (X)
+r(V)(X) —m(V)(X), (218)

WX, 8Y) = (Y, $:X) = dy (X, V) + 7y (X) 7 (V) — 7 (X) (V)
+ (X)) (V) = (X)) (V). (2.19)

2.2 The metric of the transversal vector field

In this section, we introduce a family of affine metrics and the affine normal planes:
the antisymmetric and symmetric equiaffine planes. We prove the existence and unicity

of these planes. This study is developed on locally strictly convex surfaces in R*.

Definition 2.7. A submanifold M C R™ has non-degenerate contact with a hyperplane
Hatpe Mif A:R™ — R is any linear function such that H = {z : A(x — p) = 0} then
Ajpm M — R has a non-degenerate critical point at p € M.

Note that the hyperplane H in the Definition 2.7 is an affine hyperplane.

Definition 2.8. A hyperplane H is a nonsingular support hyperplane of M if M lies on
one side of H , HN M = {p}, and H has non-degenerate contact with M.

Definition 2.9. A submanifold M C R™ is strictly convex if through every point of M
there passes a nonsingular support hyperplane, i.e., a hyperplane with non-degenerate

contact with respect to which M lies strictly on one side.

Definition 2.10. A submanifold M C R™ is called locally strictly convex at p if there
is a neighborhood U of p such that M N U is strictly convex; and M is locally strictly

convex surface if is locally strictly convex in each point p € M.

Let M C R* be an oriented locally strictly convex surface, let u = {X1, Xp} be a
positively oriented local tangent frame of a point p € M and let & be a transversal vector
field on M.

Definition 2.11. We define the symmetric bilinear form G, on M to be

GU(Y7 Z) = [X17X27DZY7€]'
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We fix € such that G, is a positive definite symmetric bilinear form, this is possible because

M is locally strictly convex and we call such a & a metric field. (Just consider a transversal

vector field & such that [X;(p), Xa(p),z — p,&(p)] = 0 determines a support hyperplane).
The metric field £ is defined only locally, but since all our results are local, we can

assume without lost of generality that ¢ is globally defined and that M is globally oriented.
We define the metric of the transversal vector field, denoted by g, by

GuY, Z)

Y, Z)= -,
9¢(Y, Z) (det, G
where det, G, = det(G.(X;, X)).

Lemma 2.12. The symmetric bilinear form g¢ does not depend on the choice of the local

tangent frame u, provided it is positively oriented.

Proof. Let v = {Y1,Y2} be another local tangent frame on a neighborhood U of p € M,
then there exist functions a,b,c and d with ad — bc > 0, defined on U such that Y; =
aXy +bXs5 and Y5 = ¢X; + dX». Note that

Go(Y,Z) = [Y1,Ys, DY, €] = (ad — be)Gy(Y, Z).

By properties of the determinant, it follows that det, G, = (ad — bc)? det, G,. On the

other hand, from a simple computation det, G, = (ad — bc)? det, G, therefore
det, G, = (ad — bc)* det, G,,.

Finally,
G,(Y,Z)  (ad—=0bo)Gu(Y,Z)  GuY,Z)

(dety Go)V74 — ((ad — be)tdet, Gy) VA~ (dety Gy)/4°

]

Remark 2.13. Let £ € R* be a metric field, the definition of the metric g¢ depends only
on the equivalence class of £ in the quotient space R*/T,M, which is a 2-dimensional
vector space. In fact, if [{] = [¢] then & = &'+ Z, with Z € T,M therefore g = g¢. Thus,
we denote g = ge.
In this way, the family of metrics {gjg }gea is parameterized by an open set of R* /T, M
given by:
A={[{] e R'/T,M : g is positive definite }.

This open subset A is not empty whenever M is strictly convex in a neighborhood of p.
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It follows from the definition that the family of metrics {gj¢}jgea is an affine invariant of

M that does not depend on the chosen transversal plane bundle o.

Remark 2.14. Although the metric gj¢ does not depend on the chosen transversal plane
bundle o, once we fix it, we can use it to compute the metric as a second fundamental
form. In fact, let {&,&} be a transversal frame for o, and let us denote the second
fundamental forms by h'(X,Y) and h?(X,Y). For all (r,s) € R? we denote

heo(X,Y) =rh*(X,Y) + sh*(X,Y)

and consider the open subset A C R2 given by:

A={(r,s) €R*: h, is positive definite }.

Note that, for all [(] € A, there is a unique (r,s) € A such that gie) = hrs. In fact,

there is a unique representative £ € o, of [{] given by & = 01§ + be&e and therefore
(r,s) = A(bg, —b1), where
(det, G4

Remark 2.15. Let M C R* be a locally strictly convex surface and let 7 be a support
hyperplane with non-degenerate contact at p. Then there is a transversal vector field &
such that

7 = ker{z — [Yi(p), Y2(p),z — p,&(p)]}

and gg is positive definite, where {Y7,Y5} is a tangent local frame on M. We say that &
determines the support hyperplane 7. Note that A\¢ determines the same hyperplane 7.

So, the support hyperplane 7 determines a family of metrics (gxe), .

From now on, we fix a metric field £ and consider a local orthonormal tangent frame
relative to the metric g on M, that is, u = {X;, X5} is a tangent frame defined on some
neighborhood U of p € M such that

9e(Xi, Xj) = 5.

Theorem 2.16. Let M C R* be a locally strictly convex surface and & a metric field.
Let u = {X1, X1} be a local orthonormal tangent frame of ge and let o be an arbitrary

transversal plane bundle. Then there exists a unique local frame {&1,&2} of o, such that

(X1, X2,&,&] =1, h'(X1, X1) =0, =& € €], h*(X;, X;) = 0y



14 Equiaffine structures on surfaces in R*

Proof. Let p be a point in M and let {11, 15} be any local frame of ¢ in a neighborhood

U of p. We can assume that X; and X5 are defined on U. Now, we write
[5] = )\31/1 + )\41/2 + Tp]\4

Using the notation: A'(Xy, X1) = a, h'(X;, Xo) = b, h( Xy, Xo) = ¢, B3 X1, X)) = e,
(X1, Xs) = f, h*(Xy, X3) = g and K = [X;, Xy, 11,15, we compute the bilinear form
Gy Gu( X1, X1) = (a\g—eX3) K, Gy (X1, Xo) = (bA\y— fA3) K, Gy (X3, Xo) = (cAy—gA3) K.
By using the change

v = ay + P&, vy = @& + P&,

we obtain the affine fundamental forms from the new frame {&;,&}:
El(XlaXl) = oa + e, El(XhX?) :ab+¢f) El(X2)X2) = ac+ ¢y,

RA(X1, X)) = Ba+ e, BAX1,Xo)=Bb+1f, R (Xa Xs)=fc+g.

Note that G, (X1, X3) = 0, hence G, (X1, X1) # 0 and aA\;—eA3 # 0 and then the following

system

1 = Ba + e,
0= pBA3 + A,
has solution (3,) given by
_ Ay »— —A3
Cad —eNs] Cad —eN;

Now substitute 5 and v in Ez(Xi, X,) and we prove that 52(X,~, X;) = 0i;. In fact,

)\4 _>\3 o Gu(leXz)
Cl)\4 - 6)\3)[) + (a)\4 — 6)\3)f N (a>\4 — 6)\3)K

_ Gu(X1, X2) _ Gy (X1, X2)/(dety Gy)Y4 _ ge( X1, Xo) —0
Gu( X1, X1)  Gu(X1, X1)/(det,G )Y ge( X1, X1) .

EQ(X1,X2) =pBb+yf =(

From the equation 0 = El(Xl,Xl) = aa + pe we can write @« = Re and ¢ = —Ra,

therefore

(X1, Xo, 1, 10) = [X4, X0, &, & () — By) = (ar) — By)
= ((Re)y — B(—Ra)) = R,
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we conclude R = K, a = Ke and ¢ = —Ka.
It only remains to prove that [(] = —[£;]. First we note that G,(X;, X3) = 0, because
{X1, X5} is an orthonormal tangent frame relative to ge. Moreover,

1/2 _ dety Gy _ Gu(XLXl) Gu(XZ,XZ) o
(detu Gu) T (dety Gu)Y/2 T (dety Gy)1/4 (dety Gy)/4 T L.

It follows that Asav + Ayp = A3Ke — M Ka = K(Ase — M\a) = —(det, Gy)Y/* = —1.

Finally, we compute [¢]:

[6] = A3y + \qlp + TpM
= As3(a&y + &) + Ma(wéy + &) + T,M
= (Aza + M) & + (N3B + M) & + T, M.

-1 0

]

Lemma 2.17. Let M C R* be a locally strictly convez surface and & a metric field. Let

u={X1, X2} and v = {Y1,Y2} be two orthonormal frames and let o a transversal plane

bundle. So we can write

Y] = cos0X; +sinfXs,, (2.20)
Yy = e(—sin0X; + cos 0Xs), (2.21)

where ¢ = +1. If we denote by {£1,&) (resp. {€,,€,}) the frame of Theorem 2.16
corresponding to u (resp. v), then

51 - Zl:
& = —(sin 20R" (X1, Xy) + sin® Or' ( Xy, X3))E, + &,

and also

2% (Y1,Ys) = €(2cos 20h (X1, X») + sin 201} (X, Xo)),
' (Ya, Ya) = cos 20hY (Xs, X») — 2sin 20h} (X1, X),
AR (Y3, Va)? 4 0 (Y, Ya) = 4R! (X1, Xa)? + ' (X, Xo)?.

Proof. From Theorem 2.16, we have [¢;] = —[¢] = [€,]. Since & and £, belong to the same
transversal plane we conclude that & = &;. We compute now the affine connection in the

different frames to compare them. By using the frame {,,&,}, it follows from Theorem
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2.16 that
DY1§/1 — v1/1}/1 +EQ7

and by using the frame {£;, &} and equation,
Dy, Y1 = Vy, Y1 + h' (Y1, Y1)& + h* (Y1, 11)&.
Hence, &, = h'(Y1, Y1)& + h2(Y1, Y1)&, and from equation (2.20) we obtain:
&, = (sin20h' (X1, Xa) + sin® 0h' (X5, X5))&1 + &o.
Analogously, by comparing Dy, Y3 (and Dy, Y5) in the two frames, we obtain:
R (Y1, Y3) = cos 20h1 (X1, X») + sin 0 cos Oh} (X, X3),

7' (Yo, Ya) = cos 20hY (Xs, Xs) — 2sin 2001 (X1, X).
The last equality follows by direct computation. O]

Let M C R* be a locally strictly convex surface and let ¢ be a metric field. Let
u = {Xi, X5} be a local orthonormal tangent frame. If we denote the corresponding
transversal vector fields obtained by Theorem 2.16 by & and &, we define the metric g;-

by setting

gi(ﬁlagl) = 17
0 (61,62) = —5h' (X, Xa),

5
Gu (&2,6) = 4h' (X1, Xo)” + Zhl(szXQ)z,

and extending it linearly on o.

Lemma 2.18. Take u = {X;, Xo}, v = {Y1, Y2}, &1, &, & and &, as in Lemma 2.17 and
Theorem 2.16. Then

ga(&.n) = go (&, m).

Proof. 1t is enough to show that equality occurs on the frame {£;, &} We have gy (£1,&) =
9 (€1,€,) = 1, but also

o (61,62) = gy (€1, ' (Y1, Y1)E, + &)
= B(Y,Y5) — SR (0, ) = (X, o),
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and finally,

9o (£2,8) = gy (K (Y1, Y1)E, + &0, A (Y1, Y1)E, + &)
=h' (YhYl) + 2h1(Y17Y1)gU <§1752) + 9 @27%2)

RNV V)R — RV YOR (3, Va) 4+ 4R (Y, Ya)? o 2

R (1, Ya)?
1— _ _
= (W (Y1, Y1) = 5B (V2 Y2))? + 4R (Y2, Y2)? + B (33, Vo)

1
= Zhl(XQ, Xo)? +4hN (X1, X2)2 + b ( Xy, Xo)2
O

By Lemma 2.18, g is independent of the choice of the tangent frame u, we denote it

by gg-.

Remark 2.19. Other metrics appear on the transverse plane bundle that does not depend

on the tangent frame. For example the metric given by
gi_(ébfl) = 17
1
gj_(g]- 52) = _éhl(X%XQ))

9y (527§2) (X17X2) ’

that is positive definite and the metric given by

91%(51,51) - -
g (&1, &) —h (X2, X9),
9y (52;52) =h (X17X2>27

that is indefinite.

The following lemma gives the relation between the transversal frames of Theorem
2.16.

Lemma 2.20. Let M C R* be a locally strictly convex surface. Let & be a metric field
and u = {X3, X2} a local orthonormal tangent frame. Let o and & be two transversal
plane bundles. We denote by {£1,&} and {€,,&,} the transversal frames obtained from

Theorem 2.16 for o and &, respectively. Then there are Z, and Zo tangent vector fields
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on M such that

& =4+ 2,
Ez = 52 + Zo.
Proof. We suppose that
§1=¢g1+¢gz+zh 522/)21"‘5224’22.

Since [¢1] = [£;] we have ) = 0 and ¢ = 1. By Theorem 2.16 [X, X5, &;,&] = 1, which
implies ¢ — ¢p = 1 and it follows that 7 = 1. We denote by 7' and i the affine
fundamental forms of the frame {&,,€,}. We note that

0=h (X1, X)) = oh' (X1, X)) + ph?(X1, X)) = p.

2.3 The metric of Burstin and Mayer

Another affine metric that appears in the study of surfaces in R* is the affine metric
of Burstin and Mayer (see [4,13]).

Let M C R* be a surface and let ¢ be a transversal plane bundle over M. Let
u = {X3, X5} be a local tangent frame on a neighborhood U of a point p € M. It is

defined the symmetric bilinear form

B,(Y,Z) = =([X1, X2, Dy X1, Dz Xo] + [ X1, X2, Dz X1, Dy X5)).

1
2
A surface M is called non-degenerate if B, is non-degenerate.

Definition 2.21. It follows from [13, Lemma 3.3] that the symmetric bilinear form,

which we denote by gga,
B.(Y, Z)

(dety B,)3

does not depend on the choice of tangent frame u. The symmetric bilinear form ggj; is

gpu(Y, Z) =

called the metric of Burstin and Mayer.

Let M be a surface in R? and o a transversal plane bundle. Let u = {X;, X5} be a
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local tangent frame on a neighborhood U of a point p € M. Then det, B, = A, where

a 2b ¢ O

A:l e 2f g O
410 a 20 c

0 e 2f ¢

a = hl(Xl,Xl), b = hl(Xl,XQ), CcC = hl(XQ,XQ), € = hz(Xl,Xl), f = hz(Xl,Xg) and
g = h*(Xs, Xs).

Lemma 2.22. The metric gg) of each locally strictly convex surface M C R* is indefinite.

Proof. In fact, let M be a locally strictly convex surface and p € M. Let u = {X;, X5} be
a local tangent frame and let o be a transversal plane bundle. Since M is locally strictly
convex, there is a transversal vector field £ such that [X;(p), Xa(p),z — p,&(p)] =0 is a
support hyperplanc in p. We choose a frame {&1,£>} on ¢ and note that

E=mX1+ 12 Xo + 138 + 1480

for some functions 7,7y, 73 and ry.

By a simple computation

[Xl(p)v X2(p)v qu(p)v S(p)] = ary — €rs,
[(X1(p), X2(p), Xuw(p), ()] = bra — fr3,
[X1(p), Xa(p), Xow(p), E(p)] = cra — grs.

g [ ara—ers bry — frs
bry — frs cry — grs

has determinant greater than zero because [X;(p), Xa(p),z — p,&(p)] = 0 determines a

S

Now, the matrix

support hyperplane. Since A is symmetric and det[A] > 0, there is (ug, vy) an eigenvector

of A, hence we obtain (ug,vy) as solution of the equation
(af — eb)u® + (ag — ec)uv + (bg — fec)v? =0,

we conclude that: —A = 1(ag — ec)? — (af — eb)(bg — fc) > 0 and A = det, B, < 0. [

In [13, Theorem 4.1, Lemma 4.1, Remark 4.2 | we find results analogous to Theorem
2.16, Lemma 2.17 and Lemma 2.20.
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2.4 The equiaffine transversal plane bundles

Nomizu and Vrancken in [13]| defined the concept of equiaffine plane as a transversal
plane bundle ¢ such that the affine connection induced by o, V = V(o) satisfies Vw, = 0

where w, is the metric volume form for the Burstin and Mayer affine metric g¢:

wg(va) = \/|g(X,X)g(Y, Y) - g(X,Y)2|,

where {X, Y} is any positively oriented basis of T,M. In our case, we consider the same
definition, but we use the metric of the transversal vector field g¢ instead of the Burstin
and Mayer affine metric. This definition is based on the compatibility between the volume

form and the affine connection.

Let M C R* be a locally strictly convex surface and ¢ a metric field and g = g¢ the

metric of the transversal field £.

Definition 2.23. We say a transversal plane bundle o is equiaffine if the connection
V = V(o) induced by o satisfies Vw, = 0.

If u={X;, X5} is a local orthonormal tangent frame and {&;,&,} is the transversal
frame given by Theorem 2.16, then wy = 6, where ¢ is the volume form induced by the

determinant:

6<X) Y) = [X7Y7€17€2]) VX,Y € TpM
This is because wy(X;, X;) = 0(X;, Xj), Vi, j.

Remark 2.24. By using 6 instead of w,, we see that o is an equiaffine plane bundle if

and only if

By = (Vg)(X1, X1, X1) + (Vg) (X1, X2, Xo) =0, (2.22)
By = (Vg)(X2, X1, X1) + (Vg)(Xa, X2, X5) = 0. (2.23)

Lemma 2.25. Let M C R* be a locally strictly convex surface and & a metric field. Then

there exists an equiaffine plane bundle o defined on a neighborhood of p.

Proof. Let u = {X;, X5} be an orthonormal tangent frame defined on some neighborhood
U of p. Let @ be a transversal plane bundle defined also on U and {£,, &, } the local basis of
o obtained by Theorem 2.16. Now we want to construct a new equiaffine plane bundle o
defined on U, with local basis {1, &} obtained also by Theorem 2.16. By Lemma 2.20,

we have

& =& — 7, & =& — 2,
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where Z; and Z, are tangent vector fields. We denote the connection induced by o (resp.

&) by V (resp. V). On the other hand, by a simple calculation we obtain

B = By +29(Zy, X1) + 20 (X1, X3)9(Z1, X5),
EQ = BQ + th(Xl,Xg)g(Zl,Xl) + QhI(XQ,Xg)g(Zl,Xz) + QQ(ZQ,XQ)

Note that o is equiaffine if and only if By = By = 0. By writing Z; = aX; + 0X5 and
Zy = c¢X1 + dXs, this is equivalent to

B = 2c + 2bh* (X1, Xs),
By = 2d + 2ah' (X1, Xy) + 2bh* (X3, X5).

The lemma follows since the system above has a solution. For instance, set a = b = 0,

c=5and d =22, O

2.5 The equiaffine normal plane bundles

In this section we define the equiaffine normal plane bundles. Our construction is
based on the ideas developed in [13]. Because there are many equiaffine plane bundles

(Lemma 2.25), we give conditions to choose some special types among them.

Definition 2.26. Let M C R* be a locally strictly convex surface, £ a metric field and
u = {X;, X5} an orthonormal tangent frame. We say that an equiaffine plane bundle o

is:
o u-symmetric, if

Dy = (Vg)(Xg, X1, X1) — (Vg)(X1, Xp, X1) =0,
Dy = (Vg)(Xy, Xz, Xa) — (Vg) (X, X1, X2) =0

)

o u-antisymmetric, if

C = (Vg)(Xa, X1, X1) + (Vg) (X1, Xa, X1) = 0,
Cy = (Vg) (X1, X2, Xo) + (Vg) (X2, X7, X5) = 0.

Lemma 2.27. The antisymmetric equiaffine plane bundle does not depend on the tangent

frame.
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Proof. Let v = {Y1,Y2} be another tangent frame. We use complex notation Y; +iYs =
e (X, +iX5). By extending Vg complex-linearly

Vg(Xl +iX2, X1 +iX2, X1+ZX2) = (Vg(Xh )(17 X1>—vg(X17 X27 Xg)—Vg(XQ, Xl, XQ)
_v.g(X27 X27 Xl))+l(v9(X17 X17 X2>+VQ<X17 X27 X1)+VQ(X27 X17 Xl)_v.g(XQ’ X27 X2))7

and since ¢ induces an equiaffine structure on M, we get

V(X1 +iXo, Xi +1iXs, X1 +1Xy) = —2(Vg(X1, Xy, Xo) + Vg(Xo, X1, X))
+ 2Z(Vg(X27 X17 Xl) + vg<X17 le XQ))

Therefore
Vg(X1 + iXQ,Xl + iXQ,Xl + ZXQ) = —202 + 2201

The result on antisymmetry follows since
VoY1 +iYs, Y1 +iYs, Y1 +iYs) = e 3OV g( Xy +iXo, X1 + Xy, X1 +iX5) = 0.

]

From Lemma 2.27, we call o just antisymmetric when it is u-antisymmetric. The

next lemma follows by simple computation.

Lemma 2.28. Let M C R* be a locally strictly convex surface, & a metric field and

u = {Xy, Xy} an orthonormal tangent frame. If we write

Vx, X1 = a1 Xy + aeXo, Vx, X1 = as X1 + asXo,
VXIXQ = CL3X1 + CL4X2, VX2X2 = CL7X1 + (ngg.
Then
Bl = —2(&1 + CL4), Bg = —2(@5 + ag),
Cy = —as — az — 2as, Cy = —ag — a7 — 2ay,
D = ay + as — 2as, Dy = ag + a7 — 2ay.

In this section, we say that: A point p € M is an inflection if and only if h!(X;, X5) =
h'( Xy, X5) = 0 (for details see Definition 3.4).
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Proposition 2.29. Let M C R* be a locally strictly convex surface and & be a metric field.
Suppose p € M 1is not an inflection, then there exists a unique antisymmetric equiaffine

plane bundle o defined on a neighborhood of p.

Proof. Let u = {X;, X5} be an orthonormal tangent frame on a neighborhood U of p.
We consider @ an equiaffine plane bundle defined on U and {51,52} the local basis of &
obtained by Theorem 2.16. Now, we want to construct a new antisymmetric equiaffine
plane bundle o defined on U. Again by Theorem 2.16 we have {{1,&>} a basis of o, and
by Lemma 2.20 we write &, = &, — 7y, & = &, — Z,, where Z; and Z, are tangent vector
fields. We denote by V (resp. V) the affine connection induced by o (resp. 7). We

compute Cq and O,

Cy = C1 +3hN (X1, X2)g(Z1, X1) + 9(Za, Xs),
Cy = Cy + 301 (X1, X2)g(Z1, Xa) + h' (X2, X2)9(Z1, X1) + 9(X1, Z2).

Since ¢ is antisymmetric, C} = Cy = 0 and writing Z; = aX; + bXs and Zy = ¢ X1 + d X,

we obtain the system

0=c+bh (X1, Xa),

0=d+ah (X1, Xs) + b (X, Xa),
C, = 3ah (X1, Xs) +d,
Ch = 3bh (X1, Xo) + ah' (X2, Xs) +c.

The determinant of the linear system above in the variables a, b, ¢, d is
AR (X, Xa)? + 1 (X, X2)2 40,

since p is not an inflection. Therefore, the system has a unique solution. O]

Proposition 2.30. Let M C R* be a locally strictly convex surface and & be a metric field.
If p € M is not an inflection. Let u = {X;, Xo} be an orthonormal tangent frame, then

there exists a unique u-symmetric equiaffine plane bundle o defined on a neighborhood of

p.

Proof. We follow the same arguments as in the proof of Proposition 2.29,

D, =D, + hl(Xh Xo)9(Z1, X1) — 9(Za, X5),
Dy = Dy + hl(Xh X5)9(Z1, X5) — h1<X27 X5)9(Z1, X1) — 9(X1, Z3).
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By writing Z; = aX; + 0Xs and Z; = ¢X; + dX,; we obtain again a linear system in
a,b,c,d:

0=c+bh (X1, Xa),

0=d+ah (X1, Xs) + b (Xa, Xa),
Dy = ah (X1, X) — d,
Dy = bl (X1, X2) — ah (Xa, Xa) — ¢,

whose determinant is again an (X1, X2)% + 7' (X3, X2)% # 0. O

Remark 2.31. Lemma 2.25 and Proposition 2.29 provide an algorithm to calculate a basis
{&1, &} of the antisymmetric equiaffine planc bundle: Let o be an arbitrary transversal
plane and vy, vy, M1 (X1, X3), h'(Xs, X5) are obtained by Theorem 2.16. Denote by V the
affine connection induced by o then: & = 11 — aXy — bXs, and & = vy — X7 — d Xy,

where:
—2(@2 + a3 + a5 — Clg)hl(Xl, XQ) — (a4 + ag + a7 — al)hl(Xg, Xg)
AhY (X1, X9)? + h1 (X2, X5)? ’

—2(as + ag + a7 — a;)h* (X1, Xo) + (as + az + a5 — ag)h' (Xy, X»)
4h1 (X1, X5)? + h(Xs, X5)? ’

Cc = —(CL1 + ayq + bh1<X1, XQ)),
d= —(CL5 + ag + ahl(Xl, XQ) + bhl(Xg,Xg)).

a =

b:

Remark 2.32. Analogously, by using the same notation as in Remark 2.31, we obtain
from Lemma 2.25 and Proposition 2.30 the algorithm to compute a basis {£1,&>} of the

u-symmetric equiaffine plane bundle: & = vy — aX; — bXs, & = 15 — Xy — d X5, where:

2((12 + as — 3(15 — ag)hl(Xl, Xg) — (CL6 + ay — ayp — 3&4)}11()(2, XQ)
4ht (X1, X9)? + h1(Xy, Xo)? '
2(@6 + ar; —ayp — 3@4)h1(X1, XQ) + (CLQ + as — 3@5 — G,g)hl(Xg, Xg)
4h1 (X1, X5)? + h1 (X, X5)? ’
Cc = —(Cll + ay + bhl(Xl,Xg)),

d= —(CL5 + ag + ah1<X1, XQ) + bhl(XQ, XQ))

b:

Lemma 2.33. Let M C R* be a locally strictly convex surface and &, 5 are a metric fields
such that E: X for some function A > 0. Then Je = \/ng. Moreover if u = {X1, X5}
be a local orthonormal tangent of ge then v = {AN"Y4X; A"Y4Xo} is a local tangent



2.5 The equiaffine normal plane bundles 25

orthonormal frame of gg and :
/V\l = )\Vl, I//\Q = )\_1/2V2.

Where: the frames {v1,v2} and {11, 5} are obtained by Theorem 2.16 to the frames u and

v respectively.

Proof. The relationship Jg = \/ng follows straightforward from Definition 2.11 and, by a
simple computation the local tangent frame v is an orthonormal frame of 9 By Theorem
2.16 there are tangent vector fields Z, Z, such that vy = —§ + Z; and vy = —§ + Z5 and
it follows V1 — A\vy = —AZ; + Z5. Therefore vy — A\ is a tangent vector field and v; = Avy.
On the other hand, by Theorem 2.16 and Equation 2.3, we have

Vi, X1+ =Dx, X1 =V, X1 + hN(X1, X1)01 + W2 (X1, X1)Ps.

Note that:
RY(X1, X1) = BV, AVy) = AR (YL V) = 0,
’ﬁz(Xth) :ﬁz()\l/‘l}ﬁ,)\l/‘l}ﬁ) _ )\1/2}22(1/1,}/1) _ )\1/27
hence vy = \Y/20,. O

Proposition 2.34. Under the same hypotheses of Lemma 2.33, we have

20, — By = A\/4(2C) — By), 205 — By = A\/4(2C, — By),
2D, — By = A\V/*(2D; — By), 2D, — B, = A\Y4(2D, — B)).

Proof. Tt is enough to see that,

Bi=A"VB—d4xi (Y, By = AV4B, — 4X,(A 14,
61 — )\—1/401 . QXQ(/\_1/4), 62 — )\—1/402 o 2X1(>\_1/4),
Dy =Ny - 2X,(A1Y, Dy = A"Y1Dy — 2X, (A1),

]

Theorem 2.35. Let M C R* be a locally strictly convex surface and &, 5 be two metric
fields such that € = X for some function A > 0. Let u = {X1, X5}, v = {Y1,Y3} be
two orthonormal tangent frames as in Lemma 2.33. Then the vector fields & and &

generating the antisymmetric affine normal plane relative to ge and the vector fields El
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and é} generaling the antisymmetric affine normal plane relative to g are related by:

~ ~ 1 2
G=2 and & =556 — 1 MAY + (0 Ys).

Proof. Let o be an arbitrary transversal plane, we denote by o (resp. &) the transversal
plane generated by {£1, &} (resp. {51, 52}) and V (resp. V) the connection induced by o
(resp. 7). Using the notation

Vx, X1 = a1 Xy + a2 Xo, Vy Y1 =a1Y) +apYs,
Vx, X1 = a3 Xy + a4 Xo, Vy, Yo = a3Y) + a,Ys,
Vx, X1 = a5 X1 + agXo, Vy, Y1 = asY1 + agYs,
Vx, X1 = a7 X1 + ag X, Vy,Ys = @7Y1 + Yo,

and by a straightforward computation, we have

a; = Y1(>\1/4) + )\1/4&\17 ay = )\1/462’ az = /\1/463, ay = }/i()\l/4) + )\1/4&\47
a5 = Y2(>\1/4) + )\1/465, ag = )\1/466, a7 = )\1/487, ag = }/2()\1/4) + )\1/4/@8.

We need to find, the relation between the antisymmetric affine normal planes, therefore

we compute their generators as in Remark 2.31, this is, a, b, c and d (resp. @, b, ¢ and @

o~ ~

(@ + Gy + s — Gs)A (Va, Ya) — (@a + g + @7 — )R} (Ya, Va)
AR (Y1, Ya)? + B (Y3, Va)?
B —2)\_1/4(612 + a3+ as — ag))\_3/2h1(X1, Xg) — )\_1/4(614 + ag + a7 — a1)>\_3/2h1(X2, Xg)

a=

- )\_B(hl(Xl,Xz)z —+ hl(Xz,Xz)Q)
2((12 + a3+ as — (Ig)hl(Xl, Xg) — (CL4 + ag + a7 — al)hl(X% XQ)

— )\5/4_
AhY (X1, X2)? + h1 (X5, X5)?

= \4q,

b= A5/4p, & = A\~Ve 4 22" VAY (AV4) and d — A~Y4d + 2A7V/4Y,(AV4). Finally

& =7 —aY; — bYs = Ay — NN VAX, — AATVAX, = Moy — aXy — bXo) = A&,

2
—eX) —dXs) — —=(Yi(AVHX] + Ya(A/HXo)

£y =Dy — ) — dYy =
52 2 1 2 \/X

1
A
1 2
= WEQ - \L/2 (}/1()\1/4))(1 + Yv2<)\1/4>X2)
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2.6 The cubic forms

Equations (2.12) and (2.13) are used to define the cubic forms which we denote by
C' and C?,

Note that C*' and C? are symmetric in X, Y and Z.
In [1] we find the following problem of classification of submanifolds:

Problem 18.(L. Vrancken) Define the covariant derivative
(Vxh)(Y,2) :=Vx(h(Y,2)) = MVxY,Z) — WY, VxZ).

Classify the submanifolds satisfying Vh = 0.
Note that Problem 18 is equivalent to classify the submanifolds with null cubic
forms C! and C?. In fact,

(Vxh)(Y,Z) = CHX,Y, 2)& + CHX,Y, Z)&.

Let M C R* be a locally strictly convex surface, £ a metric field and o a transversal plane

bundle. Let u = {X;, X5} an orthonormal tangent frame. We denote by

Vx, X1 = a1 X1 + a3 X, Vx, X1 = asX; + ag X,
VX1X2 = CL3X1 + CL4X2, VX2X2 = CL7X1 + CLgXQ.

By Theorem 2.16 there exists a frame {&, &} C o such that h'(Xq, X;) = 0, R*(X;, X;) =
61‘]'. We denote by b= hl(Xl,XQ) and ¢ = hl(XQ,Xg).

Now we compute the cubic forms:

CHX1, X1, X)) = —2a5b + 75 (X)),

( ) = X1(b) — anb — aze — agh + 7 (X0 )b,

(Xa, X1, X1) = —2agb + 75 (X3),

CHX 1, Xy, Xo) = X1 (c) — 2a3b — 2a4c + 7 (X1)e + 75 (Xy),
(X )
( )

= X2( ) — CL5b — agC — CLgb + 1 (Xz)b
= Xo(c) — 2a7b — 2agc + 71 (Xo)c + 75 (X2).



28 Equiaffine structures on surfaces in R*

By symmetry of C!' we have : CY(X1, X1, Xo) = CY( Xy, X1, X)) and CH( X, X5, Xo) =
Cl(XQ,Xl,XQ). Hence

blay + ay — 2a6) + cas = 71 (X1)b — 75 (Xo) + X1(b), (2.24)
b(as + ag — 2a3) + c(ag — 2a4) = 7} (X2)b — 75 (X1) + Xa(b) — 71 (X1)e — X1 (c).  (2.25)

Analogously we compute C?:

C*(Xy, X1, X1) = —2a; + 72(X1), C*(X1, X9, Xa) = —2a4 + 72(X1)c + 2(X1),
C*(Xy, X1, X5) = —ay — as + 12(X1)b, C*( Xy, X1, X5) = —ag — a7 + 72(X2)b,
C2<X2,X1,X1) —26L5 +7'22(X2), C2(X2,X2,X2) = —2a8+7'12(X2)c—|—7'22(X2).

By symmetry of C? : C%(X;, X1, Xo) = C%(Xy, X1, X)) and C? (X1, X», X») = C?*( Xy, X1, X»).

Hence

ag + az — 2a; = 72(X1)b — 72(Xy), (2.26)
ag + a7 — 2ay = TH(Xo)b — 72(X1)c — (X)), (2.27)

Combining Equations (2.24) with (2.27) and (2.25) with (2.26) we obtain:

(71 (X1)b = 75(X1)) + (7 (X2)b — 75 (X))
= b(a; + ag — 2ag) + cay + (ag + a7 — 2a4) + 7H(X1)e — X1(b), (2.28)

(71 (X2)b — 75(X2)) + (7 (X1)b — 75(X1))
= bas + ag — 2a3) + c(ag — 2a4) + (az + a3 — 2a5) + 7} (X1)c + X1 (c) — Xo(b). (2.29)

Definition 2.36. Let M C R* be a locally strictly convex surface, £ a metric field and
u = {X;, Xy} an orthonormal tangent frame with g¢. We say that the quadratic form h'

is u-symmetric, if

(VA (Xq, X1, X1) = (VA (X1, Xa, X1),
(Vhl)(Xl,Xg,Xg) = (vhl)(X2’X1’X2).

Note that the quadratic form h' is u-symmetric if and only if X;(b) = (a; + a4 —
2a6)b + asc and X (c) = Xo(b) — (as + as — 2a3)b — (ag — 2a4)c.
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Therefore from Equations (2.28) and (2.29)

(1) (X1)b — 75 (X1)) + (17 (X2)b — 73 (X3)) = (ag + a7 — 2a4) + 77 (X1)c,
(1 (X2)b — 73(X2)) + (17(X1)b — 73 (X1)) = (a2 + as — 2a5) + 71 (X1)c.

Also since C1(X,Y, Z) is symmetric in X,Y and Z and h! is u-symmetric we have:

i (X1)b = 75 (X2),
Tll(Xl)C + 7'21(X1) = Tll(Xg)b
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CHAPTER 3

Asymptotic directions, affine binormals and

inflections

In this chapter, we introduce the concepts of asymptotic directions, affine binormals
and inflections. These concepts are well known in the case of a surface immersed in
Euclidean space (sce for instance [11,15]). We show how to adapt all these definitions to

the context of the affine differential geometry.

3.1 Asymptotic directions and affine binormals

Let M C R* be an immersed surface with a transversal plane bundle 0. We denote
by ¢* the conormal, that is, the dual vector bundle of o. For any p € M and for any
conormal vector A € o, we define the second fundamental form along A as:

ha(X,Y) = MR(X,Y)), VX,Y € T,M.

Definition 3.1. We say that a non zero A € o, is an affine binormal at p if hy is

degenerate, that is, if there is a non zero tangent vector X € T, M such that
h(X,Y)=0, VY € T,M.

Moreover, in such a case, we say that X is an asymptotic direction at p associated with

the affine binormal \.

The concepts of asymptotic directions and affine binormals are related to the so-called

generalized eigenvalue problem. Let A, B be two n x n matrices. A pair (p,q) € R — {0}
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is a generalized eigenvalue of (A, B) if
det(pA +¢B) = 0.

Analogously, x € R™ — {0} is a generalized eigenvector associated with the generalized
eigenvalue (p, q) if
(pA+gB)x = 0.

In our case, given a point p € M we fix u = {X;, X5} any tangent frame of T,M,
{&1, &} any transversal frame of o, and {A;, A2} the corresponding dual frame of 0. We
denote by A = (h'(X;, X;)) and B = (h*(X;, X;)) the coefficient matrices of the second
fundamental forms h', h? respectively. The proof of the following lemma is straightforward

from the definitions.

Lemma 3.2. With the above notation, X = w1 Xy + uXy € T,M is an asymptotic
direction associated with the affine binormal X = r A +sAy € o}, if and only if u = (u1, uy)

is a generalized eigenvector of (A, B) associated with the generalized eigenvalue (1, s).

It follows from Lemma 3.2 that the affine binormals are determined by the solutions of
the quadratic equation det(rA + sB) = 0, so we can have either 2, 1 or 0 affine binormal

directions. When M is locally strictly convex, we always have at least one affine binormal.

Corollary 3.3. Let M C R* be a locally strictly convex surface with a transversal bundle

o. At any point p € M, either:
1. there exist exactly two affine binormal directions and two asymptotic directions (one
for each binormal), or
2. there exists exactly one affine binormal direction and any tangent direction is asymp-
totic.

Proof. We choose any metric field £ on M and consider u = {X;, X5} an orthonormal
tangent frame and {&;, &} the associated transversal frame given by Theorem 2.16. The

coefficient matrices of the second fundamental forms are

= 0b7B= 10’
b ¢ 0 1

where b = h'(X;, X5) and ¢ = h!'(X,, X5). By Lemma 3.2, the asymptotic and affine

binormal directions are given in terms of the solutions of the homogeneous linear system:

) ()-(0)
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The affine binormal directions are given by the roots of the determinant s%+crs—b%r? = 0.

Since (r,s) # (0,0), we can assume r # 0 and normalize to r = 1, so,

—c+ 2+ 4b?
5 )

If (b,¢) # (0,0), we have two distinct solutions and one asymptotic direction (uy,uy) for
each one of them. Otherwise, if (b,¢) = (0,0), then s = 0 and all the directions (u1, us)

are asymptotic. O

Definition 3.4. We say that a point p € M is an inflection if all the tangent directions

at p are asymptotic, that is, if there is a non zero A € ¢* such that h) = 0.

With the notation of Lemma 3.2, p is an inflection if and only if the matrices A, B are
collinear. In the case that M is locally strictly convex, we fix a metric field ¢ and take an
orthonormal tangent frame u = {X;, X5} and a transversal frame {{;, &} as in Theorem
2.16. Then p is an inflection if and only if A'(X;, X5) = h!(Xy, X3) = 0.

We can also use Lemma 3.2 in order to obtain the differential equation of the asymp-
totic lines of a surface. By definition, an asymptotic line is an integral curve of the field

of asymptotic directions, that is, it is a curve whose tangent at any point is asymptotic.

Theorem 3.5. With the notation of Lemma 3.2, the differential equation for the asymp-
totic lines of M 1is:
dv? —dvdu du?

a b c | =0,

e / g

where A = @b and B = e/ )
b ¢ fg

Proof. We just eliminate (r, s) in the linear system (rA + sB)u = 0, where u = (du, dv).
[

Remark 3.6. If M is locally strictly convex and £ is a metric field, then we can use one
of the transversal metrics gé defined in Section 2.2 in order to define binormal directions
also in ¢ instead of o*. In fact, for cach v € o, we have a well defined second fundamental

form along v:
ho(X,Y) = g¢ (W(X,Y),v), VXY € T,M.

We say that v is binormal if &, is degenerate.
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Remark 3.7. It is not difficult to see that if M is non-degenerate in the sense of Nomizu
and Vranken [13|, then the asymptotic directions of M at p are exactly the null directions
of the Burstin-Mayer affine metric (which is indefinite in the case that M is locally strictly

convex).

3.2 The height function

Another important fact is that we can characterize the asymptotic directions and
affine binormals in terms of the singularities of the height functions. Given the direct sum
R* = T,M & 0, we denote by p; : R* — T,M and p, : R* — 0, the two associated linear
projections. Then, for each A\ € o, we define the height function Hy : M — R by

Hi(z) = Ap2(2)).
Proposition 3.8. Let A € g, be a non zero conormal vector of M, then:
1. Hy has always a singularity at p;
2. X s an affine binormal if and only if Hyx has a degenerate singularity at p;

3. X € T,M s an asymptotic direction associated with X if and only if X belongs to
the kernel of the Hessian of Hy at p;

4. p is an inflection if and only if there exists a non zero \ € o, such that Hy has a

corank 2 singularity at p.

Proof. The differential of Hy at p is always zero and we have (1):
A(H),(X) = Apa(X)) = 0, ¥X € T, M.
But the Hessian of H) at p is precisely the second fundamental form h,:
d*(Hy),(X,Y) = Mpa(DxY)) = MR(X,Y)) = ha(X,Y), VX, Y € T,M.

Then, (2), (3) and (4) follow directly from the definitions of affine binormal, asymptotic

direction and inflection. O

The results of Proposition 3.8 can be easily restated in terms of contacts with hyper-

planes.
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Definition 3.9. We say that 7 is an osculating hyperplane of M at p if it is tangent to
M at p and it has a degenerate contact with M at p. If H : R* — R is any linear function
such that 7 is given by the equation H(x —p) = 0, then we say that X € T,M is a contact

direction if it belongs to the kernel of the Hessian of H|y,.

Corollary 3.10. A tangent vector X € T,,M is an asymptotic direction if and only if it is
a contact direction of some osculating hyperplane. In particular, the asymptotic directions
(and hence the inflections) of M are affine invariant, that is, they do not depend on the

choice of the transversal plane bundle o.

Proof. If X is an asymptotic direction, then there exists an affine binormal A € o associ-
ated with X. We define 7 as the hyperplane passing through p and parallel to T, M ©ker \.
We can take H : R* — R given by H(x) = A(p2(x)) so that H(z — p) = 0 is a defining
equation of m and H|y, = H,. By Proposition 3.8, 7 is an osculating hyperplane and X
is a contact direction.

Conversely, assume that 7 is an osculating hyperplane and X is a contact direction.
Let H : R* — R be any linear function such that H(z — p) = 0 is a defining equation of
7. We take now A\ = H|,, € o, then

Hly(x) = H(x) = H(p1(x) + pa(r)) = H(p2(x)) = Ap2(z)) = Ha(z),

for allz € M. Again by Proposition 3.8, A is an affine binormal with associated asymptotic
direction X. N

This gives another proof of the fact that the asymptotic directions are affine invariant.

3.3 A theorem of equivalence

Let M; C R* be an immersed surface and o; a transversal plane bundle on M; (i = 1,2).
We consider the affine fundamental form h; associated with the transversal plane bundles
o

hi : TMl X TMl — 0;.

Definition 3.11. We say that a bundle morphism gg : 01 — 09 preserves the affine

fundamental forms if 5 is an isomorphism of vector bundles such that

P(hi(X,Y)) = ha(9:(X), 9:(Y)),

where ¢ : M, — M, is the underlying diffeomorphism.
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Theorem 3.12. Let M; C R* be a locally strictly convexr surface, o; a transversal plane
bundle (i = 1,2). Assume p € M, is not inflection and let U be a small enough open
netghborhood of p. Then there is a morphism 5 on U which preserves the affine funda-
mental forms if and only if there is a diffeomorphism ¢ on U such that ¢, preserves the

asymptotic directions.

Proof. Let gg : 01 — 09 be a transformation preserving the affine fundamental forms.
Let {m,n2} be a frame on oy and {&,&} frame on o9. Since 7; and 7, are linearly
independent, 5(171) and 5(772) are linearly independent because qz~> is an isomorphism of

bundles. Therefore there are functions «;; defined on ¢ such that

5(771) = a1181 + 128, 5(772) = 9181 + 228y

Since gg is a transformation preserving the affine fundamental forms

ha(94(X), $o(Y) = S(In (X, V) = $(h1 (X, Y )m + BY(X, Y )1po)
= 11 (X, Y)3(m) + (X, Y)p(n.)
= h(X,Y)(0m1& + 0128e) + hi(X,Y) (s + )
= (anh (X, Y) + anhi(X, V) + (aphi (X, Y) + anh?(X,Y))E.

By definition of hs, we obtain

hy(9(X), 6 (Y)) = anhi(X,Y) + anhi(X,Y),
h3(6+(X), 0.(Y)) = a12hi (X, Y) + anhi(X,Y).

Now we fix a tangent frame {X;, X5} on M and denote by

(a1, b1, 01) = (hy (X1, X1), by (X, Xs), by (X, X2)),
(e1, 1, 91) = (hi(Xy, X1), b3 (X1, Xa), hi( X2, X)),
(a2, b2, ¢2) = (ha(9 X1, 9 X1), B (9 X1, 0 X2), hiy (02 X2, 6. X2)),
(€2, f2,92) = (h3(9u X1, 0. X1), h3 (9 X1, 6. X2), h3 (9. X2, 6. X2)),
dv? —dudv du® dv? —dudv du®
A= o by c and Ay = | ay ba Co

€1 S g1 €2 fa g2

By a straightforward computation Ay = (1009 — ag2ai01)A.
If duX; + dvXs, is an asymptotic direction then A; = 0 hence A, = 0. Therefore
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dug.(X1) + dvg.(X2) = ¢ (duXy + dvX,) is an asymptotic direction.

Conversely, we suppose that there is a diffeomorphism ¢ : &/ — V such that ¢, preserves
the asymptotic directions. We fix the tangent frame {X;, X5} and using the A; and A,
as above, then duX; + dvX, and dug.(X;) + dvp.(X3) are the asymptotic directions
on M; and M, respectively, or A; = A; = 0. Since p is not inflection we can suppose
a1 fi — bie; # 0. Hence, there are functions 35, ¢, 7 = 1,2 defined on U such that

ay = Br1a1 + Pasen, ey = (1201 + Pasen,

by = B11b1 + Ba1 f1, fa = Biabi + B fi.

Now we consider the following system of linear equations with variables a, b, ¢, d

¢y = acy + bgy,
g2 = cc1 + dg;.

Since A; = 0 and Ay = 0 we have

0= (alfl - b1t‘31)alu2 + (algl - 0161)dUdU + (blgl - lel)d02>
0 = (agfs — baeg)du? + (azgs — caea)dudv + (bags — cofz)dv?.

Now, by a simple computation as fo — boes = det[5](ay f1 — bier), since ay fi —bie; # 0 and

(du : dv) is solution of the equations above, it follows that

A2ga — Ca€g = det[ﬁ](algl - 0161)7

baga — cafo = det[B](brg1 — c1f1).

We compute

asgs — caes = arc1(cfi1 — aPia) + erg1(dfar — bPa2) + a191(P11d — bf2)
-+ 6161(0/321 - aﬁ22)a (3-1)

baga — cafo = bici(cfin — aBi2) + f191(dBar — bBa2) + bigi(frid — bfi2)
+c1fi(cBa — aBa2). (3.2)

Now since (asgs — c2€2)(b1g1 — c1.f1) = (bags — c2f2)(a1g1 — c1e1), from Equations (3.1)
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and (3.2) we obtain

0= C%(Cﬁn —aBi2) + g%(dﬁm — bBa2) + 191 ((B11d — Br2b) + (cfa1 — afaz)).

Therefore we have the following system of equations

0 = B — apbz,
0= dﬁzl - 55227
0 = (f11d — Pr2b) + (cBa1 — afa2).

By solving this system we obtain that: there is a A such that a = S11\, b = Ba1 A\, ¢ = SraA
and d = . Finally, we replace in Equation (3.1), A = 1 and a = (1, b = [21, ¢ = S12
and d = (. With this, it is enough to define

d(m) = anéi + a2éo,

d(n2) = az&i + azo.

3.4 Curvature ellipse

The curvature ellipse appears in the study of the geometry of surfaces in R* as the
image of the unit circle defined by the Euclidean metric, by the second fundamental form
(see [11]).

We see in [18] the following characterization of the semiumbilic points using the cur-

vature ellipse in the Euclidean case.

Theorem 3.13. Let M be an immersed surface in R* and let p € M. The following are

equivalent conditions:
1. p is semiumbilic.
2. The curvature ellipse at p degenerates to a segment.

3. There are two orthogonal asymptotic directions at p.

In the affine case the curvature ellipse is always degenerate, different from the Eu-
clidean case where it is degenerate just in the semiumbilic points. Other difference with
the Euclidean case is that the asymptotic directions are always orthogonal with the

metric ge.



3.4 Curvature ellipse 39

Let M C R* be a locally strictly convex surface and let £ be a metric field. Let o be

a transversal plane bundle. We denote by S;, the set
Sy ={XeT,M | g(X,X)=1}.
We consider the map

n :S; — 0p
X — h(X, X)

The curvature ellipse /A, is the image by 7 of S}] or A, = n(S}J).

Below we characterize the affine asymptotic directions using the curvature ellipse in

the affine case.

Lemma 3.14. The curvature ellipse degenerates to a segment and the asymptotic direc-

tions correspond to the vertices of the segment.

Proof. Let u = {X;, Xy} be a local orthonormal tangent frame. By Theorem 2.16, there
exists a frame {£;, &} C 0, such that h' (X7, X;) = 0 and h*(X;, X;) = 8;;. For X € T,M
such that g¢(X,X) = 1 we can write X = sinfX; + cosfX,. By a direct computation

and definition of A we obtain:
hX,X)= hl(X, X)& + hQ(X, X)& = (bsin(20) + ¢ cos? 0)&1 + &,

where b = h'(X1, X5) and ¢ = h' (X3, X3). Hence, A, is a segment.

By Corollary 3.3 the affine binormal directions are given by the roots of the determi-
nant s* + crs — b*r? = 0. Since (r,s) # (0,0), we can assume r # 0 and normalize to
r =1, so,

—cE /e +4p?
5 .
Now we define : H(f) = bsin(20) + ccos? and by derivation H'(0) = 2bcos(20) —

S =

2
2csinf cosf. Therefore H'(6) = 0 if and only if tan20 = — Now by trigonometric

identities H'(f) = 0 if and only if tan = =cEvc+40 VQ‘;QW. Hence 0 is a local maximum and
minimum of H if and only if X is an asymptotic direction. Therefore the asymptotic

directions are the vertices of the segment. O]

Next we show that the asymptotic directions are orthogonal with the metric of transver-

sal vector fields.
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Proposition 3.15. Let u = {X1, X5} be a local tangent frame with the metric g. The

solutions (du : dv) of the binary differential equation
Agdu? + Ajdudv + Aydv® =0 (3.3)

are real and orthogonal with the metric g if and only if AsE — A1 F + AgG = 0, where
E = g(leXl); F = g(Xl,XQ) and G = g(Xg,Xg).

Proof. We denote by r; = ajdu + Si1dv and ro = asdu + fadv the real solutions of the
Equation (3.3), this is (ajdu + B1dv)(asdu + Bedv) = Agdu? + Ajdudv + Asdv?, hence
aray = Ao, A1 = a1Ps + agf; and Ay = (1. Then the solutions are orthogonal if
—01 X7 + a1 X5 and — (2 X7 + as X5 are orthogonal, this is,

0=g(=b X1+ a1 Xs, =X + a0 Xs) = f152E — (Braz + Boaq)F + oqasG.

Conversely, we suppose that As ' — A1 F'+ AgG = 0 and see that the solutions of Equation
(3.3) are real. In fact, since g is a positive definite metric EG — F? > 0, it follows
EG > F? > 0 and EG > 0, in particular £ # 0, therefore A, = Al%ﬁ. Now we
compute the discriminant A of Equation (3.3)

A F — AyG F A2

A=A} = ddgds = A} — 4Ay(T ) = (A - 240 )" Ay

B EJEG—F%>Q

therefore the solutions are real. The real solution ry = aydu + S1dv and ry = apdu + Bodv
are orthogonal since Ay — A1 F + AgG = 0. O

Corollary 3.16. Let M C R* be a locally strictly convex surface and & be a metric field,

then the asymptotic lines are orthogonal with the metric ge.

Proof. Let u = {X;, Xy} be a local orthonormal tangent frame. By Theorems 2.16 and

3.5 we obtain the equation of asymptotic lines
—b(du?) — c(du)(dv) + b(dv?) = 0,

and the result follows by Proposition 3.15. O



CHAPTER 4

Affine o-semiumbilical surfaces.

Let M C R* be a locally strictly convex surface with a transversal plane bundle o. It
is common to call a point p € M semiumbilic if S, is a multiple of the identity, for some
v € 0p. In analogy with the Euclidean case we introduce also the concept of semiumbilic
point. We show that the surfaces contained in any locally strictly convex hyperquadrics

are o-semiumbilics.

4.1 The affine hyperspheres

We recall the Blaschke construction of affine for a hypersurface.

Let R™*! be the affine (n+1)-space and D the usual flat connection on R*** | N C R"™!
be an immersed n-manifold and be £ a transversal vector field. Then, for all p € N,
& C T,R™! is a vector such that

T,R™™ = T,,N @ span(¢,),
and for all tangent vector fields X,Y on N,
DxY =VxY +h(X,Y)¢ (formula of Gauss),
where h is a symmetric bilinear function and
Dx& =—=5X +7(X){ (formula of Weingarten).

Here, S¢ is a tensor of type (1,1), called the affine shape operator, and 7 is a 1-form called

the transversal connection form.
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Now we consider the volume forms wj, and 6 given by

wn( X1, X \/det (X., X))
G(Xl,. .. ,X ) = [Xl’ Xn7§]

where {X7, ..., X,} is any positively oriented basis of T,N.

Theorem 4.1. [12, Theorem 8.1] There is, up to sign, a unique transverse vector field
&, for which the following conditions hold:

1. Vxw =0 for all tangent vector field X on N,
2. 0(Xy,...,X,) = wn(Xq,...,X,) for all tangent vector fields Xq,..., X, on N.

Definition 4.2. The unique transverse vector field in Theorem 4.1 is the affine normal
vector field which we denote by Y. The affine normal Y is also known as the Blaschke

normal field.

Definition 4.3. A hypersurface H C R"*! is an improper affine hypersphere if the shape
operator Sy isidentically 0. If Sy = Al d, where )\ is a nonzero constant, then H is a proper

affine hypersphere. An affine hypersphere is either a proper or improper hypersphere.

Particular cases of affine hyperspheres are the hyperquadrics: elliptic paraboloid, el-
lipsoid and hyperboloid of two sheets. In general the hyperquadrics are hypersurfaces

which can be described by second-order polynomials.
Example 4.4. The Elliptic Paraboloid is parameterized by

X : (@1 20) = (a2, %((xm ot (@), (4.1)

We consider the tangent frame u = {X3,..., X,,} given by X; = (1,0,...,0,2;), X5 =
(0,1,...,0,29), ..., X;, = (0,0,...,1,2,) and X,,11 = (0,...,0,1). We claim that the

quadratic form h(X;, X;) = §;;. In fact, denote by e,...,e, the canonical basis of R"
and note that: dX(e;) = Xj,..., dX(e,) = X,, and then, computing Dy, X, this is

(X)) (x + te;) — Xj(x)
t

limy o

- 57]Xn+1
Since 0(X,+1) = [X1,..., Xy, Xos1] = 1L and wy, (X7, ..., X,,) = det(h) = 1 it follows that
X411 is the affine normal vector field Y.

In [2] we find the computation of affine normal vector bundle for the Ellipsoid and

the Hyperboloid of two sheets.
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Example 4.5. The Ellipsoid is parameterized by

M: (@) + .+ (@) =2 (4.2)

—(2n+2)
and its affine normal vector field is given by Y = —r =

Example 4.6. The Hyperboloid of two sheets is parameterized by

M: () + .+ (2")? — (2" = - (4.3)

. . . —(2n+2)
and its affine normal vector field is given by Y = ¢ »+2" z.

Example 4.7. The hypersurface Q(c,n) C R™™ (see [10]), is an example of an affine
hypersphere which is not a hyperquadric:

Q(C7 n) 4l = T,

where ¢ = constant # 0, 1 > 0,25 > 0,...,2, > 0.

4.2 Surfaces in hypersurfaces

We recall the definition of the Blaschke metric of an immersed hypersurface N C R*.
Let v = {X3, X5, X3} be a tangent frame defined in some neighborhood U of a point p

in N. Now we consider
Hy(Y,Z) =[X1,X2,X3,DY], VY, Z¢€ T,N.

Then H, defines a symmetric bilinear form on N that initially depends on the tangent
frame v'. However, if we suppose that H,s is non-degenerate then we can normalize it and

the symmetric bilinear form

Hu(Y, 2)

&Y, 7)) = T
(detu/ I‘Iu/)g

. VY,ZET,N,
does not depend on the choice of the tangent frame u’, where det,y Hy = det(Hy (X;, X;)).
The metric & is called the Blaschke metric of N.

If N is locally strictly convex, then H, is always non-degenerate and positive definite,
moreover the tangent hyperplane T, N is a support hyperplane with a non-degenerate

contact. In particular, given any immersed surface M C N we have T,M C T,N C R,
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and hence, M is also locally strictly convex. Moreover, we can consider the Blaschke

metric & restricted to M.

Remark 4.8. We can choose a transversal vector field § such that gy coincides with &
in T,M. In fact, let u = {X;, X2} be a frame in T,M and we choose a tangent vector
field X3 € T,N such that v’ = {X;, X5, X3} is a frame in T, N, then

GY,Z)=—-Hy(Y.Z), VY, ZeT,M.
In particular, we have that gjx,) = —A® where A is given by

(detu/ }Iul)é
(dety Gy)i

Then, it is enough to change the transversal vector field X3 by & = —X3/A\?, so that
i) = O

4.3 Surfaces contained in hyperquadrics

An interesting case in this context are the immersed surfaces in affine hyperspheres.

Example 4.9. Immersed surface in an elliptic paraboloid. We take M as the surface

parameterized by
Loy, o 2
X (U, U) = (u,v,g(u,v), E(u +v+ g(u,v) ))
Note that, M is contained in an elliptic paraboloid H given by
Lo 9, 2
H: ([L’,y,Z) = (xayvzai(x +ty +=z ))
From [10], the Blaschke metric on H is given by
@(67;,6]') = 5ij7

where e; = (1,0,0,z), eo = (0,1,0,y) and e3 = (0,0, 1, z). Therefore, the Blaschke metric
on M is given by

B(Xu, Xo) =14+ 62, &(Xy, Xy) = gugo and &(X,, X,) =1+ g2
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We can choose ¢ such that g¢ = . By a simple computation,

§=—v1+4+g2+4%0,0,1,9).

Example 4.10. Immersed surface in a hyperboloid of two sheets. We take M as the

surface parameterized by

X : (u,v) = (u,v, g(u,v), \/1 + u? + 02 + g(u,v)?).
Then, M is contained in the hyperboloid of two sheets H
H:2?+a)+a;—a;=-1

The Blaschke metric is calculated in [10, page 64]. We consider the metric field

¢=x[00,1, J ,
VI @ 07 glu, P

where

A\ = —\/1 + g2 + g2 + (ugy +vg, — g(u,v))%

Then the Blaschke metric & on M coincides with g¢. It is not easy to check this computa-
tion by hand, but it is possible to do it with the aid of the software Wolfram Mathematica.
Explicitly the metric g¢ is given by

+99u)2
X, X)) = (14 ?) — (u
9l X Xo) = U 0) = T2 0 1 gt o
(u+ 994) (v + g9v)
X’U,? Xq_) = uYv T ’
9¢( ) =99~ T 1 0 1 glu, o)
(v+ ggv)2

g&(vaXv) =(1+ gg)

1+ 0 4 g(u,v)?

Example 4.11. Immersed surface in Q(1,3). We take M as the surface parameterized
by

X+ () (u,v,g(u,v),;> |

wvg(u,v)

Note that, M is contained in Q(1,3):

1
H:(z,y,2) — <x,y,z,—) )
Tyz
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We consider the tangent frame {ej,es,e3} on H to compute the Blaschke metric, where
e; = (z,0,0, —jz)), es = (0,9,0, —%yz), €3 = (0,0,z,—x—;z) and a transversal field e, =
=2

(x,y, 2, myz). By taking derivatives,

1
D.eq = (2,0,0,2, —) = —e; — 2e5 — 2e3 + 2ey,
TYz
so hy; = 2 which is the component ey of D, e;. Analogously we compute hio = hjz =
hos =1 and hgy = hgs = 2, therefore det(h;;) = 4. Finally

hij

Gy =
7 (det(hy;))/o

that is, ®; = 2%/° and &;; = 5= (i # j). We restrict & to the surface M and obtain

2/°(g® + ugg, + v’gy)
u2g?
2
9%+ vgu(ugy + g) + ugu(vge + 9)
(G Xu7 Xy) = )
( ) 22/5y0g?
2%/°(g2 + vgg, + v?g2)
1)2g2

& (X, Xu) =

)

&(X,, X,) =

It is enough to consider the metric field

2g2 2 v u2 v u2 —
2T 2ogy — ugaP + (g F g T 1) (0.00900.0), 7o)

<= 215 g(a, 0) ————

then we have g = &.

4.4 o-semiumbilicity

Let M C R* be a locally strictly convex surface and o be an arbitrary transversal

plane bundle.

Definition 4.12. A point p in M C R* is called o-semiumbilic if S, is a multiple of the
identity, for some non zero v € o,. We say that M is o-semiumbilical if all its points are
o-semiumbilic.

In the case that o is either the antisymmetric or the symmetric equiaffine plane bundle,
then we say that M is either antisymmetric or symmetric affine semiumbilical, respectively
(see Definition 2.26).

We see now that the semiumbilic points are related to the vanishing of the normal
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curvature tensor. We can consider the curvature tensor of the normal connection, called
normal curvature tensor
Ryy - T,M x T,M x 0, = 0p,

given by
Roi(X,Y)v = Vx(Viv) — VEH(Vxv) — v[imu.

Since R?* has vanishing curvature, we obtain Ry (X,Y)v = h(X,S,Y) — h(Y,S,X).

We fix a metric field £ on M and let u = {X;, X2} be an orthonormal tangent frame
{&1,&} the corresponding transversal frame given by Theorem 2.16. We consider X =
aXi+bXs and Y = cX; + dX5. We write

S1X1 = MXi + X,
SlXQ = >\3X1 + )\4X2.

We have
RvJ_ (X, Y)§1 - h(X, 31Y) - h(Y, S]X)

By using the relations above and the billinearity of h, we prove that
RVL (X, Y)fl = (ad — bC)(()\4 — Al)hl(Xl, XQ) — )\th(XQ, XQ))§1 =+ ()\3 — )\2)62)
Therefore, Ry (X,Y)& = 0 if and only if

(Mg — AR X, Xo) = Maht ( Xy, Xo), (4.4)
A3 = Mo (4.5)

Analogously, if we write: S92 X7 = 1 Xy + peXs, and SoXo = pus Xy + paXo, then,
Ry (X,Y)& = 0 if and only if

(pa = )P (X1, X)) = poh (X, X), (4.6)
M3 = Ha. (47)
Definition 4.13. Let v be a vector in the transversal plane o,, with p € M.

e The affine v-principal curvatures in p are the eigenvalues of the affine shape operator

(=50)p-

e The affine v-principal directions in p are the eigenvectors of the affine shape operator

(—S,,)p.
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Theorem 4.14. Let p € M, then Ryi(p) = 0 if and only if the following conditions hold:
e the shape operator S, is self-adjoint Vv € o,, and

e cither p is o-semiumbilic and all the non trivial v-principal configurations agree with

the asymptotic configuration, or p is an inflection.

Proof. We suppose that Ry (p) = 0. By equations (4.5) and (4.7) it follows that Ay = A3
and p2 = 3, in other words S; = S, and Sy = 5, are self-adjoint. Now if v = av; + fus,
then any S, = Sy + 855 is also self-adjoint.

If p is not an inflection, then (b, c) = (h' (X1, X5), h' (X, X5)) # 0, hence

A—M A
PO TP S 0= (A= AL ) = (e, b),
c b
P IEI  0  (y — i, o) = (e, D),
c b
A=A A

for some t, s € R, therefore = 0.

Hq — K1 M2
Moreover, if v = avy + fre, with («, 5) # 0 then,

AA 1 0
o 1 A2 +8 A A
A3 A H3  fha 0 1
if and only if aX; + By = aXy + Bugs and ads + Bue = 0 if and only if

)\4 - )\1 )\27
Ha — K1 U2,

=0.

On the other hand, the asymptotic configuration is given by

y* -y a?
0 b ¢ |=—bx®—cay+ by
10 1

and the v-principal configuration is given by:

y* —zy z?
aX; + By ady + Bua ady + Buy |,

1 0 1
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which is equal to —(aXy + Bua)x® — (a(Xg — A1) + B(pa — p1))xy + (ade + Bus )y
Therefore, the asymptotic configuration and the v-principal configuration are the same if

and only if
(@A — M) + B(pa — 1)) — (s + Buo)e = 0,

or equivalently,

b(/\4 - Al) - CAQ = 0,
b(pa — p1) — cpg = 0.

4.5 Hyperquadric surfaces

In the last part of this section we will consider an immersed surface M in a locally
strictly convex hyperquadric N. By affine transformation, the locally strictly convex

hyperquadrics are equivalent to one of the following normal forms:

e Elliptic paraboloid z4 = (z} + 23 + 23).
e Ellipsoid z7 + 23 + 23 + z7 = 1.

e Hyperboloid of two sheets 23 + 23 + 22 — 23 = —1.

Lemma 4.15. Let M C N C R* be an immersed surface in a locally strictly convex
hypersurface and let —& be the metric field such that g_¢ = & on M. If u = {Xy, Xy}
is a local orthonormal tangent frame and {&1, &} given by Theorem 2.16 on o. Then the
frame { Xy, X5, & — 18(X1) Xy — 78(X2) X2} is orthonormal relative to metric & on N and
there are functions ri,r9,r3 such that & =Y + r1 Xy 4+ 1o Xo + 1r3&7.

Proof. We have that {X;, X2} is orthonormal on N relative to metric &, now by using
orthonormalization, we write &, = A&, — A X; — Ay X, such that the frame { X, X5, &,} is
a local orthonormal frame with the Blaschke metric. Since {X1, X5,&,} is an orthonormal
frame with the Blaschke metric [ X1, X5, &,,Y] = 1 and it follows that A\[X1, X5, &, Y] = 1.
On the other hand [X, X5,&1,&] = 1 and we obtain [X, X5, &1,& — AY| = 0. Therefore

there exist rq,ro, r3 such that

S =AY + 711Xy +roXo + 1361
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On the other hand, &(&,, X1) = 0, &(£;, X5) = 0 and &(£,,€,) = 1 and it follows:

)\1 = )‘QS(Xlagl)a
>\2 = )\@(X27£1)7
1+ )\f + /\g = )\26(51,51).

Now we compute the affine fundamental form A on N. By Theorem 2.16

Dx, Xi =Vx Xi+& =V, Xi + &+ AY +m Xy + 10 Xo + 136
= (Vx, Xi + 11Xy + 12X +1r3&) + AY.

Hence h(Xy, X;) = A, analogously we obtain

h(XlaXQ) - 07 h(Xlazl) = >\2T12(X1) - AlA?
h(Xs, Xs) = A, h(Xs,€y) = X717 (Xa) — Ao

The equations &(X1,¢;) = 0, h(X1,€,) = 0 imply Ay = A73(X1). Analogously A\, =

AT2(X3). Now by a simple computation
H = det(hi;) = A*h(&;, &)

By using the definition of the Blaschke metric

A\ N3/
oA = NPR(E, €N h(E, &)
_ 5 % \4/5
1= 6(21751) — h(glagl) _ h<§17€1)4 )

NR(E, )1 N
We conclude that A = h(€;,&,) = 1 and hence

S =Y + 1 Xy +1reXo 4+ 134,
& =& — (X)) X1 — 71 (Xa) Xa.

Theorem 4.16. Let M C R* be a surface immersed in a locally strictly convex hyper-
quadric N. Then the affine normal to N belongs to both the antisymmetric and symmetric

equiaffine plane bundles of M, with respect to the Blaschke metric restricted to M.
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Proof. Let p € M, since M C N there is a transversal vector field v; on M, which
is tangent to N and such that g;_,,) coincides with the Blaschke metric & restricted to
surface M. Now we consider a local orthonormal tangent frame { X3, Xo} on M relative to
the metric g_,,) = &. We fix a local transversal plane bundle o, by Theorem 2.16 there is
a local basis {v1, 12} on o such that: [X7, Xo, 01, 10] = 1, M (X1, X1) = 0, h3(X;, X;) = 6y
Now we consider the local frame {ey, es, e3,e4} such that e; = X3, es = Xy, e3 = 11 and
es = Y, where Y is the affine normal vector field to N. By Lemma 4.15 we have
[e1, €2, €3,e4] = 1. Since vy is a transversal vector field on M and [X;, Xo, 11, 15] = 1, we

can conclude v = A\3ze3 + ey4, for some A3. By Theorem 2.16 we write:

D, e; = aje; + azes + Azes + ey,

D, e; = agey + ages + h' (X1, Xy)es,

De,es = frer + Paea + (11 (X1) + Xa7i (X1))es + 77 (X1 )ea,
De,e1 = ase; + agea + (X1, Xy)es,

D, es = azey + ages + (R (X2, Xo) + A3)es + ey,

D.,e3 = Bse1 + Baea + (7'11(X2) + /\37'12(X2))63 + 7'12(X2)64-

We note that:
h(er,er) = 1, h(er, e2) = 0, h(er, e3) = 77 (X1), hez, e2) = 1, h(ea, €3) = 77(X2).

As ey is the affine normal vector field, it follows:

ay + ay + Tll(Xl) + /\37’12(X1)
as + ag + 71 (X2) + A372(X5)

0,
0

Since N is a hyperquadric, then C(X,Y, Z) := (Vxh)(Y,Z) =0 (see [12]):

0=C(ey,er,e1) =e(h(er,er)) —2h(Vee1,e1)
= —2h(aje; + azes + Azes, e1)
= —2a; — 2377 (X,).
0= C(ey,er,e3) =er(h(er,ea)) — h(Veer,e3) — hier, Ve, e2)
= —h(ajey + ases + Azes, ea) — h(ey, azey + ages + h' (X1, Xo)es)
= —ay — M7 (X2) — az — h' (X1, Xo) 1 (X1).
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0= C(eq,eq,e2) = e1(h(ea, e2)) — 2h(Ve, €9, €2)
= —2h(ase; + azes + W (X1, Xo)es, eo)
= —2ay — 2R (X1, Xo)TE(X2).
0= C\(eq, e1,61) = ea(h(e,e1)) — 2h(V,e1,€1)
= —2h(ase; + agez + h' (X1, Xo)es, e1)
= —2a5 — 2R (X1, Xo)T2(XY).
0= C(eg,eq,e2) = ea(h(er,e2)) — h(Ve,e1,e2) — h(er, Ve,e9)
= —h(ase; + ages + h' (X1, Xo)es, e2) — hler, azer + ages + (h'(Xa, X2) + \3)es)
= —ag — h' (X1, Xo)T3(Xo) — a7 — (RH( X2, Xo) + A3)7i(X1).
0 = C(eg, €9,69) = ea(h(eg, €9)) — 2h(V, €9, €9)
= —2h(aze; + ages + (R (Xo, X2) + A3)es, e9)
= —2ag — 2(h* (X2, Xo) + \3)72(Xs).

In the antisymmetric case we have:

2h1(X1,X2)7-12(X1) — W' (Xg, Xo)7H(X,) = ag — az — a3 — as,
hl(XQ,XQ)le(Xl) + th(Xl,Xz)le(Xg) = a1 — a4 — Qg — A7,

and

aq + a4 + le(XQ)hl(Xl,Xg) = —)\37'12(X1),
as + ag + Tf(Xl)hl(Xl,Xg) + le(Xg)hl(Xg, XQ) = —/\37'12<X2).

From Remark 2.31, the affine normal plane is generated by the fields vy, 75, where:

V=V — 7'12(X1)X1 - le(XQ)XQ’
Ty = 1y — ATE(X1) Xy — As72(X32) Xo.

By substituting 7o = A3vy + 4 — A\375(X1) X1 — 377 (X2) Xo, it follows that
172 = )\351 + €q.
Analogously, in the symmetric case:

a2+a3—3a5—a8:a2+a3—2a5—(a5+a8)
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= —M\372(Xo) — W (X, Xo)T2(X1) + 2R (X1, Xo)T2(X1) + 71 (Xa) + As72(X3)
= h'(X1, Xo) 71 (X1) + 71 (X2)

= hY (X1, Xo)TE(X1) + b (X1, Xo) T3 (X1) + A (X, Xo)TE(X2)

= 2hY (X1, Xo)T2(X1) + hY (X, X2)T2(X3),

and

ag + a7 — 3ag — a3 = ag + a7 — 2a4 — (a1 + ay)
= WM (X0, Xo)TH(Xs) — B (Xa, Xo) P (X)) + 71 (X))
= W (X1, Xo)TH(Xs) — B (Xa, Xo) 1 (X0) + W (Xy, Xo) 77 (X2)
= 201 (X1, Xo) T2 (Xo) — W (Xa, Xo)T2(X1).

That is,

2R (X1, Xo) 71 (X1) + h' (X2, X2)71 (X3) = az + az — 3as — as,
—hl(X% X2)T12<X1) + 2h1(X1, X2)T12(X2) = a¢ + ay — 3a4 — ay,

and

a; +ayq + Tf(Xg)hl(Xl, XQ) = —)\3T12(X1>,
as + ag + Tf(Xl)hl(Xl, Xg) + T12(X2)h1 (XQ, XQ) = —)\37'12<X2).

From Remark 2.32, the affine normal plane is generated by the fields 7;, 7, where:

ﬁl =V — T12(X1)X1 — TIQ(XQ)XQ,
772 = lVy — /\37’12(X1)X1 - /\37’12(X2)X2.

By Substituting 52 = )\31/1 + €4 — )\37’12(X1)X1 — )\37’12(X2)X2, it follows
772 = )\3171 + ey.
[

Remark 4.17. When we consider the affine metric of Burstin and Mayer [4], then The-

orem 4.16 fails. In fact, we suppose that M is parameterized by

u? + v? 4+ u?
2

).

X(u,v) = (u,v,uv,
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Note that M is contained in the paraboloid w = %(mz + 12+ 2%). Now by using Wolfram
Mathematica we compute the affine normal plane of Nomizu and Vrancken [13] which is

generated by

1

= ) 2 2 2
V= 121+ 2)23(1 + 0227 (u,v,2uv, 12 + 30 + u*(13 4 14v%)) and

1 5v S5u —12 — 7v? — Tu? — 2u*0? "
Vy = —1auv | .
TR+ +)) 1+ 1+u2 Q+ud)(1+0?)

We can see that (0,0,0, 1) does not belong to the plane generated by vy and vs.
The following corollary is deduced from the proof of Theorem 4.16.

Corollary 4.18. With the same hypothesis as in Theorem /.16, the antisymmetric and

symmetric equiaffine plane bundles of M are equal.

Let M C R* be an immersed surface in a locally strictly convex hyperquadric N.
We can consider on M the extended Blaschke metric, by writing &(e;,Y) = 0 for all

i =1,2,3. Here {ej, ey, e3} is a unimodular frame and Y is the affine normal to N.

Corollary 4.19. With the same hypothesis as in Theorem /.16, the antisymmetric (and
symmetric) equiaffine plane to M is the orthogonal plane to the tangent plane with respect
to the extended Blaschke metric &.

Proof. By Theorem 4.16, the antisymmetric equiaffine plane is generated by

51 =V — 7'12(X1)X1 — TIQ(XQ)XQ,
52 = V9o — /\37’12(X1)X1 — /\37’12(X2)X2.

Now we consider v/ = {X;, X5, v} the tangent frame on N and see that {7;,7,} are

orthogonal to the tangent plane:

(71, X1) = &(v1, X1) — 72(X1)&(X, X))

. H(vy, Xy) _TQ(X) H(X, X,)

N (detu/ Hu/)1/5 ! ! (detu/ Hu/)1/5
2(X 1

__nX) 2(X))———— = 0.

(detu/ Hu/)1/5 (detu/ Hu/)1/5
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Analogously,

BT, Xa) = B(vy, Xo) — 72 (X2)B(Xs, X3) =0
O (T, X1) = B(U2 — 4, X1) = N36(71, X7) =0,
6(52, XQ) = @(72 — €4, XQ) = Ag@(ﬁl,XQ) = 0

We have also the following property.

Proposition 4.20. Let M C H C R* be an immersed surface in an affine hypersphere.
Let'Y be the affine normal to H and assume that Y, € o, for allp € M. Then the shape
operator Sy on M is a multiple of the identity.

Proof. Since H is an affine hypersphere, by definition there is A € R such that DyY =
—AX, for all X € T,H. In particular, this is also true for all X € T,M, hence Sy
Ad. 0

Corollary 4.21. Any surface M C R* immersed in a locally strictly convex hyperquadric

N is antisymmetric (and symmetric) affine semiumbilical.
Proof. This result follows from Theorem 4.16 and Proposition 4.20. m

Example 4.22. The product of plane curves is also antisymmetric and symmetric affine
semiumbilical with respect to some metric field. We consider the product of two convex

plane curves parameterized by affine arc length, as

X (u,v) = (aq(u), ag(u), B1(v), B2(v))

0, ——1).

1
Qw7 B(v)

The metric of the transversal field g¢ is given by

and consider the transversal vector field £ = (0,

gﬁ(XuaXu) - 1) gﬁ(Xva) - O» g&(XU,Xv) = 1.

Now consider the transversal plane bundle 0 = span{X,,, Xuu}. By Theorem 2.16 we

obtain

&1 = (—ay (u), —ay(u), By (v), B (v)),
52 = (alll (u)7 0/2/ (u)’ 07 O)
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Since Vx, X; =0 for ¢ = w,v and j = u,v then Vg = 0. Therefore, the plane generated
by & and & is the antisymmetric and the symmetric equiaffine plane. Finally, by a
simple calculation we note that the normal curvature tensor Ry1 = 0 and by Theorem
4.14 it follows that the product of curves is also antisymmetric (and symmetric) affine

semiumbilical.

Example 4.23. In the case of immersed surfaces in affine hyperspheres Q(c, n), in general
the symmetric and antisymmetric equiaffine planes bundle are not equal with respect to
the Blaschke metric. Moreover, we have examples of immersed surfaces in (¢, n) which

are semiumbilical and some others which are not:

e The surface parameterized by

1

(U’> ’U) = (u7 v, uv, W)

is symmetric and antisymmetric affine semiumbilical,

e and the surface parameterized by

1

2 .3
) H 7 ) —"_ 7
(u,v) = (u,v,v* +u @ )

)

is not symmetric nor antisymmetric affine semiumbilical.



CHAPTER 5

Affine normal plane bundle

In [13] Nomizu and Vrancken studied the surfaces in R* using the affine metric of
Burstin and Mayer. From this construction it is defined an affine normal plane as an
equiaffine plane bundle that satisfies a condition of antisymmetry relative to the metric
of Burstin and Mayer [4]. In this section, by using the metric of the transversal vector
field we introduce a new affine normal plane. This affine normal plane is related with the
singularities of the families of affine distance and height functions as we shall see in this

section.

Let M C R* be a locally strictly convex surface and & a metric field. Let u =
{X1, X5} be a local orthonormal tangent frame of g¢ and let o be an arbitrary transversal
plane bundle. By Theorem 2.16 there exists a unique local frame {&;,&;} of o such
that [X1, X5,&,6] = 1, (X, X)) = 0, =& € [¢], h3(X1, X)) = 1, h3(X1, X,) = 0,
h?( Xy, X5) = 1.

Definition 5.1. We define the affine normal plane bundle, denoted by A, as the transver-
sal plane bundle generated by {&,,&,} where,

& =84 — (X)) X) — 11 (X2) Xo,
gz =& — 7'22(X1)X1 - 7'22(X2)X2-

Remark 5.2. It is known that: If £, = &, — Z; and &, = & — Z, then

TUX) =7 (X) = K1 (X, Zu), 7a(X) = 7 (X) = W' (X, Zv),
X)) = (X) = I*(X, Z4), (X)) = 13(X) = h* (X, Z»).
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By a straightforward computation we obtain the torsions ?Z on normal plane bundle

T1(X1) = 7 (X)) = b (X, Xo)TE(Xa),

T1(X) = 1 (X2) — b (X0, Xo) 77 (X1) — A (X, Xo)7H(X0),
To(X1) = 1 (X1) — W (X0, Xo) 75 (Xo),

T3(Xo) = 75 (X2) = A (X0, Xo) 75 (X1) — A ( Xy, X2)75(X)),
THX)) =T1(Xy) = T5(X1) = T5(X2) = 0

Proposition 5.3. The affine normal plane bundle A does not depend on the transversal

plane bundle o.

Proof. Let ¢ be an other transversal plane bundle. By Theorem 2.16 there exists a frame
{v1,11} on ¢ and by Lemma 2.20 there are Z;, Z, tangent vector fields on M such that
v =& — 7y and vy = & — Z5. Now by definition we have

Dxvy = =S, X; + 71Xy + 72(X;)vs,
Dx,vy = =S, X; + 75 (Xy)vy + 75(Xi)ve.

On the other hand, by Remark 5.2 71(X;) = 71(X;) — h'(X;, Z1), 75(Xi) = 19(X;) —
hl(XZ‘, ZQ), 7212(Xz) = 7_12(Xz) — hQ(XZ‘, Zl) and 7A'22(Xl) = 7'22(XL) — ]’LQ(XZ‘, ZQ) Now we write
Z1=aX; +bX,y and Zy = ¢X; + dXs then

7 = v — (X)X, — 7 X)) Xs
=& — 21— (1P(X0) = B*(X1, 20)) X0 — (71 (Xa) = B2 (X3, Z1)) Xo
=& —aX; —bXy — (7(X)) — a) X, — (7£(X2) — b) X,
=& — 7'12(X1)X1 - 7'12(X2)X2 = Zl-

Analogously, 7, = &,. O

Proposition 5.4. The affine normal plane bundle A does not depend on the local or-

thonormal tangent frame u.

Proof. Let v = {Y1,Y5} be another orthonormal tangent frame then

Y] = cos0X + sin 60X,
Yo = —sinf0X; + cos0.X,.
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By Lemma 2.17 we have

61 == 517
& = —h' (Y1, Y1)é + &

By a computation, 72(X) = 72(X) and 73(X) = 73(X)+h! (Y1, Y1)73(X). Now by linearity

of 7/ follows

€ =&~ MY - 7 (V)Ya,
& =W (M Y)E + & — 5 (001 - 73(Y2)Ya.

We conclude &, = El and &, = h (Y4, Y1)E1 + gz- N

In the following proposition we see that the affine normal plane bundle is not an

equiaffine plane bundle.

Proposition 5.5. The affine normal plane A is an equiaffine plane bundle if and only if

71 =0.
Proof. By a straightforward computation (see Remark 2.24) we have

By = By —273(X) — 2h' (X1, Xo) 11 (X2),
EQ = Bg - th(Xl,XQ)TIQ(Xl) - 2h1(X2,X2)7'12(X2) - 27'22(X2)

On the other hand, since [X7, X3, &1, &] = 1 we obtain:

B —273(X1) = 271 (X1),
Bg - QTZQ(XQ) = QTll(XQ)

Therefore
By = 2(r{ (X1) — h' (X1, Xo) 7 (X2)),
By = 2(7{ (X3) — h' (X1, X2) 77 (X1) — b (Xa, Xo) 77 (X2)).
By Remark 5.2 we have B; = 271(X;) and By = 271(Xy). O

Proposition 5.6. The affine normal plane is a symmetric affine plane bundle, i.e. sat-
isfies D, =D, =0.
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Proof. By a straightforward computation (see Definition 2.26) we obtain

Dy = Dy — 3 X1)h (X1, Xo) + 72(Xy),
Dy = Dy — 7E(Xa)h' (X1, Xo) + 72(X1) A (Xa, Xo) + 75 (X1).

On the other hand, the cubic form C? (see Equation 2.13) is:

C*(Xa, X1, X1) = Vg(Xa, X1, X1) + 75 (Xa),
CQ(XI’X17X2) - VQ(X17X17X2) + Tf(Xl)hl(X17X2)7
C?(X1, Xo, Xo) = Vg(X1, Xo, Xo) + 75(X1) + 77 (X1)h (X2, Xa),
Cz(XZ)XlaXZ) = Vg(Xo, X1, X5) + le(Xz)hl(Xl, X5)
Therefore
02(X27X17X1) - Cz(XlaXlaXZ) - Elv
CQ(X17X27X2) - Cz(X27X17X2) - E?'
Since the cubic form C? is symmetric we conclude D; = Dy = 0. O

Proposition 5.7. The affine normal plane is not an antisymmetric plane bundle. Fur-

thermore we have:

C1/2 = (V) (X1, X1, Xo) — h' (X1, Xo) 77 (X1) = 75(Xa),
62/2 = (Vg)(Xl,XQ, XQ) - hl(Xl,XQ)TlQ(X2> - hl(XQ,Xz)Tf(Xl) - T22(X1>

Proof. We use the definition of C; (see Definition 2.26) and symmetry of the cubic form
C? (see Equagao 2.13). O

5.1 Affine distance functions

In this section we introduce the family of affine distance functions on immersed
surface in 4-space similarly as described in [6], where it was defined the family of affine
distance functions on hypersurfaces. The affine normal plane bundle is related with the

singularities of the family of affine distance and height functions.

Let M C R?* be a locally strictly convex surface and £ a metric field. Let u = {X;, X5}
be a local orthonormal tangent frame of g and let o be an arbitrary transversal plane

bundle. By Theorem 2.16 there exists a unique local frame {{;, &} of o,.
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Definition 5.8. We define the family of affine distance functions
A:R*x M = R,
as follows: for z € R* and p € M, A(z,p) is given by

p—T= Z(SL’,p) + A<$,p)€2

where z(z,p) € m, = T,M ®¢&,.

Lemma 5.9. The family of affine distance functions is independent of the tangent frame

u and independent of the transversal plane bundle o.

Proof. Let v = {Y1, Y2} be another orthonormal tangent frame, then

Y] = cos X, + sin 0.X5,
Y5, = —sin0X; + cos 0.X5.

By Lemma 2.17 we have & = &, and & = —h'(Yy, Y1)€, + &,. By expanding
P—x =M1+ NV + A&, + Az, ),

we obtain

p—x=(Acosh — Agsin@) Xy + (A1 sinf + Ay cos ) Xy + (N3
+ Az, p)h' (Y1, Y1))& + Az, p)éa

On the other hand, let & be another transversal plane. By Lemma 2.20 there are
tangent vector fields Z; and Z, such that £, = &, — Z;, and &, = & — Z,. Then

p—x= /\1X1 + )\QXQ + /\151 + Z(x,p)gg,
=M X1+ X — A2 — Z(map)ZQ + A3+ Z(map)fg-

We can write the affine distance function as A(x,p) = [X;, X2, &1, p — 2.

If X :U — M is a parametrization of p, the distance function is given by

XuaXv)glap - 37]

1
Az, p) = (X, X,,61.6]
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and we can write A,(p) = A(z,p) in local coordinates as

[Xw Xw 517 X(“’? U) B fl?]
[Xua X'va éla 52]

A, (u,v) =

this is,
A X X6 X —a]
[XuaXv7§17§2]

Theorem 5.10. The affine distance function A, has a singularity if and only if v — X

belongs to the affine normal plane A.

Proof. Since u = {X1, X5} is an orthonormal tangent frame and {;,&} is the frame on

o obtained by Theorem 2.16 then we can write
x—X = 7”1X1 + TQXQ + 7"351 + 7'452.
By properties of derivation and determinant we have:

Xi(A) = [Dx, X1, Xo, é1,2 — X + [X1, Dx, Xo, &1, 2 — X + [ X1, Xo, Dx, &1, 2 — X
= a1y — 11+ agry + 7 (X1)ry — 7E(X1)7rs
= —r — 75 (X1)rs — TEH(X1)73,

Xo(A) = [Dx, X1, Xo, &1, 0 — X+ [ X1, Dx, Xo, &1, v — X + [ X1, Xo, Dx, &, v — X
= asry — 1o + agry + 71 (Xo)ry — 72 (X213

= —T9 — TQZ(XQ)T4 — TE(XQ)T;J,.

Therefore X;(A) = X5(A) = 0 if and only if

r—X =r3(& — 7'12(X1)X1 - 7'12(X2)X2) +14(&2 — 7'22(X1)X1 - 7'22(X2)X2)-

5.2 Affine height functions

Analogously to the definition of affine distance functions we can define the family of

affine height functions.
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Definition 5.11. The family of affine height functions
H:R'*xM—R
is defined as follows: for z € R* and p € M, H(x,p) is given by

v = z(,p) + H(z,p)&
where z(x,p) € T, = T,M ®&,.

Lemma 5.12. The family of affine height functions is independent of the tangent frame

u and independent of the transversal plane bundle o.

Proof. The proof is analogous to that of Lemma 5.9. m
We can write the affine distance function as H(z,p) = [X1, X5, &1, ).
If X :U — M is a parametrization of p, the height function is given by

[Xua Xv7 517 .T]

Hip) = % X6 6)

and we can write H,(p) = H(z,p) in local coordinates as

[XU)vaglvx]
Hx UV) = 55—
( ) [XU7X’U7§17§2]
this is,
H = [Xu7Xv7§17x] '
[Xu?Xwgl?gQ]

The next theorem characterizes the singularities of the family of affine height functions.

Theorem 5.13. The affine height function H, has a singularity if and only if x is in the

affine normal plane A

Proof. Analogous to the proof of Theorem 5.10. O

5.3 Affine distance on hypersurfaces

The next results give a relation between the family of affine distance functions on

hypersurfaces and the family of affine distance functions on surfaces.

Let N C R* be a locally strictly convex hypersurface.
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It is known that the tangent hyperplane T,N is a support hyperplane with a non-
degenerate hyperplane. In particular, given any immersed surface M C N we have
T,M C T,N C R* and hence, M is locally strictly convex. Moreover, we can consider
the Blaschke metric & restricted to M. On the other hand, in Remark 4.8 it is shown
that there is a metric field £ such that & = g,.

Definition 5.14. The family of affine distance functions is given by A:R*x N =R as
follows: given a point # € R™™! and a point p € N it is defined the affine distance from
x to p implicitly by,

p—x=z(z,p) + Az, p)Y(p)

where z € T, N and Y is the affine normal vector field on N.

Theorem 5.15. Let M C N C R* be an immersed surface in a locally strictly convex
hypersurface and let —§ be the metric field such that g_¢ = & on M. Then the affine
distance function A(z,p) coincides with the affine distance function A(z,p) and the affine

normal vector field Y belongs to the affine normal plane A.

Proof. Let u = {X;, X2} be a local orthonormal tangent frame and o be a transversal
plane bundle. By Theorem 2.16 there is a frame {&;,&} on o and by Lemma 4.15
{X1,X5,&,} is an orthonormal frame with the Blaschke metric and there are functions

r1, 79,73 such that

S =Y + 1 Xy +re Xy + 1384,
& =84 - (X)) X1 — 71 (X2) Xa.

Now we compute the affine distance

Xy, X2,61,p — 7] _ (X1, X5, &,p — 7] _ A

) |
A=[X1, Xo,§1,p— 7] = (X1, Xo, 61,6 [X1, X,6,Y] =

Now we see that Y belongs to the affine normal plane A. In fact,

DxY =z + (2(X) — rh*(X1, X) — roh?( Xy, X) — r373(X))Y,
for some z € T,,N, and since Y is the affine normal on NN it follows

(X)) — rh* (X1, X) — roh?(Xo, X) — r372(X) = 0.
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In particular for X = X7, X5 we obtain

TQZ(Xl) =T + 7”37'12(X1)
7'22(X2) = T9 + T37'12(X2).

Finally
Y = 52 — 71Xy — 12X — 7’351
=& — (T(X0) — ram (X0) Xy — (75(Xa) — r37(X2)) Xa — 1361
= (& — TH(X1) X1 — T3 (X2) Xa) — r3(& — TH(X1) X1 — 71 (X2) Xa).
Therefore

]

Corollary 5.16. Let M € N C R* be a surface contained in a locally strictly convex

affine hypersphere N. Then M is semiumbilic with respect to the affine normal plane.
Proof. 1t follows from Theorem 5.15 and Proposition 4.20. [

Corollary 5.17. With the same hypothesis as in Theorem 5.15, the affine normal plane

15 the orthogonal plane to the tangent plane with respect to the extended Blaschke metric.

Proof. By Theorem 5.15 we have Y = &, — 73€, where

& =84 - (X)) X1 — 11(X3) Xo,
& =& — THX1) X1 — T3(X2) Xo.

By Lemma 4.15 the frame v’ = { X1, X;,, } is orthonormal relative to the Blaschke metric.

95@27)(1) = 05(Y + 7"3517)(1) = QS(Yle) + 7’3(’5@17)(1) =0,
(’5(227)(2) = (’5(Y + TBZlaXQ) = 05(Y»X2) + 7‘305(217)(2) = 0.

]

Now we consider an immersed surface M in a locally strictly convex hyperquadric
N. These hyperquadrics are particular cases of affine hyperspheres (elliptic paraboloid,
ellipsoid and hyperboloid of two sheets), [10].
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Proposition 5.18. Let M C H C R* be an immersed surface in an hyperquadric (elliptic
paraboloid, ellipsoid and hyperboloid of two sheets) then the symmetric and antisymmetric

equiaffine plane bundles are equal to the affine normal plane bundle.

Proof. Let u = {X;, Xy} be a local orthonormal tangent frame and o be a transversal
plane bundle. By Theorem 6.3 there is a frame {3, &} on . By using orthonormalization
and Theorem 5.15, we can write &, = & — 72(X1) X, — 72(X2) X3, such that the frame
{X1,Xy,&} is an orthonormal frame with the Blaschke metric and & = Y + 7. X; +
roXo 4 13&1, for some functions 1,7 and r3. Now, we denote by V the affine connection

induced by o and we write

Vx, X1 = a1 X1 + ag X,
Vx, Xo = a3 X1 + as Xo,
Vx, X1 = a5 X1 + asXa,
Vx,Xo = a7 X1 + agXs.

With this notation, we obtain

Dx, X1 = (a1 4+ r1 4+ r370 (X1)) X1 + (a2 + 12 + 137 (X2)) Xo + 138, + Y,
DX1X2 = (Clg =+ .. )Xl —+ (CL4 + hl(Xl,Xg)Tf(Xg))Xg + hl(Xl,Xg)Zl,
Dx,& = (. )X1+ (. )Xo + (7 (X1) — T (X)W (X1, X2))E,,

and

DX2X1 = (CL5 + hl(Xl,Xg)Tf(X1>>X1 + (CL6 + .. )XQ + hl(Xl,Xg)Eh
DX2X2 =...+ (Cbg + hl(XQ, X2)7—12(X2) +1r9 + T3T12(X2))X2 + ..+ Y,
Dx,&y = -+ (1 (Xa) = 71 (X0)R (X1, Xo) — 17 (X2)h' (KXo, X2))E;-

Since Y is parallel

0=ai+r + 7370 (X1) + as + 7 (X1),
0= as + as + ro + 1371 (Xa) + 71 (Xa2).

As a; +ag + 71 (X)) + 5(X1) =0 and a5 + ag + 71 (X3) + 75(X2) = 0. We obtain

m3(X1) =+ 737 (X0),
TQQ(XQ) =T9 + 7”3’7’12(X2).
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Since N is a hyperquadric, then
C(X,Y,2):=(Vxh)(Y,Z2)=0
where V is the affine connection induced by Y on N (sce [12]):

0=C(X1, X1, X1) = X1(h(X1, X1)) — 2h(Vx, X1, X))
= —2(ay + 1 +r37(X1)),
0=C(X1, X1,8&) = X1(h(X1,€) — h(Vx, X1, X3) — h(X1, Vx, X)
= —(ag +ry +137(X3)) — (a3 + (X1, Xo)TEH(X1)),
0= C(X1, X2, X2) = X1 (h(Xs, X3)) — 2h(Vx, X2, X3)
= —2(a4 + A (X1, Xo)TE( X)),
0= C(Xy, X1, X1) = Xo(h(X1, X1)) — 2h(Vx, X1, X1)
= —2(as + hH (X1, Xo)T2(X1)),
0=C(Xs, X1, X5) = Xo(h(X1, X3)) — h(Vx, X1, Xo) — (X1, Vi, X2)
= —(ag + W' (X1, X2)72(X3)) — (a7 + h' ( Xy, Xo)72(X1) + 11 + r37i(X1)),
0= C(Xa, X2, X2) = Xo(h(Xs, X3)) — 20(Vx, X2, X3)
= —2(ag + h' (Xa, Xo)TE(Xy) + 1o + 1372(X3)).

Now we compute the generators of the antisymmetric transversal plane bundle: note that,
ag — Ao — a3 — a5 = —hl(Xz,Xz)Tf(Xz) —+ th(Xl,Xg)Tf(Xl),
a1 — ag — ag — a7 = 20" (X1, Xo) 72 (Xy) + b (Xy, Xo) 72 (X01),
—(ar + as + TH(X)h (X, X)) =75 (X)),
—(as + ag + 77 (X1)h' (X1, Xo) + 77 (Xo)h' (X2, X)) =75 (Xa).

It follows from Remark 2.31 that the antisymmetric equiaffine plane bundle is generated
by:

§1— 7'12(X1)X1 - 7'12(X2)X2,
52 — 7'22(X1)X1 — 7'22(X2)X2.

Therefore the antisymmetric equiaffine bundle is equal to the affine normal plane bundle.
m



68 Affine normal plane bundle

5.4 Affine focal points

In this section we define the affine normal curvature pu, in the direction v, similarly as
Davis in [6]. The affine focal points to surfaces in R* appear as the degenerate singularities
of the family of affine distance functions, analogous result appears in [5] on the study of

hypersurfaces in the affine differential geometry.

Let M C R?* be a locally strictly convex surface and £ a metric field. Let u = {X;, X5}
be a local orthonormal tangent frame of g and let o be an arbitrary transversal plane
bundle. By Theorem 2.16 there exists a unique local frame {{;, &} of 0,. We denote
by P the hyperplane through the point p € M such that is generated by v € T,M, &
and &. We write C the intersection M N P which, close to p is a regular curve and
v = A& + A& € 0,. We consider the restriction of A : R* x M — R, for € P and
peC,

p—=z(z,p) + Az, p)&,

this gives a family of functions A:PxC—R Locally this is a three parameter family
of functions from R to R, or A : R® x R — R.

Definition 5.19. We define the affine normal curvature in the direction v by

A2
A(z,p)’

NV(U) =

where z € P is such that ﬁx : ' = R has a degenerate singularity at p € C.

Definition 5.20. A point = p + tv where v € A is an affine focal of M in p if: t £ 0

and % is an affine v-principal curvature.
Theorem 5.21. An element of the family of affine distance functions A, : M — R
e has a critical point at p € M if and only if p—x belongs to the affine normal plane.

e If A, has a critical point at p € M we write x = p + tv : then p is a degenerate

critical point if and only if x is an affine focal point.

Proof. Let u = {X;, X5} be an orthonormal tangent frame and o a transversal plane

bundle. By Theorem 2.16 there exist a frame {vy,15} on 0. By Definition 5.1

& =1 — (X)X, — 77 (X2) Xs,
& =1 — (X1 X1 — 75 (X2) Xs,
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generate the affine normal plane A. Now by Lemma 5.9 we can write
p—$=Z+)\3€1+A€2

where z € T, M.

By derivation, for v € T,M

v = (V2 — A3510 — ASy) + (v(A3) + h(v, 2) + As7i (v) + ATy (v)&
+ (0(A) + h2(v, 2) + AsTE(v) + ATZ ())&

Comparing the transversal and tangential components,

va = ()\3;91 + ASQ + [d)l)
0 =v(\3) +h'(v, 2) + \371 (v) + ATy (V)
0 =v(A) + h*(v,2) + A7 (v) + AT (v).

By Remark 5.2 we have 75 = 0 and 77 = 0 (on the affine normal plane A). Since h? is

nondegenerate, A has a critical point if and only if z = 0.

Now we write o = p + tv where v € A,,, and consider the Hessian
(v, w) = w(v(A)) = —w(h*(v, 2)).
By using properties of affine connection,
(Vuh?) (v, 2) = w(h?(v, 2)) — h*(Vuv, 2) — h*(v, Vyu2).
If A, : M — R has a critical point then z = 0 and the Hessian is given by
(v,w) = —h*(v, V,2).

On the other hand, note that —tr = A3&; + A& and using linearity of the shape operator

we obtain
—tS, = S = Sner1ae, = A3S) + AS,.
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Therefore

—h*(v,Vyz) = —h*(v, (\3S) + ASy + [d)w)
= —h*(v, (—tS, + Id)w)
= h?(v, (S, — Id)w).

Since h? is nondegenerate, the Hessian is degenerate if and only if

1
det(S, — 7 1d) = 0.

O
Proposition 5.22. Suppose that h*(v,v) # 0 then
h*(S,v,v)
() = ECOR (5.1)

Proof. Let a : I — M be a curve in M, such that «(0) = p and v = «'(0). We write
a(l) = C and consider p a degenerate singularity of the family A:PxC =R By
Theorem 5.21, the point z € P is such that v(A)(0) = U(U(ﬁ))(()) =0 if and only if p— z
belongs to affine normal plane A, and h?(v, (tS, — Id)v) = 0 where z = p + tv, therefore
1 hr*(Sv,0)

t h2(v,v)

On the other hand, if we write v = A& + A& then p — x = —t\ & — tA2&s, and follows

~

A = —t)\y. Finally

A1 r*(Sv,0)
p(v) = At R(v,v)

]

Proposition 5.23. Let v be a transversal vector field on the affine normal plane A,,. The
function v — p,(v) has an extrema if and only if v is an affine v-principal direction of
M at p. Furthermore, the value of u,(v) in such a direction is the corresponding affine

v-principal curvature.

Proof. We wish to show that, (du,)(v) = 0 if and only if v is an affine v-principal direction.
Equivalently we will prove (w(u,))(v) = 0 for all w if and only if v is an affine v-principal

direction. We consider the derivative of Equation (5.1) by w, this gives,

(w(p,)) (V)R (v, v) + 24, (V)R (v, w) = —h*(S,w,v) — K*(S, v, w).
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From the Ricci Equations (2.17) and (2.18) and 72 = 73 = 0 (on the affine normal plane
A), we obtain
h*(S,w,v) = h?(w, S,v).

Therefore,
(w(,)) (V)R (v, 0) + 2p, (V)R (v, w) = =203 (S,v, w).

From Equation (5.1) one has,
— R (v, v)*(w(w,))(v) = 2h* (v, v)h*(S,v, w) — 2h*(S, v, v)h* (v, w). (5.2)

If v is an affine v-principal direction, then (—S,)v = Av for some A € R. In this case
the right hand of Equation (5.2) vanishes. Since h%(v,v) # 0 follows that (w(u,))(v) =0
for all w. Next, if (w(u,))(v) = 0 for all w then Equation (5.2) becomes

R (v, v)h2(S,v, w) — h*(S,v,v)h*(v,w) = 0.
Rearranging this as follows:

0 = h2(h%(v,v)S,v,w) — KA (h*(S,v,v)v, w), Yw
0 = h?(h*(v,v)S,v — h*(S,v, v)v, w), Yw.

Since h? is nondegenerate this is true for all w if and only if
h?(v,v)S,v — h?*(S,v,v)v = 0.
Finally,

(S, v)

(=5u)v = h2(v,v) v

5.5 Affine semiumbilical surfaces

Let M C R* be a locally strictly convex surface with a transversal plane bundle o.
In Chapter 4, it was introduced the concept of o-semiumbilical points. In this section
we fix the transversal plane bundle A, the affine normal plane, and we define the affine

semiumbilical point in analogy with the Euclidean case.

Definition 5.24. A point p € M is called affine semiumbilic if it is semiumbilic with
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respect to the affine normal plane A, this is, there exists a non zero normal vector v

such that the affine shape operator (5,), is a multiple of the identity.

Corollary 5.25. Let v a transversal vector on the affine normal plane A,. The affine
normal curvature p,(v) is a constant function if and only if (S,), is a multiple of the

identity.

Proof. We assume that the function pu,(v) is constant, with value A on T,M. From
Equation (5.1) we have Ah?(v,v) = —h%(S,v,v) Vv € T,M. Tt follows h*((S, + A d)v,v) =
0 Vv € T,M. Since h? is nondegenerate we obtain S, = —\Id. O

Corollary 5.26. Any immersed surface M in an affine hypersphere N in 4-space is affine

semiumbilical.

Proof. This result follows from Theorem 5.15 and Proposition 4.20. [

In particular, Corollary 5.26 is true for hyperquadrics (elliptic paraboloid, ellipsoid and
hyperboloid of two sheets). It was also seen that the product of plane curves is symmetric

and antisymmetric affine semiumbilical.

Example 5.27. The product of plane curves is affine semiumbilical. In fact, we consider

the product of two convex plane curves parameterized by affine arc length

X(u,v) = (ai(u), az(u), Bi1(v), B2(v))

and the transversal vector field

The frame u = {X,,, X, } is orthonormal with the metric ge. Now we consider the transver-

sal plane bundle o generated by X,, and X,,. By using Theorem 2.16 we obtain

"

&1 = (—ay (u), —ay (u), By (v), By (),
& = (o (u), a5 (u), 0,0),

which in turn generates the symmetric and antisymmetric affine normal plane. On the
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other hand, by a straightforward computation,

Dx,& = €1 = —" (u) = Kaa! (u),
Dx,& =6, =8 (v)=-Ksf (v),

e

Dx, b =&, =a (u) = —Kua' (u),
Dx, & =&, =0.

We obtain 71 = 72 = 75 = 75 = 0 and therefore the frame {&;,&} also generates the

affine normal plane. Finally, since the product of curves is symmetric affine semiumbilical

follows that is affine semiumbilical.
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CHAPTER 6

Submanifolds of codimension 2

In this chapter we extend some of the concepts introduced to locally strictly convex

surfaces in R* for locally strictly convex submanifolds M™ in R"2(n > 2).

Let R™™2 be the affine (n + 2)-space and D the usual flat connection on R™2. Let
M c R*"*2 be an immersed n-submanifold and let o be a transversal plane bundle on M.
Then, for all p € M, o, C T,R""? is a plane such that

TR =T,M & 0,
and for all tangent vector fields X,Y on M,
(DXY)p = (VXY)p + h(Xv Y)pv

where (VxY), € T,M and h(X,Y), € 0,, for all p € M.

We note that for p € M, there are &, & transversal vector fields defined on some
neighborhood U, such that: o, = span{¢;(q),&(q)}, Vq € U,.

Then for tangent vector fields X, Y on M we have:

DxY =VxY + (X, V)& + h3(X,Y)E,
Dx& = =51 X + 7 (X)& + 77 (X)&,
Dx& = =5 X + 73 (X)& + 15(X) &,

where V = V(o) is a torsion free affine connection, h', h? are bilinear symmetric forms,
S1, Sy are (1,1) tensor fields, and Tij are 1-forms on M. We call V the afline connection

induced by the transversal plane bundle o.
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6.1 The metric of the transversal vector field

Let M C R™"2 be a locally strictly convex n-submanifold, let u = {X;, Xs,..., X,,}
be a local tangent frame of a point p € M and let £ be a transversal vector field on M.

Definition 6.1. We define the symmetric bilinear form G, on M to be
Gu(Y7 Z) = [X17 X27 e 7Xna DZ}/: 6]

We fix £ such that G, is positive definite this is possible because M is locally strictly
convex and we call such a & a metric field.
The metric field £ is defined only locally, but since all our results are local, we can
assume without lost of generality that £ is globally defined and that M is globally oriented.
We define the metric of the transversal vector field, denoted by g, by

G, Z)

9V, Z) = —————,
(dety Gy) TP

where det, G, = det(G,(X;, X;)).

Lemma 6.2. The quadratic form ge does not depend on the choice of the local tangent

frame u, provided it is posilively oriented.

Proof. Let v = {Y1,Ys,...,Y,} be another local tangent frame on a neighborhood U of
p € M, then there exists a matrix a = (a;;) with deta > 0, defined on U such that
Yi=3""1ai;X;, (i=1,...,n). Note that

Go(Y,Z) = [Y1,Ya, ..., Y., DY, €] = det(a)Gy(Y, Z).

By properties of the determinant, it follows that det, G, = det(a)" det, G,. On the other

hand, from a simple computation det, G, = det(a)?det, G,, therefore
det, G, = det(a)"*2 det, G,,.

Finally,

Go(Y,2) det(a)Gu(Y, Z) Gu(Y, 7)

(dety Gy) /42 (det(a)+2) det, Gy)/(2)  (det, G, )Y/ (+2)”
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From now on, we shall restrict ourselves to orthonormal frames { X7, ..., X, } relative
to g = ge, this is, g(X;, X;) = &5, Vi, .

Theorem 6.3. Let M C R"*2 be a locally strictly convex n-submanifold and & a metric
field. Let uw = {Xy,...,X,} be a local orthonormal tangent frame of ge and let o be an
arbitrary transversal plane bundle. Then there exists a unique local frame {&1,&} of o,
such that: [Xq,..., X, &, 8] =1, =& € [§], hH (X1, X1) = 0 and h*(X;, X;) = d;.

Proof. Let p be a point in M and let {11, 15} be any local frame of ¢ in a neighborhood

U of p. We can assume that Xi,..., X, are defined on U. Now, we write
[5] = )\31/1 + )\41/2 + Tp]\4

Using the notation: h'(X;, X;) = ay, h*(X;, X;) = by and K = [Xy, Xa, v, 15], we

compute the bilinear form G:
Gu(Xian) = (/\4@2']' — Agsz)K (6].)

By using the change: vy = a&; + B, vo = p&1 + Y&, we obtain the affine fundamental
forms in the new frame {1, & }: El(Xi,Xj) = aa;j + pb;; and Ez(Xi,Xj) = fa;; + by
Since 0 # G (X1, X1) = a;n Ay — b1 A3 the following system:

1 = Bay + ¢bn
0= B3 + YA,
has solution (3, ) given by

R v i s s

aiAg —biiAs apAg — b
We substitute S and 9 in EQ(Xi, X;) and we prove that EQ(Xi, X;) = 0;;. In fact,

A4
a1 Ay — b1 A3

-
Jag; + (———————)by

—2
h (Xz, XJ> = ﬁaij + wbw = ( all)\4 — bll/\g

L OK(a; = Asby) | Gu(X, X)) Gu(X5, X))/ (det G)
COK(Man = b)) Gu(XL, X)) GU(X, X))/ (detGy) e
gﬁ(XuX)

X, X;
= e, Xy e X).

From the equation 0 = 7 (X1, X1) = aaqy + pby; we can write @« = Rby; and ¢ = —Rayy,
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therefore

(X1, Xo, v, 0] = [ X4, X5, &, & () — B) = (ar) — By)
= ((Rbi1)¢ — B(—Rau1)) = R,

we conclude R = K, a = Kby; and ¢ = —Kay;.

It only remains to prove that [¢] = —[&]. First we note that G,(X;, X;) =0 (i # j)
because {X7,...,X,} is a orthonormal tangent frame relative to ge. Moreover,
dety Gy _ Gu(leXl) Gu(X'ran) _ 1
(dety Gu)™/(+2) 7 (dety Gy)t/(n+2) *** (dety Gy)1/(n+2)

Therefore det, G, = 1, it follows that
/\30{ + )\4g0 = >\3K511 - )\4KCL11 = K()\?)bll - )\4&11) = _Gu(Xl)Xl) = -1
Finally, we compute [¢]:

[S] = )\31/1 + )\41/2 + TpM
= A3(a&1 + &) + A& +¥&) + T,M
= (Asa+ M) &+ (A8 4+ M) & + T, M.
-1 0

]

Lemma 6.4. Let M C R""2 be a locally strictly convezr n-submanifold and & a metric
field. Let u={X;,..., X, } andv = {Y1,...,Y,} be two orthonormal frames and let o be

a transversal plane bundle. So we can write fori=1,...,n
j=1

where a = (a;;) is an orthogonal matriz and det(a) = +1 depending on u and v have the

same orientation or not. If we denote by {£1,&} (resp. {€,,€,}) the frame of Theorem
6.3 corresponding to u (resp. v), then

51 2217
52 = Afl +Ez»

for some function \.
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Proof. From Theorem 6.3, we have [¢;] = —[¢] = [£,]. Since & and &, belong to the same
transversal plane we conclude that & = &;. We compute now the affine connection in the
different references to compare the references. By using the frame {&,,&,}, it follows from
Theorem 6.3 that

Dy, Y1 = Vy, Y1 + 527

and by using the reference {£;, &} we have,
Dy, Y1 = Vy, Y1 +h' (Y1, Y1)& + hQ(Yh Y1)&o.

Hence, &, = h'(Yy,Y1)& +h%(Y, Y1)&. Now how the frame u is orthonormal with g and
h = gE

h (Y1, Y1) hQZalj J’ZGU Za%izl.

Therefore

Zz = A1+ &

Lemma 6.5. Let M C R"2 be a locally strictly convex n-submanifold. Let & be a met-
ric field and uw = {Xy,...,X,} a local orthonormal tangent frame. Let o and & be two
transversal plane bundles. We denote by {£1,&} and {€,,€,} the transversal frames ob-
tained from Theorem 6.3 for o and &, respectively. Then there are Z, and Z, tangent
vector fields on M such that

&L=+ 2,
& =6+ 2.

Proof. We suppose that & = ¢&, + &y + Zy and & = p€, + BE, + Zy. Since [¢1] = [€,] we
have ) = 0 and ¢ = 1. By Theorem 6.3 [ X, ..., X,,,&1,&] = 1, which implies ¢ —1p = 1
and it follows that 5 = 1. We denote by 7' and 7° the affine fundamental forms of the
frame {&,,&,}. We note that

0= El(Xth) = ¢h1(X17X1) + Ph2(X17 X1) = p.
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6.2 The equiaffine transversal plane bundles

Let M C R"2 be a locally strictly convex n-submanifold and & a metric field and

g = g¢ the metric of the transversal field .

We denote by w, the metric volume form for the metric g = g

wolZ1, 2o, ... Z,) =\ detlg(Z,. Z)))|,

where {Z, ..., Z,} is any positively oriented basis of T, M.

Definition 6.6. We say a transversal plane bundle o is equiaffine if the connection
V = V(o) induced by o satisfies Vw, = 0.

Ifu={Xy,...,X,}isalocal orthonormal tangent frame and {&;, &} is the transversal
frame given by Theorem 6.3, then w, = 6, where 6 is the volume form induced by the

determinant:
O Zv,y...,Zn) = 1Z1,..., 20, 61,8, VZ0,...,Z, € T,M.

This is because wy (X7, ..., X,) =0(X1,...,X,).

For locally strictly convex surfaces M C R* | by using 6 instead of wy, it is easy to see
that o is equiaffine if and only if By = By = 0, see Equations (2.22) and (2.23).

Lemma 6.7. Let M C R™*2 be a locally strictly convex n-manifold and & be a metric field.
Let o be a transversal plane bundle and u = {Xy,...,X,,} a local orthonormal tangent
frame. Then the plane bundle o is equiaffine if and only if B; = 0 for all j =1,...,n

where
BJ = (Vg)(vaXle) -+ (Vg>(X]7 X27 XQ) et (Vg)(Xja XnaXn) (63)
Proof. First, we claim that
Bj=-2) T, (6.4)
i=1

where

Vi, X; =Y ThHX,. (6.5)
k
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In fact, by definition of B; and since the frame u is orthonormal with g,

n

By = 2(V)(Xs, X X0) = 3 (X5(6(X X0)) = 20(V 3, X X0)

:—QZg Zr X, Xj) = =2 T4
=1 k=1 i=1

Now, let {Y1,Y5,...,Y,} be an arbitrary frame on T,M. For k € 1,...,n we compute
Vwy (X, Y1, ..., Y,) = (Vxwy)(Yr,...,Y,) = (Vx,0)(Y1,....Y,).

In fact, we write Y; = Y, a;, X, where det(a) # 0 with a = (a;;) and hence

Vwy (X, Y1, .., V) = Xp(wy(Va, ..., Y2)) — ng(yl, VYY)

= X(0(Y1,...,Y,)) — i:@(Yl, . ,VXk(zn: apX,), ..., Y.
=1 r=1
Also we note that: Vy, (O°"_ ap, X,) =Y Vx, (0, X,) = > Xpp(aw) Xo+> 0 @, Vix, X,
= Z Xp(an) X, + Z g Z r Xn: (Xi(ay) + Xn: anTh )X,
t=1 r=1

We denote by ay = Xg(ay) + > n_; a I, and hence

Vwy (X, Y1,....Y,) = Xp(0(Y1,...,Y,)) — i&(Yl, . ,ﬁ:&ltXt, oY) (6.6)

By definition of # and since the determinant is multilinear

apy Q2 ... Qip

0(}/17 72?:151tXt7- . /Yn) = Zill al? aln
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a1 a19 c. A1y a1 a19 C. A1n
= | Xk (-au) Xk ('CLIQ) : - X ('a’ln) +1 >y -alrF,lw Z::l'al'f'rir : Sy .a’lTFZr
anl An2 N Anpn an1 ano R (0799
ain aio R A1p a1 a2 ... Qip
== Xk(‘aU) Xk (‘CLIQ) . . Xk(‘aln) + 21::1 ay Fllw Fzr . . ;lgr
An1 an2 s Ann an1 Qp2 ... Qpp

Hence Vwy(Xg, Y1, ...,Y,)

1 2

Pkr Pkr Ce Zr aij; Q12 ... QAip

n n
Q21 Q22 ... Q2p Q21 A22 ... Q2p
== E air | . ) : e E Qnr | : ) : . (6.7)
—1 : : : : —1 : : : :

ap1 a L 1?2 re

nl n2 - nn kr kr v kr

By developing Equation (6.7), we obtain

Vg (X Vi, Vo) = = > il

where
amn ... Aig-1) A1z Aig+1) .- Aln
ag1 ... A2(j-1) G2 A23j4+1) --- A2pn
bij = ) . ) .
[0 an(j_l) [47%] an(j+1) £
Therefore for £k =1,...,n we obtain

1
ng(ka }/17 cee 75/;‘1) - 5 det(Q)Bk

O

Lemma 6.8. Let M C R"*2 be a locally strictly convex n-manifold and & a metric field.

Then there exists an equiaffine plane bundle o defined on a neighborhood of p € M.

Proof. Let u = {X3,...,X,} be an orthonormal tangent frame defined on some neigh-
borhood U of p. Let & be a transversal plane bundle defined also on U and {&,,&,} the
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local basis of @ obtained by Theorem 6.3. Now we want to construct a new equiaffine
plane bundle ¢ defined on U, with local basis {£;, &>} obtained also by Theorem 6.3. By

Lemma 6.5, we have
51251—217 SQZEQ_Z%

where Z; and Z, are tangent vector fields. We denote the connection induced by o (resp.

@) by V (resp. V). On the other hand, by a simple calculation we obtain

Br=DBy+2Y WXy, X,)g(Z1,X,) + 2 h*(Xy, X,)9(Z2, X,.).

r=1 r=1

Note that o is equiaffine if and only if B; = By = 0. By writing Z; = A\ X7 + ... + A\, X,
and Zy = 1.X1 + ...+ (3,X,, this is equivalent to

By =2RY (X1, Xo)do + ...+ 2RY (X1, X)) A + 281,
By = 2R ( Xy, X1) A + 2R (Xo, Xo) Ao + ... 4 2RN(Xo, X))\ + 235,

B, = 2h! (X, X))\ + 20N (X, Xo) Ao + ... 4+ 20N (X, X)) A + 280,

The lemma follows since the system above has a solution. For instance, set \y = ... =
Ao =0, 8,=5 fori=1,...,n O

6.3 Affine normal plane bundle

In analogy with Chapter 5, by using the metric of the transversal vector field we
introduce an affine normal plane for locally strictly convex submanifolds of codimension
2.

Let M C R™?2 be a locally strictly convex n-submanifold and ¢ a metric field. Let
u={Xy,...,X,} bealocal orthonormal tangent frame of g = g¢ and let o be an arbitrary

transversal plane bundle. By Theorem 6.3 there exists a unique local frame {&;,&} of o
such that [Xy,..., X,,,&,8]) =1, hY(X1, X1) =0, =& € [¢] and h*(X;, X;) = d;;.

Definition 6.9. We define the affine normal plane bundle, denoted by A, as the transver-
sal plane bundle generated by {&,,&,} where,

& =6 —THX)X, — T X9) Xy — .. — T2 X) X,
& =& —THX)X, — T2(X9) Xy — ... — T2(X,) X
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Note that: if £, = & — Zy and &, = & — Z, then

By a straightforward computation we obtain the torsions ?f on normal plane bundle

(X, Zhl LX) (X),
71(X;) =0,
75(X;) = 0.

Proposition 6.10. The affine normal plane bundle A does not depend on the transversal

plane bundle o.

Proof. Let 6 be an other transversal plane bundle. By Theorem 6.3 there exists a frame
{v1,12} on ¢ and by Lemma 6.5 there are 7, Z, tangent vector fields on M such that vy =
& —Zy and vy = & — Z,. Now by definition we have Dy, vy = —S,, X;+7 (X;)v1 +72(Xi)ve
and Dy, v = —S,,X; + 73 (Xi)v1 + 72(X;)e. On the other hand,

71 (X)) = 7 (X;) — N (X3, Zy), 7 (Xo) = 1 (X;) — B (Xy, Z),
(X)) = (X)) — h*(X3, Zy), 73 (Xy) = 75(Xi) — h* (X3, Zs).

Now we write Z; = a1 X1 + ... +a, X, and Zy = b; X; + ...+ b,X,, then

n

== > FH(X)Xe =8 — 20— ) _(P(Xe) — (X, Z1)) X

k=1 k=1

=& — Z Ty (Xp) X5 = &5
k=1
Analogously, 7y = &,. ]

Proposition 6.11. The affine normal plane bundle A does not depend on the local or-

thonormal tangent frame u.
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Proof. Let v = {Y1,...,Y,} be another orthonormal tangent frame then
Y= a;X; (6.8)
j=1

where a = (a;;) is an orthogonal matrix and det(a) = £1 depending on u and v have the
same orientation or not. By Lemma 6.4 we have: & = 51 and & = )\él + fg for some
function A\. By a computation, 72(X) = 72(X) and 72(X) = 7(X) — A\rZ(X). Now by

linearity of Tij follows
=) HEYe=&-> 7(Ye) ) ayX;
k=1 k=1 j=1

£=6- YO (Via)X,

j=1 k=1

=& - Z (Z 712(2 alel)akj> X;
=1 \k=1  I=1

=6-). (Z (Z Tf(Xl)aklakj>> X;
j=1 \k=1 \I=1

=& =) X)X =¢,.
j=1

Analogously we obtain &, = —)\21 + EQ. ]

Propositions 6.10 and 6.11 allow us to define the affine distance and height functions
for submanifolds of codimension 2. Next we define these functions and characterize the

singularities of them.

6.4 Affine distance functions

Let M C R™?2 be a locally strictly convex n-submanifold and ¢ a metric field. Let
u={Xy,...,X,} bealocal orthonormal tangent frame of g = g¢ and let ¢ be an arbitrary

transversal plane bundle. By Theorem 6.3 there exists a unique local frame {&, &} of o,,.
Definition 6.12. We define the family of affine distance functions

AR x M — R,
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as follows: for z € R"™ and p € M, A(x,p) is given by

p—r= Z(Sl?,p) + A(m,p)fz
where z(z,p) € m, = T,M ®¢&,.

Lemma 6.13. The family of affine distance functions is independent of the tangent frame

u and independent of the transversal plane bundle o.
Proof. The proof is analogous to that of Lemma 5.9. O

Theorem 6.14. The affine distance function A, has a singularity if and only if v — X

belongs to the affine normal plane A.

Proof. Since u = {Xj, ..., X,} is an orthonormal tangent frame and {&;,&,} is the frame

on o obtained by Theorem 6.3 then we can write
r—X=rXi+...+ X, + 1&g + aés.

We have
A= [Xl,...,Xn,fl,CE —X]

By properties of derivation and determinant we have Xj(A):

:[Dxle,...,Xn,§1,$—X]+...+[Xl,...,DXIXn,fl,JI—X]+[X1,...,Xn,DX1£1,[L'—X]
:(agf,lﬂ — hQ(Xk,Xl)Tl) —+ ...+ (agfzn — hz(Xk,Xn)T’n) + (Oéngl(Xk) — Olelz(Xk))
=o(Th; + ... T0 + 11 (Xp)) — o m2(X) — 7.

Therefore X;(A) = 0 if and only if
rp=ao(Thy + ... TF, + 71 (Xg)) — an 1 (X3).
By derivation of [X1,...,X,,&,&] =1 we obtain I'y; +... T}, + 71 (Xy) = —75(Xy). It

follows that X;(A) = 0 if and only if r, = —au73(X) — a17E(X},) Therefore X;(A) =
... = Xi(A) =0 if and only if

r—X =0 <§1 — ZTf(Xk.)Xk) + ap (fz — ZT%(Xk)Xk) .
k=1 k=1

—
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6.5 Affine height functions

Analogously to the definition of affine distance functions we can to define the family

of affine height functions.

Definition 6.15. The family of affine height functions
H:R"™ x M — R,
is defined as follows: for z € R™™ and p € M, H(z,p) is given by

T = Z($7p) + H(l'vp)SQ
where z(z,p) € T, = T,M ®&,.

Lemma 6.16. The family of affine height functions is independent of the tangent frame

u and independent of the transversal plane bundle o.
Proof. The proof is analogous to that of Lemma 5.12. O

We can write the affine distance function as H(z,p) = [Xy,..., X, &, x].

Theorem 6.17. The affine height function H, has a singularity if and only if x is in the

affine normal plane A.

Proof. Analogous to the proof of Theorem 6.14. O
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