• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2018.tde-19032018-095720
Documento
Autor
Nome completo
Valdeni Soliani Franco
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1998
Orientador
Banca examinadora
Daccach, Janey Antonio (Presidente)
Biasi, Carlos
Fanti, Erminia de Lourdes Campello
Kiihl, Jose Carlos de Souza
Silva, Mario Olivero Marques da
Título em português
Transfer Parcial para Extensões de Grupos Dualidades
Palavras-chave em português
Não disponível
Resumo em português
Desde que o conceito de Grupos Dualidades de Poincaré foi criado, muitos esforços tem sido feito com a finalidade de estudar as propriedades geométricas de uma variedade fechada nesta nova categoria. Isto é natural, pois um Grupo Dualidade de Poincaré tem sua homologia e cohomologia conectada por um isomorfismo semelhante ao isomorfismo Dualidade Poincaré para variedades compactas. Produtos semelhantes ao cup e cap, operaçrios quadrados de Steenrod, Teorema dos Coeficientes Universais também podem ser definidos para Grupos Dualidade de Poincaré. Da mesma maneira as classes de Stiefel-Whitney, números de Stiefel- Whitney e a noção de cobordismo de Grupos Dualidade de Poincaré pode ser definido, e desde que estas propriedades são essencialmente algébricas, os resultados nesta direção não são novos. Apenas como complemento nós demonstraremos aqui propriedades multiplicativos do índice de "fibrações" (sob certas hipóteses) e damos contra-exemplos semelhantes aos dados por Atiyah e Kodaira. O centro deste trabalho é o Teorema de Transfer Parcial de Gotllieb. Sua demonstração utiliza propriedades geométricas refinadas de variedades, que não tem similares para Grupos Dualidades de Poincaré. Graças a sequência espectral de LHS, nós apresentamos aqui uma demonstração do Teorema de Transfer Parcial para uma sequência exata curta: N →i G →π Q de Grupos Dualidades de Poincaré e damos algumas aplicações.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
Since the concept of Poincaré Duality Groups was areated, many efforts has been done in order to study the geometrical properties of a closed manifold, in this new category. This is natural because a Poincaré Duality Group has its homology and cohomology connected by an isomorfism like the Poincaré Duality isomorphism for compact manifolds. Products like the cup and cap product, Steenrod square operations, universal coeficient theorems can also be defmed for Poincaré Duality Groups. In this way Stiefel- Whitney classes, Stiefel Whitney numbers and the notion of cobordism of Poincaré Duality Groups can be naturally established. Also the notion of index of Poincaré Duality Group can be defined, and since its properties are essentially algebraic, the results in this direction would not be new. For completness we prove here the multiplicative property of the index for "fibrations" (under cetain hipothesis) and we give counter-examples like the ones given by Atiyah and Kodaira. The core of this work is the Partia] Transfer Theorem of Gotllieb. Ris proof uses deep geometrical properties of manifolds, still without similar for Poincaré Duality Groups. Thanks for LHS spectral sequence we present here a proof of the Partia] 'Pransfer Theorem for a short exact sequence: N →i G →π Q of Poincaré Duality Groups and some applications is given.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-03-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.