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ABSTRACT

DUZI, M. Topological games and selection principles. 2019. 166 p. Dissertação (Mestrado em
Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2019.

This paper is dedicated to the beginning of the development of a book introducing topological
games and selection principles. Here, the classical games (such as the Banach-Mazur) and
selection principles (such as the Rothberger or Menger properties) are presented. The most
notable applications are also displayed – both the classical (such as the characterization of Baire
spaces with the Banach-Mazur game) and the recent (such as the relation between the Menger
property and D-spaces). In addition to the content for the book, a problem in finite combinatorics
that was found in the study of positional strategies is presented (as well as a partial solution)
together with some results regarding new variations of classical selection principles and games,
which give rise to the characterization of some notable spaces.

Keywords: topological games, selection principles, tightness properties, covering properties,
Baire spaces.





RESUMO

DUZI, M. Jogos topológicos e princípios seletivos. 2019. 166 p. Dissertação (Mestrado em Ci-
ências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2019.

Este trabalho é dedicado ao início do desenvolvimento de um livro introdutório à jogos to-
pológicos e princípios seletivos. Aqui, são apresentados os clássicos jogos (tais como o de
Banach-Mazur) e princípios seletivos (tais como a propriedade de Rothberger ou de Menger).
Também são exibidas as aplicações mais notáveis encontradas na literatura – tanto as mais
tradicionais (tais como a caracterização de espaços de Baire com o jogo de Banach-Mazur),
como as mais atuais (tais como a relação entre a propriedade de Menger e D-espaços). Além do
conteúdo voltado para o livro, são apresentados um problema de combinatória finita (assim como
uma solução parcial para tal) que foi encontrado com o estudo de estratégias posicionais e alguns
resultados envolvendo novas variações de princípios de seleção e jogos clássicos, possibilitando
a caracterização de alguns espaços notáveis.

Palavras-chave: jogos topológicos, princípios seletivos, propriedades de tightness, propriedades
de coberturas, espaços de Baire.
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INTRODUCTION

Games have been an object of study for mathematicians since, arguably, the 17th century.
It was only in the 20th century that, in the Scottish Book, the game henceforth known as the
first infinite mathematical game was introduced: the Banach-Mazur game (for a brief history of
games in mathematics we refer to [Telgársky 1987] or [Aurichi and Dias 2019]).

Obviously, infinite games are not meant to be played. But what good is a game, if not
for playing it? Infinite games are used to describe certain infinite combinatorial properties in an
intuitive manner. This description usually happens in terms of winning strategies. The property
of being a Baire space, for instance, is characterized by one of the players not having a winning
strategy in the Banach-Mazur game, while if the other player has a winning strategy in this game
we can go even further and conclude that the space is productively Baire.

Another way to describe combinatorial properties is through selection principles. In
essence, these are properties asserting that one can choose an element from each set of a
sequence in order to obtain a significant object. Selection principles define classical properties,
such as Rothberger or Menger spaces.

Our initial goal was to start the development of a book introducing these infinite games
and selection principles in the context of topology. Midway through this project, however, we
have obtained some new results on the field, so we decided to divide this text into two parts, each
with its respective chapters:

Part I

This part is dedicated to a prototype of a book on topological games and selection
principles.

In Chapter 1 we list the preliminary definitions, results and general notation adopted
throughout the book.

With Chapter 2 we formally introduce finite and infinite games, as well as the way we are
going to work with them. We particularly focus on exploring the concept of strategies (showing
a result regarding positional strategies) while presenting the point-open and the Banach-Mazur
games.

We dedicate Chapter 3 to present the general selection principles. Here, we are partic-
ularly interested in covering properties (such as Rothberger, Menger and Hurewicz) that rise
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from such principles in order to show the classical Scheepers Diagram, as well as Alster spaces
(which we will, later, relate to productively Lindelöf spaces) and closure properties such as fan
tightness and strong fan tightness.

In Chapter 4 we introduce the classical selective games associated to the selection
principles presented in the previous chapter, as well as their connection with said principles.
More specifically, we explore here:

∙ the duality between the Rothberger game and the point-open game, in addition to its
relation to some of its variations and a characterization of Rothberger property;

∙ the Menger property characterization with the Menger game, as well as its “semi-duality”
to the compact-open game;

∙ a characterization of the Hurewicz property with the introduced Hurewicz game;

∙ the Alster game duality to the compact-Gδ game and its relation with the compact-open
game and the Alster property.

Chapter 5 is dedicated to present some of the classical and recent applications, in addition
to some of the connections between the various games and selection principles presented thus
far. Namely, we inspect:

∙ the characterization of Baire spaces with the Banach-Mazur game, as well as how this
game relates to productively Baire spaces;

∙ the characterization of the Rothberger property for metrizable spaces with the concept of
strong measure zero and show how regular, σ -finite Borel measures behave over regular
Rothberger spaces.

∙ a connection between productively Lindelöf spaces and Alster spaces and we present how,
assuming the existence of a Michael space, every productively Lindelöf space is Menger;

∙ a relationship between the compact-open game and sieve completeness when we consider
some compactifications;

∙ the concept of D-spaces, as well as its relation with the various covering games presented
thus far (such as the Menger game);

∙ how strong fan tightness and the tightness game relate to productively countably tight
spaces;

∙ how some covering properties naturally translate to tightness properties in the space of
real continuous functions.



Introduction 17

Finally, with Chapter 6, we summarize the main results presented in the book into four
diagrams.

Part II
We present in this part the results obtained throughout the project.

In Chapter 7 we talk about how a natural generalization of [Galvin and Telgársky 1986]’s
main theorem gave rise to a problem regarding finite combinatorics, for which we present a
partial solution.

In Chapter 8 we showcase the content of paper [Aurichi and Duzi 2019], on which we
explored how a simple variation of some of the classical selection principles and games may
give rise to new topological properties and characterize some spaces.





Part I

Book
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CHAPTER

1
PRELIMINARIES

We dedicate this chapter to clarify some of the notation that will be used throughout this
book and to present some usual definitions and results concerning set theory and topology that
will be approached.

It should be noted that, since our focus resides in the study of topological games and
selection principles, we will leave most of the results appearing here with its proof to be found
in other basic topology books (such as [Engelking 1989]).

1.1 Set theory

We begin this section by noting that, throughout this entire book, we are assuming the
axiomatic system of Zermelo-Fraenkel with the axiom of choice (ZFC). Also, by “CH” we mean
“Continuum Hypothesis”.

Definition 1.1.1. We denote the set ω ∖{0} by N and the cardinality of the continuum by c.

Definition 1.1.2. Given a pre-ordered set P, we say two elements p,q ∈ P are compatible if
there exists r ∈ P such that r ≤ p,q. We say p,q are incompatible, denoted by ppp ⊥⊥⊥ qqq, otherwise.

Definition 1.1.3. We define <ωAAA as the set of all finite sequences of elements of A, that is,

<ωA =
⋃

n∈ω

nA,

where nA is the set of all functions f : n → A (in particular, /0 ∈ <ωA).

Also, we define ωA as the set of all functions f : ω → A.

To clarify the notation used here:

1. Note that for every s ∈ <ωA, dom(s) = |s|.
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2. For s ∈ <ωA we write s = ⟨s0, . . . ,sn⟩, with n = |s|−1 and si = s(i) for each i ≤ n < |s|
(in particular, /0 = ⟨⟩);

3. For s = ⟨s0, . . . ,sn⟩ ∈ <ωA and a ∈ A, we denote saa as the element ⟨s0, . . . ,sn,a⟩ ∈ <ωA;

4. For s ∈ <ωA and k ≤ |s|, we denote s�k as simply the function s restricted to k.

5. If nothing is said, we will consider <ωA with the partial order given by

s ≥ t ⇐⇒ s ⊂ t

Definition 1.1.4. We say an ordered set ⟨T,≤⟩ is a tree if, for every t ∈ T , {s ∈ T : s ≤ t } is
well ordered by ≤.

We say r ∈ T is a root if {s ∈ T : s < t }= /0. Given t ∈ T , we say s ∈ T is a successor
of t if t ≤ s and there is no p ∈ T such that t < p < s. We say ⟨T,≤⟩ is a finitely branching tree
if, for every t ∈ T , the set of successors of t is finite.

Lemma 1.1.5 (König’s Lemma). Let T be a finitely branching and infinite tree. Then T has an

infinite branch.

Proof. Let R0 be T ’s set of roots. Note that there is an r0 ∈ R0 such that { t ∈ T : r0 ≤ t }
is infinite. Since the set of successors of r0 is finite, one of its successors r1 must be such
that { t ∈ T : r1 ≤ t } is also infinite. By proceeding in this manner we find an infinite branch
R = {rn : n ∈ ω }, as desired.

Definition 1.1.6. Given a set X , we say F ⊂℘(X) is a filter base if

∙ for every A,B ∈ F , A∩B ∈ F ;

∙ /0 /∈ F .

1.2 Topology
By a space we mean (unless stated otherwise) a nonempty topological space. Formally, a

space should be denoted as ⟨X ,τ⟩, with X being a set and τ being the topology in question over
X . However, τ will be implicitly clear most of the time, so in these cases we simply write “X”
instead of “⟨X ,τ⟩”.

Definition 1.2.1 (Separation axioms). We say a space X is a

∙ TTT 111 space if, for all x,y ∈ X such that x ̸= y, there is an open neighborhood Vx of x such
that y ̸∈Vx and there is an open neighborhood Vy of y such that x ̸∈Vy;

∙ Hausdorff space (or a TTT 222 space) if, for all x,y ∈ X such that x ̸= y, there are an open
neighborhood Vx of x and an open neighborhood Vy of y such that Vx ∩Vy = /0;
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∙ TTT 333 space if, for all x∈X and closed F ⊂X such that x ̸∈F , there are an open neighborhood
Vx of x and an open neighborhood VF of F such that Vx ∩VF = /0;

∙ regular space if it is T1 and T3;

∙ TTT 3 1
2

space if, for every closed F ⊂ X and x ∈ X such that x ̸∈ F there is a continuous
function f : X → [0,1] such that f (x) = 0 and f (y) = 1 for all y ∈ F ;

∙ completely regular space if it is T1 and T3 1
2
;

∙ TTT 444 space if for all closed and disjoint F,G ⊂ X there are an open neighborhood VF of F

and an open neighborhood VG of G such that VF ∩VG = /0;

∙ normal space if it is T1 and T4.

Definition 1.2.2. A space X is Lindelöf if all of its open covers have countable subcovers.

Theorem 1.2.3. If X is a T3 Lindelöf space, then X is T4.

Proof. Let F and G be disjoint closed subsets of a T3 Lindelöf space X . Since X is T3, for each
x ∈ F there is an open neighborhood Vx of x such that Vx ∩G = /0. Since X is Lindelöf and F is
closed we find a countable subcover {Vxn : n ∈ ω } ⊂ {Vx : x ∈ X } for F . Analogously, we find
a countable cover {Un : n ∈ ω } for G such that Un ∩F = /0 for every n ∈ ω .

For each n ∈ ω let

V *
n =Vn ∖

⋃
k≤n

Uk and U*
n =Un ∖

⋃
k≤n

Vk.

Note that {V *
n : n ∈ ω } and {U*

n : n ∈ ω } are open covers for F and G, respectively. After
setting V =

⋃
n∈ω V *

n and U =
⋃

n∈ω U*
n we claim that V ∩U = /0 .

Indeed, note that, for all n,m ∈ ω , V *
n ∩U*

m = /0, so

V ∩U =

(⋃
n∈ω

V *
n

)
∩

(⋃
n∈ω

U*
n

)
=

⋃
n,m∈ω

(V *
n ∩U*

m) = /0.

Then the proof is complete.

Definition 1.2.4. We say a space X is σ -compact if there is a collection (Kn)n∈ω of compact
sets such that X =

⋃
n∈ω

Kn.

Definition 1.2.5. We say that N ⊂ R is nowhere dense if the interior of its closure is empty.

Definition 1.2.6. We say L ⊂ R is a Luzin set if L is uncountable and L∩N is countable for
every N nowhere dense.

Theorem 1.2.7 (Luzin). CH implies the existence of a Luzin set.
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Proof. Let F = {F ⊂ R : F is closed and with empty interior}. Since R has a countable basis,
we may write F = {Fα : α < ω1 } with CH. Now, for each α < ω1 we recursively pick

xα ∈ R∖

{xβ : β < α
}
∪
⋃

β≤α

Fβ

 .

Note that such xα may always be picked, because R is a Baire space. We say that L =

{xα : α < ω1 } is a Luzin set. Indeed, L is clearly uncountable. Also, if N ⊂ R is a nowhere
dense subset, then N = Fα for some α < ω1 and

L∩N ⊂ L∩N ⊂
{

xβ : β < α
}
,

and the proof is complete.

Definition 1.2.8. Given a space X and Y ⊂ X , we say a collection of open sets B is a local basis
at Y if

∙ for every U ∈ B, Y ⊂U ;

∙ for every open V ⊃ Y there is a U ∈ B such that U ⊂V .

Definition 1.2.9. Given a space X and Y ⊂ X . We say Y has local character of cardinality κ if
κ is the minimum cardinality for a local basis at Y . If κ = ω , we simply say Y has countable
character.

Definition 1.2.10. We say a subspace Y of a space X is a discrete space if for every y ∈ Y there
is an open neighborhood Vy of y such that Vy ∩ (Y ∖{y}) = /0.

Proposition 1.2.11. If F1 and F2 are closed discrete subspaces of X, then F1 ∪F2 is a closed

discrete subspace of X.

Proof. It is clear that F1 ∪ F2 is closed. If x ∈ F1 ∩ F2, then there are open neighborhoods
V F1

x and V F2
x of x such that V Fi

x ∩ (Fi ∖ {x}) = /0. In this case, Vx = V F1
x ∩V F2

x is such that Vx ∩
((F1 ∪F2)∖{x}) = /0.

On the other hand, if x ∈ Fi but x ̸∈ Fj for distinct i, j ∈ {1,2}, then there is an open
neighborhood V ′

x of x such that V ′
x ∩ (Fi ∖{x}) = /0. In this case, if we let Vx =V ′

x ∩ (X ∖Fj), it
follows that Vx ∩ ((F1 ∪F2)∖{x}) = /0.

Definition 1.2.12. We say a family F of subsets of a space X is a discrete family if for every
x ∈ X there is an open neighborhood Vx of x such that Vx ∩F ̸= /0 for at most one F ∈ F .

Definition 1.2.13. Given a space X , we say F ⊂℘(X) is locally finite at x ∈ X if there is an
open neighborhood Vx of x such that {F ∈ F : F ∩Vx ̸= /0} is finite. We say F is locally finite
X if it is locally finite at x for every x ∈ X .
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Example 1.2.14. If F is a discrete family of subsets of a space X , then F is locally finite in X .

Proposition 1.2.15. Let Y be a subspace o a space X and F ⊂℘(Y ) locally finite in Y . Then

A = {x ∈ X : F is not locally finite at x} is a closed subset of X ∖Y .

Proof. Since F is locally finite in Y , A ⊂ X ∖Y . If x ∈ A, then for every open neighborhood Vx

of x, Vx ∩A ̸= /0. In this case, consider z ∈Vx ∩A. Since z ∈ A, {F ∈ F : F ∩Vx ̸= /0} is infinite,
which implies that x ∈ A as well and concludes the proof.

Definition 1.2.16. Given a space X and a filter base F ⊂℘(X), we say F clusters at x ∈ X if
for every A ∈ F and V open neighborhood of x, A∩V ̸= /0. We say F clusters in X if there is
an x ∈ X such that F clusters at x.

Theorem 1.2.17. A space X is compact if, and only if, every filter base F ⊂℘(X) clusters in

X.

Proof. Let X be a compact space and F ⊂℘(X) be a filter base. Then note that F ={
F : F ∈ F

}
has the finite intersection property, so there is an x ∈ X such that x ∈

⋂
F∈F F .

Clearly, F clusters at x.

On the other hand, suppose X is a space such that every filter base F ⊂℘(X) clusters
in X . Let C be a collection of closed sets with the finite intersection property. Note that

F = {C0 ∩·· ·∩Cn : n ∈ ω and C0, . . . ,Cn ∈ C }

is a filter base, so it clusters at some point x ∈ X . Since F ’s elements are closed, it follows that
x ∈

⋂
F ⊂

⋂
C , which concludes the proof.

Definition 1.2.18. Given a completely regular space X , we say a space Y ⊃ X is a compactifi-
cation of X if Y is a compact Hausdorff space and X = Y .

Theorem 1.2.19. The space of irrational numbers is homeomorphic to Nω .
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CHAPTER

2
INTRODUCING GAMES

The reader would find quite strange to read a book with “topological games” in the
title that does not even once mentions game theory. We should emphasize here, however, that
topology is the actual central object of study of this book and we focus only on specific kinds of
games.

Precisely, we are interested mainly in two players competing and sequential games of

perfect information that do not allow draws. These are game theory’s classification terms which
we briefly and informaly explain in what follows:

∙ two players: as obvious as it sounds, the game is played between two players, which we
will call ALICE and BOB;

∙ competing: players compete, rather than cooperate towards some goal;

∙ sequential: players take actions in turns, rather than simultaneously;

∙ perfect information: at every given moment of the game, both players have knowledge
of the entire history of the game thus far;

∙ does not allow draws: at the end of a run of the game, one of the players wins and the
other loses.

Surely, for each of the categories presented above one can find some example of games that
are playable in real life (such as chess, checkers, tic-tac-toe, etc.). However, in order to study
topological properties, we will not limit ourselves to study such playable games that finish in
finitely many moves: so we rely on the abstract mathematics, striving for the study of infinite

games. But before we introduce such abstract games, we take a step back and formalize the case
of finite games, so that the concept of infinite games falls more, let us say, naturally to the reader.
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2.1 Finite games
Sequential games, in particular, are known to have an extensive-form, which is a rep-

resentation of such games using trees. We use this representation to later naturally extend to
infinite games:

Definition 2.1.1. Let M be a nonempty set and N ∈ N. Given T ⊂ <2N+1M and A ⊂ 2N+1M, we
say G = ⟨T,A⟩ is a finite game played between ALICE and BOB of length N if T satisfies the
following conditions:

(I) ⟨⟩ ∈ T ;

(II) If t ∈ T , then t �k ∈ T for every k ≤ |t|;

(III) For every t ∈ T such that |t|< 2N there is an x ∈ M such that tax ∈ T .

An element t ∈ T is called a moment of the game G. An element R ∈ 2NM is called a
run of the game G if R�n ∈ T for every n ≤ 2N.

If a moment t has even length, we say it is ALICE’s turn and
{

x ∈ M : tax ∈ T
}

is the
set of ALICE’s valid responses to t in the game G. Likewise, if a moment t has odd length, we
say it is BOB’s turn and

{
x ∈ M : tax ∈ T

}
is the set of BOB’s possible responses to t in the

game G.

We then fix the following notations

A(G) =
{

x ∈ M : tax ∈ T for some t ∈ T which is ALICE’s turn
}

B(G) =
{

x ∈ M : tax ∈ T for some t ∈ T which is BOB’s turn
}

If t ∈ T is a moment such that |t|= 2k or |t|= 2k+1 for some k ∈ ω , then we say t is at
the inning k.

Finally, A is called the payoff set of the game G. A run R is said to be won by ALICE if
R ∈ A. Otherwise, we say R is a run won by BOB.

The motivation for defining games as in Definition 2.1.1 is as follows:

∙ Condition I makes sure the game has a start (here, the empty sequence ⟨⟩ represents the
start of the game);

∙ Condition II makes sure every moment of the game can be attained if ALICE and BOB

play the game from the start in some way;

∙ Condition III makes sure the game ends only once it “reaches” length 2N (this is purely
for technical reasons).
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2.2 Infinite games
Once we understand the meanings of Definition 2.1.1, we can naturally extend it to

infinite games preserving the same interpretations:

Definition 2.2.1 (Infinite Game). Let M be a nonempty set. Given T ⊂ <ωM and A ⊂ ωM,
we say G = ⟨T,A⟩ is an infinite game between ALICE and BOB if T satisfies the following
conditions:

(I) ⟨⟩ ∈ T ;

(II) If t ∈ T , then t �k ∈ T for every k ≤ |t|;

(III) For every t ∈ T there is an x ∈ M such that tax ∈ T .

An element t ∈ T is called a moment of the game G. An element R ∈ ωM is called a run
of the game G if R�n ∈ T for every n ∈ ω .

If a moment t has even length, we say it is ALICE’s turn and
{

x ∈ M : tax ∈ T
}

is the
set of ALICE’s valid responses to t in the game G. Likewise, if a moment t has odd length, we
say it is BOB’s turn and

{
x ∈ M : tax ∈ T

}
is the set of BOB’s possible responses to t in the

game G.

We then fix the following notations

A(G) =
{

x ∈ M : tax ∈ T for some t ∈ T which is ALICE’s turn
}

B(G) =
{

x ∈ M : tax ∈ T for some t ∈ T which is BOB’s turn
}

If t is a moment and |t|= 2k or |t|= 2k+1 for some k ∈ ω , then we say t is at the inning
k.

Finally, A is called the payoff set of the game G. A run R is said to be won by ALICE if
R ∈ A. Otherwise, we say R is a run won by BOB.

The motivation for defining games as in Definition 2.2.1 is, then, analogous to the
motivation presented for finite games – in this case, Condition III makes sure the game only ends
once it “reaches infinity” (again, this is purely for technical reasons).

The games we are going to work with are usually defined by rules (just like real life
games). These so called rules are usually recursions that define the tree of the game and a formula
that defines the payoff set. For instance:

Example 2.2.2. Fix A ⊂ ωω and consider the following game G . At each inning n ∈ ω , ALICE

chooses an ∈ω and BOB responds with bn ∈ω . ALICE then wins the game if ⟨a0,b0, . . . ,an,bn, . . .⟩ ∈
A. Formally speaking, these rules define the game G = ⟨<ωω,A⟩.
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Example 2.2.3 (Point-open game). Given a space X we call the point-open game on X the
following game: in each inning n ∈ ω ,

∙ ALICE chooses a point xn ∈ X ;

∙ BOB then responds with an open neighborhood Vn of xn.

We say ALICE wins if X =
⋃

n∈ω Vn.

Example 2.2.3 is our first example of a topological game! Intuitively, a topological game
is a set of rules that defines a game for each given space. Another example of a topological game
can be obtained as a simple variation of the point-open game:

Example 2.2.4 (Finite-open game). Given a space X we call the finite-open game on X the
following game: in each inning n ∈ ω ,

∙ ALICE chooses Fn ⊂ X finite;

∙ BOB then responds with an open set Vn such that Fn ⊂Vn.

We say ALICE wins if X =
⋃

n∈ω Vn.

As we will see in the next section, however, the point-open and the finite-open games are
not much different from one another, in some sense.

2.3 Strategies

Strategies will play a key role in our studies of topological games, so let us formally
define what a strategy actually is in view of what we defined as a game.

Definition 2.3.1 (Strategy for ALICE). A strategy for ALICE in a game G = ⟨T,A⟩ is a function
γ : S → A(G), with S ⊂ T , that satisfies the following conditions

(a) ⟨⟩ ∈ S;

(b) if s ∈ S, then s is ALICE’s turn;

(c) for every s ∈ S, saγ(s) ∈ T ;

(d) for each s ∈ S, sayax ∈ S if, and only if, y = γ(s) and x is a possible response of BOB to
the sequence saγ(s).
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Intuitively, a strategy γ for ALICE is a function whose input is the history of the game so
far at a given moment and the output is a valid response of ALICE to such history - it tells ALICE

exactly how she will play the game. Condition (a) is assuring that γ tells ALICE how to start the
game, (b) tell us that γ takes into account only turns that actually correspond to ALICE’s turn, (c)
assures that γ tells ALICE to play only valid responses and condition (d) makes sure γ prepares
ALICE to deal with every possible situation she might get into by playing according to γ .

We note that a strategy γ for ALICE in G = ⟨T,A⟩ may be uniquely identified with a
subtree T (γ) ⊂ T . This tree is easily obtained from γ itself: just let t ∈ T (γ) if, and only if,
t ∈ dom(γ) or t = saγ(s) for some s ∈ dom(γ). A run R is then said to be compatible with
an ALICE’s strategy γ if R�n ∈ T (γ) for every n ∈ ω (basically, if the run R can be played by
ALICE following the instructions of strategy γ).

To simplify the notation, if γ is a strategy for ALICE and s is in its domain, we omit the
even numbered entries of the sequence s – in view of condition (d), these entries are already
implicitly determined by γ itself.

We say γ is a winning strategy for ALICE if for every run R compatible with γ , R is
won by ALICE. We denote the assertion “ALICE has a winning strategy in G” with “ALICE↑G”
and the assertion “ALICE has no winning strategy in G” with “ALICE̸↑G”.

Example 2.3.2. If A = ωω and we consider the game G = ⟨<ωω,A⟩, then ALICE↑G. In fact
every strategy for ALICE is a winning one!

Example 2.3.3. If X is a countable space, then ALICE has an obvious winning strategy in the
point-open game: she can just pick each and every point of the space along one run.

We then, analogously, define a strategy for BOB:

Definition 2.3.4 (Strategy for BOB). A strategy for BOB in a game G = ⟨T,A⟩ is a function
σ : S → B(G), with S ⊂ T , that satisfies the following conditions

(a) ⟨x⟩ ∈ S for each valid starting move x of ALICE;

(b) if s ∈ S, then s is BOB’s turn;

(c) for every s ∈ S, saσ(s) ∈ T ;

(d) for each s ∈ S, sayax ∈ S if, and only if, y = σ(s) and x is a possible response of ALICE

to the sequence saσ(s).

Just like for ALICE’s strategies, we uniquely identify a strategy σ with a subtree T (σ)⊂
T in the same manner: by letting t ∈ T (σ) if, and only if, t ∈ dom(σ) or t = saσ(s) for some
s ∈ dom(σ). Again, a run R is said to be compatible with a strategy σ for BOB if R�n ∈ T (σ)

for every n ∈ ω .
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Also, if σ is a strategy for BOB and s is in its domain, we omit the odd numbered entries
of the sequence s - again, in view of condition (d), these entries are already implicitly determined
by σ itself.

We say σ is a winning strategy for BOB if for every run R compatible with σ , R is won
by BOB. We denote the assertion “BOB has a winning strategy in G” with “BOB↑G” and the
assertion “BOB has no winning strategy in G” with “BOB̸↑G”.

Example 2.3.5. If A = /0 and we consider the game G = ⟨<ωω,A⟩, then BOB↑G. In fact every
strategy for BOB is a winning one!

Example 2.3.6. If X = R, then BOB has a winning strategy in the point-open game: all he has
to do is to respond in each inning n ∈ ω with an open interval of length 1

2n . The union of his
responses will then have Lebesgue measure M ≤ ∑

∞
n=0

1
2n = 2, and, therefore, will not cover

R (note that the same argument can be used to show that BOB has a winning strategy in the
point-open game on X if X ⊂ R has infinite Lebesgue measure).

Example 2.3.7. If X ⊂ R has finite Lebesgue measure M > 0, then BOB has a winning strategy
in the point-open game just like in Example 2.3.6 by choosing, in each inning n, intervals of
length M

2
1
2n this time.

As the reader might have already figured out from Examples 2.3.3, 2.3.6 and 2.3.7, we
usually define strategies recursively. Eventually, these recursions might get way too complicated
in a way that writing them formally might get in the way of understanding what is going on
in the construction of said strategy. When that is the case, we refrain ourselves from writing
the formal recursion and we just show the beginning of the process, ending the construction
with something like “and so on”. Of course, when doing that we expect that if one wants to
actually write the formal recursion, they may easily (although messily) do it with the help of our
“informal” recursion.

Also, note that the set of ALICE’s strategies (or BOB’s) for a given game G = ⟨T,A⟩ does
not depend on the payoff set A (the winning criteria of the game), only on the tree T (the set
of restriction on the moves of the players). The payoff set A only dictates which strategies are
winning or not. Formally:

Lemma 2.3.8. Let G1 = ⟨T,A1⟩ and G2 = ⟨T,A2⟩. If Γ(G1) is the set of strategies for ALICE in

G1 and Γ(G2) is the set of strategies for ALICE in G2, then

Γ(G1) = Γ(G2).

Analogously, if Σ(G1) is the set of strategies for BOB in G1 and Σ(G2) is the set of strategies for

BOB in G2, then

Σ(G1) = Σ(G2).
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Since our games do not allow draws, one may inadvertently conclude that if one of the
players have no winning strategy then the other must have one. This is, however, NOT the case
(in general), which is why we present the following definition.

Definition 2.3.9. We say a game G is

∙ determined if ALICE↑G or BOB↑G;

∙ undetermined otherwise, i.e., if ALICE̸↑G and BOB̸↑G.

Indeed, finite games are all determined:

Theorem 2.3.10 ([Zermelo 1913], [Kalmár 1928]). If G = ⟨T,A⟩ is a finite game of length

N ∈ ω , then G is determined.

Proof. Note that ALICE↑G means

∃a1∀b1∃a2∀b2 . . .∃aN∀bN ALICE wins the run ⟨a1,b1, . . . ,aN ,bN⟩.

So ALICE̸↑G means

∀a1∃b1∀a2∃b2 . . .∀aN∃bN such that ALICE does not win the run ⟨a1,b1, . . . ,aN ,bN⟩,

which means exactly that BOB↑G.

When we are talking about infinite games, on the other hand, we may have a very
different story. Note that in the proof of Proposition 2.3.10 we strongly used the fact that the
game G had a finite set of innings, so it might not be a surprise to know that, for instance:

Theorem 2.3.11 ([Khomskii 2010]). There is an A ⊂ ωω under ZFC such that G = ⟨<ωω,A⟩ is

undetermined.

Proof. In view of Lemma 2.3.8, we may let Γ be the set of ALICE’s strategies and Σ be the set
of BOB’s strategies in G = ⟨<ωω,A⟩, for every A ⊂ ωω . Then, for each γ ∈ Γ, let R(γ) be the
set of runs that are compatible with γ . Analogously, for each σ ∈ Σ, let R(σ) be the set of runs
that are compatible with σ . Note that

|Γ|= |Σ|= |R(γ)|= |R(σ)|= c

for every γ ∈ Γ and σ ∈ Σ. Then we let Γ =
{

γξ : ξ < c
}

and Σ =
{

σξ : ξ < c
}

. Now we can
define A ⊂ ωω and B ⊂ ωω with the following recursion: First, pick any R0 ∈ R(σ0) and then
S0 ∈ R(γ0) such that S0 ̸= R0. Now, suppose that, for some α < c, we have defined Rξ and Sξ

for every ξ < α in such a way that, for every ξ ,η < α ,

∙ Rξ ∈ R(σξ ) and Sξ ∈ R(γξ );
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∙ Sξ ̸= Rη .

Then pick Rα ∈ R(σα) and Sα ∈ R(γα) such that Rα ̸∈
{

Sξ : ξ < α
}

and Sα ̸∈
{

Rξ : ξ ≤ α
}

(this is possible, because |R(σα)|= |R(γα)|= c). Let A =
{

Rξ : ξ < c
}

and B =
{

Sξ : ξ < c
}

.

CLAIM 2.3.12. A∩B = /0.

Proof. Let R ∈ A. Then R = Rα for some α < c. Note that at stage α of our recursion, Rα was
picked in such a way that Rα ̸= Sξ for every ξ < α . But then, for every η such that α ≤ η < c,
Sη was picked in such a way that Sη ̸= Rξ for every ξ < η . In particular, Rα ̸= Sη for every
η ≥ α , and the proof is complete.

Finally, we claim that G = ⟨<ωω,A⟩ is undetermined. Indeed, let γ ∈ Γ. Then γ = γα for
some α < c and Sα ∈ R(γα)∩B, so it follows from Claim 2.3.12 that ALICE loses the run Sα

and, therefore, γ is not a winning strategy. On the other hand, if σ ∈ Σ, σ = σα for some α < c

and Rα ∈ R(σα)∩A, which means that BOB loses the run Rα and, therefore, σ is not a winning
strategy.

Now that we know that infinite games may not be determined, we may ask:

Question 2.3.13. Is the point-open game determined on every subset of R?

Indeed, as we will see later, the answer to Question 2.3.13 is actually independent of
ZFC.

For now, we present a definition that should indicate how important the concept of
strategies will be in our studies of topological games: given a class of spaces C (like the class
of all Hausdorff spaces, for instance), we say two topological games G1 and G2 are equivalent
over C if, for every X ∈ C ,

∙ ALICE has a winning strategy in G1 on X if, and only if, ALICE has a winning strategy in
G2 on X ;

∙ BOB has a winning strategy in G1 on X if, and only if, BOB has a winning strategy in G2

on X .

If G1 and G2 are equivalent over the class of all spaces, we simply say that G1 and G2 are
equivalent games.

Proposition 2.3.14. The point-open game and the finite-open game are equivalent.

Proof. It is clear that if ALICE has a winning strategy γ in the point-open game, then ALICE has
a winning strategy in the finite-open game (she can use a restriction of the same γ) and that if
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BOB has a winning strategy σ in the finite-open game, then BOB has a winning strategy in the
point-open game (again, he can use a restriction of the same σ ).

So suppose γ is a winning strategy for ALICE in the point-open game. We define a
strategy γ ′ for ALICE in the finite-open game as follows:

∙ Let γ(⟨⟩) =
{

x j : j ≤ n0
}

and then, in the first inning, let γ ′(⟨⟩) = x0. Regardless of what
open set V0 BOB responds with, let γ ′(⟨V0⟩) = x1. In fact, let γ ′(⟨Vi : i < j⟩) = x j in every
inning j ≤ n0 (regardless of what BOB’s responses are);

∙ Let U0 =
⋃

j≤n0
Vj and note that γ(⟨⟩)⊂U0, so we may set γ(⟨U0⟩) =

{
x j : n0 < j ≤ n1

}
.

Then, in the inning n0 +1, let γ ′(⟨Vj : j < n0 +1⟩) = xn0+1. Regardless of what open set
Vn0+1 BOB responds with, let γ ′(⟨Vj : j < n0 +2⟩) = xn0+1. In fact, let γ ′(⟨Vi : i ≤ j⟩) = x j

in every inning j such that n0 < j ≤ n1 (regardless of what BOB’s responses are);

∙ In the inning n1 + 1, let U1 =
⋃

n0< j≤n1
Vj and note that γ(⟨U0⟩) ⊂ U1, so we may set

γ(⟨U0,U1⟩) =
{

x j : n1 < j ≤ n2
}

. Then, let γ ′(⟨Vj : j < n1 +1⟩) = xn1+1. Regardless of
what open set Vn1+1 BOB responds with, let γ ′(⟨Vj : j < n1 +2⟩) = xn1+1. In fact, let
γ ′(⟨Vi : i ≤ j⟩) = x j in every inning j such that n1 < j ≤ n2 (regardless of what BOB’s
responses are);

∙ and so on.

It follows that the open sets chosen by BOB in a run against γ ′ cover the same as the open sets
chosen by BOB in a run against γ , so γ ′ must be a winning strategy.

Now, suppose σ is a winning strategy for BOB in the point-open game. We define a
strategy σ ′ for BOB in the finite-open game as follows:

∙ If ALICE starts with F0 =
{

x j : j ≤ n0
}

, let

σ
′(⟨F0⟩) =

⋃
k≤n0

σ(⟨x j : j ≤ k⟩);

∙ if in the next inning ALICE chooses F1 =
{

x j : n0 < j ≤ n1
}

, let

σ
′(⟨F0,F1⟩) =

⋃
n0<k≤n1

σ(⟨x j : j ≤ k⟩);

∙ next, if ALICE chooses F2 =
{

x j : n1 < j ≤ n2
}

, let

σ
′(⟨F0,F1⟩) =

⋃
n1<k≤n2

σ(⟨x j : j ≤ k⟩);

∙ and so on.
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It follows that the open sets chosen by σ ′ in a run cover the same as the open sets chosen by σ

in a run in the point-open game, so σ ′ must be a winning strategy.

We can go even further regarding ALICE having a winning strategy in the finite-open
game. In order to do this, consider yet another variation of the point-open game:

Example 2.3.15. Given a space X we call the strict finite-open game on X the following game:
in each inning n ∈ ω ,

∙ ALICE chooses Fn ⊂ X finite;

∙ BOB then responds with an open set Vn such that Fn ⊂Vn.

We say ALICE wins if X =
⋃

n∈ω

⋂
k≥nVk.

The difference between the finite-open game and the strict finite-open game is that the
latter’s winning criteria is made harder for ALICE to achieve than the former’s: in the strict
finite-open game she not only has to make sure the entire space gets covered, but she also has to
make sure each point of the space is in all but finitely many of the open sets chosen by BOB in a
run. With this in mind, one could assume that ALICE having a winning strategy in the finite-open
game does not imply she has one in the strict variation. Surprisingly, though, it does imply:

Theorem 2.3.16 ([Gruenhage 1976]). The following properties are equivalent on every space

X:

∙ ALICE has a winning strategy in the point-open game;

∙ ALICE has a winning strategy in the strict finite-open game.

Proof. Let γ be a winning strategy for ALICE in the point-open game. Then we define a strategy
γ̃ for ALICE in the strict finite-open game as follows.

∙ First, we let

γ̃(⟨⟩) = γ(⟨⟩);

∙ If BOB then chooses an open V0 such that V0 ⊃ γ̃(⟨⟩), we let

γ̃(⟨V0⟩) = γ(⟨⟩)∪ γ(⟨V0⟩);

∙ If BOB then chooses an open V1 such that V1 ⊃ γ̃(⟨V0⟩), we let

γ̃(⟨V0,V1⟩) = γ(⟨⟩)∪ γ(⟨V0⟩)∩ γ(⟨V1⟩)∩ γ(⟨V0,V1⟩);
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∙ In general, if BOB chooses an open Vn such that Vn ⊃ γ̃(⟨Vi : i < n⟩) we let S be the (finite)
collection of subsequences of ⟨Vi : i ≤ n⟩ and then

γ̃(⟨Vi : i < n⟩aVn) =
⋃
s∈S

γ(s).

Now, let ⟨Vn : n ∈ ω⟩ be a run compatible with γ̃ (we are omitting ALICE’s moves in the
run). Note that, in order to show that ALICE wins in this run, it suffices to show that X =⋃

i∈I Vi for every infinite I ⊂ ω . In this case, let I ⊂ ω be an arbitrary infinite set and fix
an increasing enumeration I = { ik : k ∈ ω }. Then, because of the way we constructed γ̃ , the
sequence ⟨Vik : k ∈ ω⟩ can be played against γ . Hence,

⋃
k∈ω Vik = X and γ̃ is a winning strategy.

The other implication is trivial.

Exercise 2.3.17. Show that ALICE and BOB cannot both have a winning strategy in a game G.

2.4 Positional strategies
It should be noted that the fact that two games are equivalent does not imply they share

the same properties. For instance, consider the following game:

Definition 2.4.1. Given a space X we call the increasing point-open game on X the following
game: in each inning n ∈ ω ,

∙ ALICE chooses a point xn ∈ X ∖Vn−1;

∙ BOB then responds with an open neighborhood Vn of xn such that Vn ⊃Vn−1.

We say ALICE wins if X =
⋃

n∈ω Vn.

It is a simple exercise to show that the point-open game is then equivalent to the increasing
point-open game. The latter, however, has a stronger property not shared by the former:

Theorem 2.4.2 ([Galvin and Telgársky 1986]). If ALICE has a winning strategy in the increas-

ing point-open game on a space X, then ALICE has a winning strategy γ* such that for every

t ∈ dom(γ*) and open V with γ*(t) ∈V ,

γ
*(taV ) = γ

*(⟨V ⟩). (2.1)

Proof. Let ⟨X ,τ⟩ be a space, τ* = τ ∖{ /0} and γ be a winning strategy for ALICE in the increasing
point-open game. Let P= dom(γ) and, given V ∈ τ*, let P(V ) = { t = ⟨Vk : k ≤ n⟩ ∈ P : Vn =V }.
Let < be a fixed (strict) well order over τ*, so that < induces the following strict linear order
over P: s ≺ t if either t ⊂ s or else there is a k ∈ dom(s)∩ dom(t) such that s�k = t �k and
s(k+1)< t(k+1) (this is similar to the lexicographic order).
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CLAIM 2.4.3. If ⟨tn : n ∈ ω⟩ is a strictly decreasing sequence with respect to ≺, then for every
k ∈ ω there is an Nk ∈ ω such that k ⊂ dom(tn) for every n ≥ Nk.

Proof. We will prove this by induction. Clearly, 0 ⊂ dom(tn) for every n ∈ ω , so N0 = 0 does the
job. Now, suppose there is an Nk ∈ ω such that k ⊂ dom(tn) for every n ≥ Nk. Suppose the result
is not true for k+ 1. Then there is a subsequence ⟨tnm : m ∈ ω⟩ of the sequence ⟨tn : n ≥ Nk⟩
with dom(tnm) < k + 1 for every m ∈ ω . In this case, note that there is an l0 ∈ ω such that
tnm(0) = tnl0

(0) for every m ≥ l0 (because ⟨tnm(0) : m ∈ ω⟩ is a decreasing sequence and < well
orders τ*). With the same argument we find an l1 > l0 such that tnm(1) = tnl1

(1) for every m ≥ l1.
By proceeding in this manner we conclude that there is an lk ∈ ω such that tnm = tnlk

for every
m ≥ lk, which contradicts the fact that ⟨tn : n ∈ ω⟩ is a strictly decreasing sequence.

CLAIM 2.4.4. If ⟨tn : n ∈ ω⟩ is a strictly decreasing sequence with respect to ≺, then for every
k ∈ ω there is an nk ∈ ω such that tn(k) = tnk(k) for every n ≥ nk.

Proof. By the previous claim, we may assume (without loss of generality) that ⟨tn : n ∈ ω⟩ is
such that dom(tn)⊂ dom(tn+1) for every n ∈ ω . In this case, note that there is an n0 ∈ ω such
that tn(0) = tn0(0) for every n ≥ n0 (because ⟨tn(0) : n ∈ ω⟩ is a decreasing sequence and < well
orders τ*). Suppose for each i ≤ k we have found an ni ∈ ω such that tn(i) = tni(i) for every
n ≥ ni. Then again, because ⟨tn(k+1) : n ≥ nk⟩ is a decreasing sequence and < well orders τ*,
we may find an nk+1 > nk such that tn(k+1) = tnk+1(k+1) for every n ≥ nk+1, which concludes
the induction.

CLAIM 2.4.5. For every V ∈ τ* such that X ̸=V , ≺ is a well order when restricted to P(V ).

Proof. Suppose not. Then there is a strictly decreasing sequence ⟨tn : n ∈ ω⟩ of elements of P(V ).
In this case, by the previous claim, for every k ∈ ω there is an nk ∈ ω such that tn(k) = tnk(k)

for every n ≥ nk. Let R = ⟨tnk(k) : k ∈ ω⟩. Then R is clearly a run compatible with γ , so that⋃
k∈ω R(k) = X . But, since R(k) = tnk(k)⊂V for every k ∈ ω , we infer that V = X .

We define a strategy γ* as follows:

∙ First, let γ*(⟨⟩) = γ(⟨⟩);

∙ Then, for each V ∈ τ* such that γ*(⟨⟩) ∈V and V ̸= X , let tV = minP(V ), with minP(V )

taken with respect to ≺ and then set γ*(⟨V ⟩) = γ(tV ). If V = X , let γ*(⟨X⟩) be any fixed
point x ∈ X (the point does not matter, since ALICE has already won the run if BOB plays
X).

∙ Suppose we have defined γ*(t �k) for every k≤ |t|, with t ∈ dom(γ). Then we let γ*(taV )=

γ*(⟨V ⟩).
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Clearly, γ* satisfies (2.1). To see that it is a winning strategy, let ⟨Vn : n ∈ ω⟩ be a run compatible
with γ* (we are omitting ALICE’s moves in the run) and set tn = minP(Vn) (we are assuming
that Vn ̸= X for all n ∈ ω since, otherwise, it is already clear that ALICE wins the run). Note that,
for each n ∈ ω , since tnaVn+1 ∈ P(Vn+1),

tn+1 ⪯ tnaVn+1.

On the other hand, tnaVn+1 ≺ tn, so tn+1 ≺ tn for every n ∈ ω . By an argument similar to the
one presented in the proof of Claim 2.4.5, it follows that for each k ∈ ω there is an nk ∈ ω such
that tnk(k) = tn(k) for every n ≥ nk. Let R = ⟨tnk(k) : k ∈ ω⟩. Then R is a run compatible with
γ and, therefore,

⋃
k∈ω R(k) = X . Since R(k) = tnk(k)⊂Vnk , we infer that

⋃
n∈ω Vn = X , which

concludes the proof.

Before showing that a result analogous to Theorem 2.4.2 does not hold for the point-open
game, we take a small side track to show that, as it turns out, Theorem 2.3.3 can be generalized
to a variety of games. Striving for such generalization, let us first define some new concepts.

Definition 2.4.6. A game G = ⟨T,A⟩ is said to be a positional game for ALICE if given BOB’s
turns s, t ∈ T and x ∈ B(G) such that sax, tax ∈ T , then saxay ∈ T if, and only if, taxay ∈ T .

We define a positional game for BOB analogously. Then if a game is positional for both
players, we simply say it is positional.

The idea behind a positional game for one of the players is that of a game which the
restrictions for such player’s moves in a given moment does not depend on the entire history of
the game so far, only in the current position. Note that the increasing point-open game is, for
instance, a positional game just for ALICE, while the point-open game and the finite-open game
are positional games for both players (indeed, most of the topological games we are going to
study are positional for one of the players, if not both of them). With that being said, we may
now introduce a stronger notion of strategy.

Definition 2.4.7. Let G = ⟨T,A⟩ be a positional game for ALICE. We say a strategy γ for ALICE

is a positional strategy if there is a function f : B(G)→ A(G) such that, for every s ∈ dom(γ)

and x ∈ B(X) with sax ∈ dom(γ),
γ(sax) = f (x).

We define positional strategies for BOB analogously.

Intuitively speaking, a strategy for one of the players is positional if it does not depend
on the entire history of the game so far, only on the last moment (the current position of the
game). Note that Theorem 2.4.2 presents a positional strategy for ALICE in the increasing
point-open game. We then present the following generalization of Theorem 2.4.2 (which is a
generalization of Theorem 1 from [Galvin and Telgársky 1986]), with the proof also obtained as
a generalization of the former’s proof .
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Theorem 2.4.8. Suppose M is a set and T ⊂ <ωM and A ⊂ ωM are such that G = ⟨T,A⟩ is a

game. If G is a positional game for ALICE and there is a preorder ≪ over B(G) such that

(a) for every ALICE’s turn t = ⟨x0,y0, . . . ,xn,yn⟩ and x being one of ALICE’s possible response

to t, taxay ∈ T implies that y ≪ yn;

(b) if t = ⟨x0,y0⟩ ∈ T and y ≪ y0, then ⟨x0,y⟩ ∈ T ;

(c) if R,S ∈ ωM are such that R ∈ A and for every n ∈ ω there is a kn ∈ ω such that S(2kn +

1)≪ R(2n+1), then S ∈ A,

then ALICE has a winning strategy in G if, and only if, ALICE has a positional winning strategy

in G.

Analogously, If G is a positional game for BOB and there is a preorder ≪ over A(G)
such that

(c) for every BOB’s turn t = ⟨x0,y0, . . . ,xn⟩ and y being one of BOB’s possible response to t,

tayax ∈ T implies that x ≪ xn;

(d) if t = ⟨x0⟩ ∈ T and x ≪ x0, then ⟨x⟩ ∈ T ;

(e) if R,S ∈ ωM are such that R ̸∈ A and for every n ∈ ω there is a kn ∈ ω such that S(2kn)≪
R(2n), then S ̸∈ A,

then BOB has a winning strategy in G if, and only if, BOB has a positional winning strategy in G.

Proof. We will show the result just for ALICE, leaving the case for BOB as a simple execise
of adapting the proof. Then let γ be a winning strategy for ALICE in G. Let P = dom(γ) and,
given x ∈ B(G), let P(x) = { t = ⟨xk : k ≤ n⟩ ∈ P : xn = x}. Let < be a fixed (strict) well order
over B(G), so that < is extended to the following strict linear order over P: s ≺ t if either t ⊂ s

or else there is a k ∈ dom(t)∩dom(t) such that s�k = t �k and s(k+1)< t(k+1).

CLAIM 2.4.9. If ⟨tn : n ∈ ω⟩ is a strictly decreasing sequence with respect to ≺, then for every
k ∈ ω there is an Nk ∈ ω such that k ⊂ dom(tn) for every n ≥ Nk.

Proof. We will prove this by induction. Clearly, 0 ⊂ dom(tn) for every n ∈ ω , so N0 = 0 does the
job. Now, suppose there is an Nk ∈ ω such that k ⊂ dom(tn) for every n ≥ Nk. Suppose the result
is not true for k+ 1. Then there is a subsequence ⟨tnm : m ∈ ω⟩ of the sequence ⟨tn : n ≥ Nk⟩
with dom(tnm) < k + 1 for every m ∈ ω . In this case, note that there is an l0 ∈ ω such that
tnm(0) = tnl0

(0) for every m ≥ l0 (because ⟨tnm(0) : m ∈ ω⟩ is a decreasing sequence and < well
orders B(G)). With the same argument we find a l1 > l0 such that tnm(1) = tnl1

(1) for every
m ≥ l1. By proceeding in this manner we conclude that there is an lk ∈ ω such that tnm = tnlk

for
every m ≥ lk, which contradicts the fact that ⟨tn : n ∈ ω⟩ is a strictly decreasing sequence.
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CLAIM 2.4.10. If ⟨tn : n ∈ ω⟩ is a strictly decreasing sequence with respect to ≺, then for every
k ∈ ω there is an nk ∈ ω such that tn(k) = tnk(k) for every n ≥ nk.

Proof. By the previous claim, we may assume (without loss of generality) that ⟨tn : n ∈ ω⟩ is
such that dom(tn)⊂ dom(tn+1) for every n ∈ ω . In this case, note that there is an n0 ∈ ω such
that tn(0) = tn0(0) for every n ≥ n0 (because ⟨tn(0) : n ∈ ω⟩ is a decreasing sequence and <

well orders B(G)). Suppose that for each i ≤ k we have found an ni ∈ ω such that tn(i) = tni(i)

for every n ≥ ni. Then again, because ⟨tn(k+1) : n ≥ nk⟩ is a decreasing sequence and < well
orders B(G), we find a nk+1 > nk such that tn(k+1) = tnk+1(k+1) for every n ≥ nk+1, which
concludes the induction and, therefore, the proof.

CLAIM 2.4.11. For every x ∈ B(G) such that ⟨x,x,x, . . .⟩ ̸∈ A, ≺ is a well order when restricted
to P(x).

Proof. Suppose ≺ is not a well order when restricted to P(x). Then there is a strictly decreasing
sequence ⟨tn : n ∈ ω⟩ of elements of P(x). In this case, by the previous claim, for every k ∈ ω

there is an nk ∈ ω such that tn(k) = tnk(k) for every n ≥ nk. Let R = ⟨tnk(k) : k ∈ ω⟩. Then R is
clearly a run compatible with γ , so that R ∈ A. But, since R(k) = tnk(k)≫ x for every k ∈ ω

(because of condition (a)), we infer by condition (c) that ⟨x,x,x, . . .⟩ ∈ A.

We define f : B(G)→ A(G) and a winning strategy γ* as follows:

∙ First, let γ*(⟨⟩) = γ(⟨⟩) and for each x ∈ B(X) such that ⟨x⟩ ̸∈ dom(γ), set f (x) = a for
every a ∈ A(x);

∙ Then, for x ∈ B(X) such that ⟨x⟩ ∈ dom(γ) and ⟨x,x,x, . . .⟩ ∈ A, let γ*(⟨x⟩) and f (x) be
again every fixed a ∈ A(X) (it does not matter which, since the game has already been
won by ALICE because of conditions (a) and (c)). On the other hand, for each x ∈ B(X)

such that ⟨x⟩ ∈ dom(γ) and ⟨x,x,x, . . .⟩ ̸∈ A, let tx = minP(x), with minP(x) taken with
respect to ≺ and then set γ*(⟨x⟩) = γ(tx).

∙ Suppose we have defined γ*(t �k) for every k ∈ dom(t), with t ∈ dom(γ). Then we let
γ*(tax) = γ*(⟨x⟩) (this is well defined in view of the conditions (a) and (b)).

Clearly, f attests that γ* is a positional strategy. To see that it is a winning one, let ⟨xn : n ∈ ω⟩
be a run compatible with γ* (we are omitting ALICE’s moves in the run) and set tn = minP(xn)

(we are assuming that ⟨xn,xn,xn, . . .⟩ ̸∈ A for all n ∈ ω since otherwise, as already remarked, it is
clear that ALICE wins the run). Note that, for each n ∈ ω , since tnaxn+1 ∈ P(xn+1),

tn+1 ⪯ tnaxn+1.

On the other hand, tnaxn+1 ≺ tn, so tn+1 ≺ tn for every n ∈ ω . By an argument similar to the one
presented in the proof of Claim 2.4.11, it follows that for each k ∈ ω there is an nk ∈ ω such that
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tnk(k) = tn(k) for every n ≥ nk. Let R = ⟨tnk(k) : k ∈ ω⟩. Then R is a run compatible with γ and,
therefore, R ∈ A. Since R(k) = tnk(k)≫ xnk , we infer that ⟨xn : n ∈ ω⟩ ∈ A, which concludes the
proof.

Theorem 2.4.8 is indeed a generalization of Theorem 2.4.2: to see this, one just needs to
consider the following order over τ ∖{ /0}:

U ≪V ⇐⇒ U ⊃V,

so that Theorem 2.4.2 becomes a corollary of Theorem 2.4.8.

Example 2.4.12. Finally, let us show that even when ALICE has a winning strategy in the point-
open game she may not have a positional winning strategy (which will show the importance of
conditions (a), (b) and (c) in Theorem 2.4.8, since the point open game is positional). Consider
5 = {0,1,2,3,4} with the discrete topology. Clearly, ALICE has a winning strategy in the
point-open game on 5 (the space is finite, after all).

Now, suppose γ is a positional strategy for ALICE in the point-open game on 5. Then
note that for every t ∈ dom(γ) and V open such that γ(⟨⟩),γ(t) ∈V ,

γ(taV ) = γ(⟨V ⟩).

Fix sets A,B ⊂ 5 with three points each such that A∩B = {γ(⟨⟩)} (hence, A∪B = 5) and note
that we may assume that, in order to show that γ is not a winning strategy, we may assume that
γ(⟨A⟩) ̸∈ A and γ(⟨B⟩) ̸∈ B (since it is a positional strategy). Set C = {γ(⟨A⟩),γ(⟨B⟩)}.

If γ(⟨C⟩) ∈ A, then note that γ loses the run

⟨γ(⟨⟩),A,γ(⟨A⟩),C,γ(⟨C⟩),A,γ(⟨A⟩),C, . . .⟩,

since b ∈ B∖{γ(⟨⟩),γ(⟨B⟩)} will not be covered. If, otherwise, γ(⟨C⟩) ∈ B, then γ loses the run

⟨γ(⟨⟩),B,γ(⟨B⟩),C,γ(⟨C⟩),B,γ(⟨B⟩),C, . . .⟩,

because, again, a ∈ B ∖ {γ(⟨⟩),γ(⟨A⟩)} will not be covered. It follows that γ is not a winning
strategy.

Note, however, that ALICE has a positional winning strategy in the finite-open game on
5 (she can pick the whole space right from the start).

Exercise 2.4.13. Show that ALICE has a positional winning strategy in the point-open game on
the discrete space 4 = {0,1,2,3}.

2.5 The Banach-Mazur game
Stefan Banach presented in Problem 43 of the famous “Scottish Book” a game related to

the Baire Category Theorem that was proposed by Stanislaw Mazur. Banach himself gave the
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solution for this problem in 1935 – which is why the game became known as the Banach-Mazur
game, the first topological game.

Although initially defined on the real line, this game was later generalized on every space,
and it goes as follows.

Definition 2.5.1. Given a space X , we call Banach-Mazur game, denoted by BM(((XXX))), the
following game.

∙ At first, ALICE chooses a non-empty open U0 ⊂ X , then BOB chooses a non-empty open
V0 ⊂U0;

∙ In each inning n ∈ ω ALICE chooses a non-empty open Un ⊂ Vn−1 and BOB chooses a
non-empty open Vn ⊂Un.

We then say BOB wins if
⋂

n∈ω Vn ̸= /0 and ALICE wins otherwise.

Evidently, BOB wins a run ⟨U0,V0, . . . ,Un,Vn, . . .⟩ in BM(X) if, and only if,
⋂

n∈ω Un ̸= /0.
In order to help us better understand the game, let us now look at how it behaves on some specific
spaces.

Example 2.5.2. If X is a complete metric space, then BOB has a winning strategy in BM(X).
Indeed, consider the strategy σ for BOB in BM(X) defined as follows:

∙ In the first inning, if ALICE chooses U0, let x0 ∈U0 and r0 < 1 be such that Br0(x0)⊂U0

(with Br(x) = {y ∈ X : d(x,y)≤ r}) and set σ(⟨U0⟩) =V0 = Br0(x0);

∙ In general (that is, in the inning n ∈ ω), if ALICE plays with Un, let xn ∈Un and rn <
1

n+1

be such that Brn(xn)⊂Un and set σ(⟨Ui : i ≤ n⟩) =Vn = Brn(xn).

Since rn → 0, ⟨xn : n ∈ ω⟩ is a Cauchy sequence and, therefore, converges to some x ∈ X .
Suppose x ̸∈VN for some N ∈ ω . Then x ̸∈ BrN+1(xN+1), which contradicts the fact that xn → x.
Hence, σ is a winning strategy.

Example 2.5.3. If X is the set of irrational numbers with its usual topology, then BOB↑BM(X).

Indeed, fix an enumeration {qn : n ∈ ω }=Q. We then define a winning strategy σ for
BOB in BM(X) as follows:

∙ If, in the first inning, ALICE chooses U0 = A0∩X , with A0 open in R, let B0 = Br0(x0)∩X ,
with r0 and x0 picked in a way that r0 < 1, q0 ̸∈Br0(x0) and Br0(x0)⊂A0 and set σ(⟨U0⟩)=
V0 = B0 ∩X .

∙ In general (that is, in the inning n ∈ ω), if ALICE chooses Un = An ∩X , with An open in
R, let Bn = Brn(xn)∩X , with rn and xn picked in a way that rn <

1
n+1 , qn ̸∈ Brn(xn) and

Brn(xn)⊂ An and set σ(⟨Ui : i ≤ n⟩) =Vn = Bn ∩X .
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By playing with σ , BOB constructs a Cauchy sequence that cannot converge to any rational
number, so it follows from the same argument presented in Example 2.5.2 that σ is a winning
strategy.

Note that we can repeat the arguments presented in Example 2.5.3 (using Example 2.5.2)
to prove the following result.

Proposition 2.5.4. If X is homeomorphic to a dense Gδ subspace of a completely metrizable

space, then BOB↑BM(X).

Example 2.5.5. If Q is equipped with its usual topology, then ALICE↑BM(Q). Indeed, after
fixing an enumeration Q = {qn : n ∈ ω }, consider the following strategy γ for ALICE: in the
inning n ∈ ω , if BOB played with ⟨Vi : i < n⟩ thus far, let γ(⟨Vi : i < n⟩) =Vn−1 ∖{qn}. By using
γ , ALICE then excludes the entire space throughout a run – so γ is a winning strategy.

Note that we can generalize Example 2.5.5 with the same arguments:

Proposition 2.5.6. If X is a countable T1 space with an open set V with no isolated points, then

ALICE↑BM(X).

Example 2.5.7. Let Rl be R with the lower limit topology (that is, the topology generated by the
basis B = { [a,b[: a,b ∈ R}, also known as the Sorgenfrey line). Then BOB↑BM(Rl). Indeed,
let σ be a winning strategy for BOB in BM(R) and consider the following strategy σl for BOB

in BM(Rl) (without loss of generality, we assume ALICE will play only with basic open sets):

∙ In the first inning, if ALICE chooses A0 = [a0,b0[, let A′
0 =]a0,b0[ and then set σl(⟨A0⟩) =

σ(⟨A′
0⟩);

∙ In general (that is, in the inning n ∈ ω), if ALICE chooses An = [an,bn[, let A′
n =]an,bn[

and then set σl(⟨Ai : i ≤ n⟩) = σ(⟨A′
i : i ≤ n⟩).

Clearly, σl is a winning strategy.

Note that the Example 2.5.7 can be generalized with the same arguments to the following
result.

Proposition 2.5.8. Let ⟨X ,τ⟩ be a space in which BOB↑BM(⟨X ,τ⟩). If ρ is a topology over X

such that for every nonempty V ∈ ρ there is a nonempty U ∈ τ with U ⊂V , then BOB↑BM(⟨X ,ρ⟩).

Example 2.5.9. If K is a compact Hausdorff space, then BOB↑BM(X).

Indeed, consider the following strategy for BOB:

∙ If ALICE chooses A0 in the first inning, BOB can use the regularity of the space to find an
open set B0 such that B0 ⊂ A0;
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∙ In general, if ALICE chooses An in the inning n ∈ ω , BOB can again find an open set Bn

such that Bn ⊂ An.

Since
{

Bn : n ∈ ω
}

has the finite intersection property, there must be an x ∈
⋂

n∈ω Bn. But then,
clearly, x ∈

⋂
n∈ω Bn.

But is the Banach-Mazur game determined on every space? The following theorem will
help us find a subspace of the real line showing that this is not the case.

Theorem 2.5.10 (Oxtoby). If Xis a metric space with no isolated points such that BOB↑BM(X),

then there is a subspace C ⊂ X such that C is homeomorphic to 2ω .

Proof. Let σ be winning strategy for BOB in BM(X). For each s ∈ <ω2 we will associate an
rs ∈ R and an auxiliary point xs such that, for every s ∈ <ω2 and i ∈ 2,

(a) rs ≤ 1
2|s|

;

(b) Brsai
(xsai)⊂ Brs(xs);

(c) Brsa0
(xsa0)∩Brsa1

(xsa1) = /0;

(d) ⟨Brs�k(xs�k) : k ≤ |s|⟩ ∈ domσ ,

using the following recursion.

First, fix any x⟨⟩ ∈ X and let rs = 1. Now, suppose we defined rt and xt for every t ∈ <ω2
such that |t| ≤ n for some n ∈ ω . Then, for each s ∈ <ω2 such that |s|= n, we fix two different
points xsa0,xsa1 ∈ Brs(xs) (that exist, since X has no isolated points) and for each i ∈ 2 we choose
rsai ∈ R such that

∙ rsai ≤ 1
2|s|+1 ;

∙ Brsai
(xsai)⊂ σ(⟨Brs�k(xs�k) : k ≤ |s|⟩);

∙ Brsa0
(xsa0)∩Brsa1

(xsa1) = /0,

and the recursion is complete. Since σ is a winning strategy,
⋂

n∈ω Brb�n(xb�n) is nonempty for
every b ∈ 2ω . Moreover, by property (a), it can be easily shown that for every b ∈ 2ω there is an
xb ∈ X such that, ⋂

n∈ω

Brb�n(xb�n) = {xb},

so the function f : 2ω → X defined as f (b) = xb for each b ∈ 2ω is injective. We leave to the
reader (see Exercise 2.5.19) to show that f is continuous, which concludes the proof.

The subspace of the real line we are going to consider here is a Bernstein set. Recall:
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Definition 2.5.11. A set B ⊂ R is a Bernstein set if both B∩F and (R∖B)∩F are nonempty
for every uncountable closed F ⊂ R.

Using the Axiom of Choice one can construct a Bernstein set (see e.g. [Ciesielski 1997])
– so we will be assuming here that it exists. In this case:

Lemma 2.5.12. If B ⊂ R is a Bernstein set, then B has no isolated points.

Proof. Let x ∈ B and I be an open interval containing x. In this case, let a,b ∈ I be such that
a < b < x. Note that [a,b] is an uncountable closed subset of the real line and [a,b]⊂ I ∖{x}. It
follows that B∩ I ∖{x} ̸= /0 and, hence, x is not isolated in B.

Proposition 2.5.13. If B ⊂ R is a Bernstein set, then BM(B) is undetermined.

Proof. Note that if BOB↑BM(B), then, by Theorem 2.5.10 there would be a K ⊂ B which is
homeomorphic to 2ω . Note that K in this case would be a compact (hence, closed) uncountable
subset of R, contradicting the definition of a Bernstein set – so BOB̸↑BM(B).

Now, let γ be a strategy for ALICE in BM(B). Following the steps of Theorem 2.5.10’s
proof we will associate an open interval Is ⊂ R for each s ∈ <ω2 such that, for every s ∈ <ω2
and i ∈ 2,

(a) diam(Is)≤ 1
2|s|

;

(b) Isai ⊂ Is;

(c) Isa0 ∩ Isa1 = /0;

(d) ⟨Is�k ∩B : k ≤ |s|⟩ ∈ domγ .

using the following recursion.

First, fix any open interval I⟨⟩ ⊂ R such that diam(I⟨⟩)< 1 and I⟨⟩∩B ⊂ γ(⟨⟩) (this is
possible because γ(⟨⟩) is a nonempty open subset of B). Now, suppose we defined Is for every
s ∈ ≤n2. Then, for each s ∈ n2, we fix two open intervals Isa0, Isa1 with diameter less than 1

2n+1

such that Isai ∩B ⊂ γ(⟨Is�k : k ≤ n⟩) for both i ∈ 2 and Isa0 ∩ Isa1 = /0 (this is possible since, by
Lemma 2.5.12, B has no isolated points) and the recursion is complete.

Note that, considering conditions (a), (b) and (c),
⋂

n∈ω Ib�n = {x} for each b ∈ 2ω and
some x ∈ R. Let K =

{
x ∈ R : {x}=

⋂
n∈ω Ib�n,b ∈ 2ω

}
. Then, like in the proof of Theorem

2.5.10, it can easily be shown that the function f : 2ω → K is a homeomorphism, so that K is an
uncountable closed subset of the real line. In this case, let x ∈ K∩B (that exists, by the definition
of a Bernstein set) and b ∈ 2ω be such that {x} =

⋂
n∈ω Ib�n. Then, in view of condition (d),

⟨Ib�n ∩B : n ∈ ω⟩ is a run compatible with γ . Hence, γ is not a winning strategy.
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We will see later on that the Banach-Mazur game is actually closely related to the
property of being a Baire space. But for now, let us just remark that BM(X) is a positional game
and, moreover:

Theorem 2.5.14. Given a space X, ALICE↑BM(X) if, and only if, ALICE has a positional

winning strategy in BM(X).

Proof. Consider the following order over τ ∖{ /0}:

U ≪V ⇐⇒ U ⊂V.

Then the result follows from Theorem 2.4.8.

Exercise 2.5.15. Write the details of the proof of Proposition 2.5.4.

Exercise 2.5.16. Write the details of the proof of Proposition 2.5.6.

Exercise 2.5.17. Show that Q is not a Gδ subset of R.

Example 2.5.18. Write the details of the proof of Proposition 2.5.8.

Exercise 2.5.19. Show that the function f : 2ω → X defined in the proof of Theorem 2.5.10 is
continuous.

Hint: Use that B = {Vs : s ∈ <ω2} with Vs = {b ∈ 2ω : b� |s|= s} is a basis for 2ω .
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CHAPTER

3
SELECTION PRINCIPLES

Selection principles have been playing a prominent role in the study of combinatorial
properties in spaces, so that they are closely related to a whole class of classical topological
games (which we will present in the next chapter). In this chapter we introduce the most common
variations of selection principles, delivering the classical Scheepers Diagram by the end.

3.1 Classes of selection principles

We begin by defining and presenting basic examples of the typical selection principles.

Definition 3.1.1. Given families A ,B, we say that the
(A
B

)
property holds if for every A ∈ A

there is a B ∈ B such that B ⊂ A.

Example 3.1.2. Given a space X , let

∙ O be the family of X’s open covers;

∙ L be the family of X’s countable open covers;

∙ F be the family of X’s finite open covers.

Then

∙
(O
L

)
holds if, and only if, X is Lindelöf;

∙
(O
F

)
holds if, and only if, X is compact.

Property
(A
B

)
is rather simple, as the reader must have certainly come across properties

such as the ones presented in Example 3.1.2, probably not referred as selection principles. What
may come as new properties are the ones that follow.
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Definition 3.1.3. Given families A ,B, we say that the S1(((A ,,,B))) property holds if for every
sequence ⟨An : n ∈ ω⟩ of elements of A , there exists a sequence ⟨bn : n ∈ ω⟩ such that bn ∈ An

for every n ∈ ω and {bn : n ∈ ω } ∈ B.

Example 3.1.4. If, given a space X , S1(O,O) holds, we say that X is a Rothberger space. In
other words, X is a Rothberger space if for every sequence ⟨Un : n ∈ ω⟩ of open covers of X there
is a sequence of open sets ⟨Un : n ∈ ω⟩ such that Un ∈ Un for every n ∈ ω and

⋃
n∈ω Un = X .

Definition 3.1.5. Given families A ,B and k ≥ 2, we say that the Sk(((A ,,,B))) property holds if
for every sequence ⟨An : n ∈ ω⟩ of elements of A , there exists a sequence ⟨Bn : n ∈ ω⟩ such that
each Bn is a subset of An with at most k elements and

⋃
n∈ω Bn ∈ B.

Definition 3.1.6. Given families A ,B, we say that the Sfin(((A ,,,B))) property holds if for every
sequence ⟨An : n ∈ ω⟩ of elements of A , there exists a sequence ⟨Fn : n ∈ ω⟩ such that each Fn

is a finite subset of An and
⋃

n∈ω Fn ∈ B.

Example 3.1.7. If, given a space X , Sfin(O,O) holds, we say that X is a Menger space. In other
words, X is a Menger space if for every sequence ⟨Un : n ∈ ω⟩ of open covers of X there is a
sequence of finite sets ⟨Fn : n ∈ ω⟩ such that Fn ⊂ Un for every n ∈ ω and

⋃
n∈ω Fn is an open

cover of X .

Right off the bat we may show some trivial general results about these selection principles
that usually relate to one another in a simple way.

Proposition 3.1.8. Let A and B be families of sets. If C ⊂ A and D ⊂ B, then:

∙
(A

D

)
=⇒

(A
B

)
=⇒

(C
B

)
;

∙ S1(A ,D) =⇒ S1(A ,B) =⇒ S1(C ,B);

∙ for every k ≥ 2, Sk(A ,D) =⇒ Sk(A ,B) =⇒ Sk(C ,B);

∙ Sfin(A ,D) =⇒ Sfin(A ,B) =⇒ Sfin(C ,B).

Proposition 3.1.9. Let A and B be families of sets. Then

S1(A ,B) =⇒ Sk(A ,B) =⇒ Sfin(A ,B) =⇒
(

A

B

)
.

The generality of Definitions 3.1.3, 3.1.5 and 3.1.6 might give rise to many set theoretical
combinatorial properties. However, as already emphasized, we are interested here mainly in
topology – so, with this in mind, let us study some interesting particular cases.

Exercise 3.1.10. Write the details of Propositions 3.1.8 and 3.1.9’s proofs.
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3.2 Closure properties
Given a space X and x ∈ X , we denote as Ωxxx the family of subsets of X with x in their

closure.

Definition 3.2.1. We say a space X has countable fan-tightness at x ∈ X , if Sfin(Ωx,Ωx) holds,
that is, for every sequence ⟨An : n ∈ ω⟩ of subsets of X such that x ∈ An for every n ∈ ω , we may
pick Bn ⊂ An finite in a way that x ∈

⋃
n∈ω Bn.

Example 3.2.2. If X has a countable local basis at x ∈ X , then clearly Sfin(Ωx,Ωx) holds.

Definition 3.2.3. We say a space X has countable strong fan-tightness at x ∈ X if S1(Ωx,Ωx)

holds, that is, for every sequence ⟨An : n ∈ ω⟩ of subsets of X such that x ∈ An for every n ∈ ω ,
we may pick bn ∈ An in a way that x ∈ {bn : n ∈ ω }.

Example 3.2.4. Clearly, S1(Ωx,Ωx) also holds in the spaces given in Example 3.2.2.

In view of Examples 3.2.2 and 3.2.4 one may wonder whether there is a space on which
Sfin(Ωx,Ωx) holds, but S1(Ωx,Ωx) does not hold. Indeed, we gave different names for these two
properties for a reason: they are different. We present in Section 5.7 a whole class of examples
that attests this assertion. What we can show now is that S1(Ωx,Ωx) is equivalent to Sk(Ωx,Ωx)

for every k ≥ 2:

Proposition 3.2.5 ([García-Ferreira and Tamariz-Mascarúa 1995]). Let X be a space and x ∈ X.

Then S1(Ωx,Ωx) holds if, and only if, Sk(Ωx,Ωx) holds for every k ≥ 2.

Proof. It is clear that if S1(Ωx,Ωx) holds, then Sk(Ωx,Ωx) holds for every k ∈ N, so suppose
Sk(Ωx,Ωx) holds for some k ≥ 2 and let ⟨An : n ∈ ω⟩ be a sequence of subsets of X such that
x ∈ An for every n ∈ ω . Since Sk(Ωx,Ωx) holds, there is a sequence ⟨Bn : n ∈ ω⟩ and k ∈ ω with,
for every n ∈ ω ,

a. Bn ⊂ An;

b. x ∈
⋃

n∈ω Bn;

c. |Bn| ≤ k.

Without loss of generality, we assume that |Bn| = k for every n ∈ ω and we write Bn ={
b1

n, . . . ,b
k
n
}

for each n ∈ ω . Now, let Ci =
{

bi
n : n ∈ ω

}
for each i ≤ k.

CLAIM 3.2.6. There is an i ≤ k such that x ∈Ci.

Proof. Suppose not. Then for each i ≤ k there is an open set Vi with x ∈Vi and Vi ∩Ci = /0. Then
by letting V =

⋂
i≤k Vi,

V ∩

(⋃
n∈ω

Bn

)
=V ∩

⋃
i≤k

Ci = /0.
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which contradicts b.

Let m ≤ k be such that x ∈Cm. Then the sequence ⟨bm
n : n ∈ ω⟩ attests S1(Ωx,Ωx) and

the proof is complete.

It should be noted that we can analogously show the same result in the context of another
closure-related selection property:

Definition 3.2.7. Given a space X , we write D as the collection of all dense subsets of X .

Proposition 3.2.8. Let X be a space. Then S1(D,D) holds if, and only if, Sk(D,D) holds for

every k ≥ 2.

This is all we have to talk about closure-related selection principles for now, but there
will be more to discuss about it once we go back to looking at games later on.

Exercise 3.2.9. Write the details of Proposition 3.2.8’s proof.

3.3 Covering properties

In Examples 3.1.4 and 3.1.7 we have already presented some covering selection principles.
In this section we take a further look at these properties, showing how they ultimately relate to
one another with the Scheepers Diagram.

3.3.1 Menger spaces

Recall that a space X is a Menger space if Sfin(O,O) holds, that is, if for each sequence
of open covers ⟨Un : n ∈ ω⟩ there is a sequence ⟨Fn : n ∈ ω⟩ such that each Fn is a finite subset
of Un and

⋃
n∈ω Fn is a cover for the space.

Example 3.3.1. Every compact space is a Menger space. Indeed, if X is compact, given a
sequence o open covers ⟨Un : n ∈ ω⟩ one may find a finite subcover Fn ⊂ Un of X for each
n ∈ ω , which witnesses Sfin(O,O).

It is easy to see that Sfin(O,O) holds if, and only if Sfin(O,L ) holds, so the following
result is a trivial corollary of Proposition 3.1.9.

Proposition 3.3.2. If Sfin(O,O) holds on a space X, then X is Lindelöf.

The next result, on the other hand, requires a bit more work to show.

Proposition 3.3.3. Let {Xn : n ∈ ω } be a collection of spaces such that Sfin(O,O) holds on Xn

for every n ∈ ω . Then Sfin(O,O) holds on Y =
⋃

n∈ω Xn.
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Proof. Let ⟨Un : n ∈ ω⟩ be a sequence of open covers of Y and fix a partition {Pk : k ∈ ω } of
ω into infinite sets. For each k ∈ ω and n ∈ Pk, let Vn = {V ′ =V ∩Xk : V ∈ Un }. Note that, for
each k ∈ ω , ⟨Vn : n ∈ Pk⟩ is a sequence of open covers of Xk, so let ⟨F ′

n : n ∈ Pk⟩ be a sequence
witnessing Sfin(O,O) on Xk for ⟨Vn : n ∈ Pk⟩. In this case, for each n ∈ Pk, let Fn ⊂ Un be a
finite set such that {V ∩Xk : V ∈ Fn }= F ′

n. Then, clearly, ⟨Fn : n ∈ ω⟩ witnesses Sfin(O,O)

on Y for ⟨Un : n ∈ ω⟩, and the proof is complete.

Corollary 3.3.4. If X is a σ -compact space, then Sfin(O,O) holds on X. In particular, Sfin(O,O)

holds on the real line.

Before moving on to the Rothberger property, we show that the Menger property is
preserved under continuous images:

Proposition 3.3.5. If Sfin(O,O) holds on X and f : X → Y is a continuous function, then

Sfin(O,O) also holds on f [X ].

Proof. Let ⟨Un : n ∈ ω⟩ be a sequence of open covers of f [X ]. Then Vn =
{

f−1(U) : U ∈ Un
}

is an open cover of X for every n ∈ ω . Since Sfin(O,O) holds on X , there is a sequence
⟨Fn : n ∈ ω⟩ such that each Fn ⊂Un is finite and

⋃
n∈ω

⋃
U∈Fn

f−1(U) = X , which implies that
f [X ]⊂

⋃
n∈ω

⋃
Fn, and the proof is complete.

3.3.2 Rothberger spaces

Recall that a space X is a Rothberger space if S1(O,O) holds, that is, if for each sequence
of open covers ⟨Un : n ∈ ω⟩ there is a sequence ⟨Un : n ∈ ω⟩ such that Un ∈ Un for every n ∈ ω

and {Un : n ∈ ω } is a cover for the space.

Example 3.3.6. If X is a countable space, then X is clearly a Rothberger space.

One may wonder whether compact spaces are also Rothberger. However, this is not the
case:

Proposition 3.3.7. There is a compact space K (namely, the Cantor set 2ω ) such that S1(O,O)

does not hold on K.

Proof. For each n ∈ ω , consider πn : 2ω → 2 as the projection of the nth coordinate and let
V i

n = π−1
n (i) with i ∈ 2. Then Un =

{
V i

n : i ∈ 2
}

is an open cover for 2ω for every n ∈ ω .
Moreover, if for each n ∈ ω we choose any V in

n with in ∈ 2, then the point ⟨ jn : n ∈ ω⟩, with
jn ̸= in for each n, will not be covered, which gives us the desired result.

Note that, as a bonus, Proposition 3.3.7 gives us a space on which Sfin(O,O) holds, but
S1(O,O) does not hold – so both properties are quite different.

But how does S1(O,O) behave in the real line? Well:
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Proposition 3.3.8. If R is equipped with the usual topology, then S1(O,O) does not hold on R.

Proof. Consider the sequence of open cover ⟨Un : n ∈ ω⟩ defined by

Un =

{]
x,x+

1
2n

[
: x ∈ R

}
.

Then, if Un ∈ Un is picked for each n ∈ ω , the Lebesgue measure of
⋃

n∈ω Un will be bounded
by 2 and, therefore, R ̸=

⋃
n∈ω Un.

Proposition 3.3.9. If X ⊂ R has M > 0 as its Lesbegue measure, then S1(O,O) does not hold

on X.

Proof. Inspired by the proof of Proposition 3.3.8, just consider the sequence ⟨Un : n ∈ ω⟩ defined
by

Un =

{]
x,x+

M
2

1
2n

[
∩X : x ∈ R

}
and the conclusion follows from the same argument as in the proof of Proposition 3.3.8.

In view of Propositions 3.3.8 and 3.3.9 one may ask:

Question 3.3.10. Is there any uncountable subspace of the real line on which S1(O,O) holds?

As it turns out, the answer to this question is independent of ZFC – we present here the
consistency of the positive answer using a Luzin set (see 1.2.6 for the definition and 1.2.7 for a
construction using CH):

Proposition 3.3.11 ([Rothberger 1938]). If L ⊂ R is a Luzin set, then S1(O,O) holds on L.

Proof. Let L ⊂ R be a Luzin set and D = {dk : k ∈ ω } ⊂ L be a countable dense subset (recall
that R is hereditarily separable, since it has a countable basis). Now, if ⟨Un : n ∈ ω⟩ is a sequence
of covers of L by open subsets of R, we first pick, for each k ∈ ω , U2k ∈ U2k such that dk ∈U2k.

Note that
(
R∖L

)
∪
⋃

k∈ω U2k is open and dense, so F = L∖
⋃

k∈ω U2k is nowhere dense,
so that F is at most countable. Then we can easily cover F by picking one open set of each one
of the remaining covers {U2k+1 : k ∈ ω }, which gives us the desired result.

Actually, Question 3.3.10 is closely related to Question 2.3.13. This relation will be clear
later, once we go back to talking about topological games. For now, it should be noted that, just
like Menger spaces, Rothberger spaces behave well under continuous images:

Proposition 3.3.12. If S1(O,O) holds on X and f : X → Y is a continuous function, then

S1(O,O) also holds on f [X ].

Proof. Analogous to Proposition 3.3.5 (see Exercise 3.3.15).
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Proposition 3.3.12 allows us to point out a necessary condition over regular Rothberger
spaces that will later play an important role when we study measure theory (its proof can be
found in [Bukovský 2010]):

Theorem 3.3.13. Let X be a regular Rothberger space. Then X is zero-dimensional.

Proof. If X is Rothberger, then X is Lindelöf, so it follows from Theorem 1.2.3 that X is normal
(therefore, in particular, T3 1

2
).

Let x ∈ X and V be an open neighborhood of x. Since X is T3 1
2
, there is a continuous

function f : X → [0,1] such that f (x) = 0 and f (y) = 1 for every y∈X ∖V . By Proposition 3.3.12,
f [X ] is also Rothberger, so f [X ] ̸= [0,1] (since, by Proposition 3.3.9, [0,1] is not Rothberger). Let
ε ∈ ]0,1[ be such that f (z) ̸= ε for all z ∈ X . Then f−1([0,ε[) = f−1([0,ε]) is a clopen subset
of V containing x, which concludes the proof.

And finally (for now), the following proposition can be shown proceeding with the steps
of Proposition 3.3.3, so it will be left as an exercise (3.3.16).

Proposition 3.3.14. Let {Xn : n ∈ ω } be a collection of spaces such that S1(O,O) holds on Xn

for every n ∈ ω . Then S1(O,O) holds on Y =
⋃

n∈ω Xn.

Exercise 3.3.15. Write the details of Proposition 3.3.12’s proof.

Exercise 3.3.16. Write the details of Proposition 3.3.14’s proof.

3.3.3 Hurewicz spaces

We now take a look at a new kind of covering selection principle that will appear in the
Scheepers Diagram. It goes as follows:

Definition 3.3.17. Given a space X and families A ,B of covers of X , we say that the Ufin(((A ,,,B)))

property holds if for every sequence ⟨Un : n ∈ ω⟩ of covers from A , there exists a sequence
⟨Fn : n ∈ ω⟩ such that each Fn is a finite subset of Un and either

⋃
Fn = X for some n ∈ ω , or

else {
⋃

Fn : n ∈ ω } ∈ B.

Our main example of a Ufin(A ,B) selection principle is the one that characterizes
Hurewicz spaces:

Example 3.3.18. Given a space, let ΓΓΓ denote the subcollection of O such that U ∈ Γ if U is
infinite and, for every x ∈ X , {U ∈ U : x ̸∈U } is finite. A cover U ∈ Γ is called a γγγ-cover.

We then say X is a Hurewicz space if Ufin(O,Γ) holds, that is, if for every sequence of
open covers ⟨Un : n ∈ ω⟩ there is a sequence ⟨Fn : n ∈ ω⟩ such that either

⋃
Fn = X for some

n ∈ ω , or else {
⋃

Fn : n ∈ ω } ∈ Γ.



56 Chapter 3. Selection principles

But before looking further into the Hurewicz space’s case, let us first present some trivial
general results, which will be left as exercises (see 3.3.28):

Proposition 3.3.19. Let A and B be families of covers of a space X. If C ⊂ A and D ⊂ B,

then:

Ufin(A ,D) =⇒ Ufin(A ,B) =⇒ Ufin(C ,B).

Proposition 3.3.20. If A and B are families of covers of a space X and S1(A ,B) holds, then

Ufin(A ,B) holds.

Proposition 3.3.21. For every family A ⊂ O ,

Ufin(A ,O) ⇐⇒ Sfin(A ,O).

Now, back to Hurewicz spaces: we continue by presenting some characterizations.

Theorem 3.3.22. A countably infinite open cover U is a γ-cover if, and only if, V is an open

cover provided V ⊂ U is infinite.

Proof. If U is a γ-cover, then it is clear that every infinite V ⊂ U is an open cover. Now,
suppose U is not a γ-cover. Then there is an x ∈ X such that V = {U ∈ U : x ̸∈U } is infinite.
In this case, V is an infinite subset of U that does not cover X , which concludes the proof.

Corollary 3.3.23. A countably infinite open cover U is a γ-cover if, and only if, V is a γ-cover

for every infinite V ⊂ U .

Proposition 3.3.24. The following properties are equivalent on every space X:

(a) Ufin(O,Γ) holds;

(b) for every sequence of open covers ⟨Un : n ∈ ω⟩ of X there is a sequence ⟨Fn : n ∈ ω⟩ such

that V = {
⋃

Fn : n ∈ ω } ∈ O and each x ∈ X is in all but finitely many open sets of V .

Proof. It is clear that if (b) holds, then Ufin(O,Γ) holds, so suppose Ufin(O,Γ) holds and let
⟨Un : n ∈ ω⟩ be a sequence of open covers of X . If for all but finitely many n ∈ ω there is a finite
subcover Fn ⊂ Un, so we may assume that for every n ∈ ω , Un has no finite subcover. In this
case, applying Ufin(O,Γ) to ⟨Un : n ∈ ω⟩ grants us a sequence ⟨Fn : n ∈ ω⟩ such that each Fn

is a finite subset of Un and {
⋃

Fn : n ∈ ω } is a γ-cover, which concludes the proof.

It should be noted that, like Menger and Rothberger spaces, Hurewicz spaces are also
Lindelöf:

Proposition 3.3.25. If Ufin(O,Γ) holds on a space X, then X is Lindelöf.
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Proof. Let U ∈ O and set ⟨Un : n ∈ ω⟩ with Un = U for every n ∈ ω . In this case, applying
Ufin(O,Γ) to ⟨Un : n ∈ ω⟩ grants us a sequence ⟨Fn : n ∈ ω⟩ of finite subsets of U such that, in
particular,

⋃
n∈ω Fn ∈ O , so X is Lindelöf.

Surprisingly, the Ufin(O,Γ) property is closely related to how a space X embeds on its
compactification. We dedicate the rest of this subsection to show this relation, starting with the
following concept.

Definition 3.3.26. We say a completely regular space X is Čech-complete if X is a Gδ set in
its Stone-Čech compactification βX .

It should be noted that X is Čech-complete if, and only if, X is a Gδ set in every compact
Hausdorff space K ⊃ X .

Theorem 3.3.27. A completely regular space X is Hurewicz if, and only if, for every Čech-

complete space G ⊃ X there is a σ -compact F such that X ⊂ F ⊂ G.

Proof. Suppose X is Hurewicz. If X is compact, then the desired implication is trivial, so we
assume X is not compact and let G ⊃ X be such that G =

⋂
n∈ω An, with An open in βG (without

loss of generality, we will assume that An+1 ⊂ An for all n ∈ ω). Using regularity and non-
compacity, choose an open set Un

x for each x ∈ X such that x ∈Un
x ⊂Un

x ⊂ An and {Un
x : x ∈ X }

has no finite subcover for all n ∈ ω . Since X is Hurewicz, it is also Lindelöf, so for each n ∈ ω

there is a countable set
{

xn
j ∈ X : j ∈ ω

}
such that

{
Un

xn
j

: j ∈ ω

}
is an open cover. Now, if we

let Un
k =

⋃
j≤k Un

xn
j
, then Un

k ⊂ An and Un =
{

Un
k : k ∈ ω

}
is an increasing open cover for X for

every n ∈ ω . In this case, by applying the Hurewicz property, we can choose a natural number kn

for each n ∈ ω such that V =
{

Un
kn

: n ∈ ω

}
is an open cover for X such that each x ∈ X belongs

to all but finitely many open sets of V (note that Un
kn
̸⊃ X for all n ∈ ω because we assumed

{Un
x : x ∈ X } has no finite subcover for all n ∈ ω). So it follows that if we let Kn =

⋂
m≥nUm

km

for each n ∈ ω , then X ⊂
⋃

n∈ω Kn. Moreover, Kn is compact in βG and contained in G for every
n ∈ ω , which gives us the desired implication.

Now, let ⟨Un : n ∈ ω⟩ be a sequence of open covers of X . For each n ∈ ω and U ∈ Un let
U ′ be the open set in βX such that U =U ′∩X . Then we let An =

⋃
U∈Un

U ′, so that G =
⋂

n∈ω An

is a Čech-complete subspace of βX that contains X . Let {Kn : n ∈ ω } be the collection of
compact sets in βX contained in G such that X ⊂

⋃
n∈ω Kn (we may assume that Kn ⊂ Kn+1).

Since Kn ⊂ G for each n ∈ ω , we may let Fn ⊂Un be the finite subset such that Kn ⊂
⋃

U∈Fn
U ′.

Then, clearly, ⟨Fn : n ∈ ω⟩ witnesses the Hurewicz property for the sequence ⟨Un : n ∈ ω⟩,
which concludes the proof.

Exercise 3.3.28. Write the details of Propositions 3.3.19, 3.3.20 and 3.3.21’s proofs.
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3.3.4 Alster spaces

We now present yet another covering selection principle that relates to some of the
previously mentioned ones and, as we will see in Section 5.3, relates to the productively Lindelöf

property. First, let us introduce some concepts:

Definition 3.3.29. Given a space X , we say a collection C ⊂℘(X) is a KKK-cover if for every
compact K ⊂ X there is an A ∈ C such that K ⊂ A.

Furthermore, we say C is an Alster cover if it is a K-cover of Gδ subsets of X . We
denote the family of all Alster covers of a given space by K δδδ .

Finally, we say a space X is an Alster space if every Alster cover has a countable
subcover.

One can immediately see that the definition of Alster spaces can be formulated in the
form of

(Kδ

Lδ

)
, with Lδ denoting the family of countable Gδ covers. What is surprising, though,

is that it can be formulated in the form S1(Kδ ,Oδ ), with Oδδδ denoting the family of all Gδ

covers:

Proposition 3.3.30. A space X is Alster if, and only if, S1(Kδ ,Oδ ) holds.

Proof. Suppose X is an Alster space and let ⟨Un : n ∈ ω⟩ be a sequence of Alster covers. Let

U =
∧

n∈ω

Un.

Note that U is an Alster cover, so let V = {Vn : n ∈ ω } ⊂ U be its countable subcover. Since,
for each n ∈ ω , Vn =

⋂
k∈ω Uk

n with Uk
n ∈ Uk for all k ∈ ω , the sequence ⟨Un

n : n ∈ ω⟩ witnesses
S1(Kδ ,Oδ ) for the sequence ⟨Un : n ∈ ω⟩, as we wanted to prove.

The other implication is clear.

This characterization is especially useful, because with it we can obtain:

Corollary 3.3.31. If X is an Alster space, then Sfin(O,O) holds on X.

Proof. Let ⟨Un : n ∈ ω⟩ be a sequence of open covers of X . Then, for each n ∈ ω , let

Vn =
{⋃

F : F ⊂ [Un]
<ω

}
.

Note that each Vn is an open K-cover, so, by Proposition 3.3.30, we may apply S1(Kδ ,Oδ ) to
the sequence ⟨Vn : n ∈ ω⟩ in order to find a sequence ⟨Vn : n ∈ ω⟩ of open sets of X such that
Vn ∈ Vn and

⋃
n∈ω Vn = X . Note that, for every n ∈ ω , Vn =

⋃
Fn for some finite Fn ⊂ Un, so

⟨Fn : n ∈ ω⟩ witnesses Sfin(O,O) for ⟨Un : n ∈ ω⟩, and the proof is complete.
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Moreover, using the compactification characterization of Hurewicz spaces presented in
Theorem 3.3.27, we can further show that Alster spaces are also Hurewicz spaces. But in order
to this, let us first take a step back and introduce a general concept.

Definition 3.3.32. A space X is said to be of countable type if every compact set is included in
some compact set of countable character.

Proposition 3.3.33. If X is a Čech-complete space, then X is of countable type.

Proof. Let X be a Čech-complete space, {An : n ∈ ω } be a set of open sets of βX such that
X =

⋂
n∈ω An and fix K ⊂ X compact. Since βX is normal we may find a set of open sets

{Bn : n ∈ ω } of βX such that K ⊂ Bn+1 ⊂ Bn ⊂ An for every n ∈ ω (with the closure taken in
βX). Then K′ =

⋂
n∈ω Bn =

⋂
n∈ω Bn is a compact subset of X that contains K.

Now, let V ⊃ K′ be an open set in X . We claim that there is a k ∈ ω such that X ∩Bk ⊂V .
Indeed, let V ′ be the open set of βX such that V = X ∩V ′. Note that βX ∖V ′ is compact and{

βX ∖Bn : n ∈ ω
}

is an increasing open cover for it, so the existence of wished k ∈ ω follows,
which concludes the proof.

Now, with the right tools at hand, we obtain:

Theorem 3.3.34. If X is a regular Alster space, then X is a Hurewicz space.

Proof. Let X be a regular Alster space. Then, in view of Corollary 3.3.31 and Proposition 3.3.2,
X is Lindelöf. Recall that every regular Lindelöf space is normal (see Theorem 1.2.3), so, in order
to show that X is Hurewicz, by Theorem 3.3.27, it suffices to show that for every Čech-complete
space Y ⊃ X there is a σ -compact F such that X ⊂ F ⊂ Y . Then let Y be a Čech-complete space
containing X .

Note that, by Proposition 3.3.33, every compact K ⊂X is contained in a compact Gδ Kδ ⊂
Y which, when intersected with X , forms a Gδ subset o X . Then {Kδ ∩X : K ⊂ X compact} is
an Alster cover for X and, by picking a countable subcover

{
Kn

δ
∩X : n ∈ ω

}
, we conclude that

X is contained in a σ -compact subset of Y , as desired.

3.3.5 The Scheepers Diagram

One of the most important names in the study of selection principles is that of Marion
Scheepers. In his collection of papers “Combinatorics of open covers” he presented a vast amount
of results (some of them obtained by other big names like Gerlitz and Nagy) that would later be
combined in the renowned Scheepers Diagram. In order to show these results, therefore, we start
with the definition of a new family of open covers:
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Definition 3.3.35. Given a space X , let Ω denote the subcollection of O such that U ∈ Ω if
X ̸∈ U and for every finite F ⊂ X there is a U ∈ U such that F ⊂U . A cover U ∈ Ω is called
an ω-cover.

In view of Proposition 3.1.8, studying the selection principles regarding Ω and Γ would
be much easier if Γ ⊂ Ω. This is not the case, however, since the entire space may be a member
of a γ-cover. Then it is in order to bypass this technical nuisance that we define the following
auxiliary variation of Γ, which will be enough to provide us with the desired assistance:

Definition 3.3.36. Given a space X , Let Γ′ = {U ∖{X} : U ∈ Γ}.

Proposition 3.3.37. On every space X:

∙ Γ′ ⊂ Γ;

∙
(

Γ

Γ′
)
;

∙ Γ′ ⊂ Ω ⊂ O .

Proof. Proof will be left as an exercise (see 3.3.50).

Now, let us explore some equivalences:

Theorem 3.3.38 ([Scheepers 1996]). Property S1(O,O) holds on a space X if, and only if,

S1(Ω,O) holds on X.

Proof. Let ⟨Un : n ∈ ω⟩ be a sequence of open covers of X . Fix a partition {Yk : k ∈ ω } of ω

with each Yk being infinite. Then, for each k ∈ ω , set

Vk =

{⋃
i∈Yk

Ui : Ui ∈ Ui

}
.

Note that if X ∈ Vk for some k ∈ ω , then the proof is complete, so we may assume without loss
of generality that, for every k ∈ ω , Vk ∈ Ω. In this case, there must be a Vk ∈ Vk for each k ∈ ω

such that
⋃

k∈ω Vk = X . Note that, for each i ∈Yk there is a Ui ∈ Ui such that Vk =
⋃

i∈Yk
Ui. Then,

clearly, ⟨Un : n ∈ ω⟩ witnesses S1(O,O) for ⟨Un : n ∈ ω⟩.

The other implication follows from Proposition 3.1.8.

Theorem 3.3.39. The following properties are equivalent on Lindelöf spaces:

∙ Sfin(O,O);

∙ Sfin(Ω,O);

∙ Sfin(Γ,O).



3.3. Covering properties 61

Proof. In view of Propositions 3.1.8 and 3.3.37, it is clear that

Sfin(O,O) =⇒ Sfin(Ω,O) =⇒ Sfin(Γ,O),

so let X be a Lindelöf space such that Sfin(Γ,O) holds on X and let ⟨Un : n ∈ ω⟩ be a sequence
of open covers of X (since X is Lindelöf, we may assume that Un =

{
Uk

n : k ∈ ω
}

). For each
n ∈ ω , let

Vn =

{⋃
i≤k

U i
n : k ∈ ω

}
.

Note that, since each Vn is an increasing cover, Vn is finite if, and only if, X ∈ Vn, which would
conclude the proof. In this case, without loss of generality, we may assume that ⟨Vn : n ∈ ω⟩
is a sequence of γ-covers, so that by applying Sfin(Γ,O) to ⟨Vn : n ∈ ω⟩ we get a sequence
⟨kn : n ∈ ω⟩ such that, by letting Fn =

{
U i

n : i ≤ kn
}
⊂ Un,

⋃
n∈ω Fn ∈ O , and the proof is

complete.

Theorem 3.3.40 ([Gerlits and Nagy 1982]). Let X be a T1 space. Then the following properties

are equivalent on X:

∙ S1(Ω,Γ);

∙ Sfin(Ω,Γ);

∙
(

Ω

Γ

)
.

Proof. By Proposition 3.1.9, even when X is not T1,

S1(Ω,Γ) =⇒ Sfin(Ω,Γ) =⇒
(

Ω

Γ

)
,

so it suffices to show that
(

Ω

Γ

)
=⇒ S1(Ω,Γ).

Note that if X is finite, then Ω = /0 and, therefore, the result follows trivially. So suppose
X is infinite,

(
Ω

Γ

)
holds and let ⟨Un : n ∈ ω⟩ be a sequence of covers from Ω (we may assume

Un+1 is a refinement of Un). Fix {xn : n ∈ ω } ⊂ X such that xi ̸= x j whenever i ̸= j. Then

U =
⋃

n∈ω

{U ∖{xn} : U ∈ Un }

is an ω-cover (because X is T1), so let V = {Vk : k ∈ ω } be its γ-subcover. For each k ∈ ω ,
let nk ∈ ω be such that Vk = Unk ∖ {xnk} for some Unk ∈ Unk . Without loss of generality, we
may assume (taking a subcover from V , if necessary) that ni ̸= n j whenever i ̸= j. For n ≤ n0,
pick Un ∈ Un such that V0 ⊂Un ∖{xn0} (this is possible because Un+1 is a refinement of Un).
Now, given k ∈ ω , for every nk < n ≤ nk+1, pick Un ∈ Un such that Vk+1 ⊂Un ∖{xnk+1}. Clearly,
⟨Un : n ∈ ω⟩ witnesses S1(Ω,Γ) for ⟨Un : n ∈ ω⟩.

In some cases these selection principles may be trivial:
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Proposition 3.3.41. If X is a T1 space such that |X | ≥ 2, then
(O

Ω

)
does not hold.

Proof. Let x,y ∈ X be two distinct points. Then, clearly, {X ∖{x},X ∖{y}} witnesses that
(O

Ω

)
does not hold.

Corollary 3.3.42. If X is a T1 space, then
(O

Γ

)
does not hold.

Proof. If X is finite, then Γ = /0, so
(O

Γ

)
does not hold. On the other hand, if X is infinite, then(O

Γ

)
does not hold by Propositions 3.1.8, 3.3.37 and 3.3.41.

And we also have some interesting results involving Ufin:

Proposition 3.3.43. If X is a Lindelöf space, then, for every B ∈ {O,Ω,Γ},

S1(Γ,B) =⇒ Sfin(Γ,B) =⇒ Ufin(O,B).

Proof. It is clear that S1(Γ,B) =⇒ Sfin(Γ,B), so suppose Sfin(Γ,B) holds and let ⟨Un : n ∈ ω⟩
be a sequence of open covers. Since X is Lindelöf, we may assume Un =

{
Uk

n : k ∈ ω
}

for each
n ∈ ω . Also, if Un has a finite subcover for some n ∈ ω , then it is clear that Ufin(O,B) holds for
⟨Un : n ∈ ω⟩, so assume Un has no finite subcover for all n ∈ ω and set

Vn =

{ ⋃
k≤m

Uk
n : m ∈ ω

}
.

Note that, with all our assumptions, Vn ∈ Γ for all n ∈ ω (because they are increasing open
covers), so we find finite sets F ′

n ⊂ Vn such that
⋃

n∈ω F ′
n ∈ B. Since Vn is an increasing

open cover, there is, in fact, a Un ∈ F ′
n such that U ⊂ Un for all U ∈ F ′

n, so let mn be such
that Un =

⋃
k≤mn

Uk
n and set Fn =

{
Uk

n : k ≤ mn
}

. Clearly, ⟨Fn : n ∈ ω⟩ attests Ufin(O,B) for
⟨Un : n ∈ ω⟩.

Proposition 3.3.44. For every B ∈ {O,Ω,Γ}, then

Ufin(O,B) ⇐⇒ Ufin(Ω,B) =⇒ Ufin(Γ,B).

Moreover, if X is an infinite Lindelöf T1 space, then all of the above properties are equivalent.

Proof. By Proposition 3.1.8,

Ufin(O,B) =⇒ Ufin(Ω,B) =⇒ Ufin(Γ,B),

so suppose Ufin(Ω,B) holds and let ⟨Un : n ∈ ω⟩ be a sequence of open covers. If Un has a finite
subcover for some n ∈ ω , then it is clear that Ufin(O,B) holds for ⟨Un : n ∈ ω⟩, so assume Un

has no finite subcover for all n ∈ ω and set

Vn =
{⋃

F : F ⊂ Un finite
}
.
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Then Vn ∈ Ω for every n ∈ ω and, by applying Ufin(Ω,B) to the sequence ⟨Vn : n ∈ ω⟩, we find
a sequence of finite subsets ⟨Fn : n ∈ ω⟩ that witnesses Ufin(O,B) for ⟨Un : n ∈ ω⟩.

Now, assume that X is Lindelöf and that Ufin(Γ,B) holds. Let ⟨Un : n ∈ ω⟩ be a sequence
of open covers such that Un =

{
Uk

n : k ∈ ω
}

for every n ∈ ω . If Un has a finite subcover for
some n ∈ ω , then it is clear that Ufin(O,B) holds for ⟨Un : n ∈ ω⟩, so assume Un has no finite
subcover for all n ∈ ω and set

Vn =

{
V k

n =
⋃
i≤k

Uk
n : k ∈ ω

}
.

Note that Vn ∈ Γ for all n ∈ ω , so we may apply Ufin(Γ,B) to the sequence ⟨Vn : n ∈ ω⟩
in order to obtain, for each n ∈ ω , a finite set F ′

n ⊂ Vn such that {
⋃

F ′
n : n ∈ ω } ∈ Γ. In fact,

since each Vn is an increasing cover, we may find a kn ∈ ω for each n ∈ ω such that V kn
n =

⋃
F ′

n,
so
{

V kn
n : n ∈ ω

}
∈ Γ. If we let Fn =

{
U j

n : j ≤ kn

}
, then it is clear that ⟨Fn : n ∈ ω⟩ witnesses

Ufin(O,B) for ⟨Un : n ∈ ω⟩.

We finish our framework of results leaning towards the Scheepers Diagram with the
following:

Theorem 3.3.45 ([Just et al. 1996]). For every space X, S1(Γ,Γ) holds if, and only if, Sfin(Γ,Γ)

holds.

Proof. By Proposition 3.1.9, S1(Γ,Γ) =⇒ Sfin(Γ,Γ), so suppose Sfin(Γ,Γ) holds and let
⟨Un : n ∈ ω⟩ be a sequence of γ-covers. For each n ∈ ω , fix an enumeration Un =

{
Uk

n : k ∈ ω
}

and then set

Vn =

{
V k

n =
⋂
i≤n

Uk
i : k ∈ ω

}
.

Note that Vn is a γ-cover for every n ∈ ω , so apply Sfin(Γ,Γ) to the sequence ⟨Vn : n ∈ ω⟩ to find
finite sets Wn ⊂ Vn such that W =

⋃
n∈ω Wn ∈ Γ. Note that we may assume that Wi ∩W j = /0

for all i, j ∈ ω such that i ̸= j and then, since each Wn is finite and W is infinite, we may find a
strictly increasing sequence of natural numbers ⟨n j : j ∈ ω⟩ such that Wn j is nonempty. Then,
for each j ∈ ω , fix m j such that V m j

n j ∈ Wn j . In this case,
{

V m j
n j : j ∈ ω

}
is an infinite subset of

W , so it follows from Corollary 3.3.23 that
{

V m j
n j : j ∈ ω

}
∈ Γ. For each n ≤ n0, let Un =Um0

n .
Then, for each k ∈ ω and n ∈ ω such that nk < n ≤ nk+1, let Un =Umk+1

n .

We claim that {Un : n ∈ ω } ∈ Γ. Indeed, note that Unk =V mk
nk , so {Un : n ∈ ω } must be

infinite (since
{

V mk
nk : k ∈ ω

}
is infinite). On the other hand, fix x ∈ X . Then there is an Nx ∈ ω

such that x ∈V mk
nk for all k ≥ Nx. In this case, since Un ⊃V mk+1

nk+1 for all nk < n ≤ nk+1, it follows
that x ∈Un for all n ≥ nNx+1. So {Un : n ∈ ω } ∈ Γ.

Theorem 3.3.46 (Scheepers Diagram). The following diagram (with each arrow representing

an implication) is true for every Lindelöf T1 space X.
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Sfin(A ,B) Ufin(O,Γ) Sfin(A ,B) Ufin(O,Ω) Sfin(O,O)

Sfin(Γ,Ω) Sfin(A ,B) Sfin(A ,B) Sfin(A ,B)

S1(Γ,Γ) Sfin(A ,B) S1(Γ,Ω) Sfin(A ,B) S1(Γ,O) Sfin(A ,B) Sfin(A ,B)

Sfin(A ,B) Sfin(A ,B) Sfin(Ω,Ω) Sfin(A ,B) Sfin(A ,B) Sfin(A ,B)

(
Ω

Γ

)
Sfin(A ,B) S1(Ω,Ω) Sfin(A ,B) S1(O,O) Sfin(A ,B) Sfin(A ,B)

Moreover, if |X | ≥ 2, A ,B ∈ {O,Ω,Γ} and P ∈ {
()
,S1,Sfin,Ufin}, then one of the

following holds:

∙ P(A ,B) never holds;

∙ P(A ,B) always holds;

∙ P(A ,B) is equivalent to one of the selection principles in the diagram.

Proof. Each implication in the diagram follows from a combination of Propositions 3.1.8, 3.1.9,
3.3.19, 3.3.20, 3.3.21, 3.3.37, 3.3.43 and Theorems 3.3.38, 3.3.40.

Now, suppose |X | ≥ 2. Then, by Propositions 3.1.9, 3.3.41 and Corollary 3.3.42, P(O,B)

never holds for all B ∈ {Ω,Γ} and P ∈ {
()
,S1,Sfin}.

On the other hand,
(A
B

)
always holds for all A ∈ {O,Ω,Γ} and B ∈ {O,Ω,Γ} such

that B ⊂ A .

Then it remains to show that each of the following properties are equivalent to some of
the selection principles in the diagram: S1(Ω,Γ), Sfin(Ω,Γ), S1(Ω,O), Sfin(Ω,O), Sfin(Γ,O),
Sfin(Γ,Γ), Ufin(Γ,Ω), Ufin(Ω,Ω), Ufin(Γ,Γ), Ufin(Ω,Γ), Ufin(Γ,O), Ufin(Ω,O), Ufin(O,O).

∙ By Theorem 3.3.40, S1(Ω,Γ) and Sfin(Ω,Γ) are equivalent to
(

Ω

Γ

)
;

∙ By Theorem 3.3.38, S1(Ω,O) is equivalent to S1(O,O);

∙ By Theorem 3.3.39, Sfin(Ω,O) and Sfin(Γ,O) are equivalent to Sfin(O,O);

∙ By Theorem 3.3.45, Sfin(Γ,Γ) is equivalent to S1(Γ,Γ);

∙ By Proposition 3.3.44, Ufin(Γ,Ω) and Ufin(Ω,Ω) are both equivalent to Ufin(O,Ω);

∙ By Proposition 3.3.44, Ufin(Γ,Γ) and Ufin(Ω,Γ) are both equivalent to Ufin(O,Γ);

∙ By Proposition 3.3.44, Ufin(Γ,O) and Ufin(Ω,O) are both equivalent to Ufin(O,O) which,
by Proposition 3.3.21, is equivalent to Sfin(O,O).
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Before finishing this section we will show yet another characterization involving Roth-
berger spaces. In order to do that, consider the following simple lemma.

Lemma 3.3.47. Given a space X, consider k ∈ N, a finite F ⊂ X and an open set U ⊂ Xk (in

the product topology). If Fk ⊂U, then there is an open set V ⊂ X such that Fk ⊂ V k ⊂U (in

particular, F ⊂V ).

Proof. Let F = {xi : i ≤ n}. Note that for each v ∈ Fk there is a box Bv = ∏ j≤k U j such that
v ∈ Bv ⊂U . Given i ≤ k, let πi : Xk → X denote the projection in the ith coordinate and then, for
each x ∈ F , let

Vx =
⋂{

πi[Bv] : v ∈ Fk and i ≤ k with x = πi(v)
}
,

so that Vx ⊂ X is an open neighborhood of x. We leave as an exercise to show that V =
⋃

x∈F Vx

has the desired property.

Theorem 3.3.48 ([Sakai 1988]). Property S1(Ω,Ω) holds on a space X if, and only if, S1(O,O)

holds on Xk for every k ∈ N.

Proof. Suppose S1(Ω,Ω) holds on X . Then, by Theorem 3.3.46, S1(O,O) holds on X , so in
order to show the first implication it suffices to show that S1(Ω,Ω) holds on Xk for every k ∈ N.
Let k ∈ N and ⟨Un : n ∈ ω⟩ be a sequence of ω-covers in Xk. For each n ∈ ω , let

Vn =
{

V ⊂ X : V k ⊂U for some U ∈ Un and V is open
}
.

Since Un ∈ Ω, it follows from Lemma 3.3.47 that Vn ∈ Ω for every n ∈ ω . In this case, let
⟨Vn : n ∈ ω⟩ be the sequence witnessing S1(Ω,Ω) for ⟨Vn : n ∈ ω⟩ and fix, for each n ∈ ω ,
Un ∈ Un such that V k

n ⊂Un. Then ⟨Un : n ∈ ω⟩ witnesses S1(Ω,Ω) for ⟨Un : n ∈ ω⟩, as desired.

On the other hand, suppose S1(O,O) holds on Xk for every k ∈ N. Then, by Proposition
3.3.14, S1(O,O) holds over the disjoint union Y =

⋃
k∈NXk. Let ⟨Un : n ∈ ω⟩ be a sequence of

ω-covers in X . For each n ∈ ω , let

Vn =
⋃

k∈ω

{
V k : V ∈ Un

}
.

Since Un ∈Ω, Vn is an open cover of Y , so let ⟨V kn
n : n ∈ ω⟩ be the sequence witnessing S1(O,O)

over Y for ⟨Vn : n ∈ ω⟩. Then, clearly, ⟨Vn : n ∈ ω⟩ witnesses S1(Ω,Ω) over X for ⟨Un : n ∈ ω⟩,
and the proof is complete.

The following Theorem can be shown following the steps of Theorem 3.3.48, so its proof
will be left as an exercise (3.3.52).

Theorem 3.3.49. Property Sfin(Ω,Ω) holds on a space X if, and only if, Sfin(O,O) holds on Xk

for every k ∈ N.
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Exercise 3.3.50. Write the details of Theorem 3.3.37’s proof.

Exercise 3.3.51. Pinpoint what combination of results from Propositions 3.1.8, 3.1.9, 3.3.19,
3.3.20, 3.3.21, 3.3.43 and Theorems 3.3.38, 3.3.40 show each implication from the Scheepers
Diagram 3.3.46.

Exercise 3.3.52. Write the details of Theorem 3.3.49’s proof.
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CHAPTER

4
THE ASSOCIATED SELECTIVE GAMES

Now we finally turn our attention back to games! In this chapter we will see that most of
the selection principles presented in the previous chapter give rise to a new game, so we will
focus on studying these new games.

They go as follows:

Definition 4.0.1. Given nonempty families A ,B, with /0 ̸∈ A , we denote by G1(((A ,,,B))) the
following game. On each inning n ∈ ω ,

∙ ALICE chooses An ∈ A ;

∙ and BOB chooses bn ∈ An.

We say that BOB wins if {bn : n ∈ ω } ∈ B and ALICE wins otherwise.

As a first example we present the Rothberger game:

Example 4.0.2. The game G1(O,O) is called the Rothberger game. In other words, G1(O,O)

is the game in which, in each inning n ∈ ω ,

∙ ALICE chooses an open cover Un of X ;

∙ and BOB chooses an open set Un ∈ Un,

so that BOB wins if {Un : n ∈ ω } is an open cover of X and ALICE wins otherwise.

The game G1(A ,B) and the selection principle S1(A ,B) share a relation that goes
beyond the similarity in the notation:

Proposition 4.0.3. Given nonempty families A ,B, if ALICE does not have a winning strategy

in the game G1(A ,B), then S1(A ,B) holds.



68 Chapter 4. The associated selective games

Proof. Suppose S1(A ,B) does not hold. Then there is a sequence ⟨An : n ∈ ω⟩ of elements of A

such that, for every sequence ⟨bn : n ∈ ω⟩ with each bn being an element of An, {bn : n ∈ ω } ̸∈B.
Clearly, if ALICE plays with ⟨An : n ∈ ω⟩ (regardless of BOB’s responses) in G1(A ,B), then
ALICE wins.

Definition 4.0.4. Given nonempty families A ,B, with /0 ̸∈ A , and k ∈ N such that k ≥ 2, we
denote by Gk(((A ,,,B))) the following game . On each inning n ∈ ω , we have:

∙ ALICE chooses An ∈ A ;

∙ BOB chooses Bn ⊂ An such that |Bn| ≤ k.

We say that BOB wins if
⋃

n∈ω Bn ∈ B and ALICE wins otherwise.

Example 4.0.5. The game Gk(O,O) is called the kkk-Rothberger game. In other words, Gk(O,O)

is the game in which, in each inning n ∈ ω ,

∙ ALICE chooses an open cover Un of X ;

∙ and BOB chooses an Fn ⊂ Un such that |Fn| ≤ k,

so that BOB wins if
⋃

n∈ω Fn is an open cover of X and ALICE wins otherwise.

Analogously to Proposition 4.0.3 (Exercise 4.0.12), we also have:

Proposition 4.0.6. Given nonempty families A ,B and k ∈N, if ALICE does not have a winning

strategy in the game Gk(A ,B), then Sk(A ,B) holds.

And, finally:

Definition 4.0.7. Given nonempty families A ,B, with /0 ̸∈ A , we denote by Gfin(A ,B) the
following game: in each inning n ∈ ω ,

∙ ALICE chooses An ∈ A ;

∙ BOB chooses a finite Bn ⊂ An.

We say that BOB wins if
⋃

n∈ω Bn ∈ B and that ALICE wins otherwise.

Example 4.0.8. The game Gfin(O,O) is called the Menger game. In other words, Gfin(O,O) is
the game in which, in each inning n ∈ ω ,

∙ ALICE chooses an open cover Un of X ;

∙ and BOB chooses a finite Fn ⊂ Un,
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so that BOB wins if
⋃

n∈ω Fn is an open cover of X and ALICE wins otherwise.

Once again, we immediately have (Exercise 4.0.12):

Proposition 4.0.9. Given nonempty families A ,B, if ALICE does not have a winning strategy

in the game Gfin(A ,B), then Sfin(A ,B) holds.

The following trivial results will also be useful for later proofs.

Proposition 4.0.10. Let A and B be nonempty families of sets with /0 ̸∈ A . If C ⊂ A and

D ⊂ B are nonempty, then:

∙ BOB↑G1(A ,D) =⇒ BOB↑G1(A ,B) =⇒ BOB↑G1(C ,B) and

ALICE̸↑G1(A ,D) =⇒ ALICE̸↑G1(A ,B) =⇒ ALICE̸↑G1(C ,B);

∙ for every k ≥ 2:

BOB↑Gk(A ,D) =⇒ BOB↑Gk(A ,B) =⇒ BOB↑Gk(C ,B) and

ALICE̸↑Gk(A ,D) =⇒ ALICE̸↑Gk(A ,B) =⇒ ALICE̸↑Gk(C ,B);

∙ BOB↑Gfin(A ,D) =⇒ BOB↑Gfin(A ,B) =⇒ BOB↑Gfin(C ,B) and

ALICE̸↑Gfin(A ,D) =⇒ ALICE̸↑Gfin(A ,B) =⇒ ALICE̸↑Gfin(C ,B).

Proposition 4.0.11. Let A and B be nonempty families of sets with /0 ̸∈ A . Then

BOB↑G1(A ,B) =⇒ BOB↑Gk(A ,B) =⇒ BOB↑Gfin(A ,B) and

ALICE̸↑G1(A ,B) =⇒ ALICE̸↑Gk(A ,B) =⇒ ALICE̸↑Gfin(A ,B).

Just like we did with the selection principles, we now focus on some specific instances
of the families A and B in Definitions 4.0.1, 4.0.4 and 4.0.7.

Exercise 4.0.12. Write the details of Propositions 4.0.6 and 4.0.9’s proofs.

4.1 Covering games

4.1.1 The Rothberger game

We have mentioned in Section 3.3.2 that Question 3.3.10 is closely related to Question
2.3.13 – this relation will begin to get clear in this section. But first let us define a new “level of
similarity” between games:

Given a class of spaces C (like the class of all Hausdorff spaces, for instance), we say
two topological games G1 and G2 are dual over C if, for every X ∈ C , both of the following
conditions hold:
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∙ ALICE↑G1 on X if, and only if, BOB↑G2 on X ;

∙ BOB↑G1 on X if, and only if, ALICE↑G2 on X .

If G1 and G2 are dual over the class of all spaces, we simply say that G1 and G2 are dual games.

As it turns out, the point-open game and the Rothberger game are dual! In order to show
this we use the following lemma.

Lemma 4.1.1. Let s ∈ <ωO . If σ is a strategy for BOB in G1(O,O) on X, then there exists an

x ∈ X such that for every open set U with x ∈U there is an open cover U such that σ(saU ) =U.

Proof. Assume not, that is, for all x ∈ X there is an open set Ux with x ∈Ux such that σ(saU ) ̸=
Ux for every open cover U . Let U = {Ux : x ∈ X }. Then clearly σ(saU ) =Ux for some x ∈ X ,
a contradiction.

Theorem 4.1.2 ([Galvin 1978]). G1(O,O) is dual to the point-open game.

Proof. Suppose γ is a winning strategy for ALICE in the point-open game. We construct σ as
the following strategy for BOB in G1(O,O):

∙ in the first inning, if ALICE chooses the open cover U0, set σ(⟨U0⟩) =U0, with γ(⟨⟩)∈U0;

∙ In general (that is, in the inning n∈ω), set σ(⟨U0, . . . ,Un⟩)=Un, with γ(⟨U0, . . . ,Un−1⟩)∈
Un.

It follows from the fact that γ is a winning strategy that {Un : n ∈ ω } is not an open cover.

Now, assume that γ is a winning strategy for ALICE in G1(O,O). Set σ as a strategy for
BOB in the point-open game as follows:

∙ if ALICE chooses x0 ∈ X in the first inning, then let σ(⟨x0⟩) =U0, with U0 ∈ γ(⟨⟩) being
such that x0 ∈U0;

∙ In general, set σ(⟨x0, . . . ,xn⟩) =Un, with Un ∈ γ(⟨U0, . . . ,Un−1⟩) being such that xn ∈Un.

It follows from the fact that γ is a winning strategy that {Un : n ∈ ω } is an open cover.

Now, suppose that σ is a winning strategy for BOB in the point-open game. Note that if
s ∈ <ωX , then

{
σ(sax) : x ∈ X

}
is an open cover (in fact, this is true regardless of σ being a

winning strategy). Then let γ be the following strategy for ALICE in G1(O,O):

∙ in the first inning, let γ(⟨⟩) = {σ(⟨x⟩) : x ∈ X };

∙ In general, set γ(⟨U0, . . . ,Un⟩) = {σ(⟨x0, . . . ,xn,x⟩) : x ∈ X } with each xi, for i ≤ n, being
such that σ(⟨x0, . . . ,xi⟩) =Ui.
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Since σ is a winning strategy, {Un : n ∈ ω } does not cover the space and, therefore, γ is a
winning strategy.

Finally, assume that σ is a winning strategy for BOB in G1(O,O). We define γ as the
following strategy for ALICE in the point-open game:

∙ In the first inning, let γ(⟨⟩) = x0 with x0 ∈ X being as in Lemma 4.1.1 for s = ⟨⟩;

∙ In general, set γ(⟨U0, . . . ,Un⟩)= xn with xn ∈X being as in Lemma 4.1.1 for s= ⟨U0, . . . ,Un−1⟩,
where Ui, for each i < n, is the open cover also provided by Lemma 4.1.1 such that
σ(⟨U0, . . . ,Ui⟩) =Ui.

Since σ is a winning strategy, {Un : n ∈ ω } covers the space and, therefore, γ is a winning
strategy.

Question 2.3.13 can now be translated to:

Question 4.1.3. Is G1(O,O) determined on every subset of R?

So the following theorem will later be useful in the search of the answer to Question
4.1.3.

Theorem 4.1.4 ([Telgársky 1983], [Galvin 1978]). Let X be a space in which every point is a

Gδ set. Then BOB↑G1(O,O) if, and only if, X is countable.

Proof. If X is countable, then BOB obviously has a winning strategy in G1(O,O).

So, suppose BOB↑G1(O,O). Then, by Theorem 4.1.2, there is a winning strategy γ for
ALICE in the point-open game. For each x ∈ X , let Vx = {Vn(x) : n ∈ ω } be such that

⋂
Vx = {x}

(with a fixed enumeration). We now define, recursively, a countable {xs : s ∈ <ωω } ⊂ X and
{Vs : s ∈ <ωω }, with each Vs open, such that, for every s ∈ <ωω ,

(a) xs = γ(⟨Vs�1, . . . ,Vs⟩).

(b) x(san)ak =
⋂

n∈ω Vsan.

First, let x⟨⟩ = γ(⟨⟩). Then, for each n ∈ ω , we let x⟨n⟩ = γ(Vn(x⟨⟩)). Now, suppose the
sets are defined up to s ∈ <ωω . Then we let, for each n ∈ ω ,

Vsan =Vn(xs) and

xsan = γ(⟨Vs�1, . . . ,Vs,Vsan⟩).

We claim that X = {xs : s ∈ <ωω }. Indeed, suppose there is a y∈X such that y ̸∈ {xs : s ∈ <ωω }.
Then BOB may respond to each xs played by γ with a Vsan such that y ̸∈ Vsan (because of
property (b)) and will clearly win the game (which contradicts our assumption that γ is a winning
strategy).
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In view of Theorem 4.1.4, Question 2.3.13 translates to:

Question 4.1.5. Is there an uncountable subspace of the real line on which ALICE̸↑G1(O,O)?

This version of Question 2.3.13 will help us relate it with Question 3.3.10 – but we will
need to first talk about the Menger game in order to make this connection.

Before moving on to the latter game, it should be noted here that selective games
presented in this chapter are all positional, but BOB has no positional winning strategy in most
of them. In the case of the Rothberger game, for instance:

Proposition 4.1.6. BOB has a positional winning strategy in G1(O,O) on a space X if, and only

if, X ∈ U for every U ∈ O .

Proof. Suppose X has an open cover U with no unitary subcover. Note that, if σ is a positional
strategy for BOB in G1(O,O), then when ALICE chooses U in every single inning, σ will tell
BOB to keep choosing the same open set in every inning. Since U has no unitary subcover, BOB

loses this run, so σ is not a winning strategy.

The other implication is obvious.

Exercise 4.1.7. Show that if BOB↑G1(O,O), then
(

Ω

Γ

)
holds.

Hint: Use Theorems 2.3.14, 2.3.16 and 4.1.2.

4.1.2 The Menger game

In general, Gfin(A ,B) may be quite different from G1(A ,B). Take the Menger game,
for instance:

Proposition 4.1.8. There is a compact space K such that ALICE↑G1(O,O) on K. On the other

hand, BOB↑Gfin(O,O) on every compact space.

Proof. This follows from Propositions 3.3.7 and 4.0.6.

We then dedicate this section to study the Menger game, starting with its relation with
the Menger property (Sfin(O,O)). In view of Proposition 4.0.9, it is already clear that ALICE

not having a winning strategy in Gfin(O,O) on a given space implies that such space is Menger.
This alone shows us the following:

Corollary 4.1.9. Let X be a space. If ALICE̸↑Gfin(O,O), then X is Lindelöf.

As it turns out, however, the converse implication of Proposition 4.0.9 also holds in
the Menger case (that is, if Sfin(O,O) holds over X , then ALICE̸↑Gfin(O,O) over X). This
implication is the deep theorem of Hurewicz. To show it, let us first take a look at an auxiliary
game.
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Definition 4.1.10. Given a space X , we denote by O↑ the set of all countable and increasing
open covers of X , that is, U ∈ O↑ if U = ⟨Un : n ∈ ω⟩ and Un ⊂Un+1 for all n ∈ ω .

Consider the game G1(O
↑,O) on a space X , that is, the following game. In each inning

n ∈ ω:

∙ ALICE chooses a countable open cover Un =
{

Un
k : k ∈ ω

}
such that Un

k ⊂Un
k+1 ;

∙ BOB chooses Un
kn
∈ Un.

We say that BOB wins if
⋃

n∈ω Un
kn

and ALICE wins otherwise. It is worth mentioning that
G1(O

↑,O) is very similar to Gfin(O,O). The main differences here are that ALICE’s choices on
G1(O

↑,O) are more restricted than those on Gfin(O,O) and BOB may only choose one open
set of such covers on G1(O

↑,O) instead of finitely many open sets from ALICE’s moves on
Gfin(O,O). An useful relation rises from the similarities between both games in the proposition
that follows.

Proposition 4.1.11. Let X be a Lindelöf space. Then G1(O
↑,O) and Gfin(O,O) are equivalent

on X.

Proof. Let γ be a winning strategy for ALICE in G1(O
↑,O). We construct a strategy γ̃ for ALICE

in Gfin(O,O) as follows:

∙ In the first inning, let γ̃(⟨⟩) = γ(⟨⟩) =
{

Uk
0 : k ∈ ω

}
, with Uk

0 ⊂Uk+1
0 for every k ∈ ω;

∙ if BOB responds with a finite F0 ⊂
{

Uk
0 : k ∈ ω

}
, let k0 = max

{
k ∈ ω : Uk

0 ∈ F0
}

, so
that Uk0

0 =
⋃

F0. Then we let γ̃(⟨F0⟩) = γ(⟨Uk0
0 ⟩) =

{
Uk

1 : k ∈ ω
}

, with Uk
1 ⊂Uk+1

1 for
every k ∈ ω;

∙ if BOB responds with a finite F1 ⊂
{

Uk
1 : k ∈ ω

}
, let k1 = max

{
k ∈ ω : Uk

1 ∈ F1
}

, so
that Uk1

1 =
⋃

F1. Then we let γ̃(⟨F0,F1⟩) = γ(⟨Uk1
1 ⟩) =

{
Uk

2 : k ∈ ω
}

, with Uk
2 ⊂Uk+1

2

for every k ∈ ω;

∙ and so on.

Then, clearly, ALICE wins with γ̃ .

Now, suppose ALICE does not have a winning strategy on G1(O
↑,O) and let γ be a

strategy for ALICE on Gfin(O,O). For each possible cover U ALICE can choose by γ , fix
Ũ = {Uk : k ∈ ω } as one of its countable subcovers and define

U ′ =

{⋃
i≤k

Ui : k ∈ ω

}
.
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If we replace each of the U covers from γ with the covers U ′ defined above we get a
strategy γ ′ for the game G1(O

↑,O), so that γ ′ is not a winning strategy.

Let U ′
0 be ALICE’s initial move according to γ ′ and let U0 ∪ ·· · ∪Uk0 be BOB’s legal

response that will lead him to victory against γ ′. Let
{

U0, . . . ,Uk0

}
be BOB’s legal response to

U0 in Gfin(O,O). Repeating this process for each inning, we find a run of Gfin(O,O) compatible
with γ on which BOB wins, hence, γ is not a winning strategy.

The implications for BOB will be left as a simple exercise (4.1.24) to the reader.

We now finally present the proof of the Hurewicz Theorem (we will follow the proof
presented in [Szewczak and Tsaban 2019]).

Theorem 4.1.12 ([Hurewicz 1926]). If Sfin(O,O) holds on a space X, then ALICE does not

have a winning strategy in the game Gfin(O,O) on X.

Proof. Let X be a space satisfying Sfin(O,O). Proposition 3.3.2 states that X is Lindelöf, so that
by Proposition 4.1.11 it suffices to prove that ALICE does not have a winning strategy in the
game G1(O

↑,O).

Let γ be a strategy for ALICE on G1(O
↑,O). We may assume that, for all n ∈ ω , if U is

BOB’s move in the nth inning, ALICE’s cover U = {Un : n ∈ ω } in the next inning is such that
U0 =U . Indeed, if U0 ̸=U , we can replace U with the cover U ′ = {U,U ∪U0,U ∪U1, . . .} so
that if BOB chooses U from U ′, we provide ALICE with the legal answer U0 for U , and if he
chooses U ∪Un from U ′, we provide ALICE with the legal answer Un for U . The addition of U

to each of ALICE’s open sets does not help BOB cover more points than he already had covered
in the previous innings. This way, ALICE will manage to win with her original covers only if she
wins with the modified ones presented here.

Now, with these simplifications, ALICE’s strategy is identified with the following tree
of open sets: ALICE’s initial move is an open cover

{
U⟨n⟩ : n ∈ ω

}
. If BOB replies U⟨m⟩ , then

ALICE’s next move is
{

U⟨m,n⟩ : n ∈ ω
}

with U⟨m,0⟩ = U⟨m⟩. In general, if BOB replies Us, for
s ∈ kω , then ALICE’s next move is an increasing open cover

Us = {Usan : n ∈ ω } ,

with Usa0 =Us. Now we just need to analyze the following concept.

Definition 4.1.13. A countable cover U of a space X is a tail cover if the set of intersections of
cofinite subsets of U is an open cover of X . Equivalently, a cover {Un : n ∈ ω } is a tail cover if
the family {

∞⋂
n=0

Un,
∞⋂

n=1

Un,
∞⋂

n=2

Un, . . .

}
of intersections of cofinal segments of the cover is an open cover.
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CLAIM 4.1.14. Given n ∈ ω let Vn =
⋃

s∈nω Us. Then the family Vn is a tail cover of X .

Proof. The proof is by induction on n. Note that the open cover V0 = U⟨⟩ is increasing, so
the set of cofinite intersections is also an open cover of X. Let n ∈ ω . To simplify, enumerate
Vn = {Vk : k ∈ ω }, so that

Vn+1 =
⋃

k∈ω

{
V k

1 ,V
k
2 , . . .

}
,

where V k
1 =Vk and V k

i ⊂V k
i+1 for all k, i ∈ ω . Assume that the family Vn is a tail cover of X . Let

V be a cofinite subset of Vn+1 and let

I =
{

k ∈ ω :
{

V k
1 ,V

k
2 , . . .

}
⊂ V

}
.

Note that the set I is a cofinite subset of ω (otherwise V would not be cofinite). For each k ∈ω ∖ I,
let mk be the minimal natural number with V k

mk
∈ V . Then

⋂
V =

⋂
k∈I

(
V k

1 ∩V k
2 ∩·· ·

)
∩
⋂

k∈ω∖I

⋂({
V k

1 ,V
k
2 , . . .

}
∩V

)
=
⋂
k∈I

Vk ∩
⋂

k∈ω∖I

V n
mk
.

The set
⋂

k∈I Vk is an intersection of a cofinite subset of Vn, thus it is open. Also, since the set
ω ∖ I is finite, the set

⋂
k∈ω∖I V k

mk
is open, thus

⋂
V is open. Let x ∈ X . For nearly all k ∈ ω ,

we have x ∈Vk. For the finitely many exceptional numbers k ∈ ω , x belongs to almost all sets
V k

m : m ∈ ω . Thus, x belongs to all but finitely many members of the family Vn+1, or, equivalently,
to every intersection of a cofinite subset of Vn+1, which concludes our induction.

For each n ∈ ω , define V ′
n as the set of intersections of cofinite subsets of Vn. Applying

the property Sfin(O,O) to the sequence ⟨V ′
n : n ∈ ω⟩, we get that for each n∈ω there is W ′

n ⊂V ′
n

finite such that X =
⋃

n∈ω

⋃
W ′

n . Associated with each W ′
n we have a Wn ⊂ Vn cofinite so that

X =
⋃

n∈ω

⋂
Wn. In the nth inning, ALICE provides BOB with a cover that is an infinite subset of

the family Vn . Since the family Wn is cofinite in Vn, BOB can choose an element Vn ∈ Vn ∩Wn.
Then X =

⋃
n∈ω Vn and BOB wins, as we wanted to prove.

This characterization of the Menger property with the Menger game will give us some
interesting applications in the upcoming sections (for instance, it will help us find examples of
D-spaces). But, for now, we present a new game that relates to Gfin(O,O) similarly to the way
the point-open game relate to the Rothberger game. It goes as follows:

Definition 4.1.15. We call the compact-open game the following game on a space X . In each
inning n ∈ ω:

∙ ALICE chooses Kn compact;

∙ BOB chooses an open set Vn ⊃ Kn.
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We say that ALICE wins if X =
⋃

n∈ω Vn and BOB wins otherwise.

It is often said that a space X on which ALICE has a winning strategy in the compact-open
game is compact-like.

This game then relates to the Menger game in some sort of “semi-duality”. In order to
better explain this in Theorem 4.1.17, consider the following lemma:

Lemma 4.1.16. Let σ be a strategy for BOB in Gfin(O,O) on a regular space X. Then, for every

s ∈ <ωO , the set

Ks =
⋂

U ∈O

⋃
σ(saU )

is compact.

Proof. Indeed, let C be an open cover for Ks and, for each x ∈ Ks, let Ux ∈ C be such that x ∈Ux.
Since X is regular, for every x ∈ Ks there is an open set Vx such that x ∈Vx ⊂Vx ⊂Ux. On the
other hand, for each x ∈ X ∖Ks we consider an open set Vx such that x ∈ Vx and Vx ∩Ks = /0
(because Ks is closed and X is regular). Now, let U = {Vx : x ∈ X } ∈ O . In this case, note that

Ks ⊂
⋃

σ(saU ).

Consider F =
{

Vx : x ∈ Ks and Vx ∈ σ(saU )
}
= {Vxi : i ≤ n} with xi ∈ Ks for every i ≤ n.

Then Ks ⊂
⋃

F . Finally, note that {Uxi : i ≤ n} is a finite subcover of C .

Theorem 4.1.17 ([Telgársky 1984]). For every space:

(a) If ALICE↑Gfin(O,O), then BOB has a winning strategy in the compact-open game;

(b) If ALICE has a winning strategy in the compact-open game, then BOB↑Gfin(O,O).

Moreover, if X is a regular space, then BOB↑Gfin(O,O) implies that ALICE has a winning

strategy in the compact-open game.

Proof. (a) Let γ be a winning strategy for ALICE in Gfin(O,O). We then build a winning
strategy σ for BOB in the compact-open game as follows:

– If ALICE chooses K0 in the first inning, let F0 ⊂ γ(⟨⟩) be a finite cover of K0 and
then set σ(⟨K0⟩) =

⋃
F0;

– if ALICE chooses K1 in the next inning, let F1 ⊂ γ(⟨F0⟩) be a finite cover of K1 and
then set σ(⟨K0,K1⟩) =

⋃
F1;

– if ALICE chooses K2 next, let F2 ⊂ γ(⟨F0,F1⟩) be a finite cover of K2 and then set
σ(⟨K0,K1,K2⟩) =

⋃
F2;

– and so on.
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Since γ is a winning strategy, it is clear that X ̸=
⋃

n∈ω σ(⟨Ki : i ≤ n⟩), so σ is a winning
strategy.

(b) Let γ be a winning strategy for ALICE in the compact-open game. Then we define a
winning strategy σ for BOB in Gfin(O,O) as follows:

– If ALICE chooses U0 in the first inning, let F0 ⊂ U0 be a finite cover of γ(⟨⟩) and
then set σ(⟨U0⟩) = F0;

– if in the next inning ALICE chooses U1, let F1 ⊂ U1 be a finite cover of γ(⟨
⋃

F0⟩)
and then set σ(⟨U0,U1⟩) = F1;

– if ALICE chooses U2 next, let F2 ⊂ U2 be a finite cover of γ(⟨
⋃

F0,
⋃

F1⟩) and
then set σ(⟨U0,U1,U2⟩) = F2;

– and so on.

Since γ is a winning strategy, it is clear that X =
⋃

n∈ω σ(⟨Ui : i ≤ n⟩). Hence, σ is a
winning strategy.

Now, suppose X is a regular space and that BOB has a winning strategy σ in Gfin(O,O)

over X . Then, by Proposition 4.1.9, X is Lindelöf. The idea here will be to use Lemma 4.1.16
to define a strategy γ for ALICE in the compact-open game such that each run R played against
γ will correspond to a subtree of σ in such a way that if a point was not covered in R, then we
would find a run of such subtree that did not cover this point as well (which is absurd, since we
are assuming σ is a winning strategy). We remark here that this construction will be possible
due to the infinitude of innings and it will appear in the proofs of later theorems again. It goes as
follows:

First, let γ(⟨⟩) = K⟨⟩, with K⟨⟩ being as in Lemma 4.1.16 and then suppose V0 is BOB’s
response to γ(⟨⟩). Since γ(⟨⟩) ⊂ V0, then X ∖V0 ⊂ X ∖ γ(⟨⟩), so for each x ∈ X ∖V0 there is a
Ux ∈ O such that x /∈

⋃
σ(⟨Ux⟩) and therefore C =

{
X ∖

⋃
σ(⟨Ux⟩) : x ∈ X ∖V0

}
is an open

cover for X ∖V0. We have that X ∖V0 is Lindelöf, being a closed subset of a Lindelöf space, then C

must have a countable subcover, so we let, for each m∈ω , U⟨m⟩ be such that
{

X ∖
⋃

σ(⟨U⟨m⟩⟩)
}

is an open cover for X ∖V0.

Now, let { tn : n ∈ ω } be an enumeration of (<ωω)* = <ωω ∖ {⟨⟩} such that n ≤ m if
tn ⊂ tm (curious about how such enumeration exists? We leave Exercise 4.1.25 to clarify that
out). Immediately, we get:

CLAIM 4.1.18. For every n > 0 there is a k < n and an m ∈ ω such that tn = tak m.

Proof. Let n > 0. Let k ∈ ω be such that tk = tn �(|tn| − 1). Since tk ( tn, k < n. Just let m =

tn(|tn|−1) and the claim is proved.
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Suppose we defined γ up until the inning n+1 (with n ∈ ω) and open covers Utak m for
all k ≤ n and m ∈ ω , which depend on the open sets played by BOB thus far (the case of the first
inning has already been dealt with above). Also, assume we have the following properties:

(1)
{

X ∖
⋃

σ(⟨Utk � i : 0 < i ≤ |tk|⟩aUtak m) : m ∈ ω

}
covers X ∖

⋃
j≤k Vk for every k ≤ n;

(2) γ(⟨Vj : j ≤ k⟩) = K⟨Utk � i:0<i≤|tk|⟩ =
⋂

U ∈O
⋃

σ(⟨Utk � i : 0 < i ≤ |tk|⟩aU ) for every k ≤ n+

1.

Note that, by Lemma 4.1.16, γ(⟨V0, . . . ,Vj⟩) is, indeed, compact.

Since γ(⟨Vj : j ≤ n⟩)⊂Vn+1, then X ∖
⋃

j≤n+1Vj ⊂ X ∖ γ(⟨Vj : j ≤ n⟩), so for each x ∈
X ∖

⋃
j≤n+1Vj there is a Ux ∈ O such that

x /∈
⋃

σ(⟨Utn � i : 0 < i ≤ |tn|⟩aUx)

and therefore C =
{

X ∖
⋃

σ(⟨Utn � i : 0 < i ≤ |tn|⟩aUx) : x ∈ X ∖
⋃

j≤n+1Vj

}
is an open cover

for X ∖
⋃

j≤n+1Vj. We have that X ∖
⋃

j≤n+1Vj is Lindelöf, being a closed subset of a Lindelöf
space, then C must have a countable subcover and we may find a Utan m for each m ∈ ω such that{

X ∖
⋃

σ(⟨Utn � i : 0 < i ≤ |tn|⟩aUtan m) : m ∈ ω

}
is an open cover for X ∖

⋃
j≤n+1Vj. Hence, condition (1) is satisfied for k = n+1.

Now, suppose BOB responds with Vn+2 to γ(⟨Vj : j ≤ n+1⟩) in the inning n+2. Note
that, in view of Claim 4.1.18, tn+2 = tak m for some k ≤ n+1 and m ∈ ω , so U(tn+2)� i has already
been defined for every i ≤ |tn+2| (according to our recursion hypothesis). Then we may set

γ(⟨Vj : j ≤ n+2⟩) = K⟨Utn+2 � i:0<i≤|tn+2|⟩ =
⋂

U ∈O

⋃
σ(⟨Utn+2 � i : 0 < i ≤ |tn+2|⟩aU ).

Obviously, γ(⟨Vi : i ≤ n+2⟩) satisfies (2) and again, by Lemma 4.1.16, it is compact. Hence, our
recursion is complete

Now that γ is well defined with the desired properties, we will show that it is indeed a
winning strategy. In order to do that, let

⟨γ(⟨⟩),V0,γ(⟨V0⟩),V1,γ(⟨V0,V1⟩),V2 . . .⟩

be a run compatible with γ . Then we can recover the tree of open covers {Us : s ∈ (<ωω)* }
associated to this run that we defined along with γ . Striving for a contradiction, suppose ALICE

loses in this run, that is, that there exists an x ∈ X such that x ∈ X ∖
⋃

n∈ω Vn. In particular,
x ∈ X ∖V0 and we can use property (1) to find i0 ∈ ω such that x /∈

⋃
σ(⟨U⟨i0⟩⟩). Assume we have

found an i j ∈ω for each j < n with x /∈
⋃

σ(⟨U⟨i0⟩,U⟨i0,i1⟩, . . . ,U⟨i0,...,i j⟩⟩) for all j < n. Let k ∈ω

be such that tk = ⟨i j : j < n⟩. Then we use again property (1) and the fact that x ∈ X ∖
⋃

j≤k Vj to
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obtain in ∈ ω such that x /∈
⋃

σ(⟨U⟨i0⟩,U⟨i0,i1⟩, . . . ,U⟨i0,...,in⟩⟩). We have just found a branch in a
subtree of σ attesting that σ is not a winning strategy, a contradiction to our initial assumption.
Hence, γ is a winning strategy.

As a bonus, we get a result analogous to the one presented in Theorem 4.1.4:

Theorem 4.1.19 ([Telgársky 1983]). Let X be a regular space in which every compact subset is

a Gδ set. If BOB↑Gfin(O,O), then X is σ -compact.

Proof. Analogous to the proof of Theorem 4.1.4 (see Exercise 4.1.26).

Corollary 4.1.20. If X is a regular space with a countable basis such that BOB↑Gfin(O,O),

then X is σ -compact.

Proof. Since X has countable basis and is regular, it is metrizable, which implies that every
closed subset of X is a Gδ set (in particular, compact subsets are Gδ sets), so the result follows
from Theorem 4.1.19.

One may wonder whether the regularity assumption could be dropped in the last im-
plication of Theorem 4.1.17. To show that this condition is in fact essential, we present the
following:

Proposition 4.1.21. There is a Hausdorff space X such that BOB↑Gfin(O,O), but BOB has a

winning strategy in the compact-open game.

Proof. Consider the Cantor set 2ω with its usual topology τ (which is Hausdorff). Note that
BOB↑Gfin(O,O), but BOB has a winning strategy in the point-open game (because, by Proposi-
tion 3.3.7, S1(O,O) does not hold on 2ω , which, by Proposition 4.0.3, implies that ALICE↑G1(O,O),
which, by Theorem 4.1.2, implies that BOB has a winning strategy in the point-open game on
2ω ). Then consider a new topology on 2ω that additionally makes every countable set closed,
that is, let ρ be the topology generated by

{U ∖C : U ∈ τ and C ⊂ X countable} .

Note that ρ remains Hausdorff and BOB still has a winning strategy in the point-open game (or,
equivalently, the finite-open game) on the new space. Moreover, it is easy to see that K ⊂ 2ω is a
compact subspace of ⟨2ω ,ρ⟩ if, and only if, K is finite. So it follows that BOB has a winning
strategy in the compact-open game over the modified space.

On the other hand, BOB still has a winning strategy in Gfin(O,O) on the new space
⟨2ω ,ρ⟩. To show this, note that we may assume that ALICE (playing Gfin(O,O) on ⟨2ω ,ρ⟩)
chooses only covers with basic open sets of the form U ∖C, with U ∈ τ and C countable. Given
U open cover of (2ω ,ρ) with said form we fix, for each U ∈ U , U ′ as the open set from the
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original topology such that U =U ′ ∖C for some C countable. Then we let, for each open cover
U of (X ,ρ) with said form,

U ′ =
{

U ′ ∈ τ : U ∈ U
}
.

Now we define a strategy σ̃ as follows:

∙ in the first inning, if ALICE chooses U0, let F0 ⊂ U0 be such that {U ′ : U ∈ F0 } covers
2ω (recall that 2ω is compact with its usual topology) and then set

σ̃(⟨U0⟩) = F0;

∙ Note that
⋃
{U ′ : U ∈ F0 }∖

⋃
F0 is countable. Then we let σ̃ easily cover these points

in the upcoming innings, which concludes the proof.

But it should be noted that we can, actually, find a game that is dual to the compact-open
game in a similar fashion to the duality between the point-open game and Rothberger game:

Definition 4.1.22. Given a space X , denote by K the collection of every open K-cover of X .

Theorem 4.1.23. The compact-open game and G1(K ,O) are dual.

Proof. Analogous to the proof of Theorem 4.1.2 (see Exercise 4.1.27).

Exercise 4.1.24. Write the details of BOB’s implications from Proposition 4.1.11.

Exercise 4.1.25. Fix an enumeration of the prime numbers { pn : n ∈ ω }. Then, let ϕ : <ωω →ω

be such that
ϕ(⟨n j : j ≤ k⟩) =

(
((pn0)

pn1 )···
)pnk .

Show that ϕ is injective and induces an enumeration of <ωω such that n ≤ m if tn ⊂ tm.

Exercise 4.1.26. Write the details of Theorem 4.1.19’s proof.

Exercise 4.1.27. Write the details of Theorem 4.1.23’s proof.

Exercise 4.1.28. Show that BOB has a positional winning strategy in Gfin(O,O) on a space X if,
and only if, X is compact.

Exercise 4.1.29. Given a space X , let G(C,X) denote the following game: at first, ALICE chooses
a compact K0 ⊂ X and BOB responds with a closed E0 ⊂ X ∖K0. In the inning n ∈ N ALICE

chooses a compact Kn ⊂ En−1 and BOB responds with a closed En ⊂ En−1 ∖Kn. ALICE wins if⋂
n∈ω En = /0 and BOB wins otherwise.

Show that G(C,X) is equivalent to the compact-open game.

Curiosity: the property of being compact-like was first introduced in [Telgársky 1983]
with the game G(C,X).
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4.1.3 The Pawlikowski Theorem

Our goal in this subsection is to show the Pawlikowski Theorem, which is the S1 and G1

version of the Hurewicz Theorem 4.1.12 (we will need to invoke the latter a few times in order
to do so). But first, consider the following auxiliary game: In each inning n ∈ ω ,

∙ ALICE chooses an open cover Un for X ;

∙ BOB chooses a finite Fn ⊂ Un.

We say that BOB wins if, for every m ∈ ω ,
⋃

n≥m Fn is an open cover for X and ALICE

wins otherwise. Since this is a simple modification of Gfin(O,O), we will denote this game by
G′

fin(O,O). Then, from Theorem 4.1.12 we have:

Proposition 4.1.30. G′
fin(O,O) is equivalent to Gfin(O,O).

Proof. The implications

ALICE↑Gfin(O,O) =⇒ ALICE↑G′
fin(O,O)

BOB↑G′
fin(O,O) =⇒ BOB↑Gfin(O,O)

are clear.

Now, suppose ALICE̸↑Gfin(O,O) on a space X and let γ be a strategy for ALICE in
G′

fin(O,O) on X . By Proposition 4.0.9, we know that Sfin(O,O) holds on X , so Sfin(O,O) holds
on X ×ω (considering ω with the discrete topology).

Let πX : X ×ω → X be the projection onto X . We now construct a strategy γ̃ for ALICE

in Gfin(O,O) on X ×ω:

∙ In the first inning, let γ̃(⟨⟩) = {U ×{n} : U ∈ γ(⟨⟩),n ∈ ω };

∙ If BOB then responds with F̃0 ⊂ γ̃(⟨⟩), let F0 =
{

πX [U ] : U ∈ F̃0
}

and then set γ̃(⟨F̃0⟩)=
{U ×{n} : U ∈ γ(⟨F0⟩),n ∈ ω };

∙ If in the next inning BOB responds with F̃1 ⊂ γ̃(⟨F̃0⟩), let F1 =
{

πX [U ] : U ∈ F̃1
}

and
then set γ̃(⟨F̃0,F̃1⟩) = {U ×{n} : U ∈ γ(⟨F0,F1⟩),n ∈ ω };

∙ and so on.

By Theorem 4.1.12, ALICE̸↑Gfin(O,O) over X ×ω , so let ⟨F̃n : n ∈ ω⟩ be BOB’s win-
ning responses to γ̃ . In order to see that BOB wins in G′

fin(O,O) with ⟨Fn : n ∈ ω⟩, let x ∈ X . By
the (Infinite) Pigeonhole Principle, we need infinitely many elements of

{
F̃n : n ∈ ω

}
to cover

{⟨x,n⟩ : n ∈ ω }, so infinitely many elements of {Fn : n ∈ ω } cover x, as we wanted to prove.
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Finally, suppose there is a winning strategy σ for BOB in Gfin(O,O). We define a winning
strategy σ̃ for BOB in G′

fin(O,O) has follows:

σ̃(⟨U0, . . . ,Un⟩) =

σ(⟨Up, . . . ,Upm⟩) if n = pm for some p prime number and m ≥ 1

σ(⟨U0, . . . ,Un⟩) otherwise (could be anything, actually!).

Then it is easy to see that σ̃ is a winning strategy for BOB in G′
fin(O,O).

Corollary 4.1.31. If Sfin(O,O) holds, then ALICE̸↑G′
fin(O,O).

Proof. This result follows immediately from Theorem 4.1.12 and Proposition 4.1.30.

Now, at once, we can show the Pawlikowski Theorem (again, we will follow the proof
presented in [Szewczak and Tsaban 2019]):

Theorem 4.1.32 ([Pawlikowski 1994]). S1(O,O) holds on a space X if, and only if, ALICE has

no winning strategy in G1(O,O) on X.

Proof. The implication

ALICE̸↑G1(O,O) =⇒ S1(O,O)

follows directly from Proposition 4.0.6.

Now, suppose S1(O,O) holds. Then, by Proposition 3.1.9, Sfin(O,O) holds, and, by
Proposition 3.3.2, X is Lindelöf. With all that in mind, if γ is a strategy for ALICE, we may
assume that γ plays only with countable open covers. Fix an enumeration for each one of γ’s
covers and this way we may identify γ with the tree <ωω as, for each s ∈ <ωω ,

γ(⟨Us�1, . . . ,Us⟩) = {Usan : n ∈ ω }

Then we define, for each s ∈ <ωω , Us = γ(⟨Us�1, . . . ,Us⟩).

We now define a strategy γ̃ for ALICE in G′
fin(O,O). First, let γ̃(⟨⟩) = U⟨⟩. If BOB

chooses F0 ⊂ U⟨⟩, then let m0 = max
{

i0 : U⟨i0⟩ ∈ F0
}
+1 and

γ̃(⟨F0⟩) =
∧

i0∈m0

U⟨i0⟩.

If then BOB chooses F1 ⊂
∧

i0∈m0
U⟨i0⟩, let m1 = max

{
i1 : U⟨i0,i1⟩ ∈ F1

}
+1 and define

γ̃(⟨F0,F1⟩) =
∧

s∈m0×m1

Us.

In general, in the inning n ∈ ω ALICE plays

γ̃(⟨Fi : i < n⟩) =
∧

s∈∏i<n mi

Us
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and, as BOB chooses Fn ⊂
∧

s∈∏i<n mi
Us, we let mn = max

{
kn : Usakn

∈ Fn
}
+ 1 and then

ALICE responds with

γ̃(⟨Fi : i < n⟩aFn) =
∧

s∈∏i<n+1 mi

Us.

By Corollary 4.1.31, we get that BOB can win against γ̃ if he plays some sequence ⟨Fn : n ∈ ω⟩.

CLAIM 4.1.33. There are elements Vn ∈ Fn, with n ∈ ω , such that X =
⋃

n∈ω Vn.

Proof. For each k ∈ ω , let Wk be the family of all intersections of k+1 open sets taken from dif-
ferent elements from ⟨Fn : n ∈ ω⟩. Since ⟨Fn : n ∈ ω⟩ is a winning play for BOB in G′

fin(O,O),
each Wk is an open cover of X .

Considering S1(O,O) holds, we may pick for each k ∈ ω an open set Wk ∈ Wk so that
X =

⋃
k∈ω Wk.

Note that W0 ∈ Fn0 for some n0 ∈ ω . Also, we can expand W1 to an element of a family
Fn1 for some n1 ̸= n0 (since W1 is the intersection of two elements from two different families).
Similarly, we can expand W2 to an open set from a family Fn2 with n2 ̸= n0 and n2 ̸= n1 (since
W2 is the intersection of three elements from three different families).

Proceeding in this fashion, we have an open cover from picking at most one open set
from each of the elements of ⟨Fn : n ∈ ω⟩. Then we pick any open set from the remaining
elements (those we did not pick anything from) and this gives us what we wanted.

Now, for each n ∈ ω , fix a map θn : ∏i<n mi → mn such that

Vn =
⋂{

Usaθn(s) : s ∈ ∏
i<n

mi

}
,

and, finally, consider the sequence f ∈ ωω defined by f (n) = θn( f �n) for every n ∈ ω . Note
that Vn ⊂U f �(n+1), so the run

⟨U⟨⟩,U f �1,U f �1,U f �2,U f �2, . . .⟩

is compatible with γ and is won by BOB.

Now, in view of Theorems 4.1.2, 4.1.4 and 4.1.32, we can finally see that Question 2.3.13
translates to:

Question 4.1.34. Is there an uncountable Rothberger subspace of R?

Hence, considering Proposition 3.3.11, a consistent answer to Question 2.3.13 is YES.
More precisely:
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Corollary 4.1.35. CH implies the existence of a subset of R on which the point-open game is

undetermined.

But, as previously mentioned, we are actually dealing with an hypothesis independent
of ZFC. This will be clear in Section 5.2. For now, our objective is to show, with the help of
Theorem 4.1.32, how G1(O,O) relates to Gk(O,O), with k ≥ 2. With that in mind, consider the
following lemma.

Lemma 4.1.36. Given k ≥ 2, let σ be a strategy for BOB in Gk(O,O) on a Hausdorff space X.

Then, for every s ∈ <ωO , the set

Fs =
⋂

U ∈O

⋃
σ(saU )

has at most k points.

Proof. Striving for a contradiction, suppose x0, . . . ,xk are k+1 points in Fs. Since X is Hausdorff,
then there are pairwise disjoint open sets U0, . . . ,Uk such that xi ∈Ui for i ≤ k. Using the fact that
X is Hausdorff again, for each x ∈ X ∖{xi : i ≤ k}, let Ux be an open set disjoint from an open
neighborhood of {xi : i ≤ k} such that x ∈Ux. Since U = {Ux : x /∈ {xi : i ≤ k}}∪{Ui : i ≤ k}
is an open cover of X and σ(saU ) is a collection of at most k open sets of U , we conclude
that there must be an i ≤ k such that Ui /∈ σ(⟨U ⟩), which contradicts the assumption that
xi ∈ γ(⟨⟩).

Theorem 4.1.37 ([Crone et al. 2019]). Let X be a space and k ≥ 2. Then the following properties

are equivalent:

(A1) ALICE↑G1(O,O);

(A2) ALICE↑Gk(O,O).

Moreover, if X is Hausdorff, then the following properties are also equivalent:

(B1) BOB↑G1(O,O);

(B2) BOB↑Gk(O,O).

Proof. The implications

ALICE↑Gk(O,O) =⇒ ALICE↑G1(O,O)

BOB↑G1(O,O) =⇒ BOB↑Gk(O,O)

are clear.

Now, assume ALICE has a winning strategy in G1(O,O). Then, by Theorem 4.1.32,
there exists a sequence ⟨Un : n ∈ ω⟩ of open covers such that for every sequence ⟨Un : n ∈ ω⟩
with Un ∈ Un, X ̸=

⋃
n∈ω Un. We define a winning strategy for ALICE in Gk(O,O) as follows:
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∙ in the first inning, let
γ(⟨⟩) =

∧
i<k

Ui;

∙ if BOB chooses

F0 =

{⋂
i<k

V i
j : j < k

}
,

with V i
j ∈ Ui, set

γ(⟨F0⟩) =
∧

k≤i<2k

Ui;

∙ In general (that is, in the inning n+1), if BOB chose

Fn =

 ⋂
nk≤i<(n+1)k

V i
j : j < k

 ,

in the inning n ∈ ω , set

γ(⟨F j : j ≤ n⟩) =
∧

(n+1)k≤i<(n+2)k

Ui.

To see that this is a winning strategy, suppose a run ⟨Fn : n ∈ ω⟩ is played by BOB against
γ . Let Un = V n

n ∈ Un for each n ∈ ω . Then
⋃

n∈ω Un ⊃
⋃

n∈ω

⋃
Fn. Hence, considering that

⟨Un : n ∈ ω⟩ must not cover X , γ is a winning strategy.

Now, suppose X is a Hausdorff space and that BOB has a winning strategy σ in Gk(O,O)

over X . Then, by Propositions 4.0.3 and 3.3.2, X is Lindelöf. We will now define a strategy γ for
ALICE in the finite-open game in a way similar to what we did in the proof of Theorem 4.1.17’s
last implication:

First, let γ(⟨⟩) = F⟨⟩, with F⟨⟩ being as in Lemma 4.1.36 and then suppose V0 is BOB’s
response to γ(⟨⟩). Since γ(⟨⟩) ⊂ V0, then X ∖V0 ⊂ X ∖ γ(⟨⟩), so for each x ∈ X ∖V0 there is a
Ux ∈ O such that x /∈

⋃
σ(⟨Ux⟩) and therefore C =

{
X ∖

⋃
σ(⟨Ux⟩) : x ∈ X ∖V0

}
is an open

cover for X ∖V0. We have that X ∖V0 is Lindelöf, being a closed subset of a Lindelöf space, then C

must have a countable subcover, so we let, for each m∈ω , U⟨m⟩ be such that
{

X ∖
⋃

σ(⟨U⟨m⟩⟩)
}

is an open cover for X ∖V0.

Now, let { tn : n ∈ ω } be an enumeration of (<ωω)* = <ωω ∖ {⟨⟩} such that n ≤ m if
tn ⊂ tm. In this case, recall that:

CLAIM 4.1.38. For every n > 0 there is a k < n and an m ∈ ω such that tn = tak m.

Suppose we defined γ up until the inning n+1 (with n ∈ ω) and open covers Utak m for
all k ≤ n and m ∈ ω , which depend on the open sets played by BOB thus far (the case of the first
inning has already been dealt with above). Also, assume we have the following properties:

(1)
{

X ∖
⋃

σ(⟨Utk � i : 0 < i ≤ |tk|⟩aUtak m) : m ∈ ω

}
covers X ∖

⋃
j≤k Vj for every k ≤ n;
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(2) γ(⟨Vj : j ≤ k⟩) = F⟨Utk � i:0<i≤|tk|⟩ =
⋂

U ∈O
⋃

σ(⟨Utk � i : 0 < i ≤ |tk|⟩aU ) for every k ≤ n+

1.

Note that, by Lemma 4.1.36, γ(⟨V0, . . . ,Vj⟩) is, indeed, finite.

Since γ(⟨Vj : j ≤ n⟩)⊂Vn+1, then X ∖
⋃

j≤n+1Vj ⊂ X ∖ γ(⟨Vj : j ≤ n⟩), so for each x ∈
X ∖

⋃
j≤n+1Vj there is a Ux ∈ O such that

x /∈
⋃

σ(⟨Utn � i : 0 < i ≤ |tn|⟩aUx)

and therefore C =
{

X ∖
⋃

σ(⟨Utn � i : 0 < i ≤ |tn|⟩aUx) : x ∈ X ∖
⋃

j≤n+1Vj

}
is an open cover

for X ∖
⋃

j≤n+1Vj. We have that X ∖
⋃

j≤n+1Vj is Lindelöf, being a closed subset of a Lindelöf
space, then C must have a countable subcover and we may find a Utan m for each m ∈ ω such that{

X ∖
⋃

σ(⟨Utn � i : 0 < i ≤ |tn|⟩aUtan m) : m ∈ ω

}
is an open cover for X ∖

⋃
j≤n+1Vj. Hence, condition (1) is satisfied for k = n+1.

Now, suppose BOB responds with Vn+2 to γ(⟨Vj : j ≤ n+1⟩) in the inning n+2. Note
that, in view of Claim 4.1.38, tn+2 = tak m for some k ≤ n+1 and m ∈ ω , so U(tn+2)� i has already
been defined for every i ≤ |tn+2| (according to our recursion hypothesis). Then we may set

γ(⟨Vj : j ≤ n+2⟩) = F⟨Utn+2 � i:0<i≤|tn+2|⟩ =
⋂

U ∈O

⋃
σ(⟨Utn+2 � i : 0 < i ≤ |tn+2|⟩aU ).

Obviously, γ(⟨Vi : i ≤ n+2⟩) satisfies (2) and again, by Lemma 4.1.36, it is finite. Hence, our
recursion is complete

Now that γ is well defined with the desired properties, we will show that it is indeed a
winning strategy. In order to do that, let

⟨γ(⟨⟩),V0,γ(⟨V0⟩),V1,γ(⟨V0,V1⟩),V2 . . .⟩

be a run compatible with γ . Then we can recover the tree of open covers {Us : s ∈ (<ωω)* }
associated to this run that we defined along with γ . Striving for a contradiction, suppose ALICE

loses in this run, that is, that there exists an x ∈ X such that x ∈ X ∖
⋃

n∈ω Vn. In particular,
x ∈ X ∖V0 and we can use property (1) to find i0 ∈ ω such that x /∈

⋃
σ(⟨U⟨i0⟩⟩). Assume we have

found an i j ∈ω for each j < n with x /∈
⋃

σ(⟨U⟨i0⟩,U⟨i0,i1⟩, . . . ,U⟨i0,...,i j⟩⟩) for all j < n. Let k ∈ω

be such that tk = ⟨i j : j < n⟩. Then we use again property (1) and the fact that x ∈ X ∖
⋃

j≤k Vj to
obtain in ∈ ω such that x /∈

⋃
σ(⟨U⟨i0⟩,U⟨i0,i1⟩, . . . ,U⟨i0,...,in⟩⟩). We have just found a branch in a

subtree of σ witnessing that σ is not a winning strategy, a contradiction to our initial assumption.
Hence, γ is a winning strategy.

Corollary 4.1.39. Let k ∈ ω . Then G1(O,O) is equivalent to Gk(O,O) over the class of Haus-

dorff spaces.

Exercise 4.1.40. Complete the proof of Proposition 4.1.11.
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4.1.4 The Hurewicz game

We can also characterize Hurewicz spaces in terms of a topological game. This game
goes as follows:

Definition 4.1.41. We call the Hurewicz game the game on a space X in which for each inning
n ∈ ω:

∙ ALICE chooses an open cover Un for X ;

∙ BOB chooses a finite Fn ⊂ Un.

We then say that BOB wins if X =
⋃

n∈ω

⋂
k≥n (

⋃
Fk), as ALICE wins otherwise.

Theorem 4.1.42 ([Scheepers 1996]). Property Ufin(O,Γ) holds on a space X if, and only if,

ALICE has no winning strategy in the Hurewicz game.

Proof. Suppose X is a Hurewicz space and let γ be a strategy for ALICE in the Hurewicz game
(note that, since X is Hurewicz, we may assume that γ only plays with countable covers). We
associate to each t ∈ <ωω ∖{ /0} an open set Ut with the following recursion. First, define U⟨k⟩ in
such a way that γ(⟨⟩) =

{
U⟨k⟩ : k ∈ ω

}
. Now, suppose Ut is defined for all t ∈ <ωω ∖{ /0} such

that |t| ≤ n+ 1 and let s ∈ <ωω ∖ { /0} be such that |s| = n+ 1. Then we define Usak in such a
way that

γ(⟨
{

U⟨k⟩ : k ≤ s(0)
}
, . . . ,

{
U(s�n−1)ak : k ≤ s(n)

}
⟩) = {Usak : k ∈ ω } .

Since X is Hurewicz, we can find for every t ∈ <ωω an mt ∈ ω such that by letting Ft =

{Utak : k ≤ mt }, each point of the space is in all but finitely many of the open sets of the open
cover {

⋃
Ft : t ∈ <ωω }. Now, consider the sequence ⟨kn : n ∈ ω⟩ recursively defined as follows:

kn = m⟨kl :l<n⟩.

Clearly, BOB wins against γ by playing in each inning n ∈ ω with
{

U⟨kl :l<n⟩ak : k ≤ kn

}
, hence

γ is not a winning strategy.

We let the other implication as an exercise to the reader (see 4.1.43).

Exercise 4.1.43. Show that if ALICE has no winning strategy in the Hurewicz game on a space
X , then Ufin(O,Γ) holds over X .

4.1.5 The Alster game

Definition 4.1.44. Given a space X , the Alster game is the game denoted by G1(Kδ ,Oδ ), that
is, the game in which, in each inning n ∈ ω ,



88 Chapter 4. The associated selective games

∙ ALICE chooses an Alster cover Un;

∙ BOB responds with Gn ∈ Un,

BOB wins if
⋃

n∈ω Gn = X and ALICE wins otherwise.

Immediately, we get:

Proposition 4.1.45. If ALICE̸↑G1(Kδ ,Oδ ) on a space X, then X is Alster.

Proof. This follows directly from Propositions 4.0.3 and 3.3.30.

Whether the inverse implication of Proposition 4.1.45 holds (like for Rothberger or
Menger spaces) or not, it remains unknown. But we can find a duality analogous to the one
between G1(O,O) and the point-open game:

Definition 4.1.46. Given a space X , the compact-Gδ game is the game in which, in each inning
n ∈ ω ,

∙ ALICE chooses a compact Kn ⊂ X ;

∙ BOB responds with a Gδ Gn ⊃ Kn,

ALICE wins if
⋃

n∈ω Gn = X and BOB wins otherwise.

Theorem 4.1.47. The Alster and the compact-Gδ games are dual.

What is surprising, though, is that, for ALICE, having a winning strategy in the compact-
Gδ game or in the compact-open game makes no difference:

Theorem 4.1.48 ([Telgársky 1983]). On every space X, ALICE has a winning strategy in the

compact-open game if, and only if, ALICE has a winning strategy in the compact-Gδ game.

Proof. Clearly, if ALICE has a winning strategy γ in the compact-Gδ game, then a restriction of
γ works as a winning strategy in the compact-open game.

So, suppose γ is a winning strategy for ALICE in the compact-open game. We define a
winning strategy γ̃ for ALICE in the compact-Gδ , again, using some ideas from the proof of the
last implication of Theorem 4.1.23:

First, set γ̃(⟨⟩)= γ(⟨⟩). If BOB then responds with a Gδ set G0 ⊃ γ̃(⟨⟩), let
{

V⟨m⟩ : m ∈ ω
}

be such that each V⟨m⟩ is open and G0 =
⋂

m∈ω V⟨m⟩.

Now, let { tn : n ∈ ω } be an enumeration of (<ωω)* = <ωω ∖ {⟨⟩} such that n ≤ m if
tn ⊂ tm. Once again, recall that:

CLAIM 4.1.49. For every n > 0 there is a k < n and an m ∈ ω such that tn = tak m.
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Suppose we defined γ̃ up until the inning n+1 (with n ∈ ω) and open sets Vtak m for all
k ≤ n and m ∈ ω , which depend on the Gδ sets played by BOB thus far (the case of the first
inning has already been dealt with above). Also, assume we have the following properties:

(1) Gk =
⋂

m∈ω Vtak m for every k ≤ n;

(2) γ̃(⟨G j : j ≤ k⟩) = γ(⟨Vtk � i : 0 < i ≤ |tk|⟩) for every k ≤ n+1.

Considering Gn+1 is a Gδ set, we may find for each m ∈ ω an open Vtan m such that

Gn+1 =
⋂

m∈ω

Vtan m.

Hence, condition (1) is satisfied for k = n+1.

Now, suppose BOB responds with Gn+2 to γ̃(⟨G j : j ≤ n+1⟩) in the inning n+2. Note
that, in view of Claim 4.1.49, tn+2 = tak m for some k ≤ n+1 and m ∈ ω , so V(tn+2)� i has already
been defined for every 0 < i ≤ |tn+2| (according to our recursion hypothesis). Then we may set

γ̃(⟨G j : j ≤ n+2⟩) = γ(⟨Vtn+2 � i : 0 < i ≤ |tn+2|⟩).

Obviously, γ̃(⟨Gi : i ≤ n+2⟩) satisfies (2) for k = n+2 and, hence, our recursion is complete.

Now that γ̃ is well defined with the desired properties, we will show that it is indeed a
winning strategy. In order to do that, let

⟨γ̃(⟨⟩),G0, γ̃(⟨G0⟩),G1, γ̃(⟨G0,G1⟩),G2 . . .⟩

be a run compatible with γ̃ . Then we can recover the tree of open sets {Vs : s ∈ (<ωω)* }
associated to this run that we defined along with γ̃ . Striving for a contradiction, suppose ALICE

loses in this run, that is, that there exists an x ∈ X such that x ∈ X ∖
⋃

n∈ω Gn. In particular,
x ∈ X ∖G0 and we can use property (1) to find i0 ∈ ω such that x /∈V⟨i0⟩. Assume we have found
an i j ∈ ω for each j < n with x /∈V⟨i0,...,i j⟩ for all j < n. Let k ∈ ω be such that tk = ⟨i j : j < n⟩.
Then we use again property (1) and the fact that x ∈ X ∖

⋃
j≤k G j to obtain in ∈ ω such that

x /∈ V⟨i0,...,in⟩. We have just found a branch in a subtree of γ attesting that γ is not a winning
strategy, a contradiction to our initial assumption. Hence, γ̃ is a winning strategy.

Corollary 4.1.50. If X is a regular space, then the following properties are equivalent:

(a) BOB↑Gfin(O,O);

(b) ALICE has a winning strategy in the compact-open game;

(c) ALICE has a winning strategy in the compact-Gδ game;
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(d) BOB↑G1(A ,Oδ ).

Proof. (a) is equivalent to (b) by Theorem 4.1.23 (we use regularity here), (b) is equivalent to (c)
by Theorem 4.1.48 and (c) is equivalent to (d) by Theorem 4.1.47.

Corollary 4.1.51. If X is a compact-like space, then X is an Alster space.

Corollary 4.1.52. If X is a regular space such that BOB↑Gfin(O,O), then X is an Alster space.

Proof. This follows from Theorem 4.1.23 and Corollary 4.1.51.

4.2 Closure games

We have discussed a bit of closure-related selection principles in Section 3.2 – so it only
makes sense to take a look at its game-counterparts, so given a space X and x ∈ X , recall that Ωx

denote the family of all subsets of X that contains x in its closure. We can therefore define the
games G1(Ωx,Ωx), Gk(Ωx,Ωx) and Gfin(Ωx,Ωx):

Example 4.2.1. We remind the reader that G1(Ωx,Ωx) denotes the game in which in each inning
n ∈ ω , ALICE chooses An ∈ Ωx so that BOB responds with xn ∈ An, and BOB wins if ⟨xn : n ∈ ω⟩
has x in its closure (ALICE wins otherwise).

Example 4.2.2. Given k ≥ 2, recall that Gk(Ωx,Ωx) denotes the game in which in each inning
n ∈ ω ,ALICE chooses An ∈ Ωx so that BOB responds with Fn ⊂ An with at most k points, and
BOB wins if

⋃
n∈ω Fn has x in its closure (ALICE wins otherwise).

Example 4.2.3. Recall that Gfin(Ωx,Ωx) denotes the game in which in each inning n ∈ ω ,ALICE

chooses An ∈ Ωx so that BOB responds with a finite Fn ⊂ An, and BOB wins if
⋃

n∈ω Fn has x in
its closure (ALICE wins otherwise).

Examples 4.2.1, 4.2.2 and 4.2.3 are called tightness games.

For now, we will be focusing on Gk(Ωx,Ωx) and G1(Ωx,Ωx). In Section 3.2 we had
shown that S1(Ωx,Ωx) and Sk(Ωx,Ωx) are the same property. Remarkably, the same thing cannot
be said about their respective games. To show this, consider the following example:

Example 4.2.4 ([Scheepers 1997]). Consider <ωω with the discrete topology and let X =
<ωω ∪ {p} with open neighborhoods of p being the entire space, except for finitely many
branches of <ωω . We then have:

Proposition 4.2.5 ([Scheepers 1997]). ALICE↑G1(Ωx,Ωx)

Proof. Consider the following strategy γ for ALICE:
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∙ In the first inning, let γ(⟨⟩) = {⟨n⟩ : n ∈ ω };

∙ if BOB chooses ⟨m0⟩, then let γ(⟨⟨m0⟩⟩) =
{
⟨m0⟩an : n ∈ ω

}
in the next inning;

∙ if BOB chooses ⟨m0,m1⟩, then let γ(⟨m0,m1⟩) =
{
⟨m0,m1⟩an : n ∈ ω

}
next;

∙ and so on.

In this case, the collection of BOB’s moves will be a branch of <ωω and clearly x is not be in the
closure of a single branch.

Proposition 4.2.6 ([7]). BOB↑G2(Ωx,Ωx)

Proof. We will consider that ALICE chooses only subsets of <ωω (otherwise, if ALICE chooses
a subset containing p, then BOB can choose p and trivially win).

In this case, consider the following strategy σ for BOB:

∙ If in the first inning ALICE chooses A0 ⊂ <ωω , then (since x is in the closure of A0) there
must be s1,s2 ∈ A such that s1 ⊥ s2, so let σ(⟨A0⟩) = F0 = {s1,s2 };

∙ We say that σ can be constructed in such a way that for every inning n ∈ ω , there will be
n+1 pairwise incompatible elements in

⋃
i≤n Fi. Suppose we constructed σ as desired for

every i ≤ n, let An+1 be ALICE’s move in the inning n+1 and Bn ⊂
⋃

i≤n Fi be as in the
induction hypothesis. We have two cases to consider:

– If there is an s ∈ An+1 such that s ⊥ t for all t ∈ Bn, then set σ(⟨Ai : i ≤ n⟩aAn+1) =

Fn+1, for every Fn+1 ⊂ An+1 with s ∈ Fn+1 and we have the wished result.

– Otherwise, there must be t ∈ Bn such that there exist s1,s2 ∈ An+1 with s1 ⊥ s2

and s1,s2 ≤ t. In this case, set σ(⟨Ai : i ≤ n⟩aAn+1) = Fn+1 = {s1,s2 } and Bn+1 =

(Bn ∖{ t })∪{s1,s2 } gives us what we need.

Finally, note that
⋃

n∈ω Bn ⊂
⋃

n∈ω Fn has p in its closure, as intended.

In fact, we have the following more general result:

Proposition 4.2.7 ([7]). For each k ∈N there is a countable space Xk with only one non-isolated

point pk on which ALICE↑Gk(Ωpk ,Ωpk) and BOB↑Gk+1(Ωpk ,Ωpk).

This is already in great discrepancy with what we have seen in Theorem 4.1.37. But we
get yet another divergence as a corollary of Example 4.2.4:

Corollary 4.2.8. Property S1(Ωx,Ωx) does not imply that ALICE̸↑G1(Ωx,Ωx), in general.
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Proof. If we consider the space X from Example 4.2.4, note that S2(Ωx,Ωx) holds over it, which
implies (in view of Proposition 3.2.5) that S1(Ωx,Ωx) also holds. However, ALICE↑G1(Ωx,Ωx)

over X .

Now let us further study G1(Ωx,Ωx). As usual, we start by looking at some dual candidate:

Definition 4.2.9. Given a space X and x ∈ X we call the neighborhood-point game at x the
following game. In each inning n ∈ ω , ALICE chooses an open neighborhood Vn of x and BOB

responds with xn ∈Vn. Then the winner is ALICE if {xn : n ∈ ω } ∈ Ωx (otherwise, BOB wins).

We will see in Theorem 4.2.11 that the neighborhood-point game is, indeed, dual to
G1(Ωx,Ωx). The proof of this duality is similar to the proof of the point-open and G1(O,O)’s
duality:

Lemma 4.2.10. Let σ be a strategy for BOB in G1(Ωx,Ωx). Then for every s ∈ <ωΩx there is an

open set Vs with x ∈Vs such that for every y ∈Vs ∖{x} there is an Ay ∈ Ωx such that σ(saAy) = y.

Proof. Consider B =
{

y ∈ X : σ(saA) ̸= y for all A ∈ Ωx
}

. Then B ̸∈ Ωx, so there is an open
set Vs with x ∈Vs such that Vs ∩B = /0. It follows from the definition of B that Vs has the desired
property.

Theorem 4.2.11. The games G1(Ωx,Ωx) and the neighborhood-point game are dual.

Proof. Suppose γ is a winning strategy for ALICE in the neighborhood-point game. We construct
σ as the following strategy for BOB in G1(Ωx,Ωx):

∙ in the first inning, if ALICE chooses A0, set σ(⟨A0⟩) = x0 ∈ A0 ∩ γ(⟨⟩);

∙ In general (that is, in the inning n ∈ ω), set σ(⟨A0, . . . ,An⟩) = xn ∈ An ∩ γ(⟨x0, . . . ,xn−1⟩).

It follows from the fact that γ is a winning strategy that x ∈ {xn : n ∈ ω }, hence, σ is a winning
strategy.

Now, assume that γ is a winning strategy for ALICE in G1(Ωx,Ωx). Set σ as a strategy
for BOB in the neighborhood-point game as follows:

∙ if ALICE chooses V0 in the first inning, let σ(⟨V0⟩) = x0 ∈V0 ∩ γ(⟨⟩);

∙ In general, set σ(⟨V0, . . . ,Vn⟩) = xn ∈Vn ∩ γ(⟨V0, . . . ,Vn−1⟩).

It follows from the fact that γ is a winning strategy that x ̸∈ {xn : n ∈ ω }, hence, σ is a winning
strategy.

Now, suppose that σ is a winning strategy for BOB in the neighborhood-point game. Note
that if s is a sequence of open neighborhoods of x, then x∈

{
σ(saV ) : V open neighborhood of x

}



4.2. Closure games 93

(in fact, this is true regardless of σ being a winning strategy). Then let γ be the following strategy
for ALICE in G1(Ωx,Ωx):

∙ in the first inning, let

γ(⟨⟩) = {σ(⟨V ⟩) : V open neighborhood of x}

and, if BOB responds with x0 ∈ γ(⟨⟩), let V0 be the open neighborhood of x such that
σ(⟨V0⟩) = x0

∙ In general, set

γ(⟨x0, . . . ,xn⟩) =
{

σ(⟨V0, . . . ,Vn⟩aV ) : V open neighborhood of x
}
,

with each Vk being such that xk = σ(⟨V0, . . . ,Vk⟩).

Since γ forces BOB to play in G1(Ωx,Ωx) with a run σ would play in the neighborhood-point
game, it is indeed a winning strategy.

Finally, assume that σ is a winning strategy for BOB in G1(Ωx,Ωx). We define γ as the
following strategy for ALICE in the neighborhood-point game (without loss of generality, we
will assume that BOB never chooses x):

∙ In the first inning, let γ(⟨⟩) =V⟨⟩, with V⟨⟩ being as in Lemma 4.2.10 for s = ⟨⟩. If BOB

responds with x0 ∈V⟨⟩, we let Ax0 be as in Lemma 4.2.10;

∙ in the next inning, set γ(⟨x0⟩) =V⟨Ax0⟩
. If BOB responds with x1 ∈V⟨Ax0⟩

, we let Ax1 be as
in Lemma 4.2.10;

∙ in the next inning, set γ(⟨x0,x1⟩) =V⟨Ax0 ,Ax1⟩
. If BOB responds with x2 ∈V⟨Ax0 ,Ax1⟩

, we let
Ax2 be as in Lemma 4.2.10;

∙ and so on.

Since γ forces BOB to play in the neighborhood-point game with a run σ would play in
G1(Ωx,Ωx), it is indeed a winning strategy.

We also get a result analogous to Theorem 4.1.4:

Theorem 4.2.12 ([Gruenhage 1976]). If X is a separable regular space and x ∈ X is such that

BOB↑G1(Ωx,Ωx), then X is first countable at x.

Proof. Let D be a countable dense subset of X and γ a winning strategy or ALICE in the
neighborhood-point game (whose existence is assured by Theorem 4.2.11).
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We now consider every run played with γ such that BOB chooses points from D. We let
B be the collection of open sets played by γ in these specific runs. Because D is countable, B is
countable.

To see that this is a local base for X at p we use regularity: suppose, striving for a
contradiction, that there is an open set V such that B ̸⊂V for all B ∈ B. By regularity, there is
an open set W such that p ∈W ⊂W ⊂V . Then B ̸⊂W for all B ∈ B, which is a contradiction.
Indeed, as ALICE plays any B ∈ B, BOB can pick x ∈ B∖W and BOB will win the run, since
every single point he picks is in the complement of W .

One may wonder whether changing condition “{xn : n ∈ ω } ∈ Ωx” to a stronger version
“⟨xn : n ∈ ω⟩ converges to x” makes a difference in terms of the players having (or not having)
winning strategies. Indeed, this is a well known game presented by Gruenhage:

Definition 4.2.13. Given a space X and p ∈ X we call the neighborhood-point convergence
game at p the following game. In each inning n ∈ ω , ALICE chooses an open neighborhood Vn

of p and BOB responds with xn ∈Vn. Then the winner is ALICE if ⟨xn : n ∈ ω⟩ converges to x

(otherwise, BOB wins).

Surprisingly, this modification makes no difference for ALICE (regarding her having a
winning strategy or not):

Theorem 4.2.14 ([Gruenhage 1976]). ALICE has a winning strategy in the neighborhood-point

game at x ∈ X if, and, only if, ALICE has a winning strategy in the neighborhood-point conver-

gence game at x.

Proof. This proof will follow the steps of Theorem 2.3.16’s proof:

Let γ be a winning strategy for ALICE in the neighborhood-point game at x. Then we
define a strategy γ̃ for ALICE in the neighborhood-point convergence game at x as follows.

∙ First, we let
γ̃(⟨⟩) = γ(⟨⟩);

∙ If BOB chooses x0 ∈ γ̃(⟨⟩), we let

γ̃(⟨x0⟩) = γ(⟨⟩)∩ γ(⟨x0⟩);

∙ If BOB chooses x1 ∈ γ̃(⟨x0⟩), we let

γ̃(⟨x0,x1⟩) = γ(⟨⟩)∩ γ(⟨x0⟩)∩ γ(⟨x1⟩)∩ γ(⟨x0,x1⟩);

∙ In general, if BOB chooses xn ∈ γ̃(⟨xi : i < n⟩) we let S be the (finite) collection of subse-
quences of ⟨xi : i ≤ n⟩ and then

γ̃(⟨xi : i < n⟩axn) =
⋂
s∈S

γ(s).



4.2. Closure games 95

Striving for a contradiction, suppose there is a possible sequence ⟨xn : n ∈ ω⟩ played by BOB

against γ̃ such that there is an an open neighborhood V of p and an infinite I ⊂ ω with xi ̸∈V

for every i ∈ I. Fix an increasing enumeration I = { ik : k ∈ ω }. Then because of the way we
constructed γ̃ , the sequence ⟨xik : k ∈ ω⟩ can be played against γ . But this contradicts the fact
that γ is a winning strategy in the neighborhood-point game at p.

The other implication is trivial.

For BOB, on the other hand, it might be easier to have a winning strategy in the
neighborhood-point convergence game. The following result illustrates this:

Proposition 4.2.15 ([Gruenhage 2006]). There is a countable space X with only one non-

isolated point x such that BOB has a winning strategy in the neighborhood-point convergence

game at x, but BOB has no winning strategy in the neighborhood-point game at x.

Later on we will show that G1(Ωx,Ωx) is related to productively countably tight spaces.
Now, we move on to another closure-related game: recall that D denotes the family of all dense
subsets of a given space X . Immediately, we get that:

Proposition 4.2.16. If ALICE has no winning strategy in Gfin(D,D) over X, then X is separable.

Proof. Suppose X is not separable. If ALICE plays with X in every inning, then BOB has just no
chance of winning against this strategy.

The concept of π-basis is also related to G1(D,D):

Definition 4.2.17. Let X be a space. Then B is a πππ-basis if for every nonempty open set V ⊂ X

there is a nonempty B ∈ B such that B ⊂V .

Proposition 4.2.18. If a space X has countable π-basis, then BOB has a winning strategy in

G1(D,D) over X.

Proof. Let B = Bn : n ∈ ω be a π-basis for a space X . Then, for each Dn dense played by ALICE,
BOB can pick dn ∈ Dn ∩Bn and it is, then, easy to see that {dn : n ∈ ω } will be dense in X .

But also, following the steps we made with G1(Ωx,Ωx) we can also obtain a dual game
analogously:

Definition 4.2.19. Given a space X we call the open-point game the following game. In each
inning n ∈ ω , ALICE chooses an open set Vn and BOB responds with xn ∈Vn. Then the winner
is ALICE if {xn : n ∈ ω } is dense in X and BOB otherwise.

Theorem 4.2.20. The games G1(D,D) and the open-point game are dual.
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Exercise 4.2.21. Given a space X and x ∈ X , we say A ∈ Ωx is nontrivial if x ̸∈ {y} for every
y ∈ A.

In this case, show that if BOB↑G1(Ωx,Ωx), then for every nontrivial A ∈ Ωx there is an
infinite B ⊂ A such that C ∈ Ωx for every infinite C ⊂ B.

Hint: Use Theorems 4.2.11 and 4.2.14.

Exercise 4.2.22. Write the details of Theorem 4.2.20’s proof.
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CHAPTER

5
SOME CONNECTIONS AND APPLICATIONS

5.1 The Banach-Mazur game and Baire spaces
In the Banach-Mazur game’s introduction it was mentioned that this game is connected

to the Baire Category Theorem – we dedicate this section to establish and explore this connection.
We start by recalling what a Baire space is:

Definition 5.1.1. We say a space X is a Baire space if for every countable family A of dense
open sets of X ,

⋂
A is dense on X .

Note that if X is a Baire space, then every open set U ⊂ X is a Baire space. This will
help us characterize such spaces:

Theorem 5.1.2 ([Oxtoby 1957]). A space X is a Baire space if, and only if, ALICE̸↑BM(X).

Proof. Suppose X is not a Baire space and let {An : n ∈ ω } be a countable family of dense
open sets such that there is an open set U0 with

⋂
n∈ω An ∩U0 = /0. Then consider the following

strategy γ for ALICE in BM(X):

∙ First, let γ(⟨⟩) =U0;

∙ Then if V0 is BOB’s first response, V0∩A0 ⊂V0 is not empty and therefore γ(⟨V0⟩)=V0∩A0

is a valid reply for ALICE in the next inning;

∙ In the inning n ∈ N, if BOB played with ⟨Vi : i < n⟩ thus far, set γ(⟨Vi : i < n⟩) =Vn−1 ∩
An−1 (again, this is a valid move because An−1 is open and dense).

Note that
⋂

n∈ω Vn ⊂
⋂

n∈ω An ∩U0 = /0. Hence, γ is a winning strategy.

On the other hand, suppose X is a Baire space and let γ be a strategy for ALICE in
BM(X). We define S ⊂ dom(σ) with the following recursion:
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(1) ⟨⟩ ∈ S;

(2) If s ∈ S, then let Bs =
{

V : saV ∈ S
}

be a maximal family (obtained with the Kuratowski-
Zorn Lemma or transfinite recursion) such that

{
γ(saV ) : V ∈ Bs

}
is pairwise disjoint.

Now, let Bn = {s ∈ S : |s|= n} and then, for each n ∈ ω ,

An =
⋃

s∈Bn

γ(s).

CLAIM 5.1.3. For every n ∈ ω , An is dense in A0 = γ(⟨⟩).

Proof. It suffices to show that An+1 is dense in An for every n ∈ ω , so fix n ∈ ω and let A ⊂ An

be a non-empty open set. Then A∩ γ(s) ̸= /0 for some s ∈ Bn. Note that, by maximality of Bs,⋃
V∈Bs

γ(saV ) is dense in γ(s), so there must be a V ∈ Bs such that A∩ γ(saV ) ̸= /0. Since
saV ∈ Bn+1, A∩An+1 ̸= /0.

Since X is a Baire space, so is A0, then let x ∈
⋂

n∈ω An. Because x ∈ A0, x ∈ γ(⟨⟩). Also,
since x ∈ A1 and

{
γ(⟨V ⟩) : V ∈ B⟨⟩

}
is pairwise disjoint, there must be a unique V0 ∈ B⟨⟩ such

that x ∈ γ(⟨V0⟩). Again, since x ∈ A1 and
{

γ(⟨V0,V ⟩) : V ∈ B⟨V0⟩
}

is pairwise disjoint, there
must be a unique V1 ∈ B⟨V0⟩ such that x ∈ γ(⟨V0,V1⟩). By proceeding in this manner we find a
sequence ⟨Vn : n ∈ ω⟩ of open sets such that ⟨Vi : i ≤ k⟩ ∈ S ⊂ dom(γ) and x ∈ γ(⟨Vi : i ≤ k⟩) for
every k ∈ ω , which means that γ is not a winning strategy.

Now let us examine the characterization given by Theorem 5.1.2 a bit further. Immedi-
ately, we get as corollaries:

Corollary 5.1.4. If X is a nonempty space such that BOB↑BM(X), then X is a Baire space.

Corollary 5.1.5. If X is a complete metric space, then X is Baire.

Proof. Recall that in Example 2.5.2 it was shown that BOB↑BM(X).

Corollary 5.1.6. If X is the space of irrational numbers, than X is Baire.

Proof. Recall that in Example 2.5.3 it was shown that BOB↑BM(X).

Corollary 5.1.7. Rl is Baire.

Proof. Recall that in Example 2.5.7 it was shown that BOB↑BM(Rl).

Corollary 5.1.8. If K is a compact Hausdorff space, then K is Baire.

Proof. Recall that in Example 2.5.9 it was shown that BOB↑BM(X).
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We have already seen in Proposition 2.5.13 that the Banach-Mazur game is undetermined,
hence, the inverse implication of Corollary 5.1.4 does not hold. As a matter of fact, BOB having
a winning strategy in the Banach-Mazur game is connected to a property that is strictly stronger
than that of Baire spaces:

Definition 5.1.9. We say a Baire space X is productively Baire if, for every Baire space Y ,
X ×Y is also a Baire space.

Theorem 5.1.10. Let X be a space. If BOB has a winning strategy in BM(X) then X is produc-

tively Baire.

Proof. Let σ be a winning strategy for BOB in BM(X) and suppose that there is a space Y such
that X ×Y is not Baire. We will show that Y must not be Baire.

By Theorem 5.1.2, ALICE has a winning strategy γ in BM(X ×Y ). Note that we may
assume that γ plays only with boxes (basic open sets). Now we can construct a winning strategy
γ̃ for ALICE in BM(Y ) as follows:

∙ In the first inning, set γ̃(⟨⟩) = B0, with B0 being such that γ(⟨⟩) = A0 ×B0;

∙ When BOB responds with V0, set γ̃(⟨V0⟩)=B1, with B1 being such that γ(⟨σ(⟨A0⟩)×V0⟩)=
A1 ×B1;

∙ If BOB then chooses V1, set γ̃(⟨V0,V1⟩)=B2, with B2 being such that γ(⟨σ(⟨A0⟩)×V0⟩,σ(⟨A1⟩)×
V1) = A2 ×B2;

∙ and so on.

Since γ is a winning strategy for ALICE in BM(X ×Y ),

/0 =
⋂

n∈ω

Vn ×σ(⟨B0, . . . ,Bn⟩) =
⋂

n∈ω

Vn ×
⋂

n∈ω

σ(⟨B0, . . . ,Bn⟩).

But, since σ for BOB in BM(X), ⋂
n∈ω

σ(⟨B0, . . . ,Bn⟩) ̸= /0,

so
⋂

n∈ω Vn = /0 and, therefore, γ̃ , is a winning strategy.

Indeed, it was shown in [Cohen 1976] that there is even a Baire metric space X whose
power X2 is not Baire – which provides us yet another example of space on which the Banach-
Mazur game is undetermined. Finally, Theorem 5.1.10 allows us to find some examples of
productively Baire spaces:

Corollary 5.1.11. If X is a complete metric space, then X is productively Baire.

Corollary 5.1.12. Rl is productively Baire.

Corollary 5.1.13. If K is a compact Hausdorff space, then K is productively Baire.
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5.2 The Rothberger game and Measure Theory
In this section we examine how measure behaves on Rothberger spaces and, finally, give

a definitive answer to question 2.3.13. We start with the concept of strong measure zero.

5.2.1 Strong measure zero

Definition 5.2.1. A metric space ⟨X ,d⟩ has strong measure zero if for every sequence of
positive numbers ⟨εn : n ∈ ω⟩ there is a sequence ⟨In : n ∈ ω⟩ of subsets of X such that X =⋃

n∈ω In and, for each n ∈ ω , diam(In)< εn.

Example 5.2.2. Clearly, every countable metric space has strong measure zero.

Example 5.2.3. Every open interval I ⊂ R does not have strong measure zero. Indeed, consider
a,b ∈ R with a < b and let M = b−a (which is the Lebesgue measure of I =]a,b[). Then, for
each n ∈ ω , set εn =

M
2n+1 . Note that for every sequence ⟨In : n ∈ ω⟩ of subsets of I such that, for

each n ∈ ω , diam(In)< εn, the Lebesgue measure of
⋃

n∈ω In is at most M/2, which is strictly
smaller then M. Hence,

⋃
n∈ω In ̸= I.

In view of Examples 5.2.2 and 5.2.3 one may wonder whether there is an uncountable
subset of the real line with strong measure zero. Borel’s conjecture deals with this question:

Conjecture 5.2.4 (Borel’s Conjecture). Every strong measure zero subset of the real line is
countable.

As it turns out, Conjecture 5.2.4 is independent of ZFC! And this conjecture will allow
us to answer Question 2.3.13. But first, let us show some preliminary results:

Theorem 5.2.5. If ⟨X ,d⟩ is a metric space with strong measure zero, then X is zero-dimensional.

Proof. Fix x ∈ X and ε > 0. Let f : X → R≥0 be such that f (y) = d(x,y).

CLAIM 5.2.6. f [X ] has strong measure zero.

Proof. Let ⟨εn : n ∈ ω⟩ be a sequence of positive numbers and let ⟨In : n ∈ ω⟩ be a sequence of
subsets of X such that X =

⋃
n∈ω In and diam(In) < εn for each n ∈ ω . It is clear that f [X ] =⋃

n∈ω f [In], so the result follows from the fact that

| f (y)− f (y′)|= |d(x,y)−d(x,y′)| ≤ d(y,y′),

which implies that diam( f [In])< εn.

Now, since f [X ] has strong measure zero, it follows from Example 5.2.3 that there is a
δ ∈]0,ε[ such that f (y) ̸= δ for all y ∈ X . We conclude the proof by observing that

f−1([0,δ [) = f−1([0,δ ])⊂ Bε(x).
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Theorem 5.2.7. If ⟨X ,d⟩ is a metric space with strong measure zero, then X is separable.

Proof. Since X has strong measure zero, for each k ∈ N there is a sequence ⟨B1/k(xk
n) : n ∈ N⟩

such that X =
⋃

n∈NB1/k(xk
n). We claim that

{
xk

n : n,k ∈ N
}

is a dense subset of X . Indeed, let
Bε(x) be an arbitrary open ball in X . Then there is a k0 ∈ N such that 1/k0 < ε/2. On the other
hand, since X =

⋃
n∈NB1/k0(x

k0
n ), there is an n0 ∈ N such that x ∈ B1/k0(x

k0
n0). It follows that

xk0
n0 ∈ Bε(x), which concludes the proof.

Now we can finally present the connection between the strong measure zero property
and S1(O,O):

Theorem 5.2.8 ([Miller and Fremlin 1988]). Let X be a metrizable space. Then X is Rothberger

if, and only if, ⟨X ,d⟩ has strong measure zero for every metric d which generates X’s topology.

Proof. Suppose X is Rothberger, let d be a metric which generates X’s topology and ⟨εn : n ∈ ω⟩
be a sequence of positive numbers. For each n ∈ ω , let

Un =
{

Bεn/2(x) : x ∈ X
}
.

Then, since X is Rothberger, there is an xn ∈ X for each n ∈ ω such that X =
⋃

n∈ω Bεn/2(xn),
which concludes the proof of the first implication.

Now, suppose ⟨X ,d⟩ has strong measure zero for every metric d which generates X’s
topology. Note that, by Theorems 5.2.5 and 5.2.7, X is zero-dimensional and separable. Let
⟨Un : n ∈ ω⟩ be a sequence of open covers and fix a metric d which generates X’s topology.
Since X is zero-dimensional, we may assume every element of Un is clopen for all n ∈ ω . In
this case, since X is separable, we may assume Un =

{
Uk

n : k ∈ ω
}

is a disjoint collection of
clopen sets such that diamd(Uk

n ) < 1/n+1 for all k ∈ ω . By taking common refinements we
may assume, at last, that Un+1 refines Un.

Note that, with all of these assumptions, B =
⋃

n∈ω Un is a basis for X . Then let d′ : X ×
X → R≥0 be such that d′(x,y) = 1

n+1 with n being the minimal natural number such that there is
a k ∈ ω with x ∈Uk

n and y ̸∈Uk
n .

CLAIM 5.2.9. d′ is a metric that generates X’s topology.

Proof. It is clear that d′(x,y) = d′(y,x) for all x,y ∈ X . Also, since diamd(Uk
n ) <

1
n+1 for all

k,n∈ω , it is clear that d′(x,y) = 0 if, and only if, x= y. It remains to prove the triangle inequality,
so let x,y,z ∈ X . Let n0 be such that d′(x,y) = 1

n0+1 and let Ux
n0

and Uy
n0 be the disjoint clopen

sets from Un0 that contains x and y, respectively. We have two possible cases here:

∙ if z ̸∈Ux
n0

nor z ̸∈Uy
n0 , then d′(x,z),d′(z,y)> d′(x,y), which implies the triangle inequality

for this case.
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∙ otherwise, if z ∈ Ux
n0

(or z ∈ Uy
n0), then d′(z,y) ≥ d′(x,y) (or d′(x,z) ≥ d′(x,y)), which

again implies the triangle inequality.

It follows that d′ is a metric.

Now, given x ∈ X and ε > 0, let Bd′
ε (x) denote the open ball centered in x with radius

ε with respect to d′. Then note that, for each n ∈ ω , Bd′
1

n+1
(x) =Uk

n , with k ∈ ω being such that

x ∈Uk
n , which shows that d′ generates X’s topology.

In this case, let diamd′ : X → R≥0 ∪{∞} be such that diamd′(A) denotes the diameter
of A with respect to d′. Note that ⟨ 1

n+2 : n ∈ ω⟩ is a sequence of positive numbers, so there
is a sequence ⟨In : n ∈ ω⟩ of subsets of X such that X =

⋃
n∈ω In and diamd′(In) <

1
n+2 for all

n ∈ ω . Note that, because diamd′(In) <
1

n+2 , In ⊂ Ukn
n for some kn ∈ ω . Then it follows that

X =
⋃

n∈ω Ukn
n , which concludes the proof.

Note that Theorem 5.2.8 gives us, in particular:

Corollary 5.2.10. If X is a metrizable Rothberger space, then X has strong measure zero.

Hence:

Corollary 5.2.11. If Borel’s conjecture holds, then every metrizable Rothberger space is count-

able.

So we conclude, in view of Corollaries 4.1.35 and 5.2.11, that the answer to Question
2.3.13 is independent of ZFC (since, as already remarked, this question is translated to Question
3.3.10).

5.2.2 Purely atomic measures

Now, let us explore how regular, σ -finite Borel measures operate in regular Rothberger
spaces. First, consider the following concept:

Definition 5.2.12. Given a measure µ on a σ -algebra A , we say E ∈ A is an atom if for every
E ′ ⊂ E such that E ′ ∈ A , either µ(E ′) = µ(E), or else µ(E ′) = 0. We then say µ is a purely
atomic measure if every E ∈ A such that µ(E)> 0 contains an atom.

Also, recall that a Borel measure µ is a regular measure if for every Borel set B ⊂ X

µ(B) = inf
B⊂U∈τ

µ(U).

Our objective is to show that every regular σ -finite Borel measure over a regular Roth-
berger space is purely atomic. In order to do that, we must first extend some measure notions to
a broader class of functions:
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If M is a family of subsets of a space X we say a function µ : M → R≥0 ∪{∞} is:

∙ finite, if µ(M)< ∞ for all M ∈ M ;

∙ σ -finite if there is a countable set {Mn : n ∈ ω } ⊂ M such that µ(Mn) < ∞ for every
n ∈ ω and X =

⋃
n∈ω Mn;

∙ countably additive if µ(
⋃

n∈ω Mn) = ∑n∈ω µ(Mn) whenever {Mn : n ∈ ω } ⊂ M is pair-
wise disjoint and

⋃
n∈ω Mn ∈ M .

In what follows, given a space X , we will denote by CX and BX the family of all clopen
sets of X and the family of all Borel sets of X , respectively.

Lemma 5.2.13 ([Matveev 2010]). Let X be a regular Rothberger space and let µ : CX →
R≥0 ∪{∞} be a finite, countably additive function. Then there is a countable M0 ⊂ X and a

function m : M0 → R≥0 such that, for every U ∈ CX ,

µ(U) = ∑
x∈U∩M0

m(x).

Proof. For each x ∈ X , let

m(x) = inf{µ(U) : U ∈ CX and x ∈U } .

And then, for each ε ≥ 0, set Mε = {x ∈ X : m(x)> ε }. Note that, for every ε > 0, Mε is
finite. Indeed, suppose it is infinite for some ε > 0. Then, for every given n ∈ N, there are
distinct x1, . . .xn ∈ Mε and sets U1, . . .Un ∈ CX such that xk ∈ Uk for each 0 < k ≤ n and
{Uk : 0 < k ≤ n} is pairwise disjoint (recall that, by Theorem 3.3.13, X is zero dimensional). Let
U0 = X ∖

(⋃
1≤k≤nUk

)
. Then, for each 1 ≤ k ≤ n, µ(Uk)≥ m(xk)> ε , so µ(X) = ∑k≤n µ(Uk)≥

∑k≤n m(xk)≥ nε , which implies that µ(X) = ∞, a contradiction.

Note that M0 =
⋃

n∈NM1
n
, so M0 is countable. Let µm : CX →R≥0, be such that µm(U) =

∑x∈U∩M0 m(x). Then µm is finite, monotonic and σ -additive. Moreover:

CLAIM 5.2.14. For every U ∈ CX , µ(U)≥ µm(U).

Proof. Let U ∈CX and write {xn : n ∈ ω }=U ∩M0. Then, for each k ∈ ω , µ(U)≥ ∑
n=k
n=0 m(xn),

so it follows that µ(U)≥ ∑
∞
n=0 m(xn) = µm(U).

Let µr : CX → R≥0 be such that µr(U) = µ(U)−µm(U).

CLAIM 5.2.15. µr ≡ 0, so µ ≡ µm.

Proof. Fix x ∈ X and ε > 0. Then, from the definition of m(x), there is an U ∈ CX such that
x ∈U and µ(U)−m(x)< 1

2 , so it follows from the previous claim that

µ(U)−µm(U) = µ(U)−m(x)− (µm(U)−m(x))< ε − (µm(U)−m(x))< ε.
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In this case, given ε > 0, Uε = {U ∈ CX : µr(U)< ε } is an open cover of X . Suppose
(striving for a contradiction) that µr(X) > 0. Then let, for each n ∈ ω , εn =

1
2n+1 µr(X). Since

X is Rothberger, there is a Un ∈ Uεn for each n ∈ ω such that X =
⋃

n∈ω Un. Then µr(X) ≤
∑n∈ω µr(Un) =

1
2 µr(X), a contradiction.

And the proof is complete.

Theorem 5.2.16 ([Matveev 2010]). Let X be a regular Rothberger space and let µ be a regular,

σ -finite Borel measure on X. Then there is a countable M0 ⊂ X and a function m : M0 → R≥0

such that, for every B ∈ BX ,

µ(B) = ∑
x∈M0∩B

m(x).

Proof. Let U = {Bn : n ∈ ω } ⊂ BX be such that X =
⋃

n∈ω Bn and µ(Bn)< ∞ for every n ∈ ω

(we may assume that U is pairwise disjoint). Then, for each n ∈ ω , set µn : BX → R≥0 ∪{∞}
be such that µn(B) = µ(B∩Bn). Note that µn restricted to CX satisfies the conditions of Lemma
5.2.13, so let Mn

0 ⊂ X and mn : Mn
0 → R≥0 be such that µn(U) = ∑x∈U∩Mn

0
mn(x) for all U ∈ CX .

CLAIM 5.2.17. For all n ∈ ω and B ∈ BX , µn(B) = ∑x∈B∩Mn
0

mn(x).

Proof. Indeed, by regularity, µn({x}) =mn(x) for all x∈X , so if we put µm
n (B) =∑x∈B∩Mn

0
mn(x)

and µr
n = µn − µa

n , then µr
n is a non-negative monotonic function. By Lemma 5.2.13, on the

other hand, µr
n(X) = 0, so it follows that µr

n(B) = 0 for all B ∈ BX and, therefore, µn(B) =

∑x∈B∩Mn
0

mn(x).

Let M0 =
⋃

n∈NMn
0 and m : M0 →R≥0 be such that m(x) = mn(x) with n ∈ ω being such

that x ∈ Mn
0 . The result then follows from the fact that, for all B ∈ BX

µ(B) = ∑
n∈ω

µ(B∩Bn) = ∑
n∈ω

µn(B) = ∑
n∈ω

∑
x∈B∩Mn

0

mn(x) = ∑
x∈B∩M0

m(x)

Corollary 5.2.18. Let X be a regular Rothberger space and let µ be a regular, σ -finite Borel

measure on X. Then µ is purely atomic.

Proof. Indeed, in view of Theorem 5.2.16, {{x} : x ∈ M0 } is a collection of Borel sets that
attests that µ is purely atomic.

Exercise 5.2.19. Show that the assumption that µ is finite in Lemma 5.2.13 may be replace by
the assumption that µ is σ -finite, that is, show that if X is a Hausdorff Rothberger space and
µ : CX → R≥0 ∪{∞} is a σ -finite countably additive function, then there is a countable M0 ⊂ X

and a function m : M0 → R≥0 such that, for every U ∈ CX ,

µ(U) = ∑
x∈U∩M0

m(x).
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5.3 Productively Lindelöf spaces

We will now see how productively Lindelöf spaces relate to some of the previously
presented selection principles. As one would expect:

Definition 5.3.1. A space X is productively Lindelöf if, for every Lindelöf space Y , X ×Y is
Lindelöf.

Obviously, a productively Lindelöf space is also Lindelöf. Compact spaces are known
examples of productively Lindelöf spaces. The usual proof uses the following lemma:

Lemma 5.3.2 (Tube Lemma). Let K be a compact space. Then for every given space Y and open

cover U for K ×Y there is for each y ∈ Y an open neighborhood Vy of y and a finite Fy ⊂ U

such that K ×Vy ⊂
⋃

Fy.

Proof. Fix a space Y , an open cover U for K×Y and y ∈Y . For each x ∈ K, let U(x) be an open
subset of K and V (x) be an open subset of Y such that ⟨x,y⟩ ∈U(x)×V (x)⊂U for some U ∈U .
Note that {U(x) : x ∈ K } is an open cover for K, so fix a finite F ⊂ X such that {U(x) : x ∈ F }
covers K. Set Vy =

⋂
x∈F V (x) and a finite Fy ⊂ U such that, for each x ∈ F , U(x)×V (x)⊂U

for some U ∈ Fy. Then K ×Vy ⊂
⋃

Fy and the proof is complete.

Theorem 5.3.3. If K is a compact space, then K is productively Lindelöf.

Proof. Let Y be a Lindelöf space and U be an open cover for K ×Y . For each y ∈ Y , let Vy and
Fy be as in Lemma 5.3.2. Since

{
Vy : y ∈ Y

}
is an open cover for Y , which is Lindelöf, there is

a countable {yn : n ∈ ω } ⊂ Y such that
⋃

n∈ω Vyn = Y . It follows that
⋃

n∈ω Fyn is a countable
subcover of U , which concludes the proof.

As it turns out, we can actually generalize Lemma 5.3.2 in order to generalize Theorem
5.3.3 to Alster spaces:

Lemma 5.3.4. Given spaces X, Y , a compact K ⊂ X and an open cover U for X ×Y there is

for each y ∈Y an open neighborhood Vy of y, an open Uy ⊂ X with K ⊂Uy, and a finite Fy ⊂U

such that Uy ×Vy ⊂
⋃

Fy.

Proof. Fix a space Y , an open cover U for K×Y and y ∈Y . For each x ∈ K, let U(x) be an open
subset of K and V (x) be an open subset of Y such that ⟨x,y⟩ ∈U(x)×V (x)⊂U for some U ∈U .
Note that {U(x) : x ∈ K } is an open cover for K, so fix a finite F ⊂ X such that {U(x) : x ∈ F }
covers K. Set Vy =

⋂
x∈F V (x), Uy =

⋃
x∈F U(x) and a finite Fy ⊂ U such that, for each x ∈ F ,

U(x)×V (x)⊂U for some U ∈ Fy. Then U ×Vy ⊂
⋃

Fy and the proof is complete.

Theorem 5.3.5. If X is an Alster space, then X is productively Lindelöf.
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Proof. Let Y be a Lindelöf space and U be an open cover for X×Y . For each compact K ⊂X and
y∈Y let Vy(K), Uy(K) and Fy(K) be as in Lemma 5.3.4. Since

{
Vy(K) : y ∈ Y

}
is an open cover

for Y , which is Lindelöf, there is a countable {yk : k ∈ ω } ⊂Y such that
⋃

k∈ω Vyk(K) =Y . Then
G(K) =

⋂
k∈ω

⋃
Uyk(K) is a Gδ subset of X containing K. Note that {G(K) : K ⊂ X compact}

is an Alster cover for X , so there is a countable collection {Kn : n ∈ ω } of compact subsets
of X such that

⋃
n∈ω G(Kn) = X . It follows that

⋃
n∈ω

⋃
k∈ω Fyk(Kn) is a countable subcover of

U .

We should note that in [Alster 1988] it was also shown that if we assume CH and that X

has a basis of cardinality ℵ1 (or less), then the converse of Theorem 5.3.5 actually holds. But
Alster’s selection principle is not the only one related to the property of being a productively
Lindelöf space: Sfin(O,O) also has a surprising connection. In order to see that, we recall that in
[Michael 1971] it was shown that, under CH, there is a Lindelöf space X whose product with the
space of irrational numbers is not Lindelöf and it was asked whether this would be true even
without CH:

Question 5.3.6 (Michael’s problem). Is there a Lindelöf space X whose product with the space
of irrational numbers is not Lindelöf?

A space that satisfies the conditions of Question 5.3.6 is called a Michael space. In
[Alster 1990] it was shown that, assuming Martin’s Axiom and the negation of CH, there is a
Michael space. But what does all of this have to do with Menger spaces? To clarify this out, we
need to consider some new concepts:

Definition 5.3.7. Given sets X and Y , we say a function φ : X →℘(Y ) is a set-valued map
and, given A ⊂ X , we write φ(A) =

⋃
x∈A φ(x).

Moreover, if X and Y are spaces, we say that φ is:

∙ compact-valued if φ(x) is compact for every x ∈ X ;

∙ upper semicontinuos if for every open V ⊂ Y , the set φ
−1
⊂ (V ) = {x ∈ X : φ(x)⊂V }is

open in X .

Immediately, we have some simple results, which will be left as exercises (5.3.13).

Proposition 5.3.8. Let X and Y be spaces with X being Lindelöf. If φ : X →℘(Y ) is a compact-

valued upper semicontinuos map such that φ(X) = Y , then Y is Lindelöf.

Proposition 5.3.9. Suppose φ0 : X0 →℘(Y0) and φ1 : X1 →℘(Y1) are compact-valued upper

semicontinuos maps. Then the function φ0 ×φ1 : X0 ×X1 →℘(Y0 ×Y1) that assigns (x0,x1) to

φ0(x0)×φ1(x1) is also a compact-valued upper semicontinuous map.
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In view of Theorem 1.2.19, the connection between Menger spaces and Question 5.3.6
rises from the following result:

Lemma 5.3.10 ([Zdomskyy 2005]). Property Sfin(O,O) holds on a Lindelöf space if, and only

if, φ(X) ̸= Nω for every compact-valued upper semicontinuous map φ : X →℘(Nω).

Theorem 5.3.11 ([Repovš and Zdomskyy 2012]). If there is a Michael space, then every pro-

ductively Lindelöf space is Menger.

Proof. Striving for a contradiction, suppose that X is a productively Lindelöf space such that
Sfin(O,O) does not hold over X and let Y be a Michael space (we will show that X ×Y is not
Lindelöf).

Using Lemma 5.3.10, let φ : X →℘(Nω) be a compact-valued upper semicontinuous
map such that φ(X) = Nω . Then, using Proposition 5.3.9 with φ0 = φ and φ1 : Y →℘(Y ) such
that φ1(y) = {y}, Nω ×Y is the image of a compact-valued upper semicontinuous map. But, by
the definition of a Michael space and Theorem1.2.19, Nω ×Y is not Lindelöf. Hence, X ×Y is
not Lindelöf, a contradiction.

Corollary 5.3.12. Assuming CH (or Martin’s Axiom), every productively Lindelöf space is

Menger.

Hence, we conclude that, under CH (or Martin’s Axiom), the property of being produc-
tively Lindelöf lies between those of being Alster and Menger.

Exercise 5.3.13. Write the details of the proof of Propositions 5.3.8 and 5.3.8.

5.4 Sieve completeness

We now present a connection between compact-like spaces and another game that appears
when we consider compactifications. This game goes as follows:

Definition 5.4.1. We call the sieve game the following game:

∙ At first, ALICE chooses an open cover U0 for X , then BOB chooses U0 ∈ U0;

∙ in each inning n∈N ALICE chooses an open cover Un for Un−1 and BOB chooses Un ∈Un.

We say ALICE wins if, for every filter base F (see Definition 1.1.6) such that for each n ∈ ω

there is an Fn ∈ F with Fn ⊂Un, F clusters in X .

A winning strategy for ALICE in the sieve game is also called a complete sieve and a
space with a complete sieve is said to be sieve-complete.
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The connection between compact-like and sieve-complete spaces in the context of
compactification is then spelled out by the following results.

Theorem 5.4.2 ([Telgársky 1983]). If X is a T3 1
2

sieve-complete space and Y is a compactifica-

tion of X, then Y ∖X is compact-like.

Proof. Let γ be a winning strategy in the sieve game over X . For each U open subset of X , fix an
open set U ′ in Y such that U =U ′∩X . Then, for each of γ’s moves γ(⟨V0, . . .Vn⟩), let

γ
′(⟨V0, . . .Vn⟩) =

{
U ′ : U ∈ γ(⟨V0, . . .Vn⟩)

}
.

Now, let K0 = Y ∖
⋃

γ ′(⟨⟩) be ALICE’s first move in the compact-open game on Y ∖X (which is
clearly a compact subset of Y ∖X). Then, if BOB chooses U*

0 =U ′
0 ∩Y ∖X ⊃ K0 (with U ′

0 open
in Y ), note that γ ′(⟨⟩) is an open cover for Y ∖U0 (which is compact in Y ), so let F0 be its finite
subcover. Set S0 = ⟨⟨V0⟩ ∈ dom(γ) : V0 ∈ F0⟩ and then

K1 = Y ∖

(
U ′

0 ∪
⋃

t∈S0

⋃
γ
′(t)

)
,

which is, again, clearly a compact subset of Y ∖X . Once BOB responds with an open U*
1 =

U ′
1∩Y ∖X (with U ′

0 open in Y ), note again that Y ∖ (U0∪U1) is a compact subset of Y covered by
{U : U ∈ γ ′(⟨V ⟩),V ∈ F0 }, so let F1 be its finite subcover. Set S1 =

{
⟨V0,V1⟩ ∈ dom(γ) : V ′

0 ∈ F0,V ′
1 ∈ F1

}
and then

K2 = Y ∖

(
U ′

0 ∪U ′
1 ∪

⋃
t∈S1

⋃
γ
′(t)

)
,

and so on. Now let y ∈ Y ∖
⋃

n∈ω U ′
n (we will show that y ∈ X , which concludes the proof). Then

y ∈
⋂

n∈ω

⋃
V ′

n∈Fn

V ′
n. (5.1)

CLAIM 5.4.3. There is a sequence ⟨Vn : n ∈ ω⟩ such that, for each k ∈ ω , ⟨Vi ≤ k⟩ ∈ dom(γ),
Vk ∈ Fk and

y ∈
⋂

n∈ω

V ′
n.

Proof. Let T =
⋃

n∈ω Sn with the order ≤ defined as follows: t ≤ s if, and only if, t ⊂ s. Since
each Fn is finite, ⟨T,≤⟩ is a finitely branching tree. And, by 5.1, T is infinite, so our result
follows from König’s Lemma (see 1.1.5).

Since each V is dense in V ′,
y ∈

⋂
n∈ω

V n.

Now, let By be a local basis at y and set

F =
{

B∩Vn : B ∈ By,n ∈ ω
}
.
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Clearly, F is a filter base and for every n ∈ ω there is an Fn ∈F such that Fn ⊂Vn, so F clusters
at some x ∈ X . But, because Y is Hausdorff, F can only cluster at y. It follows that y = x ∈ X ,
and the proof is complete.

Theorem 5.4.4 ([Telgársky 1983]). If X is a T3 1
2

compact-like space and Y is a compact Haus-

dorff space containing X, then Y ∖X is sieve-complete.

Proof. Let γ be a winning strategy for ALICE in the compact-open game over X . We define a
winning strategy for ALICE in the sieve game over Y ∖X as follows:

For starters, let U ′
0 be the collection Y ’s open sets U ′

0 such that U ′
0 ∩ γ(⟨⟩) = /0. Then,

since Y is regular, U ′
0 covers Y ∖X , so let U0 =

{
U ′

0 ∩ (Y ∖X) : U ′
0 ∈ U ′

0
}

be ALICE’s initial
move in the sieve game over Y ∖X .

Once BOB chooses U0 =U ′
0∩ (Y ∖X) ∈U0, let V0 = X ∖U ′

0 be BOB’s response for γ(⟨⟩)
in the compact-open game over X . Note that the collection U ′

1 of open sets U ′
1 of Y such that

U ′
1 ∩ γ(⟨V1⟩) again covers Y ∖X , so we let ALICE’s response for U0 ∈ U0 in the sieve game over

Y ∖X be

U1 =
{

U ′
1 ∩U0 : U ′

1 ∈ U ′
1
}
,

and so on. To show that this is indeed a winning strategy, let F ⊂℘(Y ∖X) be a filter base
such that for each n ∈ ω there is an Fn ∈ F with Fn ⊂Un. Note that, since Y is compact, there
is a y ∈ Y such that F clusters at y (see Theorem 1.2.17), that is, y ∈

⋂
B∈F B. If that is the

case, then y ∈
⋂

n∈ω Un, which implies that y ̸∈
⋃

n∈ω(X ∖Un). But, since γ is a winning strategy
in the compact-open game, X =

⋃
n∈ω(X ∖Un), so it follows that y ∈ Y ∖X , and the proof is

complete.

Corollary 5.4.5 ([Telgársky 1983]). A T3 1
2

space X is sieve-complete if, and only if, βX ∖X is

compact-like.

5.5 D-spaces

One of the applications of covering games is related to the so called D-spaces (a property
that appears to have been first introduced in exchanged letters between E.K. van Douwen and E.
Michael in the mid-1970s). To clarify these applications, we begin with the definition of such
spaces:

Definition 5.5.1. An open neighborhood assignment (also known as o.n.a.) in a space X is a
function from X into its topology which assigns to each x ∈ X one of its open neighborhoods.

We then say X is a DDD-space if for every o.n.a. {Vx : x ∈ X } there is a closed discrete
subspace D ⊂ X such that {Vx : x ∈ D} covers X .
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The most trivial examples of D-spaces are discrete or compact T1 spaces. But what other
spaces are D? One may wonder, for instance, if it is possible to use the Lindelöf property to show
that a space is D. Indeed, this problem was proposed by van Douwen and remains open thus far.
But if we suppose something stronger then the Lindelöf property, we may find an answer and, as
a bonus, find a whole class of examples of D-spaces:

Theorem 5.5.2 ([Aurichi 2010]). If X is a T1 space such that Sfin(O,O) holds on X, then X is a

D-space.

Proof. Let V = {Vx : x ∈ X } be an o.n.a. We define a strategy γ for ALICE in Gfin(O,O) as
follows:

∙ First, let γ(⟨⟩) = V ;

∙ if BOB responds with a finite F0 ⊂ γ(⟨⟩), let F0 ⊂X be a finite set such that {Vx : x ∈ F0 }=
F0. Then set

γ(⟨F0⟩) =
{

Vx : x ∈ X ∖
⋃

F0

}
∪{
⋃

F0};

∙ if BOB responds with a finite F1 ⊂ γ(⟨⟩), let F1 ⊂X be a finite set such that {Vx : x ∈ F1 }=
F1 (we may assume that BOB’s choice does not contain

⋃
F0, since he already covered

this portion of the space in the previous inning). Then set

γ(⟨F0,F1⟩) =

{
Vx : x ∈ X ∖

⋃
i≤1

⋃
Fi

}
∪{
⋃

Fi : i ≤ 1};

∙ if BOB responds with a finite F2 ⊂ γ(⟨⟩), let F2 ⊂X be a finite set such that {Vx : x ∈ F2 }=
F2 (again, we may assume that BOB’s choice does not contain

⋃
F0 or

⋃
F1, since he

already covered both portions of the space in the previous innings). Then set

γ(⟨F0,F1,F2⟩) =

{
Vx : x ∈ X ∖

⋃
i≤2

⋃
Fi

}
∪{
⋃

Fi : i ≤ 2};

∙ and so on.

By Theorem 4.1.12, ALICE̸↑Gfin(O,O), so there is a run ⟨Fn : n ∈ ω⟩ compatible with
γ such that

⋃
n∈ω Fn ∈ O . We claim that D =

⋃
n∈ω Fn is a closed discrete subset of X . Indeed,

let y ∈ X ∖D. Since
⋃

n∈ω Fn ∈ O , there is a k ∈ ω such that y ∈ U1 =
⋃

j≤k F j. Note that,
by construction,

⋃
j≤k F j ∩

⋃
n≥k Fn = /0. On the other hand,

⋃
j≤k Fn is finite and X is T1, so

there is an open neighborhood U2 of y such that U2 ∩
⋃

j≤k Fn = /0. It follows that U1 ∩U2

is an open neighborhood of y that does not intersect D and, therefore, D is closed. Now, fix
x ∈ D. Then x ∈ Fk for some k ∈ ω . Note that x ∈ U1 =

⋃
j≤k F j and again, by construction,⋃

j≤k F j ∩
⋃

n≥k Fn = /0. On the other hand,
⋃

j≤k Fn is finite and X is T1, so there is an open
neighborhood U2 of x such that U2 ∩

⋃
j≤k Fn = /0. It follows that U = U1 ∩U2 is an open
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neighborhood of x such that U ∩D = {x} and, therefore, D is also discrete, which concludes the
proof.

Corollary 5.5.3. If X is a T1 Rothberger space, then X is a D-space.

Corollary 5.5.4. If X is a T1 space such that BOB has no winning strategy in the compact-open

game, then X is a D-space.

Proof. If BOB has no winning strategy in the compact-open game over X , by Theorem 4.1.17,
ALICE has no winning strategy in Gfin(O,O), which implies that Sfin(O,O) holds and, by
Theorem 5.5.2, X is a D-space.

Corollary 5.5.5. If X is a T1 space such that BOB has no winning strategy in the point-open

game, then X is a D-space.

It is also unknown whether even finite unions of D-spaces are also D. In the particular
case of the examples we have just presented, on the other hand, we do know:

Corollary 5.5.6. If X =
⋃

n∈ω Xn with each Xn being a T1 space on which Sfin(O,O) holds, then

X is a D-space.

Proof. This is clear if we consider Proposition 3.3.3 and Theorem 5.5.2.

And we can go even further if we look at a new game:

Definition 5.5.7. We call the DC-open game the following game on a space X . In each inning
n ∈ ω:

∙ ALICE chooses a discrete collection Kn of compact sets;

∙ BOB chooses an open set Vn ⊃
⋃

Kn.

We say that ALICE wins if X =
⋃

n∈ω Vn and BOB wins otherwise.

We then say a space is DC-like if ALICE has a winning strategy in the DC-open game.

Again, the most trivial example of DC-like spaces are those spaces which are union of a
discrete family of compact sets. But also:

Example 5.5.8. Note that if ALICE has a winning strategy in the point-open game (or in the
compact-open game) over a space X , then X is DC-like.

Now, how does DC-like spaces relate to D-spaces? Well:

Lemma 5.5.9 ([Peng 1996]). If X is a T1 DC-like space, then X is a D-space.
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Proof. Let γ be a winning strategy in the DC-open game over X and let {Vx : x ∈ X } be an o.n.a..
We may assume that, for every s ∈ dom(γ), K ∩

⋃
k∈dom(s) s(k) = /0 for all K ∈ γ(s). For each

K ∈ γ(⟨⟩), note that {Vx : x ∈ K } is an open cover for K, so let FK be the finite subset of X such
that {Vx : x ∈ FK } covers K. Then set

D0 =
⋃

K∈γ(⟨⟩)
FK

and note that D0 is a closed (because X is T1) discrete subset o X and U0 =
⋃

x∈D0
Vx ⊃

⋃
γ(⟨⟩).

Now, note again that, for each K ∈ γ(⟨U0⟩), note that {Vx : x ∈ K } is an open cover for
K, so let FK be the finite subset of X such that {Vx : x ∈ FK } covers K. Then set

D1 =
⋃

K∈γ(⟨U0⟩)
FK

and note that D1 is also a closed (again, because X is T1) discrete subset and U1 =
⋃

x∈D1
Vx ⊃⋃

γ(⟨U0⟩).

By continuing with this process we define for each n ∈ ω a Dn ⊂ X such that Un =⋃
x∈D1

Vx ⊃ γ(⟨U0, . . .Un−1⟩) and D0 ∪ ·· · ∪Dn is discrete. Then we set D =
⋃

n∈ω Dn. Since
γ is a winning strategy, note that {Vx : x ∈ D} covers X . Moreover, being a discrete union of
discrete sets, D is also discrete. In order to complete the proof it remains to show, therefore,
that D is closed. Indeed, let y ∈ X ∖D. Note that there is an n ∈ ω such that y ∈ Vx or some
x ∈ Dn and, by our initial assumption Vx ∩

⋃
k≥n Dk = /0, so y ̸∈

⋃
k≥n Dk. But, since X is T1,

y ̸∈
⋃

k≤n Dk =
⋃

k≤n Dk, our result follows from the identity

D =

(⋃
k≤n

Dk

)
∪

(⋃
k≥n

Dk

)
.

Theorem 5.5.10 ([Peng 2008]). If X is a T1 space such that X =
⋃

k≤n Xk for some n ∈ ω with

each Xk being DC-like, then X is a D-space.

Proof. By induction it suffices to show that X = X1 ∪X2 with both X1 and X2 being DC-like
spaces is a D-space.

Let {Vx : x ∈ X } be an o.n.a. and γ1,γ2 be winnings strategies for ALICE in the DC-open
games over X1 and X2, respectively. We may assume that, for every i ∈ {1,2} and for every
s ∈ dom(γi), K ∩

⋃
k∈dom(s) s(k) = /0 for all K ∈ γi(s). Let

A1
0 = {x ∈ X : γ(⟨⟩) is not locally finite at x} .

Then, by Proposition 1.2.15, A1
0 ⊂ X2 is closed in X . Since X2 is DC-like, it follows from Lemma

5.5.9 that we can find a D1*
0 ⊂ A1

0 closed and discrete in X such that
{

Vx : x ∈ D1*
0
}

covers A1
0.
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In this case,

K 1
0 =

K* = K ∖
⋃

x∈D1*
0

Vx : K ∈ γ1(⟨⟩)


is a discrete family of compact subsets of X , so that for each K* we may find a finite FK* ⊂ K*

such that {Vx : x ∈ FK* } covers K*. Note that
⋃

K*∈K 1
0

FK* is closed (because X is T1) and
discrete in X , so if we let D1

0 = D1*
0
⋃

K*∈K 1
0

FK* , then D1
0 is also closed and discrete and

⋃
γ1(⟨⟩)⊂

⋃
x∈D1

0

Vx.

Repeat the exact same process in X2 with γ2 to find a closed discrete D2
0 such that⋃

γ2(⟨⟩)⊂
⋃

x∈D2
0

Vx,

and then let D0 = D1
0∪D2

0, so that D0 is a closed discrete subset of X and U0 =⊂
⋃

x∈D0
Vx covers

both γ1(⟨⟩) and γ2(⟨⟩).

Now, let

A1
1 = {x ∈ X : γ(⟨U0 ∩X1⟩) is not locally finite at x} .

Then, by Proposition 1.2.15, A1
1 ⊂ X2 is closed in X . Since X2 is DC-like, it follows from Lemma

5.5.9 that we can find a D1*
1 ⊂ A1

1 closed and discrete in X such that
{

Vx : x ∈ D1*
1
}

covers A1
1.

In this case,

K 1
1 =

K* = K ∖
⋃

x∈D1*
1

Vx : K ∈ γ1(⟨U0 ∩X1⟩)


is a discrete family of compact subsets of X , so that for each K* we may find a finite FK* ⊂ K*

such that {Vx : x ∈ FK* } covers K*. Note that
⋃

K*∈K 1
1

FK* is closed (again, because X is T1) and
discrete in X , so if we let D1

0 = D1*
0
⋃

K*∈K 1
1

FK* , then D1
1 is also closed and discrete and

⋃
γ1(⟨U0 ∩X1⟩)⊂

⋃
x∈D1

1

Vx.

Again, repeat the exact same process in X2 with γ2 to find a closed discrete D2
1 such that⋃

γ2(⟨U0 ∩X2⟩)⊂
⋃

x∈D2
1

Vx,

and then let D1 = D1
1∪D2

1, so that D1 is a closed discrete subset of X and U1 =⊂
⋃

x∈D1
Vx covers

both γ1(⟨U0 ∩X1⟩) and γ2(⟨U0 ∩X2⟩).

By repeating this process we find for each n ∈ ω a closed discrete Dn ⊂ X such that
Un =

⋃
x∈Dn

covers both γ1(⟨U0 ∩X1, . . . ,Un−1 ∩X1⟩) and γ2(⟨U0 ∩X2, . . . ,Un−1 ∩X2⟩).
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CLAIM 5.5.11. D =
⋃

n∈ω Dn is a closed discrete subset of X such that X =
⋃

x∈DVx.

Proof. Because γ1 and γ2 are winning strategies over X1 and X2, respectively, and X = X1 ∪X2,
it is clear that X =

⋃
x∈DVx.

Now, let x ∈ D. Then x ∈ Dk for some k ∈ ω . Note that, by construction, Uk is an open
set containing x such that Uk ∩

⋃
n≥k Dn = /0, so it follows from the fact that

⋃
n≤k Dn is discrete

that D is also discrete.

On the other hand, let x ∈ X ∖D. Then x ∈ Uk for some k ∈ ω . Again, note that, by
construction, Uk ∩

⋃
n≥k Dn = /0, so it follows from the fact that

⋃
n≤k Dn is closed that D is also

closed.

Then the proof is complete.

Exercise 5.5.12. Given a space X , let G(DC,X) denote the following game : at first, ALICE

chooses a discrete family K0 of compact subsets of X and BOB responds with a closed E0 ⊂
X ∖

⋃
K0. In the inning n ∈ N ALICE chooses a discrete family Kn of compact subsets of X

and BOB responds with a closed En ⊂ En−1 ∖
⋃

Kn. ALICE wins if
⋂

n∈ω En = /0 and BOB wins
otherwise.

Show that G(DC,X) is equivalent to the DC-open game.

Curiosity: the property of being DC-like was first introduced in [Telgársky 1983] with
the game G(DC,X).

5.6 Tightness games and countable tightness
Strong fan tightness and G1(Ωx,Ωx) have an interesting relationship with countable

tightness. This property goes as follows:

Definition 5.6.1. We say a space X is countably tight at a point x ∈ X if for every A ∈ Ωx there
is a countable B ⊂ A such that B ∈ Ωx. If X is countably tight at every point x ∈ X , then we
simply say that X is countably tight.

Obviously, every space with countable strong fan tightness is countably tight – so one
may wonder whether the converse also holds. As the following example shows us, the answer is
no:

Example 5.6.2 ([Arhangel’skii 1972]). Consider the following space:

Sc =
⋃

α<c

{zα
n : n ∈ ω }∪{0},

with all the zα
n ’s distinct and isolated in Sc and, if f ∈ ωc, then

Vf = {0}∪
⋃

α<c

{zα
n : n ≥ f (α)}
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is a basic neighborhood of 0.

Proposition 5.6.3. Sc is countably tight.

Proof. Suppose A ∈ Ω0. We claim that there is an α0 ∈ c such that A∩
{

zα0
n : n ∈ ω

}
is infinite.

Indeed, if there is none, we let, for each α ∈ c,

f (α) = max{n ∈ ω : zα
n ∈ A}+1,

and then Vf ∩A would be empty, a contradiction. Now we claim that A∩
{

zα0
n : n ∈ ω

}
∈ Ω0.

Indeed, given f : c→ω , there must be an n∈ω such that n≥ f (α0) and zα0
n ∈ A∩

{
zα0

n : n ∈ ω
}

(because the latter is infinite). So A∩
{

zα0
n : n ∈ ω

}
∩Vf ̸= /0 and the proof is complete.

However:

Proposition 5.6.4. S1(Ω0,Ω0) does not hold on Sc.

Proof. For each k ∈ ω , let
Ak =

{
zk

n : n ∈ ω

}
∈ Ω0.

Then, if zk
nk
∈ Ak is picked for each k ∈ ω , we may let f : c→ n be

f (α) =

nk +1, if α = k for some k ∈ ω;

0, otherwise,

so that Vf ∩
{

zk
nk

: k ∈ ω
}
= /0.

But if we strengthen our assumption to countable tightness in some product, then the
implication holds:

Theorem 5.6.5 ([Aurichi and Bella 2014]). Let X be a space. If X × Sc is countably tight at

(x,0), then S1(Ωx,Ωx) holds.

Proof. Let ⟨An : n ∈ ω⟩ be a sequence such that An ∈ Ωx for all n ∈ ω (our goal is to choose
for each n ∈ ω a point an ∈ An in such a way that {an : n ∈ ω } ∈ Ωx). Since X has countable
tightness, we may assume that each one of the An’s is countable. If we put Y = {x}∪

⋃
n∈ω An,

without loss of generality, we then can fix a collection V = {Uα : α < c} as a local basis at x in
the subspace Y (since Y is countable). Now, fix an almost disjoint family R = {Rα : α < c} of
infinite subsets of ω . Next, we assume that for every n ∈ Rα we can pick a point xα

n ∈ An∩Uα in
such a way that xα

n ̸= xα
m whenever n ̸= m (because, otherwise, the principle would be trivially

satisfied for ⟨An : n ∈ ω⟩), and then let Eα = {xα
n : n ∈ Rα }.

Now let us take a look at X ×Sc. Consider

A =
⋃

α<c

{⟨xα
n ,z

α
n ⟩ : n ∈ Rα } .



116 Chapter 5. Some connections and applications

CLAIM 5.6.6. ⟨x,0⟩ ∈ A

Proof. Let U and V ( f ) be open neighborhoods of x and 0, respectively. There must be an α < c

such that Uα ∩Y ⊂U , so that Eα ⊂U . If, then, we pick n ∈ Rα in such a way that n ≥ f (α),

⟨xα
n ,z

α
n ⟩ ∈ (U ×V ( f ))∩A

as, desired.

Since X ×Sc is countably tight at ⟨x,0⟩, there is a countable set F ⊂ c such that if

B =
⋃

α∈F

{⟨xα
n ,z

α
n ⟩ : n ∈ Rα } ,

then x ∈ B.

CLAIM 5.6.7. For every U open neighborhood of x, |U ∩Eα |= ℵ0 for some α ∈ F .

Proof. Suppose not, that is, there is an open neighborhood U of x such that, for every α ∈ F ,
U ∩Eα is finite. Then for each α ∈ F fix nα ∈ ω in such a way that if n ∈ Rα ∖nα , then xα

n ̸∈U .
Define f ∈ ωc as

f (α) =

nα , if α ∈ F ,

0, otherwise.

Now, if we consider the open neighborhood U ×V ( f ) of ⟨x,0⟩, we get an α ∈ F and a n ∈ Rα

such that ⟨xα
n ,z

α
n ⟩ ∈ U ×V ( f ). Since xα

n ∈ U , n < nα . On the other hand, since zα
n ∈ V ( f ),

n ≥ f (α) = nα , a contradiction.

Finally, after enumerating F = {αn : n ∈ ω }, we define, for each n ∈ ω:

Sαn = Rαn ∖

(⋃
k<n

Rαk

)
,

Dαn = {xαn
n : n ∈ Sαn } ,

so that the Sαns are pairwise disjoint and Sαn differs from Rαn only in finitely many points. If
n ∈ω is such that n ∈ Sαk for some (unique!) k ∈ ω , let an = xαk

n ∈ An and pick an ∈ An arbitrarily,
otherwise. Now, if U is an open neighborhood of x, by Claim 5.6.7, there is a k ∈ ω such that
|U ∩Dαk |= ℵ0, so there is an n ∈ Sαk such that xαk

n ∈U . Since an = xαk
n , we have just proven

that p ∈ {an : n ∈ ω } as it was required.

As a bonus, in view of Example 5.6.2 and Theorem 5.6.5, we conclude that countable
tightness does not behave well under products. More precisely:

Corollary 5.6.8. Sc×Sc is not countably tight at ⟨0,0⟩.
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This motivates the definition of productively countably tight spaces:

Definition 5.6.9. We say a space X is productively countably tight at a point x ∈ X if for every
Y countably tight at a point y, X ×Y is countably tight at ⟨x,y⟩. If X is productively countably
tight at every point x ∈ X , then we simply say that X is productively countably tight.

And then we immediately get from Theorem 5.6.5:

Corollary 5.6.10. If X is productively countably tight at x ∈ X, then S1(Ωx,Ωx) holds.

Corollary 5.6.11. If X is productively countably tight, then S1(Ωx,Ωx) holds for every x ∈ X.

Corollary 5.6.10 gives us a necessary condition for productive countable tightness – but
what about a sufficient condition? As it turns out, we can find one by exploring the tightness
game G1(Ωx,Ωx).

Theorem 5.6.12 ([Gruenhage 1976]). If X is a space such that BOB↑G1(Ωp,Ωp) for some

p ∈ X, then X is productively countably tight at p.

Proof. Let Y be a countably tight space at q, fix A ∈ Ω⟨p,q⟩ and, using Theorem 4.2.11, let γ be
a winning strategy for ALICE in the neighborhood-point game at p. We will associate for each
s ∈ <ωω an open Us ⊂ X and, for each n ∈ ω , ⟨xsan,ysan⟩ ∈ A such that,

(1) q ∈ {ysan : n ∈ ω } for every s ∈ <ωω;

(2) for every nonempty s ∈ <ωω , ⟨xs�k : 0 < k ≤ dom(s)⟩ ∈ dom(γ).

Indeed, suppose Us�k and ⟨xs�kan,ys�kan⟩ are defined as desired for every k < dom(s) and n ∈ ω .
Then, first, set Us = γ(⟨xs�k : k < dom(s)⟩). Now, let B = {y ∈ Y : ⟨y,x⟩ ∈ A and x ∈Us } and
note that q ∈ B, so, since Y is countably tight at q, we may pick a countable B′ ⊂C so that, by
letting xsan and ysan be such that {⟨xsan,ysan⟩ : n ∈ ω }= B′, the recursion is complete.

We claim that ⟨p,q⟩ ∈ {⟨xs,ys⟩ : s ∈ <ωω }, which concludes the proof. Indeed, fix a
basic open neighborhood U ×V of ⟨p,q⟩. Using condition (1) we may (recursively) find an R ∈
ωω such that yR�k ∈V for every k ∈ω . On the other hand, in view of condition (2), ⟨xR�k : k ∈ N⟩
is a run compatible with γ , so xR�n ∈ U for some n ∈ ω . It follows that ⟨xR�n,yR�n⟩ ∈ U ×V ,
hence, ⟨p,q⟩ ∈ {⟨xs,ys⟩ : s ∈ <ωω }.

5.7 The space of real continuous functions
Some covering games on completely regular spaces have a surprising connection with

tightness games in a specific associated hyperspace. We explore this connection in this chapter –
and this will allow us to finally show a space on which Sfin(Ωx,Ωx) holds, but S1(Ωx,Ωx) does
not. We begin with the definition of such hyperspaces:
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Definition 5.7.1. Given a space X , let CCC(((XXX)))⊂RX be such that f ∈C(X) if, and only if, f : X →R
is continuous (considering R with the usual topology). We then define CCCppp(((XXX))) as C(X) with the
subspace topology (considering RX with the product topology).

Given x ∈ X , we denote the projection of RX in the xth coordinate by πx, we denote
f ∈Cp(X) such that f ≡ 0 as 000 and let, for each n ∈ ω , In =]− 1

n+1 ,
1

n+1 [.

Proposition 5.7.2. Given f ∈Cp(X), ε > 0 and a finite F ⊂ X, let

B( f ,ε,F) =
{

g ∈Cp(x) : | f (x)−g(x)|< ε for all x ∈ F
}
.

Then the following collection is a local basis at f :

B f =

{
B
(

f ,
1

n+1
,F
)

: n ∈ ω, F ∈ [X ]<ω

}
Proof. Exercise 5.7.12

The following lemma can be found, implicitly, in [Sakai 1988]:

Lemma 5.7.3. Given a T3 1
2

space X,

(a) if U ∈ Ω, then

A(U ) =
{

f ∈Cp(X) : for some U ∈ U , f (x) = 1 for all x ∈ X ∖U
}
∈ Ω000;

(b) if A ∈ Ω000, n ∈ ω and U (A,n) =
{

f−1(In) : f ∈ A
}
∈ Ω, then either X ∈U (A,n), or else

U (A,n) ∈ Ω.

Proof. Suppose U ∈ Ω, let A(U ) be as in (a) and fix n ∈ ω and F ⊂ X finite. Since U ∈ Ω,
there is a U ∈ U such that F ⊂ U . On the other hand, since X is a T3 1

2
space, there is a

continuos f : X → R such that f (x) = 0 for all x ∈ F and f (y) = 1 for all y ∈ X ∖U . Note that
f ∈ A(U )∩B

(
000, 1

n+1 ,F
)
, as desired.

On the other hand, suppose A ∈ Ω000, let U (A,n) be as in (b) and fix a finite F ⊂ X . Since
A ∈ Ω000, there is an f ∈ A∩B

(
000, 1

n+1 ,F
)
, so F ⊂ f−1(In), which concludes the proof.

Lemma 5.7.4. If U ∈ Ω, then {U ∈ U : F ⊂U } is infinite for every finite F ⊂ X.

Proof. Fix a finite F ⊂ X . Since U ∈ Ω, there is a U0 ∈ U such that F ⊂U0. On the other hand,
since X ̸∈ U , there is an x1 ∈ X such that x1 ̸∈U0. It follows that there is a U1 ∈ U such that
F ∪{x1} ⊂U1, which implies that U0 ̸=U1. By proceeding in this manner we inductively find a
sequence ⟨Un : n ∈ ω⟩ of distinct elements of U such that F ⊂Un for all n ∈ ω , as desired.

Theorem 5.7.5 ([Scheepers 1997]). On every space X, Sfin(Ω,Ω) holds if, and only if, ALICE̸↑Gfin(Ω,Ω).



5.7. The space of real continuous functions 119

Proof. By Proposition 4.0.9,

ALICE̸↑Gfin(Ω,Ω) =⇒ Sfin(Ω,Ω),

so suppose Sfin(Ω,Ω) holds and fix a strategy γ for ALICE in Gfin(Ω,Ω). By Theorem 3.3.49,
Sfin(O,O) holds on Xk for every k ∈N. In this case, by Proposition 3.3.3, Sfin(O,O) holds on the
disjoint union Y =

⋃
k∈NXk, which, in view of Theorem 4.1.12, implies that ALICE̸↑Gfin(O,O)

on Y . We define a strategy γ ′for ALICE in Gfin(O,O) over Y as follows:

∙ First, let
γ
′(⟨⟩) = U0 =

⋃
k∈N

{
V k : V ∈ γ(⟨⟩)

}
;

∙ if BOB answers with F ′
0 =

{
V k0

0 , . . . ,V km
m

}
⊂ γ ′(⟨⟩), let F0 = {V0, . . . ,Vm} and then

γ
′(⟨F ′

0⟩) =
⋃

k∈N

{
V k : V ∈ γ(⟨F0⟩)

}
;

∙ and so on.

Since ALICE̸↑Gfin(O,O) over Y , there is a run ⟨γ ′(⟨⟩),F ′
0, . . .γ

′(⟨F ′
0, . . . ,F

′
n⟩),F ′

n+1, . . .⟩ such
that

⋃
n∈ω F ′

n covers Y . For each n ∈ ω , let Fn = {V0, . . . ,Vm} be such that F ′
n = {V k0

0 , . . . ,V km
m }

for some k0, . . . ,km ∈ N. Then it is clear that ALICE loses the run

⟨γ(⟨⟩),F0, . . .γ(⟨F0, . . . ,Fn⟩),Fn+1, . . .⟩

and, therefore, γ is not a winning strategy, which concludes the proof.

Theorem 5.7.6 ([Arhangel’skii 1986], [Scheepers 1997]). Let X be a T3 1
2

space. Then the fol-

lowing statements are equivalent:

(a) Sfin(Ω,Ω) holds on X;

(b) ALICE̸↑Gfin(Ω,Ω) on X;

(c) ALICE̸↑Gfin(Ω000,Ω000) on Cp(X);

(d) Sfin(Ω000,Ω000) holds on Cp(X).

Proof. Note that the implication (a) =⇒ (b) follows directly from Theorem 5.7.5.

In order to show that (b) =⇒ (c), Let γ be a strategy for ALICE in Gfin(Ω000,Ω000). We
construct a stratey γ ′ for ALICE in Gfin(Ω,Ω) as follows:

∙ First, fix U ∈ Ω. Then, if γ(⟨⟩) = A0 and X ̸∈U (A0,0), let γ ′(⟨⟩) =U (A0,0). Otherwise,
let γ ′(⟨⟩) = U .
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∙ When BOB responds with F ′
0 ⊂ γ ′(⟨⟩), we have two cases to consider: if X ̸∈U (A0,0), let

F0 ⊂ A0 be such that
{

f−1(I0) : f ∈ F0
}
= F ′

0. Otherwise, let F0 = { f0}, with f0 ∈ A0

such that f−1
0 (I0) = X . Set γ(⟨F0⟩) = A1 and then, again, we have two cases to consider:

if X ̸∈ U (A1,1), let γ ′(⟨F ′
0⟩) = U (A1,1). Otherwise, let γ ′(⟨F ′

0⟩) = U .

∙ When BOB responds with F ′
1 ⊂ γ ′(⟨F ′

0⟩), we have two cases to consider: if X ̸∈U (A1,1),
let F1 ⊂ A1 be such that

{
f−1(I1) : f ∈ F1

}
= F ′

1. Otherwise, let F1 = { f1}, with
f1 ∈ A1 such that f−1

1 (I1) = X . Set γ(⟨F0,F1⟩) = A2 and then, again, we have two cases
to consider: if X ̸∈U (A2,2), let γ ′(⟨F ′

0,F
′
1⟩) =U (A2,2). Otherwise, let γ ′(⟨F ′

0,F
′
1⟩) =

U .

∙ And so on.

Since ALICE̸↑Gfin(Ω,Ω), there is a run ⟨γ ′(⟨⟩),F ′
0, . . .γ

′(⟨F ′
0, . . . ,F

′
n⟩),F ′

n+1, . . .⟩ such
that

⋃
n∈ω F ′

n ∈ Ω. Note that if X ∈ U (An,n) for infinitely many n ∈ ω , ALICE loses the run
with γ , so assume that there is an m ∈ ω such that X ̸∈ U (An,n) for every n ≥ m. We will show
that ALICE loses the run ⟨γ(⟨⟩),F0, . . .γ(⟨F0, . . . ,Fn⟩),Fn+1, . . .⟩, which concludes the proof.
Indeed, fix a finite F ⊂ X and k ≥ m. By Lemma 5.7.4,

⋃
n≥k F ′

n ∈ Ω, so there is an n ≥ k and an
fn ∈ Fn such that F ⊂ f−1

n (In). Then fn ∈ B
(
000, 1

k+1 ,F
)
∩
⋃

n≥k Fn and the proof is complete.

The implication (c) =⇒ (d) follows directly from Proposition 4.0.9.

Finally, in order to show that (d) =⇒ (a), suppose Sfin(Ω000,Ω000) holds on Cp(X) and let
⟨Un : n ∈ ω⟩ be a sequence of ω-covers for X . For each n ∈ ω , let An = A(Un) and then apply
Sfin(Ω000,Ω000) to the sequence ⟨An : n ∈ ω⟩ to find a sequence ⟨F ′

n : n ∈ ω⟩ such that F ′
n is a finite

subset of An for every n ∈ ω and
⋃

n∈ω F ′
n ∈ Ω000. For each n ∈ ω , let Fn ⊂ Un be a finite set

such that for each f ∈ F ′
n there is a U f ∈ Fn with f (x) = 1 for every x ∈ X ∖U f . To see that⋃

n∈ω Fn ∈ Ω, fix a finite F ⊂ X . Since
⋃

n∈ω F ′
n ∈ Ω000, there is an n ∈ ω and an f ∈ F ′

n such
that f ∈ B(000,1,F). Then f (x) < 1 for every x ∈ F , which implies that F ⊂ U f ∈ Fn and the
proof is complete.

Theorem 5.7.7 ([Scheepers 2014]). Let X be a T3 1
2

space. Then BOB↑Gfin(Ω,Ω) on X if, and

only if, BOB↑Gfin(Ω000,Ω000) on Cp(X).

Proof. Suppose σ is a winning strategy for BOB in Gfin(Ω,Ω) over X and fix U ∈ Ω. We define
a strategy σ ′ for BOB in Gfin(Ω000,Ω000) over Cp(X) as follows:

∙ When ALICE plays A0 ∈ Ω000 in the first inning and X ̸∈ U (A0,0), we set U0 = U (A0,0)
and σ ′(⟨A0⟩) = F0 such that

{
f−1(I0) : f ∈ F0

}
= σ(⟨U0⟩). Otherwise, let U0 = U

and σ ′(⟨A0⟩) = { f}, with f ∈ A0 such that f−1(I0) = X .

∙ When ALICE plays An ∈ Ω000 in the nth inning and X ̸∈ U (An,n), we set Un = U (An,n)

and σ ′(⟨A0, . . . ,An⟩) = Fn such that
{

f−1(In) : f ∈ Fn
}
= σ(⟨U0, . . . ,Un⟩). Otherwise,

let Un = U and σ ′(⟨A0, . . . ,An⟩) = { f}, with f ∈ An such that f−1(In) = X .
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To see that σ ′ is a winning strategy, first of all, note that if X ∈U (An,n) for infinitely many n∈ω ,
then BOB wins the run. So suppose, without loss of generality, that X ̸∈ U (An,n) for all n ∈ ω .
Fix k ∈ ω and a finite set F ⊂ X . Since σ is a winning strategy,

⋃
n∈ω σ(⟨U0, . . . ,Un⟩) ∈ Ω, so,

by Lemma 5.7.4,
⋃

n>k σ(⟨U0, . . . ,Un⟩) ∈ Ω. In this case, there is an n > k such that F ⊂Un for
some Un ∈ σ(⟨U0, . . . ,Un⟩). Let fn ∈ Fn be such that f−1

n (In) = Un. Then fn ∈ B
(
000, 1

k+1 ,F
)
,

as desired. It follows that σ ′ is a winning strategy.

Now, suppose that σ is a winning strategy for BOB in Gfin(Ω000,Ω000) on Cp(X). We define
a strategy σ ′ for BOB in Gfin(Ω,Ω) on X as follows:

∙ When ALICE chooses U0 ∈ Ω in the first inning, let A0 = A(U0) and then let σ ′(⟨U0⟩) =
F0 such that for each f ∈ σ(⟨A0⟩) there is a U ∈ F0 with f (x) = 1 for all x ∈ X ∖U .

∙ When ALICE chooses Un ∈Ω in the nth inning, let An =A(Un) and then let σ ′(⟨U0, . . . ,Un⟩)=
Fn such that for each f ∈ σ(⟨A0, . . . ,An⟩) there is a U ∈Fn with f (x) = 1 for all x∈X ∖U .

To see that σ ′ is a winning strategy, fix a finite F ⊂ X . Then, since σ is a winning strategy, there
is an n ∈ ω and an f ∈ σ(⟨A0, . . . ,An⟩) such that f ∈ B(000,1,F). In this case, if U ∈ Fn is such
that f (x) = 1 for all x ∈ X ∖U , then F ⊂U , and the proof is complete.

Following the steps of the proofs of Theorems 5.7.5, 5.7.6 and 5.7.7, one can also show
(Exercise 5.7.13):

Theorem 5.7.8 ([Scheepers 1997]). On every space X, S1(Ω,Ω) holds if, and only if, ALICE̸↑G1(Ω,Ω).

Theorem 5.7.9 ([Sakai 1988], [Scheepers 1997]). Let X be a T3 1
2

space. Then the following

statements are equivalent:

(a) S1(Ω,Ω) holds on X;

(b) ALICE̸↑G1(Ω,Ω) on X;

(c) ALICE̸↑G1(Ω000,Ω000) on Cp(X);

(d) S1(Ω000,Ω000) holds on Cp(X).

Theorem 5.7.10 ([Scheepers 2014]). Let X be a T3 1
2

space. Then BOB↑G1(Ω,Ω) on X if, and

only if, BOB↑G1(Ω000,Ω000) on Cp(X).

Then, finally, we get:

Corollary 5.7.11. There is a space X with x ∈ X (namely, Cp(2ω) with x = 000) such that

S1(Ωx,Ωx) does not hold, but Sfin(Ωx,Ωx) holds.
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Proof. Note that (2ω)k is compact for every k ∈ N, hence, by Theorem 3.3.49, Sfin(Ω,Ω) holds
on 2ω .

On the other hand, S1(O,O) does not hold on 2ω , so, in view of Theorem 3.3.48,
S1(Ω,Ω) also does not hold.

The result then follows from Theorems 5.7.6 and 5.7.9.

Exercise 5.7.12. Write the details of Proposition 5.7.2’s proof.

Exercise 5.7.13. Write the details of Theorems 5.7.8, 5.7.9 and 5.7.10’s proofs.
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CHAPTER

6
DIAGRAMS

In this chapter we present some diagrams summarizing the main results displayed along
the book. Arrows represent implications. The number to the left of/above an arrow tells us
where is the proof of such implication (if it is not obvious) and the number between parenthesis
immediately next to it points out to the counterexample of its converse implication. Indications
such as “metric” or “T1” next to an arrow tell us that this assumption was required in the specified
proof and the number between parenthesis next to this indication points out to the counterexample
showing that without said assumption the implication would fail. For simplicity’s sake, we will
denote “ALICE” by “A” and “BOB” by “B”, write “productively” as “prod.”, “neighborhood” as
“nbhd” and “convergence” as “conv.”.

We dedicate:

∙ Figure 1 to the Banach-Mazur game

∙ Figure 2 to the showcase the Scheepers Diagram with the nontrivial implications explicitly
indicated;

∙ Figure 3 for the remaining important covering properties

∙ Figure 4 for the tightness properties.
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Sfin(A ,B) prod. Baire Sfin(A ,B) Baire

Sfin(Γ,Ω) Sfin(A ,B)

complete
metric Sfin(A ,B) B↑BM(X) Sfin(A ,B) ALICE̸↑BM(X)

Sfin(A ,B) Sfin(A ,B) Sfin(Ω,Ω) Sfin(A ,B)

(
Ω

Γ

)
Sfin(A ,B) compact T2 Sfin(A ,B) uncountable

2.5.2

5.1.10 5.1.2

2.5.6
T1,

no isolated points2.5.9

Figure 1 – Banach-Mazur game

Sfin(A ,B) Ufin(O,Γ) Sfin(A ,B) Ufin(O,Ω) Sfin(O,O)

Sfin(Γ,Ω) Sfin(A ,B) Sfin(A ,B) Sfin(A ,B)

S1(Γ,Γ) Sfin(A ,B) S1(Γ,Ω) Sfin(A ,B) S1(Γ,O) Sfin(A ,B) Sfin(A ,B)

Sfin(A ,B) Sfin(A ,B) Sfin(Ω,Ω) Sfin(A ,B) Sfin(A ,B) Sfin(A ,B)

(
Ω

Γ

)
Sfin(A ,B) S1(Ω,Ω) Sfin(A ,B) S1(O,O) Sfin(A ,B) Sfin(A ,B)

3.3.40 3.3.38

3.3.40

3.3.43
3.3.43

3.3.43

Figure 2 – Scheepers Diagram
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CHAPTER

7
POSITIONAL STRATEGIES AND A

PROBLEM IN FINITE COMBINATORICS

In Section 2.4 of the book we presented the concept of positional strategies and, as already
mentioned, we have obtained Theorem 2.4.8 as a small generalization of the main theorem from
[Galvin and Telgársky 1986] (there, the kind of game considered was clearly positional for both
players) – this generalizations came naturally due to the formalization for games we decided to
use throughout the book.

We had initially thought that a corollary to this result would be that ALICE having a
winning strategy in the point-open game would imply that she would have a positional winning
strategy – but then we soon realized a flaw on our reasoning and, hence, started a hunt for a
counterexample. It came as a great surprise that the discrete space of merely 5 points already
sufficed as this counterexample (see 2.4.12). The natural question that came after such discover
was whether this was the minimum amount of points necessary for ALICE not having a positional
winning strategy in this game – and the answer easily came as a yes (which is why it was left as
Exercise 2.4.13).

But what if we change the rules of the point-open game to allow ALICE to choose at
most n points, with n ∈N (we will call this variation the n points-open game, for now)? Then we
have the following:

Proposition 7.0.1. Given n ∈ N, ALICE has a positional winning strategy in the n points-open

game on the discrete space X = 3n+1.

Proof. First, fix any A0 ⊂ X such that |A0| = n and then set γ(⟨⟩) = A0. Let C = X ∖A0. Let
F = {B ⊂ X : |B∩B0|= n} (note that this is a finite set) and then fix an enumeration F =
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{Bi : i ≤ m}. We then set

f (B) =


Bi+1modm, if B = Bi for some i ≤ m;

B0 ∩C, if |B∩C|< n;

X ∖ (B∪A0), otherwise.

Then it is clear that if we proceed to recursively define γ as γ(saB) = f (B) for each s ∈ dom(γ),
then it is a positional winning strategy.

Proposition 7.0.2. Given n ∈ N, ALICE has no positional winning strategy in the n points-open

game over a T1 space with at least n+(n2 +1)(n+1) points.

Proof. Let γ be a positional strategy for ALICE in the discrete space X = n+(n2+1)(n+1), fix
A0 = γ(⟨⟩) and Y = X ∖A0, so that |Y | ≥ (n2 +1)(n+1). Let {Fi ⊂ X : 1 ≤ i ≤ n+1} be such
that

∙ Fi ∩Fj = A0 for all distinct i, j ≤ n+1;

∙
⋃

i≤n+1 Fi = X ;

∙ |Fi| ≥ n2 +1.

For each i ≤ n+1, let

Bi =
⋃

j≤n+1
j ̸=i

Fj,

so that |Bi ∩Y | ≤ n(n2 +1) and for every A ⊂ X such that |A| ≤ n, A ⊂ Bi for some i ≤ n+1.
Note that A0 ⊂ Bi for every i ≤ n+1, so ⟨Bi⟩ ∈ domγ . In this case, set C = A0 ∪

⋃
i≤n+1 γ(⟨Bi⟩),

so that ⟨C⟩,⟨Bi,C⟩ ∈ domγ for every i ≤ n+1 and |C∩Y | ≤ n(n+1). Let m ≤ n+1 be such that
γ(⟨C⟩)⊂ Bm. We may assume γ(⟨Bi⟩) is not contained in Bi itself for every i ≤ n+1 (otherwise,
γ would lose the run on which BOB responds with Bi in every inning), so |C∩Bm| ≥ n. Then

⟨γ(⟨⟩),Bm,γ(⟨Bm⟩),C,γ(⟨C⟩),Bm,γ(⟨Bm⟩),C, . . .⟩

is a run compatible with γ . To see that it does not cover X , note that

|Bm ∪C|= |A0|+ |C∩Y |+ |Bm ∩Y |− |C∩Bm ∩Y |

≤ n+n(n+1)+n(n2 +1)−n

= n+n2 +n(n2 +1)< |X |,

Hence, γ is not a winning strategy.
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This raises a question about finite combinatorics for future investigations: given n ∈ N,
what is the minimum kn ∈ N such that, over every T1 space X with |X | ≥ kn, ALICE has no
positional winning strategy in the n points-open game? By Propositions 7.0.1 and 7.0.2,

3n+1 < kn ≤ n+(n2 +1)(n+1). (7.1)

We should note that, for n = 1, Equation (7.1) gives us k1 = 5, as we already knew from Example
2.4.12 and Exercise 2.4.13.
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CHAPTER

8
TOPOLOGICAL GAMES OF BOUNDED

SELECTIONS

We present in this chapter the content obtained in the (submitted) paper [Aurichi and Duzi 2019].

We have already seen that variations Sfin(A ,B) and S1(A ,B) may give rise to different
topological properties (see e.g. 3.3.7 and 3.3.8). When we are talking about games, the difference
may be even more dramatic: Gk(A ,B) might be equivalent to G1(A ,B) in some instances
of A ,B, like in the covering case (as shown in 4.1.39), while on others it might not, as in the
tightness case (as presented in 4.2.4). So it is natural to ask what other kind of change can be
done.

In this paper we give continuity in this study of the fundamental differences between the
covering and the tightness cases. In order to do so we introduce a new kind of variation: what
changes if each selection is finite but at the end, the size of all selections has to be bounded by a
number? We will show that usually this bounded selections are different from the classical ones
and that the behavior can also change depending upon the case (covering, tightness) studied,
highlighting a few of what appears to be the reasons for this phenomenon. In the covering case,
notably, we show some characterizations for the new game and selection principle variations
analogous to classical ones and, as a corollary, we present a characterization for metrizable
spaces in terms of two subspaces: a compact and a countable (or strong measure zero with
respect to every metric that generates the space’s topology).

This paper was organized as follows. In Section 8.1 we present the new variation of
selection principle and discuss its first relations with some classical selection principles, showing
that in the covering case we have a new intermediate property and that in the tightness case the
new variation collapses to one of the classical variations.

In Section 8.2 we present the games naturally associated to the new variation, showing
that both in the covering and tightness cases we have new games. In particular, we characterize
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the new game in the tightness case in terms of the classical games.

We dedicate Section 8.3 to present yet two other new variations of selection principles
that enable us to characterize the covering case.

In Section 8.4 we show a result for the new variations in the covering case that is analo-
gous to the Pawlikowski and Hurewicz theorems, obtaining yet another characterization of the
new variation of selection principle. This result, however, could not be obtained as a corollary of
the classical ones, so the proof is presented as an adaptation of the proof of the Pawlikowski The-
orem, inspired by a simplified version seen in the notes [Szewczak and Tsaban 2019] provided
by Szewczak and Tsaban.

We continue to study the covering case in Section 8.5, where we present a duality
analogous to the one given by Galvin in [Galvin 1978].

Finally, Section 8.6 is dedicated to present some known results and examples so we
can summarize in two diagrams the contrast reflected by these bounded selections between the
covering and tightness cases.

The following trivial fact about topological spaces will also be useful for future argu-
ments.

Fact 8.0.1. Let X be a topological space and p ∈ X. If A is such that p ∈ A and p /∈ {x} for

every x ∈ A, then p ∈ A∖F for every F ⊂ A finite.

8.1 Selection Principles
Consider the following selection principle based on Definitions 3.1.5 and 3.1.6:

Definition 8.1.1. Let A ,B be families of sets. We say that Sbnd(((A ,,,B))) holds if, for every
sequence ⟨An : n ∈ ω⟩ of elements of A there is a sequence ⟨Bn : n ∈ ω⟩ and k ∈ N with, for
every n ∈ ω ,

a. Bn ⊂ An is finite;

b.
⋃

n∈ω Bn ∈ B;

c. |Bn| ≤ k.

It is easy to see that Definition 8.1.1 is different from both S1(A ,B) and Sfin(A ,B):

Proposition 8.1.2. Sbnd(O,O) holds over every compact space, but S1(O,O) does not hold

over 2ω .

Moreover, Sfin(O,O) holds over every σ -compact space, but Sbnd(O,O) does not hold

over R.
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On the other hand, for some choices of the families A and B, the new definition may
collapse to classical selection principles (the following result is somewhat of a generalization of
3.2.5.

Proposition 8.1.3. Let (X ,τ) be a topological space and p ∈ X. Then the following properties

are equivalent:

(1) S1(Ωp,Ωp);

(2) Sk(Ωp,Ωp), for every k ≥ 2;

(3) Sbnd(Ωp,Ωp).

Proof. The implications (1) =⇒ (2) =⇒ (3) are clear, so suppose Sbnd(Ωp,Ωp) holds and let
⟨An : n ∈ ω⟩ be a sequence of subsets of X such that p ∈ An for every n ∈ ω . Since Sbnd(Ωp,Ωp)

holds, there is a sequence ⟨Bn : n ∈ ω⟩ and k ∈ ω with, for every n ∈ ω ,

a. Bn ⊂ An;

b. p ∈
⋃

n∈ω Bn;

c. |Bn| ≤ k.

Without loss of generality, we may assume that |Bn| = k for every n ∈ ω and we write Bn ={
b1

n, . . . ,b
k
n
}

for each n ∈ ω . Now, let Ci =
{

bi
n : n ∈ ω

}
for each i ≤ k.

CLAIM 8.1.4. There is an i ≤ k such that p ∈Ci.

Proof. Just note that
⋃

n∈ω Bn =
⋃

i≤k Ci and
⋃

i≤k Ci =
⋃

i≤k Ci.

Let m ≤ k be such that p ∈Cm. Then the sequence ⟨bm
n : n ∈ ω⟩ witnesses S1(Ωp,Ωp)

and the proof is complete.

But even when the selection principle collapses, we may find new properties when
looking into the new associated games.

8.2 The associated games

Before presenting the new game variation, it is worth mentioning here another variation of
topological games that have been studied throughout the years (see e.g. [García-Ferreira and Tamariz-Mascarúa 1995]
and [7]). It goes as it follows:
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Definition 8.2.1. Let A ,B be nonempty families of sets and f ∈ Nω . We denote by Gf(((A ,,,B)))

the game, played between ALICE and BOB, in which in each inning n ∈ ω ALICE chooses
An ∈ A as BOB responds with Bn ⊂ An such that |Bn| ≤ f (n) and BOB wins if

⋃
n∈ω Bn ∈ B

(ALICE wins otherwise).

As with the classical selection principles, new associated games naturally arise from the
new selection principles.

Definition 8.2.2. Let A ,B be nonempty families of sets. We denote by Gbnd(((A ,,,B))) the game,
played between ALICE and BOB, in which in each inning n ∈ ω ALICE chooses An ∈A as BOB

responds with Bn ⊂ An finite and BOB wins if there is an k ∈ N such that,

a.
⋃

n∈ω Bn ∈ B;

b. |Bn| ≤ k for every n ∈ ω .

Otherwise, we say that ALICE wins.

As with the usual selection principles, we immediately have:

Proposition 8.2.3. Given A and B families of sets,

ALICE ̸ ↑ Gbnd(A ,B) =⇒ Sbnd(A ,B).

The following result will be useful in some arguments.

Lemma 8.2.4. Suppose σ is a winning strategy for BOB in Gbnd(A ,B). Then, for every r ∈
<ωA there is an s ∈ <ωA and an m ∈ N such that |σ(rasat)| ≤ m for every t ∈ <ωA .

Proof. Suppose our thesis is false and let r ∈ <ωA be the sequence witnessing this assertion.
Then there is an s1 ∈ <ωA such that |σ(ras1)|> 1. Again, we may pick an s2 ∈ <ωA such that
|σ(rasa1 s2)|> 2. Suppose we have picked {si : i ≤ n} such that |σ(rasa1 · · ·a sk)|> k for every
k ≤ n. Then we may pick sn+1 ∈ <ωA such that |σ(rasa1 · · ·a san sn+1)| > n+1. We have just
defined a sequence ⟨sn : n ∈ N⟩ such that |σ(rasa1 · · ·a sn)|> n for every n ∈ N, a contradiction
to the fact that σ is a winning strategy in Gbnd(A ,B).

Now, even though Proposition 8.1.3 tells us that Sbnd(Ωp,Ωp) is not really a new selection
principle, the same cannot be said about the game associated to this principle. In order to prove
this, let us first characterize the new game in terms of the already known tightness games:

Theorem 8.2.5. ALICE has a winning strategy in Gbnd(Ωp,Ωp) if, and only if, ALICE has a

winning strategy in Gk(Ωp,Ωp) for every k ∈ N.
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The idea behind the proof of Theorem 8.2.5 is that, in Gbnd(Ωp,Ωp), ALICE may pretend,
at every inning, that the game just started without losing any relevant information, because, in
view of Fact 8.0.1, the finite set of points BOB have chosen thus far is irrelevant to the winning
criteria.

So ALICE may start the game playing with a winning strategy in the game G1(Ωp,Ωp)

and, if BOB chooses more than one point (say, k points), ALICE may just pretend the game
restarted and then proceed to play with a winning strategy in the game Gk(Ωp,Ωp). If BOB

wants to win, he must eventually stop raising the amount of points he chooses, so from that
moment on he will be playing against a winning strategy for ALICE in some Gk(Ωp,Ωp), and
will, therefore, lose the game.

Formally:

Proof of Theorem 8.2.5. Given k ∈ N, the implication

ALICE↑Gbnd(Ωp,Ωp) =⇒ ALICE↑Gk(Ωp,Ωp)

is obvious.

So, suppose that for each k ∈ N there is a winning strategy γk for ALICE in Gk(Ωp,Ωp).
Then we construct a strategy γ for ALICE in Gbnd(Ωp,Ωp) as it follows. First, let γ(⟨⟩) = γ1(⟨⟩).
If BOB chooses B0 ⊂ γ1(⟨⟩) with |B0| ≤ 1, then we let γ(⟨B0⟩)= γ1(⟨B0⟩). Otherwise, if |B0|= k0

for some k0 > 1, let γ(⟨B0⟩) = γk0(⟨⟩). In general, suppose γ is defined up to ⟨Bi : i ≤ n⟩ and
that, for each m ≤ n, γ(⟨Bi : i ≤ m⟩) = γkm(⟨Bi : lm < i ≤ m⟩), for some lm ≤ m and km ∈ N. If
BOB chooses Bn+1 ⊂ γ(⟨Bi : i ≤ n⟩) such that |Bn+1| ≤ kn, then we simply put

γ(⟨Bi : i ≤ n⟩aBn+1) = γkn(⟨Bi : ln < i ≤ n⟩aBn+1).

Otherwise, if |Bn+1|= kn+1 > kn, we let γ(⟨Bi : i ≤ n⟩aBn+1) = γkn+1(⟨⟩).

Suppose BOB plays ⟨Bn : n ∈ ω⟩ against γ in such a way that, for every n ∈ ω , |Bn| ≤ k

for some (minimal) k ∈ N. Then there must be an (also minimal) l ∈ ω such that |Bl|= k and
|Bn| ≤ k for every n ≥ l. Then, by the construction presented here, ⟨Bn : n ≥ l⟩ is a play against
γk. Finally, since each one of the γn’s are winning strategies for ALICE, we may apply Fact 8.0.1
to
⋃

n∈ω Bn and conclude that if p ∈
⋃

n∈ω Bn, then p ∈
⋃

n≥l Bn, which would contradict the fact
that γk is a winning strategy in Gk(Ωp,Ωp). It follows that γ is indeed a winning strategy for
ALICE in Gbnd(Ωp,Ωp).

Corollary 8.2.6. If S1(Ωp,Ωp) does not hold, then ALICE has a winning strategy in Gbnd(Ωp,Ωp).

The following result shows us that there is an f ∈ Nω such that Gbnd(Ωp,Ωp) is not
equivalent to Gf(Ωp,Ωp).

Proposition 8.2.7 ([García-Ferreira and Tamariz-Mascarúa 1995] – Example 3.7, [7] – Example
3.5). There is a space X with a point p on which BOB↑Gf(Ωp,Ωp) for any f ∈ Nω unbounded,

but S1(Ωp,Ωp) fails.
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Corollary 8.2.8. There is a space X with a point p on which BOB↑Gf(Ωp,Ωp) (in particular,

BOB↑Gfin(Ωp,Ωp)) and ALICE↑Gbnd(Ωp,Ωp).

On the other hand, to show that Gbnd(Ωp,Ωp) is not equivalent to Gk(Ωp,Ωp) for any
k ∈ N, we just need to consider Proposition 4.2.7:

Proposition 8.2.9. For each k ∈ N there is a countable space Xk with only one non-isolated

point pk on which ALICE↑Gk(Ωpk ,Ωpk), and BOB↑Gbnd(Ωpk ,Ωpk).

We note that Proposition 4.2.7 gives us examples on which, for each k∈ω , BOB↑Gbnd(Ωpk ,Ωpk).
But we concluded this because BOB↑Gk+1(Ωpk ,Ωpk). As the following theorem tells us, this
was no coincidence.

Theorem 8.2.10. BOB has a winning strategy in Gbnd(Ωp,Ωp) if, and only if, there is an m ∈ N
such that BOB has a winning strategy in Gm(Ωp,Ωp).

Proof. It is clear that if BOB has a winning strategy in Gm(Ωp,Ωp) for some m ∈ N, then BOB

has a winning strategy in Gbnd(Ωp,Ωp).

So, suppose BOB has a winning strategy σ in Gbnd(Ωp,Ωp). Without loss of generality,
we may assume that ALICE plays only with sets A ∈ Ωp such that p ̸∈ {a} for every a ∈ A. Let
s ∈ <ωΩp and m ∈ N be as in Lemma 8.2.4 for r = ⟨⟩. Then we define a strategy σm for BOB in
Gm(Ωp,Ωp) as it follows: for each t ∈ <ωΩp, let σm(t) = σ(sat).

To see that this is a winning strategy, let ⟨An : n ∈ ω⟩ be a sequence of elements of Ωp.
By construction, |σm(A0, . . .Ak)| ≤ m for every k ∈ ω . Also, since σ is a winning strategy, p ∈
σ(s � 1)∪·· ·∪σ(s)∪

(⋃
k∈ω σ(sa⟨A0, . . . ,Ak⟩)

)
. Finally, if we apply Fact 8.0.1 to the set σ(s �

1)∪ ·· · ∪ σ(s)∪
(⋃

k∈ω σ(sa⟨A0, . . . ,Ak⟩)
)
, we conclude that p ∈

⋃
k∈ω σ(sa⟨A0, . . . ,Ak⟩) =⋃

k∈ω σm(⟨A0, . . . ,Ak⟩), and the proof is complete.

We note that the characterizations presented in Theorems 8.2.5 and 8.2.10 would still
hold if we replace “Ωp” with “D”, because the key argument used there was that, except for
some trivial cases, we can ignore finite innings of the game to check the winning criteria. The
same thing cannot be said about Gbnd(O,O), because if the game is played over a compact space,
for instance, BOB may win in the very first inning – but, on the other hand, ALICE has a winning
strategy in Gk(O,O) over 2ω for every k ∈ N.

So now we turn our attention to covering games:

Proposition 8.2.11. In every compact space, BOB↑Gbnd(O,O), but ALICE↑G1(O,O) over 2ω .

Moreover, BOB↑Gfin(O,O) over every σ -compact space, but ALICE↑Gbnd(O,O) over R.

Now suppose X is a space with a compact subset K such that, for every V ⊃ K open, BOB

has a winning strategy in G1(O,O) over the complement X ∖V . Clearly, this implies that BOB
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has a winning strategy over X in Gbnd(O,O). What is surprising, though, is that the converse
actually holds if X is regular. To prove this, however, we take a step back to define some other
variations of the classical selection principles and games.

8.3 The “modfin” and “mod1” variations
Consider the following simple variations of the classical selection principles, with their

respective associated games.

Definition 8.3.1. Let f ∈Nω , and A ,B be families of sets. We say that Sf(A ,B)modfin holds
if, for every sequence ⟨An : n ∈ ω⟩ of elements of A , there is a sequence ⟨Bn : n ∈ ω⟩, such that,

a. Bn ⊂ An is finite for every n ∈ ω;

b.
⋃

n∈ω Bn ∈ B;

c. {n ∈ ω : |Bn|> f (n)} is finite.

When there is a k ∈N with f ≡ k we simply write Sk(A ,B)modfin instead of Sf(A ,B)modfin.

We then define the property Sf(A ,B)mod1 as Sf(A ,B)modfin with condition (c)
replaced by “{n ∈ ω : |Bn|> f (n)} ⊂ {0}”, that is, “|Bn| ≤ f (n) for every n ≥ 1”.

Definition 8.3.2. Let f ∈ Nω , and A ,B be families of sets with A ̸= /0 and /0 ̸∈ A . We denote
by Gf(A ,B)modfin the game, played between ALICE and BOB, in which in each inning n ∈ ω

ALICE chooses An ∈ A as BOB responds with Bn ⊂ An finite and BOB wins if,

a.
⋃

n∈ω Bn ∈ B;

b. {n ∈ ω : |Bn|> f (n)} is finite.

When there is a k ∈ N with f ≡ k we simply write Gf(A ,B)modfin as Gk(A ,B)modfin.

We then define the game Gf(A ,B)mod1 as Gf(A ,B)modfin with condition (b) re-
placed by “{n ∈ ω : |Bn|> f (n)} ⊂ {0}” (that is, in other to have a chance of winning the game,
BOB may choose more elements then f allows only in the first inning).

Again, as with the usual selection principles, we also have here:

Proposition 8.3.3. Let f ∈ Nω , and A ,B be families of sets. Then the following implications

hold

∙ ALICE ̸ ↑ Gf(A ,B)modfin =⇒ Sf(A ,B)modfin;

∙ ALICE ̸ ↑ Gf(A ,B)mod1 =⇒ Sf(A ,B)mod1.
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In the tightness case, the new selection principles and games collapse to the classical
ones:

Proposition 8.3.4. Let (X ,τ) be a topological space and p ∈ X. Then the following properties

are equivalent:

(1) S1(Ωp,Ωp);

(2) Sk(Ωp,Ωp), for every k ∈ N;

(3) Sbnd(Ωp,Ωp);

(4) S1(Ωp,Ωp)modfin;

(5) S1(Ωp,Ωp)mod1.

Proof. Clearly (1) =⇒ (4) and (1) =⇒ (5). On the other hand, (4) =⇒ (3) and (5) =⇒ (3),
so the result follows from Proposition 8.1.3.

Proposition 8.3.5. Let f ∈ Nω . Then the following games are equivalent:

(a) Gf(Ωp,Ωp);

(b) Gf(Ωp,Ωp)mod1;

(c) Gf(Ωp,Ωp)modfin.

Proof. We will show the result for f ≡ 1 (the general case is analogous). The implications

ALICE↑G1(Ωp,Ωp)modfin =⇒ ALICE↑G1(Ωp,Ωp)mod1 =⇒ ALICE↑G1(Ωp,Ωp)

BOB↑G1(Ωp,Ωp) =⇒ BOB↑G1(Ωp,Ωp)mod1 =⇒ BOB↑G1(Ωp,Ωp)modfin

are clear.

Suppose there is a winning strategy γ1 for ALICE in G1(Ωp,Ωp). For each sequence
s ∈ dom(γ1), let As = γ1(s) and then fix a choice function fs : [As]

<ω → As (that is, fs(F)∈ F for
every F ⊂ As finite). Now, consider the following strategy γ for ALICE in G1(Ωp,Ωp)modfin:

∙ Let γ(⟨⟩) = A⟨⟩;

∙ After BOB chooses B0 ⊂ A⟨⟩, let

γ(⟨B0⟩) = A⟨ f⟨⟩(B0)⟩;

∙ After BOB chooses B1 ⊂ A⟨ f⟨⟩(B0)⟩, let

γ(⟨B0,B1⟩) = A⟨ f⟨⟩(B0), f⟨B0⟩(B1)⟩;
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∙ After BOB chooses B2 ⊂ A⟨ f⟨⟩(B0), f⟨B0⟩(B1)⟩, let

γ(⟨B0,B1,B2⟩) = A⟨ f⟨⟩(B0), f⟨B0⟩(B1), f⟨B0,B1⟩(B2)⟩;

∙ (and so on).

Note that if we assume that ⟨Bn : n ∈ ω⟩ is a winning play of BOB against γ , then (
⋃

n∈ω Bn)∖{
f⟨⟩(B0), f⟨B0⟩(B1), f⟨B0,B1⟩(B2), . . .

}
is contained in the finitely many responses of BOB in

which he chose more than one point, hence it is finite. But since γ1 is a winning strategy,
⋃

n∈ω Bn

satisfies the hypothesis of Fact 8.0.1, so ⟨ f⟨⟩(B0), f⟨B0⟩(B1), f⟨B0,B1⟩(B2), . . .⟩ is a winning play
for BOB against γ1, a contradiction.

Finally, suppose there is a winning strategy σ for BOB in G1(Ωp,Ωp)modfin (we may
assume that σ always tells BOB to choose nonempty subsets). For each s ∈ <ωΩp, let Bs = σ(s).
If there is an x ∈ Bs such that p ∈ {x}, fix bs = x. Otherwise, fix any bs ∈ Bs. Naturally, we define
the strategy σ1 for BOB in G1(Ωp,Ωp) as σ1(s) = bs for every s ∈ <ωΩp.
Now, suppose ⟨An : n ∈ ω⟩ is played by ALICE in G1(Ωp,Ωp) and let ⟨Bn : n ∈ ω⟩ and ⟨bn : n ∈ ω⟩
be σ ’s and σ1’s, respectively, responses to this play. Since σ is a winning strategy,

a. B =
⋃

n∈ω Bn ∈ Ωp;

b. {k ∈ ω : |Bk|> 1} is finite.

Then we have two possibilities:

∙ There is an x ∈ B such that p ∈ {x}: in this case, there is an n ∈ ω such that p ∈ {bn}, and
so ⟨bn : n ∈ ω⟩ is a winning play.

∙ There is no x ∈ B such that p ∈ {x}: Then we apply Fact 8.0.1 to the set B to conclude that
p ∈ {bn : n ∈ ω }, hence ⟨bn : n ∈ ω⟩ is a winning play.

It follows that σ1 is a winning strategy.

This is not the case, however, when we consider A = B = O , for instance. Note that
Proposition 8.1.2 still holds if we replace “Sbnd(O,O)” by “S1(O,O)modfin” or “S1(O,O)mod1”.
This is no coincidence, as we will see later. But first, consider the following auxiliary results.

Proposition 8.3.6. For every f ∈ Nω ,

Sf(O,O)mod1 ⇐⇒ Sf(O,O)modfin.

Proof. The implication

Sf(O,O)mod1 =⇒ Sf(O,O)modfin
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is clear.
Now, suppose Sf(O,O)modfin holds and let ⟨Un : n ∈ ω⟩ be a sequence of open covers. Let
⟨Vn : n ∈ ω⟩ be the sequence of open covers defined by

Vn = U0 ∧·· ·∧Un.

Since Sf(O,O)modfin holds, there is a sequence ⟨Fn : n ∈ ω⟩ and a finite N ⊂ ω such that

a. Fn ⊂ Vn is finite and therefore, for each V ∈ Fn, V =UV
0 ∩·· ·∩UV

n with UV
i ∈ Ui;

b.
⋃

n∈ω Fn ∈ O;

c. {k ∈ ω : |Fk|> f (k)}= N.

Let nmax = maxN and G =
⋃

n≤nmax Fn. For each V ∈ G there is a kV ∈ ω such that V =UV
0 ∩

·· · ∩UV
kV

, so let UV = UV
0 and G0 = {UV : V ∈ G}. For 0 < n ≤ nmax, let Gn = {Un } for any

Un ∈ Un. For n > nmax, let Gn =
{

UV
n : V ∈ Fn

}
. Then

1. G0 is finite;

2. |Gn|= 1, if 0 < n ≤ nmax;

3. |Gn| ≤ |Fn|, if nmax ≤ n.

therefore,

a. Gn ⊂ Un for every n ∈ ω;

b.
⋃

n∈ω Gn ∈ O;

c. {n ∈ ω : |Gn|> f (n)} ⊂ 1.

It follows that Sf(O,O)mod1 holds.

Proposition 8.3.7. For all k ∈ N and f ∈ Nω :

S1(O,O)mod1 ⇐⇒ Sk(O,O)mod1 ⇐⇒ Sf(O,O)mod1.

Proof. Fix a space X . The implications

S1(O,O)mod1 =⇒ Sk(O,O)mod1 =⇒ Sf(O,O)mod1

are clear, so suppose Sf(O,O)mod1 holds and let ⟨Un : n ∈ ω⟩ be a sequence of open covers of
X . Then we recursively define a new sequence of open covers ⟨Wn : n ∈ ω⟩ as it follows: First,
let W0 = U0. Then we let:
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∙ W1 =
∧i=1+ f (1)

i=1 Ui;

∙ W2 =
∧i=2+ f (1)+ f (2)

i=2+ f (1) Ui;

∙ W3 =
∧i=3+ f (1)+ f (2)+ f (3)

i=3+ f (1)+ f (2) Ui;

∙ and so on.

If we apply property Sf(O,O)mod1 to ⟨Wn : n ∈ ω⟩, then we clearly can find a sequence
⟨Vn : n ∈ ω⟩ such that

⋃
n∈ω Vn ∈O , V0 ⊂U0 is finite and, for each n > 0, Vn ⊂Un and |Vn| ≤ 1.

Therefore, S1(O,O)mod1 holds.

About the covering games, we note that Proposition 8.2.11 still holds if we replace
“Gbnd(O,O)” by “G1(O,O)modfin” or “G1(O,O)mod1”. Again, this is no coincidence. But
before looking further into this matter, consider the following lemma.

Lemma 8.3.8. Let X be a space. Then for every U0 ∈ O , ALICE has a winning strategy γ in

G1(O,O)mod1 such that γ(⟨⟩) = U0 if, and only if, for every k ∈ N there is a winning strategy

γk for ALICE in Gk(O,O)mod1 with γk(⟨⟩) = U0.

Proof. Let U0 ∈ O , suppose there is a winning strategy γ for ALICE in G1(O,O)mod1 such
that γ(⟨⟩) =U0 and fix k ∈N. Note that ALICE↑G1(O,O) over X ∖

⋃
F for every F ⊂U0 finite,

which implies (by Theorem 4.1.37) that there is a winning strategy γF
k for ALICE in Gk(O,O)

over X ∖
⋃

F . Now, consider the following strategy:

∙ First, let γk(⟨⟩) = U0;

∙ If BOB then chooses F0 ⊂ γk(⟨⟩) finite, let

γk(⟨F0⟩) =
{

V open : V ∩
(

X ∖
⋃

F0

)
∈ γ

F0
k (⟨⟩)

}
∪
{⋃

F0

}
;

∙ If BOB then chooses F1 = {V1} ⊂ γk(⟨F0⟩), let

γk(⟨F0,V1⟩) =
{

V open : V ∩
(

X ∖
⋃

F0

)
∈ γ

F0
k (⟨F1⟩)

}
∪
{⋃

F0

}
(we are assuming here that BOB will not choose V1 =

⋃
F0, since its points were already

covered in the first inning);

∙ And so on.

Clearly, γk has the desired properties.

The other implication is obvious.

Now, the following theorem will help us show one of the main results of this paper.
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Theorem 8.3.9. Let X be a regular space. Then BOB↑G1(O,O)mod1 if, and only if, there is a

compact set K ⊂ X such that, for every open set V ⊃ K, BOB↑G1(O,O) over X ∖V .

Proof. Suppose there is a compact set K ⊂ X such that, for every open set V ⊃ K, there is a
winning strategy σV

1 for BOB in G1(O,O) over X ∖V . Then we define the following strategy σ

for BOB in G1(O,O)mod1:

∙ If ALICE starts with U0 ∈ O , let σ(U0) be a finite subcover for K and let V =
⋃

σ(U0).

∙ After that, if ⟨U0, . . . ,Un⟩ is played by ALICE, let σ(⟨U0, . . . ,Un⟩) = σV
1 (⟨U1, . . . ,Un⟩).

Then, clearly, σ is a winning strategy.

Now, suppose σ is a winning strategy for BOB in G1(O,O)mod1.

CLAIM 8.3.10. The set
K =

⋂
U ∈O

⋃
σ(⟨U ⟩)

is compact.

Proof. Indeed, let C be an open cover for K and for each x ∈ K, let Ux ∈ C be such that x ∈Ux.
Since X is regular, for every x ∈ K there is an open set Vx such that x ∈Vx ⊂Vx ⊂Ux. On the other
hand, for each x ∈ X ∖K we consider an open set Vx such that x ∈Vx and Vx ∩K = /0 (because K

is closed and X is regular). Now, let U = {Vx : x ∈ X } ∈ O . In this case, note that

K ⊂
⋃

σ(⟨U ⟩).

Consider A = {Vx : (x ∈ K)∧ (Vx ∈ σ(⟨U ⟩))}= {Vx1, . . . ,Vxn }, with x1, . . . ,xn ∈ K. Then K ⊂⋃
A . Finally, note that {Ux1 , . . . ,Uxn } ⊂ C is a finite subcover of K.

Now, let V be an open set containing K. Note that since BOB↑G1(O,O)mod1, X

is Lindelöf, and since X ∖V is closed, X ∖V is Lindelöf. With that in mind, if we consider
the open cover

{
X ∖

⋃
σ(⟨U ⟩) : U ∈ O

}
of X ∖V , we may obtain a countable subcover{

X ∖
⋃

σ(⟨Un⟩) : n ∈ N
}

. If V is an open cover of X ∖V , let V ′ = V ∪ {V} ∈ O and fix
an enumeration { pn : n ∈ N} of the prime numbers of ω . Now we have everything at hand to
define a winning strategy σV

1 for BOB in G1(O,O) over X ∖V :

σ
V
1 (⟨V0, . . . ,Vn⟩) =

σ(⟨Uk,V
′

p1
k
, . . . ,V ′

pm
k
⟩)∖{V}, if n = pm

k for some k,m ∈ N;

{Un} with Un ∈ Vn (anyone!), otherwise.

To show that σV
1 is, indeed, winning, let y ∈ X ∖V and consider ⟨Vn : n ∈ ω⟩ as any play from

ALICE in G1(O,O) over X ∖V . Since
{

X ∖
⋃

σ(⟨Un⟩) : n ∈ N
}

covers X ∖V , y /∈
⋃

σ(⟨Uk⟩)
for some k ∈ N. But since σ is a winning strategy in G1(O,O)mod1, y must be covered by
some of σ ’s responses to ALICE’s play ⟨Uk⟩a⟨V ′

pn
k

: n ∈ N⟩, so σV
1 covers y and, therefore, is a

winning strategy.
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But how does this new selection principles relate to the “bounded versions” presented
here? As it turns out, in a very simple way.

Theorem 8.3.11. Sbnd(O,O) holds if, and only if, S1(O,O)mod1 holds.

Proof. The implication

S1(O,O)mod1 =⇒ Sbnd(O,O)

is clear, so suppose Sbnd(O,O) holds. We define f ∈ Nω as f (n) = n+1. Now, since for every
k ∈ ω the set {n ∈ ω : k > f (n)} is finite, the result follows from the fact that Sbnd(O,O) holds
if, and only if, Sf(O,O)modfin holds and by Propositions 8.3.6 and 8.3.7.

Regarding the games, Gbnd(O,O) is equivalent (over Hausdorff spaces) to G1(O,O)mod1.
We show this assertion in the following theorems.

Theorem 8.3.12. ALICE has a winning strategy in Gbnd(O,O) if, and only if, ALICE has a

winning strategy in G1(O,O)mod1.

The idea behind the proof of Theorem 8.3.12 is similar to the one presented in the proof
of Theorem 8.2.5.

The main difference here is that ALICE cannot just pretend the game restarted at any
inning without losing important information, because BOB have indeed covered a portion of
the space thus far. Lemma 8.3.8, however, gives us instructions of how she can switch between
strategies pretending the game is back to the second inning without losing this important
information.

Formally speaking:

Proof of Theorem 8.3.12. The implication

ALICE↑Gbnd(O,O) =⇒ ALICE↑G1(O,O)mod1

is clear.

So, suppose γ is a winning strategy for ALICE in G1(O,O)mod1 and let γk, for each
k ∈ N be as in Lemma 8.3.8 with U0 = γ(⟨⟩) (that is, such that γk(⟨⟩) = U0 for every k ∈ N).
We will assume that γ and γk, for every k ∈ N, tell ALICE to play refinements of U0 in every
turn. Now consider the following strategy:

∙ First, let γ̃(⟨⟩) = U0.

∙ If BOB chooses F0 ⊂ U0 with |F0|= k0 for some k0 ∈ N, let

γ̃(⟨F0⟩) = γk0(⟨F0⟩);
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∙ If BOB chooses F1 ⊂ γ̃(⟨F0⟩) such that |F1| ≤ k0, then let

γ̃(⟨F0,F1⟩) = γk0(⟨F0,F1⟩),

otherwise, if |F1|= k1 > k0, then for each V ∈ F1 fix UV ∈ U0 such that V ⊂UV and let

γ̃(⟨F0,F1⟩) = γk1(⟨F
′
1⟩),

with F ′
1 = {UV : V ∈ F1 }∪F0;

∙ And so on.

Clearly, γ̃ is a winning strategy for ALICE in Gbnd(O,O).

Theorem 8.3.13. Let X be a Hausdorff space. Then BOB↑Gbnd(O,O) if, and only if, BOB↑G1(O,O)mod1.

Proof. The implication

BOB↑G1(O,O)mod1 =⇒ BOB↑Gbnd(O,O)

is clear, so let σ be a winning strategy for BOB in Gbnd(O,O).

Note that we can assume that ALICE plays always with refinements of her first cover
played in the game. For each U ∈ O , let sU ∈ <ωO and mU ∈ N be as in Lemma 8.2.4 for
r = ⟨U ⟩. Now, fixed U ∈ O , we fix, for each U ∈

⋃
k∈dom(sU )+1 σ(sU � k), VU ∈ U such that

U ⊂VU . Then we let

σ̃(⟨U ⟩) =

VU : U ∈
⋃

k∈dom(sU )+1

σ(sU � k)

 .

Note that, by our hypothesis, BOB↑GmU (O,O) over X ∖
⋃

σ̃(⟨U ⟩) for each U ∈ O , so it
follows from Theorem 4.1.37 that there is a winning strategy σU for BOB in G1(O,O) over
X ∖

⋃
σ̃(⟨U ⟩) for each U ∈ O . Then we define, for each s ∈ <ωO ,

σ̃(⟨U ⟩as) = σU (s),

and it is clear that the strategy σ̃ we have just defined is a winning strategy for BOB in
G1(O,O)mod1.

Corollary 8.3.14. Let X be Hausdorff space. Then, for every f ∈ Nω ,

BOB↑Gbnd(O,O) ⇐⇒ BOB↑Gf(O,O)modfin ⇐⇒ BOB↑Gf(O,O)mod1

Corollary 8.3.15. The games Gbnd(O,O) and G1(O,O)mod1 are equivalent over every Haus-

dorff space.

And finally:
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Theorem 8.3.16. Let X be a regular space. Then BOB↑Gbnd(O,O) if, and only if, there is a

compact set K ⊂ X such that, for every open set V ⊃ K, BOB↑G1(O,O) on X ∖V .

Proof. It follows directly from Theorems 8.3.9 and 8.3.13.

Theorem 8.3.16 is useful to characterize even stricter sets on metric spaces:

Corollary 8.3.17. Let X be a regular space such that every compact subset is a Gδ subset (e.g.

a metrizable space). Then BOB↑Gbnd(O,O) if, and only if, there is a compact set K ⊂ X and a

countable set N ⊂ X such that X = K ∪N.

Proof. This a direct implication of Theorem 8.3.16 combined with 4.1.4.

We end this section with a simple remark: one may wonder whether changing the
definition of the “mod1” variation of the games (or selection principles) to, instead of allowing
the choices to exceed the binding function in the first inning (or element of the sequence, in the
case of selection principles), allowing the choices to exceed the binding function in the innings
of a fixed finite F ⊂ ω (which would give rise to some “modF” variation) would be any different
from “mod1”. We note that, in view of Corollary 8.3.15 (and Theorem 8.3.11, in the case of the
selection principle), everything collapses to the “mod1” variation in the covering case.

8.4 The analogous to Pawlikowski’s and Hurewicz’s re-
sults

As it turns out, our previous results can help us show an analogous theorem here, in the
“bounded” variation. The following proof is heavily inspired by the simplified proof of Theorem
4.1.32 that can be seen, for instance, in [Szewczak and Tsaban 2019].

Theorem 8.4.1. Sbnd(O,O) ⇐⇒ ALICE̸↑Gbnd(O,O)

Proof. Implication ALICE̸↑Gbnd(O,O) =⇒ Sbnd(O,O) is clear by Proposition 8.2.3.

To show the reverse implication, by Proposition 8.3.11 and Theorem 8.3.12, it suffices to
show that

S1(O,O)mod1 =⇒ ALICE̸↑G1(O,O)modfin,

so suppose S1(O,O)mod1 holds and let γ be a strategy for ALICE in G1(O,O)modfin. For
simplicity’s sake, in the rest of this proof we will write “{V}” simply as “V ”.

We then recursively define the following strategy γ̃ for ALICE in Gfin(O,O) and function
f :

We first let γ̃(⟨⟩) = γ(⟨⟩). Then, for each V0 ∈ γ̃(⟨⟩),



148 Chapter 8. Topological games of bounded selections

f (⟨V0⟩) =V0,

and, for each finite F0 ⊂ γ̃(⟨⟩), let

f (⟨F0⟩) = { f (⟨V0⟩) : V0 ∈ F0 }= F0.

Suppose F0 was chosen by BOB. Then we let

γ̃(⟨F0⟩) = γ(⟨ f (⟨F0⟩)⟩)∧
∧

V0∈F0

γ(⟨ f (⟨V0⟩)⟩).

Now, for each V0 ∈ F0 and V1 ∈ γ̃(⟨F0⟩), define

f (⟨V0,V1⟩) =V ∈ γ(⟨ f (⟨V0⟩)⟩) such that V ⊃V1;

f (⟨F0,V1⟩) =V ∈ γ(⟨ f (⟨F0⟩)⟩) such that V ⊃V1;

and, for each finite F1 ⊂ γ̃(⟨F0⟩),

f (⟨F0,F1⟩) = { f (⟨F0,V1⟩) : V1 ∈ F1 } .

Suppose F1 is then chosen by BOB. Then we let

γ̃(⟨F0,F1⟩) =γ(⟨ f (⟨F0⟩), f (⟨F0,F1⟩)⟩)∧

( ∧
V1∈F1

γ(⟨ f (⟨F0⟩), f (⟨,F0,V1⟩)⟩)

)
∧

∧

( ∧
V0∈F0

∧
V1∈F1

γ(⟨ f (⟨V0⟩), f (⟨V0,V1⟩)⟩)

)
,

for each V0 ∈ F0, V1 ∈ F1 and V2 ∈ γ̃(⟨F0,F1⟩),

f (⟨V0,V1,V2⟩) =V ∈ γ(⟨ f (⟨V0⟩), f (⟨V0,V1⟩)⟩) such that V ⊃V2;

f (⟨F0,V1,V2⟩) =V ∈ γ(⟨ f (⟨F0⟩), f (⟨F0,V1⟩)⟩) such that V ⊃V2;

f (⟨F0,F1,V2⟩) =V ∈ γ(⟨ f (⟨F0⟩), f (⟨F0,F1⟩)⟩) such that V ⊃V2,

and, for each finite F2 ⊂ γ̃(⟨F0,F1⟩),

f (⟨F0,F1,F2⟩) = { f (⟨F0,F1,V2⟩) : V2 ∈ F2 } .

Now let us look at the general case. Suppose we have defined γ̃ and f up to s ∈ dom γ̃ in
such a way that, for every k ≤ |s|:
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γ̃(s�k) =γ(⟨ f (s�1), . . . , f (s�k)⟩)∧

∧

 ∧
Vk−1∈s(k−1)

γ(⟨ f (s�1)), . . . , f (s�k−1), f ((s�k−1)aVk−1)⟩)

∧

...

∧

 ∧
V0∈s(0)

∧
V1∈s(1)

· · ·
∧

Vk−1∈s(k−1)

γ(⟨ f (⟨V0⟩), . . . , f (⟨V0, . . . ,Vk−1⟩)⟩)

 ,

for all V0 ∈ s(0), . . . ,Vk−1 ∈ s(k−1),Vk ∈ γ̃(s�k):

f (⟨V0, . . . ,Vk−1,Vk⟩) =V ∈ γ(⟨ f (⟨V0⟩), . . . , f (⟨V0, . . . ,Vk−1⟩)⟩)

such that V ⊃Vk;

f (⟨s(0),V1, . . . ,Vk−1,Vk⟩) =V ∈ γ⟨ f (⟨s(0)⟩), f (⟨s(0),V1⟩), . . . , f (⟨s(0), . . . ,Vk−1⟩)⟩)

such that V ⊃Vk;
...

f ((s�k)aVk) =V ∈ γ(⟨ f (s�1), . . . , f (s�k)⟩) such that V ⊃Vk,

and for every Fk ⊂ γ̃(s�k),

f ((s�k)aFk) =
{

f ((s�k)aVk) : Vk ∈ Fk

}
.

Then if BOB chooses Fn ⊂ γ̃(s) we let

γ̃(saFn) =γ(⟨ f (s�1), . . . , f (s), f (saFn)⟩)∧

∧

( ∧
Vn∈Fn

γ(⟨ f (s�1)), . . . , f (s), f (saVn)⟩

)
∧

...

∧

 ∧
V0∈s(0)

· · ·
∧

Vn−1∈s(n−1)

∧
Vn∈Fn

γ(⟨ f (⟨V0⟩), . . . , f (⟨V0, . . . ,Vn⟩)⟩)

 ,

for all V0 ∈ s(0), . . . ,Vn−1 ∈ s(n−1),Vn ∈ Fn,Vn+1 ∈ γ̃(saFn):
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f (⟨V0, . . . ,Vn,Vn+1⟩) =V ∈ γ(⟨ f (⟨V0⟩), . . . , f (⟨V0, . . . ,Vn⟩)⟩)

such that V ⊃Vn+1;

f (⟨s(0),V1, . . . ,Vn,Vn+1⟩) =V ∈ γ⟨ f (⟨s(0)⟩), f (⟨s(0),V1⟩), . . . , f (⟨s(0), . . . ,Vn⟩)⟩)

such that V ⊃Vn+1;
...

f (saFa
n Vn+1) =V ∈ γ(⟨ f (s�1), . . . , f (s)⟩) such that V ⊃Vn+1,

and for every Fn+1 ⊂ γ̃(saFn),

f (saFa
n Fn+1) =

{
f (saFa

n Vn+1) : Vn+1 ∈ Fn+1

}
,

so the recursion is complete.

Now, since S1(O,O)mod1 holds, Sfin(O,O) holds and, by Theorem 4.1.12, γ̃ is not
a winning strategy. Moreover, BOB can play a sequence ⟨Fn : n ∈ ω⟩ against γ̃ such that⋃

n≥m
⋃

Fn = X for every m ∈ ω (to see this, just note that if ALICE̸↑Gfin(O,O) over X , then
ALICE̸↑Gfin(O,O) over X ×ω).

CLAIM 8.4.2. There is an N ∈ ω and a choice of Vn ∈Fn for each n ≥ N such that
(⋃

n≤N Fn
)
∪

(
⋃

n>N Vn) = X .

Proof. For each n ∈ ω let

Wn =
{

V k0 ∩·· ·∩V kn : V ki ∈ Fki for all i ≤ n and k0 < k1 < · · ·< kn

}
.

Note that Wn is an open cover for every n ∈ ω . Then, since S1(O,O)mod1 holds, we can find
{V k0, . . .V km} ⊂ W0 with V ki ∈ Fki for each i ≤ km and a single Un ∈ Wn for each n > 0 such
that

(⋃
i≤mV ki

)
∪ (
⋃

n>0Un) = X .

Let N = max{ki : i ≤ m}. Now from each Un we can pick a Vln ∈ Fln such that Un ⊂Vln

and ln ̸= li for all i < n. Then if we pick any Vk ∈ Fk when k ̸= ln for every n > 0, the proof is
complete.

Now we define a winning play for BOB against γ as it follows. For each inning n ≤ N,
let BOB respond to γ with f (⟨Fi : i ≤ n⟩). Then, for each n ≥ N, let BOB respond to γ with
f (⟨Fi : i ≤ N⟩a⟨Vj : j ≤ n⟩). It follows from the definition of f and from Claim 8.4.2 that BOB

wins this play in G1(O,O)modfin, hence γ is not a winning strategy.

One may wonder if Theorem 8.3.16 still holds if we replace “BOB↑Gbnd(O,O)” by
“Sbnd(O,O)” and “BOB↑G1(O,O)” by “S1(O,O)”. The answer is yes. But to show that, let us
first take another step back and define yet another variation of the classical selection principles.
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Definition 8.4.3. Let (X ,τ) be a topological space. We say the property Ss
1(O,O)mod1 holds

if for every open cover U there is a V ⊂ U finite such that S1(O,O) holds on X ∖
⋃

V .

At first glance, this new variation may seem stronger than S1(O,O)mod1. However, we
will show later that they are equivalent selection principles. This will be useful because:

Proposition 8.4.4. Let X be a regular space. Then Ss
1(O,O)mod1 holds if, and only if, there is

a compact set K ⊂ X such that, for every open set V ⊃ K, S1(O,O) holds on X ∖V .

Proof. Analogous to the proof of Theorem 8.3.9.

Proposition 8.4.5. Ss
1(O,O)mod1 ⇐⇒ ALICE ̸ ↑ G1(O,O)mod1

Proof. Suppose Ss
1(O,O)mod1 holds and let γ be a strategy for ALICE in G1(O,O)mod1.

Then there is a V ⊂ γ(⟨⟩) such that S1(O,O) holds over X ∖
⋃

V , so it follows from Theorem
4.1.32 that γ cannot be a winning strategy.

On the other hand, suppose Ss
1(O,O)mod1 fails. Then there is an open cover U such

that S1(O,O) fails over X ∖
⋃

V for every finite V ⊂ U . Let γ(⟨⟩) = U and, if BOB responds
with a finite V ⊂ U , then ALICE can simply use the sequence of open covers of X ∖

⋃
V that

witnesses that S1(O,O) fails to win the game.

Corollary 8.4.6. Ss
1(O,O)mod1 ⇐⇒ S1(O,O)mod1 ⇐⇒ Sbnd(O,O).

Corollary 8.4.7. Let X be a regular space. Then Sbnd(O,O) holds if, and only if, there is a

compact set K ⊂ X such that, for every open set V ⊃ K, S1(O,O) holds on X ∖V .

With the help of Corollary 8.4.7 we can even characterize some metrizable spaces. We
just need to consider Theorem 5.2.8 from Fremlin and Miller.

Corollary 8.4.8. Let (X ,τ) be a metrizable space. Then Sbnd(O,O) holds if, and only if, there

is a compact set K ⊂ X and a set N ⊂ X that is strong measure zero with respect to every metric

that gives topology τ such that X = K ∪N.

8.5 The dual game

Our goal here is to find a duality similar to 4.1.2 for Gbnd(O,O), that is, to find a variation
of the point-open game that is dual to Gbnd(O,O). So, consider the following.

Definition 8.5.1. Given a space X , we denote by G(X) the following game played between
ALICE and BOB: in the first inning, ALICE chooses a compact set K0 and BOB responds with
V0 ⊃ K0 open. Then in each inning n > 0 ALICE chooses xn ∈ X and BOB responds with an open
neighborhood Vn of xn. ALICE wins the game if

⋃
n∈ω Vn = X and BOB wins otherwise.
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In this case, our duality naturally rises as a simple translation of Theorems 8.3.16, 8.4.1
and Corollary 8.4.7:

Theorem 8.5.2. For every topological space:

(a) If ALICE↑Gbnd(O,O), then BOB↑G(X);

(b) If ALICE↑G(X), then BOB↑Gbnd(O,O).

Moreover, if X is a regular space:

(c) If BOB↑Gbnd(O,O), then ALICE↑G(X);

(d) If BOB↑G(X), then ALICE↑Gbnd(O,O).

Proof. Assertions (a) and (b) can be easily checked. Assertion (c) follows directly from Theorems
8.3.16 and 4.1.2.

Now, suppose BOB↑G(X). Then for every K ⊂ X compact there is a V ⊃ K open such
that BOB has a winning strategy in the point open game on X ∖V . By 4.1.2, this implies that for
every K ⊂ X compact there is a V ⊃ K open such that ALICE↑G1(O,O) on X ∖V . By Theorem
4.1.32, this means that for every K ⊂ X compact there is a V ⊃ K open such that S1(O,O) fails
over X ∖V . Since X is regular, by Corollary 8.4.7, this is equivalent to Sbnd(O,O) failing on X ,
which, by Theorem 8.4.1, is equivalent to ALICE↑Gbnd(O,O), as we wanted to prove.

We then end this section showing that the assumption of X being a regular space is
actually required in the proof of (c) and (d) in Theorem 8.5.2:

Proposition 8.5.3. There is a Hausdorff and non-regular space X such that BOB↑Gbnd(O,O),

but BOB↑G(X).

Proof. Let (X ,τ) be a Hausdorff space such that BOB↑Gbnd(O,O) and BOB has a winning
strategy in the point-open game (for instance, 2ω ) and consider a new topology ρ over X that
additionally makes every countable set closed.

Clearly, BOB still has a winning strategy in the point-open game (or, equivalently, the
finite-open game) over the new topological space. Moreover, it is easy to see that, in the new
topology, K ⊂ X is compact if, and only if, K is finite. So it follows that BOB↑G((X ,ρ)).

However, BOB still has a winning strategy in Gbnd(O,O) over the new topological space
(X ,ρ). To see that, we first let {Ak : k ∈ ω } be a partition of the odd numbers in ω made
by infinite subsets such that minAi < minA j when i < j and let σ be a winning strategy for
BOB in G1(O,O)mod1 over the original topological space (that exists, because (X ,ρ) remains
Hausdorff and by Theorem 8.3.13). In the new space, we may assume that ALICE chooses only
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covers with open sets of the form U ∖C, with U ∈ τ and C countable. Given U open cover of
(X ,ρ) with said form we fix, for each U ∈ U , U ′ as the open set from the original topology such
that U =U ′ ∖C for some C countable. Then we let, for each open cover U of (X ,ρ) with said
form,

U ′ =
{

U ′ ∈ τ : U ∈ U
}
.

Now we define a strategy σ̃ as it follows:

∙ In the first inning (n = 0), if ALICE chooses U0, let

σ̃(⟨U0⟩) =
{

U ∈ U0 : U ′ ∈ σ(⟨U ′
0 ⟩)
}
.

Note that
⋃

σ(⟨U ′
0 ⟩)∖

⋃
σ̃(⟨U0⟩) is countable. Then we let σ̃ cover these points in the

odd innings of the set A0.

∙ If in the next even inning (n = 2), ALICE chooses U2, let

σ̃(⟨U0,U1,U2⟩) =
{

U ∈ U2 : U ′ ∈ σ(⟨U ′
0 ,U

′
2 ⟩)
}
.

Note that
⋃

σ(⟨U ′
0 ,U

′
2 ⟩) ∖

⋃
σ̃(⟨U0,U1,U2⟩) is countable. Then we let σ̃ cover these

points in the odd innings of the set A1.

∙ If in the next even inning (n = 4), ALICE chooses U4, let

σ̃(⟨U0,U1,U2,U3,U4⟩) =
{

U ∈ U4 : U ′ ∈ σ(⟨U ′
0 ,U

′
2 ,U

′
4 ⟩)
}
.

Note that
⋃

σ(⟨U ′
0 ,U

′
2 ,U

′
4 ⟩) ∖

⋃
σ̃(⟨U0,U1,U2,U3,U4⟩) is countable. Then we let σ̃

cover these points in the odd innings of the set A2.

∙ And so on.

Clearly, σ̃ is a winning strategy in Gbnd(O,O) over (X ,ρ), and the proof is complete.

Corollary 8.5.4. There is a Hausdorff non-regular space X such that Sbnd(O,O) holds, but for

every compact K ⊂ X there is an open set V ⊃ K such that S1(O,O) fails over X ∖V .

8.6 Conclusion
The results obtained in this paper can be summarized in the following diagrams (Figure

5 is dedicated to the tightness case and Figure 6 is dedicated to the covering case). Arrows
represent implications. The number immediately next to an arrow tells us where the proof of
such implication is (if it is not obvious) and the number between parenthesis immediately next
to it points out to the counterexample of its converse implication. Indications such as “Regular”
or “T2” next to an arrow tell us that this assumption was required in the specified proof and the
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number between parenthesis next to this indication points out to the counterexample showing
that without said assumption the implication would fail. For simplicity’s sake, we will denote
“ALICE” by “A” and “BOB” by “B”.

With all of that in mind, we quote here some results that show counterexamples to some
of the implications in the diagram.

Proposition 8.6.1 ([Gruenhage 2006], Example 2.11; [7], Example 3.10). There is a countable

space with only one non-isolated point p on which ALICE̸↑G1(Ωp,Ωp) and BOB̸↑Gfin(Ωp,Ωp).

Proposition 8.6.2 ([Scheepers 1997], pp. 250-251; [7], Example 2.4). There exists a countable

space X with only one non-isolated point p on which S1(Ωp,Ωp) holds (hence, Sfin(Ωp,Ωp)

holds) and ALICE↑Gfin(Ωp,Ωp).

Theorem 8.6.3 ([Barman and Dow 2011], Theorem 3.6). If X is σ -compact and metrizable,

then BOB↑Gfin(Ω0,Ω0) on Cp(X).

Theorem 8.6.4 ([Sakai 1988], Theorem 1). For every space X, S1(Ω0,Ω0) holds over Cp(X) if,

and only if, S1(O,O) holds on each finite product of X.

Corollary 8.6.5. On Cp(R):

(a) BOB↑Gfin(Ω0,Ω0);

(b) S1(Ω0,Ω0) fails.

Proposition 8.6.6 ([Telgársky 1983], Section 7; [Aurichi and Dias 2013], Example 3.5). There

is a space on which S1(O,O) holds (hence, ALICE̸↑G1(O,O)), but BOB̸↑Gfin(O,O).
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In the proof of Theorem 8.3.13 we used the main result of [Crone et al. 2019], which is
why we required X to be Hausdorff. So, just like it was done in [Crone et al. 2019], it is only
natural to end here with the question:

Problem 8.6.7. Is there a non-Hausdorff space X such that BOB↑Gbnd(O,O), but BOB̸↑G1(O,O)mod1?

In fact, it is easy to see that Problem 8.6.7 is actually equivalent to the problem presented
in [Crone et al. 2019]:

Problem 8.6.8. Is there a non-Hausdorff space X such that BOB↑Gk(O,O) for some k ∈N, but

BOB̸↑G1(O,O)?
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