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Resumo

Generalizamos as noções de estabilidade estrutural e hiperbolicidade para a família

de correspondências holomorfas

Hc(z) = zr + c,

onde r > 1 é racional e zr = exp r log z. Descobrimos que Hc é estruturalmente estável

em todos os parâmetros hiperbólicos satisfazendo a condição de fuga. Tipicamente Hc

possui infinitos pontos periódicos atratores, fato totalmente inesperado, uma vez que

este número é sempre finito para aplicações racionais. O conjunto de tais pontos dá origem

ao chamado conjunto de Julia dual, que é um conjunto de Cantor proveniente de um

Conformal Iterated Function System.

Tanto o conjunto de Julia e quanto seu dual são projeções de movimentos holomor-

fos de sistemas definidos em subconjuntos compactos – denotados por Xc e Wc, respecti-

vamente – de um espaço de Banach. Para todo c próximo de zero: (1) mostramos que

Jc é reunião de arcos quase-conformes próximos do círculo unitário; (2) o conjunto Xc é

um movimento holomorfo do solenóide X0; (3) utilizando o formalismo dos estados de

Gibbs, exibimos um limitante superior para a dimensão de Hausdorff de Jc. Consequente-

mente, Jc possui medida de Lebesgue nula.

Keywords: 1. Correspondências holomorfas. 2. Dinâmica complexa. 3. Conjunto de

Julia. 4. Estabilidade estrutural. 5. Hiperbolicidade.
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Abstract

We generalize the notions of structural stability and hyperbolicity for the family of

(multivalued) complex maps

Hc(z) = zr + c,

where r > 1 is rational and zr = exp r log z. We discovered that Hc is structurally stable at

every hyperbolic parameter satisfying the escaping condition. Surprisingly, there may be

infinitely many attracting periodic points for Hc. The set of such points gives rise to the

dual Julia set, which is a Cantor set coming from a Conformal Iterated Funcion System.

Both the Julia set and its dual are projections of holomorphic motions of dynamical

systems (single valued maps) defined on compact subsets of Banach spaces, denoted by

Xc and Wc, respectively. For c close to zero: (1) we show that Jc is a union of quasi-

conformal arcs around the unit circle; (2) the set Xc is an holomorphic motion of the

solenoid X0; (3) using the formalism of Gibbs states we exhibit an upper bound for the

Hausdorff dimension of Jc, which implies that Jc has zero Lebesgue measure.

Keywords: 1. Holomorphic correspondences. 2. Complex Dynamics. 3. Julia set. 4.

Structural stability. 5. Hyperbolicity.
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It is through science that we prove, but through intuition that we discover.

(Henri Poincaré)
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CHAPTER 1

Introduction

In this thesis we present a detailed study of the dynamics of the holomorphic correspon-

dence

Hc = {(z,w) ∈ C2 : (w − c)q = zp}.

Holomorphic correspondences have been studied since the middle 1980s, but as far as I

know, this is the first work introducing the concept of structural stability to this subject.

This notion has far reaching consequences in the dynamics of rational maps of the Rie-

mann sphere. In spite of the fact that Hc is multi-valued, these far reaching results do also

hold for Hc. Indeed, the main features of this thesis are:

• We define when Hc is hyperbolic and structural stable using the system

σ : Xc → Xc

in the space of orbits (embedded in a infinity dinamensional Banach space). The

projection of Xc is the Julia set of Jc.

• As usual, the limit set Lc of Hc is defined by taking accumulation points out of

pre-orbits starting near∞ ∈ Ĉ. The Julia set Jc is the closure of repelling periodic

orbits. If Hc is hyperbolic and satisfies the escaping condition, then Lc is written

as a disjoint union

Lc = Jc ∪ Ec,

where Ec is the dual Julia set of Hc. Typically Ec is a finite union of Cantor sets

K (i)
c . The most surprising fact is that every point of Ec is a limit point of attracting

periodic orbits! (Ec = φ for c close to 0).
1
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• We also prove that each Cantor setK (i)
c in Ec moves holomorphically with respect

to c when Hc is hyperbolic and non-singular escaping.

• It is a remarkable result that when c ∼ 0, the Julia set Jc of z 7→ z2 + c is quasi-

circle (image of S1 under a quasi-conformal map. In this thesis we prove that

the Julia set Jc of Hc is an uncountable union of quasi-conformal arcs which are

symmetrically placed around S1.

• Using the formalism of Gibbs states we give an upper bound to the Hausdorff

dimension of Jc = J(Hc) when c ∼ 0. In particular, we obtain that Jc has zero

area for c ∼ 0, provided q2 < p.

1.1. Motivation I: monotonicity of entropy conjecture

There are categories where the topological entropy map f 7→ htop( f ) is not even upper-

semi continuous. However, in 1977 Milnor and Thurston [29] astonished the mathemati-

cal community proving that the function f 7→ htop( f ) is continuous on the set C2,b of C2

functions whose critical points are non-degenerate ( f ′′(c) , 0).

In this famous paper, it is proved that the topological entropy of the unimodal map

ua(x) = ax(1 − x)

is monotonically increasing with a ∈ R. This was just the starting point of a series of deep

investigations which still occupy many present day eminent researchers. The monotonicity

of a 7→ htop(ua) was proved in [29] using the Thurston rigidity theorem. Douady and

Hubbard [15, 16] gave other proof using the univalent parametrization of a hyperbolic

component. D. Sullivan gave a third proof using his pullback argument. M. Tsujii [41]

gave an entirely real proof, but completely inspired in former results which were only

discovered using complex methods.

It seems inevitable to deal with conformal extensions in this subject, although many

struggle in a pure real approach.
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The topological entropy of the family fc : R→ R,

fc(x) = |x|r + c

with r ∈ R+\Z, for example, has been investigated for the last thirty years. It is conjectured

that is is monotone increasing, but no one knows how to prove it, mainly because there is

no usual conformal extension of fc as a map of C.

1.1. Remark. Since the graph of fc(x) = |x|p/q + c is contained in

Hc =
{
(z,w) ∈ C2 : (w − c)2q = z2p

}
,

the correspondence is a conformal extension of fc, but not in the usual sense. Hc is a

Riemann surface with a single branch point at (0, c).

1.2. Motivation II: Fatou conjecture

A rational map R : Ĉ → Ĉ is hyperbolic is the set of limit points P(R)′ of the post-

critical set

P(R) =
⋃
n>0

{Rn(c) : n > 0,R′(c) = 0}

is a finite union of attracting cycles. This is equivalent to say that R expands a conformal

metric on its Julia set J(R). In 1920 P. Fatou conjectured that hyperbolic maps are dense

within the space of rational maps with fixed degree. This conjecture remains open, but

in the 1980s R. Mañé, P. Sad and D. Sullivan gave one of the major contributions in

understanding this problem [30]. They showed that if a rational map R is hyperbolic

then it is structurally stable, and that structural stability holds in a open and dense set of

parameters. In order to make more clear, we shall restrict to the quadratic family

qc(z) = z2 + c.

An holomorphic motion of Λ ⊂ C is family of injections hc : Λ → C parameterized in

a neighborhood of 0 such that h0 is the identity and c 7→ hc(z) is holomorphic for every

z ∈ Λ. If Λ is compact, then each hc is a homeomorphism onto its image.
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We say that qa is structurally stable if every nearby map qc : Jc → Jc is topologically

conjugate to qa : Ja → Ja by means of a conjugacy hc : Ja → Jc which is a holomorphic

motion.

Substantial part of this thesis is devoted to the generalization of this idea to Hc. It

surprising that, in spite of the fact that Hc has uncountably many attracting periodic orbits,

this notions still can be applied to Hc.

1.3. Motivation III: Quasi-Fuchsian groups and conformal repellers

The theory of Kleinian groups was founded by Felix Klein (1883) and Henri Poincaré

(1883), who named them after Felix Klein.

Let Mb denote topological group of mobius transformations

γ(z) =
az + b
cz + c

,

with determinant ad − bc = 1. A Kleinian group is discrete subgroup Γ of Mb which acts

properly discontinuously. This means that any compact set K of C intersects only finitely

many of its translates γ(K) under the action of Γ. The set of accumulation points of an

orbit Γ.z is invariant under the action of Γ. It turns out that this set of accumulation points

is independent of z. We shall denote it by Λ(Γ), the limit set of Γ. Since Γ acts properly

discontinuously on C, the limit set is always a proper subset of the Riemann sphere.

A Kleinian group Γ is a Fuchsian group if there is an open disk U such that Γ ⊂ Aut(U),

where Aut(U) is the set of conformal automorphisms of U. Most often one takes for U the

upper half plane

H = {z ∈ C : Imz > 0},
or the open unit disk

D = {z ∈ C : |z| < 1}.
In the first case the limit set Λ(Γ) is the circle R∪ {∞}; in the second it is the unit circle S1.

We say that a subset A of the Riemann sphere invariant under a Kleinian group Γ if

Γ(A) = {γz = z ∈ A, γ ∈ Γ} ⊂ A.
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A quasi-Fuchsian group is a Kleinian group Γ which leaves invariant some Jordan

curve ` in Ĉ. It follows that the limit set of Γ is contained in `. The quasi-Fuchsian group

Γ is of genus 1 if Λ(Γ) , `; otherwise we have Λ(Γ) = ` is the genus of Γ is 2.

Every finitely generated quasi-Fuchsian group is quasi-conformaly conjugate to Fuch-

sian group.

1.2. Theorem. Let Γ be a finitely generated quasi-Fuchsian group (of genus 2). There

is a Fuchsian group G and a quasiconformal homeomorphism ϕ : Ĉ→ Ĉ such that

Γ = ϕGϕ−1.

It follows from theorem 1.2 that the limit set of a quasi-Fuchsian group which is finitely

generated of genus 2 is always a quasicircle.

The limit set of a quasifuchsian group is a quasicircle – the image the unit circle S1

under a quasiconformal map – and Bowen proved (see [11]) that if the quasifuchsian group

is not a fuchsian group, then its limit set must have Hausdorff dimension strictly greater

1. This is a sort of geometric rigidity: either the limit set is a round circle or a fractal set.

In order to prove this Bowen applied some concepts of Thermodynamic Formalism – such

as Gibbs states –, certainly one the most successful ideas of the field.

Some years later D. Ruelle rediscovered the same property in the context of polynomial

maps. The celebrated Ruelle’s formula reads as follows (Ruelle, [34]): If Jc denotes the

Julia set of z 7→ zp + c then its Hausdorff dimension is

HD(Jc) = 1 +
|c|2

4 log p
+ O(|c|3),

for every c in a neighborhood V of the origin. We also have: J0 = S1 and Jc is a quasicircle

for c , 0 and c ∈ V.

1.3. Remark. There is a deep similarity of results concerning the apparently unrelated

objects: (1) the limit set of a quasi-Fuchsian group; (2) the Julia set of the polynomial
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function z 7→ zp + c and (3) (subject of this thesis) the Julia set of the holomorphic cor-

respondence Hc. The first two are quasi-circles. The third is an uncountable union of

quasi-conformal arcs obtained from ‘motions’ of the covering map t 7→ eit ∈ S1.

1.4. Motivation IV: Holomorphic correspondences

Holomorphic correspondences are interesting in themselves.

In 1988 S. Bullet investigated the dynamics of correspondences determined by implicit

quadratic equations [6], which can be considered as a generalization of both quadratic

maps and Kleinian groups with two generators.

Iterated holomorphic correspondences can be thought as a third field of complex dy-

namics, being the other two Kleinian groups and Rational maps. They are all intercon-

nected and so there is no reason to threat them as separate subjects. As a matter of fact,

holomorphic correspondences generalizes both Kleinian groups and Rational maps and

serves to unify their dynamics in a single category (for more information about such rela-

tions, such as matings and the Sullivan dictionary, see [8] and [7]).

In 1994 S. Bullet and C. Penrose (Inventiones, [7]) showed that there is a non-empty

set M of values of the parameter a for which the dynamics of the 2 : 2 correspondence(
az + 1
z + 1

)
+

(
az + 1
z + 1

) (
aw − 1
w − 1

)
+

(
aw − 1
w − 1

)2

= 3

is that of a mating of the modular group PS L(2,Z) with the quadratic map fc(z) = z2 + c.

This means that the Riemann sphere is partitioned into two subsets, each fully invariant

under the correspondence: a regular domain Ω – a topological disk – on which the action

of the correspondence resembles that of PS L(2,Z) on the upper half plane H; and a global

attractor Λ, the point union of two subsets Λ+,Λ−, each resembling the filled-in Julia set

Kc of fc on each of which the actions of appropriate backward or forward branches of the

correspondence resemble that of fc on Kc. The set M is conjectured by the authors to be

homeomorphic to the Mandelbrot set.

The results of this thesis are somehow independent; they are motivated by former

results of the dynamics of rational maps.
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1.4. Remark. The structure of this thesis is divided into part 1 and part 2. Except for

the tools stated in the text, all the results that we present are new contributions and were

developed from mid 2012 up to early 2015 by the author.

1.5. Remark. The following computer graphics illustrate the Julia set Jc of Hc. In (1)

with c = 0.2i and (p, q) = (6, 2); for (2) the values of p and q are the same but c = 0.35i.



Part 1

The dynamics of Hc for c close to zero



CHAPTER 2

Structural Stability at the origin

We begin this chapter giving some basic concepts relating the dynamics of the correspon-

dence

Hc = {(z,w) ∈ C2 : (w − c)q = zp}.

This correspondence may be treated as a multi-valued map of the Riemann sphere Ĉ : to

every z ∈ Ĉ we have q associated images wi with (z,wi) ∈ Hc. We define the Julia set Jc of

Hc as the closure of repelling periodic points. This set is semi-invariant in the sense that

every point of Jc has at least one image inside Jc; and every point of Jc has at least one

pre-image inside Jc.

We consider the space of orbits Oc of the correspondence and define Xc ⊂ Oc as the

closure (in the product topology) of repelling periodic orbits z = (zi)∞i=0. The set Xc is

invariant under the left shift σ : Xc → Xc. We prove that the projection π : Xc → C given

by πi(zn)∞n=0 = zi is a semi-conjugacy from σ : Xc → Xc to Hc : Jc → Jc. This means that

πi(Xc) = Jc for every i and

(πi(x), πiσ(x)) ∈ Hc

for every x ∈ Xc.

The results of this chapter are proved for c close to the critical point 0. Some of them

are extended to every parameter c ∈ C in part 2 of this thesis. So why do we not present

them in their full generality since the beginning? For three reasons: (1) the technique for

the general case is so much more sophisticated and uses the fact that post-critical set Pc

has at least three points. (2) For c = 0 the set Pc has only one point. Therefore we need a

separate proof for parameters close to the origin. (3) The language is simpler for c ∼ 0 and

we do not have to consider holomorphic motions of the dual Julia set. This set simply does
9
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not exist for rational maps. Furthermore, it is the structural stability at the origin which

enables us describe Jc as an uncountable union of quasi-conformal arcs for c ∼ 0. So we

do not need full generality to obtain interesting results. This serves both as a motivation

and also as a starting point to further generalizations.

In this chapter we develop a concept of structural stability for Hc and prove that Hc is

structurally stable at origin. One of the consequences of this fact is that we can obtain Jc

as holomorphic motions of J0 = S1. Consequently, c 7→ Jc is continuous in the Hausdorff

metric for compact sets.

2.1. Remark. The results of this chapter are proved under the condition p
q > 1 with

q ≥ 2. The case q = 1 is just z 7→ zp + c, which has been deeply studied for a long time.

2.1. The dynamics of Hc

We say that a sequence z = (zi)∞i=0 of complex numbers is an orbit of Hc if (zi, zi+1) ∈ Hc

for every i. As usual, the left shift map σ is defined on the set of orbits by σ(z) = (zi)∞i=1.

We say that z is periodic with prime period n > 0 if σn(z) = z and n is minimal for such a

property. A periodic orbit is also referred as a cycle. If it happens that zi ∈ A for every i,

then we say that z is contained in A.

If ζ = z0 is the first point of a periodic orbit (zi)∞i=0, then ζ is a periodic point. Since Hc

is multivalued, it does not make sense to define the prime period of a periodic point as we

do for orbits.

For any A ⊂ C we set

Hc(z) = {w ∈ C : (z,w) ∈ Hc} ,

H−1
c (w) = {z ∈ C : (z,w) ∈ Hc} ,

Hc(A) =
⋃
z∈A

Hc(z),

H−1
c (A) =

⋃
w∈A

H−1
c (w).
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2.2. Definition. We indicate z
Hc−−→ w whenever (z,w) ∈ Hc. The notation Hc(z) allows

us to define the iterates Hn
c . By definition, w ∈ Hn

c (z) if, and only if, there is a sequence

z = z0
Hc−−→ z1

Hc−−→ · · · Hc−−→ zn = w.

Suppose (z,w) ∈ Hc, with z , 0. By the implicit function theorem, there is a unique

bi-holomorphic map ϕ : U → V from a neighborhood U of z such that (ζ, ϕ(ζ)) ∈ Hc for

ζ ∈ U, taking z into w. This map ϕ is the univalent branch of Hc determined by z
Hc−−→ w.

A cycle is a periodic orbit α : z0 → z1 · · · → zn = z0, where (zi, zi+1) ∈ Hc. Every cycle

has a naturally associated complex number, called its multiplier. If the cycle contains no

zero elements, then every point zi determines an essentially unique branch ϕi of Hc (up to

domain extensions) which takes zi into zi+1. The multiplier of this orbit (cycle) is

λ =
dϕn−1 ◦ · · · ◦ ϕ0(z)

dz

∣∣∣∣∣
z=z0.

If one of the elements of the cycle is 0, or ∞ (notice that ∞ is a fixed point) we set

λ = 0, by convention.

A cycle is attracting, repelling, neutral or super-attracting according to whether λ(α)

satisfies |λ| < 1, |λ| > 1, |λ| = 1 or λ = 0. Likewise, we can also speak of attracting

periodic points and so on, using the obvious definitions.

2.3. Definition (Julia set). The Julia set Jc of Hc is the closure of the set of repelling

periodic points of Hc.

2.4. Theorem. We have J0 = S1 and for every ε > 0 there is neighborhood V of 0 ∈ C
such that

Jc ⊂ {z ∈ C : d(z,S1) < ε},
for every c ∈ V.

The following computer graphics illustrate the possible motions of Jc. The union of all

such motions gives Jc, which is shown in (1) with c = 0.2i and (p, q) = (6, 2); for (2) the

values of p and q are the same but c = 0.35i.
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Proof. First we prove that J0 = S1. It is clear that no periodic cycle may have a point

outside S1. So J0 ⊂ S1. Upon the other hand, every periodic orbit inside S1 is repelling.

Indeed, if (z,w) ∈ Hc and ϕ is the branch of Hc determined at (z,w), then

ϕ′(z) =
p
q

(
ϕ(z) − c

z

)
.

Hence the norm of the multiplier of a cycle of H0 having period n inside S1 is always

(p/q)n > 1.

We only need to show that periodic cycles are dense in S1. But this is clear since Hn
0

is given by wqn
= zpn

. Periodic cycles of H0 correspond to roots of the equation zpn/qn
= 1,

which are dense in S1.

Now we prove that Jc is contained in {z ∈ C : d(z,S1) < ε} for c sufficiently close to 0.

The proof consists of a division of the plane into disjoint annuli in which the dynamics of

the correspondence either increases or decreases the norm. In order to be more specific,

let γ = p/q − 1. For t ≥ 0, consider the function

ft(x) = xp/q − x + t,

which is defined on [0,∞). This function has a unique critical point at

ξ =

(
q
p

)1/γ

.

Let

δ = − f0(ξ) =

(
q
p

)1/γ

−
(

q
p

) p
γq

.
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If 0 ≤ t < δ, then ft vanishes precisely at two points a(t) and b(t), with 0 < a(t) < ξ <

b(t) < 1. The complement of {z ∈ C : |z| = t} determines two simply connected sets Bt(0)

and Bt(∞), containing 0 and∞ respectively. Let

A(s, t) = Bs(∞) ∩ Bt(0),

whenever s < t. Suppose |c| ≤ δ. If z belongs to the annulus A(a(|c|), b(|c|)) and w is an

image of z, then

|w| ≤ |w − c| + |c| = |z|p/q + |c| < |z|.
Hence, Hc decreases the norm on A(a(|c|), b(|c|)), if |c| < δ. We remark that every periodic

orbit of Hc which is on Bξ(∞) is necessarily repelling (this follows by direct computation

of the derivatives of the branches at the points of the orbit). Moreover, Hc expands the

norm on {|z| > (1 + |c|)1/γ}, for then every image w of z satisfies

|w| ≥ |w − c| − |c| = |z|p/q − |c| > |z|.

Now we have a complete picture of the action of Hc when c is close to zero. Assume that

|c| < δ/2. We are going to prove that every repelling periodic orbit of Hc is contained in

the set

{z ∈ C : b(|c|) ≤ |z| ≤ (1 + |c|)1/γ}.
Obviously, this will complete the proof. Let z0 be some point of repelling periodic orbit

of Hc. Since z0 cannot be attracted to ∞, we have |z0| ≤ (1 + |c|)1/γ. If |z0| ≥ b(|c|), there is

nothing to prove. Therefore we have two remaining possibilities: (i) z0 ∈ A(a(|c|), b(|c|))),
and (ii) z0 ∈ Ba(|c|)(0). Let us suppose the period is N. There is i < N such that

|z0| > |z1| > · · · > |zi|, zi ∈ Ba(|c|)(0).

The point zi must comeback to zN = z0 under iteration. Hence, there is a j > i such that z j

in in the set Ba(|c|)(0) while z j+1 is not. Since the distance between z j and z j+1 is at most |c|,
and since the assumption |c| < δ/2 implies |c| < ξ − a(|c|), it follows that z j+1 ∈ A(a(|c|), ξ).
The point z j+1 keeps being attracted to the center disk until is meets Ba(|c|)(0) again. The

conclusion is that the whole orbit is contained in Bξ(0), which is a contradiction, for every
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cycle on this set is attracting (multiplier less than one in norm). The case (ii) is handled in

a similar way. �

2.2. The relation between Jc and Xc

2.5. Definition. Consider the space of bounded orbits Oc of Hc. Each element of Oc is

therefore a sequence x = (xi) for which |xi| ≤ Mx for some Mx > 0. The set Oc is equipped

with the product topology and the left shift map σ. An element x ∈ Oc is a repelling

periodic orbit if σn(x) = x for some n and the multiplier λ(x) of the orbit satisfies |λ| > 1.

2.6. Theorem (Xc). Let Xc be the closure of the repelling periodic orbits in Oc.

(i) For every c sufficiently close to 0, the set Xc is compact and for every projection

πi : Oc → C we have

πi(Xc) = Jc.

(ii) If σ : Oc → Oc is the left shift, then σ(Xc) = Xc and

(2.1) (πi(x), πiσ(x)) ∈ Hc,

for every x ∈ Xc.

The relation (2.1) reveals that Hc is semi-conjugate to σ : Xc → Xc.

Proof. For c sufficiently close to 0, the Julia set Jc remains inside of an annulus A =

{r ≤ |z| ≤ R}. This is proved in Theorem 2.4. The space of bounded complex sequences

A×A× · · · is compact in the product topology. The closure of Xc in that space is Xc again.

Hence Xc is compact.

Consequently, πi(Xc) is a closed set containing all repelling periodic points of Hc. Thus

Jc ⊂ πi(Xc). On the other hand, it is clear that πi(Xc) ⊂ Jc. Property (ii) is clear from the

definitions. The proof is complete. �

We shall prove later that σ is expanding and topologically mixing on Xc. One of the

consequences of such property is that Jc has zero area if q2 < p and c is close to 0. (A
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figure of Jc for c ∼ 0 was given in the introduction). As we shall see, the expanding

property of σ : Xc → Xc is a direct consequence of the hyperbolicity of Hc.

2.3. Hyperbolicity in the annulus

From Theorem 2.4 we know that Jc is contained in some annulus

A(ε) = {z : d(z,S1) < ε}

as c → 0. The precise notion of hyperbolicity is defined later in this thesis, and we do

not need to discuss it here in its full generality. One direct manifestation of this property

for parameters close to zero is the following theorem. Recall that the univalent branch

determined by z
Hc−−→ w is the unique (up to domain extensions) univalent map ϕ : U → C

implicitly defined by (ζ, ϕ(ζ)) ∈ Hc, taking z into w.

2.7. Theorem. Suppose p/q > 1. Then there are λ > 1, ρ > 0 and a neighborhood V

of the origin for which ε = λρ satisfies:

(i) If c ∈ V and the entries zi of an orbit z = (zi)∞i=0 of Hc are contained in A(ε), then

the domain of every branch ϕi determined by (zi, zi+1) contains the ball Bρ(zi) of

radius ρ, and the range of every composition

gN = ϕi+N ◦ · · · ◦ ϕi

covers Bε(zi+N+1). Moreover, ∣∣∣g′N(zi)
∣∣∣ ≥ λN .

(ii) The branch ϕn determined by a pair of points (zn, zn+1) contained in A(ε) satisfies

|ϕn(x) − ϕn(y)| ≥ λ|x − y|

whenever x, y belong to Bρ(zi).

(iii) If x0 and x1 are distinct preimages of a point y ∈ A(ε), then |x0 − x1| ≥ ε.
(iv) Assume that z = (zi)∞i=0 and w = (wi)∞i=0 are orbits of Hc whose elements are in

A(ε). If |zi − wi| < ε for all i, then z = w.
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(v) If c ∈ V, then every periodic orbit of Hc inside of A(ε) is repelling.

Proof. The local branches of Hc are given by the maps

ϕc(z) = exp
1
q

log zp + c = ϕ(z) + c.

More specifically, if (xi, xi+1) ∈ Hc and xi , 0, then there is a branch of the logarithm

defined in a region containing xp
i such that ϕc(xi) = xi+1. The function ϕc is univalent on

every sector θ < arg(z) < θ + α with amplitude α < 2π/p. Since

|ϕ′c(z)| = p
q
|ϕ(z)|
|z| =

p
q
|z|p/q−1,

there is ε > 0 such that

(2.2) |ϕ′c(z)| ≥ λ > 1 on A(ε).

It will be convenient to consider annuli of the form

A(r, s) = {z : r < |z| < s},

where r < 1 < s.

Suppose first that c = 0, so that ϕc = ϕ. After expressing ϕ in polar coordinates we con-

clude that ϕ maps A(r, s) onto A(rp/q, sp/q), being injective (univalent) on every subset con-

tained in a sector of amplitude 2π/p. The main idea of the proof is to derive expansiveness

from (2.2). First we choose δ > 0 such that for any subset S of A((1−ε/2)p/q, (1+ε/2)p/q)

having diameter |S | < δ, its convex hull is contained in A((1 − ε)p/q, (1 + ε)p/q). Then we

choose a corresponding value of a for which ρ in the equation ε/a = λρ satisfies

Bρ(x) ⊂ A(ε/2) and |ϕ(Bρ(x))| < δ

if x ∈ A(ε/4). We also make the obvious assumption that Bρ(x) is contained in a sector

of amplitude 2π/p. Our first conclusion is that the local branches of Hc along the orbit

α = (xi) are always defined and univalent on Bρ(xi). Now let x, y be two points of Bρ(xi),

where xi is supposed to be in A(ε/4). The line ζ joining ϕ(x) and ϕ(y) is still inside of
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A((1 − ε)p/q, (1 + ε)p/q). We pullback this arc and obtain the curve γ = ϕ−1(ζ), which is

contained in A(ε). Denoting the length of an arc by `, we have

|ϕ(x) − ϕ(y)| = `(ζ) = `(ϕ ◦ γ)

=

∫ 1

0
|(ϕ ◦ γ)′(t)|dt

=

∫ 1

0
|ϕ′(γ(t))| · |γ′(t)|dt

≥ λ`(γ) ≥ λ|x − y|.

(2.3)

It can be readily seen that c has no influence upon the preceding arguments (except for

translations). So the conclusion is the same for ϕc and the first two items follow after the

usual iteration arguments, with ε/a in place of ε. In order to obtain the third we make a

second replacement of constants, with ρ′ = ρ2/ε and ε′ = ρ. Now ρ′ and ε′ works for the

five conditions. �

2.8. Definition (Expansive constant). Any constant ε from Theorem 2.7 is, by defi-

nition, an expansive constant for the family Hc. We notice that if ε < ε, then ε is also an

expansive constant for Hc at c = 0.

2.4. Infinity dimensional holomorphic motion

The technique of holomorphic motions was originally introduced to study the structural

stability of rational maps [30]. According to the standard definition, a subset Λ of the plane

C moves holomorphically if there is a family of injections hc : Λ → C parameterized in a

neighborhood of the origin such that h0 is the identity and c 7→ hc(z) is holomorphic. In

this thesis the definition is the same except that Λ is allowed to be a subset of some Banach

space.

Recall that a map f : E → F between Banach spaces E and F is holomorphic if it is

Fréchet differentiable or, equivalently, if for every x0 ∈ E there is a power series which

converges uniformly to f on a neighborhood of x0.
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2.9. Definition. Let Λ be a subset of a Banach space F, and U be a neighborhood of

the origin in C. Suppose Λ ⊂ F is compact. We say that a one parameter family

hc : Λ→ F

indexed in c ∈ U is an holomorphic motion if

(i) h0 is the identity;

(ii) hc is a homeomorphism onto its image hc(Λ) for all c ∈ U;

(iii) c 7→ hc(x) is holomorphic on U, for every x ∈ Λ fixed.

There is only one difference from the classical definition: Λ is allowed to be any

compact subset of a Banach space. According to the classical definition, Λ ⊂ C need

not be compact and each hc must be only injective. But it turns out that when Λ ⊂ C is

compact, the mere fact that hc is injective, together with (i) and (iii), implies that hc is a

homeomorphism onto its image. So our definition extends in a natural way the classical

definition of Mañé, Sad and Sullivan [30].

2.10. Remark. Since the Julia set Jc is contained in an annulus A = {r ≤ |z| ≤ R} for

c ∼ 0, the space F = AN0 with the product topology and the compatible norm

‖z‖ =

∞∑
i=0

2−i|zi|

must contain Xc for c ∼ 0.

2.11. Theorem (Structural stability – recall 2.7, 2.6). There is an holomorphic mo-

tion hc : X0 → AN0 parameterized in a neighborhood U ⊂ V of the origin such that

(i) hc(X0) = Xc and hc : X0 → Xc is a conjugacy between the shift spaces

σ : X0 → X0 and σ : Xc → Xc;

(ii) If

(2.4) K =

∞∑
i=0

λ−i
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then

(2.5) ‖hc(x) − hc′(x)‖∞ ≤ K|c − c′|

for every x = (xi)∞i=0 ∈ X0 and c, c′ ∈ U. 1

The proof is based on a shadowing argument.

2.12. Definition (Shadowing – recall 2.5). If x = (xi) ∈ Oc and y = (yi) ∈ Oc′ , we say

that y is an η- shadowing of x if |xi − yi| < η, for every i.

2.13. Lemma (Shadowing – recall (2.4), 2.7). Assume that c0 ∈ V and let

(2.6) Ω(c0, ε/n) =

{
c ∈ C : |c − c0| < ε

nK
, c ∈ V

}
.

Suppose the entries xi of x ∈ Oc0 are in A(ε/2) = {z ∈ C : d(z,S1) < ε/2}.
(i) If n ≥ 2 and c ∈ Ω(c0, ε/n), then there is a ε/n-shadowing y ∈ Oc of x. The

shadowing is unique in the following (stronger) sense: if c ∈ Ω(c0, ε/2) and

w, z ∈ Oc are ε/2-shadowings of x, then w = z.

(ii) Suppose x is a repelling periodic orbit of Hc0 , c ∈ Ω(c0, ε/n) and y ∈ Oc is the

ε/n-shadowing of x. Then y is also a repelling periodic orbit of Hc.

(iii) Assume that c ∈ Ω(c0, ε/2) and let y(c) = (yi(c)) ∈ Oc denote the ε/2-shadowing

of x. Then the map c 7→ yi(c) is holomorphic on Ω(c0, ε) and satisfies

(2.7) |yi(c) − xi| < K|c − c0|.

Proof. Let x ∈ Oc0 , with xi ∈ A(ε/2) for all i. Suppose c ∈ Ω(c0, ε/n), where n ≥ 2.

The range of the branch ϕi determined by (xi, xi+1) contains the ball Bε(xi+1) of radius ε

and center xi+1. Thus, for every i ≥ 0, the sequence yi, yi−1, . . . , y0, inductively given by

yi = xi and y j−1 = ϕ−1
j−1(y j + c − c0) is well defined. Indeed, for j ≤ i − 1,∣∣∣(y j + c − c0) − x j

∣∣∣ ≤ |c − c0|
(
1 + λ−1 + · · · + λ−(i− j)

)
<
ε

n
.

1 We have ‖x‖∞ = supi |xi| for every x = (xi)∞i=0 ∈ X0, which is not compatible with the product topology.
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Since we are going to repeat this for every i, it is better to denote ai j(c) = y j. This is

because y j depends not only on j, but also on i and c. In this way, ai j : Ω(c0, ε/n) → C
is a uniformly bounded sequence of analytic functions, for each j fixed. Therefore each j

determines a sequence i j = (i1 < i2 < · · · ) such that aik j converges locally uniformly to an

analytic function g j on Ω(c0, ε/n). It is possible to take i j such that i j−1 is a subsequece of

i j. The standard diagonal method is applied to find a sequence i1 < i2 < · · · that works for

all j :

lim
k→∞

aik j(c) = g j(c)

locally uniformly on Ω(c0, ε/n). It is clear that(
g j+1(c) − c

)q
=

(
g j(c)

)p
;∣∣∣g j(c) − x j

∣∣∣ ≤ K|c − c0| < ε/n,
which proves simultaneously (iii) and the existence part of (i). Now we prove uniqueness.

Assume that z and w in Oc are ε/2 shadowings of the point x. Then zi and wi are sequences

in A(ε) with |zi − wi| < ε for every i. Theorem 2.7 − (iv) yields z = w.

If y ∈ Oc is an ε/n shadowing of a repelling periodic orbit x with prime period N, then σNy

is also a ε/n shadowing of x. Since the shadowing is unique, σNy = y. Theorem 2.7 shows

that y is a repelling periodic orbit, for the sequence yi is contained in A(ε). The proof is

complete. �

Proof of Theorem 2.11. Let hc denote the map which assigns to every x ∈ X0 its unique

ε/2-shadowing y ∈ Oc. Assume that c ∈ Ω(0, ε/2) and |c| < δ is such that Jc ⊂ A(ε/2)

whenever |c| < δ. If we denote the set of repelling periodic orbits by Pc, then hc(P0) ⊂ Pc.

To prove the other inclusion we observe that if y0, . . . , yN = y0 is a repelling periodic orbit

of Hc, then yi ∈ A(ε/2) for every i (because of the choice of δ). Lemma 2.13 is applied

again to find a ε/2 shadowing x ∈ O0 of y, which is necessarily a repelling periodic

orbit. Therefore hc(P0) = Pc, and the map hc is a bijection between these sets. If hc is

continuous on O0 ⊂ A(ε/2)N0 , then obviously hc(X0) = Xc (since X0 is compact, hc must

be a homeomorphism). Suppose x and x̃ are in X0, with |xi − x̃i| < η, for i ≤ N. Let y
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and ỹ denote their respective ε/2-shadowings in Oc. Theorem 2.7 gives an argument to

prove continuity which reads as follows. Let ϕi and ϕ̃i denote the branches determined by

(xi, xi+1) and (x̃i, x̃i+1), respectively. If η is small enough, then ϕ−1
i = ϕ̃−1

i on the intersection

Di of their domains, for i ≤ N − 1. If η < ε/2− |c|, then the domain Di contains both yi − c

and ỹi − c; and for i ≤ N − 1,

yi−1 = ϕ−1
i (yi − c), ỹi−1 = ϕ−1

i (ỹi − c).

Theorem 2.7 − (ii) yields

|yi − ỹi| ≤ λ(i−N)|yN − ỹN | ≤ λ(i−N)(ε + η) ≤ 3λ(i−N)ε

2
.

The continuity of hc in the product topology follows from these observations letting N →
∞. If y = hc(x), then σ(y) is a ε/2-shadowing of σ(x). Therefore σhc = hcσ, and hc

is topological conjugacy. Lemma 2.13 − −(iii) finally shows that hc is a holomorphic

motion (in the product topology of A(ε/2)N0 , a function is Fréchet differentiable iff each

coordinate is holomorphic). Now let x ∈ X0 be fixed and consider c, c0 ∈ Ω(0, ε/8). Then

c ∈ Ω(c0, ε/4) and the ε/4-shadowing y ∈ Oc of hc0(x) satisfy

(2.8)
∣∣∣πihc0(x) − πi(y)

∣∣∣ ≤ K|c − c0|.

Since hc0(x) is the ε/8-shadowing of x, it follows that y is a ε/2-shadowing of x. Since the

shadowing is unique, it follows that y = hc(x). The property (2.5) follows from (2.8). �

It is possible to analyze the continuity of Jc with respect to the parameter with the help of

the Hausdorff distance dH. If A and B are two compact subsets of the plane, let

dH(A, B) = inf{ε > 0 : A ⊂ Bε and B ⊂ Aε},

where Aε is the set of all points z ∈ C such that d(z, Aε) < ε.

2.14. Corollary (Continuity). The function c 7→ Jc is continuous on a neighborhood

of the origin.
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Proof. The continuity follows from the inequality

dH(Jc0 , Jc) ≤ K|c − c0|,

which we are going to prove using (2.5). If z ∈ Jc0 , then there is x ∈ X0 such that z =

π0hc0(x), and therefore

d(z, Jc) ≤ d(z, π0hc(x)) =
∣∣∣π0hc0(x) − π0hc(x)

∣∣∣ ≤ K|c − c0|.

�



CHAPTER 3

Holomorphic motions

In the preceding chapter we described the sets Xc (cf. 2.6, 2.11) as holomorphic mo-

tions hc : X0 → Xc of X0. As we are going to show next, the set X0 is homemorphic to a

solenoid contained in the solid torus S1 × D, where S1 = [0,1]
0∼1 and D = {|z| < 1}. It should

be noticed that for holomorphic motions gc : Λ → C of compact subsets of the plane, the

function gc is quasiconformal (cf. λ-Lemma in [30]). Hence the set Xc can be viewed as a

quasiconformal image of X0, i.e., a quasiconformal solenoid (but this is just an analogy).

There is another solenoid known as the Williams-Smale attractor. The one we present

here is different in the sense that X0 has infinitely many connected components. However,

both are obtained from a similar construction which we briefly describe as follows. We

consider the class P = P(S1 ×D) of all subsets of the solid together with a transformation

ω : P → P which maps the solid torus onto d = gcd(p, q) homeomorphic copies of itself.

As usual, we define the iterates ωk of ω. The induced topology from S1 × D makes

∞⋂
k=1

ωk(S1 × D)

homemorphic to X0. As a consequence, X0 is locally the product of a Cantor set with an

interval, and X0 is connected if, and only if, d = 1. It turns out that Jc = π(Xc) is connected

for c ∼ 0 (cf. 2.6).

We can use the holomorphic motion of Xc to construct (plane) holomorphic motions of

individual pieces of Jc. This is done in the second part of this chapter. Since J0 = S1 (cf.

2.4), we consider an arbitrary interval Λ ⊂ S1. We can always “lift" Λ to a subset of X0; in

other words, there is an injective function ψ : Λ→ X0 such that π ◦ ψ is the identity of Λ.

Suppose for a moment that the projection π is injective on hc ◦ ψ(Λ) ⊂ Xc for c ∼ 0 (cf.
23
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2.11). It turns out that π ◦ hc ◦ ψ : Λ → C is a holomorphic motion (of the plane). Using

such fact we can describe Jc is an uncountable union of quasiconformal arcs (cf. 3.5, 3.6).

3.1. The solenoid homemorphic to X0

A general element of X0 is a sequence z = (z0, z1, . . .), where zi
H0−−→ zi+1 (cf. 2.2). Alterna-

tively, z may be viewed as pre-orbit of G0 = H−1
0 , so that

(3.1) z0
G0←−−− z1

G0←−−− z2 ←−− · · ·

Let Jp = {0, . . . , p − 1}. Since G0 maps S1 into itself, for every k ∈ Jp we consider the

additive form of a branch of G0 on S1, given as quotient of the maps θk : R→ R,

(3.2) θk(t) =
q
p

t +
k
p
.

Until here we have worked under the assumption that p > q, but the reader will notice that

the results of this section hold for arbitrary p, q ≥ 1, with d = gcd(p, q) not necessarily

equal to 1. Let D = {|z| ≤ 1}. The solid torus is T = S1 × D. Let νk : R × D→ S1 × D,

(3.3) vk(t, z) =

(
[θk(t)],

1
2

[t] + λz
)

where [t] = exp 2πit and λ ∈ (0, 1). If we choose λ small enough, then the function

uk : T → T given by uk([t], z) = vk(t, z) is injective and the sets uk(T ) are either disjoint

or identical. While vk is a homeomorphism from [0, 1] × D onto its image vk([0, 1] × D),

the same is not true for uk, since vk does not assign the point for (0, z) ∼ (1, z) in the solid

torus. The geometry of the set

(3.4) ω(T ) =

p−1⋃
k=0

uk(T )

is easily determined by observing that uk(T ) = vk([0, 1)×D) is a cylinder Ck homeomorphic

to [0, 1)×D. By considering the map ρ(i) = (i + q) mod p on Jp, it turns out that Ck pastes

with Cρ(k), in the sense that vk(1, z) = vρ(k)(0, z) for every z ∈ D. We proceed iterating

ρ until Cρn(i) pastes with Ci. It is then easy to conclude that the union of the cylinders
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Ci, Cρ(i), . . . ,Cρn(i) is a homeomorphic copy of T inside of itself (winding around the origin

in a certain number of times). As we see, the topology of ω(T ) is intimately connected

with the dynamics of ρ. The orbit set of 0 under ρ, for example, is I = {0, d, 2d, . . . , p− d}.
From I we form the indexed partition Ii = i + I of Jp, with 0 ≤ i < d. The action of ρ on

each Ii is a cyclic permutation, i.e., the orbit

i 7→ ρ(i) 7→ ρ2(i) 7→ · · · 7→ ρp/d(i) = i

has no repeated elements. The embedded Tori

Ti =
⋃
k∈Ii

Ck

are pairwise disjoints, thereby showing that ω(T ) has precisely d connected components.

The solenoid is defined by

(3.5) S =

∞⋂
n=1

ωn(T ).

Since the intersection of a nested sequence of connected compact sets is again a nonempty

connected and compact set, the Solenoid is nonempty and has uncountably many compo-

nents Aτ (“infinite arcs”) with index τ running in JNd . (Recall that {0, 1}N, for example, is

uncountable). To be more specific, we first notice that each element of the sequence (3.1)

is written zi = [ti], with ti in [0, 1). Then each pair (ti, ti+1) determines a unique ki ∈ Jp for

which ti = θki(ti+1). Let us denote κ(z) = (ki) and consider

(3.6) ϕ(z) =

∞⋂
n=1

fk0 ◦ fk1 ◦ · · · ◦ fkn({zn} × D),

defined for every z = (zi) in X0, with κ(z) = (ki). The limit set ϕ(z) consists of a single point

in T, and it is not difficult to derive the analytic expression

(3.7) ϕ(z) =

z0,

∞∑
i=0

λi

2
zi+1

 ,
which allows us to conclude that ϕ is a homeomorphism from X0 onto S (since ϕ is bijec-

tive and X0 is compact). In proving (3.7) it becomes evident another important property of
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S: it is locally the product of a self-similar Cantor set K ⊂ D with an open interval. Now

we use ϕ to determine an appropriate index τ = (ti) ∈ JNd for each connected component

of S. For every x ∈ S there corresponds the sequence (ki) = κ(z), where ϕ(z) = x. Con-

sidering the atoms I j of the partition of Jp, we define Aτ as the set of all x ∈ S for which

ki ∈ Iti . Since every element of S is presented in the form (3.6), we conclude that Aτ is a

connected component of S and that τ 7→ Aτ is bijective. The map ς = ϕσϕ−1 on S makes

(ς,S) conjugate to the shift space (σ, X0). One may check that y = ς(x) is the unique point

of S satisfying x = uk(y) for some k ∈ Jp. (In a rough sense, ς might be called the “unique

pre-image” map). We cannot hope any component Aτ to be invariant under ς unless p and

q are relatively prime, in which case there is only one connected component, the whole

space S. In any case, from (3.6) we have

ς(Aτ) = Aσ(τ).

We summarize as follows:

3.1. Theorem (Recall (3.5), 2.6 ). Suppose p, q ≥ 1 and let d = gcd(p, q),

Jd = {0, d, 2d, . . . , p − d}N.

(i) For each x ∈ S there is a unique y ∈ S such that x = uk(y) for some k ∈ Jp. The

function ϕ in (3.7) is a topological conjugacy between the shift (σ, X0) and the

the correspondence ς : x 7→ y on S.
(ii) The connected components Aτ of S may be indexed in τ ∈ JNd in such a way that

ς(Aτ) = Aστ.

(iii) Xc is connected if d = gcd(p, q) = 1. Otherwise it has uncountably many compo-

nents Cτ which may me indexed in τ ∈ JNd so that σCτ = Cστ.

(iv) There is a self-similar Cantor set K ⊂ D with the property that to every t ∈
S1 there corresponds an open interval t ∈ E ⊂ S1 such that (E × D) ∩ S is

homeomorphic to (0, 1) × K.



3.2. HOLOMORPHIC MOTION OF ARCS IN Jc 27

3.2. Remark. Now the picture of Jc presented in Remark 1.5 is somehow predictable

from the fact that X0 is homeomorphic to S: Jc is the projection of a Solenoid.

Once in the presence of such geometric result, we are ready to study the “motion” of the

set Jc as we vary the parameter c near the origin.

3.2. Holomorphic motion of arcs in Jc

There is a strong evidence that Jc consists of uncountably many arcs: if we agree that

the connected components of S are “arcs of infinite length”, then we conclude the same

for Xc from the homeomorphism ϕ ◦ h−1
c : Xc → S. In order to study the projection of

these arcs we shall consider some specific continuous functions R → Xc. Obviously, their

images are each subset of some connected component of Xc. The construction of these

maps makes use of the auxiliary functions

θk(t) =
p
q

t +
k
q
,

where k is in Jq = {0, . . . , q − 1}. Given τ = (ki) in JNd , we define

γτ(t) = (exp 2πit, exp 2πθ1(t), exp 2πiθ2 ◦ θ1(t), . . .)

and set γτc = hc ◦ γτ. If 0 < α < 1, then the projection under π0 of each γτ([s, s + α]) is a

sub-arc of S1 which is contained in

(3.8) G(s, α) = {z ∈ C : z , 0, 2πs ≤ arg(z) ≤ 2π(s + α)}.

3.3. Lemma. Consider a subset of A of the Riemann sphere whose complement has

exactly two connected components C0 and C∞, containing 0 and∞, respectively. Suppose

Ω is a subset of Ĉ avoiding 0 and∞. If the boundary of Ω is contained in A, then Ω ⊂ A.

Proof. The proof is simpler than the statement. If Ω is not contained in A, then one Ci

must intersect both Ω and Ωc; and therefore Ci meets ∂Ω. But Ci is disjoint from A. �
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3.4. Theorem. Let γ be a continuous map from R into Xc. Suppose the projection

π0(γ[a, b]) is contained in some sector G(s, α), with s ∈ R and α ∈ (0, 1). Then π0 is an

injective function from γ[a, b] into C.

Proof. We denote the coordinate functions πi ◦ γ by γi. In this way, all we need to prove

is that, under the assumption γ0(t0) = γ0(t1), we must have γi(t0) = γi(t1) for all i. In order

to do that, we first notice that γ0 is a closed curve on the interval [t0, t1], with trace

K := γ0[t0, t1].

Step1 – Topological considerations. In analogy to the Jordan Curve Theorem, we

would like to define an “interior” and “exterior” of K. Let Vi denote the connected compo-

nents of the complement of K. They are connected open sets since Kc is open. We claim

that each V j is in fact simply connected. Indeed, the complement of the region V j is a

union of connected sets with a point in common,

Vc
j =

⋃
i, j

K ∪ Vi,

and as such, it is connected. But an arbitrary region U ⊂ Ĉ is simply connected precisely

when its complement is connected. Therefore V j is simply connected. We define the

exterior E(K) of K to be the connected component Vi which contains ∞ (there is a Vi

containing∞ since K is a subset of S1
ε). The interior of K is the compact set

I(K) := E(K)c.

We may exclude the case where {γ} is a single point, for then the conclusion of the the-

orem holds trivially. The Riemann Mapping Theorem applies to E(K). By considering a

homeomorphism

Φ : E(K)→ {|z| < 1}
we want to show that for any β > 0 there is a simply connected set S with

(3.9) I(K) ⊂ S ⊂ I(K)β.
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We shall spend a little of time proving this regularity condition. The compact set Φ(I(K)c
β)

is contained in some disk |z| < r < 1. Denote by A the image of this disk through Φ−1.

It is a simply connected set containing I(K)c
β whose boundary is a Jordan curve ζ. By the

Jordan Curve Theorem, the complement of {ζ} has precisely two connected components

B1 and B2, which are necessarily simply connected and satisfy

∂B1 = {ζ} = ∂B2.

Since I(K) is connected and does not intersect {γ}, it must be contained in some of the

components Bi, say, I(K) ⊂ B1. We claim that A = B2. This will finish the proof of (3.9)

since then

I(K) ⊂ B1 ⊂ Bc
2 ⊂ Ac ⊂ I(K)β.

The set A is contained in some Bi; if the inclusion were proper, then Bi would contain a

point of Ac, and therefore it would intersect ∂A, which is impossible. Hence A = Bi. Since

A is disjoint from I(K), we must have i = 2. This proves (3.9).

Step 2 – The main argument. We proceed inductively and construct a sequence of

maps bn with bn ◦ γ0 = γn. Suppose z , 0,∞. There are infinitely many values of log zp,

and the expression

(3.10) w = exp
(
1
q

log zp

)
+ c

gives all the q values of w for which (w − c)q = zp. Chose β > 0 such that I(K)β ⊂ S1
ε and

let S (1) be any simply connected set satisfying (3.9). Since zp , 0 on S (1), for any value u0

of log zp
0 there is an analytic function g defined on S (1) with

exp g(z) = zp, g(z0) = u0.

For obvious reasons we shall refer to g(z) as an analytic branch of log zp. By fixing an

specific value of log γ0(t0)p we conclude that there exists an analytic function

b1 : S (1) → C
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such that

b1(γ0(t0)) = γ1(t0)

and

(b1(z) − c)q = zp, z ∈ S (1).

For each z in S1
ε let λz denote the set of all w with (w − c)q = zp. It has precisely q points

which are at distance > ρz from each other. The number ρz is independent of z provided z

lies in a set bounded away from 0 and∞. Using this property it is possible to show that

(3.11) Λ = {s ∈ [t0, t1] : b1 ◦ γ0(s) = γ1(s)}

is open; furthermore, it is closed and contains t0. Hence b1 ◦ γ0 = γ1 on [t0, t1]. We are

ready to construct the sequence bn with bn ◦ γ0 = γn. Of course, the set Xc is defined for

every c in a neighborhood U of the origin and, in view of Corollary 2.14, the Julia set Jc is

contained in some annulus S1
ε as c ∈ U. The first step is to show b1(I(K)) is still contained

in S1
ε, despite of the expanding behavior of b1. In order Lemma 3.3 to b1, we first observe

that it is an open map (non-constant analytic function). Then

∂b1(I(K)) ⊂ b1(∂I(K))

⊂ b({γ0}) = {γ1}
⊂ π1(Xc) = Jc ⊂ S1

ε.

(3.12)

There is β > 0 for which I(K)β in contained in S1
ε. One can also find a smaller β such that

f1(I(K)β) is contained in the same annulus. According to (2.14) it is therefore possible to

choose a simply connected region S (2) between I(K) and I(K)β with

S (2) ⊂ S (1), b1(S (2)) ⊂ S1
ε.

All these properties are used in the following induction process (although not explicitly

exhibited in the proof). There is an analytic branch of log b1(z)p defined on S (2) for which

(3.13) b2(z) := exp
(
1
q

log b1(z)p

)
+ c
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satisfies

(3.14) b2(γ0(t0)) = γ2(t0), (b2(z) − c)q = zp, z ∈ S (2).

As before, b2 ◦ γ0 = γ2; and in fact, one can repeat the argument n times, obtaining simply

connected regions

(3.15) I(K) ⊂ S (n) ⊂ S (n−1) ⊂ · · · ⊂ S (1) ⊂ S1
ε

and analytic maps

bn : S (2) → C
with

(bn(z) − c)q = bn−1(z)p

on S (n) and bn ◦ γ0 = γn on [t0, t1]. This proves π0 is injective on γ[a, b]. �

We are going to use this result to prove Jc consists of uncountably many quasi-arcs which

move holomorphically with c. For the definition of holomorphic motion we consider a

family of injections iλ : E → C of an arbitrary subset E of the plane. We assume that the

parameter space is the open unit disk D and that i0 is the identity. If iλ depends analytically

on λ, i.e., for each z ∈ E, the function λ 7→ iλ(z) is holomorphic, then we say that (iλ) is an

holomorphic motion of E. According to the λ-Lemma in [30], each iλ has quasi-conformal

extension from the closure iλ : Ē → Cwhich is a homeomorphism onto its image. The new

injections do also depend analytically on λ ∈ D, and hence they constitute an holomorphic

motion of Ē. It can be shown that the correspondence (λ, z) 7→ iλ(z) is continuous on D× Ē.

In order to define an holomorphic motion of

Λτ
s = π0(γτ[s, s + α])

we fix an arbitrary α ∈ (0, 1) and consider the inverse map φ = π−1
0 defined on Λτ

s. This

can be done because π0 is injective on γτ([s, s + α]). Let U be the open set consisting of

those c for which hc is defined. Given z ∈ Λτ
s and c in U, we define

ic(z) = π0(hc(φ(z))).
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The domain of i0 is Λτ
s and i0 is the identity. It follows that c 7→ ic(z) is holomorphic for

each fixed z. We may regard (ic) as a “local holomorphic motion” of the sets Λτ
s. More

specifically,

3.5. Theorem. The family (ic) is an holomorphic motion of Λτ
s, provided c lies in a

corresponding neighborhood V(s, τ) of the origin. There is a uniform neighborhood V0

(independent of s, τ and α) and d > 0 for which (ic)c∈V0 is an holomorphic motion of each

S ⊂ Λτ
s having diameter < d. The image of every ic is contained in Jc.

Proof. We claim that there is another neighborhood of U1 ⊂ U of the origin where

each ic is injective. If Λ is a sub-arc of Λτ
s of diameter < d and C is the constant of then

we conclude that

|ic(Λ)| ≤ d + 2C|U |,
where | · | denotes diameter. Hence ic(Λ) is contained in a sector G(t, β), provided d and

|U | are small enough. (Notice that Jc is always contained in some annulus).

Since this restriction on |U | is independent of τ and s, we may assume that, for every

c ∈ U1, the map ic is injective on each subset of Λτ
s of diameter less than d. Hence (ic)c∈U1

is an holomorphic motion of such sets. If ic fails to be injective on the whole Λτ
s, then

ic(z1) = ic(z2) for two points with |z1 − z2| ≥ d. The fact is that there is U1 = V(s, τ) so that

this cannot happen, mainly because of the uniform continuity of the holomorphic motion.

Hence (ic)c∈V is an holomorphic motion of Λτ
s. �

Using this result we can describe Jc as union of quasi-arcs. Here, a quasi-arc is any curve

of the form f ◦ γ, where f is quasi-conformal and γ is piecewise C1. As we vary s, the

union of the sets ic(Λτ
s) gives the projection of γτc(R). Since this can be done for every

index τ, the whole Julia set Jc can be obtained as holomorphic motions of the arc eit, as

explained in the following Characterization

3.6. Corollary (Quasi-conformal arcs in Jc). Let V0 be as in Theorem 3.5. Given

τ = (ki) in JNd , we define

γτ(t) = (exp 2πit, exp 2πθ1(t), exp 2πiθ2 ◦ θ1(t), . . .)
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and set γτc = hc ◦ γτ. Consider the function ζτc (t) = π0(γτc(t)), t ∈ R.
(i) For τ and c ∈ V0, the curve ζτc is a quasi-arc.

(ii) The winding number n(ζτc , 0)→ ∞ as c→ 0.

(iii) The union of the curves {ζτc } is Jc when c ∈ V0.

(iv) For each t and τ fixed, c 7→ ζτc (t) is holomorphic on V0.



CHAPTER 4

Hausdorff dimension

In this chapter we give an upper bound for the Hausdorff dimension of Jc, for c ∼ 0,

using the formalism of Gibbs states.

4.1. Expanding maps

Let (X, d) be a compact metric space. A continuous map T of X into itself is expanding

if there is a constant η > 1 with the following property: every x ∈ X has a neighborhood

U such that T−1(U) can be written as finite union of open sets

(4.1) U1, . . . ,Un,

each of which is mapped homeomorphically onto U, with

d(T x,Ty) ≥ ηd(x, y)

for every x, y ∈ Ui.

Although the number n depends of x, using compactness we can choose U to be a ball of

constant radius Bρ(x) (independent of x). However, the Ui need not to be the connected

components of T−1U. Hence such sets are not uniquely determined unless ρ is sufficiently

small. In fact, there is ρ such that T restricted to every ball o radius ρ is a homeomorphism

onto its image; and with some extra effort it can be shown that this ρ can be made even

smaller so that:

4.1. Proposition. The open sets Ui in (4.1) are uniquely1 determined by the conditions

T−1Bρ(x) = U1 t · · · t Un;

1We use t for disjoint unions.

34



4.2. MIXING PROPERTIES 35

xi ∈ Ui ⊂ Bρ(xi).

Proof. Follows from the definition. �

4.2. Definition (Injective constant). If ρ satisfy the properties of Proposition 4.1, we

shall refer to ρ as an injective constant of T. It can be shown that for every expanding

system (T, X) there is another constant ε, now called an expansive constant of T , such that

“d(T nx,T ny) < ε for all n” implies x = y.

4.3. Definition (Topologically mixing). The system (T, X, d) is topologically mixing

if for every pair of open sets U,V ⊂ X there is n0 ≥ 1 such that T (U) ∩ V is nonempty

for every n ≥ n0. This definition makes sense for every topological dynamical system. In

our case, it is equivalent to a much stronger condition, sometimes referred as eventually

onto maps: the expanding map of T is topologically mixing if, and only if, every open set

U ⊂ X is eventually mapped onto the whole space (T nU = X, for some n).

4.2. Mixing properties

In this section we are going to prove that the shift map σ is expanding and topologically

mixing. Perhaps the easiest way of doing it is by considering the auxiliary sets Yc. If K is

a compact set of the plane, let

Yc(K) := {x = (x0, x1, . . .) : (xi, xi+1) ∈ Hc, xi ∈ K} .

4.4. Proposition. The set Y0(S1) is invariant under the shift σ and there is µ > 1 such

that the system (σ,Y0) is expanding for the metric

(4.2) dµ(x, y) =

∞∑
i=0

µ−i|xi − yi|.

Proof. This is an easy consequence of Theorem 2.7. So let λ and ε denote the constants

of that theorem and take µ > 1 such that µ−1 +λ−1 < 1. Let η = 1/(µ−1 +λ−1).A sufficiently

small neighborhood U of a point x = (xi) in Y0 satisfy π0(U) ⊂ Bε(x0). The point x0 has
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precisely p pre images z1, . . . , zp in S1. Let ϕi denote the branch determined by (zi, x0).

Theorem 2.7 says that σ−1(U) is the union of the sets

Ui = {(ϕ−1
i (x0), x0, x1, . . .) : x ∈ U},

with

dµ(σx, σy) ≥ ηdµ(x, y)

for every x, y ∈ Ui. �

4.5. Proposition. The system σ : X0 → X0 is topologically mixing, X0 = Y0(S1), and

J0 = S1.

Proof. It will be convenient to consider iterates of the correspondence. By definition,

(z,w) belongs to Hn
c iff there is a finite orbit x0 = z, x1, . . . , xn = w of Hc connecting z to w.

If A is a subset of the plane, let Hn
c (A) denote the set of all w for which there is z ∈ A with

(z,w) ∈ Hn
c . The mixing property on S1 means that for every open subset U of S1 there

exists n with Hn
0(U) = S1. (Notice that S1 is invariant under Hc). This property holds for

H0 since high iterates Hn
0(z) of any point become dense in S1, and since the image of every

branch covers a ball of constant radius ε. (Take ε as the expansive constant of Theorem

2.7). The mixing property is therefore proved on S1. Now if U is an open subset of Y0(S1)

then there is n1 and some interval I ⊂ S1 such that

σn1(U) ⊃ I∞ := {(x0, x1, . . .) : x0 ∈ I}.

Since the correspondence is mixing on S1, there is n2 such that σn2(I∞) = Y0(S1). This

proves thatσ is topologically mixing on Y0(S1). Every expanding and topologically mixing

dynamical system is the closure of its periodic points (in fact, transitivity is enough, as a

consequence of the shadowing property). Since every periodic orbit in S1 is repelling,

from the definition of X0 it follows that Y0(S1) = X0. The proof is complete. �

The figure of Jc in the introduction suggested some symmetry of Jc, which can be

described as the invariance ω(Jc) = Jc under the maps z 7→ ωz, where is any pth root of
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unity. If (z,w) ∈ Hc, we say that z is a pre-image of w or, equivalently, that w is an image

of z.

4.6. Corollary (Symmetry – recall 2.11). Supposeωp = 1. Let U denote the parametriza-

tion domain of the holomorphic motion hc. If c ∈ U, then the Julia set Jc of the correspon-

dence Hc : (w − c)q = zp satisfies

ω(Jc) = Jc.

Moreover, Jc is backward invariant: if w ∈ Jc and z is pre-image of w under Hc, then

z ∈ Jc. Every z ∈ Jc has at least one image w which is in Jc.

Proof. Let c ∈ U. A point of Xc is an orbit of Hc, and since πi(Xc) = Jc for every i,

it follows that every point of Jc has at least one image in Jc. The backward invariance

follows from the fact that (σ, Xc) is conjugate to the action of σ on X0 = Y0(S1). A point

of Xc must have exactly p pre-images under the shift, but this can happen only if Jc is

backward invariant. Notice that if z is a pre image of w, then the same is true for ωz. Since

Jc is backward invariant, it follows that ω(Jc) ⊂ Jc. The other inclusion is trivial: for every

z in Jc there is ζ = ωp−1z ∈ Jc such that ωζ = z. �

4.7. Theorem (Xc is expanding and mixing – recall 2.11). Let U denote the parametriza-

tion domain of the holomorphic motion hc, and let dµ be as in (4.2). If c ∈ U, then (σ, Xc, dµ)

is topologically mixing, expanding, and Yc(Jc) = Xc.

Proof. Suppose c ∈ U. The map hc is a topological conjugacy between the systems

X0 and Xc, and since the first is mixing, so must be the second. The mixing property has

immediate counterpart with respect to the dynamics of the correspondence: if an open set

V of the plane intersects Jc, then there is n such that Hn
c (V ∩ Jc) ⊃ Jc. This is applied to

show that (σ,Yc(Jc)) is topologically mixing. Indeed, let U be an open subset of Yc(Jc) (in

the product topology). It can be shown that some iterate σn(U) contains a set of the form

V∞ = {(x0, x1, . . .) ∈ Yc(Jc) : x0 ∈ V}
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where V is an open subset of the plane which intersects Jc. The mixing property on Jc

yields σN(V∞) = Yc(Jc), for some N. Therefore σ is topologically mixing on Yc(Jc). The

arguments used to the case of X0 can be extended to a general parameter c ∈ U to show

that the function dµ is still an expanding metric on Xc and Yc(Jc). Now the system Yc(Jc)

is expanding and topologically mixing and, as such, it is the closure of the periodic points

contained in Yc(Jc). Since all periodic orbits contained in Jc must be repelling, it follows

that Xc = Yc(Jc). �

4.8. Corollary (Topologically mixing on Jc). Suppose c belongs to the parametriza-

tion domain of hc. If V is an open set of the plane which intersects Jc, then there is n such

that Hn
c (V ∩ Jc) ⊃ Jc.

4.3. Gibbs state

Let (T, X, d) be an expanding system. Every point x ∈ X gives rise to an orbit x =

x0, x1, x2 . . . , and a sequence of locally defined inverse branches gi of T taking xi into

xi−1. If ρ is an injective constant of σ, we may assume that gi is uniquely determined as a

homeomorphism from Bρ(xi) onto a neighborhood V(xi−1), which is contained in Bρ(xi−1).

We call

(4.3) Bn(x, ρ) = g1 ◦ g2 ◦ · · · ◦ gn(Bρ(xn))

of a dynamic ball of T. The point x is the center, n is the length and ρ is the radius of the

ball. Any continuous function φ from X into R is a potential of (T, X). The Birkhoff sums

φ(x) + φ(T x) + φ(T 2x) + · · · + φ(T n−1x)

are denoted by S nφ(x). Let ε be an expansive constant of T. We say that an invariant

probability measure µ on X is a Gibbs state for φ (with respect to T ) if for every ρ ∈ (0, ε)

there is a constant Cρ > 0 such that

C−1
ρ ≤

µ(Bn(x, ρ))
exp(S nφ(x) − nP(φ))

≤ Cρ
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for every n ≥ 1 and x ∈ X. It is a remarkable result that: If the function φ is Hölder

continuous on X and T is topologically mixing, then there is a unique Gibbs state for φ.

For a proof we refer to [42].

4.4. The Ruelle operator

We denote the topological pressure of potential φ with respect to the system T by

P(φ,T ), or simply P(φ). (For the original definition using coverings, see [10]). By a po-

tential we mean any continuous, real valued function on X. The pressure can be defined

either by functional analytic methods, or by direct topological computations (see [10]).

For the analytic one, we consider the bounded linear operator Lφ from the space C(X,C)

of continuous and complex valued functions into itself. The explicit formula for Lφ is

(Lφg)(x) =
∑

T (y)=x

eφ(y)g(y),

where g ∈ C(X,C). If ψ = S nφ, then Ln
φ equals to the Ruelle operator Lψ with respect

to the system σn. This is particularly useful when studying the convergence properties of

the iterates Ln
φg. The dual of C(X,C) is the space of complex measures on X. Hence any

eigenvector of the dual operator L∗φ must be a complex measure. If c = exp P(φ,T ), then

according to the the following result 2

4.9. Theorem (Ruelle-Perron-Frobenius). There is a probability measure ν on X and

a continuous function h from X into (0,∞) such that

(i) L∗φν = cν;

(ii) Lφh = ch;

(iii)
∫

hdν = 1;

(iv) ‖λ−nLn
φg − h

∫
gdν‖∞ → 0 as n→ ∞.

The ‖ · ‖∞ indicates the supremum norm. A proof can be found in [42] or in any standard

reference of the subject.

2This is an incomplete version of the so called Ruelle-Perron-Frobenius’ Theorem.
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4.5. Hausdorff dimension

Let A be a Borel subset of C. If C = {Ui} is a countable cover of A consisting of

arbitrary subsets Ui of the plane, let mt(C) = Σi|Ui|t. The diameter |C| of the cover C is the

supremum of all |Ui|. For t ≥ 0 fixed, the quantity

µt
δ(A) = inf{mt(C) : C is a countable cover of A with |C| < δ}

is monotone increasing with δ; and hence converges to the limit µt(A) as δ → 0. The set

function µt is a measure on the class of Borel subsets of the plane. It is not difficult to

prove that t 7→ µt(A) has a unique singularity d ∈ [0,∞) characterized by the fact that

µt(A) = ∞ for 0 ≤ t < d while µt(A) = 0 if t > d. The number d = HD(A) is the Hausdorff

dimension of the Borel set A.

4.6. An upper bound for HD(Jc).

Let x = (x0, x1, . . .) be an element of Xc. The first two points of x determines the

univalent branch fc(x0, x1), whose derivative at x0 we denote by fc(x0, x1)′. We also denote

(4.4) fc(x,m) = fc(x0, x1) ◦ fc(x1, x2) ◦ · · · ◦ fc(xm−1, xm).

The expression

φc(α) = − log | fc(x0, x1)′|

defines a continuous map on Xc. Hence this is a potential for (σ, Xc). We shall prove the

parameter tc in the following result is an upper bound for HD(Jc).

4.10. Theorem (Recall (4.2)). The function φc defined above is Hölder continuous with

respect to the metric dµ.Moreover, for each c in a neighborhood of the origin, the equation

(4.5) P(tφc, σ) = 0

has a unique solution in the interval [0,∞). This parameter, denoted by tc, is never zero.
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Proof. The Hölder continuity can be verified using the standard metric estimates (some

tricky estimates, with no advanced tools). Another important property about P(tφc) con-

cerns monotonicity. The proof is based on a explicit topological computation of P(tφc)

using the notation of [10]. In our context (cf. (4.4)), the Birkhoff sum assume the follow-

ing form for x = (x0, x1, . . .),

S mtφc(x) = log | fc(x,m)′|−t.

Consider a finite open cover U of Xc. (At this stage we invite the reader to check the

notation used of pressure calculations in Chapter 2.B of [10]). Letting

Zm(tφc,U) = inf
∑
U∈Γ

exp S mtφc(U)

= inf
∑
U∈Γ
| fc(x,m)′|−t ,

(4.6)

and taking into account that | fc(x,m)′| ≥ λn (cf. 2.7) it is readily seen that

Zm((t + s)φc,U) ≤ λ−smZm(tφc,U);

and hence

P((t + s)φc,U) = lim
m→∞

log Zm((t + s)φc,U)
m

≤ −s log λ + P(tφc,U).
(4.7)

We conclude that

P((t + s)φc,U) ≤ −s log λ + P(tφc).

Hence P(tφc) is strictly decreasing with t and P(tφc)→ −∞ as t → ∞.
The topological entropy of an expanding and topologically mixing system which is d to 1

is always log d. From this fact we conclude that there is a unique root t ≥ 0 of the equation

P(tφc) = 0, and that this root is > 0. This completes the proof. �

The estimate of HD(Jc) is related to the dymics ofσ on Xc,mainly because of the existence

of a Gibbs state µc for the potential tcφc, whose pressure is zero. Following the general
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rule to determine whether HD(Jc) ≤ tc, we exhibit a sequence of coverings Cn of Jc with

diameter |Cn| → 0 for which

(4.8) mtc(Cn) ≤ B < ∞

for all n. We shall choose Cn as a projection of dynamic balls in Xc. The motivating idea is

that if ρ is an expansive constant for (σ, Xc), then for all x = (xi) ∈ Xc and n ≥ 0 we have

(cf. (4.4), (4.3)):

C−1
ρ ≤

µc(Bn(x, ρ))
| fc(α, n)′|−tc

≤ Cρ.

There is a second link between tc and diameter of the sets π0Bn(α, ρ), which cover Jc. This

is given by Koebe’s Theorem and the observation that π0Bn(α, ρ) is the image of the disk

|z − xn| < ρ under Bc(α, n)−1. We replace ρ by ρ/4 in order to apply this result and obtain,

for some universal constant L,

(4.9) |π0Bn(α, ρ)| ≤ ρL| fc(α, n)′|−1 ≤ ρL
λn .

Some important assumptions must be made on ρ. It is required that ρ is an injective con-

stant of (σ, Xc), so that (4.3) maybe used to determine Bn(x, n) as (cf. (4.1)):

(4.10) Bn(x, ρ) = {y ∈ Xc : dµ(σix, σiy) < ρ for i ≤ n}.

In the second inequality of (4.9) it is implicitly assumed that Jc ⊂ A(ε) as we vary c in

a neighborhood U of 0 (ε is an expansive constant of Hc. Great advantage is attained if

we choose the centers of the dynamic balls to lie in a (n, ρ)-separated set. By definition,

two points x = (xi) and y = (yi) are said to be (n, ρ)-separated if there is i ≤ n with

dµ(σix, σiy) ≥ ρ (cf. (4.2)). A subset E of Xc is (n, ρ)-separated if every two points of E

has the same property. Considering all (n, ρ)-separated subsets of Xc we choose one which

is maximal for the inclusion. Denote it by En. From (4.10) we conclude that

C∗n = {Bn(x, ρ) : x ∈ En}



4.7. HOW GOOD IS THE ESTIMATE 43

is a cover of Xc with the property that Bn(x, ρ/2) is disjoint from Bn(y, ρ/2) whenever x , y

are in En. We shall prove the projected cover Cn = π0C∗n satisfies (4.8) thereby showing

that

4.11. Theorem. For every c in a neighborhood of the origin, 1 ≤ HD(Jc) ≤ tc.

Proof. Property (4.9) implies |Cn| → 0 as n→ ∞. Furthermore,

mtc(Cn) ≤ ρL
∑
x∈En

| fc(x, n)′|−tc

≤ ρL
∑
x∈En

Cρ/2µc(Bn(x, ρ/2))

= ρLCρ/2 < ∞.

(4.11)

This completes the proof. �

4.7. How good is the estimate

Let us test the preceding estimate. The simplest case is when c = 0, for then Jc is

the unit circle S1. The value of t0 can be computed directly using the Ruelle operator and

Theorem 4.9. Let L = Lt0φ0 . After evaluating Ln at the constant function 1, we find that

Ln(1)(x) =
∑

σn(y)=x

| f0(β, n)′|−t0

=
∑

σn(y)=x

(
p
q

)−nt0

= pn

(
p
q

)−nt0

.

(4.12)

In particular, there is a real constant ω such that L(1) = ω · 1. From Theorem 4.9, we have

ωn · 1 → h. Obviously, this implies h = 1. The explicit form of the equation L(1) = 1

is p (p/q)−t0 = 1, and since p > q, it follows that t0 > 1. Therefore t0 has no relevance

as a good approximation of HD(J0) = 1. The situation is even worse for higher values

of p and q, when p/q is very close to 1, in which case t0 → ∞. The main cause of this

discrepancy is due to the fact that tc is not directly connected with the geometry of the Julia
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set. Recall that tc was obtained from (σ, Xc), and the relevance of tc as good approximation

of HD(Jc) depends also on π0. Fortunately, nothing worse than the case c = 0 may happen:

the entire solenoid structure of X0 projects onto a single closed curve of dimension 1. For

other values of c we have proved Jc consists of uncountably many quasi-arcs obtained as

holomorphic motions of small pieces of S1.Hence the value of HD(Jc) can be significantly

bigger than 1, and it makes sense to ask whether there are values of c near the origin where

HD(Jc) = 2. The answer to this question is no if assume that p > q2. A simple application

of the estimate by tc yields

4.12. Theorem. If q2 < p, then tc < 2 for all c ∼ 0. Consequently, Jc has zero area.

Proof. Under the assumption q2 < p we have λ2 > p, if λ is sufficiently close to p/q.

The number λ from Theorem 2.7 satisfies this condition provided we choose c ∼ 0. For

such values of c we shall prove tc < 2. If L = Ltcφc , then

Ln(1) =
∑

σn(β)=α

| fc(β, n)′|−tc

≤ (pλ−tc)n;
(4.13)

and sinceLn(1) converges to the positive function h of Theorem 4.9, we must have λtc ≤ p.

Hence tc < 2. �



Part 2

General structural stability



CHAPTER 5

Iterated branch systems around Cantor sets

5.1. Conformal metrics

By a Riemann surface we mean a connected complex analytic manifold of complex di-

mension 1. A Riemannian metric on an open subset of C can be described as an expression

of the form (using classical notation)

ds2 = g11dx2 + 2g12dxdy + g22dy2,

where (gik) is a positive definite matrix which depends smoothly on the point z = x + iy

(by smooth we mean C∞). Such a metric is said to be conformal if g11 = g22 and g12 = 0.

In other words, a conformal metric is one which can be written as

ds2 = γ(x + iy)2(dx2 + dy2),

or briefly as dγ = γ(z)|dz|, where the function γ(z) is smooth and strictly positive. By

definition, such a metric is invariant under a conformal automorphism w = f (z) if, and

only if, it satisfies the identity

γ(w)|dw| = γ(z)
| f ′(z)| .

Every function f satisfying this condition is called an isometry (with respect to the metric).

It is possible to define these notions on every Riemann surface using local coordinate

charts.

5.2. Geodesically complete surfaces

Let dγ be a conformal metric on a Riemann surface R. The length of a vector v ∈ TzR is

‖v‖z,γ = 〈v, v〉z,γ.
46
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The length of any piecewise smooth curve c : [a, b]→ R is defined by

L(c) =

∫ 1

0

∥∥∥∥∥dc
dt

(t)
∥∥∥∥∥

c(t),γ
dt.

The associated Riemannian distance on R is the metric

d : R × R → R

defined by

d(z,w) = inf{L(c); c : [0, 1]→ R is a piecewise smooth curve beween z and w}.

The Riemannian distance defines a metric whose topology agrees with the topology of the

surface.

5.1. Definition. Let R be a Riemann surface with a conformal metric dγ. We say that

R is (geodesically) complete if the exponential map expz at an arbitrary point z ∈ R is

defined in the whole tangent space TzR.

Intuitively, geodesics in a complete Riemann surface go on indefinitely, i.e., each geodesic

is isometric to the real line. For example, the planeCwith the euclidean metric is complete,

but the open unit disk

D = {z ∈ C : |z| < 1}
with the euclidean metric is not complete.

5.2. Theorem (Hopf-Rinow). A Riemann surface with a conformal metric dγ is geodesi-

cally complete if, and only if, it is complete with respect to the Riemannian distance.

5.3. Hyperbolic Riemann surfaces

The Gaussian curvature of a conformal metric dγ = γ(z)|dz| is given by

K(z) =
γ2

x + γ2
y − γ(γxx + γyy)

γ4 ,

where z = x + iy and the subscripts stand for partial derivatives.
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5.3. Theorem (Surfaces with constant curvature). Every Riemann surface admits a

complete conformal metric with constant curvature which is either positive, negative, or

zero according to whether the surface is spherical, hyperbolic, or Euclidean.

Proof. See [43]. �

5.4. Theorem. Let R be a Riemann surface. Suppose there is an analytic function

f : R → Ĉ

omitting three points. Then R is hyperbolic.

Proof. See [43]. �

5.5. Definition (Poincaré metric). If R is a hyperbolic Riemann surface, then there

is a unique complete conformal metric of constant curvature K = −1 on R. This is the

Poincaré metric of the surface. We denote the corresponding Riemannian distance by

distR.

We say that a map f : S → R between Riemann surfaces is a conformal isomorphism if

f is a homeomorphism and both f and its inverse are holomorphic. The word isometry is

used for maps which preserve distance. When we have a linear map

A : TzS → TwR

between tangent spaces of Riemann surfaces S and R we define its norm with respect to a

pair of conformal metrics dρ on R and dµ on S to be

‖A‖µ,ρ = sup
v∈TzR\{0}

|A(v)|ρ,w
|v|µ,z ,

where | · |ρ,z denotes the norm at the tangent space TzR with respect to the metric dρ. The

differential D f (z) of a holomorphic map f at a point z of a Riemann surface is an example

of linear map between tangent spaces.

The Poincaré metric is of fundamental importance because of its marvelous property

of never increasing under holomorphic maps.
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5.6. Theorem (Schwarz-Pick). If f : S → R is a holomorphic map between hyper-

bolic Riemann surfaces, then exactly one of the following statements is valid:

(i) f is a conformal isomorphism from S onto R, and it maps S with its Poincaré

metric isometrically onto R with its Poincaré metric.

(ii) f is a covering map but is not one-to-one. In this case, it is locally but not globally

a Poincaré isometry. Every smooth path P : [0, 1]→ S of arc-length ` in S maps

to a smooth path f ◦ P of the same length ` in R, and it follows that

distR( f (z), f (w)) ≤ distS(z,w)

for every z,w ∈ S. Here equality holds whenever z is sufficiently close to w, but

no strict inequality will hold, for example, if f (z) = f (w) with z , w.

(iii) In all other cases, f strictly decreases all nonzero distances. In fact, for any

compact set K ⊂ S there is a constant cK < 1 so that

distR( f (z), f (w)) ≤ cKdistS(z,w)

for every z,w ∈ K and so that every smooth path in K with arc length ` (using the

Poincaré metric for S) maps to a path of Poincaré arc length ≤ cK` in R.
If f is a covering map (this includes isomorphisms), then

‖D f (z)‖µ,ρ = 1 (z ∈ S).

In all other cases we have

‖D f (z)‖µ,ρ < 1 (z ∈ S),

where dµ and dρ denote the Poincaré metrics of S and R, respectively.

Proof. See [5] �
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5.4. Iterated branch systems of first type

We shall consider three different types of iterated branch systems (a concept to be de-

fined later). For single valued maps the natural IBS (iterated branch system) is determined

by attracting periodic points. In the present case, Hc is not a multivalued function and

other types of attracting regions may appear. We shall deal first with IBS which corre-

spond to periodic cycles, or iterated branch systems of first type. The precise definition is

as follows.

Suppose ϕ : U → V is a homeomorphism between two regions U and V of the plane

(region means open and connected). If

D = {z ∈ C : |z| ≤ 1}

is contained in U, then D = ϕ(D) is by definition a topological disk. It is a convention that

the interior of D should be denoted by D. This notation is coherent and similar to the case

of the unit disk D (the interior of D), for then

D = ϕ(D),

∂D = ∂D = ϕ(S1)

and

intC(D) = intC(D) = ϕ(D),

and ∂ denotes the boundary of the set and intC indicates the interior with respect to C.

5.7. Remark. IBS stands for iterated branch system.

5.8. Definition (IBS of first type). A IBS A (of first type) for Hc is determined by a

sequence of biholomorphic maps Fi : Ui → Ui+1 between regions Ui of the plane,

U0
F0−−→ U1

F1−−→ U2
···−→ UN−1

FN−1−−−→ UN ,

such that:
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(i) Each Fi is a branch of Hc, i.e.,

(x, Fi(x)) ∈ Hc,

for every x ∈ Ui;

(ii) There are topological disks Di ⊂ Ui such that Fi maps Di onto Di+1 and DN is

contained in D0.

The attraction is determined by property (ii). Indeed, the function

F = FN−1 ◦ FN−2 ◦ · · · ◦ F0

maps D0 onto a pre compact region contained in D0 and therefore it must strictly contract

the hyperbolic distance distD0 on DN . As we shall see, under iteration every point in DN is

asymptotic to an attracting periodic orbit. Of course, since Hc is not single valued, iteration

must be restricted to the holomorphic branches Fi determined by the IBS. By definition,

z ∈ A ↔ z ∈
N−1⋃
i=0

Di.

If z ∈ A, then β(z) is the sequence of iterates of P with respect to the maps Fi; more

explicitly, we have

β(z) = (zi)∞i=0

where z0 = z and

F(i mod N)(zi) = zi+1 (i ≥ 0).

5.9. Proposition (Hyperbolic attraction). LetA be a IBS of first type, determined by

biholomorphic maps

Fi : Ui → Ui+1 (0 ≤ i ≤ N − 1),

with topological disks Di ⊂ Ui.

(i) The map

F = FN−1 ◦ · · · F1 ◦ F0 : D0 → D0

has a unique fixed point z0 ∈ D0 which is necessarily attracting, i.e., |F′(z0)| < 1.
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(ii) There is a constant a < 1 such that for any y ∈ A,

|ykN+i − zi| ≤ ai (k ≥ 0, 0 ≤ i ≤ N − 1),

where (yi) = β(y) and (zi) = β(z0) is the unique periodic orbit in the region.

Proof. Let

dρ = ρ(z)|dz|
be the Poincaré metric of D0. Since F is a holomorphic map which maps D0 into a compact

subset of D0 – in fact, the closure of F(D0) is

F(D0) = DN ⊂ D0,

we conclude that there is a constant a < 1 such that

‖F′(z)‖ρ ≤ a < 1,

for every z ∈ F(D0). Hence

diamρ

(
Fn

(
D0

))
≤ λn−1diamρ

(
F

(
D0

))
→ 0,

as n→ ∞,where diamρ denotes diameter with respect to dρ. The intersection of the nested

sequence of compact sets

Fn+1
(
D0

)
⊂ Fn

(
D0

)
consists of a single point z0 ∈ D0, which is a fixed point of F and satisfies ‖F′(z0)‖ρ < 1.

Since any two conformal metrics are equivalent on compact sets, this proves |F′(z0)| < 1.

More explicitly, for any holomorphic map f : D0 → D0 and any conformal metric dγ on

D0, if K ⊂ D0 is compact subset with f (K) ⊂ K, then there is a constant cK such that

(5.1)
1
cK
≤ ‖ f

′(z)‖γ
| f ′(z)| ≤ cK (z ∈ K).

The value of the constant cK is

(5.2) cK =
supK γ

infK γ
.
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In our case, the compact invariant set is D0 and

(5.3)
1

cD0

≤ ‖ (Fn)′ (z0)‖ρ
| (Fn)′ (z0)| ≤ cD0

.

Since ‖(Fn)′(z0)‖ρ → 0, it follows that |(Fn)′(P)| < 1. The proof is complete. �

The inequality (5.1) can be proved in the following way. Let z ∈ K, the invariant compact

set. Then

‖ f ′(z)‖γ
| f ′(z)| = sup

v,0

‖ f ′(z) · v‖γ
|v|γ · 1

| f ′(z)|
= sup

v,0

| f ′(z) · v| · γ( f (z))
|v| · γ(z)

· 1
| f ′(z)|

=
γ( f (z))
γ(z)

.

(5.4)

With cK as indicated in (5.2) it follows at once the estimate given in (5.1).

The general principle that was used in the preceding result (and will be used in different

formulations in the sequel) reads as follows:

A. General Principle. If Ω is any connected open subset of C whose complement has

at least three points and f : Ω→ Ω is a holomorphic map with

f (Ω) ⊂ Ω,

then f has a unique fixed point z0 ∈ Ω which is necessarily attracting, in the sense that

| f ′(z0)| < 1. Moreover, there are 0 < a < 1 and C > 0 such that

| f n(z) − z0| ≤ Cλn → 0

as n→ ∞, for every z ∈ Ω.

5.5. Iterated branch systems of second type

If for IBS of first type every orbit β(y) is asymptotic to an attracting cycle (see Proposition

5.9), for IBS of second type these orbits are asymptotic to a cycle of Cantor sets. This is
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the main difference, and as we shall see, it is due to the fact that the critical point 0 belongs

to such IBS.

We say that an open simply connect subset D of the plane is a univalent (open) disk if

there are q univalent branches ϕk of the correspondence Hc such that the images ϕk(D) are

pairwise disjoint and

Hc(D) =

q⋃
i=1

ϕi(D).

Recall that for any set S , Hc(S ) consists of all w for which there is some z ∈ S with

(z,w) ∈ Hc.

The main ingredients for an IBS of second type are topological disks

D0
F0−−→ D1

F1−−→ D2
···−→ DN−1

FN−1−−−→ DN ⊂ D0

such that 0 ∈ D0 and

0 <
N⋃

i=1

Di,

where Fi maps a neighborhood Ui of Di biholomorphically onto a neighborhood Ui+1 of

Di+1, for 1 ≤ i < N. The first map in the above sequence, F0, is multivalued. In fact,

F0 is the restriction of Hc to any neighborhood U0 of D0. Hence, for every Z ∈ U0 there

corresponds q complex numbers under F0,

W0,W1, . . . ,Wq−1,

which satisfy

(Wi − c)q = Zp.

These points are symmetric with respect to c, in the sense that

(Wi − c) = ωi(W0 − c),

where ω is the primitive q-th root of unit. Recall that for any correspondence G of the

plane and any set S ⊂ C,

G(S ) = {y ∈ C : (x, y) ∈ G, for some x ∈ S }.
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Now we give the precise definition of IBS of second type. The conditions are very natural

and in no sense restrictive (a rather technical to describe, but yet very simple in its essence:

it is just the branch point 0 which, under iteration, gives rise to qn conformal disks whose

diameter decrease exponentially fast on each step n. The corresponding limit set is a Cantor

set).

5.10. Definition (IBS of second type). A IBS of second type A for Hc consists of

(N + 1) topological disks D0, . . . ,DN; (N − 1) biholomorphic maps

Fi : Ui → Ui+1 (0 < i < N);

and a multivalued, surjective map F0 : U0 → U1 such that:

(i) The disks D0, . . . ,DN−1 may overlap, but

0 <
N⋃

i=1

Di;

(ii) Ui is a region containing Di, and DN ⊂ D0;

(iii) The critical point 0 belongs to the first disk D0;

(iv) Fi(Di) = Di+1 for 0 ≤ i < N;

(v) DN is contained in a univalent open disk. In other words, F0(DN) consists of

q disjoint topological (closed) disks inside of D1. (This always happens if the

diameter of DN is sufficiently small).

(vi) F0 = Hc on D0, and F0 maps D0 into D1.

LetA be a IBS of second type, determined by maps (F0 multivalued)

Fi : Ui → Ui+1 (0 ≤ i < N).

By condition (ii), there are q univalent branchesϕ0, ϕ1, . . . , ϕq−1 of Hc defined on a certain

region V containing DN such that the open sets ϕk(V) are pairwise disjoint and

(5.5) F0(V) =

N−1⋃
i=0

ϕi(V).
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We let

F = FN−1 ◦ FN−2 ◦ · · · ◦ F1 ◦ F0.

Notice that F is a multivalued map (strictly speaking, a correspondence) which maps D0

onto DN . The second iterate F2(D0) consists of q disjoint topological disks inside of DN

and so on. It is expected that that this procedure should yield an invariant Cantor set in D0.

We shall prove it using the branches

Ti = FN−1 ◦ · · · ◦ F1 ◦ ϕi : V → DN

of the correspondence F0. In fact, it easy to see that

(5.6) F(V) =

N−1⋃
i=0

Ti(V).

Each map Ti is well defined. Indeed, Ti(DN) is a compact subset of DN; hence for a small

neighborhood V of DN we have Ti(V) ⊂ DN , for every i. Therefore, F(DN) consists of q

(closed) topological disks Ti(DN) inside of DN . Taking into account the general principle

A, we consider the limit-set map

(5.7) ψ(k) =

∞⋂
n=1

Tk0 ◦ Tk1 ◦ · · · ◦ Tkn(DN),

where

k = (ki) ∈ Σq = {(k0, k1, . . .) : ki = 0, 1, . . . , (q − 1)} .

5.11. Theorem. Let ψ be as in (5.7). For every k ∈ Σq, ψ(k) is single point in in DN .

We denote K = ψ(Σq). The function

ψ : Σq → K

is a homeomorphism.1 Hence K is a Cantor set contained in DN , and F(K) = K .

1We consider the product topology on Σq.
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Proof. Let dρ = ρ(z)|dz| be the Poincaré metric of V. Since DN ⊂ V is compact set

which is forward invariant under Ti, from the Schwarz-Pick lemma it follows that there

are µi ∈ (0, 1) such that

distV (Ti(P),Ti(Q)) ≤ µi distV(P,Q)

for every P,Q ∈ DN and 0 ≤ i < N. For

µ = max {µ0, µ1, . . . , µ(q−1)},

we have

diamρ

(
Tk0 ◦ Tk1 ◦ · · · ◦ Tkn(DN)

) ≤ µ(n+1)diamρ (DN) .

Since

Tk0 ◦ Tk1 ◦ · · · ◦ Tkn ◦ Tkn+1(DN) ⊂ Tk0 ◦ Tk1 ◦ · · · ◦ Tkn(DN),

the intersection of the nested sequence of pre-compact sets, ψ(k), consists of a single point

{W}. We also write ψ(k) = W. As obvious, ψ is a surjective function onto K . It remains to

show that ψ is continuous and injective. In order to prove that ψ is injective, let

m = (m0,m1,m2, . . .) , n = (n0, n1, n2, . . .)

be two different sequences in Σq. Assume

m0 = n0,

m1 = n1,

...

mk = nk,

mk+1 , nk+1.

Then

Tn0 ◦ · · · ◦ Tnk ◦ Tnk+1(DN)

and

Tm0 ◦ · · · ◦ Tmk ◦ Tmk+1(DN)
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are two disjoint conformal (open) disks contained in

Tn0 ◦ · · · ◦ Tnk(DN) = Tm0 ◦ · · · ◦ Tmk(DN).

Since

ψ(n) ∈ Tn0 ◦ · · · ◦ Tnk ◦ Tnk+1(DN)

and

ψ(m) ∈ Tm0 ◦ · · · ◦ Tmk ◦ Tmk+1(DN),

it follows that ψ(n) , ψ(m). This proves that ψ is injective. The set Σq is compact with

respect to the product topology. The basic sets are given by cylinders

C(m0,m1, . . . ,mk) =
{
n ∈ Σq : n0 = m0, n1 = m1, . . . , nk = mk

}
.

In order to prove continuity, let ε > 0. We are going to prove that for any m ∈ Σq there is a

cylinder V containing m for which the diameter of ψ(V) is less than ε. Let L ∈ N be such

that

diamρ

(
Tm0 ◦ Tm1 ◦ · · · ◦ TmL(DN)

)
< ε.

Consider the open set

V = C(m0,m1, . . . ,mL).

Notice that ψ(m) ∈ ψ(V). We are going to show that

(5.8) diamρ ψ(V) < ε.

This proves continuity with respect to distU , but any two conformal metrics are equivalent

on invariant compact sets (see (5.4)). Hence, ψ will be continuous with respect to the

standard euclidean metric provided we show (5.8). So let n ∈ V. Then n is presented in the

form

n = (m0,m1, . . . ,mL, nL+1, nL+2, . . .);



5.5. ITERATED BRANCH SYSTEMS OF SECOND TYPE 59

and therefore

ψ(n) =

∞⋂
Q=0

Tm0 ◦ · · · ◦ TmL ◦ TnL+1 ◦ . . . ◦ TnL+Q(DN)

⊂ Tm0 ◦ · · · ◦ TmL(DN),

(5.9)

whose diameter diamρ is less than ε. This proves (5.8). Now since Σq is compact and ψ is

continuous, it must be an open map; hence ψ is a homeomorphism from Σq onto K . Since

K =

∞⋂
n=1

Fn(DN),

F(K) =

∞⋂
n=2

Fn(DN) = K .

The proof is complete. �

If A is an IBS of second type determined by topological disks D0, . . . ,DN and maps

F0, . . . , FN−1, we shall indicate it briefly as

A = (D0,D1, . . . ,DN , F0, F1, . . . , FN−1) .

By definition,

P ∈ A ↔ P ∈
N−1⋃
i=0

Di.

The key fact about IBS of second type is that they generate an invariant Cantor setK ⊂ DN ,

as described in Theorem 5.11. By invariant we mean that F(K) = K , where F is the

composition of all maps ofA. Indeed, we have a cycle of Cantor sets

(5.10) K0
F0−−→ K1

F1−−→ K2
···−→ KN−1

FN−1−−−→ KN = K0,

where

Ki = Fi−1 ◦ Fi−2 ◦ · · · ◦ F1 ◦ F0(K).

Let P ∈ A. Without loss of generality, we may suppose that P ∈ D0. The point P can be

iterated inside of A using the maps Fi. According to (5.5), F0 have precisely q univalent
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branches ϕ0, . . . , ϕN−1 defined on a neighborhood of DN . Each sequence n = (ni) in Σq

determines a sequence of maps ϕni and a sequence of iterates

η(P, n) = (Zi)∞i=0

where the points Zi ∈ C are given by

Z0 = P,

Z1 = ϕn0(P),

Z2 = F1 ◦ ϕn0(P),

Z3 = F2(Z2),
...

ZN = FN−1(ZN−1),

ZN+1 = ϕn1(ZN),

ZN+2 = F1(ZN+1),
...

Z2N = FN−1(Z2N−1),

Z2N+1 = ϕn2(Z2N),
...

5.12. Theorem (Hyperbolic attraction). Let A be an IBS of second type, with the

associated cycle of Cantor sets

K0
F0−−→ K1

F1−−→ K2
···−→ KN−1

FN−1−−−→ KN = K0

and topological disks D0, . . . ,DN−1.

(i) Every orbit of a point in A is still contained in A. In symbols, if P ∈ A, n ∈ Σq

and (Zi) = η(P, n), then Zi ∈ A for every i ≥ 0.
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(ii) Every orbit of a point in the cycle of Cantor sets is still contained in this cycle. In

symbols, if P ∈ K j, n ∈ Σq and (Zi) = η(P, n), then

Zi ∈ K(i+ j) mod N (i ≥ 0).

(iii) There are constants C > 0 and λ ∈ (0, 1) such that the following holds for every

P ∈ A. If P ∈ D j, then for every Q ∈ K j and every n ∈ Σq, the sequences

(Zi)∞i=0 = η(P, n)

and

(Wi)∞i=0 = η(Q, n)

satisfy

|WkN+i − ZkN+i| ≤ Cλk (0 ≤ i < N, k ≥ 0).

Proof. Suppose

A = (D0,D1, . . . ,DN , F0, F1, . . . , FN−1).

Statement (i) follows directly from the definition of η(P, n). The same is true for the second,

for Fi(Ki) = Ki+1 for every 0 ≤ i < N. According to the third assertion, suppose P ∈ D j,

Q ∈ K j, and consider the sequences

Z = (Zi)∞i=0 = η(P, n),

W = (Wi)∞i=0 = η(Q, n),

where n ∈ Σq. Without loss of generality, we shall assume that j = 0. The sequence

n = (ni) determines a sequence of branches ϕni of F0 defined on a neighborhood U of DN ,

as described in (5.5). It turns out that

Z1 = ϕn0(Z0),

ZN+1 = ϕn1(ZN),

Z2N+1 = ϕn2(Z2N),
...
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Since2

Tni = FN−1 ◦ FN2 ◦ · · · ◦ F1ϕni : U → DN ,

Tni maps the compact set DN into its interior DN . We also notice that from the definition

of η(P, n),

Z(k+1)N = Tnk(ZkN) (k ≥ 0).

Therefore, there are constants µi ∈ (0, 1) such that

distU(Tni(x),Tni(y)) ≤ µi distU(x, y),

for every x, y ∈ DN . The same sequence of maps Tnk which determine ZkN does also

determine WkN from the initial point W0 = Q. In other words, W(k+1)N = Tnk(WkN), k ≥ 0.

Since both sequences (WkN)k and (ZkN) are contained in DN , it follows that

(5.11) distU(WkN ,ZkN) ≤ µ(k−1)distU(WN ,ZN) (k ≥ 0).

Any two conformal metrics are equivalent on compact sets. Since the two sequences

involved are contained in DN ⊂ U, there is C > 0 (which only on distU) such that

1
C
|z1 − z2| ≤ distU(z1, z2) ≤ C |z1 − z2| (z1, z2 ∈ DN).

Combining this with (5.11) we get

|WkN − ZkN | ≤ C distU(WkN ,ZkN)

≤ C µ(k−1) distU(WN ,ZN)

≤ C2 µ(k−1) |WN − ZN |

≤
(
C2

µ
|WN − ZN |

)
µk

≤ C0 µ
k,

(5.12)

where

C0 =
C2 · diam DN

µ
.

2Compare (5.6)
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We now notice that ϕni : U → D1 is Lipschitz on the compact set DN ⊂ U, i.e., there is a

constant B such that ∣∣∣ϕni(x) − ϕni(y)
∣∣∣ ≤ B|x − y|, (x, y ∈ DN).

(Since there are only a finite number of ϕi, we may take B = Bi independent of i).

From

WkN+1 = ϕnk(WN) (k ≥ 0),

we have

|WkN+1 − ZkN+1| =
∣∣∣ϕnk(WkN) − ϕnk(ZkN)

∣∣∣
≤ B |WkN − ZkN |
≤ B ·C0 µ

k.

(5.13)

Similarly, F1 has a Lipschitz constant on the compact set F(DN), and the same argument

carries out for

WkN+2 = F1(WkN+1) (k ≥ 0).

Indeed, if L1 is the Lipschitz constant of F1, then

|WkN+2 − ZkN+2| = |F1(WkN+1) − F1(ZkN+1)|
≤ L1 |WkN+1 − ZkN+1|
≤ (L1 B C0) µk.

(5.14)

Inductively,

|WkN+i+1 − ZkN+i+1| ≤ (L1 · L2 · · · Li) B C0 µ
k.

We may assume all constants Li, B and C0 are greater than 1, so that for

C = (L1 · · · LN−2) B C0,

we have

|ZkN+i −WkN+i| ≤ C µk.

The conclusion of (iii) follows with λ = µ. �
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5.6. Attracting region of infinity

We say that a subset Ω of C is invariant under the dynamics of Hc if

Hc(Ω) = {w ∈ C : (z,w) ∈ Hc for some z ∈ Ω} ⊂ Ω.

Given a parameter c ∈ C and λ > 1 there is R > 0 such that

R
p
q − |c| > λR.

The region

B∞(R) = {z ∈ C : |z| > R}

is invariant under Hc, for if z ∈ B∞(R) and (z,w) ∈ Hc, then |w| > λ|z|.
It follows that

Hc(B∞(R)) = B∞(λR).

Under iteration of Hc, the diameter of the sets Hn
c (B∞(R)) in the spherical metric tends to

zero as n→ ∞. For obvious reasons, we shall refer to B∞(R) as an attracting region of ∞.
Let Ω(R) be an attracting region of ∞. The dynamics of Hc on B∞(R) can be replaced by

that of the shift σ on the space (with the product topology)

Xc(R) = {(x0, x1, . . .) : xi ∈ B∞(R), (xi, xi+1) ∈ Hc} ,

where

σ(x0, x1, . . .) = (x1, x2, . . .).

It is clear that

σ(Xc(R)) ⊂ Xc(R).

The projection onto first coordinate π(x0, x1, . . .) = x0 can be treated as a semiconjugacy

since

π : Xc(R)→ B∞(R)

is surjective and the diagram
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Xc(R) Xc(R)

B∞(R) B∞(R)

π

σ

π

Hc

is commutative in the sense that

(π(x), πσ(x)) ∈ Hc, for x ∈ Xc(R).

Before we state our following result, it will be necessary to define two terms which

specify speed divergence (though they can be used for convergence as well). Let An be a

sequence of positive real numbers. We say that An diverges exponentially fast if there are

constants a > 1 and C > 0 such that

An ≥ Can (n ≥ 0).

We say that An diverges double-exponentially fast if there are a, b > 1 and C > 0 such that

An ≥ Cabn
(n ≥ 0).

The next result reveals that the dynamics of Hc near infinity is always the same, no

matter what parameter we choose.

5.13. Theorem (Dynamics near infinity). Given two parameters a, b ∈ C, there are

R > 1, two sequences of positive real numbers (Tn)∞0 and (S n)∞0 , and a homeomorphism

h : Xa(R)→ Yb ⊂ Xb(T0)

such that

(i) Yb is invariant under the (left) shift: σ(Yb) ⊂ Yb.

(ii) The map h is a topological conjugacy from σ : Xa(R)→ Xa(R) to σ : Yb → Yb.
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(iii) The sequence Tn diverges exponentially fast and S n diverges double-exponentially

fast. Moreover,

Xb(S n) ⊂ σn(Yb) ⊂ Xb(Tn) (n ≥ 0).

With some imagination, we may think of Yb, Xa(R) and Xb(Rn) as neighborhoods of the

point at infinity in the Riemann sphere, with the property that Xb(Rn) “shrinks” to infinity

as n → ∞. The theorem says that T is a homeomorphism between the sets Xa(R) and Yb,

and that σn(Yb) does also shrink to infinity as n → ∞. With this analogy, Ha and Hb are

topologically conjugate when restricted to Xa(R) and Yb, respectively.

Proof. Let c ∈ C. If ϕ is branch of Hc defined in some open set Ω, then for every z ∈ Ω

we have

|ϕ′(z)| = p
q
|z| pq−1.

Recall that since ϕ is branch of Hc, by definition it satisfies (z, ϕ(z)) ∈ Hc for every z in its

domain.

We may therefore choose R∗ > 1 such that

|ϕ′(z)| ≥ λ > 1 (|z| > R∗).

Then take

ε = |a − b|
∞∑

i=0

λ−i.

Step 1 We state here a couple of preliminary properties which are needed for the the

proof. Let µ > 1 be given. There is R∗1 > R∗ such that µR∗1 − R∗1 > 2ε and |w| > µ|z|,
whenever (z,w) ∈ Ha or (z,w) ∈ Hb with |z| > R∗1. We shall also assume that R∗1 > |a|, |b|.

For any point d of the plane we choose the symbol S d(θ) to denote any open sector

of amplitude θ centered at d. Therefore, whenever we specify the initial angle α, S d(θ) is

determined as a set of the form

S d(θ) =
{
z ∈ C : z , d, α < arg(z − d) < α + θ

}
.

In most cases, it will not be necessary to specify α.
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As usual, we dente by B(x, r) the open ball of radius r and center x ∈ C. If E is a

bounded open subset of C and x ∈ E, then we let r = sup |z − x| as z varies in E. By

covx(E) we mean the open ball B(x, r), which necessarily contains E.

Let

B∞(R) = {z ∈ C : |z| > R}.

Claim A. We may choose the previous constant R∗1 in such a way that whenever a ball

B(x, 2ε) is contained in B∞(R∗1), there is a sector S 0(π/p) containing B(x, 2ε).

In order to prove this we let θ be minimal for the property B(x, 2ε) ⊂ S 0(θ). We

notice in such case there is only one such sector which is minimal for this property. The

size of θ may computed either by elementary properties of the argument function, or by

trigonometry. We have

sin(θ/2) =
2ε
|x| .

The claim follows easily from this.

Let c = a or c = b. As the set B(x, 2ε) is contained in a sector S 0(π/p), there are q

univalent branches of Hc defined on B(x, 2ε). Let ϕ be any of them.

Claim B. We may choose R∗1 above in such a way that

covϕ(x)(ϕ(B(x, 2ε)) ⊂ S c(π/q),

for every univalent branch ϕ and every ball B(x, 2ε) that is contained in the region B∞(R∗1).

Using the mean value inequality we see that

(5.15) |ϕ(z) − ϕ(w)| ≤ p
q

(|x| + 2ε)
p
q−1 |z − w|,

for every z and w in B(x, 2ε). From this we conclude that ϕ(B(x, 2ε)) is contained in the

ball B(ϕ(x), r) of radius

r = 2
p
q

(|x| + ε)
p
q−1 ε.

In particular, covϕ(x)ϕB(x, 2ε) is contained in B(ϕ(x), r).

Now let θ be minimal for the property B(ϕ(x), r) ⊂ S c(θ).
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It is clear that in this case there is a unique sector S c(θ) satisfying this inclusion. The value

of θ can be computed as in claim A. We have

sin(θ/2) = 2
p
q (|x| + ε)

p
q−1 ε

|ϕ(x) − c|

= 2
ε p

q (|x| + ε)
p
q−1

|x| pq
→ 0,

(5.16)

as |x| → ∞. This proves the claim.

We say that a finite collection of sets A1, A2, . . . , An is ε-sparse if

inf
i, j

d(Ai, A j) > ε,

where

d(A, B) = inf {d(x, y) : x ∈ A, y ∈ B} .

Let c = a or c = b. Whenever a ball B(x, 2ε) of radius ε is contained in B∞(R∗1), we

already know that there are q univalent branches ϕi of Hc defined on this ball; the union

of the images ϕi(B(x, 2ε) is Hc(B(x, 2ε)). We may assume that R∗1 of claim A satisfies the

following additional property.

Claim C. By taking R∗1 larger, if necessary, we may assume that for every ball B(x, 2ε)

contained in B∞(R∗1), the image sets ϕi(B(x, 2ε)) are 2ε-sparse; and also that every point

y in covϕi(x)(ϕi(B(x, 2ε))) satisfies

(5.17) |y| ≥ |x| + 2ε.

Since |x|+2ε is an upper bound for the norm |z| of every z ∈ B(x, 2ε), the last inequfality

says that, under iteration, the images of balls of radius less than 2ε are disjoint and move

to infinity by passing through disjoint annuli which partition the region B∞(R∗1).

In order to prove claim C, let B(x, 2ε) be a ball which is contained in B∞(R∗1). Let ϕ be

a univalent branch of Hc defined on B(x, 2ε). The image point y = ϕ(x) satisfies

|y| ≥ |y − c| − |c| = |x| pq − |c|.
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By (5.15) the ball of center y and radius

r = 2ε
p
q

(|x| + ε)
p
q−1

contains covyϕB(x, 2ε). If z is any point of B(y, r), then

|z| ≥ |y| − r

≥ |x| pq − |c| − 2ε
p
q

(|x| + ε)
p
q−1

≥ |x| + 2ε,

(5.18)

for large enough R∗1 (which is supposed to work for both c = a and c = b), since |x| > R∗1.

This proves (5.17).

If ω is a primitive qth root of unity and ζ is any complex number such that ζq = xp, it

follows that all the images of x under the correspondence are determined by the equation

yk = ζωk + c,

as we vary k from 0 to (q−1). It follows that the distance between any two different images

of z is bounded bellow by |ζ |δ, where δ is the infimum of |ωi−ω j| for i , j. In other words,

for every i , j we have ∣∣∣yi − y j

∣∣∣ ≥ δ|x| pq .
Suppose R∗1 is sufficiently large so that(

R∗1
) p

q δ − 4ε
p
q

(
R∗1

) p
q−1 − 2ε > 0.

Then

d(ϕiB(x, ε), ϕ jB(x, ε)) ≥ d(B(yi, r), B(y j, r))

≥ δ|x| pq − 4ε
p
q

(|x| + ε)
p
q−1

≥ (
R∗1

) p
q δ − 4ε

(
R∗1 + ε

) p
q−1

> 2ε

(5.19)

and we conclude from it that the image sets are 2ε-sparse, as desired. Claim C is proved.
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The notation B∞(M)
f←− B∞(N) used for two constants M < N and f = Hc for some

parameter c indicates that the following property holds: if w is in B∞(N) and z is a pre-

image of w through Hc – this means (z,w) ∈ Hc – then necessarily we have z ∈ B∞(M).

Claim D. Given a, b ∈ C, there are R∗1 sufficiently large and constants R1,R2,R3 and R

which satisfy

B∞(R3)
f←− B∞(R2)

f←− B∞(R1)
f←− B∞(R),

2ε < min (|R − R1|, |R1 − R2|, |R2 − R3|),

R∗1 < R3 < R2 < R1 < R

for f = Ha,Hb.

We only need to take a certain ρ ∈ (0, 1) and R∗1 so that

R∗1 − (ρR∗1)
q
p > ε

and

R∗1 − d ≥ ρR∗1,

where d is the greatest between the norms of the two given parameters |a| and |b|. Let

R > R∗1 and denote by c either a or b. If w ∈ B∞(R) and z is any pre-image of w under Hc

we have

|z| = |w − c| qp ≥ (|w| − |c|) q
p ≥ (ρ|w|) q

p ≥ (ρR)
q
p =: R1.

Notice that R1 < R. This argument may be repeated inductively. For example, if w is any

point of B∞(R1) and R1 is still greater than R∗1, then we conclude that any pre-image of

w must be in B∞(R2), where R2 = (ρR1)
q
p . A similar assertion is true for R3 = (ρR2)

q
p .

So in order to complete the argument we only need to take R large enough so that after

three steps we have R3 > R∗1. It is easy to see that the difference Ri+1 − Ri become very

large when R→ ∞; thus they become greater than 2ε, and the second set of inequalities is

immediately fulfilled. Claim D is proved.

Step 2. We complete the proof of the theorem using shadowing properties on B∞(R∗1).

We first notice that for any x ∈ B∞(R2) the set B(x, 2ε) is contained in B∞(R3); and that for
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any branch ϕ of Hc
3 covϕ(x)ϕ(B(x, 2ε)) is contained in B∞(R2), by claims C and D. In fact,

by claim B the set covϕ(x)ϕ(B(x, 2ε)) is contained in a sector S c(π/q). There is a branch

of inverse of Hc defined on every such sector. The unique inverse branch which coincides

with ϕ−1 when restricted to covϕ(x)ϕ(B(x, 2ε)) is again denoted by ϕ−1. By claim D,

D = ϕ−1
(
covϕ(x)ϕB(x, 2ε)

)
⊂ B∞(R3).

The region D is chosen as the domain of ϕ. As the image of this function is convex, for

every two points ϕ(z) and ϕ(w) in it there is a straight line ζ inside of ϕ(D) which connects

these two points. Let γ = ϕ−1(ζ) be the pre-image curve, contained in D. Since the norm

of ϕ′ is bounded below by λ,

|ϕ(z) − ϕ(w)| =
∫ 1

0
|ζ′(t)|dt

=

∫ 1

0
|ϕ′(γ(t))| · |γ′(t)|dt

≥
∫ 1

0
λ|γ′(t)|dt

= λ`(γ)

≥ λ|z − w|.

(5.20)

This says that for every x ∈ B∞(R2) and every image y of x through Hc (by the choice

made on R2, the point y must be also in B∞(R2)) there is branch ϕ of Hc, with domain D

and image B such that (i) D contains the open ball B(x, 2ε); (ii) B is itself an open ball

which contains a smaller ball B(y, 2λε), and (iii) D is contained in B∞(R3), B ⊂ B∞(R2)

and ϕ : D→ B is biholomorphic. The radius 2λε of the image-ball has obviously a larger

radius than that of B(x, 2ε); and in fact, the branch ϕ expands distances by the same factor

λ on D. This property plays a central role in the following shadowing argument.

3Although the arguments apparently treat a single c, the conclusions do not depend on the choice of c

in a set of two fixed parameters (in this case a and b).
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Claim E (Shadowing). For every orbit x = (xi)∞0 in Xa(R) there is a unique orbit

y = (yi)∞0 of Hb such that |xi − yi| < ε (i ≥ 0). The function h(x) = y so defined satisfies

h(Xa(R)) = Yb ⊂ Xb(R1).

Let ϕi : Di → Bi be a univalent branch of Ha which takes xi into xi+1. As we have

seen, the domain Di contains B(xi, 2ε) and Bi contains B(xi+1, 2λε). Whenever (w − b + a)

belongs to Bi the inverse image ϕ−1
i (w − b + a) = z is such that (z,w) ∈ Hb. So we can

construct a finite orbit of Hb using the maps ϕi (which are determined from the orbit (xi)

of Ha). Given n ≥ 0, define yn(k) for 0 ≤ k ≤ n as follows: yn(n) = xn and

yn(k − 1) = ϕ−1
k−1(yn(k) − b + a).

The sequence (yn(k))n
k=0 is a finite orbit of Hb. For n < k we let yn(k) be any fixed constant,

say, 0. The point yn(k) is always within the ε-neighborhood of xk. In fact, the argument of

successively applying ϕ−1
i is possible only because

|yn(k) − xk| ≤ |a − b|
(
λ−1 + λ−2 + . . . + λ−(n−k)

)
< ε,

for every n ≥ k.

For a fixed k, the sequence (yn(k))n is bounded, and as such, it has a convergent sub-

sequence yn(k,i)(k), where n(k, i) is a sequence indexed in i, for each fixed k. Now what

we have is a sequence of sequences which may be chosen so that (n(k + 1, i))i is a sub-

sequence of n(k, i), with n(k + 1, i) > n(k, k) for every i, k. Let yk denote the limit of

yn(k,i)(k) as i → ∞. The diagonal sequence ni = n(i, i) is a subsequence of every sequence

n(k, 0), n(k, 1), . . . , n(k, i), . . . Hence yni(k) converges to yk as i → ∞ for every k. Since

(yni(k), yni(k + 1)) ∈ Hb for all i, it follows by continuity that (yk, yk+1) ∈ Hb. We conclude

that (yk) is an orbit of Hb which satisfies |yk − xk| < ε for every k. It remains to prove that

an orbit of Hb with this property is unique.

Suppose there is another orbit (zi) of Hb with |zi − xi| < ε for every i. The terms of

these two orbits are contained in B∞(R1), since ε < (R − R1). Let ϕi denote the univalent

branch of Hb which takes yi to yi+1. According to claim C, the image of the ball B(yi, 2ε)
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under Hb is a collection of q sets which are 2ε sparse. These sets are the images of the q

branches determined by the correspondence at yi; by claim A, these branches are defined

on a domain which includes the ball B(yi, 2ε). Since |yi − zi| < 2ε, the same branch ϕi

which takes yi to yi+1 must also take zi to zi+1. Since ϕi expands distances by the factor λ,

it follows that

|zi − yi| ≤ λ−k |zi+k − yi+k| ≤ λ−k2ε→ 0,

which implies zi = yi, for every i. This proves claim E.

Claim F. The function h : Xa(R)→ Yb of claim E is a homeomorphism.

The function h : Xa(R) → Yb has a natural inverse, given by the shadowing. In fact,

let h(x) = y ∈ Yb. The sequence y is contained in Xb(R1). The same argument of claim E

applies: there is a unique orbit z = (zi) of Ha such that |zi − yi| < ε for every i. The unique

difference is that now this orbit belongs to Xa(R2), and a priori we cannot say that it is in

Xa(R). But since |zi− xi| < 2ε, we have x = z, and the conclusion is that, indeed, x ∈ Xa(R).

In this way we have constructed a map g : Yb → Xa(R) which satisfies g ◦ h(x) =

x. Hence h is injective and its inverse on Yb is g. Since both h and g are given by the

shadowing of a sequence, in order to prove that h is a homeomorphism it is sufficient

to show that the shadowing of a sequence x = (xi) depends continuously upon x in the

product topology (whether x ∈ Xa(R) or x ∈ Xb(R1); we shall deal only with the former

case). If c ∈ C, δ > 0, n ≥ 0 and x = (xi)∞0 is an orbit of Hc, then we define

Cn
c (x, δ) =

{
z = (zi)∞0 : z is an orbit of Hc and |zi − xi| < δ for 0 ≤ i ≤ n

}
.

Notice the collection of neighborhoods Cn
a(x, δ) ∩ Xa(R) is a local base at x ∈ Xa(R), if we

consider all n ≥ 0 and δ > 0. To prove continuity at an arbitrary point x(1) ∈ Xa(R), let

y(2) = h(x(1)). We are going to prove that for any given ε > 0 and n ≥ 0, there are N ≥ 0

and δ > 0 such that whenever x(2) is in CN
a (x(1), δ) ∩ Xa(R), the corresponding y(2) = h(x(1))

must be in Cn
b(y(1), ε).

We first take k ≥ 1 such that λ−kε < ε. Then let N = n + k and δ = ε. Supoose x(2) is

in CN
a (x(1), δ) ∩ Xa(R). Since |x(1)

i − x(2)
i | < ε for 0 ≤ i ≤ N, the same univalent branch ϕi
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which takes x(1)
i to x(1)

i+1 must also take x(2)
i to x(2)

i+1. Let y(2) = h(x(2)). From the definition of

the map h, we have

ϕ−1
i (y(1)

i+1 − b + a) = y(1)
i ,

ϕ−1
i (y(2)

i − b + a) = y(2)
i .

And since ϕi expands distances by the factor λ, we have∣∣∣y(1)
i − y(2)

i

∣∣∣ ≤ λ−k
∣∣∣y(1)

i+k − y(2)
i+k

∣∣∣ ≤ λ−kε < ε,

for 0 ≤ i ≤ n. In other words, y(2) is in Cn
b(y(1), ε), as desired. Claim F is proved.

Claim G. The space Yb is invariant under the unilateral shift σ (to the left) and

Xb(S n) ⊂ σn(Yb) ⊂ Xb(Tn),

as in the statement of the theorem. The function h of claim F is a topological conjugacy

from (σ, Xa(R)) to (σ,Yb).

Since the shadowing is unique, we have hσ(x) = σh(x) for every x ∈ Xa(R). This

proves that σ(Yb) ⊂ Yb and also that the homeomorphism h is a topological conjugacy

between the systems Xa(R) and Yb.

Now let Tn = µnR − ε, where µ > 1 is such that |w| > µ|z|, whenever z ∈ B∞(R∗1) and

(z,w) ∈ Ha. We are going to prove that

σn(Yb) ⊂ Xb(Tn),

for every n ≥ 0. In fact, every y ∈ Yb is written h(x) = y for some x = (xi)∞0 in Xa(R).

The points of this last sequence satisfy |xn| ≥ µnR; and since |yi − xi| < ε, we conclude that

σn(y) ∈ Xb(Tn), which proves the assertion.

Recall that whenever w is B∞(R∗1) and z is a pre-image of w under Ha we have

|z| ≥ (ρ|w|)q/p,

since from the definition of ρ it satisfies |w|−|a| ≥ ρ|w| and 0 < ρ < 1, for every w ∈ B∞(R∗1).
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Let

K =

∞∑
n=1

(
q
p

)n

, S n =

(
R
ρK

) pn

qn

+ ε.

We are going to prove that

σn(Yb) ⊃ Xb(S n) (n ≥ 0).

In this way, the iterate σn(Yb) is always an open set between Xb(S n) and Xb(Tn).

Every sequence y of Xb(S n) can be written in the form y = (yn, yn+1, . . .). The inverse

shadowing (cf. claim F) is a well defined map g : Yb → Xa(R) which is nothing but the

inverse of h. Let (xn, xn+1, . . .) = g(y). Since the terms of this sequences are within distance

ε from the corresponding terms of the sequence y, we conclude that |xn| ≥ S n − ε. We

aim at completing the sequence so as to form x = (x0, x1, . . . , xn, . . .) ∈ Xa(R). Indeed, the

inverse correspondence H−1
a maps each B∞(S ) into B∞((ρS )q/p). Starting with the radius

S n − ε, the first backward iterate is in B∞(L1), where L1 = (ρ(S n − ε))q/p. By induction,

after n backward iterates we reach Ln = (ρLn−1)q/p. Hence

Ln = ρq/p+(q/p)2+···+(q/p)n
S

qn

pn

n > ρKS
qn

pn

n = R,

so that the inverse of Hn
a maps B∞(S n − ε) into B∞(R). By taking successive pre-images

of xn we form a sequence x ∈ Xa(R) as indicated above. Let y = h(x) ∈ Yb. Since h is a

topological conjugacy and g = h−1 we have

σn(y) = σn(h(x)) = h(σn(x)) = y.

In other words, Xb(S n) ⊂ σn(Yb). This completes the proof of the theorem. �

5.7. The Limit set

A backward orbit of Hc starting at y0 is a sequence (yi)∞i=0 such that (yi+1, yi) ∈ Hc.

It is natural to define the Limit set Lc of the correspondence Hc as the closure the

accumulations points of backward orbits of any point in an attracting region of infinity

B∞(R). The definition makes sense since any backward orbit is actually bounded: if we

start with a point y0 which is in B∞(R), where B∞(R) is an attracting region of infinity, then
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it is clear that any backward orbit starting at y0 is contained in the ball {|z| < |y0|}.
Another definition is given by the closure of repelling periodic orbits. Recall that a periodic

orbit of Hc is a finite sequence z0, . . . zn = z0 together with branches ϕi of Hc taking zi into

zi+1. The multiplier of the orbit is the derivative of the composition ϕn−1 ◦ · · · ◦ ϕ0 at z0.

When the multiplier λ of the cycle satisfies |λ| > 1, the orbit is said to be repelling.

These two definitions yields the same set in the case of rational maps. But here the first

one tends to be more general, and in some cases the set closure of repelling periodic orbits

is strictly contained in the set that is obtained by taking pre-images out of an attracting

region of∞. This will be clear when we discuss questions related to hyperbolicity.

Moreover, taking accumulation points of pre-orbits has the advantage that Lc , φ is

immediately fulfilled.

5.14. Definition (Limit set). We write z ∈ Gc(y) if z is a sub sequential limit of a

backward orbit starting at y. The Limit set Lc is the closure of the union of all Gc(y), with

y belonging to an attracting region of infinity.

This definition allows us to draw Lc using computer algorithms.

Recall that any point of Hc(z) is called an image of z. Similarly, every point z with

(z,w) ∈ Hc is a pre-image of w. We say that A is forward semi-invariant under Hc if every

point in A has at least one image which is still in A. If every point in A has at least one

pre-image which is still in A we say that A is backward semi-invariant. The term semi-

invariant alone indicates that A is both forward and backward semi-invariant.

5.15. Remark. Notice that the Limit set is always a compact set contained in C. Al-

though we have not yet defined the concept of hyperbolicity, we anticipate that when Hc is

hyperbolic and satisfies the escaping condition (to be defined later), the Limit set consist

of two disjoint semi-invariant compact sets: one is the closure of repelling periodic orbits,

the Julia set Jc; the other is a cycle of Cantor sets obtained from a IBS of second type, the

dual Julia set Ec



5.7. THE LIMIT SET 77

Hence, hyperbolicity still implies expanding behavior on the Julia set (as for rational

maps), but also the coexistence of both attracting and expanding properties which partition

Lc (as in the case of stable and unstable manifolds for diffeomorphisms). This is one of

the most surprising facts about the dynamics of the correspondence Hc.

5.16. Theorem (Invariance). The Limit set Lc of Hc is semi-invariant, in the sense that

every z ∈ Lc has at least one image w ∈ Lc, and that for every w ∈ Lc there is at least one

pre-image z ∈ Lc.

Proof. In fact, we are going to prove that the set of subsequential limits Gc(y) (defined

together with Lc) is semi-invariant. Let y be a point of an attracting region of∞.
Let z ∈ Gc(y), i.e., there is a pre-orbit y0 = y, . . . , yn, . . . staring at y and a subsequence yn(k)

which satisfy ∣∣∣z − yn(k)

∣∣∣ < 1/k.

In the first case we assume that z , 0, c, so that the images and pre-images of points

near z are determined by q forward branches ϕi : Dz → C and p backward branches

ψ j : Dz → C. The sequence yn leaves and enters the domain Dz infinitely often. Hence,

there is a subsequence, which we again denote by yn(k), so that

ϕ
(
yn(k)

)
= yn(k)−1,

for every k ≥ k0, for the same forward branch ϕ. Similarly, there is a branch ψ of H−1
c such

that ψ(yn(k)) = yn(k)+1. Now the subsequence yn(k)−1 converges to ϕ(z) ∈ Gc(y), while yn(k)+1

converges to ψ(z) ∈ Bc(z).

The case z = 0 is even simpler. Although there is no single valued branch at z = 0,

the correspondence maps points near to z = 0 to points which are near to w = c. Hence,

whenever 0 belongs to Gc(y), so does c. The same argument applies to pre-images of

points near c, and we conclude that the two assertions 0 ∈ Gc(y) and c ∈ Bc(y) occur

simultaneously. This proves that Gc(y) is semi-invariant.

Since Lc consists of the closure the union of all such Gc(y), it follows that Lc is also

semi-invariant. Indeed, let z be a point of Lc, with a sequence zn of points zn ∈ Bn(yn)
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converging to z. Suppose z is neither zero, nor c. The correspondence Hc at z is determined

by finitely many forward branches; likewise, H−1
c is also determined by finitely many

backward branches. For each zn there is one forward branch ϕn which takes zn to a point

inside of Gc(yn). As there are only finitely many possible choices among these maps, by

taking subsequences we may suppose (without loss of generality) ϕn is always the same

branch ϕ and the conclusion is that

ϕ(z) = lim
n→∞

ϕ(zn) ∈
⋃

n
c(yn) ⊂ Lc.

This proves that Lc forward semi-invariant. The same reasoning shows that Lc is also

backward semi-invariant (the cases 0 and c are handled in the same manner). �



CHAPTER 6

Structural stability at hyperbolic parameters

A cycle is a periodic orbit z0 → z1 · · · → zn = z0, where (zi, zi+1) ∈ Hc. Every cycle

has a naturally associated complex number, called its multiplier. If the cycle contains no

zero elements, then every point zn determines an essentially unique branch ϕn of Hc (up to

domain extensions) which takes zn into zn+1. The multiplier of this orbit is

λ =
dϕn−1 ◦ · · · ◦ ϕ0(z)

dz

∣∣∣∣∣
z=z0.

If one of the elements of the cycle is 0, or ∞ (notice that ∞ is a fixed point) we set

λ = 0, by convention. This convention, however, has a meaningful dynamic justification.

If the first point z0 = 0 is zero, for example, then the composition of branches (instead of

branch, at the nonzero element we consider ϕ0 = Hc) yields a multivalued map f : D→ D

from a neighborhood D of zero. There is a constant C such that

| f (z) − 0| < C|z|p/q on D.

Since p/q > 1, this shows that f becomes more contractive the closer the point z is from

zero. The same effect happens at ∞ if we consider the coordinate change ζ = 1/z for z

near zero. The cycle is attracting if |λ| < 1. We call a cycle super-attractive whenever its

multiplier λ is zero.

6.1. Definition (Hyperbolic Hc). If Hc has an attracting cycle, then we say that Hc is

hyperbolic.

6.2. Remark. In particular, if Hc has a IBS of first type, then Hc is hyperbolic. On

the other hand, there are cases where Hc is hyperbolic in the absence of IBS of first type:

c = 0 is one example.
79
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We are going to see in the next theorem that every IBS of second type contain a Con-

formal Iterated Function System (CIFS) in a natural way. As a consequence, we have

6.3. Theorem (Infinitely many attracting cycles). Every IBS of second type contains

infinitely many attracting cycles.

Proof. Let

A : D0
F0−−→ D1

F1−−→ D2
F2−−→ · · · FN−1−−−→ DN ⊂ D0

be a IBS of second type, where F0 is the restriction of the correspondence Hc to D0. Since

DN is a univalent disk, there is a simply connected open set V containing DN such that

F0(V) =

q−1⋃
k=0

ϕk(V)

is a disjoint union, being ϕk the q univalent branches of Hc determined on V. Each compo-

sition

Tk = FN−1 ◦ FN−2 · · · ◦ F1 ◦ ϕk

maps DN into its interior DN . In fact, {Tk(DN)}q−1
k=0 is a disjoint collection of closed topolog-

ical disks inside of DN . This constitutes a conformal iterated function system on DN , since

each map Tk uniformly contracts the Poincaré metric on DN (from the second iterate on).

Let Σq = {k = (k0, k1, . . . , kn, . . .) : ki = 0, . . . , (q − 1)}. Consider the map

ψ(k) =

∞⋂
n=0

Tk0 ◦ Tk1 ◦ · · · ◦ Tkn(DN),

from Σq into the the first Cantor set K0 contained in the IBS A. For a periodic sequence

k ∈ Σq with period n, notice that

f = Tk0 ◦ Tk1 ◦ · · · ◦ Tkn−1

satisfies

fψ(k) = ψ(k).

Hence, ψ(k) is a fixed point of the correspondence HnN
c ; in other words, a periodic point.

As there are infinitely many periodic points in Σq (under the shift map), the same must be
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true on K0, since ψ is injective (recall theorem 5.11). Since f is defined on V and f maps

the compact set DN into the interior DN , this function uniformly contracts the hyperbolic

metric of V on DN . Hence, the multiplier λ of the periodic point ψ(k) has norm less than 1.

In this way, we obtain infinitely many attracting periodic orbits inside any IBS of second

type. �

6.1. Normal families

It is now time state one of the most important tools in the study of iteration of holo-

morphic maps: Montel’s Theorem.

Consider the Riemann sphere Ĉ with its spherical metric. Let U be a connected open

subset of Ĉ. We say that a sequence of functions fn : U → Ĉ converges locally uniformly

to some f : U → Ĉ if every point of U has a neighborhood V on which fn|V converges

uniformly to f |V . Equivalently, fn converges locally uniformly to f if, and only if, fn|K
restricted to any compact set K ⊂ U converges uniformly to f |K .

As usual, we denote the higher order derivatives of a complex function f inductively

by

f (n) =
(

f (n−1)
)′
.

6.4. Theorem (Weierstrass). If a sequence of analytic functions fk : U → Ĉ from a

connected open set U converges locally uniformly to f : U → Ĉ, then f is also analytic.

The sequence of derivatives f (n)
k of fixed order n converges locally uniformly to f (n) on U

for every n.

6.5. Definition (Normality). Let U be a connected open subset of Ĉ. A sequence of

holomorphic functions fn : U → Ĉ is said to be normal if every subsequence of fn has

another subsequence which converges locally uniformly to some function U → Ĉ.

Although the case of normal families fn : U → C is included in the case of maps onto

Ĉ, in some cases we need an alternative definition which does not involve the spherical

metric. In fact, it may happen that a sequence of a sequence of maps U → C which
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converge locally uniformly to some function U → Ĉ does not converge locally uniformly

to any map U → C.
We say that a sequence fn : U → C escape to infinity if for every compact set K ⊂ U

and every compact set K′ ⊂ C we have fn(K) ∩ K′ = φ for n sufficiently large.

6.6. Proposition (Normality for maps onto C). Let U be a connected open subset of

the Riemann sphere Ĉ. A sequence of holomorphic maps fn : U → C is normal if, and

only if, every subsequence of fn contains either a subsequence which converges locally

uniformly to some function U → C, or a subsequence which escape to infinity.

A sequence of maps fn : U → Ĉ omits three points if there is a set Q ⊂ Ĉ containing

three points such that fn(U) ⊂ Ĉ \ Q for every n.

6.7. Theorem (Montel). Let U be a connected open subset of Ĉ. Every sequence of

holomorphic maps fn : U → Ĉ omitting three points is normal.

6.8. Remark. This Theorem has one immediate surprising consequence: if fn : U → Ĉ
is not normal in a small neighborhood U of a point, then there are at least two points a and

b in Ĉ such that
∞⋃

n=1

fn(U) ⊃ Ĉ \ {a, b}.

6.2. Critical IBS

Recall that if

A = (D0,D1, . . . ,DN , F0, . . . , FN−1)

is a IBS of first type, then none of the topological disks Di contains the critical point 0. As

a consequence, none of D1, . . . ,DN contain the critical value c. However, nothing prevents

that c ∈ D0. In fact, such IBS play a very important role. Unless there is no attracting

cycle for the correspondence, they always exist. Furthermore, they are responsible for the

existence of invariant Cantor sets whenever Hc is hyperbolic.
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6.9. Definition (Critical IBS). Let A = (D0, . . .DN , F0, . . . , FN−1) be a IBS of first

type. We say thatA is a critical if c ∈ D0.

It should be noticed that every IBS of second type contains a critical IBS (just disregard

the first disk D0; we invite the reader to check from the definition). The converse is also

true: if A = (D0, . . . ,DN , F0, . . . , FN−1) is a critical IBS, then by introducing the new

topological disk D−1 = H−1
c (D0) we get a IBS of second type, namely,

D−1
H0−−→ D0

F0−−→ D1 · · · FN−2−−−→ DN−1 ⊂ D−1.

Hence,

Every critical IBS may be identified with a IBS of second type.

Another way of expressing an IBS of first typeA = (D0, . . . ,DN , F0, . . . , FN−1) takes into

account the following sequence of maps

A : D0
ϕ0−→ D1

ϕ1−→ D2 · · ·
ϕn−→ Dn+1

ϕn+1−−−→ · · ·
where the regions are defined inductively by Dn+1 = ϕn(Dn). Therefore Dk+N ⊂ Dk and, by

definition,

ϕ0 = F0,

...

ϕN−1 = FN .

For all the other maps, the restriction of ϕk to Dk+N is the bi-holomorphic map

ϕk+N : Dk+N → Dk+N+1.

There is an advantage in doing so since it offers a better language for dealing with exten-

sions. The number N is the period of the IBS.

The formal shift map σ is defined as σ(A) = D1
ϕ1−→ D2

ϕ2−→ D3 · · ·

6.10. Definition (Extension). For any two IBS of first type B and C, we say that C is

an extension of B (and write C � B) if σk(C) = B for some integer k ≥ 0.
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6.11. Lemma. SupposeA,B and C are IBS of first type.

(i) IfA � B and C � B, then eitherA � C or C � A.
(ii) If B and C are critical IBS and B � C, then B = C.

Proof. Let us denote the IBS B by D0
ϕ0−→ D1 · · · , with period N.

Suppose there are two extensions

D−1
α1−→ D0

ϕ0−→ D1
ϕ1−→ D2 · · ·

and

Ď−1
β1−→ D0

ϕ0−→ D1
ϕ1−→ D2 · · ·

(Recall that every map in the extension must be bi-holomorphic, by definition). It follows

that both D−1, Ď−1 contain DN−1 and D0 ⊃ DN . The restriction of α−1
1 to DN equals ϕ−1

N−1, as

well as the restriction of β−1
1 to DN equals ϕ−1

N−1. Since the maps involved are holomorphic,

we conclude that α−1
1 = β−1

1 . Therefore D−1 = Ď−1 and α1 = β1. This argument may be

carried out for any two finite extensions

D−n
αn−→ · · ·D−2

α2−→ D−1
α1−→ D0

ϕ0−→ D1
ϕ1−→ D2 · · ·

and

Ď−n
βn−→ · · · Ď−2

β2−→ Ď−1
β1−→ D0

ϕ0−→ D1
ϕ1−→ D2 · · ·

As soon as the length in both extensions is the same n, the conclusion is that αi = βi and

D−i = Ď−i for any 0 < i ≤ n. The item (i) follows easily from this.

The second assertion follows from that fact that no critical IBS can be further extended

without including the critical point 0, which is a contradiction, since no IBS of first type is

allowed to include 0 in any of its disks. This completes the proof. �

6.12. Theorem. Let B be a IBS of first type of Hc. There is a unique critical IBS C with

C � B.

Notice that in assuming that Hc has a IBS of first type it is implicit that c , 0, because

H0 has no such IBS. The proof of this theorem requires the following:
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6.13. Lemma. Let Ω ⊂ C be a simply connected domain which does not contain the

critical value c. For every a ∈ Ω and every b ∈ H−1
c (a) there is a unique branch ϕ of H−1

c

defined on Ω with ϕ(a) = b. This branch is necessarily injective (univalent).

Proof. Let us consider the Riemann surface

W = {(z,w) : (w − c)q = zp, z , 0}.

The function σ(z,w) = w defines a covering map W → C \ {c}. Let g : Ω → W be the

unique lift of the identity I : Ω → Ω with g(a) = (b, a). It is clear that g(Ω) is an open set

in W and that g : Ω → g(Ω) is bi-holomorphic. If we consider the projection τ(z,w) = z

defined on W, then

ϕ = τ ◦ g : Ω→ C
is a branch of H−1

c with ϕ(a) = b.

Uniqueness. Any branch ψ of H−1
c which is defined on Ω and takes a into b is equal to

ϕ. In fact, the map f (w) = (ψ(w),w) – defined on Ω – is a lift of the identity to the covering

space W which takes a into (b, a). Since the lift is unique (once fixed the base-points), it

follows that f = g and, consequently, ϕ = ψ.

It remains to show that ϕ is injective. Of course, this is the same thing as showing

that ϕ is a bi-holomorphic map onto its image (which is necessarily an open set). There

is a branch θ(w) of the multi-valued function arg(w − c) of the complex variable w which

is defined on Ω. The range of the function θ(w) is some open interval (s, t) of length

t − s ≤ 2π. All these choices are possible due to the fact that Ω is simply connected and

does not contain c.

Let w0 , w1 in Ω. We are going to show that z0 = ϕ(w0) is different from z1 = ϕ(w1).

Join the points w0 and w1 by a smooth arc γ : [0, 1]→ Ω. Since

ϕ(γ(t))p = (γ(t) − c)q = |γ(t) − c|q · eiθ(γ(t)),

it follows that

δ(t) = argϕ(γ(t)) − q
p
θ(γ(t)) =

2ktπ

p
+ 2πZ ⊂ R,
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for some1 integer kt. The sets δ(t) vary continuously with respect to t. This implies k0 = kt

for every t. Therefore,

argϕ(wi) =
q
p
θ(γ(i)) +

2k0π

p
+ 2πZ,

and

argϕ(w1) − argϕ(w0) =
q
p

(θ0 − θ1) + 2πZ,

where θi = θ(γ(i)). Since the quotient q(θ0 − θ1)/p is nonzero and strictly less than 2π, it

follows that z0 and z1 have different arguments modulo 2π. Hence z0 , z1. �

Proof of Theorem 6.12. The proof is based on successive applications of Lemma 6.13.

Suppose we have a IBS of first type B, with period N, given by

D0
ϕ0−→ D1

ϕ1−→ D2
ϕ2−→ · · ·

Existence. Consider the function DN−1
ϕN−1−−−→ DN . Choose an arbitrary a ∈ DN and let

b = ϕ−1
N−1(a). By Lemma 6.13 there is branch g1 : D0 → C of H−1

c which is defined on D0

and satisfies g1(a) = b. This is possible since D0 is simply connected. Let α1 = g−1
1 and

set D−1 = g1(D0). It should be noticed that the restriction of g1 to DN ⊂ D0 is the original

map ϕ−1
N−1, since the branch is uniquely determined by the property a 7→ b. Because of this

fact, the following sequence of maps

D−1
α1−→ D0

ϕ0−→ D1
ϕ1−→ D2

ϕ2−→ · · ·

is now another IBS of first type (which extends B). The procedure may continue indefi-

nitely unless we reach a sequence

(6.1) D−n
αn−→ D1−n

αn−1−−−→ · · ·D−2
α2−→ D−1

α1−→ D0
ϕ0−→ D1

ϕ1−→ D2
ϕ2−→ · · ·

which cannot be further extended because c ∈ D−n. All disks up to D−n are simply con-

nected, and there is always a branch of H−1
c defined on these sets provided none includes c.

The topological disk D−n is the unique disk which includes c, and the IBS(6.1) is critical.

1The argument function is multi-valued. So for each z , 0 in the plane, we may consider arg(z) as a set

of the form α + 2πZ. This terminology works better here than the notation mod 2π.
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But how to guarantee that there is always some D−n containing c? The proof is by

reduction to absurd. If D−n does not contain c, then we can construct the next simply

connected region D−(n+1) and the corresponding bi-holomorphic map D−(n+1)
αn+1−−−→ D−n as

before. Since these regions give rise to a IBS of first type, we have

D0 ⊂ D−N ⊂ D−2N ⊂ D−3N · · ·

and each of these sets contains neither c, nor 0. (Notice that c , 0 because H0 has no IBS

of first type). Let

fk = α−kN ◦ · · · ◦ α(1−k)N : D−kN → D(1−k)N .

There is a common fixed point z0 ∈ D0 of all maps fk. This follows from proposition 5.9.

In fact, each map fk is an extension of the original map

φ = ϕN−1 ◦ · · · ◦ ϕ0 : D0 → DN ,

and the latter has a unique fixed point due to proposition 5.9. The multiplier λ = φ′(z0)

satisfies |λ| < 1. The sequence

hk : ( f1 ◦ · · · ◦ fk)−1 : D0 → D−kN

is a normal family because {0, c,∞} is outside its range (Montel’s theorem). Hence, either

hk scape to infinity or hk converges locally uniformly to some holomorphic function h :

D0 → C. The latter turns out to be the case since the sequence fixes z0. By Weierstrass

theorem, h′k converges locally uniformly h′ on D0. On the other hand, h′k(z0) = λ−k → ∞,
and because of this fact the family is not normal. This is a contradiction. Hence some disk

D−n must contain c.

Uniqueness. Suppose C andA are two IBS which extendB. Then one of them must extend

the other, say, C � A. From Lemma 6.11 we have C = A. �

That IBS of second type contain IBS of first type is obvious. In fact, any IBS of second

type gives rise to a critical IBS. What the above Theorem reveals is that any IBS of first

type also gives rise to a IBS of second type.
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6.14. Definition (Critical cycles). We say that a cycle

z0 7→ z1 7→ · · · 7→ zn = z0

is critical if one of its members zi is a critical point (either 0 or∞).

6.15. Definition (P�, P∗). LetP� denote the set of super-attracting cycles of Hc (those

which have multiplier λ = 0). Let P∗ denote the set of attracting cycles which are not

super-attracting (multiplier satisfy 0 < |λ| < 1).

There is only one critical cycle containing ∞. A non-critical cycle is by definition a

cycle which does not contain any critical point.

6.16. Corollary. IBS of first and second type occur simultaneously, i.e., each one

implies the existence of the other. Moreover,

(i) P� is the set of critical cycles.

(ii) Every member of P∗ is a non-critical cycle and the cardinality of P∗ is either 0

or∞.

Proof. A cycle which does not contain any critical point has nonzero multiplier. On

the other hand, every cycle which contains 0 or∞ has zero multiplier. Therefore, if A has

one attracting cycle, then this cycle is associated with a IBS of first type. By Theorem

6.12 this IBS is extend to a IBS of second type. From Theorem 6.3 Hc has infinitely many

attracting periodic orbits inside the IBS. The multiplier of each of these orbits is never zero

because they are given by the derivatives of the univalent branches which determine the

IBS. Hence the cardinality of A is∞ in this case. �

6.17. Remark. This shows how rich can be the periodic orbit structure of Hc. The

number of attracting periodic orbits of a rational function is always finite.

6.2.1. The post-critical set. The post-critical set Pc is defined as the closure of the

positive forward orbits of the critical point 0. Put in different terms, let S + denote the set

of all y ∈ C for which there are N > 0 and y0, . . . , yN such that (yi, yi+1) ∈ Hc, with y0 = 0

and y = yN .



6.3. ESCAPING CONDITION 89

6.18. Definition (Post-critical set). The post-critical set Pc is the closure of S +.

It should be noticed that, unless 0 is periodic, S + does not contain the critical point

0. Since Hc is multi-valued, it turns out that the structure of Pc may be very complicated,

even when Hc is hyperbolic. We shall examine this set under a natural condition on the

branches of the correspondence: the escaping condition. Under this condition, Pc is a

Cantor set and Ĉ \ Pc is a hyperbolic Riemann surface.

This condition may be introduced in two different levels: for critical cycles and attract-

ing non-critical cycles. In either case, if one assumes that a critical cycle is escaping, then

there is only one such cycle and no attracting non-critical cycle exists.

Similarly, if there is one attracting non-critical cycle α which is escaping, then all

attracting but not super-attracting cycle comes from the same IBS of second typeA which

determines α. Hence every attracting but not super-attracting cycle will be escaping. In

this case, there is no critical cycle except ∞ 7→ ∞. We are going to define this condition

precisely in the following section.

6.3. Escaping condition

Suppose α : z0 7→ z1 7→ · · · 7→ zn = z0 is a critical cycle of Hc. We may assume that

z0 = 0. For each point zi , 0 there is a unique bi-holmorphic branch of the correspondence

ϕi : Di 7→ Di+1 which takes zi 7→ zi+1. The critical point z0 = 0 is the exception; in this

case, the map ϕ0 is the correspondence Hc which maps 0 onto c and every nearby point of

0 onto q different images near to c.

6.19. Definition (Escaping cycles in P�). Let α be a critical cycle determined by bi-

holomorphic maps ϕi : Di 7→ Di+1, for 0 < i < n. Suppose the first point of α is the critical

point 0 and ϕ0 = H0. We say that α is escaping if any other univalent branch

ψi : Ďi 7→ Ďi+1

at zi, with Ďi ⊂ Di and ψi(zi) , zi+1 for i > 0 has the property that ψi(Ďi) ⊂ B∞(R), for

some attracting region of infinity B∞(R).
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Notice that in this definition no restriction is made on the first map ϕ0 = Hc. The case

c = 0 is included as escaping although the maps ϕi for i > 0 do not exist in this case.

6.20. Proposition. Suppose there is a critical cycle α ∈ P� which is escaping. Then

there is no finite critical cycle β , α and no IBS of second type. Consequently,

P�(Hc) = {α, ∞ 7→ ∞} and P∗(Hc) = φ.

Proof. Let us denote the critical cycle α by z0 7→ z1 7→ · · · 7→ zn = z0, with z0 = 0

and univalent branches ϕi : Di → Di+1 taking zi onto zi+1. Suppose there is another critical

cycle β determined by w0 7→ · · · 7→ wk = w0 = 0, with k ≥ n and ψi : Ďi → Ďi+1

taking wi onto wi+1. Of course, no point of β can be mapped to an attracting region of

infinity. Since w1 = z1 = c, it follows that ψ1 = ϕ1 in a common neighborhood of z1. In

particular, z2 = w2. We use this argument repeatedly until zn−1 = wn−1. The conclusion is

that ψn−1 = ϕn−1 in a common neighborhood of zn−1, since α is escaping. Hence α = β.

Recall that every attracting cycle which is not super-attracting gives rise to a IBS of

first type which can be extended to a critical IBS. A critical IBS, on its turn, is identified

with an attracting IBS of second type. Once in the presence of a IBS of second type, there

is an orbit 0 7→ ζ1 7→ ζ2 7→ · · · with ζi , 0 for every i > 0. Hence, for every i > 0

there is a unique univalent branch ψi of Hc which takes ζi into ζi+1. Since α is escaping and

ζ1 = c = z1, we conclude that ϕ1 = ψ1 in a common neighborhood of z1. The repetition

of this argument yields a contradiction: that ζn = 0. Therefore, there is no IBS of second

type. �

In view of this proposition, the structure of Pc is the simplest when there is a finite

super-attracting cycle which is escaping. Unless c = 0 and Pc consists of a single point, in

all other cases where there is a escaping critical cycle α, we have

Pc ∩ {z ∈ C : |z| < R} = α,

where B∞(R) is an attracting region of infinity.
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6.3.0.1. Essentially unique IBS. Let

α : z0 7→ z1 7→ z2 7→ · · · 7→ zn = z0

be an attracting cycle which is not critical. There is an essentially unique IBS of first type

A : D0
ϕ0−→ D1

ϕ1−→ D2 · · ·
ϕn−1−−−→ Dn ⊂ D0

associated with α. By essentially unique we mean that any other IBS of first type B given

by

B : E0
φ0−→ E1

φ1−→ E2 · · ·
φn−1−−−→ En ⊂ E0

with zi ∈ Ei and φ(zi) = zi+1 must satisfy the property that ϕi = φi on neighborhood of zi

contained in the intersection Di ∩ Ei. Given a connected open set U and a holomorphic

map ρ : U0 → C from a smaller open set U0 ⊂ U, there is unique extension of ρ to

a holomorphic map U → C. Hence, the fact that φi and ϕi coincide on their common

subdomain implies they must considered the same function up to domain extension. This

justifies the name essentially unique. For any two IBS of first type A and B which are

related in this way, we write

A 'α B.
We say that a IBS of first type A = (D0, . . . ,DN , F0, . . . , FN−1) contains a cycle z0 7→

z1 7→ · · · 7→ zn = z0 if zi ∈ Di and Fi(zi) = zi+1 for all i.

6.21. Remark. In the notationA 'α B it is implicit thatA and B are IBS of first type

containing the cycle α.

The same concept applies to IBS of second type C, since the critical IBS associated σ(C)

is a IBS of first type.

For an attracting cycle α ∈ P?(Hc) there is an essentially unique critical IBS A con-

taining α.

6.22. Definition (Cα,A•). Let Cα denote the class of all critical IBS B containing α

such thatA 'α B.
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(i) The set Cα does not depend on the initial choice ofA.
(ii) IfA ∈ Cα, thenA• denotes the critical IBS associated.

The definition (ii) before is explained as follows: let

α : z0 7→ z1 7→ z2 7→ · · · 7→ zn = z0

be an attracting cycle which is not critical. There is an essentially unique IBS of first type

A : D0
ϕ0−→ D1

ϕ1−→ D2 · · ·
ϕn−1−−−→ Dn ⊂ D0.

The IBS A has a unique critical extension (Theorem 6.12). This extension has the same

period ofA and for this reason we denote it by the same letterA. Now let D−1 = H−1
c (D0)

and ϕ−1 = Hc. The correspondence ϕ−1 maps D−1 onto D0. If we set inductively Di+1 =

ϕi(Di),where ϕi+n is the restriction of ϕi to Di+n ⊂ Di, then the following sequence of maps

(6.2) A−1 : D−1
ϕ−1−−→ D0

ϕ0−→ D1
ϕ1−→ D2 · · ·

ϕn−1−−−→ Dn
ϕn−→ Dn+1

ϕn+1−−−→ · · ·D2n−1
ϕ2n−1−−−→ D2n

ϕ2n−−→

becomes a IBS of second type with some period `n. The value of ` is that necessary to

make D`n−1 into a univalent disk. There is no a priori reasoning which implies that ` = 1.

In fact, in order to obtain a IBS of second type we have to iterate the disks until reach a

small disk D`n−1 ⊂ D−1 which is univalent.

6.23. Definition (Escaping critical IBS). Let B be a critical IBS of first type defined

by

D0
ϕ0−→ D1

ϕ1−→ · · · ϕn−1−−−→ Dn ⊂ D0.

We say that B is escaping if there is an attracting region of infinity B∞(R) such that
n⋃

i=0

Di ⊂ DR := {z ∈ C : |z| < R}

and

Hc(Di) ∩ DR = ϕi(Di),

for i = 0, . . . , n − 2.

We say that cycle α ∈ P∗(Hc) is escaping if there is α ∈ Cα such that α is escaping.
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6.24. Definition (Escaping condition for Hc). Suppose Hc is hyperbolic. We say that

Hc satisfies the escaping condition if there is α ∈ P�(Hc) ∩ P∗(Hc) which is escaping.

The escaping condition may happen in two different situations. In the first, there is a

critical cycle α ∈ P�(Hc). In the second there is a cycle in P∗(Hc) which is escaping. The

two cases do not happen simultaneously. In the presence of escaping critical cycles, we

say that Hc is singular escaping. In the presence of escaping cycle α ∈ P∗(Hc) we say that

Hc is non-singular escaping.

If α is given by z0 7→ z1 7→ · · · 7→ zn = z0, then with a certain abuse of notation we

denote

α = {z0, . . . , zn−1}.

6.25. Theorem. Let Hc be hyperbolic, satisfying the escaping condition.

(i) If Hc is singular escaping, then there is an attracting region of infinity B∞(R) such

that

Pc ∩ {z ∈ C : |z| < R} = α.

(ii) Suppose Hc is non-singular escaping. Let α ∈ P∗(Hc) be escaping. For any

A ∈ Cα, with associated IBS type given by

A• : D0
H0=ϕ0−−−−→ D1

ϕ1−→ · · · ϕn−1−−−→ Dn ⊂ D0,

there is an attracting region of infinity B∞(R) such that

Pc ∩ {z ∈ C : |z| < R} = D1 ∪ · · · ∪ Dn.

Proof. Follows directly form the definition of IBS of second type and the escaping

condition. �

6.26. Corollary. Suppose Hc is hyperbolic. If Hc is non-singular escaping, then

P�(Hc) = {∞ 7→ ∞}.

If Hc is singular escaping, then

P�(Hc) = {α,∞ 7→ ∞} and P∗(Hc) = φ.
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Proof. If Hc is non-singular escaping, then by the item (ii) of the previous result, we

have (using the same notation of this item)

0 <
n⋃

i=1

Di,

Pc ⊂
n⋃

i=1

Di,

and so it it is impossible to have any periodic orbit starting at the critical point 0. Therefore,

if Hc is non-singular escaping, we must have P�(Hc) = {∞ 7→ ∞}.
Part of the second assertion was already proved in Propostion 6.20. It remains to

show that if Hc is singular escaping, then P∗(Hc) = φ. In order to do that we suppose the

opposite, that P∗(Hc) is non-empty and let α ∈ P∗(Hc). Let A ∈ Cα and let the associated

IBS of second type be denote by

A• : D0
ϕ0=Hc−−−−→ D1

ϕ1−→ · · · ϕn−1−−−→ Dn ⊂ D0.

The obvious conclusion is that there are infinitely many points of Pc inside Dn ⊂ {|z| < R}.
This is a contradiction since whenever Hc is escaping singular, Pc ∩ {|z| < R} = α. �

When Hc is hyperbolic and non-singular escaping, there a naturally associated IBS of

second type which determines the shape of the post-critical set. In more specific terms,

assume there is α ∈ P∗(Hc), letA ∈ Cα and consider the IBS of second typeA•.
Theorem 5.12 implies that the every point inside ofA• has infinitely many orbits which

are asymptotic to a cycle of Cantor sets

K0
ϕ0−→ K1

ϕ1−→ K2
···−→ Kn−1

ϕn−1−−−→ Kn = K0.

Each Cantor set Ki is contained the corresponding topological disk Di.

Since this cycle is associated with the parameter c of Hc, it will be convenient to change

the notation a little bit and denote the cycle by

K (0)
c

ϕ0−→ K (1)
c

ϕ1−→ K (2)
c

···−→ K (n−1)
c

ϕn−1−−−→ K (n)
c = K (0)

c .
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Nothing prevents the overlapping of these cycles.

We shall denote

Kc =

n⋃
i=1

K (i)
c .

6.27. Theorem. Let Hc be hyperbolic, satisfying the escaping condition.

(i) If c = 0, then Pc = {0}.
(ii) If Hc is singular escaping, then there is α ∈ P�(Hc) and an attracting region of

infinity B∞(R) such that

Pc ∩ {z ∈ C : |z| < R} = α.

Consequently, the points of Pc are isolated, the unique limit point of Pc is∞, and

every bounded intersection {|z| < r} ∩ Pc is a finite set.

(iii) If Hc is non-singular escaping, let α ∈ P∗(Hc) andA ∈ Cα. Let

K (0)
c

ϕ0−→ K (1)
c

ϕ1−→ K (2)
c

···−→ K (n−1)
c

ϕn−1−−−→ K (n)
c = K (0)

c

denote the cycle of Cantor sets associated withA•. There is an attracting region

of infinity B∞(R) such that for every ε > 0 given, the set Pc∩{|z| < R} is contained

in

(Kc)ε = {z ∈ C : de(z,Kc) < ε} ,

except for finitely many points of Pc ∩ {|z| < R} which are in {|z| < R} − (Kc)ε. 2

(iv Suppose Hc is non-singular escaping. If the associated IBS of second type (which

ultimately determine the cycle of Cantor sets) has only one map ϕ0 = Hc, then the

entire post-critical set Pc is contained in {|z| < R}. Otherwise, if there is a second

map ϕ1 – a single-valued one – then B∞(R) contains uncountably many points of

Pc. Therefore,∞ ∈ Pc in the latter case.

Proof. Compare Theorems 5.12, 6.25 and Corollary 6.26. �

2The symbol de denotes the Euclidean distance.
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Some important remarks are in order with respect to the item (iv) of the preceding

result. The case of non-singular escaping Hc may be divided into to disjoint classes, one

in which ∞ < Pc, the other when ∞ ∈ Pc. The latter class is responsible for the existence

of the dual Julia set, one of the most striking features of the dynamics of Hc (if compared

to rational maps).

6.28. Theorem. Suppose Hc is hyperbolic and satisfies the escaping condition. Pro-

vided Pc contains at least three points, Ĉ − Pc is a hyperbolic Riemann surface.

The cases where Pc has only one or two points are exceptional. The post-critical set

Pc has at least three points in the following situations:

• When Hc : (w − c)q = zp, q ≥ 3 and c , 0.

• When Hc is hyperbolic, nonsingular escaping, and∞ ∈ Pc.

• When c , 0 is sufficiently close to the critical point 0, for then Hc is hyperbolic

and non-singular escaping. In this case∞ < Pc, but Pc is a Cantor set close to 0.

• When q ≥ 2 and Hc is hyperbolic escaping we have #(Pc) ≥ 3.

The set Pc has at most two points only in a few exception cases, of which we list a two:

• c = 0;

• q = 2, 0 7→ c 7→ {0, c}.

Proof of Theorem 6.28. Recall that any Riemann surface R for which there is an an-

alytic map

ρ : R → Ĉ

omitting three points is necessarily hyperbolic (admits a complete conformal metric of

constant curvature −1, compare Theorem 5.4). In this case it is the identity map which

omits three points since Pc contains at least three points. In this way we only need to show

that Ĉ − Pc is connected.

We may suppose that Pc is non-singular escaping. Therefore, the part of Pc contained

in the complement of an attracting region of infinity B∞(R) is asymptotic to a cycle of
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Cantor sets

K (0)
c

ϕ0−→ K (1)
c

ϕ1−→ K (2)
c

···−→ K (n−1)
c

ϕn−1−−−→ K (n)
c = K (0)

c .

If ∞ < Pc, then the length n of this cycle is n = 0 and Pc ⊂ {|z| < R}. For any curve

γ : [0, 1]→ C, let

‖γ‖ = sup
t∈[0,1]

|γ(t)|.

If γ(t) ∈ A for every t ∈ [0, 1], then we denote γ ⊂ A. Given ε > 0, the Cantor set K(i)
c

is covered by disjoint conformal disks (image of a the close unit disk {|z| ≤ 1} under a

bi-holomorphi map) Ď1, . . . , Ďnε , each one having diameter less than ε. Using this fact it

can be shown that

(?) For any curve γ ⊂ C and every ε > 0 there is another curve ζ ⊂ (Ĉ − Pc) with

‖ζ − γ‖ < ε.

Once there is a curve ζ ⊂ (Ĉ − Pc), every small perturbation of ζ is still contained in

this set (using the fact that the image of ζ is compact). Hence, successive applications of

(?) shows that Ĉ − Pc is path connected. �

6.29. Corollary (Branches expand the hyperbolic metric). Suppose Hc is hyper-

bolic and satisfies the escaping condition, with Pc having at least three points. Let dc

denote the Riemannian distance from the hyperbolic metric of Ĉ − Pc.

(i) If ϕ : U → V is a univalent branch of Hc with V ⊂ (Ĉ − Pc), then

dc(ϕ(z), ϕ(w)) > dc(z,w), z,w ∈ U.

(ii) For any compact set K ⊂ (Ĉ − Pc), there is a constant λ < 1 such that whenever

the range V = ϕ(U) ⊂ K, we have

dc(ϕ(z), ϕ(w)) ≥ λdc(z,w).

Proof. Consider the Riemann surface

Rc = {(z,w) ∈ C2 : (w − c)q = zp, w < Pc}.
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We know that Rc is a Riemann surface because Ĉ−Pc is a Riemann surface. In fact, it easy

to see that Rc is a hyperbolic Riemann surface using the same criterion of the preceding

theorem.

Now consider the σ : Rc → (Ĉ−Pc) given by σ(z,w) = w and τ : Rc → (Ĉ−Pc) given

by τ(z,w) = z.

The point is that σ is a covering map and τ(Rc) is strictly contained in Ĉ − Pc. Hence

τ is an isometry and τ is a contraction with respect to the hyperbolic metrics of Rc and

Ĉ − Pc. In the next paragraph we are going to show why τ(Rc) is strictly contained in

Ĉ − Pc. Let us finish the argument first. If ϕ : U → V is any univalent branch of Hc with

V ⊂ (Ĉ − Pc), then

ϕ = σ ◦ τ−1|U .
Since τ is a contraction, it follows that

dc(ϕ(z), ϕ(w)) > dc(z,w),

for z,w ∈ U, with the existence of a λ < 1 on compact sets, as described in the statement

of the corollary.

To prove that τ(Rc) is strictly contained in Ĉ − Pc is equivalent to prove that H−1
c = Qc

strictly contains Pc. If 0 < Pc then there is nothing to prove. So we may assume that

0 ∈ Pc.

Since c , 0 and Hc satisfies the escaping condition, H−1
c (0) consists of p points inside

of DR = {|z| < R}, where B∞(R) is an attracting region of ∞. Suppose first that Hc is

singular escaping. Then

Pc ∩ DR = α,

for some critical cycle α ∈ P�(Hc). If α is given by

a0 7→ a1 7→ a1 7→ · · · 7→ an−1 7→ an = a0 = 0,

then since Hc(ai)∩DR = {ai+1},we conclude that H−1
c (0) consists of an−1 plus (p−1) points

in DR \ α. Of course, since p > 1, this implies that H−1
c (0) is not contained in Pc.
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In the second case Hc is non-singular escaping and we want to prove the H−1
c (0) is not

contained in Pc.

Let α ∈ P∗(Hc) with associated IBS of second type

D0
ϕ0=Hc−−−−→ D1

ϕ1−→ D2
ϕ2−→ · · · ϕn−1−−−→ Dn−1 ⊂ D0.

This IBS is escaping. Since

0 <
n⋃

i=1

Di

this translates easily into

H−1
c (0) ⊂ DR −

n⋃
i=0

Di.

But

Pc ∩ DR ⊂
n⋃

i=0

Di.

We have shown in either case that Pc is strictly contained in Qc. �

Suppose Hc is hyperbolic and satisfies the escaping condition. If Hc is singular escap-

ing, then there is unique finite critical cycle α ∈ P�(Hc), with an associated sequence of

maps

D0
ϕ0=Hc−−−−→ D1

ϕ1−→ · · · ϕn−1−−−→ Dn ⊂ D0

where ϕi : Di → Di+1 is bi-holomorphic for i > 0, with 0 ∈ Dn and

0 <
n−1⋃
i=1

Di.

We denote

N(α) =

n⋃
i=0

Di.

Notice, however, that the set N(α) is not uniquely determined. If Hc is non-singular es-

caping then there is β ∈ P∗(Hc), whose corresponding critical IBS A is escaping. We are

allowed to construct sets N(β) in the same way using the IBS of second typeA•. What is

essential about the sets N is that they contain Pc.
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6.30. Theorem. Let Hc be hyperbolic, satisfying the escaping condition. Let B∞(R) be

an attracting region of ∞ and set DR to be its complement. For every y ∈ (B∞(R) − Pc),

the set Gc(y) is compact and contained in DR − N , where N is any N(α) obtained from a

escaping α ∈ P∗(Hc) ∩ P�(Hc). Since Pc ⊂ N , in particular we have

Gc(y) ∩ Pc = φ.

Proof. The case c = 0 is handled separately and is shown that Gc(y) = S1 which

Pc = {0} for c = 0.

Assume c , 0. Then either Hc is singular or non-singular escaping. Suppose first that

Hc is non-singular escaping and let β ∈ P∗(Hc). There is a naturally associated IBS of

second type

D0
ϕ0=Hc−−−−→ D1

ϕ1−→ · · · ϕn−1−−−→ Dn ⊂ D0.

Since Dn is a univalent disk, there is a connected neighborhood V ⊃ Dn such that Hc(V)

can be written as a disjoint union

Hc(V) =

q−1⋃
j=0

ψ j(V),

where ψ j are univalent branches of Hc. So we have a system of maps

Sβ = {ϕi : Di → C, ψ j : V → C; 0 < i < n, 0 ≤ j < q},

and

N(β) =

n⋃
i=0

Di.

In order to get a contradiction, suppose that there is z ∈ Gc(y) ∩ N(β). There is a pre-orbit

y = y(0)
Hc←−− y(1)

Hc←−− y(2)
Hc←−− · · ·

with y(nk) → z for some subsequence (nk). Since Hc(Pc) ⊂ Pc and y < Pc, none of the

points y(i) of the pre-orbit belongs to Pc. We conclude that y(i) visit N(β) infinitely often;

and in fact, there is k0 such that y(nk) ∈ N(β) for k ≥ k0. A simple argument involving the

escaping property shows that for i ≥ nk0 the point y(i) is always inside of N(β), otherwise
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no further iterate would visit N(β) again. As a conclusion we have that for each piece

y(nk)
Hc←−− y(nk+1) of the sequence, with k ≥ k0, there is a unique ηk ∈ Sβ such that

ηk(y(nk+1)) = y(nk).

From the definition of

Kc =

n−1⋃
i=0

K (i)
c ,

the point y(nk0) must be in Kc ⊂ Pc, which is a contradiction. We conclude that

Gc(y) ∩ N(β) = φ.

A similar argument is applied to the case where Hc is singular escaping. �

6.4. The Julia set

We say that a periodic orbit α is repelling if its multiplier λ satisfies |λ| > 1.

6.31. Definition (Julia set). The Julia set Jc of Hc is defined as the closure of the

repelling periodic orbits of Hc.

6.32. Proposition (Julia set is non-empty). Suppose Hc is hyperbolic and escaping,

with c = 0 or #(Pc) ≥ 3. Then for every y ∈ B∞(R) − Pc, we have Jc ⊃ Gc(y). In particular

it follows that Jc , φ.

Proof. The case c = 0 is handled separately, using slightly different methods (inde-

pendent from the results developed so far) in another section of this thesis. So let us

concentrate on the case #(Pc). We know that Ĉ − Pc is a hyperbolic Riemann surface, and

that the corresponding Riemannian distance dc from the Poincaré metric is expanded by

univalent branches of Hc on the outside of Pc.

Let y ∈ B∞ − Pc. There is α ∈ P∗(Hc)∩P�(Hc) and an associatedN = N(α) such that

Pc ∩ DR ⊂ N , where DR is the complement of B∞(R). From the previous results, we get

Gc(y) ⊂ DR − N . Let z ∈ Gc(y). We are going to prove that z ∈ Jc, thus completing the

proof of the theorem.
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There is no loss of generality in treating only the case where Hc is non-singular escap-

ing, since the singular is case is handled in a similar way, with easier arguments. In this

case, the set N comes from a IBS of second type

A• : D0
ϕ0=Hc−−−−→ D1

ϕ1−→ · · · ϕn−1−−−→ Dn ⊂ D0.

which is escaping. In fact,A ∈ Cα for some α ∈ P∗(Hc). As usual, the IBSA• determines

a system of maps Sα as in the proof of Theorem 6.30. Since there is an open set V such

that

DR ∩ Pc ⊂ V ⊂ N ,
there is a constant δ > 0 such that whenever U ⊂ (Ĉ − Pc) and diamc(U) < δ, 3 with

U ∩ V , φ, we have U ⊂ N .
There is a pre-orbit

y = y(0)
Hc←−− y(1)

Hc←−− · · ·
with y(nk) → z for some subsequence nk. Choose a simply connected set U0 ⊂ DR − Pc

containing the point z, with diamc(U0) < δ, and choose k0 so that

dc(z, y(nk0)) <
1
9

dc(z, ∂U0).

It follows that y(nk0) is contained in U0. Since the critical value c is not in U0, and since

U0 is simply connected, there is a unique univalent branch η0 : U0 → C of H−1
c such that

η0(y(nk0)) = y(nk0 + 1). The image η0(U0) = U1 is a simply connected set inside Ĉ − Pc

with diameter

diamc(U1) ≤ diamc(U0) < δ.

The procedure may continue determining simply connected sets U j ⊂ Ĉ−Pc with diameter

diamc(U j) < δ and bi-holomorphic maps

η j : U j → U j+1

such that y(nk0 + j) ∈ U j and η j(y(nk0 + j)) = y(nk0 + j + 1).

3diamc indicates diameter with respect to dc, where dc is the hyperbolic metric of Ĉ − Pc.
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The closure K of the union of all U j for j ≥ 0 is a compact set. We claim that K and Pc

are disjoint. If K meets Pc at some point, then this point must be an accumulation point of

the union of U j, and hence the sets U j would visit Pc infinitely often. Suppose it is the case

(to get a contradiction). Since the diamc(U j) < δ, whenever U j intersects Pc, it must be

contained inN . Using the same reasoning of the proof of Theorem 6.30, the conclusion is

that from the first time U j0 ⊂ N , we have U j ⊂ N for every j ≥ j0. Furthermore, η j ∈ Sα
for every j ≥ j0. The Euclidean diameter of U j0 must be 0, and the unique point contained

in U j0 is actually a point of the cycleKc of Cantor sets. So the conclusion is that U j0 ⊂ Pc,

which is clearly a contradiction aroused from the assumption K ∩ Pc , φ. Therefore K is

disjoint from Pc. The branches η j uniformly contracts the hyperbolic metric dc by a factor

λ < 1. Therefore,

diamc(U j) ≤ λ jdiamc(U0) ≤ λ jδ.

Hence some Us is compactly contained in U0, and we conclude from the General

Principal A that there is a repelling periodic orbit of Hc inside Us. Since U0 is an arbitrary

neighborhood of z ∈ Gc(y), it follows that

Gc(y) ⊂ Jc.

Notice that the assumption #(Pc) ≥ 3 was essential to obtain dc on Ĉ − Pc. �

6.33. Theorem. Suppose Hc is hyperbolic and satisfies the escaping condition, with

c = 0 or #(Pc) ≥ 3. Then for some N = N(α) ⊃ Pc, with α ∈ P�(Hc) ∩ P∗(Hc), we have

Jc ⊂ DR − N ,

where DR is the complement of an attracting region of infinity. In particular, Jc ∩ Pc = φ.

Proof. The case c = 0 will deserved a special attention in the preceding chapters; we

have J0 = S1 and P0 = {0}. In this case we have Lc = Pc for every c near to the critical

point 0. (But we are going to prove it later using independent techniques).

Assume c , 0. Suppose Hc is hyperbolic and satisfy the escaping condition. By the

same reasoning of the proof of Theorem 6.30, we have that Jc ⊂ DR − N , for if some
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element of a cycle

β : z0 7→ z1 7→ z2 7→ · · · 7→ zn = z0

enters N(α), with α ∈ P∗(Hc) ∩ P�(Hc) being escaping, then the whole cycle must be

given by the system of maps naturally associated with N . This implies that either β = α

is a critical cycle (in the case where Hc is singular escaping) or that β is contained in the

cycle of Cantor sets associated with N(α). In both situations the obvious conclusion is

that β ⊂ Pc and the multiplier λ(β) satisfies |λ| < 1, since it is given by the derivative

of a composition of maps from an IBS of second type. Hence, there is no doubt that

Jc ⊂ DR ⊂ N in either case. �

6.34. Theorem. Suppose Hc is hyperbolic and satisfies the escaping condition, with

#(Pc) , 2. Then for every y ∈ B∞(R) − Pc we have

Jc = Gc(y).

Proof. The condition #(Pc) , 2 is equivalent to say that either c = 0 or #(Pc) ≥ 3. The

first case was handled before. We have G0(y) = J0 = S1. For c close to zero the set Pc is

uncountable and is included in the following arguments.

One side of the inclusion was already proved: Gc(y) ⊂ Jc. Now let

α : z0 7→ z1 7→ · · · 7→ zn = z0

be a repelling periodic orbit. We know that since the points of this orbit are in Jc, they do

not belong to Pc. We are going to prove that zi ∈ Gc(y) for every i.

For every pair of points {z,w} ⊂ Ĉ− Pc there is a simply connected set D ⊃ {z,w} such

that D ⊂ Ĉ − Pc.

In our case, we consider a simply connected set D ⊂ Ĉ − Pc containing both z0 and y.

The critical value c does not belong to D; there is a unique univalent branch f1 : D → C
of H−1

c which takes z0 into zn−1. The set D1 = f1(D) is simply connected and we obtain

a second bi-holomorphic map f2 : D1 → D2 taking zn−1 into zn−2. This procedure may

be repeated indefinitely, producing simply connected sets and maps f j : D j−1 → D j. The
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sequence y, f1(y), f2 ◦ f1(y), . . . together with its sub-sequential limits are contained in a

compact set disjoint from Pc. From this fact we conclude that there exists λ < 1 such that

dc( fn · · · f2 f1(y), fn · · · f2 f1(z0)) ≤ λndc(z0, y)→ 0,

as n→ ∞. The obvious conclusion is that α ⊂ Gc(y). �

6.5. The dual Julia set

Now we introduce the dual Julia set. This is a subset of the limit set Lc which concen-

trates the stable part of the dynamics of Hc on Lc. It may sound strange at a first moment,

but the fact is that for every hyperbolic Hc which is escaping and ∞ ∈ Pc, the limit set Lc

contains infinitely many attracting periodic orbits!

It does not happen for rational maps. Indeed, a rational map R : Ĉ → Ĉ has only

finitely many attracting cycles. These cycles are contained in the Fatou set F(R).

The limit set L( fc) of the quadratic map fc(z) = z2 + c, for example, is equally defined;

it turns out that the limit set equals the Julia set L( fc) = J( fc).

It is impossible for the Limit set of a quadratic map fc to contain attracting periodic orbits

because they are in the Fatou set.

What the reader should keep in mind in order to avoid any confusion is that for Hc, in

general:

• Lc , Jc.

• ∞ ∈ Pc.

So there is no contradiction in having attracting cycles in Lc because Lc is not supposed

to be Jc. This happens for c close to the origin, but in general we have Lc , Jc.

In the case of Hc the set of attracting periodic orbits deserves a special attention because

it may contain invariant Cantor sets when the map is hyperbolic and escaping. What is

surprising about the dynamics of Hc on Lc is that it is still well understood despite of this

huge generality.
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We shall prove in this section that Lc is splitted into a ‘stable’ and ‘unstable’ set for

hyperbolic parameters where Hc is escaping and ∞ ∈ Pc. The stable set is the dual Julia

set, to be defined in the sequel.

Let y ∈ Pc ∩ B∞(R). We write z ∈ Ǧc(y) if there is a pre-orbit

y0 = y
Hc←−− y1

Hc←−− y2
Hc←−− · · ·

with yi ∈ Pc for every i, such that ynk → z as k → ∞, for some subsequence nk.

6.35. Definition (dual Julia set). Suppose B∞(R) ∩ Pc , φ. The dual Julia set of Hc,

denoted by Ec, is the closure of the union of all Ǧc(y) with y ∈ B∞(R) ∩ Pc.

If Pc does not intersect B∞(R), then we set Ec = φ by convention.

Recall that α ∈ P∗(Hc) is escaping, then there is an essentially unique critical IBS A
containing α which is escaping. Let us denote the associated IBS of second type by

A• : D0
ϕ0−→ D1

ϕ1−→ · · · ϕn−1−−−→ Dn ⊂ D0.

We have already defined

N(α) =

n⋃
i=0

Di

as well as the system of maps Sα, which contains all ϕi and all univalent branches of Hc

determined at the univalent disk Dn. The set N(α) is invariant under the action of Sα. By

Sα : N(α)→ N(α)

we mean the correspondence naturally associated with the action of Sα.

6.36. Theorem. Suppose Pc∩B∞(R) , φ. If Hc is hyperbolic and satisfies the escaping

condition, then

(i) If Hc is singular escaping, then there is α ∈ P�(Hc) such that Ec = α.
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(ii) If Hc is non-singular escaping, then there is a escaping α ∈ P∗(Hc) such that Ec

is the closure of attracting periodic orbits of Sα : N(α)→ N(α). In this case,

Ec = Kc =

n⋃
i=1

K (i)
c

is the cycle of Cantor sets associated with α.

In both cases (i) and (ii) above Ec ⊂ Pc. Recall that the setKc has the unique pre-image

property: for every w ∈ Kc there is a unique z ∈ Kc such that (z,w) ∈ Hc.

Proof. Suppose Hc is singular escaping. Let α be the unique finite critical cycle in

P�(Hc). If yn is a pre-orbit of y ∈ Pc ∩ B∞(R) then some backward iterate yk must be in a

point of DR = {|z| < R}. This point still belongs to Pc; and since Pc ∩ DR = α, we have

yk ∈ α. It is clear from the definition of Ec that Ec = α in this case.

Let us prove (ii). Suppose Hc is non-singular escaping and let α ∈ P∗(Hc). Take a point

y ∈ Pc ∩ B∞(R) and let (yn) be a pre-orbit of y in Pc. There is k0 such that yn ∈ Pc ∩ DR for

every n ≥ k0. From the definition of Kc we conclude that yk0 ∈ Kc, as well as all the other

backward iterates yn ∈ Kc for n ≥ k0. Since the set Kc is closed, it follows that Ec ⊂ Kc.

When we proved that there is a homeomorphism ψ : Σq → K (i)
c it was implicit thatK (i)

c

is the closure of periodic orbits contained in K (i)
c . In fact, the shift map σ on Σq has this

property, and since ψ is a topological conjugacy with the unique pre-image map on K (i)
c –

something that was implicit in the construction of ψ –, we conclude that K (i)
c is indeed the

closure of periodic points inside of K (i)
c . Every such periodic point is attracting, since the

multiplier is given by the composition of maps in Sα. We collect all these information to

conclude that Kc is the closure of repelling periodic orbits of Sα : N(α)→ N(α).

We have shown that Ec ⊂ Kc. Every attracting cycle β of Sα : N → N is contained in

Ec, from the simple fact that β can be sent to B∞(R) by some composition of branches of

Hc. Since Ec is closed, it follows thatKc, the closure of attracting cycles ofSα, is contained

in Ec. Thus Ec = Kc. �
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6.37. Theorem (Hyberbolic Limit set). Suppose Hc : (w − c)q = zp is hyperbolic and

satisfies the escaping condition, with q ≥ 2. Then Lc can be written as a disjoint union of

compact sets

Lc = Jc ∪ Ec.

Furthermore, the sets Jc and Ec satisfy the following invariance properties:

(i) For every z ∈ Jc there is w ∈ Jc such that (z,w) ∈ Hc. For every w ∈ Jc there is

z ∈ Jc such that (z,w) ∈ Jc.

(ii) For every w ∈ Ec (if Ec , φ) there is a unique z ∈ Ec such that (z,w) ∈ Hc. For

every z ∈ Ec there is w ∈ Ec such that (z,w) ∈ Hc.

If Pc ∩ B∞(R) , φ, the dual Julia set Ec is non-empty. If Pc ∩ B∞(R) = φ, then Ec = φ.

Proof. The proof is entirely based on the previous results. Let us summarize the ideas.

The invariance properties (i) and (ii) were already proved. For Ec, for example, provided

Ec , φ, it must be either be a critical cycle or the union of a cycle of Cantor sets associated

with an escaping critical IBS. In both cases we have shown that these sets satisfy the

invariance properties stated. So let us concentrate on the equation Lc = Jc ∪ Ec.

If #(Pc) = 1, then c = 0 and Ec = φ. Since J0 = L0 = S1, the equation Lc = Jc ∪ Ec

holds trivially. The case #(Pc) = 2 is inconsistent with the hypothesis that Hc is escaping.

Indeed, if Pc contains only two points, then it must be contained in DR (the complement of

an attracting region of infinity). The correspondence Hc cannot by non-singular escaping,

for in this case Pc would contain infinitely many points. So Pc is a escaping critical cycle

which cannot be mapped to B∞(R), otherwise Pc would contain infinitely many points. We

conclude that Pc is a escaping cycle with only one element, Pc = {0}. This proves that Pc

can never have only two elements when Hc is hyperbolic escaping.

The case #(Pc) ≥ 3 is splitted into other two cases:

(1) Pc ∩ B∞(R) = φ, and the case

(2) Pc ∩ B∞(R) , φ.

For (1) we have Lc = Gc(y) = Jc for every y ∈ B∞ and Ec = φ. Hence Lc = Jc ∪ Ec.

For (2) we consider a pre-orbit yn of some y ∈ B∞(R). If y < Pc, then since Hc is hyperbolic
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escaping with #(Pc) ≥ 3, we have Gc(y) = Jc. If y ∈ Pc but some element of the pre-orbit

leave Pc, say, yk < Pc, then it never enters Pc again and every sub-sequential limit of yn

must be a point of Jc, which is disjoint from Pc. Finally, if yn remain inside of Pc for every

n, then every sub-sequential limit of yn is in Pc. Of course, these considerations lead to the

conclusion Lc = Jc ∪ Ec, with Jc ∩ Ec = φ. �

6.6. Holomorphic motions of the dual Julia set

Suppose Hc is hyperbolic and non-singular escaping. Then there is an IBS of second

type

(6.3) Ac : D0
ϕ(c)

0−−→ D1(c)
ϕ(c)

1−−→ · · ·
ϕ(c)

nc−1−−−→ Dnc(c) ⊂ D0(c)

satisfying the escaping property, with

0 <
nc⋃
j=1

D j(c)

and

Hc

(
V (c)

)
=

q−1⋃
i=0

ψi

(
V (c)

)
,

where V (c) ⊂ Dnc(c) is a univalent disk and ψi are the branches of Hc determined at Dnc(c).

Therefore the sets ψ(c)
i (V (c)) are pairwise disjoint. Given a parameter c = c0 for which

Hc0 is hyperbolic and non-singular escaping, we may choose the IBS Ac so as to vary

continuously, in the sense that nc = nc0 is constant and4

c 7→ dH

(
Di(c),Di(c0)

)
∈ R

is continuous for every c ∈ in a neighborhood of U of c0. The maps ϕ(c)
i associated withAc

vary holomorphically with c in the sense that (c, z) 7→ ϕ(c)
i (z) is holomorphic on U × Di,

for any open set Di contained the the intersection of all Di(c), c ∈ U.

4dH denotes the Hausdorff distance between compact sets.
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It should be noticed that the cycle of Cantor sets

Kc =

nc⋃
i=0

K (i)
c

associated withAc satisfy K (i)
c ⊂ Di(c).

Recall that a function h : U × Λ → C defined on the product of a connected open set

U with an arbitrary Λ ⊂ C is an holomorphic motion with base point c0 ∈ U if

• h(c0, ·) : Λ→ C is the identity;

• Each h(c, ·) : Λ→ C is an injection; and

• h(·, z) : U → C is holomorphic for every z ∈ Λ.

6.38. Theorem (Holomorphic motion of Ec). Suppose Hc0 is hyperbolic and non-

singular escaping. Then there is a connected neighborhood U of c0 such that Hc is hy-

perbolic and non-singular escaping for every c ∈ U. Let Kc be the cycle of Cantor sets

associated with a IBS of second typeAc satisfying the escaping condition, as in (6.3).

The set U may be chosen so that for each 0 < i ≤ n there is an holomorphic motion

h(i) : U × K (i)
c0
→ C

for which h(i)
c = h(i)(c, ·) satisfy the follows conjugacy equations:

(i) h(i)
c (K (i)

c0 ) = K (i)
c ;

(ii) ψ(c)
j ◦ h(n)

c = h(1)
c ◦ ψ(c0)

j on K (0)
c0 ; and

(iii) ϕ(c)
i ◦ h(i)

c = h(i+1)
c ◦ ϕ(c0)

i on K (i)
c for 0 < i < n.

K (i)
c0 K (i+1)

c0

K (i)
c K (i+1)

c

h(i)
c

ϕ(c0)
i

h(i+1)
c

ϕ(c)
i

Notice that the number n is independent from c and that the same U works for all h(i).
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The maps ψ(c)
j and ϕ(c)

i come fromAc, and by definition we have

q−1⋃
j=0

ψ(c)
j

(
K (n)

c

)
= K (1)

c ;

ϕ(c)
i

(
K (i)

c

)
= K (i+1)

c for 0 < i < n.

The first equation is a disjoint union.

Proof. We must choose U so that⋃
c∈U
K (i)

c ⊂
⋂
c∈U

Di(c) =: Di, 0 < i ≤ n

for then the functions ϕ(c)
i (z) : U × Di → C, ψ(c)

j (z) : U × Dn → C are holomorphic.

The open set U may be chosen so that Dn(c) ⊂ K(n) ⊂ C remain in a compact set K

independent from c ∈ U.

Let ξ be any point in Dn. For an specific sequence

τ = (k0, k1, . . .) ∈ {0, . . . , (q − 1)}N0 = Σq,

let τ j denote the first j + 1 elements (k0, . . . , k j). Accordingly, we have the associated maps

T (c)
j = ϕ(c)

n−1 ◦ · · · ◦ ϕ(c)
1 ◦ ψ(c)

j : Dn(c)→ Dn(c),

fτ j(c) = T (c)
k0
◦ · · · ◦ T (c)

k j
(ξ).

For a given c ∈ U, the sequence fτ j(c) converges to a point of K (n)
c as j → ∞. In fact, as

we vary τ ∈ Σq we obtain the entire Cantor set K (n)
c in this way. As family of functions

fτn : U → K is uniformly bounded; hence they constitute a normal family. We have a

convergent subsequence (which we keep denoting by fτn to avoid over indexation), such

that fτn converges locally uniformly to some holomorphic function fτ(c) on U. But since

the former sequence is point-wise convergent, what we have obtained is that the limit

function lim fτn(c) = fτ(c) is holomorphic (without taking subsequences).
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For each c ∈ U there is a homeomorphism between Σq (product topology) and K (n)
c .

So every point z ∈ K (n)
c0 has a unique corresponding τ ∈ Σq, and the association

h(n)
c : z 7→ τ(z) 7→ fτ(z)(c)

defines an holomorphic motion h(n)(c, z) = f (n)
c (z) from U × K (n)

c0 into K (n)
c .

The other holomorphic motions h(i)
c are constructed so as to fulfill equations (i)-(iii). �

6.39. Corollary. Suppose Hc0 is hyperbolic and satisfies the escaping condition. Then

there is a neighborhood V of c0 in the space of parameters such that c 7→ Pc is continuous

on V.

Proof. If c0 = 0 or Hc is singular escaping with c0 , 0 – in which case Pc has infinitely

many points (q ≥ 2) and intersects an attracting region of infinity B∞(R) –, then every

perturbation of c0 produces a Cantor set Pc very close to Pc0 (with respect to the Hausdorff

distance of compact sets, using the spherical metric of Ĉ). For example, if c0 = 0, then for

every ε > 0 there is δ > 0 such that Pc ⊂ {|z| < ε} for |c| < δ.
Therefore it suffices to deal with the non-singular case. Let DR denote the complement

of B∞(R). If Kc denotes the union of the cycle of Cantor sets of Hc, then for every ε > 0,

the bounded part of the post-critical set DR ∩ Pc is contained in (Kc)ε, except for finitely

many points. The function c 7→ Kc is obviously continuous (since its individual pieces

K (i)
c move holomorphically). Hence c 7→ Pc ∩ DR is continuous. Since ∞ is a super-

attracting fixed point of Hc, we also have that c 7→ Pc ∩ B∞(R) is continuous. (Notice that

the points of Pc ∩ B∞(R) are obtained from copies of Pc ∩ DR inside the attracting region

of infinity). �

6.7. The attractor W(Pc)

Suppose Hc is hyperbolic and non-singular escaping. There is a escaping cycle αc ∈
P∗(Hc) and a corresponding critical IBS (of first type)Ac. As usual, letA•c denote the IBS

of second type associated toAc. It is presented in the form (6.3), with maps

ϕ(c)
i : Di(c)→ Di+1(c),
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ψ(c)
j : V (c) → D1(c).

The system of maps Sαc =
{
ψ(c)

j , ϕ
(c)
i

}
leaves the set

N(αc) =

n⋃
i=0

Di(c)

invariant, in the sense that if z ∈ N and η ∈ Sαc then η(z) ∈ N . A closer analysis shows

that N(αc) and Sαc depends upon Pc, and that the choice of αc is irrelevant. It is for this

reason that we shall write S(Pc) and N(Pc) instead.

6.40. Definition (The attractor WPc). Suppose Hc is hyperbolic and non-singular

escaping, withA•c escaping as in (6.3). Then

W(Pc) =
{
(zi)∞i=0 : zi ∈ Kc and zi+1 = fi(zi) for some fi ∈ S(Pc)

}
.

6.8. E-Stability.

If Hc0 is hyperbolic and non-singular escaping, then

Ec0 =

n⋃
i=0

K (i)
c0

is the cycle of Cantor sets associated to Pc0 . Since there is an holomorphic motion of K (i)
c0 ,

the set Ec moves continuously at c = c0.We would like to give a dynamic meaning to these

motions. We cannot develop, however, any concept of structural stability using conjugacy

classes of functions on Ec. In fact, if z ∈ Ec0 then there may be more then one motion

h(i)
c (z) ∈ Ec.

This ambiguity with the choice of the motion is overcome with introduction of a new

dynamical system in the space of orbits

σ : Wc → Wc.

In fact, if Wc = W(Pc), then it is clear that Wc is invariant under the left shift σ and that

πi(Wc) = Ec,where πi is the projection (z0, z1 . . .) 7→ zi onto the i-th coordinate. In a certain

sense, the function πi is a semi-conjugacy from (σ,Wc) to (Hc, Ec).
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6.41. Theorem (E-stability). Suppose Hc0 is hyperbolic and non-singular escaping.

Then there is a connected neighborhood U of c0 in the space of parameters such that Hc

is hyperbolic and non-singular escaping for every c ∈ U. The set U can be chosen so that

there is a function

h : U ×W(Pc0)→ W(Pc)

with the following properties:

(i) Each hc = h(c, ·) : Wc0 → Wc is a homeomorphism;

(ii) hc0 is the identity;

(iii) For each z ∈ Wc0 and each projection πi the composition

c 7→ πi(h(c, z))

is holomorphic.

(iv) hc is a topological conjugacy from (σ,Wc0) to (σ,Wc).

Strictly speaking, holomorphic motions are defined only for subsets of C, but the func-

tion h above should be treated as holomorphic motion of the set W(Pc0) because of the

properties just mentioned.

Proof. Let h(i) : U × K (i)
c0 → K (i)

c denote the holomorphic motion of Kc0(i). Suppose

z = (zi)∞i=0 is in Wc0 . Without loss of generality we may assume that z0 ∈ Kn
c0

(by checking

the next argument). Each piece zi 7→ zi+1 of the sequence determines a unique f (c0
i ∈ S(Pc)

such that fi(zi) = zi+1, with zi ∈ Dki(c). We then define

hc(z) =
(
h(k0)

c (z0), h(k1)
c (z1), h(k2)

c (z2), . . .
)
.

Notice that f (c)
i takes h(ki)

c (zi) into h(ki+1)
c (zi+1), and therefore hc(z) is an element of Wc.

This function from Wc0 to Wc is injective because each component is.

The sequence (ηz)i = f (c0)
i ∈ S(Pc) obtained from z ∈ Wc0 varies continuously with

respect to the product topology. Said differently, we have (ηz)i = (ηw)i for all i ≥ 0 up

to a certain order i ≤ N provided z ∈ Wc0 is sufficiently close to w ∈ Wc0 in the product
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topology. The ultimate consequence of this fact is that hc : Wc0 → Wc is continuous. The

same argument applies to h−1
c , which shows that hc is a homeomorphism.

Properties (ii) and (iii) follows from the definition of h(i)
c .

By definition we have

σhc(z) =
(
hk1

c (z), h(k2)
c (z), . . .

)
= hc(z1, z2, . . .) = hcσ(z),

which proves (iv). �

6.9. J-Stability

J- Stability means stability on the Julia set. We are going to define it precisely later

in this section. First we prove that the Julia set Jc varies continuously at every hyperbolic

parameter c for which Hc is escaping (no matter singular or non-singular). Notice that

the case c = 0 is not included here, but we have already proved this fact using different

arguments in another chapter. The reason c = 0 is not included is because Ĉ − P0 is no

longer a hyperbolic Riemann surface.

6.42. Theorem. Let Ω denote the set of parameters c ∈ C − {0} for which the corres-

pondence Hc is hyperbolic and satisfies the escaping condition. This set is open and the

function c 7→ Jc is continuous on it. Moreover, for every c ∈ Ω

Jc ∩ Pc = φ.

Proof. Notice that #(Pc) ≥ 3 for every c ∈ Ω. Let c0 ∈ Ω. Let B∞(R) be an attracting

region of infinity and consider the set Gc of all pre-orbits y = (yi) of Hc starting at a point

y0 ∈ B∞(R). Every pre-orbit y = (yi)∞i=0 in Gc intersects N(Pc) only at finitely many points

yi1 , . . . , yin; otherwise there would be a sub-sequential limit of (yn) in N(Pc). This sub-

sequential limit is a point of Gc(y0) = Jc. But the fact is that Jc does not intersect N(Pc).

We denote

η(y) = {y0, y1, y2, . . .} − {yi1 , yi2 , . . . , yin}
and let η(Gc) be the union of all η(y) with y ∈ Gc. This set never intersectsN(Pc) when Hc

is hyperbolic and satisfies the escaping condition.
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As the set η(Gc) never intersects N(Pc) and N(Pc) varies continuously with c, there is

ε1 > 0 and a neighborhood V1 of c0 such that η(Gc) ∩ (Pc0)ε1 = φ for every c ∈ V1.

Since c 7→ Pc is continuous at c = c0, there is another neighborhood of c0, V2 ⊂ V1,

such that Pc ⊂ (Pc0)ε1 for every c ∈ V2. Hence there are disjoint compact subsets K1 and

K2 of Ĉ such that η(Gc) ⊂ K1 and Pc ⊂ K2 for every c ∈ V2.

Cover K1 by simply connected sets U1, . . . ,Uk in a such a way that the closure Ǩ1 of

the union of Ui does not intersect K2. Let 2δ be the Lebesgue number of this cover, so that

if x ∈ K, then B(x, δ) ⊂ Ui for some Ui.

In general, if ϕ : U → C is a branch of H−1
c , then ζ 7→ ϕ(ζ − c0 + c) is a branch of H−1

c0
,

provided (ζ − c0 + c) ∈ U. Let dc = dist(Ĉ−Pc) denote the hyperbolic metric of Ĉ − Pc. This

metric is defined on Ǩ1. There is a constant C > 0 such that for every c ∈ V2 and every

ζ ∈ Ǩ1 we have

dc(ζ − c0 + c, ζ) ≤ C|c − c0|.

In view of Corollary 6.29, there is also λ ∈ (0, 1) such that for every branch ϕ : Ui → C of

H−1
c , with c ∈ V2,

(6.4) dc(ϕ(x), ϕ(y)) ≤ λdc(x, y), x, y ∈ Ui.

Let ε < δ and pick any point

y0 ∈
⋂
c∈V2

(B∞(R) − Pc).

We know that Jc = Gc(y0) for every c ∈ V2. Now let

V3 =

{
c ∈ V2 : |c − c0| < ε

2C
∑∞

i=0 λ
−i

}
.

Let z ∈ Jc, with c ∈ V3. We are going to show that there is w ∈ Jc0 such that dc(z,w) < ε.

Since both ε and z ∈ Jc are arbitrary and dc is equivalent to the spherical metric on compact

sets disjoint from Pc, it follows that c 7→ Jc is continuous at c = c0.

There is a pre-orbit y = (yi) ∈ Gc of y0 such that yik → z, for some subsequence (ik).

The set η(y) is contained in K1. If yi ∈ η(y), then B(yi, δ) is contained in some Ui; and so
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there is a univalent branch ϕi : Ui → C of H−1
c taking yi into yi+1, with

dc(ϕi(x), ϕi(ζ)) ≤ λdc(x, ζ),

for any x, ζ ∈ B(yi, δ). We may assume, without loss of generality, than no element of y

entersN(Pc), so that η(y) is just the set of terms of y. We are going to construct a sequence

(wi) as follows. First set w0 = y0 and w1 = ϕ0(w0 − c0 + c). Since

dc(w1, y1) ≤ λdc(w0 − c0 + c,w0) ≤ λC|c − c0| < ε

2
< δ,

we have w1 ∈ B(y1, δ). Hence the procedure may be applied again to w1, yielding

w2 = ϕ1(w1 − c0 + c)

w3 = ϕ2(w2 − c0 + c)
...

and so on. The conclusion is that w = (wi) is a pre-orbit of Hc

dc(wk, yk) ≤ (λk + · · · + λ2 + λ) C|c − c0| < ε

2
< δ

which justifies the induction process. For every i we have dc(wi,−yi) < ε
2 . Therefore the

points wi visit the ball Bc(z, ε) = {x ∈ C : dc(x, z) < ε} infinitely often. Hence there is

an accumulation point w∗ of the sequence w with dc(z,w∗) < ε. This accumulation point

belongs to Gc(y0) = Jc. The proof is complete. �

6.43. Corollary. Suppose Hc is hyperbolic and satisfies the escaping condition. Then

the limit Lc can be written as disjoint union

Lc = Jc ∪ Ec

with a 7→ Ja and a 7→ Ea continuous at c = a.

Proof. We have already proved that a 7→ Ea is continuous at c = a. If the post-critical

set Pc does not intersect the attracting region of infinity, however, then Ec = φ. This is no

big deal, for then Ea = φ for every a close to c and we have the continuity of a 7→ Ea

anyway. �
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6.10. X-Stability: holomorphic motions in Banach spaces

Suppose Ha is hyperbolic and satisfies the escaping condition. Since the Julia set Jc

varies continuously at c = a, we would like to describe this stability property in terms

of the dynamics of Hc. As in the case of the dual Julia set, we cannot expect to find an

holomorphic motion of the entire Julia set. Furthermore, the correspondence Hc is multi-

valued on Jc and the usual notion of structural stability does not apply in this case. The

point is that every xa ∈ Ja may have two images in Ja. Depending on this choice, we may

consider different motions xc ∈ Jc of the initial point xa.

This idea becomes so much clear with the introduction of a new dynamical system

whose projection is Hc : Jc → Jc. To be more specific, consider the space of bounded

orbits Oc of Hc. Each element of Oc is therefore a sequence x = (xi) for which |xi| ≤ Mx

for some Mx > 0. The set Oc is equipped with the product topology and the left shift

map σ. An element x ∈ Oc is a repelling periodic orbit if σn(x) = x for some n and the

multiplier λ(x) of the orbit satisfies |λ| > 1.

6.44. Theorem (The repeller Xc). Suppose Hc is hyperbolic and satisfies the escaping

condition. Let Xc be the closure of the repelling periodic orbits inOc. The set Xc is compact

and for every projection πi : Oc → C we have

πi(Xc) = Jc.

The map πi can be thought as a semi-conjugacy, for

(πi(x), πi(σ(x)) ∈ Hc

for every x ∈ Xc.

Proof. Recall that πi is the map (x0, x1, . . .) 7→ xi. When Hc is hyperbolic and satisfies

the escaping condition the set of repelling periodic orbits remains inside of an annulus

A = {r ≤ |z| ≤ R}. (In fact, Jc is contained in the outside of attracting region of infinity and

is disjoint form Pc. Sine Jc is compact and 0 < Jc, then we have Jc ⊂ A for some annulus
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A). The space of bounded complex sequences A × A × · · · is compact in the product

topology. The closure of Xc in that space is Xc again. Hence Xc is compact.

Consequently, πi(Xc) is a closed set containing all repelling periodic points of Hc. Thus

Jc ⊂ πi(Xc). On the other hand, it is clear that πi(Xc) ⊂ Jc. The proof is complete. �

6.10.1. Holomorphic motions in Banach spaces. Suppose U is a connected open

subset of C and Z is a complex Banach space. We say that a function h : U ×Λ→ Z is an

holomorphic motion of a compact Λ ⊂ Z if

(i) For every c ∈ U, the map hc = h(c, ·) : Λ → Z is a homeomorphism onto its

image hc(Λ).

(ii) There is c0 ∈ U such that h(c0, ·) is the identity on Λ.

(iii) For every z ∈ Λ, the function h(·, z) : U → Z is holomorphic.

Recall that a function f : U → Z (U a region of C) is holomorphic if it is Fréchet differ-

entiable at every point z0 ∈ U. This means that there is a ∈ Z for which∥∥∥∥∥ f (z0 + h) − f (z0)
h

− ah
∥∥∥∥∥

Z
→ 0

as h→ 0.

6.10.2. The Banach space ZA. If Hc is hyperbolic and satisfies the escaping condi-

tion, then the Julia set Jc is bounded and avoid the critical point 0; hence it is contained in

some annulus

A = {z ∈ C : r ≤ |z| ≤ R}.
Since c 7→ Jc is continuous at such parameters, the annulus is locally constant, i.e., inde-

pendent of c.

Consider the set

Z(A) =
{
(zi)∞i=0 : zi ∈ A, i ≥ 0

}
.

This set is turned into a complex Banach space with the norm

‖z‖A =

∞∑
i=0

2−i|zi|.
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Notice that a function f : U → ZA is holomorphic if, and only if, every projection

πi ◦ f : U → C

is holomorphic.

6.45. Theorem (X-Stability). Suppose Hc0 is hyperbolic and satisfies the escaping

condition. Then there is an open connected U ⊂ C neighborhood of c0 such that Hc is

hyperbolic and satisfies the escaping condition for every c ∈ U. The set U may be chosen

so that:

(i) The Julia set Jc is contained in some annulus A as c ∈ U.

(ii) There is an holomorphic motion

hc(z) : U × Xc0 → ZA

such that hc(Xc0) = Xc and hc is a topological conjugacy from (σ, Xc0) to (σ, Xc).

Proof. The case c0 = 0 was already proved and involve slightly different techniques

(mainly because there is no hyperbolic metric on the outside of Pc).

The case c0 , 0 is proved using the fact that #(Pc0) ≥ 3. (Recall that q ≥ 2, since

the beginning). Since both c 7→ Pc and c 7→ Jc are continuous at c = c0, there is a

neighborhood V1 of c0 and two disjoint compact sets K1 and K2 such that Jc ⊂ K1 and K2

contains Pc for every c ∈ V1. We may in fact assume that there is ε > 0 such that

{z ∈ C : dc0(z, Jc0) < ε} ⊂ K1.

Let Ui be a finite open cover of K1 such that (i) each Ui is simply connected and (ii) the

closure of the union of Ui, denoted by Ǩ1, is disjoint from K2.

Let 2δ be the Lebesgue number of this cover with respect to the metric dc0 . There is λ ∈
(0, 1) such that for every c ∈ V1 and every branch ϕ : Ui → C of H−1

c , we have

dc(ϕ(x), ϕ(y)) ≤ λdc(x, y),
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for x, y ∈ Ui, where dc is the Poincaré metric of Ĉ − Pc. There is a constant ε0 < δ, ε with

the following property: for every c ∈ V1, if x = (xi) ∈ Oc and y = (yi) ∈ Oc are two

sequences in Ǩ1 with

dc(xi, yi) < 2ε0

for every i, then necessarily x = y. There is also a constant C > 0 such that

dc(ζ − c + c0, ζ) ≤ C|z − z0|,

for c ∈ V1 and ζ ∈ Ǩ1.

Now let

V2 =

{
c ∈ V1 : |c − c0| < ε0

C
∑∞

i=0 λ
−i

}
.

For each sequence z = (zi)∞i=0 in Xc0 we are going to construct another sequence w ∈ Xc.

Next we show that this association is uniquely determined and defines a map Xc0 → Xc.

Notice that every term zi of z is contained in K1 and therefore Bco(zi, δ) is contained in

some Ui. As a consequence there is a unique branch ϕi : B(zi, δ) → C of H−1
c0

which takes

zi into zi−1. This branch satisfies

dc0(ϕi(x), ϕi(y)) ≤ λdc0(x, y),

for every x, y ∈ Bc0(zi, δ).

We are going to construct a double sequence wkn(c), with k ≤ n and c ∈ V1, as follows.

Given k ≥ 0, let wkk(c) = zk. Then let

w(k−1)k(c) = ϕk(wkk(c) − c + c0).

Notice that

dc0(w(k−1)k(c), zk−1) ≤ λC|c − c0| < ε0 < δ.

Therefore we are allowed to repeat the argument:

w(k−2)k(c) = ϕk−1(w(k−1)k(c) − c + c0);

dc0(w(k−2)k(c), zk−2) ≤ λ2C|c − c0| + λC|c − c0| < ε0

...
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As a result we obtain a finite orbit ε0-close to z :

w0k(c)
Hc−−→ w1k(c)

Hc−−→ w2k(c)
Hc−−→ · · ·

with dc0(w jk(c), z j) < ε0. For a fixed j, the sequence of holomorphic functions gk : V1 → C
given by gk(c) = w jk(c) maps V1 onto some set contained in Bc0(z j, ε0), and as such, it

constitutes a normal family {gk}∞k= j. For each j there is a sequence (k js)∞s=0 such that w jk js(c)

converges locally uniformly to some holomorphic function f j : V1 → C on V1, as s → ∞.
We may take these sequences in such a way that (k js)s is a subsequence of (k( j+1)s)s. The

diagonal sequence ∆s = kss is a subsequence of every (k js)s. Consequently,

w j∆s(c)→ f j(c)

locally uniformly on V1 as s→ ∞. From this fact it follows that

hc(z) = ( f j(c))∞j=0 ∈ Xc.

Notice that hc(z) is characterized as the unique orbit (w0,w1, . . .) ∈ Oc with dc0(zi,wi) < ε0,

for every i ≥ 0. (ε0 was chosen so as to satisfy this property). It is this same property that

is used to show that hc maps periodic orbits of Xc0 into periodic orbits of Xc. The periodic

orbits obtained in this way are repelling since they are contained in the compact set K1

which does not intersect Pc. Hence we may say that hc maps repelling periodic orbits of

Xc0 into repelling periodic orbits of Xc. It is clear that hc is continuous. Since the set of

repelling periodic orbits of Xc0 are dense in Xc0 , it follows that hc(Xc0) ⊂ Xc.

The fact is that under these conditions we are allowed to construct a continuous map

gc0 : Xc → Xc0 using the same technique, so that

gc0 ◦ hc = IdXc0
; hc ◦ gc0 = IdXc .

Hence hc : Xc0 → Xc is a homeomorphism. By the way it was construct, we have

hc(σx) = σhc(x)

for every x ∈ Xc0 and πihc(x) = fi(c) is an holomorphic function of c ∈ V1. The theorem is

proved. �
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