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RESUMO

REAL, L. S. S. Técnicas de resoluções de problemas em grafos infinitos. 2024. 176 p.
Dissertação (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, São Carlos – SP, 2024.

O estudo de grafos infinitos configura a uma área singular da teoria de grafos. Em geral,
seus problemas não podem ser abordados por meio de princípios de contagem ou algoritmos
otimizadores, ferramentas típicas da combinatória finita. De fato, uma gama de argumentos que
sustentam demonstrações na teoria de grafos infinitos são provenientes de outros campos da
matemática, principalmente daqueles em que a própria noção de infinito é um objeto de estudo.
Nesta direção, este trabalho se insere na intersecção entre teoria dos grafos, teoria dos conjuntos
e topologia, em que certos problemas da primeira área serão analisados sob uma ótica das duas
últimas. Com especial profundidade, estudaremos a conjectura da partição não-amigável e
seu estado da arte, bem como as noções de extremidades em grafos infinitos e suas aplicações.
Inclusive, além de revisitar a literatura pertinente a estas discussões, esta dissertação contribui
com resultados originais.

Palavras-chave: Grafos infinitos, Unfriendly partition, Árvores normais, Espaços de extremida-
des, Teorema de Menger.





ABSTRACT

REAL, L. S. S. Problem-solving techniques in infinite graphs. 2024. 176 p. Disserta-
ção (Mestrado em Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, São Carlos – SP, 2024.

The study of infinite graphs consists in a singular area from graph theory. In general, its problems
cannot be approached by counting principles or optimizing algorithms, typical tools from finite
combinatorics. In fact, a sort of arguments that support proofs in infinite graph theory are
inherited from other branches of mathematics, mainly those in which the notion of infinite itself
is a matter of study. Regarding that, this work lies in the intersection between graph theory, set
theory and topology, where some problems from first area will be analysed under a viewpoint of
the others. With some special depth, we will study the unfriendly partition conjecture and its
state of art, as well as the notion of ends in infinite graphs and their applications. Incidentally,
besides revisiting the literature concerning these discussions, this dissertation contributes original
results.

Keywords: Infinite graphs, Unfriendly partition, Normal trees, End spaces, Menger’s Theorem.





LIST OF SYMBOLS

V (G) — Vertex set of the graph G

E(G) — Edge set of the graph G

G[X ] — Subgraph of G induced by the vertex set X

N(v) — Neighborhood of the vertex v

d(v) — Degree of the vertex v

⌈t⌉ — Set of nodes below (or equal to) t in some tree order

⌊t⌋ — Set of nodes above (or equal to) t in some tree order

c∗F — Coloring obtained by changing the values on F

c — Closure of the coloring c

(2ω)+ω — Least limit cardinal greater than the continuum

κ — Minimum size of a graph whose vertices have infinite degree and that admits no unfriendly
partitions

dom(c) — Domain of the function c

R(G) — Set of rays of G

Ω(G) — End space of the graph G

[r] — End of the ray r

|G| — Topological space of a graph G with its ends

C(S, [r]) — Connected component of G\S in which r has a tail

Ω(S, [r]) — Set of ends that can not be separated from [r] by S

d(u,v) — Distance between vertices u and v

h(t) — Height of the node t in an order tree

Lα(T ) — α−level of an order tree T

∼E — Edge-equivalence relation

ΩE(G) — Edge-end space of the graph G

[r]E — Edge-end of a ray r



∥G∥ — Topological space of a graph G and its edge-ends

CE(F, [r]E) — Connected component of G\F in which the ray r has a tail

ΩE(F, [r]E) — Set of edge-ends that cannot be separated from [r] by F
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CHAPTER

1
INTRODUCTION

In 1736, Leonhard Euler announced its negative solution to the classical problem of
the “Seven Bridges of Königsberg”, that asked whether one could find a walk visiting the
seven bridges of the Königsberg city, in Prussia, precisely once. In the history of mathematics,
this episode is now referred as the birth of Graph Theory, since Euler’s solution was based
on a modelling for the problem in which the bridges were presented by edges. Almost three
centuries later, Königsberg is now Kaliningrad, Russia, and only two of the bridges remain
preserved. Euler’s ideas, on the other hand, spread over the mathematical community, so now
Graph Theory is broadly recognized by its applications on computer sciences, complex networks
and mathematical modelling.

Due to these impacts on solving “concrete problems”, however, the designation Graph

Theory implicitly refers to the study of graphs on finitely many vertices, as one can deduce after
analyzing the contents of most undergraduate courses on the subject. A remarkable exception of
this standard, however, is found on Diestel’s Graph Theory book, whose eighth chapter has a
concise introduction to the theory of Infinite Graphs. Indeed, that chapter provides a nice first
contact for the objects more deeply investigated by this dissertation. Quoting Diestel, one of the
purposes of the present work is to

highlight the typical kinds of phenomena that will always appear when
graphs are infinite, and to show how they can lead to deep and fascinating
discussions (DIESTEL, 2018, p.209).

Nevertheless, these “phenomena” mentioned by Diestel may arise from distinct branches
of mathematics. In particular, this dissertation lies on the intersection between graph theory, set
theory and topology. Considering that, our aim is to exemplify how these two latter areas can
provide tools for developing combinatorial arguments, while also contextualizing them within
problems about infinite graphs. Structurally, this work is thus divided into two parts, briefly
described as follows:



20 Chapter 1. Introduction

• Part I comprises a detailed study of the unfriendly partition conjecture, perhaps “one of the
best-known open problems in infinite graph theory” (DIESTEL, 2018, p.275). Although not
extensive, its literature provides a rich diversity of techniques inherited from set theory, as
we discuss throughout Chapter 3. On the other hand, most results available in Chapter 4 are
original, partially obtained by improving the tools just mentioned. Incidentally, Section 4.4
is extracted from the recently published paper (AURICHI; REAL, 2023);

• In its turn, Part II has a more topological flavour, since it formalizes the notion of “limit
points” in infinite graphs. Following the approach given by the Hamburg group1, Chapter 5
define the topological spaces |G| and Ω(G) for a graph G, compiling their main properties
and exemplifying their role in extending classical results from finite graph theory. On
the other hand, in Chapter 6 we turn our attention to ΩE(G), a third space introduced
by Hahn, Laviolette and Širáň (1997). There, we present new applications regarding
edge-connectivity problems, as well as we give original topological descriptions. In
particular, Section 6.2 comprises the studies of our preprint (AURICHI; REAL, 2023),
while Section 6.3 and Section 6.4, obtained in a joint work with Paulo Magalhães Júnior,
follow our paper (AURICHI; REAL; JÚNIOR, 2023).

This dissertation was written in an attempt to be as self-contained as possible, so that
Chapter 2 fix the basic results from graph theory that will be mentioned further on in the text.
Looking its sections up is recommended to all the readers, since some concepts have no uniform
notation or definition in the literature. Moreover, the (simple) proofs presented there already
follow a style that is routine when dealing with infinite graphs.

Unfortunately, there is no similar preliminary chapter for a set-theoretic background.
Concepts such as ordinal numbers or filters might be used without previous introduction, although
we try to minimize these occurrences. In particular, specially in the first part, we almost always
exhibit two version of a given result. The first one is a restriction to a countable setting, where the
arguments involved can be understood by a wide range of mathematicians. This simplification
is often enough to capture the main idea of a proof. Then, the second version states the given
result in its general form, presenting their details via a more specific language from set theory, if
needed.

Finally, some complementing exercises are proposed throughout the texts, but their
solutions are not required to fulfill any other argument. They may be seen as remarks made after
a discussion, whose aim is to bring some reflection or clarification. With a similar purpose, the
more constructive definitions are frequently exemplified with figures, all them elaborated by the
author. On the other hand, open problems are highlighted in certain sections, mainly in those
that contains original contributions. In general, they correspond to questions that naturally arise
when trying to improve some of the key results already obtained.

1 See <https://www.math.uni-hamburg.de/spag/dm/projects/topgrth.html>.

https://www.math.uni-hamburg.de/spag/dm/projects/topgrth.html
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1.1 A reading skeleton
We address this section to the readers that look forward overviewing the present work

regardless its technicalities. After all, the discussions proposed by this dissertation are carried
out with as many details as possible, so that some reasoning might seem longer than they could
be. In fact, most main theorems of the next chapters could be explained even while suppressing
other nearby statements, although we opted to draw a broad picture of each approached subject.

Therefore, we shall now point out which results from the following sections deserve a
special attention, either due to its own importance or due to further applications. In particular,
according to the notations in Table 1, some diagrams will illustrate the shortest trails that the
reader can follow for an exposition of these main ideas.

Table 1 – Different types of prerequisites between results

When writing... we mean that...

Result X → Result Y

...the proof of Result Y is supported by Result X .

In this case, the reading of Result Y is compromised if

the proof of Result X is skipped.

Result X 99K Result Y

...the proof of Result Y mentions the statement of Result X

due to a technical purpose. In this case, this latter result

can be assumed without proof.

Result X ⇝ Result Y

...the proof of Result Y resembles the proof of Result X ,

but do not relies on it. Despite that, it might be clarifying

to read the details of Result X .
Source: Elaborated by the author.

Once established this conventions, we recall that looking Chapter 2 up is suggested to
everyone, as well as reading the introduction of each of the other chapters. Below, however,
we briefly overview the core of the more specific sections, remarking which prerequisites are
required:

• Sections of Chapter 3: These sections are extracted from the traditional literature re-
garding the unfriendly partition problem. First, the main motivation of Section 3.2 is to
conclude Theorem 3.2.2, even though the restricted statement of Corollary 3.2.8 already
illustrates the proof idea. The corresponding diagram for obtaining this latter result is
drawn in Figure 1.

In its turn, Section 3.3 is addressed to Theorem 3.3.2, which can be reached by the
instructions in Figure 2. On the other hand, Section 3.4 is self-contained, despite written
with a set-theoretic vocabulary. Although it concerns both Theorems 3.4.1 and 3.4.4, the
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details of the latter are closely inspired by the proof of the former. Similarly, Section 3.5
is motivated by Theorem 3.5.7, but the readers can sense its main arguments even when
restricting themselves to Theorem 3.5.5. Finally, Section 3.6 is presented in order to prove
Theorem 3.6.7, following the script outlined by Figure 3. However, at the begging of this
section, Proposition 3.6.1 offers a simplified proof for Theorem 3.6.7 in its countable case.

• Sections of Chapter 4: all these sections bring new instances for the unfriendly partition
problem. In particular, Theorem 4.2.1 and Proposition 4.2.5 are the core of Section 4.2. The
diagram draw in Figure 4 outlines the prerequisites for this study. On the other hand, the
aim of Section 4.3 is to prove Theorem 4.3.1, which is supported by the tools mentioned in
Figure 5. In its turn, Section 4.4 follows our paper (AURICHI; REAL, 2023), from where
Theorem 4.4.1 is a main result. The script of its proof is outlined by Figure 6.

• Sections of Chapter 5: These sections are extracted from diverse references regarding the
end structure of infinite graphs. First, compactness properties of end spaces are the core
of Section 5.2, in which Lemma 5.2.3 and Theorem 5.2.5 are main results. They can be
understood with very few prerequisites, as suggested by Figure 7. On the other hand, the
metric properties discussed in Section 5.3 are summarized by Theorems 5.3.1 and 5.3.4,
which can be obtained after carrying out the instructions in Figure 8. In its turn, Section 5.4
is self-contained, but reading the proofs of Proposition 5.4.3 and Lemma 5.4.5 is advised.
Finally, Section 5.5 motivates the main results of the following chapter, so that looking it
up carefully might be helpful. There, the details of Lemmas 5.5.4 and 5.5.6 support further
discussions.

• Sections of Chapter 6: these sections comprise our contributions to the study of edge-end
spaces in infinite graphs. More precisely, Theorems 6.2.4 and 6.2.7 are the main results of
Section 6.2, which were extracted from our preprint (AURICHI; REAL, 2023) and that can
be approached by the instructions of Figure 9. In its turn, Section 6.3 is self-contained, but
it develops the tools to be used in Section 6.3. There, in a joint work with Paulo Magalhães
Júnior and following the diagram in Figure 10, we aim to prove Theorem 6.4.1 together
with its Corollary 6.4.3.

Figure 1 – Diagram for concluding the main results of Section 3.2

Proposition 3.2.1 Rado’s Lemma (3.2.5) Lemma 3.2.3 Lemma 3.2.4

Proposition 3.2.6 Corollary 3.2.8 Lemma 3.2.7

Source: Elaborated by the author.
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Figure 2 – Diagram for concluding the main results of Section 3.3

Lemma 3.3.1 Theorem 3.2.2

Theorem 3.3.3 Theorem 3.3.2

Source: Elaborated by the author.

Figure 3 – Diagram for concluding the main results of Section 3.6

Lemma 3.6.2 Lemma 3.6.5 Proposition 3.6.1

Lemma 3.6.3 Lemma 3.6.6 Theorem 3.6.7

Source: Elaborated by the author.

Figure 4 – Diagram for concluding the main results of Section 4.2

Corollary 3.2.8 Proposition 3.6.1 Lemma 4.2.3 Lemma 3.3.1

Theorem 4.2.1 Proposition 4.2.5

Source: Elaborated by the author.

Figure 5 – Diagram for concluding the main result of Section 4.3

Proposition 2.2.2 Proposition 2.3.1 Proposition 3.2.6

Lemma 3.5.1 Theorem 4.3.1 Lemma 3.2.7

Source: Elaborated by the author.

Figure 6 – Diagram for concluding the main results of Section 4.4

Theorem 3.3.2 Proposition 4.4.2 Corollary 4.4.5 Theorem 4.4.1

Proposition 3.3.3 Corollary 4.4.6 Proposition 4.4.3

Source: Elaborated by the author.
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Figure 7 – Diagram for concluding the main results of Section 5.2

Proposition 5.2.1 Proposition 2.2.2

Lemma 5.2.3 Theorem 5.2.5

Source: Elaborated by the author.

Figure 8 – Diagram for concluding the main results of Section 5.3

Proposition 5.3.10 Theorem 5.2.5 Proposition 5.3.3

Proposition 5.3.11 Theorem 5.3.1 Theorem 5.3.4 Proposition 5.3.2

Source: Elaborated by the author.

Figure 9 – Diagram for concluding the main results of Section 6.2

Theorem 5.5.9 Lemma 5.5.6 Lemma 6.2.5 Lemma 5.5.4

Theorem 5.5.10 Theorem 6.2.7 Corollary 626 Theorem 6.2.4

Source: Elaborated by the author.

Figure 10 – Diagram for concluding the main results of Section 6.4

Proposition 2.2.2 Proposition 5.4.3 Corollary 5.4.4 Theorem 6.3.13

Proposition 5.3.6 Proposition 6.4.4 Corollary 6.4.5 Theorem 6.4.1

Source: Elaborated by the author.
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CHAPTER

2
GRAPH-THEORETIC PRELIMINARIES

Informally, a graph is understood as a main set of objects (called vertices) whose elements
may be somehow related. If two vertices u and v are related, for example, we write uv in order
to define one of its edges. As Figure 11 suggests, we often sketch a graph by representing its
vertices with bullets and its edges with lines connecting some of them.

Figure 11 – Stardand example of a graph.

Source: Elaborated by the author.

As a general observation, the graphs in this text are undirected (i.e., there is no distinction
between edges uv and vu) and simple (i.e., there is no edge connecting a vertex to itself, neither
parallel edges), unless when the contrary is mentioned. In addition, if G is a graph, we denote
by V (G) and E(G) its vertex set and edge set accordingly. When there is no possible
misinterpretation, and the edge set is fixed by the context, we often identify G with its vertex set.
For example, one might write “v ∈ G” to claim that v is a vertex of G, or write “G∩H = /0” to
claim that the vertex sets of G and H are disjoint.

2.1 Canonical subgraphs

Within the above notation, a subgraph of G is a graph H such that V (H)⊆V (G) and
E(H)⊆ E(G). If the equality V (H) =V (G) holds, we call H a spanning subgraph. On the other
hand, if E(H) = {uv ∈ E(G) : u,v ∈V (H)}, we call H an induced subgraph, often denoted via
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its vertex set X ⊆V (G) as H = G[X ] . For a given subset (or even subgraph) A ⊂V (G)∪E(G),
we write by G\A the subgraph of G obtained by deleting the vertices of V (G)∩A, the edges
incident to them and the edges of E(G)∩A. Below, we discuss some other canonical subgraphs
that deserve special designations:

• Path: it is a subgraph P whose vertex set is a finite sequence {v1,v2,v3, . . . ,vn} ⊆V (G)

of distinct elements such that vivi+1 ∈ E(G) for each 0 ≤ i < n. Then, {vivi+1 : 1 ≤ i < n}
is defined as its edge set, while n is said to be its length. For short, P is often represented
as v0v1v2 . . .vn. Then, we say that v0 and vn are the endpoints of P, or even that this path
connects such vertices. If v0 belongs to some set A ⊂ V (G) and vn belongs to some set
B ⊂V (G), we might say that P is an A−B path. In its turn, an A−A path is written simply
as an A−path if it intersects A precisely at its endpoints. When every pair of vertices of G

can be connected by a path, we call G a connected graph. For many problems in graph
theory, we can always assume that G is under this condition. Otherwise, we could restrict
the study to its connected components, the maximal connected subgraphs of G. Finally,
we also remark that the singleton {v} fits in the definition of a path, for every v ∈V (G);

• Cycle: its vertex set is a finite sequence {v0,v1,v2, . . . ,vn} ⊆ V (G) of distinct elements
such that vnv1 ∈ E(G) and vivi+1 ∈ E(G) for each 1 ≤ i < n. Then, {vivi+1 : 0 ≤ i <

n}∪{vnv0} is defined as its edge set. In other words, a cycle is obtained by a path after
adding an edge that connects its endpoints;

• Ray: it is an one-way infinite path r. More precisely, its vertex set is an infinite sequence
{vn}n∈N ⊆V (G) of distinct vertices such that vnvn+1 ∈ E(G) for every n ∈ N. Then, its
edge set is given by {vnvn+1}n∈N, so that r = v0v1v2 . . . is often a notation for presenting
the ray. In this case, we often say that r starts at v0. In addition, any infinite connected
subgraph of a ray is called its tail. As we will broadly discuss in Part II of this dissertation,
the rays are important objects when describing directions in infinite graphs. Even rayless
graphs, i.e., those not containing rays as subgraphs, have their own applications, which we
will approach in Section 3.5;

• Double ray: it is a two-way infinite path r. More precisely, its vertex set is an infinite
sequence {vn}n∈Z ⊆V (G) of distinct elements such that vnvn+1 ∈ E(G) for each n ∈ Z.
We often present the double ray by writing r = . . .v−2v−1v0v1v2 . . . , considering also that
{vnvn+1}n∈Z is the edge set of r. In this case, for every N ∈ Z, the rays described by the
sequences {vn}n≥N and {vn}n≤N are called the half-rays of the double ray;

• Star: it is an arbitrary union of (finite) paths that pairwise intersects (precisely) at a
distinguished vertex v ∈ V (G). In this case, v is called the center of the star, while the
other endpoints of each path define its leaves. For example, Figure 12 presents a star whose
center is highlighted in green and whose leaves are drawn in red;
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• Comb: it is a graph c obtained by adding, to a fixed ray, infinitely many disjoint finite
paths. The given ray is called the spine of the comb, while the endpoints of the disjoint
paths out of C are called its teeth. For example, Figure 12 presents a comb whose spine is
highlighted in green and whose teeth are drawn in red.

Figure 12 – Examples of a path, a cycle, a ray, a double ray, a star and a comb.

Source: Elaborated by the author.

For a vertex v ∈V (G), the set N(v) = {u ∈V (G) : uv ∈ E(G)} denotes its neighborhood,
whose cardinal d(v) = |N(v)| is called its degree. If u ∈ N(v), we say that u is a neighbor of
v or adjacent to v. Since we are interested in infinite graphs, namely, those of infinitely many
vertices, d(v) might be an infinite cardinal. Within this vocabulary, a classical compactness result
from set theory can be restated in a graph-theoretic language:

Lemma 2.1.1 (König’s Lemma). Let G be a connected infinite graph. Then, G has a vertex of

infinite degree or contains a ray as a subgraph.

Proof. Suppose that every vertex of G has finite degree and fix any v0 ∈ V (G). Since G is an
infinite connected graph, there is an infinite connected component G1 of G \ {v0}, because
d(v0) is finite. Then, fix v1 ∈V (G1) any neighbor of v0. For some n ≥ 1, suppose that we have
defined v0,v1, . . . ,vn ∈ V (G) distinct vertices such that vivi+1 ∈ E(G) for every 0 ≤ i < n. By
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induction, if n ≥ 1, we assume that vn is chosen within an infinite connected subgraph Gn of
G\{v0,v1,v2, . . . ,vn−1}. Hence, Gn \{vn} has finitely many connected components, once vn has
finite degree. Therefore, we can fix vn+1 a neighbor of vn in an infinite connected component
Gn+1 of Gn \{vn}. At the end of this recursive process, {vn}n∈N defines the vertex set of a ray in
G.

In other words, König’s Lemma claims that there are rays in infinite connected locally
finite graphs, namely, graphs whose vertices have all finite degree. If we regard a vertex of
infinite degree as a center of an infinite star, then the above proof of Lemma 2.1.1 can be slightly
modified in order to present the following useful generalization:

Lemma 2.1.2 (Star-Comb Lemma). Let G be a connected graph and fix an infinite subset

U ⊂ V (G). Then, there is an infinite star whose leaves belong to U or there is a comb whose

teeth belong to U.

Proof. Fix P0 any path in G connecting two distinct vertices of U , whose existence follows from
the assumption that G is connected. If there are infinitely many connected components in G\P0

containing vertices of U , some v ∈ P0 has neighbors in infinitely many of these components,
because P0 is finite. In this case, v is the center of an infinite star with leaves in U . Hence, since U

is infinite, we can assume that some connected component G1 of G\P0 has infinite intersection
with U . Then, fix a path P1 connecting one vertex v0 ∈ P0 to a vertex u1 ∈U ∩V (G1), assuming
also that V (P1) \ {v0} ⊂ V (G1). By induction, for some n ≥ 1, suppose that we have defined
finitely many disjoint paths P0,P1, . . . ,Pn with the following properties:

1. For each 0 ≤ i < n, the intersection of Pi with V (Pi+1)∪V (Pi+2)∪·· ·∪V (Pn) is precisely
an endpoint vi of Pi+1. The other endpoint of Pi+1 is some vertex ui+1 ∈U ;

2. V (Pi+1)\{vi} is contained in a connected component Gi+1 of G\ (V (P0)∪V (P1)∪·· ·∪
V (Pi)) that has infinite intersection with U , for each 0 ≤ i < n.

If there are infinitely many connected components of Gn \V (Pn) containing elements of U ,
then some vertex v of the finite set V (Pn) \ {vn−1} has neighbors in infinitely many of these
components. As before, in this case, v is the center of an infinite star with leaves in U . Then, we
can assume that there is a connected component Gn+1 of Gn \V (Pn) whose intersection with
U is infinite. This allows us to fix Pn+1 a path connecting a vertex vn ∈V (Pn)\{vn−1} to some
vertex un+1 ∈U , also assuming that Pn+1 \{vn} ⊂V (Gn+1).

At the end of this recursive process, we have defined a family {Pn}n∈N of finite paths
satisfying items 1 and 2 above. In particular, the graph T given by V (T ) =

⋃
n∈N

V (Pn) and

E(T ) =
⋃

n∈N
V (Pn) is connected. Moreover, by item 2, each vertex of T has degree at most 3.
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Then, it follows from König’s Lemma that there is a ray in T , being a spine of a comb with
infinitely many teeth lying on {un}n∈N.

We finish this section with an estimate for the size of some connected graphs. In particular,
the result bellow allows us to assume that every locally finite graph (connected) is countable:

Lemma 2.1.3. Let G be a connected graph and κ be an infinite cardinal such that d(v)≤ κ for

every v ∈V (G). Then, |V (G)| ≤ κ .

Proof. Fix any vertex v ∈V (G). For each i ∈ N, define the set

Ni(v) = {u ∈V (G) : there is a path of length i connecting u and v},

so that Ni+1(v) ⊂
⋃

u∈Ni(v)

N(u). Then, since |N1(v)| = 1 and |N(u)| ≤ κ for every u ∈ V (G), it

follows by induction on i that |Ni+1(v)| ≤ κ . Therefore,

∣∣∣∣∣ ∞⋃
i=1

Ni(v)

∣∣∣∣∣≤ κ . This finishes the proof,

once V (G) =
∞⋃

i=1

Ni(v) by the fact that G is connected.

2.2 Trees (for graph-theorists)
The structure of the graph T constructed in the proof of Lemma 2.1.2 is familiar for

graph-theorists. Besides connected, we observe that T contains no cycles as subgraphs, or,
equivalently, any two vertices of T are the endpoints of precisely one path. Due to this property,
we say that T is a tree. Clearly, most graphs from Figure 12 are trees: paths, rays, stars and
combs do not contains cycles as subgraphs.

In general, trees are important tools when describing algorithms to study graphs, since
their vertices can be ordered in a rather natural way. More precisely, given a tree T , we fix any
vertex r ∈V (T ), said to be its root. Then, we write u ≤T v for vertices u,v ∈ T if u belongs to
the unique path in T connecting v and r. We easily check that ≤T is indeed an order relation,
called the tree-order of T when the root r is fixed. The choice of r is often arbitrary, so that
we write ≤ instead of ≤T when there is no doubt about the fixed tree T and its root. As useful
notations, we write ⌈v⌉= {u ∈V (T ) : u ≤ v} and ⌊v⌋= {u ∈V (T ) : u ≥ v} for every vertex
v ∈V (T ). In particular, ⌈v⌉ defines a path in T for every v ∈V (T ), whose amount of edges is
called the height of v.

Since cycles are finite graphs, it is also a tree the graph obtained by the union of a
⊆−increasing family {Tn}n∈N of trees contained in a fixed graph G. Then, Zorn’s Lemma can be
applied in order to conclude that G contains a ⊆−maximal tree. Assuming that G is connected,
it turns out that this is actually a spanning subgraph. In other words, every connected graph
admits a spanning tree.



30 Chapter 2. Graph-theoretic preliminaries

Exercise 2.2.1 (Usual proof of König’s Lemma). Write a proof for Lemma 2.1.1 which relies on

the fact that every graph has a spanning tree.

On the other hand, it is a rather challenging task - sometimes impossible - to find a
spanning tree whose tree order is compatible with the distribution of edges in the underlying
graph. More precisely, we say that a tree T with a fixed tree order ≤ is normal in a graph G

if, besides being a subgraph of G, every T−path has comparable endpoints regarding ≤. We
illustrate this definition by saying that paths “run vertically” through normal trees, while they
can “run horizontally” in arbitrary ones, as suggested by Figure 13. Similarly to the observation
made in the above paragraph, ⊆−maximal normal trees indeed exist by Zorn’s Lemma, but we
can not ensure that these are spanning subgraphs.

Figure 13 – Examples of arbitrary and normal trees, respectively.

Examples of two trees whose roots are denoted by r. Both are subgraphs of distinct underlying graphs,
in which some paths are highlighted by dashed lines. At the left, the paths drawn in red certify that the
corresponding tree is not normal.

Source: Elaborated by the author.

In fact, if K is an uncountable complete graph (or clique), i.e., a graph whose vertices
are pairwise adjacent, then K does not admit a normal spanning tree. After all, in this case, the
vertices of K should be pairwise comparable in some tree order, so that such tree would turn out
to be a ray (and, therefore, countable). As we will discuss in Chapter 5, there are actually few
characterizations of graphs that contain normal spanning trees. Most results in that direction are
related to the distribution of the vertices of G along rays, a phenomena that has a topological
interpretation. Under the graph-theoretic viewpoint, however, normal trees are often obtained via
depth-search algorithms, a technique exemplified by the proof below:

Proposition 2.2.2. Let G be a countable graph, i.e, such that V (G) is countable. Then, G admits

a normal spanning tree.

Proof. Fix an enumeration V (G) = {vn}n∈N. We will construct a ⊆ −increasing sequence
{Tn}n∈N of finite normal trees in G such that vn ∈ V (Tn) for each n ∈ N. Naturally, we will
ensure that the tree order of Tn+1 extends the tree order of Tn, so that both orders will be denoted
by ≤. Therefore, T =

⋃
n∈N

Tn will be the claimed normal tree.
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We start this process by setting T0 as the trivial tree containing only its root v0. We
now assume that the normal tree Tn is already defined, for some n ∈ N. If vn+1 ∈V (Tn), we set
Tn+1 = Tn. Otherwise, vn+1 belongs to some connected component C of G\Tn. Then, the set

N(C) = {u ∈V (Tn) : u has a neighbor in C}

is totally ordered by ≤, since Tn is a normal tree and C is connected. Moreover, N(C) is finite,
because so is Tn. We will now apply the depth-search procedure in order to define Tn+1. To this
aim, we choose v ∈ N(C) the ≤−maximal vertex of N(C), also fixing u ∈C one of its neighbors.
Let uu1u2 . . .ukvn+1 be a path in C connecting u and vn+1. We define Tn+1 by attaching this path
to v.

Then, Tn+1 is still a finite tree rooted at v0. In order to show that this is a normal one,
let P be any Tn+1−path. If its endpoints belong to Tn, then they are comparable by induction. If
its endpoints belong to the path uu1u2 . . .ukvn+1, then they are comparable because u ≤ u1 ≤
u2 · · · ≤ uk ≤ vn+1. Finally, if one endpoint x of P belong to Tn and the other, say, y, belong to
the path uu1u2 . . .ukvn+1, then x ≤ v < y due to the ≤−maximality of v.

As observed in the above proof, if T is a normal tree in a graph G, then the neighbors
of vertices in a fixed connected component of G\T define a totally ordered set. This property,
convenient for approaching problems in algorithmic ways, is one of the main reasons for studying
normal trees. Actually, in Chapter 5 we will better discuss how these trees might encode faithfully
the connectivity of the underlying graphs. An example of this remark, for a while, is given by:

Proposition 2.2.3. Let G be a graph that admits a normal spanning tree T , whose tree order is

denoted by ≤. Then, the properties below are verified:

i) If u,v∈V (G) are incomparable with respect to ≤, then u and v belong to distinct connected

components of G\⌈x⌉, where x = max{t ∈ T : t ≤ u,v};

ii) If r is a ray of G, there is r′ a ray of T such that r∩ r′ is infinite.

Proof. If x is as in item i), consider tu = min{t ∈ T : x < t ≤ u} and tv = min{t ∈ T : x < t ≤ v}.
By the maximality of x, we must have tv and tu incomparable and, in particular, tu ̸= tv. Even
more, we observe that ⌊tu⌋ and ⌊tv⌋ are connected components of G\⌈x⌉. In fact, being w = u or
w = v, neighbors of vertices of ⌊tw⌋ (in G) must belong to ⌊tw⌋ or to ⌈x⌉, since T is normal. By
the same reason, there is no edge connecting a vertex of ⌊tu⌋ to a vertex of ⌊tv⌋, so that ⌊tu⌋ and
⌊tv⌋ are indeed different connected components of G\⌈x⌉. Observing that u ∈ ⌊tu⌋ and v ∈ ⌊tv⌋,
item i) follows.

Now, suppose that r = v0v1v2 . . . denotes a ray of G. Since T is connected, we can apply
the Star-Comb Lemma (2.1.2) with U = V (r). For instance, suppose that there is a star in T ,
centered at some vertex x ∈ T , whose leaves define an infinite subset {vnk}k∈N ⊂V (r). In other
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words, x is connected to {vnk}k∈N by paths that are disjoint unless by x. Hence, after possibly
removing one element from {vnk}k∈N, this set is composed by pairwise incomparable vertices
regarding ≤, since T is a tree. By the same argument, for k ̸= j, we have x = max{t ∈ T : t ≤
vnk ,vn j}. Therefore, it follows by item i) that each element from {vnk}k∈N belongs to a different
connected component of G\⌈x⌉. This, however, contradicts the fact that ⌈x⌉ is finite and r is a
ray containing {vnk}k∈N.

Hence, there is C a comb in T whose teeth define some infinite subset {vnk}k∈N ⊂V (r).
If an infinite subset of {vnk}k∈N is contained in the spine r′ of C, the result follows. If not, we
can assume that r′∩{vnk}k∈N = /0. We also suppose that r′ starts at the root z of T . Therefore,
for every k ∈ N, the vertex xk = max{t ∈ T : t ≤ vnk ,vnk+1} must belong to r′. After all, since
C is a comb and T is a tree containing C, the (unique) paths in T connecting vnk and vnk+1 to
z must have intersection as a subset of r′. Then, it follows from item i) that the segment in r

connecting vnk to vnk+1 intersects r′. In other words, there is nk < mk < nk+1 such that vmk ∈ r′.
Hence, {vmk}k∈N is an infinite subset of both rays r and r′.

2.3 Separators

Most of the results presented so far in this chapter (such as Lemma 2.1.2 and Proposition
2.2.2) already suggest a routine procedure when dealing with infinite graphs. More precisely, we
are often deleting some set of vertices and/or edges in order to analyze the remaining connected
components. Due to the frequency of this heuristic, we call S a separator in G whether it is a
subset S ⊂V (G)∪E(G) to be further removed of the graph. This is not a formal definition, but
rather it is an expression used to illustrate arguments regarding connectedness. The objects listed
below, however, are indeed separators with some convenient properties, which justifies more
careful definitions:

• Cutvertex: it is a vertex v in a connected graph G such that G\ v is disconnected. A graph
that is connected but admits no cutvertex is called biconnected;

• Bridge: it is an edge e in a connected graph G such that G\e is disconnected. In particular,
a connected graph is a tree if, and only if, all its edges are bridges;

• Cut: in a graph G, it is an edge set of the form δ (X) = {uv ∈ E(G) : u ∈ X ,v ∈V (G)\X},
for some non-empty X ⊊V (G). In general, finite minimal separators composed by edges
are cuts, as we will properly approach in Chapter 6;

• A−B separator: for any pair of vertex sets A,B ⊂V (G), it is a separator S ⊂V (G)∪E(G)

such that there is no A−B path in G\S. Note that S might intersect A∪B.

Since there are at least two connected components in any disconnected graph, it is easily
seen that G is connected if, and only if, it admits no empty cut. On the other hand, we say that H
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is a block in G if it is a maximal biconnected subgraph. In particular, any two distinct blocks H1

and H2 intersect in at most one vertex: otherwise, H1∪H2 would still define a biconnected graph,
but containing both properly. Actually, this argument shows that, if H1 ∩H2 ̸= /0, then H1 ∩H2 is
precisely one cutvertex of G.

Therefore, if A denotes the set of cutvertices of G and B denotes the set of its blocks,
a natural adjacency notion arises on V (Ǧ) := A∪B. More precisely, we declare aB ∈ E(Ǧ) if
a ∈ A, B ∈ B and a ∈V (B). Therefore, it is defined the block graph Ǧ of G, usually being a
tree:

Proposition 2.3.1. If G is a connected graph, its block graph Ǧ is a tree.

Proof. If G is biconnected, then Ǧ has only one vertex, so that the result is immediate. Hence,
we can assume that G has at least two blocks. Then, in order to show that Ǧ is connected,
it suffices to exhibit a path (in Ǧ) between given two blocks B and B′ of G. In fact, since G

connected, there is a path of the form wu1u2 . . .unv in G, for some fixed vertices w ∈V (B) and
v ∈V (B′). If Bi denotes the block in which ui lie, the subgraph of Ǧ induced by {Bi : 1 ≤ i ≤
n}∪{V (Bi)∩V (B j) : 1 ≤ i, j ≤ n} is connected, since Bi = Bi+1 or V (Bi)∩V (Bi+1)∈ {vi,vi+1}
for each 1 ≤ i < n. In particular, there is a path in Ǧ connecting B and B′.

Finally, suppose that there is a cycle in Ǧ. Since there is no edges in Ǧ between two
distinct cutvertices or between two distinct blocks, this cycle has an even amount of vertices. In
particular, the cycle contains two distinct blocks B and B′. Fixing two different vertices u ∈V (B)

and v ∈ V (B′), we can now find a cycle C in G containing both, since blocks are connected.
However, C is contained in some block of G, because it is a biconnected subgraph. This shows
that B = B′, which is a contradiction. Hence, Ǧ is a tree.

Figure 14 – Example of a graph and its block graph

At the left, the blocks of a connected graph are involved by red balloons, while its cutvertices are drawn
in green. At the right, we present the corresponding block graph, that is a tree.

Source: Elaborated by the author.

Alternatively, the above result claims that, if u and v are vertices that lie in different
blocks of G, the paths connecting them must contain the same cutvertices. In particular, these
paths are not disjoint. Hence, for finite graphs, we can see Proposition 2.3.1 as a restricted study
of the following duality theorem:
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Theorem 2.3.2 (Menger (1927), Menger’s Theorem). Let G be a finite graph and fix A,B⊂V (G)

subsets. Consider S ⊂V (G) an A−B separator of minimum size. Then, there exist |S| disjoint

A−B paths.

Although S is minimal, we remark that the family claimed by the above statement
is maximal, since each element of the A−B separator S lies on precisely one of the paths.
Incidentally, we often illustrate Menger’s Theorem with the metaphor that “by the most narrow
neck it passes the maximum flow”. Inspired by this observation, Erdős asked whether it could be
generalized for infinite graphs, a problem that remained more than 30 years unsolved. Only in
2009, Aharoni and Berger in (AHARONI; BERGER, 2005) presented the answer below:

Theorem 2.3.3 (Aharoni and Berger (2005), Erdős-Menger Theorem). Let G be any graph and

fix A,B ⊂ V (G) subsets. Then, there exist a family P of disjoint A−B paths and S an A−B

separator lying on it. In other words, S is obtained by the choice of precisely one vertex from

each path of P .

The book (DIESTEL, 2018) contains five alternative proofs for Theorem 2.3.2, presented
throughout its third and sixth chapters. At the eight chapter, Theorem 2.3.3 is proven for countable
graphs, following the program carried out by Aharoni in (AHARONI, 1987). In general lines,
Menger’s Theorem has a wide range of applications, both theoretical (as we will exemplify
further on in this dissertation) and in other sciences. Quoting Distel, this

is probably the most-used classical result in graph theory (DIESTEL,
2018, p.86).

Although the separators of the two results above are vertex sets, in Section 6.2 we will be
interested in edge-connectivity properties. To that aim, it is convenient to deduce an edge version
of Theorem 2.3.3 as its corollary:

Corollary 2.3.4 (Erdős-Menger Theorem for edges). Let G be a graph and fix disjoint subsets

A,B ⊂V (G). Then, there exist a family P of edge-disjoint A−B paths and an A−B separator

F, which is a cut, lying on it. In other words, F is obtained by the choice of precisely one edge

from each path of P .

Proof. We will define an auxiliary graph G̃. For every v ∈V (G), let Kv be a complete graph of
d(v) vertices. Then, the vertex set of G̃ will be the disjoint union

⋃
v∈V (G)

V (Kv). For every edge

uv ∈ E(G), we define an edge u′v′ between the cliques Ku and Kv, referred as an old edge. Since
|Kv|= d(v), we can assume that every vertex of Kv is an endpoint of at most one old edge.

After applying Theorem 2.3.3 in order to separate the (disjoint) vertex sets Ã =
⋃
v∈A

V (Kv)

and B̃=
⋃
u∈B

V (Ku), we fix P̃ the family of disjoint Ã− B̃ paths and S̃ the separator lying on it. For
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every P̃ ∈ P̃ and every v ∈V (G), we can assume that |P̃∩V (Kv)| ≤ 2. In fact, if ṽ1, ṽ2 ∈V (Kv)

are non-adjacent vertices in P̃, consider the path P̃′ obtained from P̃ after replacing the subpath
connecting ṽ1 and ṽ2 by the edge ṽ1ṽ2. Being an Ã− B̃ path, P̃′ must meet S̃ in the unique vertex
of P̃∩ S̃, since P̃ is composed by disjoint paths. Therefore, (P̃ \{P̃})∪{P̃′} is also a family of
disjoint Ã− B̃ paths in which S̃ lie.

By considering that |P̃∩V (Kv)| ≤ 2 for every v ∈V (G), a path P in G arises from P̃ ∈ P̃

after contracting the cliques {Kv : v ∈V (G)} to their original vertices. Then, P = {P : P̃ ∈ P̃}
is a family of edge-disjoint A−B paths. Moreover, each vertex ṽ ∈ S̃ belongs to a clique of the
form Kv, for some v ∈V (G). In addition, ṽ is the endpoint of an unique old edge θ(ṽ), originally
incident in v. Note also that θ(ṽ) belongs to the path of P̃ that contains ṽ.

We observe that every A−B path Q in G must passes through an edge from {θ(ṽ) :
ṽ ∈ S̃}. Otherwise, a minimal path in G̃ containing all the old edges of Q will not intersect G̃,
contradicting the fact that S̃ separates Ã and B̃. Therefore, F = {θ(ṽ) : ṽ ∈ S̃} is an edge set lying
on P for which there is no A−B path in G\F . Although it is no difficult to see that F = δ (X)

for some X ⊂V (G), this will later follow from Lemma 6.2.3.

Exercise 2.3.5. Consider the following verbatim generalization of Menger’s Theorem for infinite

graphs: “in a graph G, for given subsets A,B ⊂V (G), there exist P a family of disjoint A−B

paths and a set of |P|−many vertices that separate A and B”. How does this statement differ

from the Erdős-Menger Theorem?





Part I

The Unfriendly Partition Conjecture
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CHAPTER

3
PROBLEM BACKGROUND

As pointed out in the Introduction, the unfriendly partition conjecture is an open question
whose literature, even though not extensive, is rich in different problem-solving techniques. The
aim of this chapter is to bring the attention of the reader to such tools, while revisiting the main
related results that are available so far. Although the proofs presented in the next sections are
not original, some of them were slightly modified in order to be further mentioned with a more
convenient statement.

3.1 Introduction
Before presenting the proper discussions of this chapter, we must fix the notation and

the definitions that will be used from now on in this part of the dissertation. Given a graph G, a
partial coloring of its vertices will almost always be a function of the form c : D → 2, defined
in a subset D ⊂V (G) and taking values on the set of two elements 2 = {0,1}. The labels 0 and
1 are also referred as colors. Only in Section 4.1, however, we will study functions of the form
c : D → 3, taking values in a set of three elements. A coloring, in its turn, is a globally defined
assignment c : V (G)→ 2.

Regarding the natural bipartition arisen by a function of the form c : D → 2, we say that
two adjacent vertices u,v ∈ D are friends if they belong to the same partition class, that is, if
c(u) = c(v). Otherwise, we call them enemies of each other. If D = V (G), we ask whether a
vertex v ∈V (G) has no less enemies than friends, or, in the current notation, whether

|{u ∈ N(v) : c(u) ̸= c(v)}| ≥ |{u ∈ N(v) : c(u) = c(v)}|.

If that inequality is verified, we say that c is unfriendly in the vertex v. Globally, we thus call c

an unfriendly partition of G if it is unfriendly in each of its vertices.

In particular, verifying whether c is unfriendly in a vertex v of infinite degree is quite
simple: it is necessary and sufficient that v has d(v) enemies given by c. Inspired by that
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Figure 15 – Example of an unfriendly partition

In this graph, we can check that every vertex has at least as many neighbors of opposite color as of its
own. Hence, this is an example of an unfriendly partition.

Source: Elaborated by the author.

observation, we say that v has almost all its neighbors in a set X ⊂V (G) if |N(v)\X |< d(v).
Intuitively, if we want to construct a coloring that is unfriendly in v, we might ignore its neighbors
out of X .

Finally, supposing now that c : D → 2 is a partial coloring defined in a proper subset
D ⊊V (G), we say that this coloring is already unfriendly in a vertex v ∈ D if any extension of
c to V (G) is unfriendly in v as well. In particular, if v has infinite degree, this happens if, and
only if, |{u ∈ N(v)∩D : c(u) ̸= c(v)}|= d(v).

Now, we are ready to look forward answering a natural question: which graphs admit an
unfriendly partition? Cowan and Emerson in their unpublished paper (COWAN; EMERSON,
1985) conjectured that every graph does, inspired by the simple fact that finite graphs can be
colored this way:

Proposition 3.1.1. Every finite graph admits an unfriendly partition.

Proof. Let G be a finite graph. Consider c any max-cut of G, namely, any coloring that maxi-
mizes the amount of edges with different colors in its endpoints. In other words, choose c so that
the cardinal |{uv ∈ E : c(u) ̸= c(v)}| is maximum. Observe that this is possible since there are
only finitely many functions defined in the finite set V (G) and taking values on 2.

We claim that c is an unfriendly partition. For instance, suppose that there is a vertex v ∈
V (G) for which c is not unfriendly. Therefore, considering the sets A = {u ∈ N(v) : c(u) ̸= c(v)}
and B = {u ∈ N(v) : c(u) = c(v)}, we have |A|< |B|. Now, define c∗ v to be the coloring that
agrees with c in V \{v} but such that (c∗ v)(v) = 1− c(v). In other words, c∗ v differs from c

only in the vertex v. Therefore,

{ab ∈ E : (c∗ v)(a) ̸= (c∗ v)(b)}= {ab ∈ E : c(a) ̸= c(b)}∪B\A,

so that
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|{ab ∈ E : (c∗ v)(a) ̸= (c∗ v)(b)}|= |{ab ∈ E : c(a) ̸= c(b)}|+ |B|− |A|

> |{ab ∈ E : c(a) ̸= c(b)}|

This, however, contradicts the choice of c.

Exercise 3.1.2. The above proof shows that every max-cut in a finite graph G is an unfriendly

partition. Verifies that this is actually a stronger property. In other words, find an unfriendly

partition over a finite graph that is not a max-cut.

Despite this positive observation, Milner and Shelah in (SHELAH; MILNER, 1990)
constructed a family of uncountable graphs that admit no unfriendly partitions. In fact, these are
the only known graphs in the literature that cannot be colored in an unfriendly way. Hence, the
original conjecture of Cowan and Emerson is now restricted to the countable case:

Unfriendly Partition Conjecture: Every countable graph admits an unfriendly partition.

Besides that, most of the affirmative results available in the literature do not use properly
the countability hypothesis of the problem. Some of them, instead, describe unfriendly partitions
by forbidding substructures of the underlying graphs, regardless their cardinality. Below, while
explaining the organization of the next sections, we give a general overview of this literature:

• Section 3.2 studies graph with few vertices of infinite degree, closely supported by Propo-
sition 3.1.1. In fact, unfriendly partitions for locally finite graphs are easily obtained by
compactness principles, following routine proofs when dealing with this graph family.
On the other hand, a more clever argument is needed to color graphs with finitely many
vertices of infinite degree;

• Section 3.3 studies the other end of the above spectrum, i.e., graphs with few vertices of
finite degree. In those cases, it is useful to describe unfriendly partitions via algorithms
that, recursively, attribute enemies to vertices previously colored;

• Section 3.4 presents the only known graphs in the literature that admit no unfriendly
partitions. These counterexamples rely on a set-theoretic obstruction, might being of
particular interest for a reader that is familiar with fundamentals of mathematics. Curiously,
the constructions presented in that section avoid vertices of finite degree, which justifies
some hypothesis that will be assumed on Section 3.3;

• Section 3.5 deals with recursive characterizations of some graph families, specially in
order to describe unfriendly partitions for rayless graphs. The techniques employed for
this study are also mentioned by the literature of other problems in infinite graph theory;
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• Section 3.6 shows that every graph admits an “unfriendly partition” when we are able to
label vertices with an extra third color. The proof of this result is partially inspired by the
techniques of Section 3.3.

Exercise 3.1.3. Show that every tree admits an unfriendly partition.

3.2 Finite-like scenarios

This section aims to describe unfriendly partitions for graphs with only finitely many
vertices of infinite degree. Naturally, a first step in that direction is to well understand how
these colorings are obtained for locally finite graphs. Already knowing that finite graphs can be
colored in an unfriendly way, set theorists might claim the same conclusion for locally finite
ones by applying compactness arguments. In fact, this is the usual treatment when dealing with
locally finite graphs, which explains the frequent approach of this graph family by the literature
regarding infinite graphs. According to Nash-Williams,

The degree of additional difficulty involved when we try to extend work
done for finite graphs to infinite graphs varies from one problem to
another. Extension to enumerable graphs is usually easiest when it can be
done by means of Kőnig’s “Unendlichkeitslemma” (NASH-WILLIAMS,
1967).

Regarding mathematical logic, a Compactness Theorem informally claims that, if a
statement is a consequence from a list of infinitely many axioms, then it is actually a consequence
of some finitely many of them. Thus, when using the expression “compactness argument”,
we mean any proof technique which tries to verify a global property based on their finite
approximations. Considering the unfriendly partition problem, the two proofs below exemplify
this heuristic:

Proposition 3.2.1. Every locally finite graph has an unfriendly partition.

First proof: Fix G a locally finite graph. Without loss of generality, we can suppose that G is
connected, so that V (G) is a countable set by Lemma 2.1.3. Thus, fix an enumeration V (G) =

{vn}n∈N.

For each n ∈ N, Proposition 3.1.1 allows us to fix an unfriendly partition cn : V (Gn)→ 2
for the graph Gn induced from G by the finite set Vn = {v0,v1, . . . ,vn}. We will now define a
coloring c : V (G)→ 2 recursively as follows:

• By the pigeonhole principle, for some color i ∈ {0,1}, there is S0 ⊂ N infinite so that
ck(v0) = i for every k ∈ S0. Then, define c(v0) = i.
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• For some n ∈ N, suppose that an infinite set Sn ⊂ N is already defined, as well as the
color c(vn). Again, the pigeonhole principle guarantees that there is a color i ∈ {0,1} and
an infinite set Sn+1 ⊂ Sn such that minSn+1 ≥ n+1 and ck(vn+1) = i for every k ∈ Sn+1.
Then, define c(vn+1) = i.

At the end of this inductive process, we claim that c : V → 2 is an unfriendly partition. In
fact, given n ∈ N, there is N ∈ N large enough so that N(vn)∪{vn} ⊂ {v0,v1, . . . ,vN}, since vn

has finite degree by hypothesis. Fix any k ∈ SN , so that k ≥ N. By the definition of c(vi) and the
fact that SN ⊂ SN−1 ⊂ ·· · ⊂ S0, it holds that c(vi) = ck(vi) for each 0 ≤ i ≤ N. In particular, as ck

is an unfriendly partition over Gk and N(vn)∪{vn}⊂ {v0,v1, . . . ,vN}⊂ {v0,v1, . . . ,vk}=V (Gk),
the coloring c is also unfriendly in vn.

Second proof: Let G be a locally finite graph. As in the previous proofs, we can assume that
G is connected and consider V (G) = {vn}n∈N an enumeration of its vertex set. For each n ∈ N,
denote by Gn = G[v0,v1, . . . ,vn−1] the subgraph of G induced by the set Vn = {v0,v1, . . . ,vn−1}.
We now say that a partial coloring c : Vn → 2 is extendable if there are m ≥ n and c′ : Vm → 2 an
unfriendly partition for Gm such that c′|Vn = c. Denoting by T the set of extendable colorings,
we define an order ≤ over T by declaring c ≤ c′ if, and only if, c′ extends c.

By Proposition 3.1.1, for each n ∈ N there is an extendable coloring whose domain is Vn.
Moreover, by definition, c|Vi is an extendable coloring if so is c : Vn → 2 and i ≤ n. In this case,
we also have /0 ≤ c|V1 ≤ c|V2 ≤ ·· · ≤ c|Vn−1 ≤ c|Vn . In other words, the pair (T,≤) describes an
order of an infinite tree, rooted at the empty coloring /0. More precisely, by setting an extendable
function of the form c : Vn → 2 as a neighbor of c|Vn−1 , T becomes a tree whose tree order, when
fixing /0 as a root, is ≤

Moreover, the colorings of height n in T are those defined on Vn. Since Vn is finite for
every n ∈ N, this means that every vertex of T has finite degree. By König’s Lemma, then, there
is {cn}n∈N ⊂ T an infinite branch. In this notation, cn is defined on Vn for each n, so that the
coloring c : V (G)→ 2 given by c(vn) = cn+1(vn) is globally defined.

Intuitively, c is a limit coloring approximated by the branch {cn}n∈N, being a natural
candidate for an unfriendly partition. In fact, given v ∈V (G), there is n ∈ N big enough such
that N(v)∪ {v} ⊂ Vn, because v has finite degree. Hence, by definition of the order ≤, we
have c|N(v)∪{v} = cn|N(v)∪{v}. Since cn is an extendable function, cn is itself the restriction of
an unfriendly partition c : Vk → 2 to Vn, for some k ≥ n. In particular, regarding ck (and hence
regarding both cn and c), v has no more friends than enemies, so that c is unfriendly in v.

We remark that the main hypothesis of Proposition 3.2.1 is applied at the very end of the
above two proofs. In both cases, for a vertex v ∈V (G), the constructed coloring c agrees with
some finite approximation ck in the finite set {v}∪N(v), proving that c is indeed an unfriendly
partition.
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Moreover, both proofs presented are also supported by the fact that finite graphs admit
an unfriendly partition, although it is possible to assume a slightly stronger property. We recall
that, as Exercise 3.1.2 highlights, unfriendly partitions for finite graphs might be given by
max-cuts. Therefore, one could use the compactness arguments to construct a coloring that is
approximated by cuts of maximum size, instead of arbitrary unfriendly partitions. After exploring
this suitable difference, in this section we may fix finitely many perturbations on colorings for
locally finite graphs, following the program carried out by Aharoni, Milner and Prikry (1990).
As a consequence, the result below will be verified:

Theorem 3.2.2 (Aharoni, Milner and Prikry (1990), Theorem 1). Let G be any graph and fix

c′ : D → 2 a partial coloring of its vertices. If there are only finitely many vertices of infinite

degree in V (G)\D, then there is c : V (G)→ 2 an extension of c′ that is unfriendly in every vertex

of V (G)\D.

By considering D = /0 in the above statement, it follows that every graph with finitely
many vertices of infinite degree has an unfriendly partition. The above statement is not written
this way due to its applicability as inductive hypothesis.

On the other hand, the proof of Theorem 3.2.2 requires some special notation, which will
be recalled from its original proof in (AHARONI; MILNER; PRIKRY, 1990). First, we define
the set

Ac(X ,Y ) = {uv ∈ E : u ∈ X , v ∈ Y and c(u) ̸= c(v)}

for every pair X ,Y ⊂V (G). In other words, Ac(X ,Y ) denotes the collection of edges with distinct
colors in its endpoints and crossing the subsets X and Y . Analogously, we define

Bc(X ,Y ) = {uv ∈ E : u ∈ X , v ∈ Y and c(u) = c(v)}

as the set of edges with endpoints of the same color that also cross the subsets X and Y . Similarly
to the proof of Proposition 3.1.1, it is convenient to compare the sizes of Ac(X ,Y ) and Bc(X ,Y ),
which will be denoted by ac(X ,Y ) and bc(X ,Y ) respectively. Simplifying this notation in some
cases, we also highlight the following conventions:

• If Y =V (G), the sets Ac(X ,Y ) and Bc(X ,Y ) are denoted by Ac(X) and Bc(X) accordingly.
In this case, their cardinalities are given by ac(X) = ac(X ,Y ) and bc(X) = bc(X ,Y ).

• If X = {x} is a singleton, we consider Ac(X) = Ac(x), Bc(X) = Bc(x), ac(X) = ac(x) and
bc(X) = bc(x).

Now, if c : D → 2 is a partial coloring and F ⊂ V (G) is any subset, there is a natural
coloring c∗F : D → 2 obtained when changing the labels of the vertices in F ∩D. Formally,

(c∗F)(x) =

{
c(x), if x /∈ F ,
1− c(x), if x ∈ F .
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for every x ∈ D. Again, if F = {v} is a singleton, the coloring c∗F is also represented by c∗ v.
As elementary combinatorial properties, the calculations below are verified:

Lemma 3.2.3 (Aharoni, Milner and Prikry (1990), Lemma 1). Fix G a graph and c : V (G)→ 2
any coloring. Then, given K,F ⊂V (G) and x ∈ K, the following statements hold:

1. ac∗x(K)+ac(x) = ac(K)+bc(x).

2. If F and K are disjoint, then ac∗F(K)+ac(F,K) = ac(K)+bc(F,K).

Proof. In order to verify the first expression, we describe the set Ac∗x(K) in terms of the coloring
c. By definition, this set comprises edges of G whose endpoints have distinct colors and such that
one of them belongs to K. If none of them is x, these edges are also in Ac(K), since c and c∗ x

differ only at x. Moreover, we must remove from Ac(K) the edges of Ac(x), whose endpoints
have the same color regarding c∗ x. In its turn, also considering c∗ x, the edges from Bc(x) have
their endpoints as enemies of each other. Formally,

Ac∗x(K) = Ac(K)∪Bc(x)\Ac(x),

from where we obtain item 1.

Aiming to conclude the second expression, we will also describe the set Ac∗F(K) in terms
of the coloring c. However, we first observe that every edge of the sets Ac(F,K) and Bc(F,K)

has exactly one end in F and the other in K, once F ∩K = /0. As before, if no edge of Ac(K) has
an endpoint in F , then those edges are also elements of Ac∗F(K), since c and c∗F differ only in
F . However, the edges of Bc(F,K), that under c have their endpoints with the same color, have
endpoints as enemies of each other when considering c∗F . Finally, the edges of Ac(F,K) are
also elements of Ac(K), but have their endpoints labeled the same regarding c∗F . Therefore,

Ac∗F(K) = Ac(K)∪Bc(F,K)\Ac(F,K),

from where item 2 is easily deduced.

Finally, given any subset F ⊂V (G), we say that a coloring c : V (G)→ 2 is F−good if
ac(F) is maximal among other colorings that are equal to c in V (G) \F . In other words, c is
F−good if ac(F)≥ ac′(F) for every coloring c′ : V (G)→ 2 that can differ from C only in F . In
particular, if F is a finite set whose elements have finite degree, this implies that c is unfriendly
in every vertex of F .

The next result points out that a F−good coloring is, in some sense, a coloring that is
unfriendly in F as a set. After all, in this case, ac(F,V (G)\F) cannot be increased by simply
changing c to c∗F . If this holds for every finite set F ⊂V (G) of vertices of finite degree, the
converse, remarkably, is also true:
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Lemma 3.2.4. Fix G a graph, D ⊂ V (G) a subset and c : V (G)→ 2 any coloring. Then, c is

F−good for every finite set F ⊂V (G)\D of vertices of finite degree if, and only if, ac(F,V (G)\
F)≥ bc(F,V (G)\F) for every such a F.

Proof. If c is F−good for every finite set F ⊂ V (G) \D of vertices of finite degree, then, in
particular,

ac(F,F)+ac(F,V (G)\F) = ac(F)≥ ac∗F(F) = ac∗F(F,F)+ac∗F(F,V (G)\F).

Since ac(F,F) = ac∗F(F,F) and ac∗F(F,V (G)\F) = bc(F,V (G)\F), because c and c∗F differ
precisely at F , it follows that ac(F,V (G)\F)≥ bc(F,V (G)\F).

Conversely, suppose that ac(F,V (G) \F) ≥ bc(F,V (G) \F) holds for every finite set
F ⊂V (G)\D of vertices of finite degree. Then, fixed any such a F and c′ : V (G)→ 2 a coloring
satisfying c|V (G)\F = c′|V (G)\F , let F ′ ⊂ F be the set of vertices in which c and c′ differ. More
precisely, F ′ = {v ∈V (G) : c′(v) ̸= c(v)}, so that c′ = c∗F . Being a subset of F , F ′ is itself finite
and its members have finite degree. By definition of the sets Ac(F), Ac′(F), Bc(F ′,V (G)\F ′)

and Ac(F ′,V (G)\F ′), we then have

ac′(F) = ac(F)+bc(F ′,V (G)\F ′)−ac(F ′,V (G)\F ′).

Since ac(F ′,V (G)\F ′)≥ bc(F ′,V (G)\F ′) by hypothesis, the inequality ac(F)≥ ac′(F) holds,
verifying that c is F−good.

Considering the statement of Theorem 3.2.2, our aim now is to extend some partial
colorings to be F−good for every finite set F of uncolored vertices of finite degree. Inspired
by the discussion done right before Proposition 3.2.1, this extension will be obtained via a
compactness result called Rado’s Selection Principle, that is presented below together with
two proofs. The first one, relying on Zorn’s Lemma, is somehow more constructive and direct,
although the second, based on Tychonoff’s Theorem, is shorter:

Lemma 3.2.5 (Rado’s Selection Principle). Let {Ai}i∈I be any family of finite set. For each

finite subset F ⊂ I, fix ϕF : F →
⋃
i∈F

Ai a choice function. In other words, ϕF(i) ∈ Ai for every

i ∈ F. Then, there exists a global choice function ϕ : I →
⋃
i∈I

Ai such that, for every finite F ⊂ I,

there is another finite set I ⊃ K ⊃ F such that ϕ|F = ϕK|F .

First proof, due to tkf (2020). For any subset X ⊂ I and any choice function ϕ : X →
⋃
i∈X

Ai,

consider the following approximation property:

(⋆) For every finite F ⊂ I, there is K ⊃ F also finite such that ϕ|F∩X = ϕK|F∩X .
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Let P be the set of choice functions that satisfies (⋆). If ϕ,ϕ ′ ∈ P are defined over X ,X ′ ⊂ I

respectively, we write ϕ ⪯ ϕ ′ whenever X ⊆ X ′ and ϕ ′ extends ϕ . Then, ⪯ is clearly an order
relation for P.

Now, consider {ϕα}α∈Λ ⊂ P a totally ordered subset regarding ⪯. Writing Xα ⊂ I for
the domain of ϕα , consider X =

⋃
α∈Λ

Xα and ϕ =
⋃

α∈Λ

ϕα . More precisely, given i ∈ X , we set

ϕ(i) = ϕα(i) for some (and, thus, every) α ∈ Λ such that i ∈ Xα . Therefore, ϕ satisfies (⋆) as
well: if F ⊂ I is finite, then F ∩X = F ∩Xα for some α ∈ Λ, so that

ϕ|F∩X = ϕ|F∩Xα
= ϕα |F∩Xα

= ϕK|F∩Xα
= ϕK|F∩X

for some finite set K ⊃ J.

Hence, by Zorn’s Lemma, there is ϕ : X →
⋃
i∈X

Ai a ⪯−maximal element from P. The

proof is finished if we conclude that X = I. For a contradiction, suppose that there is i ∈ I \X .
Then, for each x ∈ Ai, the choice function ϕx defined over X ∪{i}, extending ϕ by declaring
ϕx(i) = x, does not satisfy (⋆), since ϕ is ⪯−maximal. This means that there is Fx ⊂ I a finite
set such that ϕK|Fx∩(X∪{i}) ̸= ϕx|Fx∩(X∪{i}) for every finite K ⊃ Fx. In particular, since ϕ satisfies
(⋆), we must have i ∈ Fx.

However, the union F =
⋃

x∈Ai

Fx is also finite and contains i. Hence, there indeed exists

a finite set K ⊃ F such that ϕK|F∩X = ϕ|F∩X . In particular, ϕK|Fx∩X = ϕ|Fx∩X = ϕx|Fx∩X for
every x ∈ Ai. We obtain a contradiction by choosing x = ϕK(i) ∈ Ai, so that ϕK|Fx∩(X∪{i}) =

ϕx|Fx∩(X∪{i}).

Second proof, due to Gottschalk (1951): Note that the set of globally defined choice functions
can be identified with the cartesian product Φ = ∏

i∈I
Ai. If each Ai is endowed with the discrete

topology, Φ becomes a compact space by Tychonoff’s Theorem. In this case, for each finite
F ⊂ I, the set

Φ(F) = {ϕ ∈ Φ : ϕ|F = ϕK|F for some finite K ⊃ F}

is closed in Φ, by definition of the product topology. Moreover, given a finite collection

F1,F2, . . . ,Fn ⊂ I of finite subsets, we have ϕF ∈ Φ(F)⊂
n⋂

i=1

Φ(Fi), where F =
n⋃

i=1

Fi. In other

words, the family F = {Φ(F) : F ⊂ I finite} has the finite intersection property. Since Φ is
compact, the intersection

⋂
F is non-empty. Then, any ϕ ∈

⋂
F verifies the statement.

Back to our graph-theoretic discussion, any coloring over a graph G might be seen choice
functions over finite sets. In fact, as suggested by the above second proof, we can identify a
partially defined coloring c : F → 2 with an element c ∈ ∏

v∈F
{0,1}. Considering that, we are

ready to prove the following:
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Proposition 3.2.6 (Aharoni, Milner and Prikry (1990), Lemma 2). Let c : D → 2 be a partial

coloring of a graph G. If every vertex of V (G) \D has finite degree, there is an extension

c′ : V (G)→ 2 that is F−good for every finite set F ⊂V (G)\D.

Proof. For every F ⊂V (G) finite, fix cF : F → 2 a partial coloring that agrees with c in D∩F

and such that acF (F) maximal. Then, let c′ : V (G) → 2 be a coloring as in Rado’s Selection
Principle. In other words, for every finite set F ⊂V (G), there is K ⊂V (G) also finite such that
F ⊂ K and c′(v) = cK(v) for every v ∈ F .

We finish the proof by verifying that c′ is the claimed coloring. For instance, suppose
that c′ is not F−good for some finite set F ⊂ V (G) \D. Hence, there is c̃ : V (G)→ 2 so that
ac̃(F)> ac′(F), even with c′(v) = c̃(v) for every v ∈V (G)\F .

On the other hand, since every vertex of F has finite degree by hypothesis, the set
N(F) =

⋃
v∈F

N(v) is also finite. Therefore, there is a finite set K ⊂V containing F ∪N(F) so that

cK(v) = c′(v) for every v ∈ F ∪N(F). By using the coloring c̃, however, we can increase acK(K).
More precisely, consider the partial coloring c̃K : K → 2 given by

c̃K(v) =

{
c̃(v), if v ∈ F ,
cK(v), if v /∈ F .

Since c̃K and cK differ only in F ⊂ V (G) \D, these colorings are equal to c when
restricted to K ∩D. We will now describe the set Ac̃K(K) in terms of AcK(K) and Ac′(F). First,
we observe that the four colorings c′, c̃, cK and c̃K agree in N(F)\F : by definition of c̃k, by the
fact that N(F)⊂ K and by the equality of c|V (G)\F and c′|V (G)\F .

We now remark that, if an edge of Ac̃K(K) has none of its endpoints in F , then this
is also an edge of AcK(K) and conversely. Formally, Ac̃K(K)\Ac̃K(F) = AcK(K)\AcK(F). The
edges incident in F with different colors in its endpoints under c′, however, are the same under
cK , by the choice of this latter coloring. Besides that, those are fewer than the edges with
endpoints having distinct colors under c̃. In its turn, c̃ agrees with c̃K in F ∪N(F). In other words,
ac̃K(F) = ac̃(F)> ac′(F) = acK(F). Consequently,

ac̃K(K) = |Ac̃K(K)\Ac̃K(F)|+ac̃K(F)> |AcK(K)\AcK(F)|+acK(F) = acK(K),

contradicting the choice of cK .

Note that Proposition 3.2.6 encodes a third proof for Corollary 3.2.1: by taking D = /0,
this result provides a coloring c : V (G)→ 2 that is F−good for every finite set F ⊂V (G), when
G is a locally finite graph. In particular, ac(x)≥ bc(x), verifying that c is an unfriendly partition.
However, the main motivation for the study of F−good colorings is given by the technical lemma
below:
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Lemma 3.2.7 (Fixing Lemma). Given G a countable graph, fix D ⊂ V (G). Suppose that

c : V (G)→ 2 is a coloring that is F−good for every finite set F ⊂V (G)\D of vertices of finite

degree. If c is not unfriendly in a vertex v ∈ D, one of the following statements holds:

1. If v has finite degree, then, for some finite set H ⊂ (V (G)\D)∪{v} of vertices of finite

degree, c ∗H is F−good for every finite set F ⊂ (V (G) \D)∪{v} of vertices of finite

degree. In particular, c∗H is unfriendly in v.

2. If v has infinite degree, then, for some finite set H ⊂V (G)\D of vertices of finite degree,

c∗ ({v}∪H) is F−good for every finite set F ⊂V (G)\D of vertices of finite degree. In

particular, since c is not unfriendly in v and H is finite, c∗ ({v}∪H) is unfriendly in v.

Revisited proof from Lemma 3 of Aharoni, Milner and Prikry (1990). Since G is countable and
the coloring c is not unfriendly in v, this vertex has only finitely many enemies under c. Let k be
this amount if v has infinite degree and k = d(v) otherwise. First, set c1 = c∗v. If c1 is F−good for
every finite set F ⊂ (V \D)∪{v} of vertices of finite degree, the proof is finished by setting H = /0
if d(v) is infinite and H = {v} otherwise. If this is not the case, by Lemma 3.2.4 there is a finite set
F1 ⊂ (V (G)\D)∪{v} of vertices of finite degree such that ac1(F1,V \F1)< bc1(F1,V (G)\F1).
If c2 = c1 ∗F1 is F−good for every finite set F ⊂ (V (G)\D)∪{v} of vertices of finite degree,
we are done since c2 and c differ only in finitely many vertices of finite degree. Otherwise,
we can proceed with this algorithm and obtain, for each n ∈ N, a coloring cn and a finite set
Fn ⊂ (V (G)\D)∪{v} of vertices of finite degree such that:

• cn+1 = cn ∗Fn.

• acn(Fn,V \Fn)< bcn(Fn,V \Fn).

For instance, suppose that c2k+2 and F2k+2 are defined. In this case, consider the finite set

F =
2k+1⋃
i=1

Fi. Since Fi ⊂ (V (G)\D)∪{v} for every 1 ≤ i ≤ 2k+2, we have F ⊂ (V (G)\D)∪{v}.

Moreover, for each 1 ≤ i ≤ 2k+ 1, by definition of the sets Aci(F) and Aci(Fi,V (G) \Fi), the
following inequality is also verified:

aci+1(F) = aci(F)+bci(Fi,V (G)\Fi)−aci(Fi,V (G)\Fi)> aci(F)≥ aci(F)+1.

Therefore, ac2k+2(F)≥ ac1(F)+2k+1. Now, depending on whether v has finite degree or not,
we consider the following cases:

1. First, suppose that v has infinite degree. In this case, v /∈ Fi for every 1 ≤ i ≤ 2k+2, so
that ci(v) = c1(v) = 1− c(v). Then, the coloring c′ = c2k+2 ∗ v agrees with c in V (G)\F .
Applying Lemma 3.2.3 to the colorings c, c1, c2k+2 and c′, we conclude that

ac′(F) = ac2k+2(F)+bc2k+2({v},F)−ac2k+2({v},F)≥ ac2k+2(F)−ac2k+2({v},F)
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and ac1(F)= ac(F)+bc({v},F)−ac({v},F). But, ac2k+2({v},F)≤ ac({v},F)+bc({v},F),
because all edges connecting a vertex of F to v are elements of Ac({v},F)∪Bc({v},F).
Similarly, Ac({v},F)⊂ Ac(v), so that ac({v},F)≤ ac({v}) = k. Combining these inequal-
ities, we contradict the fact that c is F−good:

ac′(F)≥ ac2k+2(F)−ac2k+2({v},F)

≥ ac1(F)+2k+1−ac({v},F)−bc({v},F)

≥ ac(F)+bc({v},F)−ac({v},F)+2k+1−ac({v},F)−bc({v},F)

≥ ac(F)+1

> ac(F)

In other words, for some 1 ≤ i ≤ 2k+2, the coloring ci+1 = ci ∗Fi needs to be F−good
for every finite set F ⊂ (V (G)\D)∪{v} of vertices of finite degree. Since ci differ from
c1 only in finitely many vertices of finite degree, the lemma follows.

2. If v has finite degree and c2k+2(v) = c1(v), define c′ = c2k+2 ∗ v, so that c′(v) = c(v).
In this case, c′|V (G)\(F\{v}) = c|V (G)\(F\{v}). However, by Lemma 3.2.3 again, ac′(F) =

ac2k+2(F)+bc2k+2({v},F)−ac2k+2({v},F)≥ ac2k+2(F)−ac2k+2({v},F) and ac1(F)= ac(F)+

bc({v},F)−ac({v},F). On the other hand, ac2k+2({v},F)≤ ac({v},F)+bc({v},F)≤ k,
because k is chosen to be d(v) if v has finite degree. Combining these inequalities, we
conclude that

ac′(F)≥ ac2k+2(F)−ac2k+2({v},F)

≥ ac1(F)+2k+1− k

≥ ac1(F)+ k+1

= ac(F)+bc({v},F)−ac({v},F)+ k+1

≥ ac(F)+1

> ac(F)

Once c′(v) = c(v), this contradicts the fact that c is (F \ {v})−good. As before, for
some 1 ≤ i ≤ 2k+2, the coloring ci+1 = ci ∗Fi needs to be F−good for every finite set
F ⊂ (V (G)\D)∪{v} of vertices of finite degree. Since ci differ from c1 only in finitely
many vertices of finite degree, the lemma follows.

3. If v has finite degree but c2k+2(v) ̸= c1(v), then c2k+2(v)= c(v). In particular, c2k+2|V (G)\(F\{v})=

c|V (G)\(F\{v}). Again, since ac1(F) = ac(F)+ bc({v},F)− ac({v},F) by Lemma 3.2.3,
we now conclude that

ac2k+2(F)≥ ac1(F)+2k+1= ac(F)+bc({v},F)−ac({v},F)+2k+1≥ ac(F)+k+1> ac(F).

This also contradicts the fact that c is (F \{v})−good. Therefore, as in the previous cases,
for some 1 ≤ i ≤ 2k+2, the coloring ci+1 = ci ∗Fi needs to be F−good for every finite
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set F ⊂ (V (G)\D)∪{v} of vertices of finite degree. The lemma follows because ci differ
from c1 only in finitely many vertices of finite degree.

By taking D = /0 in the corollary below, Proposition 3.2.6 and Lemma 3.2.7 verify that
countable graphs with only finitely many vertices of infinite degree have unfriendly partitions:

Corollary 3.2.8 (Aharoni, Milner and Prikry (1990), Lemma 3). Let G be a countable graph

and fix c′ : D → 2 a partial coloring, defined on a subset D ⊂ V (G). If there are only finitely

many vertices of infinite degree in V (G) \D, then there is an extension c : V (G) → 2 that is

unfriendly in the vertices of V (G)\D.

Proof. Denote by I the (finite) set of vertices of V (G) \D that have infinite degree. Let c′′ :
D∪ I → 2 be an arbitrary extension of c′ over these vertices. Supported by Proposition 3.2.6, as
V \ (D∪ I) is composed only by vertices of finite degree, extend c′′ to a coloring c : V (G)→ 2
that is F−good for every finite set F ⊂V (G)\ (D∪ I). Now, denote by Dc ⊂ I the set of vertices
of infinite degree that have only finitely many enemies regarding c. Since I is finite, we can
choose c′′ and c so that |Dc| is minimum. Verifying that c is an unfriendly partition, we claim
that Dc = /0. For instance, suppose that there exists v ∈ Dc, namely, a vertex of infinite degree in
which c is not unfriendly. Then, by Lemma 3.2.7, for some finite H ⊂V (G)\(D∪ I), the coloring
ĉ = c∗ ({v}∪H) is also F−good for every finite subset F ⊂V (G)\ (D∪ I). In particular, ĉ is
still unfriendly in the vertices of finite degree and, since ĉ(v) = 1− c(v), now unfriendly in v.
Moreover, if c is unfriendly in a vertex u ∈ D, so is ĉ, since c(u) = ĉ(u) and ĉ is obtained from
c after changing the colors of v and of only finitely many vertices of finite degree. Therefore,
Dĉ = Dc \{v}, contradicting the minimality of |Dc|.

As another consequence, Lemma 3.2.7 enables us to attach graphs by some finite sub-
graphs while preserving the existence of F−good colorings. More precisely, the following result
will be helpful in future discussions:

Corollary 3.2.9 (Gluing Lemma for Colorings). Let G be a countable graph and S ⊂V (G) be a

finite set of vertices of finite degree such that G\S has precisely two connected components, say,

G1 and G2. For each i = 1,2, suppose that there is ci : V (G1)∪S → 2 an unfriendly partition

over G[V (Gi)∪S] that is F−good for every finite set F ⊂V (Gi)∪S of vertices of finite degree.

Then, there exists c : V (G)→ 2 an unfriendly partition over G that is F−good for every finite

set F ⊂V (G) of vertices of finite degree.

Proof. Let N(S) = {u ∈ V (G) : uv ∈ E(G) for some v ∈ S} be the neighborhood of the vertex
set S. Since S is a finite set of vertices of finite degree, N(S) is finite as well. Then, define
c : V (G)→ 2 as c(v) = c1(v) if v ∈V (G1)∪S and c(v) = c2(v) if v ∈V (G)\S. By the hypothesis
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over c1 and c2, c is F−good for every finite set F ⊂ V (G) \N(S) of vertices of finite degree.
Moreover, c is unfriendly in every vertex of infinite degree. After changing the colors of finitely
many vertices, Lemma 3.2.7 guarantees that c can be chosen to be F−good for every finite set
F ⊂V (G) of vertices of finite degree, since N(S) is finite.

Using Corollary 3.2.8 as a base case for an inductive argument, we can finally write
down a proof for Theorem 3.2.2:

Proof of Theorem 3.2.2. We will show that the desired extension c : V (G)→ 2 exist by induction
on |V (G)|, remarking that Corollary 3.2.8 provides a base case with |V (G)|= ℵ0.

Then, suppose that |V (G)|= κ > ℵ0 and denote by I the (possibly empty) set of vertices
of V (G)\D that have degree precisely κ . If some v ∈ I has κ neighbors in D, there is a color
i ∈ 2 so that κ many of these neighbors have color 1− i under c′. By declaring c′(v) = i, we can
assume that c′ is defined on v and is unfriendly in this vertex.

So, without loss of generality, suppose that every element of I has almost all its neighbors
in V (G)\D and denote µ = max{sup{d(v) : v ∈V \ (D∪ I)},ℵ0}. In other words, if there are
vertices of infinite degree in V (G)\ (D∪ I), then µ is the least upper bound of these degrees. If
not, G\ (D∪ I) is locally finite, and we consider µ = ℵ0. In both cases, d(u)≤ µ < κ for every
u ∈V (G)\ (D∪ I).

Now, denote by C the collection of connected components of G\ (D∪ I). Then, Lemma
2.1.3 shows that every C ∈ C has at most µ vertices. Since all them have degree at most µ ,
the set N(C) =

⋃
u∈V (C)

N(u)∩ (D∪ I) = {u ∈ D∪ I : u has a neighbor in C} has also at most µ

vertices. Defining C = G[V (C)∪N(C)] for every C ∈ C , we conclude that the elements of
C = {C : C ∈ C } have size bounded by µ as well.

In particular, the inductive hypothesis guarantees that, for each C ∈ C , the coloring
c′|N(C)∩D can be extended to a coloring πC : V (C)→ 2 which is unfriendly in every vertex of C.
If I = /0, then N(C) = N(C)∩D for every C ∈ C . In other words, c =

⋃
C∈C

πC is unfriendly in

every v ∈V (G)\D, because c|C = πC and such a vertex lie in a connected component C ∈ C .

Suppose now that |I|> 0 and that the Theorem follows for smaller values of |I|. Since
an element v ∈ I has κ neighbors in V \ (D∪ I), we observe that |C |= κ . After all, µ < κ and,
by the Claim previously established, the vertex v has at most µ neighbors in a given component
C ∈ C . Furthermore, this proves that v has neighbors in κ different elements of C . Then, fixing
v ∈ I and an arbitrary color c′(v) ∈ 2, by induction on |I| we can extend c′ to a coloring c : V → 2
that is unfriendly in every vertex of V \ (D∪{v}). If c is unfriendly in v, then c is the claimed
coloring.

If not, regarding c, the vertex v has fewer than κ enemies. In particular, the set C ′ = {C ∈
C : c(v) ̸= c(u) for some neighbor u ∈ V (C) of v} has fewer than κ elements. This means that
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the coloring c∗ v is unfriendly in v and possibly not unfriendly in vertices of components in C ′.
For a component C ∈ C ′, consider πC : V (C)→ 2 any extension of (c∗ v)|N(C) that is unfriendly
in all the vertices of C. We remark that this coloring exist by our first inductive hypothesis. Then,
the desired coloring ĉ : V (G)→ 2 is given by

ĉ(u) =


c(u), if u ∈ D∪ I \{v}.
c(u), if u ∈V (C) for some C ∈ C \C ′

1− c(u), if u = v.
πC(u), if u ∈V (C) for some C ∈ C ′.

Since c and ĉ differ only at v and at the connected components of C ′, it follows that ĉ is
also unfriendly in the vertices of I \{v}. After all, |C ′|< κ and these vertices have neighbors in
κ distinct components of C . Finally, ĉ is unfriendly in the vertices of connected components of
C by construction.

3.3 Greedy algorithms

While Chapter 3 studies graphs with few vertices of infinite degree, we will now approach
the opposite direction: this section aims to find unfriendly partitions in graphs with restrictive
conditions on vertices of finite degree. However, these vertices cannot be simply ignored without
additional hypothesis, since Section 3.4 presents uncountable graphs not admitting unfriendly
partitions neither vertices of finite degree.

Incidentally, the proofs in this section are rather different than those presented in the
previous one. For finite-like graphs, the unfriendly partitions were determined by relying on
the fact that max-cuts define suitable colorings in graphs on finitely many vertices. From now
on, most results will be developed via algorithms that iteratively try to assigns enemies for
already colored vertices. As a simple example, for a cardinal κ , we recall that a graph G is
κ−regular if d(v) = κ for every v ∈V (G). Then, the heuristic of the following proof will be
adapted throughout the next paragraphs:

Lemma 3.3.1. If G is a κ−regular graph, then it has an unfriendly partition.

Proof. If κ is finite, then G is a locally finite graph, so that the result follows from Corollary
3.2.1. Then, suppose that κ is infinite. As in the Claim of Theorem 3.2.2, we can assume that
|V (G)|= κ by considering G connected. Therefore, fix an non-injective enumeration {vi}i<κ

for V (G) with the following property: |{i < κ : vi = v}|= κ for every v ∈V (G). Then, for each
i < κ , we define recursively a coloring c : V (G)→ 2 according to the cases below:
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• If vi = v j for some j < i, then c(vi) = c(v j) is defined by induction. In this case, assuming
that c is defined in {vi′ : i′ < i}, there is n < κ for which vn is an uncolored neighbor of vi

regarding c. After all, d(vi) = κ by hypothesis. Then, we define c(vn) = 1− c(vi);

• If c is not defined for vi, set c(vi) = 0.

By the choice of the enumeration {vi}i<κ , the coloring c assigns κ−many neighbors to each
vertex of G, being an unfriendly partition.

In other words, Lemma 3.3.1 claims that, if we fix the degree of every vertex in a graph
G, then G admits an unfriendly partition. Motivating the main discussions of this section, we
will now allow that the vertices of G take degree within a finite list of regular cardinals. More
precisely, approaching the techniques developed by Aharoni, Milner and Prikry (1990), the proof
of the following result will be soon revisited:

Theorem 3.3.2 (Aharoni, Milner and Prikry (1990), Theorem 2). Let κ0 < κ1 < · · ·< κn be a

finite collection of infinite cardinals, with κi regular for each 1 ≤ i ≤ n. Let G be a graph such

that |{v ∈V (G) : d(v) is finite}|< κ0 and d(v) ∈ {κ0,κ1, . . . ,κn} for every vertex v ∈V (G) with

infinite degree. Then, G admits an unfriendly partition.

Originally, Theorem 3.3.2 was proven by induction over n ∈ N, the size of the list of
cardinals. Due to further applications in Chapter 4.4, we will rewrite this inductive argument,
emphasizing that the regularity condition over κi (for 1 ≤ i ≤ n) is the main hypothesis to be
used in the proof. Moreover, we observe that the assumption |{v ∈V (G) : d(v) is finite}|< κ0

claims that the amount of vertices of finite degree is despicable, since the vertices of infinite
degree have almost all its neighbors attaining infinite degree as well.

Therefore, from now on in this section, we will assume that a fixed graph G has only
vertices of infinite degree. Once proved Theorem 3.3.2 for this case, its general statement follows
by extending a partial coloring to vertices of finite degree with the aid of Proposition 3.2.6, as
we shall argue at the end of this section.

Before that, given a partial coloring c : D → 2 of a graph G whose vertices have all
infinite degree, it is convenient to globally extend that function in an unfriendly way, that is,
to be unfriendly in the set V (G)\D of remaining vertices. To this aim, the closure of c is the
function c defined by transfinite induction as follows:

1. Let D0 = {v ∈V (G)\D : |N(v)\D|< |N(v)|} denote the vertices of V (G)\D with less
uncolored neighbors than their degree. In particular, for each vertex v ∈ D0 there is a color
cv ∈ 2 such that v has d(v) neighbors colored 1− cv within D. Writing c0(v) = c(v) for all
v ∈ D and c0(v) = cv for all v ∈ D0, this extends c to a coloring c0 : W0 → 2 unfriendly in
the vertices of D0, where W0 := D∪D0.
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2. For each ordinal α > 0, suppose that cβ : Wβ → 2 is defined for each β < α . Assume also
that Wγ ⊂Wβ and that cβ extends cγ if γ < β . Therefore, a coloring c′α =

⋃
β<α

cβ is defined

over D′
α =

⋃
β<α

Wβ . As done with D0, let

Dα =
{

v ∈V (G)\D′
α :
∣∣N(v)\D′

α

∣∣< d(v)
}

be the set of uncolored vertices whose neighbors are almost all colored by c′α . Then, for
each v ∈ Dα there is a color cv ∈ 2 such that d(v) of its neighbors have color 1− cv. By
setting cα(v) = c′α(v) for every v ∈ D′

α and cα(v) = cv for every v ∈ Dα , this extends c′α
to a partial coloring cα : Wα → 2 unfriendly in Dα , where Wα = Dα ∪D′

α .

3. If Γ is the least ordinal such that DΓ = /0, this procedure defines a coloring c :
⋃

α<Γ

Wα → 2

that extends c and that is unfriendly in all the vertices of Wα \D, for every α < Γ. Denoting
its domain by D, we observe that, by the choice of Γ, |N(v)\D|= d(v) for all v ∈V (G)\D.
In particular, c = c.

Inspired by the fact that c = c, we say that a partial coloring c : D → 2 is closed if c = c.
This definition plays a key role in the original proof of Theorem 3.3.2. Below, we revisit its details
in order to provide a slightly more general statement for the result. These few modifications,
however, will be useful for some independence discussions on Chapter 4.4:

Theorem 3.3.3. Let K be a family of infinite cardinals such that the following property holds:

Every graph whose vertices have degree as a cardinal of K has an unfriendly partition.

Then, if κ is a regular cardinal greater than every member of K , every graph whose vertices

have degree as a cardinal of K ∪{κ} admits an unfriendly partition as well.

Revisited proof from Theorem 2 of Aharoni, Milner and Prikry (1990). Let G be a graph with
d(v) ∈ K ∪{κ} for every v ∈V (G). For each X ⊂V (G), we define N(X) =

⋃
v∈X

N(v). To better

apply our hypothesis, let M ⊂V (G) be the set of vertices of degree κ and N =V (G)\M be the
set of vertices whose degree belongs to K . Since κ is a regular cardinal, the proof of Lemma
2.1.3 can be adapted in order to show that |V (C)|< κ and |N(V (C))|< κ for each connected
component C of G[N].

To properly color some vertices of G, we say that two (disjoint) sets F0 ⊂ M and F1 ⊂ N

define a bipartite pair (F0,F1) if, for every v ∈ F0 and u ∈ F1, we have |N(v)∩F1|= d(v) = κ

and |N(u)∩F0| = d(u). In other words, for i ∈ {0,1}, every member of Fi has its degree of
neighbors in F1−i. Note that this property is closed by unions, because, if (F ′

0,F
′
1) is another

bipartite pair, every member of Fi∪F ′
i has its degree as amount of neighbors in F1−i∪F ′

1−i. Then,



56 Chapter 3. Problem background

we denote by (F0,F1) the maximal bipartite pair, described by the unions F0 =
⋃

(F ′
0,F

′
1)∈BP

F ′
0 and

F1 =
⋃

(F ′
0,F

′
1)∈BP

F ′
1, where BP is the set of all bipartite pairs of G.

That notation induces a natural unfriendly partial coloring c′ : F0 ∪F1 → 2, given by
c′(v) = 0 and c′(u) = 1 for every v ∈ F0 and u ∈ F1. Denoting its closure by c′ : D → 2, it follows
that c′ is also an unfriendly partial coloring and that |N(v)\D|= d(v) for every v ∈V (G)\D.
Therefore, it is enough to find a partial coloring c : V (G) \ D → 2 which is unfriendly in
G[V (G)\D], so c∪ c′ will be the requested unfriendly partition. To this aim, the choice of the
pair (F0,F1) guarantees the property below:

Claim: Let S ⊂ M \D be any set with |S|< κ . Then, the set
T = {u ∈ N \D : |N(u)∩S|= d(u)} has fewer than κ vertices.

Proof of the claim. Define the sets A = {v ∈ S : |N(v)∩T | < d(v) = κ} and B = {u ∈ T : u ∈
N(x) for some x ∈ A} =

⋃
x∈A

(N(x)∩T ). Once A ⊂ S, we have that |A| < κ . Then, |B| < κ by

definition of A and the regularity of κ . Noticing that (S \A,T \B) is a bipartite pair, we must
have T \B = /0 by the fact that the maximal bipartite pair (F0,F1) is already colored. Therefore,
|T |= |B|< κ .

To construct the requested coloring of G[V (G) \D], fix a non-injective enumeration
{vα}α<κ of M \D such that every member is presented κ times, i.e., |{α < κ : vα = v}| = κ

for every v ∈ M \D. Then, we will recursively define an unfriendly partition c : V (G)\D → 2
according to the following algorithm:

1. We first define c(v0) = 0. If v0 has a neighbor v ∈ M \D, we define c(v) = 1. If not, once
|N(v0)\D|= d(v0) = κ , there is a component C of G[N \D] where v0 has a neighbor v.
For every u ∈ N(C)∩M \ (D∪{v0}), we set c(u) = 0. By sewing c as a coloring defined
in G[C∪N(C)\D], we extend it to some vertices from C ⊂C by taking its closure. Then,
a vertex u ∈C \C satisfies |N(u)∩ (C \C)|= d(u) ∈ K . Hence, by hypothesis, we may
extend c to the whole component C by adjoining an unfriendly partition of G[C\C]. Unless
by changing the colors of all the vertices of (C∪N(C))\ (D∪{v0}), we can assume that
c(v) = 1. This finishes the first iteration of the algorithm. Note that, besides those vertices
of D, we have colored a component of G[N \D] and less than κ−many vertices from M,
as the first claim guarantees.

2. For some ordinal α > 0, denote by Sα ⊂M\D the set of vertices of degree κ from V (G)\D

that we have colored so far by this algorithm. Since α < κ and κ is a regular cardinal,
by transfinite induction we can suppose that |Sα |< κ . First, consider the case in which
c(vα) is already defined. If vα has a neighbor v ∈ M \ (D∪Sα), define c(v) = 1− c(vα).
If not, then vα has κ neighbors as elements of N \D. Moreover, once each connected



3.3. Greedy algorithms 57

component of G[N \D] has cardinality less than κ , v has neighbors in κ many of them.
Regarding that less than κ of such components were colored so far, by the last claim we
may find a connected component C of G[N \D] such that |N(u)∩ Sα | < d(u) for every
vertex u of C. In other words, every member of C has in V (G)\D as many neighbors as in
Dα :=V (G)\ (D∪Sα). Similarly to the procedure of the first iteration, define c(u) = 0 for
each u∈N(C)∩M∩Dα . Regarding c as a partial coloring of the graph G[C∪(N(C)∩Dα)],
we define c on some vertex subset C of C by taking its closure. Hence, every remaining
vertex u ∈C\C satisfies |N(u)∩(C\C)|= d(u)∈K . Now, the hypothesis can be applied
to extend c to G[C \C] by adjoining an unfriendly partition of such subgraph. Again,
up to changing the colors of all the vertices of C ∪ (N(C)∩Dα), we can assume that
c(v) = 1− c(vα). Finally, if c(vα) was not defined, we just set c(vα) = 0.

At the end of this transfinite process, c is defined for every vertex of M and for some
connected components of G[N]. In such components, this is an unfriendly coloring: each vertex
was colored by some closure throughout the procedure or by an unfriendly partition given by
the hypothesis. A vertex of M \D, instead, received a neighbor of opposite color in κ many
iterations after the moment his value by c was set, according to its indices of the enumeration
{vα}α<κ . Therefore, every member of M \D has κ neighbors of opposite color, verifying that c

is unfriendly in those vertices.

It remains, however, to define colors for vertices of some connected components of
G[N \D] that were not analyzed by the steps above. If C is one of those components, as before we
will see c as a partially defined coloring at G[C∪N(C)]. In fact, it is only defined in N(C)∩M. By
taking its closure within this component, c is defined for some vertex set C ⊂C and, therefore, it is
unfriendly in such vertices. Again, every member u∈C\C satisfies |N(u)∩(C\C)|= d(u)∈K .
Hence, the hypothesis can be applied to define c as an unfriendly partition for G[C \C], coloring
the entire component C.

Combining Lemma 3.3.1 with Theorem 3.3.3, Theorem 3.3.2 is recovered as an easy
consequence:

Proof of Theorem 3.3.2. Let F ⊂ V (G) be the set of vertices of finite degree. Due to the fact
that |F | < κ0 and d(v) ∈ {κ0,κ1, . . . ,κn}, the graph G \F has only vertices of infinite degree.
Actually, |N(v)\F |= d(v) for every v ∈V (G)\F . By Lemma 3.3.1, every κ0−regular graph
has an unfriendly partition. Then, since κi is regular for 1 ≤ i ≤ n, we can apply Theorem 3.3.3
iteratively to conclude that every graph whose vertices have degree in {κi : 1 ≤ i ≤ n} has an
unfriendly partition. In particular, G\F has an unfriendly partition. By Proposition 3.2.6, there
is an extension c : V (G)→ 2 of this coloring that is also unfriendly in F .
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3.4 The uncountable counterexamples

Written with a more specific vocabulary and notation from set theory, this section explains
the constructions of the unique graphs known in the literature that do not admit unfriendly
partition. They were obtained by Milner and Shelah in (SHELAH; MILNER, 1990) using
combinatorial properties of ultrafilters. Curiously, the least of these graphs has (2ω)+ω vertices,
none of them of finite degree. Here, (2ω)+ω means the first limit cardinal greater than the
continuum. In addition, these graphs are tripartite, in the sense that their vertex sets can be
partitioned into three subsets whose corresponding induced subgraphs have no edges.

Supposing an extra axiom of the set theory, Milner and Shelah initially describe in their
paper a graph with ℵω vertices, all them of infinite degree, that has no unfriendly partition. This
is done in a very short construction, but motivates a more complex one under ZFC. As we will
study in the Section 4.4, this consistent result also plays a theoretical role when discussing the
least amount of vertices needed to provide a graph with no unfriendly partitions, none of them of
finite degree. The mentioned independent assumption is the following:

(†) There exists a p−point U on ω of character ω1. In particular, there is a family {Aξ : ξ <

ω1} ⊂ U so that, for every A ∈ U , there exists a big enough η < ω1 for which A\Aξ is
finite whenever η ≤ ξ < ω1.

In the above result, a p−point is an ultrafilter on N with some additional properties,
closely related to the role it plays in the Stone-Čech compactification of the natural numbers.
For the interested reader, the Master’s dissertation of Zancul (2023) contains an introduction to
the study of p−points and their applications. As we will recall in some next discussions, it is
remarkable that (†) is consistent with ZFC+2ω > ℵω , as Theorem 8.0 (b) in (HART, 1989)
guarantees. On the other hand, its negative can be established from Martin’s Axiom (MA) and
¬CH, for example.

In order to construct the claimed graph G with no unfriendly partitions, let us fix U and
{Aξ : ξ < ω1} as in the statement (†). The vertex set V (G) will be taken as the union of the
following three disjoint sets:

• X = {xn : n < ω} is a copy of ω .

• Y = {y(ξ ,α) : ξ < ω1,α < ℵω} is a copy of the cartesian product ω1 ×ℵω . Regarding
an usual display of a grid, the set {y(ξ ,α) : α < ℵω} will be referred as the ξ−line of Y

for each ξ < ω1, while the set {y(ξ ,α) : ξ < ω1} is said to be its α−column for every
α < ℵω .

• Z = {zα : α < ℵω} is a copy of ℵω .
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Once |X | = ℵ0, |Y | = max{ℵ1,ℵω} = ℵω and |Z| = ℵω , it follows that G has ℵω

vertices (as promised). Now, the edges of G are defined according to also three rules:

• Set xnyα ∈ E for every n < ω and α < ℵω . In other words, G[X ∪Z] is a complete bipartite
subgraph. Since |Z|= |V |= ℵω , it follows immediately that every xn ∈ X has degree ℵω .

• Set zαy(ξ ,α) for every α < ℵω and ξ < ω1. In other words, every element zα ∈ Z is
adjacent to the whole α−column of Y . Since no more edges incident on vertices of Z will
be defined, every element of Z has degree ℵ1 and only countably many neighbors in X .

• For every n < ω , ξ < ω1 and α ≤ ℵn, set xny(ξ ,α) ∈ E if, and only if, n ∈ Aξ . Informally,
xn is a common neighbor of the ξ ’s-lines of Y such that n ∈ Aξ , but until the elements
of the ℵn−column. Conversely, every y(ξ ,α) ∈ Y is neighbor of (almost) all elements
xn ∈ X with n ∈ Aξ , except for finitely many of them whose indices are smaller than N,
in which N < ω is the unique number such that ℵN ≤ α < ℵN+1. Since no more edges
will be defined and U is a non-principal ultrafilter, every element of Y has degree ℵ0: it is
neighbor of infinitely many vertices of X and just one of Z.

Therefore, G is a tripartite graph with parts X , Y and Z. Moreover, the countable cofinality
of ℵω is explored in order to guarantee that every vertex of X has almost all its neighbors in Z.
On the other hand, every vertex of Z has almost all its neighbors in Y and every vertex of Y has
almost all its neighbors in X . Although omitting the edges just described, Figure 16 shows a
didactic way to present the vertex sets X , Y and Z, besides brief explaining why it is expected
that G has no unfriendly partition.

In fact, suppose that there is an unfriendly partition c : V (G)→ 2. Then, ω is naturally
partitioned into the sets A = {n < ω : c(xn) = 0} and B = {n < ω : c(xn) = 1}. Without loss of
generality, we can assume that A ∈ U , because U is an ultrafilter on ω . By the choice of the
sequence {Aξ}ξ<ω1

, there is η < ω1 such that Aξ \A is finite if η ≤ ξ < ω1. Fixing η ≤ ξ < ω1

and α < ℵω , we remind that y(ξ ,α) ∈ Y is neighbor to all but finitely many elements xn ∈ X

such that n ∈ Aξ . Only finitely many of those vertices, then, have not their indices in A too. In
other words, almost all the neighbors of y(ξ ,α) lie in {xn : n ∈ A}. Since c({xn : n ∈ A}) = {0}
by definition of A, it follows that c(y(ξ ,α)) = 1 because c is unfriendly in y(ξ ,α).

Therefore, we verified that the elements of any ξ−line of Y with ξ ≥ η receives color 1
by c. Consequently, each zα ∈ Z has only countably many neighbors of color 0: some of then in
the countable set X and some of then in countable set {y(α,ξ ) : ξ < η}. Since zα has degree ℵ1,
the fact that c is unfriendly in zα guarantees that c(zα) = 0 for every α < ℵω . If n ∈ A, however,
c(xn) = 0 and, as an element of X , xn has almost all its neighbors in Z. Hence, c is not unfriendly
in xn, which is a contradiction.

In summary, the following consistence result is proven:
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Figure 16 – Graph of size ℵω without unfriendly partitions

The vertex set of G is the disjoint union of X , Y and Z. If there was an unfriendly partition c : V (G)→ 2, we could
suppose that A = {n < ω : c(xn) = 0} ∈ U . This would imply, by the statement (†), that c(y(α,ξ )) = 1 for every
α < ω1 and big enough ξ . Hence, we would have c(z) = 0 for every z ∈ Z, contradicting the fact that c is unfriendly
in xn for any n ∈ A.

Source: Elaborated by the author.

Theorem 3.4.1 (Shelah and Milner (1990), Theorem 3). Suppose that (†) holds. Therefore,

there is a graph with ℵω vertices, all them of infinite degree, that has no unfriendly partition.

More specifically, every vertex of this graph has degree ℵ0, ℵ1 or ℵω .

Now, our aim is to provide a similar construction under the usual axioms of set theory.
As in Theorem 3.4.1, this will be a tripartite graph in which vertices of one part will have almost
all its neighbors in another. With the aid of an ultrafilter, any coloring will fail to be unfriendly.

To this aim, for any ordinal α let us denote ∥α∥= |α| if α is infinite and ∥α∥= 0 if α

is finite. We then consider the set S = {(α1,α2, . . . ,αn) : 2ω > ∥α1∥> ∥α2∥> · · ·> ∥αn∥} of
finite sequences of ordinals that are decreasing in terms of ∥ · ∥. Under that definition, S has a
natural tree structure: we denote (α1,α2, . . . ,αi)⪯ (α1,α2, . . . ,αn) if for every (α1,α2, . . . ,αn)∈
S and every i ≤ n. For simplicity, we also consider that the empty sequence /0 lies in S , being its
⪯−minimal element. Under a graph-theoretic viewpoint, we can see every (α1,α2, . . . ,αn) ∈S

as a neighbor of (α1,α2, . . . ,αn) for n ≥ 1, so that ⪯ is the corresponding tree order of S if the
root /0 is fixed.

Since there is no infinite decreasing sequence of cardinals, it is straightforward that S

is a rayless tree, in the sense that it has no infinite chain. Moreover, the maximal elements of
(S ,⪯) are precisely the sequences (α1,α2, . . . ,αn) ∈ S with αn finite. For every n < ω , we
also denote by Sn the elements of (S ,⪯) with height n or, equivalently, the sequences of S

with n elements.

Now, fix U any non-principal ultrafilter on ω . For each sequence (α1,α2, . . . ,αn) ∈ S ,



3.4. The uncountable counterexamples 61

let us define an ordered subset S(α1,α2, . . . ,αn)⊂ U recursively by the following rules:

• S( /0) = U is the entire ultrafilter U with an enumeration of its elements as {Aξ}ξ<2ω ;

• In order to define S(α1,α2, . . . ,αn), we suppose that S(α1,α2, . . . ,αn−1) is already defined
and that its elements are well-ordered as {Bξ}ξ<|αn−1|. Since αn < |αn−1| (because ∥αn∥<
∥αn−1∥ by definition of S ), it is possible to well-order {Bξ}ξ<αn with order type |αn|.
This defines S(α1,α2, . . . ,αn).

In particular, S(α1,α2, . . . ,αn) is a subset of S(α1,α2, . . . ,αn−1), but its order is not
necessarily inherited. That definition is useful, however, because every element of U becomes
present in S(v) for almost all leaves v ∈ S . More precisely, the observation below holds:

Lemma 3.4.2. Fix (α1,α2, . . . ,αn)∈S with αn infinite. Then, |{α < |αn| : A /∈ S(α1,α2, . . . ,αn,α)}|<
|αn| for every A ∈ S(α1,α2, . . . ,αn).

Proof. Fix {Bξ}ξ<|αn| as in the definition of S(α1,α2, . . . ,αn). If A ∈ S(α1,α2, . . . ,αn), then,
A = Bη for some η < |αn|. This means that A ∈ {Bξ}ξ<α if and only if η < α . However, by
construction, {Bξ}ξ<α and S(α1,α2, . . . ,αn,α) are the same set, just possibly with different
order types. Therefore

|{α < |αn| : A /∈ S(α1,α2, . . . ,αn,α)}|= |{α < |αn| : α < η}|< |αn|

We are ready to explicit the vertices of the desired graph G. As previously mentioned, we
will use (2ω)+ω vertices. For simplicity, we will denote κ = (2ω)+ω . This is a singular cardinal
with countable cofinality and a cofinal sequence in κ is given by {κn}n<ω , where κn = (2ω)+n

is the n−th cardinal greater than 2ω . More formally, if α > 0 is the ordinal such that 2ω = ℵα ,
then κ = ℵα+ω and κn = ℵα+n for each n < ω .

Similarly to the previous section, V (G) is partitioned into three sets X , Y and Z. They
are defined by the following rules:

• X = {xn : n < ω} is (again) a copy of ω .

• Y is written as a disjoint union Y =
⋃

α<κ
v∈S

Y α
v . Each Y α

v is, in its turn, a copy of the cartesian

product
ω

n+1
1 := ω1 ×ω1 ×·· ·×ω1︸ ︷︷ ︸

n+1 times

,

in which n is the length of v as a sequence. We highlight, therefore, that ω
n+1
1 is not the

usual exponentiation of ordinals in this context. Finally, for every α < κ , we refer to the
subset Y α =

⋃
v∈S

Y α
v as the α−level of Y .
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With this definition, we observe that any two levels of Y are copies of the same set.
This set, on the other hand, is obtained by the tree S when replacing every element of
height n by a copy of ω

n+1
1 .

• Z has a very similar definition to that of Y . First, it is written as a disjoint union Z =
⋃

α<κ
v∈S

Zα
v .

Each Zα
v is, in its turn, a copy of the cartesian product

ω
n
1 := ω1 ×ω1 ×·· ·×ω1︸ ︷︷ ︸

n times

,

in which n is the length of v as a sequence. In particular, Zα
/0 has exactly one element for

every α < κ , that we will define as the α−root. As before, for every α < κ , we refer to
the subset Zα =

⋃
v∈S

Zα
v as the α−level of Z.

In other words, any two levels of Z are copies of the same set, that is obtained by
the tree S when replacing every element of height n by a copy of ωn

1 .

Figure 17 – α−level of Y and Z

A display of the vertices of Y and Z in their

α−level, for some α < κ . We stretch that

the little black circles represent elements

of S and do not belong to the graph in

construction.

Source: Elaborated by the author.

In Figure 17, we sketch a helpful way to visu-
alize the vertices of any α−level of Y and Z. The little
black circles in the figure are not some of those vertices,
but instead are vertices of the tree S . If we fix v one of
them, the green circle drawn above it illustrates the set
Zα

v , while the orange circle below it represents the set
Y α

v . Regarding this picture, it is rather natural to define
the edge set E according to the following rules:

• For every v ∈ S and every α < κ , a vertex of Zα
v

is an element p ∈ ωn
1 , where n is height of v in

the tree S . We define p to be adjacent to every
element of {(p,δ ) : δ < ω1} ⊂ Y α

v = ω
n+1
1 . For

further illustrations, we call the edges defined this
way as type A edges.

• If v∈S is not a leaf of S , then it is a sequence of
the form v = (α1,α2, . . . ,αn), being αn an infinite
ordinal. Every successor of v in S , therefore, has
the form v(δ ) = (α1,α2, . . . ,αn,δ ) for some δ <

|αn|. Then, we define a vertex p ∈ Y α
v = ω

n+1
1 to

be adjacent to its copy in Zα

v(δ ), for every δ < |αn|.
The edges defined this way will be referred as type B edges.

• If v ∈ S is a leaf of S , then S(v)⊂ U is a finite subset of the ultrafilter U . In particular,⋂
S(v) ∈ U is an infinite subset of ω . Fixing α < κ and N < ω such that κN ≤ α < κN+1,
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we define every vertex of Y α
v to be adjacent of every element of the (infinite) set {xn : n ≥

N,n ∈
⋂

S(v)} ⊂ X . The edges defined this way will be referred as type C edges.

• We set that every element of X is adjacent to every α−root, that is, xn and the vertex of
Zα are neighbors for every n < ω and every α < κ .

Figure 18 – Edges of type A and B in the

α−level of Y and Z

The symbol “▲” between green and or-

ange circles represents a edge sets of type

A. On the other hand, straight lines be-

tween green and orange circles illustrate

edge sets of type B.

Source: Elaborated by the author.

Finished the definition of the edge set E(G), it
is not hard to verify that every vertex of G has infinite
degree. First, we observe that every vertex of X has de-
gree κ since it is adjacent to every α−root with α < κ .
Moreover, xn ∈ X has fewer than κn neighbors that are
not of this form, related to type C edges. In summary, ev-
ery vertex of X has almost all1 its neighbors as α−roots,
for α < κ .

If v ∈ S is not a leaf of S , then it has the form
(α1,α2, . . . ,αn) for some infinite ordinal αn. In this case,
for every α < κ , every vertex of Y α

v has |αn| neighbors
in Z given by edges of type B and one neighbor in Z

given by an edge of type A. If v ∈ S is a leaf, then
every vertex of Y α

v has ℵ0 neighbors in X , connected
by edges of type C, and one neighbor in Z, connected
by an edge of type A.

Finally, every vertex of Z has ℵ1 neighbors in Y ,
given by edges of type A. The α−roots have countably
many neighbors in X , for each α < κ , while the other
elements of Z have one more neighbor in Y given by
an edge of type B. In order to better visualize these
adjacencies, Figure 18 is obtained by Figure 17 by including the edges of type A and B in a fixed
α−level of the sets Y and Z.

For instance, suppose that there exists an unfriendly partition c : V (G)→ 2. As in the
proof of Theorem 3.4.1, ω is naturally partitioned into the sets A = {n < ω : c(xn) = 0} and
B = {n < ω : c(xn) = 1}. Since U is an ultrafilter, without loss of generality we can assume that
A ∈ U . By induction over the tree structure of S , we will verify the following observation:

Proposition 3.4.3. If v∈S is a sequence such that A∈ S(v), then c(Y α
v ) = {1} and c(Zα

v ) = {0}
for every level α < κ .

1 We observe that the countable cofinality of κ plays a relevant role in the construction precisely here,
at the description of where do belong most of the neighbors of some x ∈ X . This is also an argument
inspired by the consistent construction just studied.
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Proof. Let α < κ be any level. If v ∈S is a leaf in the tree structure of S , then S(v) is finite and⋂
S(v)⊂ A. Therefore, fixing p ∈ Y α

v , every neighbor of p given by an edge of type C received
the color 0 by c. Since only one edge of type A is incident in p and c is unfriendly in this vertex,
we must have c(p) = 1. This concludes that c(Y α

v ) = {1}. Also, once every vertex of Zα
v has

almost all its neighbors in Y α
v ), we verify that c(Zα

v ) = {0} because c is an unfriendly partition.

Suppose now that v is not a leaf of S . Therefore, it is of the form (α1,α2, . . . ,αn) with
αn infinite. In this case, Lemma 3.4.2 guarantees that A /∈ S(w) for fewer than |αn| successors w

of v in S , because A ∈ S(v). This means that every vertex of Y α
v has, through edges of type B,

almost all its neighbors among the elements of the set

Ω = {p ∈ Zα
w : w is a successor of v in S and A ∈ S(w)}.

However, by induction on the tree structure of S , we can assume that c(Ω) = {0}. Hence, since c

is unfriendly in every vertex of Y α
v , we must have c(Y α

v ) = {1}. As a consequence, c(Zα
v ) = {0},

because c is an unfriendly partition and every vertex of Zα
v has almost all its neighbors in Y α

v .

In particular, since A ∈ U = S( /0), Proposition 3.4.3 verifies that c(z) = 0 for every
α−root z ∈ Z. However, any xn ∈ X with n ∈ A has almost all its neighbors as elements of
{z ∈ Zα

/0 : α < κ}. Since c(xn) = 0 by definition of A, the coloring c fails to be unfriendly in x.
Facing this contradiction, the following statement is proved under ZFC:

Theorem 3.4.4 (Shelah and Milner (1990), Theorem 1). There exists a graph G with |V (G)|=
(2ω)+ω that has no unfriendly partition and such that all its vertices have infinite degree.

With little changes in some cardinalities, it is not hard to generalize Theorem 3.4.4 and
provide even bigger graphs that have no unfriendly partition. To that aim, fix λ any infinite
cardinal. From now on to the end of this section, we will point out how the definitions previously
made can be modified to construct a graph G with κ = (2λ )+ω vertices, all them of infinite
degree, that has no unfriendly partition.

We start by remarking that κ is the first limit cardinal greater than 2λ . Hence, it has also
countable cofinality: the sequence {κn}n<ω given by κn = (2λ )+n for each n < ω is cofinal in κ .
Again, if α > 0 is the ordinal such that ℵα = 2λ , then (2λ )+ω = ℵα+ω and (2λ )+n = ℵα+n.

The tree (S ,⪯) is now defined by

S = {(α1,α2, . . . ,αn) : n < ω, 2λ > ∥α1∥> ∥α2∥> · · ·> ∥αn∥}.

Meanwhile, the relation ⪯ is still given by the extension of sequences. Thus, (α1,α2, . . . ,αn)⪯
(α1,α2, . . . ,αn,δ ) for any δ < ∥αn∥.

In its turn, the ultrafilter U is chosen on λ , being also non-principal in the sense that
no subset of λ with fewer than λ elements belongs to U . This is possible because the family
F1 = {A ⊂ λ : |λ \ A| < λ} has the finite intersection property, allowing us to choose U
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containing F1. Besides that, for each n < ω , if Bn = {ωα + n : α < λ} denotes the set of
ordinals with remainder n on division by ω , we also have that the family F2 = {λ \Bn : n < ω}
has the finite intersection property. Actually, the union F1 ∪F2 has the finite intersection
property, so we will fix U containing F1 ∪F2.

For any sequence (α1,α2, . . . ,αn) ∈ S , we define S(α1,α2, . . . ,αn) ⊂ U exactly as
before, so that Lemma 3.4.2 still holds. Now, in order to define the sets X , Y and Z that partition
the vertex set V (G), we present the following minor changes:

• X = {xξ : ξ < λ} is a copy of λ .

• For a level α < κ and any v ∈ S , we set Y α
v to be a copy of (λ+)n+1, where n is the

height of v in the tree structure of S . Again, (λ+)n+1 denotes the cartesian product of
λ+ iterated n+1 times - and not the usual exponentiation of ordinals. We then define the
disjoint union Y =

⋃
α<κ
v∈S

Y α
v to be the set Y .

• For a level α < κ and any v ∈ S , we set Zα
v to be a copy of (λ+)n, where n is the height

of v in the tree structure of S . We then define the disjoint union Z =
⋃

α<κ
v∈S

Zα
v to be the set

Y . In particular, Zα
/0 contains just one element, that we refer as the α−root.

To describe the edge set E(G), we first point out that the edges of type A and B can be
defined as before whether we change ω1 by λ+ in the original definition. Also, we impose that
xξ is adjacent to the α−root, for every ξ < λ and α < κ . Finally, just one restriction is made
when analogously defining the edges of type C. Now, if v ∈ S is a leaf in S and p ∈ Y α

v for
some α < κ , we set xξ p ∈ E if, and only if, ξ ∈

⋂
S(v) and there is n < ω such that α ≤ κn and

ξ ∈ Bn.

With this definition, any xξ ∈ X is adjacent to at most κn vertices that do not belong to Z,
where n is the remainder obtained when dividing ξ by ω . On the other hand, if v is a leaf of S ,
we must have

⋂
S(v) ∈ U , because S(v)⊂ U is finite. Since Bn /∈ U for any n < ω and every

member of U has λ elements, every vertex of Y α
v has degree λ . Under these conditions - and

since Lemma 3.4.2 still holds -, an analogous statement of Proposition 3.4.3 can be proven in
order to verify that G has no unfriendly partition.

3.5 Hierarchies
The results in this section are rather different from the previous ones, since they aim to

describe unfriendly partitions by forbidding certain subgraphs. Now, we will revisit the paper
of Bruhn et al. (2010) in order to verify the unfriendly partition conjecture for rayless graphs.
Remarkably, the core of the proof is a characterization of this graph family via an hierarchy first
formalized by Schmidt (1983).
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Introducing this recursive structure, we set the finite graphs as graphs of lower complexity,
calling them rank 0 graphs. If α > 0 is an ordinal and the graphs of rank β are defined for every
β < α , we say that G is a graph of rank α if the following two properties are verified:

1. G has no rank β < α;

2. There is a finite separator S ⊂V (G) such that each connected component of V (G)\S has
a rank β < α . Intuitively, the connected components of G\S have smaller complexity. In
this case, we call S a kernel of G.

We first observe that not every graph has a rank: by deleting finitely many vertices of
a ray, some remaining connected component has also a ray, so that an eventual rank would be
decreased. In fact, the rays are the unique obstruction for the well definition of ranks, as one can
verify by adapting the proof of König’s Lemma (2.1.1):

Lemma 3.5.1. A graph has a rank if, and only if, it is rayless.

Proof. Clearly, finite graphs do not contain rays as subgraphs. Then, if G has rank α > 0 and
S ⊂V (G) is a corresponding kernel, we can assume by induction that the connected components
of G\S are rayless as well. Hence, G also contains no ray, since S is finite.

Conversely, assume that G is a graph with no rank. Therefore, fixing v0 ∈V (G), some
connected component C1 of V (G)\ v0 also has no rank. Fix an arbitrary neighbor v1 ∈ V (C1)

of v0. Suppose that it is already defined a ⊆ −decreasing family C1,C2, . . . ,Cn of connected
subgraphs of G with no rank, as well as a path v0v1 . . .vn with vi ∈ V (Ci) for each 1 ≤ i ≤ n.
Then, some connected component Cn+1 of C\vn has no rank too (and, in particular, it is an infinite
graph). Considering vn+1 ∈V (Cn+1) a neighbor of vn, we finish a recursive process that defines
a ray v0v1v2 . . . in G.

Exercise 3.5.2. Consider the tree S = {(α1,α2, . . . ,αn) : 2ω > ∥α1∥ > ∥α2∥ > · · · > ∥αn∥}
from the proof of Theorem 3.4.4. Recall that its tree order, when fixing /0 as a root, is given by

the extension of sequences. Moreover, we remarked on Section 3.4 that S is rayless. What is its

rank?

When Schmidt noticed the above description of the rayless graphs, his motivation was to
give a partial positive result for the reconstruction conjecture, another well known open problem
in (both finite and infinite) graph theory. Since them, other applications of his rank function were
obtained. Besides the contributions for the unfriendly partition problem, we can also mention the
existence of either none or infinitely many twins of rayless graphs, as approached by Bonato et

al. (2011). In common, these discussions often relies on the useful properties below:

Lemma 3.5.3. Consider G a rayless graph of rank α > 0. Let S ⊂V (G) be a kernel of G and

denote by C the set of connected components of G\S. Hence,
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• If F ⊂ C is finite, then the subgraph induced by S′∪
⋃

F has rank smaller than α , for

any subset S′ ⊆ S;

• If S is a ⊆ −minimal kernel, then its vertices have infinite degree. More precisely, they

have neighbors in infinitely many connected components from C .

Proof. In order to prove the first item, write F = {C1,C2, . . . ,Cn} and let αi denote the rank of
Ci for each 1 ≤ i ≤ n. Then, fix Si ⊂V (Ci) a finite separator such that the connected components

of Ci \Si have rank strictly smaller than αi. Therefore, F = S′∪
n⋃

i=1

Si is a kernel of the graph

induced by S′∪
⋃

F . In fact, each connected component of G[S′∪
⋃

F ]\F has rank smaller
than max

1≤i≤n
αi < α .

For the second item, fix v ∈ S be a vertex that has neighbors in only finitely many
elements from C . Let F ⊂ C denote the set of these connected components. In particular,
C ′ = {G[{v}∪

⋃
F ]}∪ (C \F ) is the set of connected components of G\ (S\{v}). However,

every subgraph in C ′ has rank smaller than α , by the previous item and the definition of C . This
shows that S is not a minimal kernel of G.

Exercise 3.5.4. In addition, show that, if G is a rayless graph, then there is a unique ⊆−minimal

kernel.

Lemma 3.5.3 is useful for combining inductive proofs over ranks with compactness
arguments. Although in this section we aim to conclude that every rayless graph has an unfriendly
partition, we shall first analyze the inspiring proof of the countable case:

Proposition 3.5.5. Every countable rayless graph has an unfriendly partition.

Proof, following Theorem 8.5.3 of Diestel (2018). Let G be a countable rayless graph and de-
note by α its rank. If α = 0, then G is finite, admitting unfriendly partitions. Therefore, we can
assume that α > 0. Fix a minimal kernel S ⊂V (G) of G, so that, by Lemma 3.5.3, every vertex
of S has countable infinite degree. Following the same lemma, denote by C = {Cn}n∈N the set
of connected components of G\S.

Let G0 be the graph induced by S∪C0. Suppose that Gk = G[S∪C0 ∪C1 ∪ . . .Cnk ] is
defined for some k ∈ N. Choosing a large enough nk+1 ∈ N, define Gk+1 = G[S∪C0 ∪C1 ∪
. . .Cnk ∪Cnk+1 ∪·· ·∪Cnk+1]. The choice of nk+1 can be even done such that, for each v ∈ S, one
of the following properties is verified:

• Either v has infinitely many neighbors in Gk;

• Or v has in Gk+1 \Gk strictly more neighbors than in Gk.



68 Chapter 3. Problem background

By Lemma 3.5.3, Gk has rank strictly smaller than α , so that we can fix ck an unfriendly
partition for Gk. Passing {ck}k∈N to a subsequence if necessary, we can assume that ck|S = ci|S
for every i,k ∈ N, since S is finite. Then, we define c : V (G)→ 2 as follows:

c(v) =

{
c0(v), if v ∈ S;
ckv(v), if v /∈ S, where kv = min{k ∈ N : v ∈V (Gk)}.

(3.1)

In the above notation, we observe that kv = ku if u,v ∈ V (G) \ S belong to the same
connected component of G\S, by the definition of Gkv and Gku . Hence, c is indeed unfriendly at
these vertices, because so is ckv and we have ckv |S = c0|S = c|S. For a given k ∈ N, if v ∈ S has
infinitely many neighbors in Gk (and thus in some connected component of {C0,C1, . . . ,Cnk}),
this same argument shows that c is unfriendly in v. On the other hand, if v ∈ S has finite
neighborhood in Gk, then v has strictly more neighbors in Gk+1 \Gk than in Gk, by construction.
In particular, since ck+1 is unfriendly at v, one of such neighbors is an enemy of v (considering
both c and ck+1). If this is the case for every k ∈ N, it follows that v has infinitely many enemies
regarding c, i.e., that c is unfriendly in v.

We observe that the above proof relies on the countability of G due to, at least, two
purposes. First, in this case, to verify whether a coloring is unfriendly in a vertex of infinite
degree turns out to check if it has infinitely many enemies. In general graphs, this is often not
sufficient, since vertices might have uncountable degree. Second, after deleting a (minimal)
kernel, an enumeration of the remaining connected components allows the definition of a global
coloring via finite approximations.

However, with some clever adaptations, it is possible to replicate the proof of Proposition
3.5.5 for more general cases, as originally done in (BRUHN et al., 2010). Following that work,
let us fix G any rayless graph, denoting by α its rank. Since finite graphs have unfriendly
partitions, we shall assume that α > 0. Consider S a ⊆−minimal kernel of G. Writing C for
the set of connected components of G\S, we will prove that G has an unfriendly partition via
two transfinite induction: first over α and, then, over κ . The base case κ = ℵ0 is quite similar to
Proposition 3.5.5:

Lemma 3.5.6. If κ = ℵ0, then G has an unfriendly partition.

Proof. Write C = {Cn}n∈N. Then, the neighborhood of a vertex v ∈ S in G \ S is given by⋃
n∈N

N(v)∩Cn. Hence, precisely one of the following three items below is verified:

i) v has d(v) neighbors in Cn for some n ∈ N;

ii) v has countable degree, but finitely many neighbors in Cn for each n ∈ N;



3.5. Hierarchies 69

iii) d(v) is a singular cardinal with countable cofinality. In this case, we fix {κn
v }n∈N a cofinal

sequence of cardinals for d(v).

Now, let G0 be the subgraph induced by S∪C0. Suppose that Gk = G[S∪C0 ∪C1 ∪ . . .Cnk ] is
defined for some k ∈ N. Choosing a large enough nk+1 ∈ N, define Gk+1 = G[S∪C0 ∪C1 ∪
. . .Cnk ∪Cnk+1 ∪ ·· · ∪Cnk+1]. The choice of nk+1 is done such that, for each v ∈ S, one of the
following properties is verified:

• v is as in the item i) above;

• If v is as in the item ii) above, then v has in Gk+1 \Gk strictly more neighbors than in Gk;

• If v is as in the item iii) above, then v has in Gk+1 \Gk at least κk+1
v neighbors. This

is possible by considering nk+1 bigger than a given n ∈ N such that |N(v)∩Cn| ≥ κ
j

v >

max
0≤i≤nk

|N(v)∩Ci| for some j > k+1.

By Lemma 3.5.3, we can fix ck an unfriendly partition for Gk. Then, at the end of this recursive
process, we defined an infinite sequence {ck}k∈N of partial colorings over G. Since S is finite, we
can assume that ck|S = ci|S for every i,k ∈ N, unless by considering a subsequence of {ck}k∈N.
Now, let c : V (G)→ 2 be the coloring defined the same way as in the rule 3.1. In particular, c is
unfriendly in V (G)\S.

If v ∈ S is as in ii), the second item above guarantees that c label an enemy for v in
Gk+1 \Gk for each k ∈ N. Hence, c is unfriendly in v, since d(v) is countable. If v ∈ S follows
item iii), then v has sup

k∈N
|N(v)∩V (Gk)| = sup

k∈N
κ

k
v = d(v) enemies regarding c, meaning that

this coloring is unfriendly in v. Finally, if v ∈ S is as in item i), there is some n ∈ N such that
d(v) = |N(v)∩Cn|. If n is minimal with that property and k = min{i ∈ N : Cn ⊂V (Gk)}, then v

has d(v) enemies in Gk regarding c, because ck is unfriendly in v as well.

The case in which κ is uncountable has some additional complexity. In order to approach
it, we observe that, if G were a finite graph and cD : D → 2 were a partially defined coloring, then
there would exist an extension c : V (G)→ 2 which is unfriendly in every vertex of V (G)\D.
In fact, we could apply Proposition 3.2.6 or choose c by maximizing the amount of edges with
differently colored endpoints.

Then, being G a rayless graph with rank α > 0, the above proof could be rewritten in
order to mention this property. More precisely, Lemma 3.5.6 could be stated as “if κ = ω and
cD : D → 2 is a partially defined coloring, there exists c : V (G)→ 2 an extension of cD which is
unfriendly in every vertex of V (G)\D”. To this aim, it would be enough to choose the sequence
of colorings {ck}k∈N such that, by induction on α , ck extends cD|U∩V (Gk). This observation was
not pointed out previously since it will be employed only at the (already very technical) proof
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below. In other words, when claiming the existence of an unfriendly partition by transfinite
induction, we might now assume that this coloring extends some partially defined map.

Theorem 3.5.7 (Bruhn et al. (2010), Theorem 1.1). If G is a rayless graph, then G has an

unfriendly partition.

Proof. Relying on Lemma 3.5.6, we can now assume that κ > ω . Then, fix a well ordering
{Cβ}β<κ for C . The neighborhood of a vertex v ∈ S in G\S is thus given by

⋃
β<κ

N(v)∩Cβ . In

particular, precisely one of the following cases is verified:

i) v has d(v) neighbors in
⋃

β<κv

Cα , for some κv < κ . In other words, v attains its degree in

less than κ connected components of G\S. Clearly, when d(v)< κ , we can even consider
κv big enough so that N(v)

⋃
β<κv

Cα ;

ii) d(v) = κ , but v has fewer than κ neighbors in
⋃

C ′ for any subfamily C ′ ⊂ C of size les
than κ;

iii) d(v)> κ , but v has fewer than d(v) neighbors in
⋃

C ′ for any subfamily C ′ ⊂ C of size
less than κ . In particular, d(v) is a singular cardinal whose cofinality is κ . This allows us
to fix {κ i

v}i<κ a cofinal sequence of cardinals for d(v);

The subsets of S comprising those vertices that satisfy i), ii) and iii) will be denoted by
S1, S2 and S3 accordingly. Now, fix µ < κ an upper bound for {κv : v ∈ S1} and let G0 denote
the subgraph of G induced by S∪

⋃
β≤µ

Cβ . For each v ∈ S3, let β 1
v > µ be chosen such that

|N(v)∩Cβ 1
v
| ≥ κ1

v . By transfinite induction, suppose that, for some i < κ , an ordinal β
j

v > µ is
defined for each j < i, chosen such that |N(v)∩C

β
j

v
| ≥ κ

j
v . Hence, since d(v)> κ has cofinality

κ and v does not admit d(v) neighbors within
⋃
j<i

C
β

j
v
, we can find β i

v ∈ κ \ ({β
j

v : j < i}∪ µ)

such that |N(v)∩Cβ i
v
| ≥ κ i

v. At the end of this recursive process, for every v ∈ S3, we defined a
subset (but not necessarily a subsequence!) {β i

v}i<κ ⊂ κ sstifying

|N(v)∩Cβ i
v
| ≥ κ

i
v for every i < κ.

Actually, since S is finite, we can refine the definition of these subsets in order to assume
that {β i

v}i<κ ∩{β i
u}i<κ ̸= /0 whenever u ̸= v.

For each i < κ , we then define Gi the subgraph induced by V (G0)∪ {Cβ i
v

: v ∈ S3},
as illustrated by Figure 19. Next, the inductive hypothesis over κ guarantees that there is an
unfriendly partition ci : V (Gi) → 2 for Gi. Unless by passing {ci}i<κ to a subsequence, we
assume (as in the two previous proofs) that ci|S = c j|S =: cS for every i, j < κ . Analogously, we
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Figure 19 – Definition of the subgraph Gi

The separator S ⊂V (G) is represented by a rectangle, which is partitioned into the subsets S1,S2 and S3.
The connected components of G\S, in its turn, are drawn as ellipses. Then, the subgraph Gi, sketched in
orange, is induced by S and the connected components from {Cα : α < µ or α = α i

v for some v ∈ S3}.

Source: Elaborated by the author.

can suppose that the definition of the set {v ∈ S1 : v has d(v) enemies regarding ci in G0} does
not depend on i. In other words, for v ∈ S1,

(⋆) The vertex v has d(v) enemies in G0 regarding every ci or v has d(v) enemies in Gi \G0

regarding every ci.

Given an index β ∈ κ \ ({β
j

v : v ∈ S3 and j < κ}∪µ), if it exists, we fix an unfriendly
partition cβ , which extends cS, for the subgraph induced by S∪Cβ . Such a coloring is given by
the inductive hypothesis over the rank of G. We now define a global coloring c : V (G)→ 2 by
setting

c(v) =


cS(v), if v ∈ S;
c1(v), if v ∈Cβ for some β < µ;
ci(v), if v ∈Cβ i

u
for some u ∈ S3 and some i < κ;

cβ (v), if v ∈Cβ for some β ∈ κ \ ({β
j

u : u ∈ S3 and j < κ}∪µ).

Hence, c is unfriendly in G\S, since vertices in this set were labelled following colorings
given by inductive hypothesis. If v ∈ S3, then c is unfriendly in v as well, because |N(v)∩
V (G0)| < d(v), ci is unfriendly in v and |N(v)∩Cβ i

v
| ≥ κ i

v for every i < κ . Similarly, c is
unfriendly in vertices of S1, because so is c1 and |N(v)∩G1|= d(v) for every i < κ and every
v ∈ S1.

Unfortunately, c might not be unfriendly for vertices in S2. Then, we denote by F ⊂ S2

the set of these vertices that have less than κ enemies regarding c. Thus, the coloring c ∗F ,
obtained by switching precisely the values of c in F , is unfriendly at F . However, c∗F is possibly
not unfriendly in vertices of the connected components described by the following set of indices:

ΛF = {β < κ : some v ∈ F has an enemy in Cβ regarding c}
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In particular, |ΛF |< κ by definition of F and the fact that F is finite. Moreover, for every index
β ∈ ΛF with β ≥ µ , we can change the coloring c∗F on Cβ by extending c∗F |S to the remaining
vertices of Gβ \ S. This can be done so that the resulting (global) coloring, denoted by c∗F ,
is also unfriendly at vertices of {Cβ : β ∈ ΛF ,β ≥ µ}. Now, still not being unfriendly at some
vertices of V (G0)\S =

⋃
β<µ

Cβ , the coloring c∗F might not be unfriendly at some vertices of S1

as well.

From now on to the end of this proof, we will work looking forward modifying c∗F in
these mentioned sets. To that aim, consider the cardinal

γ = max
{

ω,max
s∈F

|{u ∈V (G0)\S : c(u) ̸= c(v)}|
}
< κ,

where the above innequality follows from the fact that c is not unfriendly in vertices of F . The
conclusion of the proof relies on the following claim:

Claim: Denote by Ŝ ⊂ S1 the set of vertices which have in V (G0), regarding c, less than their
degree of enemies. Then, there is a coloring ĉ : V (G0)→ 2 such that:

• ĉ and c∗F agree on the vertices of Ŝ∪S2;

• ĉ is unfriendly in V (G0)\ (Ŝ∪S2);

• For every v ∈V (G0) with |N(v)∩V (G0)|> γ , we have ĉ(v) = (c∗F)(v).

Proof of the claim. The third condition states that ĉ is obtained from c∗F by changes on vertices
of degree at most γ in G0. Then, let Ĉ denote the set of connected components of G0[{v ∈
V (G0) : |N(v)∩V (G0)| ≤ γ}] that contains a vertex for which c∗F is not unfriendly. These
connected components are between the finitely many ones containing vertices of S1 or the γ ones
in which a vertex of F had an enemy regarding c. In other words, |Ĉ | ≤ γ , so that the graph Ĝ0,
comprising precisely the connected components of Ĉ , has at most γ vertices by Lemma 2.1.3.
Therefore, by the inductive hypothesis over κ , there is a coloring ĉ : V (G0)→ 2 which differs
from c∗F possibly at Ĝ0 \ (Ŝ∪S2) and that is unfriendly in vertices of this subgraph.

Now, if v is a fixed vertex from G0 \ Ĝ0 that also do not belong to Ŝ∪ S2, we analyze
whether d(v)≤ γ or d(v)> γ . In the first case, the neighbors of v also do not belong to Ĝ0, by
definition of Ĉ . Hence, ĉ agrees with c∗F in the neighborhood of v, proving that ĉ is unfriendly
in this vertex. Finally, if d(v) > γ , then ĉ and c ∗F disagrees in only fewer than d(v) of its
neighbors, since |V (Ĝ0)| ≤ γ . However, c∗F is unfriendly at v even if v ∈ S, because v /∈ Ŝ by
assumption. Then, so is unfriendly at this vertex the coloring ĉ.

Finally, we will check that the coloring h : V (G) → 2 defined below is an unfriendly
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partition for G.

h(v) =



c∗F(v), if v ∈ Ŝ∪S2 ∪S3;
ĉ(v), if v ∈ S1 \ Ŝ;
ĉ(v), if v ∈V (G0)\S =

⋃
β<µ

Cβ ;

c∗F(v), if v ∈Cβ for some β ≥ µ .

In fact, the above claim guarantees that h is unfriendly in S1 \ Ŝ, besides also showing
that h is unfriendly in vertices of V (G0)\S. Since h differs from c∗F in fewer than κ connected
components of G \ S, it follows that h is unfriendly in vertices of S2 ∪ S3. Due to property
(⋆),vertices of Ŝ have their degree as amount of enemies in Gi \G0 regarding c, for every
i < κ . Hence, h is unfriendly in v, because c∗F differs from c in F and less than κ connected
components of G\S.

It only remains to show that h is unfriendly in a vertex v ∈V (G)\V (G0). In this case,
v ∈Cβ for some β ≥ µ . For a contradiction, suppose that h is not unfriendly in v, meaning that
c∗F differs from ĉ in some neighbor u ∈ S1 \ Ŝ. In particular, d(u) = |N(u)∩V (G0)| ≤ γ , where
the last inequality follows from the third property of ĉ mentioned by the above claim. In this
case, we have the inclusion N(u)⊂

⋃
β<µ

Cβ , contradicting the fact that v /∈V (G0).

Once presented the whole proof that a rayless graph G has an unfriendly partition, we
observe that the main hypothesis over G was only needed when well defining its rank. After that,
the inductive steps of Theorem 3.5.7 were exclusively supported by the properties described
on Lemma 3.5.3. This observation is mentioned in (BRUHN et al., 2010), where the authors
developed the above proof in order to obtain a more precise statement for Theorem 3.5.7.

Introducing their main result, we say that a class of graphs U is finitely closed if U is
closed under finite unions and the addition of any finite set of vertices. In other words, for graphs
G1,G2, . . . ,Gn ∈ U , the graph whose set of connected components is precisely {Gi}n

i=1 must
belong to U . Besides that, for every G ∈ U and every finite graph S, any definition of edges
between S and G must construct another graph of U .

In particular, the finite graphs and the graphs with finitely many vertices of infinite
degree describe two examples of finitely closed families. On the other hand, the class of locally
finite graphs is not finitely closed: it is possible for an added new vertex to have infinitely many
neighbors in the original graph.

If U is a finitely closed family, the previous discussions suggest a definition for an
U −rank. More precisely, we set the elements of U as graphs whose U −rank is 0. If the graphs
of U −rank β are defined for every β < α , we say that G has U −rank α > 0 if the following
properties are verified:

• G is a graph that has no U −rank β for any β < α;
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• There is a finite separator S ⊂ V (G) such that the connected components of G \ S have
U −rank smaller than α .

Then, we denote by U the class of graphs whose U −rank is well-defined. In particular,
Lemma 3.5.1 claims that U is precisely the family of rayless graphs when considering U =

{finite graphs}. Adapting the proof of the Star-Comb Lemma (2.1.2), it is not hard to see that, if
U = {graphs with finitely many vertices of infinite degree}, then U comprises the graphs that
do not contain combs whose teeth are vertices of infinite degree.

Within the above language, Lemma 3.5.3 still holds for general U −ranks, so that the
main result of (BRUHN et al., 2010) can be stated as:

Theorem 3.5.8 (Bruhn et al. (2010), Theorem 2.3). Let U be a finitely closed family of graphs.

Suppose that, for every G ∈ U , the property below is verified:

Given a partial coloring c̃ : D → 2 in G, there is c : V (G)→ 2 an extension of c̃ that is

unfriendly in V (G)\D.

Then, this property also holds for graphs of U . In particular, by considering D = /0, graphs of

U admit unfriendly partitions.

When U = {graphs with finitely many vertices of infinite degree}, for example, the key
property of the above statement is verified by Theorem 3.2.2. Hence, there exist unfriendly
partitions for graphs that do not contain combs whose teeth are vertices of infinite degree.
However, there is no mention in the literature for other characterizations of this resulting graph
family. In fact, when relying on Theorem 3.5.8, one may be aware of facing the following two
problems: (1) to verify its hypothesis and (2) to find a convenient description for the elements of
U .

Exercise 3.5.9. Consider the finitely closed family

U = {graphs with finitely many vertices of finite degree}.

Which forbidden subgraphs describe U?

3.6 An extra color
This section explore a singular result in the literature regarding unfriendly partitions, due

to Shelah and Milner (1990). Now, we will discuss how coloring a graph with three colors, instead
of only two, is considerably more comfortable. Formally, we call an unfriendly 3−partition
over a graph G any function c : V (G)→ 3 such that

|{u ∈ N(v) : c(u) ̸= c(v)}| ≥ |{u ∈ N(v) : c(u) = c(v)}|
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for every v ∈V (G). Here, 3 = {0,1,2} is a set of three elements. Naturally, we still say that c is
unfriendly in a vertex v if the above inequality is verified. Motivating the next definitions, we
point out that unfriendly 3−partitions will be constructed following a recursive method similar
to the closure of colorings presented in Section 3.3.

More precisely, for a fixed graph G, we denote by I the set of connected components of
its subgraph induced by the vertices of finite degree. The elements of I are called the islands of
G. Let V0 := {v ∈V (G)\

⋃
I : |N(v)∩

⋃
I |= d(v)} ⊂V (G) be the set of vertices of infinite

degree that attain their degree within
⋃

I . Now, suppose that, for some α > 0, a set Vβ ⊂V (G)

of vertices of infinite degree is defined for every β < α . We then denote by Vα the set of vertices
not covered by {Vβ : β < α}∪

⋃
I that attain their degree within

⋃
β<α

Vβ . In other words,

Vα =

v ∈V (G)\
⋃

β<α

Vβ :

∣∣∣∣∣∣N(v)∩
⋃

β<α

Vβ

∣∣∣∣∣∣= d(v)

 .

Finally, if Ω is the first ordinal such that VΩ = /0, we define the residual graph (induced by) R =

V (G)\
⋃

α<Ω

Vα . Then, we say that the triple (I ,{Vα}α<Ω,R) is the canonical decomposition

of G, whose construction is sketched by Figure 20.

Figure 20 – The canonical decomposition of a graph G

Source: Elaborated by the author.

If G is countable, it turns out that R is either empty or ℵ0−regular: after all, any v ∈ R

must have infinitely many neighbors in R by the choice of Ω. In this latter case, there is
cR : V (R)→ 2 an unfriendly partition. Considering that, Milner and Shelah proved the following:

Proposition 3.6.1 (Shelah and Milner (1990), Theorem 4). Every countable graph admits an

unfriendly 3−partition.

Proof. Let (I ,{Vα}α<Ω,R) be the canonical decomposition of a countable graph G. Fix cR :
V (R)→ {0,1} an unfriendly partition and consider cV0 : V0 → {2} the constant map, writing
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cV0(v) = cv = 2 for each v ∈V0. Given α > 0, every vertex v ∈Vα has infinitely many neighbors
in
⋃

β<α

Vβ . Then, by induction on α , we can assume that there is a color cv ∈ {0,1} such that∣∣∣∣∣∣
u ∈ N(v)∩

⋃
β<α

Vβ : cu ̸= cv


∣∣∣∣∣∣= ℵ0. In particular, the coloring ĉ given by

ĉ(v) =


cR(v), if v ∈V (R);
2, if v ∈V0;
cv, if v ∈

⋃
α≥1

Vα .

for every v ∈ V (R)∪
⋃

α<Ω

Vα is unfriendly in V (R)∪
⋃

α≥1

Vα . Let ĉ ∗V0 denote some coloring

obtained from ĉ by arbitrarily changing the colors of all the vertices in V0. In particular, ĉ∗V0 :
V (R)∪

⋃
α<Ω

Vα → {0,1} is a labeling with two colors. Hence, by Theorem 3.2.2, there exists

c̃ :V (G)→{0,1} an extension of ĉ that is unfriendly in
⋃

I . Therefore, after defining c(v)= c̃(v)

for every v ∈V (G)\V0 and c(v) = 2 for every v ∈V0, the coloring c : V (G)→ 3 is an unfriendly
3−partition.

It is remarkable that, in the above proof, a third color was only necessary to label
the vertices of V0. However, obtaining an uncountable version of Proposition 3.6.1 requires
additional efforts, as suggested by the experiences from the previous sections. In that direction,
the following set-theoretic remark will be used for combinatorial purposes:

Lemma 3.6.2 (Shelah and Milner (1990), Lemma 1). Let {Ai}I∈I be an infinite family of sets

such that |Ai| ≥ |I| for every i ∈ I. Then, there is a family {Bi}i∈I of pairwise disjoint sets such

that Bi ⊂ Ai and |Bi|= |Ai| for every i ∈ I.

Proof. First, denote µ = |I| and consider the set I′ = {i ∈ I : |Ai|= µ}. Then, we can fix a non-
injective enumeration {iα}α<µ such that |{α < µ : iα = i}|= µ for every i ∈ I′. By induction,
for any α < µ it is possible to choose an element aα ∈ Aiα \{aβ : β < α}, since |Aiα |= µ . Next,
we define Bi = {aα : α < µ, iα = i} for every i ∈ I′. By the choice of the enumeration {iα}α<µ ,
the family {Bi}i∈I′ is composed by pairwise disjoint sets such that Bi ⊂ Ai and |Bi|= µ = |Ai|
for every i ∈ I′. Finally, note that the union B =

⋃
i∈I′

Bi has size µ = |I|.

It remains to define Bi for each i ∈ I \ I′. To that aim, consider κ = sup
i∈I\I′

|Ai| and fix ⪯ a

well ordering for I \ I′ of order type |I \ I′|. For some ordinal α ≤ κ , suppose that aβ

i ∈ Ai \B

is defined for every β < α and every i ∈ I \ I′ such that β < |Ai|. By induction, assume that
aβ

i ̸= aγ

j if i, j ∈ I \ I′ are distinct or β ̸= γ . For every i ∈ I \ I′ such that α = |Ai|, we set

Bi = {aβ

i : β < |Ai|}. Writing J = {i ∈ I \ I′ : α < |Ai|} and supposing that i ∈ J is a ⪯−minimal
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index for which aα
i is not defined, we can choose

aα
i ∈ Ai \ (B∪{aβ

j : β = α and j ≺ i or β < α and β < |A j|}).

Such an element exists since |Ai|> α (because i ∈ J) and |Ai|> |I| (because i /∈ I′).

At the end of this recursive process, we have defined the set Bi = {aα
i : α < |Ai|} ⊂ Ai

for every i ∈ I \ I′. Then, {Bi}i∈I is the claimed disjoint family.

Carefully observing the above statement, we can sketch its applications for graph-
theoretic problems: if I is an infinite set of vertices with at least |I| neighbors each, we can
assume that they attain their degree in pairwise disjoint subsets of their neighborhoods. As we
will see further, this is useful for defining unfriendly colorings recursively. On the other hand,
revisiting the original definition from Section 3.3, we note that there is more than one degree
of freedom for calculating the closure of a 3−partition c : D → 3. After all, if v is an uncolored
vertex of infinite degree and d(v) of its neighbors are already colored by c, then there exists at
least two choices of c(v) ∈ 3 which extends c to a coloring unfriendly in v. Then, which choice
is more convenient?

In fact, the above choice to be done depends on the problem. Hence, instead of defining
the closure of a coloring, we will now define the closure of its domain, in order to label the
vertices a posteriori. Formally, given a subset D ⊂ V (G), we call D closed if it contains any
vertex v ∈V (G) such that |N(v)∩D|= d(v). If v has finite degree, this means that D contains
its island as well. Then, the closure of a subset D ⊂V (G), denoted by D, refers to the smallest
closed set containing D. Recursively, D can be described as follows:

• We set D = D0;

• For an ordinal α > 0, the set Dα comprises the vertices v of V (G) such that∣∣∣∣∣∣N(v)∩
⋃

β<α

Dβ

∣∣∣∣∣∣= d(v). (3.2)

For some big enough ordinal Ω, we must have DΩ \
⋃

α<Ω

Dα
= /0, so that the closure

D =
⋃

α<Ω

Dα is well defined. Considering that, the availability of a third color is useful for

proving the technical lemma below:

Lemma 3.6.3 (Shelah and Milner (1990), Lemma 2). For a graph G, let A,B ⊂V (G) be disjoint

sets with B infinite. Suppose that, for each v ∈ B, (precisely) one of the following properties

holds:

(⋆) If |N(v)\A| ≤ |B|, then N(v)⊂ A∪B;
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(⋆) If |N(v)\A|> |B|, then |N(v)∩B\A|= |B|.

Then, for any partial coloring c : A∪B → 3, there is an extension c : A∪B → 3 which is, in the

induced subgraph G[A∪B], unfriendly in every vertex of

(A∪B\ (A∪B))∪{v ∈ B : |N(v)∩A∪B\ (A∪B)|> |N(v)∩ (A∪B)|}.

Proof. The definition of A∪B suggests that we are able to describe an extension of c which is
unfriendly in vertices of A∪B\ (A∪B). Then, we shall first analyze how an extension can be
unfriendly in a vertex v ∈ B for which |N(v)∩A∪B\ (A∪B)|> |N(v)∩ (A∪B)|. In this case,
we observe that |N(v) \A| > |B| (and, thus, |N(v)∩B \A| = |B|). Otherwise, we would have
N(v)⊂ A∪B by hypothesis, implying the contradiction that |N(v)∩A∪B\ (A∪B)|= 0.

In other words, denoting B′ = {v ∈ B : |N(v)∩A∪B\ (A∪B)|> |N(v)∩ (A∪B)|}, we
proved that every v ∈ B′ has infinite degree and |N(v)∩B\A|= |B|. In particular, |N(v)∩A∪B\
(A∪B)|> |B|. Therefore, applying Lemma 3.6.2, there is a disjoint family {N′(v)}v∈B′ such that
N′(v)⊂ N(v)∩A∪B\ (A∪B) and |N′(v)|= |N(v)∩A∪B\ (A∪B)| for every v ∈ B′. Writing
A∪B =

⋃
α<Ω

A∪Bα for some big enough ordinal Ω, the claimed coloring c : A∪B → 3 can be

recursively described as follows:

• c(u) = c(u) for every u ∈ A∪B = A∪B0;

• Suppose that c|
A∪Bβ is defined for every β < α (in a way that c|

A∪Bβ extends c|A∪Bγ if

β > γ). Then, given u ∈ A∪Bα \
⋃

β<α

A∪Bβ , by equation (3.2) there is a color j ∈ {0,1,2}

such that ∣∣∣∣∣∣N(u)∩
⋃

β<α

Dβ ∩ c−1( j)

∣∣∣∣∣∣= d(u).

If u ∈ N′(v) for some (unique) v ∈ B′, choose c(u) ∈ 3 \ { j,c(v)}. Otherwise, define
c(u) ∈ 3\{i} arbitrarily. In both cases, c is clearly unfriendly in v.

At the end of this recursive process, it is guaranteed that c : A∪B → 3 is unfriendly in
vertices of A∪B\ (A∪B). Given v ∈ B′, we have c(u) ̸= c(v) = c(v) for every u ∈ N′(v), by the
second item above. Since |N′(v)|= |N(v)∩A∪B\ (A∪B)|, it follows that c is also unfriendly
at v in the induced subgraph G[A∪B].

On the next pages, we will follow the fifth section of (SHELAH; MILNER, 1990) in
order to finally conclude that every uncountable graph G has an unfriendly 3−partition. Before
that, it is useful to sketch the proof and explain how the above definitions and results support the
main idea:
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1. First, we remark that the claimed partition c will be constructed recursively. Denoting by
A ⊂ V (G) its current closed domain, we might extend it for some vertex x ∈ V (G) \A,
hopefully being able to control its color. We will not extend c only to x, but also to an
infinite set B ⊂V (G)\A containing x. The size of B will be described based on how long
we have been applying the algorithm that defines c. For example, consider the case in
which B may be countable;

2. Then, we will close B under the operation of adding countably many uncolored neighbors.
More precisely, if v ∈ B has countably many neighbors outside A (finitely many or not), we
add all them to B. If v has uncountably many neighbors outside A, we add only countably
many of them for now. In both cases, this guarantees that A and B are under the hypothesis
of Lemma 3.6.3. Therefore, we might extend c twice. First, by induction on |B|, we define
c as an unfriendly 3−partition for G[A∪B]. After, Lemma 3.6.3 can extend it to A∪B,
whose domain is closed in G once more;

3. Following this procedure, c is unfriendly in vertices of A∪B\(A∪B), as well as in vertices
of B having countable degree. However, c might not be unfriendly in a vertex v ∈ B which
have ω1 neighbors in V (G)\(A∪B), for example. Then, when further extending c, we must
be aware of also labeling certain neighbors of v with colors from 3\{c(v)}. Suspecting
that v ∈ B will not be unique for which this careful analysis will be needed, Lemma 3.6.2
is helpful for finding a suitable subset of N(v) where we can define the required enemies.

The three items above draw a faithful overview for the first ω1 steps of the algorithm that
defines c. Formally, our aim now is to prove the inductive step below:

Theorem 3.6.4 (Shelah and Milner (1990), Pµ statement). Fix A,B ⊂ V (G) disjoint vertex

subsets of a graph G such that A is closed and A∪B =V (G). Given x ∈ B, i ∈ 3 and c : A → 3 a

partial coloring, there is ĉ : V (G)→ 3 an extension which is unfriendly in every vertex of B and

such that ĉ(x) ̸= i.

As suggested by the previous discussion, the proof of Theorem 3.6.4 is done by induction
on |B|. Since A is closed, the base case |B|= ω is obtained by revisiting the proof of Proposition
3.6.1, considering that all the colorings defined there extends c to G[B]. In addition, the color for
V0 in the canonical decomposition of G[B] is suitable chosen such that c(x) ̸= i. For example,
c|V0 ≡ i if x /∈V0 and c|V0 ≡ i±1 if x ∈V0.

Hence, we can assume that |B| is uncountable, while another simplification is made by
the remark below:

Lemma 3.6.5. Let A,B ⊂V (G), u ∈ B, i ∈ 3 and c : A → 3 be as in Theorem 3.6.4. If there is

an infinite B′ ⊂ B such that A∪B′ = V (G) and |B′| < |B|, then there exists c : V (G) → 3 the

claimed extension of c.
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Proof. Since A∪B′ =V (G), we have A∪D =V (G) for any D ⊂ B that also contains B′. There-
fore, for each v ∈ B′ such that |N(v)\A| ≤ |B′|< |B|, we can assume that N(v)\A ⊂ B′. Analo-
gously, if |N(v)\A|> |B′|, we can add |B′|−many elements of N(v)\A to B′ in order to suppose
that |N(v)∩B′ \A|= |B′|. By induction, since |B′|< |B|, we observe that there is c′ : A∪B′ → 3
an extension of c which is unfriendly for every vertex of B′ in G[A∪B′]. Moreover, assuming
that x ∈ B′ without loss of generality, we have c′(x) ̸= i.

On the other hand, by Lemma 3.6.3, there is c : V (G) → 3 an extension of c′ that is
unfriendly in every vertex of

(V (G)\ (A∪B′))∪{v ∈ B′ : |N(v)\ (A∪B′)|> |N(v)∩ (A∪B′)|}.

Finally, if v ∈ B′ satisfies |N(v)\ (A∪B′)| ≤ |N(v)∩ (A∪B′)|, we might consider two
cases. If v has finite degree, then N(v)⊂ A∪B′ by the assumptions made in the first paragraph.
Therefore, c is unfriendly in v because so is c′. By the same reason, c is unfriendly at v if it has
infinite degree, since d(v) = |N(v)∩ (A∪B′)| in this case.

In other words, from now on we can assume the negative of the above result, i.e., that
A∪B′ ⊊ V (G) for every B′ ⊂ B with size strictly less than |B|. Denoting µ = |B|, we fix ⪯ a
well ordering for B of order type µ and consider the following recursive construction:

• Set A0 = A. We choose B0 ⊂ B any infinite countable subset containing x0;

• For α < µ , we suppose that Aβ ⊃ A and Bβ ⊂ B are already defined for every β ≤ α .
We also assume that |Bβ | = max{|β |,ω} for every β ≤ α . Setting Aα+1 = Aα ∪Bα ,

we suppose by induction that Aα+1 = A∪
⋃

β≤α

Bβ . Hence, |B \Aα+1| = |B|: otherwise,

B′ = (B\Aα+1)∪
⋃

β≤α

Bβ would have size less than B and would satisfy A∪B′ =V (G).

Therefore, we can choose Bα+1 ⊂ B\Aα+1 any subset of size |Bα+1|= max{|α +1|,ω}
for which the conditions of Lemma 3.6.3 holds when applied to vertices of

⋃
β≤α

Bβ . More

precisely, for each v ∈
⋃

β≤α

Bβ , we can add enough vertices to Bα+1 so that, for every

v ∈
⋃

β≤α

Bβ , the following construct conditions holds:

(⋆) If |N(v) \Aα+1| ≤ |Bα+1|, then N(v) ⊂ Aα+1 ∪Bα+1. Moreover, we can assume
that Bα+1 contains a minimal element of N(v)\Aα (if there is some), regarding a
previously fixed well ordering of N(v) whose order type is |N(v)|;

(⋆) If |N(v)\Aα+1|> |Bα+1|, then |N(v)∩Bα+1 \Aα+1|= |Bα+1|.

In addition, we suppose that Bα+1 contains the ⪯−minimal element of B\Aα+1. Finally,
we highlight that Aα+1 ∩Bα+1 = /0;
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• If α is a limit ordinal, we set Aα =
⋃

β<α

Aβ and Bα = /0. Note that, if v ∈ Aα has finite

degree, then N(v) ⊂ Aβ for any successor ordinal β < α such that v ∈ Aβ . Finally, by
the last paragraph of the above item, we have Aµ = V (G). Moreover, for γ,β < µ , we
have Bβ ∩ Bγ = /0. After all, assuming that γ < β for example, Bβ ⊂ V (G) \ Aγ+1 =

V (G)\Aγ ∪Bγ .

For any cardinal κ < µ , the set of vertices from
⋃

α<κ+

Bα that have (at least) κ+ neighbors

in
⋃

α<κ+

Bα will be denoted by Yκ . Since |Bβ | = β for every infinite β < κ+, it follows that

|Yκ | ≤ κ+. Moreover, for every vertex v ∈Yκ , the set {κ ≤ α < κ+ : N(v)∩Bα ̸= /0} contains κ+

vertices, by the pigeonhole principle. Considering Yκ as a set of indices, we will apply Lemma
3.6.2 to the family {{κ ≤ α < κ+ : N(v)∩Bα ̸= /0}}v∈Yκ

. Hence, there is {Iκ(v)}v∈Yκ
a disjoint

family such that Iκ(v)⊂ {κ ≤ α < κ+ : N(v)∩Bα = /0} and |Iκ(v)|= κ+ for every v ∈ Yκ .

This definition suggests that we could, in a clever construction, label an enemy for v ∈Yκ

in every Bα with α ∈ Iκ(v). To this aim, for every 0 < α < µ , fix xα ∈ Bα and, if α ∈ I|α|(v)

for some (unique) v ∈ Yκ ∩
⋃

β<α

Bβ , suppose even that xα is a neighbor of v. For the case α = 0,

write x0 := x. Then, the following result relies on Lemma 3.6.3 in order to construct a suitable
increasing sequence of 3−partitions:

Lemma 3.6.6. There is {cα}α≤µ a sequence of partially defined 3−partitions such that:

i) c0 = c and cα : Aα → 3 for every α < µ . Moreover, c1(x) ̸= i and cα |Aβ
= cβ if β < α;

ii) cα+1(xα+1) ̸= cα+1(y) if α is not a limit ordinal and α +1 ∈ I|α+1|(v) for some (unique)

v ∈ Y|α+1|;

iii) For every α < µ , in the induced subgraph G[Aα+1], the coloring cα+1 is unfriendly in

(Aα+1 \ (Aα ∪Bα))∪{v ∈ Bα : |N(v)∩Aα+1 \ (Aα ∪Bα)|> |N(v)∩ (Aα ∪Bα)|}.

Proof. The definition of c0 is given by item i). If α > 0 is a limit ordinal and we suppose that cβ

satisfies the three conditions above for every β < α , then so does the well-defined limit coloring
cα =

⋃
β<α

cβ . Now, suppose that α = β +1 for some ordinal β , so that the following cases arise:

• If β is 0 or also a successor ordinal, then Aβ is closed by definition. Since |Aα | ≤ |α|< µ ,
by induction there is c′α : Aβ ∪Bβ → 3 an extension of cβ which is unfriendly in every
vertex of Bβ within the subgraph G[Aβ ∪Bβ ]. If β = 0, we can assume in addition that
c′1(x) = c′α(x) ̸= i. Analogously, if β > 0, we suppose that c′α(x) ̸= cα(y) if α ∈ I|α|(v) for
some (unique) v ∈ Y|α|. In both cases, by Lemma 3.6.3, there is cα : Aα → 3 an extension
of c′α for which item iii) is verified;
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• If β is a limit ordinal, we observe that Aα = Aβ , since Bβ = /0. In its turn, we can

write Aβ as the union Aβ =

Aβ \
⋃

γ<β

Bγ

∪

⋃
γ<β

Bγ

 , because Bγ ⊂ Aγ+1 for every

γ < β . For a vertex v ∈
⋃

γ<β

Bγ , if

∣∣∣∣∣∣N(v)\

Aβ \
⋃

γ<β

Bγ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣⋃γ<β

Bγ

∣∣∣∣∣∣ = max{|β |,ω},

then N(v) \

Aβ \
⋃

γ<β

Bγ

 ⊂
⋃

γ<β

Bγ . Otherwise, if u ∈ N(v) but u /∈

Aβ \
⋃

γ<β

Bγ


and u /∈

⋃
γ<β

Bγ , then u /∈ Aβ , which contradicts the construct conditions given by (⋆).

Analogously, if

∣∣∣∣∣∣N(v)\

Aβ \
⋃

γ<β

Bγ

∣∣∣∣∣∣≥
∣∣∣∣∣∣⋃γ<β

Bγ

∣∣∣∣∣∣= max{|β |,ω}, then

∣∣∣∣∣∣
N(v)∩

⋃
γ<β

Bγ

\

Aβ \
⋃

γ<β

Bγ

∣∣∣∣∣∣=
∣∣∣∣∣∣⋃γ<β

Bγ

∣∣∣∣∣∣= max{|β |,ω}.

Therefore, by Lemma 3.6.3, there is cα : Aβ → 3 an extension of cβ that verifies
item iii).

We will finish this section by showing that ĉ= cµ satisfies the statement of Theorem 3.6.4.
By item i) in the above lemma, we have ĉ(x) ̸= i. Then, it only remains to prove that ĉ is unfriendly
in every vertex of B. If v ∈ B \

⋃
β<µ

Bβ , then v ∈ Aα for some α > 0. Choosing α minimum

with that property, we must have α = β +1 for some ordinal β , as well as v ∈ Aα \ (Aβ ∪Bβ ).
Therefore, v lies on the closure of Aβ ∪Bβ , so that |N(v)|= |N(v)∩Aα |. It follows by item iii)

of the above result that ĉ is unfriendly in v.

Then, we will now suppose that v ∈
⋃

α<µ

Bα . In particular, v ∈ Bα for some (unique)

successor ordinal α . Recalling that Aµ =V (G), fix β the first ordinal satisfying |N(v)∩Aβ |=
d(v). Note that α < β , since v /∈ Aα and Aα is closed. According to the construct conditions (⋆),
v has infinite degree, because we would have N(v)⊂ Aα ∪Bα otherwise. The verification that ĉ

is unfriendly in v can be divided through the four cases below:

• Suppose that β is a successor ordinal, say β = γ + 1 for some α ≤ γ < µ , and that
d(v) = |N(v)∩Bγ |. We are done after proving that γ = α , since v ∈ Bα and c′α , as in the
proof of Lemma 3.6.6, is unfriendly in v. But, in fact, |N(v)\Aη |> max{|η |,ω} if there
were some α ≤ η < γ: otherwise, N(v)⊂ Aη ∪Bη ⊂ Aγ by conditions (⋆), contradicting
the choice of β . As a consequence,

|N(v)∩Aγ |= sup
α≤η<γ

|N(v)∩Aη | ≥ |γ|= |Bγ | ≥ |N(v)∩Bγ |= d(v),
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which contradicts the minimality of β once more;

• Suppose that β is a successor ordinal, say β = γ + 1, but d(v) > |N(v)∩Bγ |. By the
minimality of β , we also have d(v)> |N(v)∩Aγ |. Hence,

d(v) = |N(v)∩Aβ |= |N(v)∩Aβ \ (Aγ ∪Bγ)|> |N(v)∩ (Aγ ∪Bγ)|,

proving that ĉ is unfriendly in v because so is cβ , by property iii) of Lemma 3.6.6;

• Suppose that β is a limit ordinal and d(v)≤ |β |. Relying on the construct conditions (⋆)
and on the minimality of β , we must have |N(v) \Aγ | > |Bγ | = |γ| for every successor
γ < β . As a consequence, |N(v)∩ Bγ \ Aγ | = |Bγ | = |γ|. Hence, the minimality of β

imposes now that d(v) = |β |= β . In particular, it follows that v ∈Y|γ| for every α ≤ γ < β .
Therefore,

|{α ≤ γ < β : γ ∈ I|γ|(v)}|= sup
α≤γ<β

|I|γ|(v)|= sup
α≤γ<β

|γ|+ = β

However, ĉ(xγ) = cγ(xγ) ̸= ĉ(v) for every successor ordinal α ≤ γ < β such that γ ∈ I|γ|(v),
as guaranteed by item ii) Lemma 3.6.6. Hence, ĉ is unfriendly in v;

• Finally, suppose that β is a limit ordinal such that d(v)> |β |. Since d(v) = |N(v)∩Aβ |=
sup
γ<β

∣∣N(v)∩Aγ

∣∣, the degree of v is a singular cardinal in which {|N(v)∩Aγ |}γ<β is a cofinal

sequence. In particular, given a cardinal κ < d(v), there is γ < β such that |N(v)∩Aγ+1|>
κ . However, by the choice of β , we have |N(v)∩Aγ+1 \ (Aγ ∪Bγ)|> |N(v)∩ (Aγ ∪Bγ)|.
Then, item iii) of Lemma 3.6.6 guarantees that

|{u ∈ Aγ+1 ∩N(v) : ĉ(u) = cγ+1(u) ̸= cγ+1(v) = ĉ(v)}|= |N(v)∩Aγ+1 \ (Aγ ∪Bγ)|> κ.

Since κ < d(v) was chosen arbitrarily, this proves that |{u ∈ N(v)∩Aβ : ĉ(u) ̸= ĉ(v)}|=
d(v), concluding that ĉ is unfriendly in v.

Hence, the details concerning Theorem 3.6.4 are now fulfilled. In particular, by consider-
ing A = /0 in this result, we proved the main motivation for this section:

Theorem 3.6.7 (Shelah and Milner (1990), Theorem 4). Every graph has an unfriendly 3−partition.
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CHAPTER

4
NEW INSTANCES

While Chapter 3 revisits the main literature concerning the unfriendly partition conjecture,
in the next sections we will explore how some techniques already studied can be improved. In
particular, most of the results to be presented in this chapter are original, which includes the
recently published discussions in (AURICHI; REAL, 2023).

4.1 Introduction
Although the unfriendly partition conjecture now states that every countable graph admits

an unfriendly partitions, only simple observations in the literature make a strong use of that
hypothesis. For example, as a particular case from Theorem 3.2.2, we easily check that every
countable graph with finitely many vertices of finite degree has an unfriendly partition, relying on
Lemma 3.3.1. Of course, the family of graphs studied in Section 3.4 shows that the countability
condition of this remark cannot be simply dropped.

To summarize, compiling the results from the first three sections of Chapter 3, what is
known about the unfriendly partition for countable graphs can be partitioned into two categories:

1. Graphs with few vertices of finite degree: countable graphs with finitely many
vertices of finite degree have unfriendly partition. This can be proved by drawing a simple
algorithm that attributes an enemy to every vertex of infinite degree;

2. Graphs with few vertices of infinite degree: graphs with finitely many ver-
tices of infinite degree have unfriendly partitions. This is basically the statement of
Theorem 3.2.2, that relies on the stronger notion of F−good colorings discussed by
Section 3.2.

Clearly, the other positive results available in Section 3.5 restrict themselves to the
countable case as well. In particular, as claimed by Theorem 3.5.7, we recall that every (not
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necessarily countable) rayless graph has an unfriendly partition. That work, actually, brings
another possible meaning for the word “few” in the two observations above. In the next section,
then, we will prove that every graph whose rays passes through only finitely many vertices of
finite degree has an unfriendly partition. Dually, Section 4.3 verifies that every graph whose rays
contains only finitely many vertices of infinite degree admits such a coloring. Therefore, the two
categories above can be stretched as Figure 21 suggests.

Figure 21 – Criteria for the existence of unfriendly partitions in countable graphs

The known results related to the countable case of the unfriendly partition conjecture can be partitioned
between graphs with few vertices of finite degree and graphs with few vertices of infinite degree.

Source: Elaborated by the author.

Finally, Section 4.4 is inspired by a natural question that arises after facing the uncount-
able counterexamples of Shelah and Milner (1990). As studied by Section 3.4, if we consider the
constructions done only within ZFC, the more economical of these graphs has (2ω)+ω vertices.
When adding extra axioms for set theory, we can exhibit a graph with ℵω vertices that has no
unfriendly partition. In both cases, the cardinals (2ω)+ω and ℵω are far from being countable,
although the graphs obtained have only vertices of infinite degree. Our paper (AURICHI; REAL,
2023), from where the last section of this chapter is extracted, verifies whether these amounts
can be improved, even supposing that 2ω > ℵω .

4.2 Few vertices of finite degree

In this dissertation, the main discussions regarding graphs with few vertices of finite
degree were presented in Section 3.3. There, a remarkable statement is Theorem 3.2.2, obtained
after adapting a greedy algorithm that assigns enemies to already colored vertices. This sec-
tion works under a similar heuristic, but aiming to conclude the following criteria for finding
unfriendly partitions in countable graphs:
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Theorem 4.2.1. Every countable graph whose rays pass through finitely many vertices of finite

degree admits an unfriendly partition.

The proof of the above result is supported by the canonical decomposition (I ,{Vα}α<Ω,R)

of a graph G, as introduced in Section 3.6. If G is countable, we recall that its residual graph
G[R] is either empty or ℵ0−regular. In this latter case, by Lemma 3.3.1 for example, there is
cR : R → 2 an unfriendly partition for G[R]. On the other hand, if G is under the main hypothesis
of Theorem 4.2.1, then, by König’s Lemma (2.1.1), its islands are finite graphs.

In an attempt to extend the coloring cR to the remaining vertices, let us say that a subset
D ⊂V (G) is finitely covered if, for every I ∈ I such that I ∩D ̸= /0, then N(I) = {u ∈V (G) :
uv ∈ E(G) for some v ∈ I} ⊂ D.

Exercise 4.2.2. Let G be a graph and suppose that D ⊂ V (G) is closed, according to the

definition presented right before Lemma 3.6.3. Show that D is finitely covered.

We will thus define a partial ordering ⪯ over the set of pairs

D = {(D,cD)|D⊂V (G) is finitely covered,R⊂D,cD :V (D)→ 2 is unfriendly in D and extends cR}

as follows: (D,cD)⪯ (D′,cD′) if, and only if, D ⊂ D′ and cD′ extends cD. In particular, if C ⊂ D

is a totally ordered subset, the pair

 ⋃
(D,c)∈C

D,
⋃

(D,c)∈C

c

 is well-defined and belongs to D .

Therefore, by Zorn’s Lemma, there is (D,cD) a ⪯−maximal pair. Then, Theorem 4.2.1 follows
if we argue that D =V (G).

For a contradiction, suppose that V (G)\D ̸= /0. In particular, we observe that there is
an uncolored vertex of infinite degree. If not, by taking I ∈ I that has an uncolored vertex by
cD, any extension cI of cD to D∪ I, chosen so that |{uv ∈ E(G) : u ∈ I,cI(u) ̸= cI(v)}| attains
maximum value, contradicts the choice of (D,cD). Moreover, one can prove the following:

Lemma 4.2.3. If v ∈Vα \D has infinite degree for some α > 0, then there are infinitely many

{v}−V0 uncolored paths disjoint unless by v. More precisely, there is a collection {Pi}i<ω of

paths starting at v so that:

• Pi ∩Pj = {v} if i ̸= j;

• Pi ⊂V (G)\D for every i < ω;

• For every i ∈ N, Pi contains precisely one vertex of V0, that is its endpoint other than v.

Proof. We will construct the family of paths claimed by the lemma by induction on α . To
that aim, the maximality of (D,cD) guarantees that v has infinitely many uncolored neighbors.
Otherwise, we could extend cD to v so that this vertex has infinitely many neighbors of color
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1− cD∪{v}(v). In particular, if α = 1, it is enough to consider {Pi}i∈N as the paths of the form
{vvi}i∈N, where {vi}i∈N is an enumeration of the uncolored neighbors of v in V0.

Suppose now that α > 1 and let v0 ∈Vβ0 \D be any neighbor of v with 0 < β0 < α . By
induction, fix P′

0 any uncolored v0 −I path. Supposing that P′
0,P

′
1, . . . ,P

′
i is defined for some

i < ω , let vi+1 ∈ Vβi+1 \ (D∪P′
0 ∪P′

1 ∪ ·· · ∪P′
i ) be another neighbor of v, again chosen so that

βi+1 < α . By induction again, there is P′
i+1 ⊂ Vβi+1 \ (D∪P′

0 ∪P′
1 ∪ ·· · ∪P′

i ) a vi+1 −I path.
That procedure defines a family {P′

i }i∈N of disjoint paths. By considering the concatenation
Pi = vP′

i for every i < ω , the lemma follows.

In particular, by Lemma 4.2.3, there is v0 ∈V0 \D an uncolored vertex. Since D is finitely
covered, no neighbor of finite degree of v0 is colored. We claim that v0 has a neighbor in an
island I0 ∈ I an island such that N(I0)\ (I0 ∪D∪{v0}) ̸= /0. For instance, suppose that this is
not the case, i.e, N(I)\ I ⊂ D∪{v0} for every island I in which v0 has a neighbor. Denote by I0

the family of such islands. Then, by Corollary 3.2.8, there is c an extension of cD to the graph
G[D∪{v}∪

⋃
I0] which is unfriendly in {v}∪

⋃
I0. Noticing that D∪{v}∪

⋃
I0 is finitely

covered, c contradicts the choice of (D,cD).

Considering P0 an edge between v0 and some fixed neighbor in I0, suppose that we have
so far defined paths P0,P1, . . . ,Pn and islands I0, I1, . . . , In such that:

• Pi ∩Pj = /0 if 0 ≤ i ≤ n are distinct;

• For each 1 ≤ i ≤ n, Pi is a path starting at ui, an uncolored neighbor of some vertex in Ii−1,
and ending in a vertex vi of N(Ii)∩V0;

• N(In)\ (D∪P0 ∪P1 ∪·· ·∪Pn) ̸= /0.

By the third item above, there is un+1 ∈ N(In) \ (D∪P0 ∪P1 ∪ ·· · ∪Pn). Relying on
Lemma 4.2.3, we fix Pn+1 any {un+1}−V0 uncolored path that is disjoint from P1,P2, . . . ,Pn,
denoting by vn+1 ∈V0 its endpoint other than un+1. Let In+1 ⊂I be the collection of islands in
which vn+1 has a neighbor. Since D is finitely covered, every member of I is uncolored by cD.

Finishing a recursive construction, we claim that there is an island In+1 ∈ In+1 such that
N(In+1)\(D∪P0∪P1∪·· ·∪Pn+1) ̸= /0. For instance, suppose that this is not the case, i.e., N(I)\
D ⊂ P0 ∪P1 ∪·· ·∪Pn+1. Therefore, by the pigeonhole principle, there is A ⊂ P0 ∪P1 ∪·· ·∪Pn+1

satisfying N(I) \D = A for every island I in an infinite subfamily I ′ ⊂ In+1. In particular,
A ⊂ V0, or, in other words, every member of A has infinitely many neighbors of finite degree.
Hence, by Corollary 3.2.8, cD can be extended to an unfriendly coloring c over G[D∪A∪

⋃
I ′].

By the choice of A, the set D∪A∪
⋃

I ′ is finitely covered, contradicting the maximality of
(D,cD).

Therefore, for each n ∈ N, it is defined a path Pn between the vertices of infinite degree
un and vn. Moreover, un and vn−1 have neighbors in the island In−1. Let Qn−1 be a path between
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these two vertices of finite degree. Then, a concatenation R = P0Q0P1Q1P2Q2 . . . defines a ray
that passes through infinitely many vertices of finite degree, contradicting the main hypothesis
over G. Therefore, we must have D =V (G), proving Theorem 4.2.1.

Despite being mentioned at this very last stage of the proof, the assumption that the
rays of G contains only finitely many vertices of finite degree is also used when, after applying
König’s Lemma, claiming that the islands of G are finite. By preserving only this latter property,
we ask whether the following generalization of Theorem 4.2.1 holds:

Problem 4.2.4. Let G be a countable graphs whose islands are finite. Does G admit an unfriendly

partition?

As a “toy result” for the above question, we finish this section by arguing that its answer
is affirmative when we assume that all islands are singletons. This proof, closely similar to the
one just presented for Theorem 4.2.1, also relies on a greedy algorithm:

Proposition 4.2.5. Let G be a countable graph whose vertices of finite degree define an in-

dependent set, i.e., they are pairwise non-adjacent. Then, there is c : V (G)→ 2 an unfriendly

partition.

Proof. Consider the set

D = {(D,c) | c : D → 2 is already unfriendly in D}

and endow it with the following partial order: (D,c)⪯ (D′,c′) if, and only if, D⊂D′ and c′|D = c.
By Zorn’s Lemma, there is (D,c) ∈D a ⪯−maximal element. As in the proof of Theorem 4.2.1,
we will check that D =V (G).

For instance, suppose that this is not the case. In particular, the arguments applied in the
proof of Lemma 4.2.3 shows that there are vertices of finite degree in V (G)\D. If v ∈V (G)\D

is a such a vertex, we denote Ni(v) = N(v)∩ c−1(i) for each color i ∈ {0,1}. By the maximality
of (D,c), we must have |Ni(v)| ≤ ⌊d(v)

2 ⌋ for each i: otherwise, we could extend the pair (D,c) by
setting c(v) = 1− i. Hence, for a set F ⊂V (G)\D and a partial coloring cF : F → 2, we say that
F (endowed with cF ) fulfills the vertex v if |Ni(v)|+ |N(v)∩c−1

F (i)|> ⌊d(v)
2 ⌋ for some i ∈ {0,1}.

In this case, the extension of c∪ cF that colors v with 1− i is already unfriendly at this vertex.
Thus, we even say that F fulfills v with the fulfilling color 1− i. By the maximality of (D,c), the
following claim holds:

Claim: Every finite set F ⊂V (G)\D (with any coloring) of vertices of infinite degree fulfills
only finitely many vertices of finite degree.

Proof of the claim: Suppose that a finite set F ⊂V (G)\D of vertices of infinite degree fulfills
an infinite set A of vertices of finite degree. Consider that F is minimal with that property. In this
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case, every v ∈ F must have infinitely many neighbors in A: otherwise, F \{v} would also fulfills
vertices in an infinite subset of A. Let cF : F → 2 denote the coloring for which F fulfills the
vertices of A. Consider ĉ : D∪F ∪A → 2 the common extension of c and cF given by ĉ(v) = cv

for every v ∈ A, in which cv ∈ {0,1} is the color fulfilled in v by F . Then, ĉ is already unfriendly
in D because so is c. Moreover, ĉ is already unfriendly in A by definition of fulfillment. Finally, if
ĉ is not unfriendly in a vertex v ∈ F , then F \{v} with the coloring cF |F\{v} fulfills the (infinitely
many) vertices of A\{u ∈ N(v)∩A : ĉ(u) ̸= ĉ(v)}, contradicting the minimality of F . Then, ĉ is
already unfriendly in the vertices of its domain, so that (D∪F ∪A, ĉ) contradicts the maximality
of (D,c) in D .

Relying on the above claim, we can adapt the greedy algorithm applied in Lemma
3.3.1. More precisely, we will construct a ⊆−increasing sequence {Dn}n∈N of finite subsets of
V (G)\D, together with a sequence of colorings {cn : D∪Dn → 2}n∈N, as follows:

• We consider D′
0 = {v0} ⊂ V (G) \D any singleton set and define c′0(v0) = 0. Let c0 :

D∪D0 → 2 be the extension of c′0 that labels the finitely many vertices of finite degree
fulfilled by D′

0 with the fulfilling color. By the above claim, D0 is finite;

• For each n ∈ N, assume by induction that the vertices of finite degree fulfilled by Dn are
contained in Dn as well. Enumerate the vertices of infinite degree in Dn as {vn

0,v
n
1, . . . ,v

n
k}.

Set Dn+1
0 = /0 and cn+1

0 = cn : D∪Dn+1
0 → 2. For some 0 ≤ i ≤ k, suppose that it is defined

a coloring cn+1
i : D∪Dn+1

i → 2, where Dn+1
i does not fulfill any vertex of finite degree

(regarding the coloring cn+1
i |Dn+1

i
). Then, consider the following cases:

– Suppose that vn
i has a neighbor u of infinite degree in V (G) \ (D∪Dn+1

i ),. Write
cn+1′

i+1 for the assignment u 7→ 1− cn(vn
i ). Then, consider cn+1

i+1 : D∪Dn+1
i+1 → 2 as

the extension of cn+1
i such that cn+1

i+1 (u) = 1− cn(vn
i ) and that gives the fulfilling

color to the finitely many vertices fulfilled by Dn+1
i ∪{u} (regarding the coloring

cn+1′
i+1 ∪ cn+1

i );

– Suppose that vn
i has a neighbor u ∈V (G)\ (D∪Dn+1

i ) of finite degree. By induction
on i, we can assume that Dn+1

i does not fulfill u, i.e., |Ni(u)|+ |N(u)∩(cn+1
i )−1(i)| ≤

⌊d(v)
2 ⌋ for each color i ∈ {0,1}. Then, consider cn+1′

i+1 : {u}∪(N(u)\(D∪Dn+1
i ))→ 2

the coloring given by:

cn+1′
i+1 (x) =

{
1− cn(vn

i ), if x = u;
cn(vn

i ), if x ∈ N(u)\ (D∪Dn+1
i )

Since Dn+1
i does not fulfill u, the coloring cn+1′

i+1 is already unfriendly in this vertex,
that has only neighbors of infinite degree. Let cn+1

i+1 : D∪Dn+1
i+1 → 2 be the common

extension of cn+1
i and cn+1′

i+1 that gives the fulfilling colors for the vertices fulfilled by
Dn+1

i ∪ (N(u)\ (D∪Dn+1
i )). The above claim guarantees that the new set of colored

vertices Dn+1
i+1 is finite.
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Then, consider Dn+1 = Dn+1
k+1 and cn+1 = cn+1

k+1.

At the end of this recursive process, it is defined a limit coloring c′ =
⋃

n∈N
cn over D′ = D∪

⋃
n∈N

Dn.

This coloring is already unfriendly at the vertices of finite degree, since N(u) ⊂ D′ for every
u ∈

⋃
n∈N

Dn of finite degree. Moreover, it is unfriendly in each vertex of infinite degree v ∈ D′ \D,

since, for every big enough n ∈N, an enemy in Dn+1\Dn is assigned for v. However, it is now the
pair (D′,c′) that contradicts the maximality of (D,c) in D . Hence, we must have D =V (G).

4.3 Few vertices of infinite degree
This section works in a dual direction of the previous one. While also studying countable

graphs, we will suppose now that they have few vertices of infinite degree. Previously in this
dissertation, this was also the setting for a sort of results presented by Section 3.2, some of them
to be applied sooner. Considering that, following the diagram in Figure 21, the criteria below is a
counterpart to Theorem 4.2.1. As we shall discuss at the end of this section, it could be directly
obtained from the current literature concerning the unfriendly partition problem, but we take the
opportunity to present an alternative proof:

Theorem 4.3.1. Every countable graph whose rays pass through finitely many vertices of infinite

degree admits an unfriendly partition.

As a first simplification in order to conclude the above theorem, we will argue that it is
enough to prove it for biconnected graphs. In fact, if G is a connected graph, its block graph Ǧ

as in Proposition 2.3.1 is a tree. We recall that the vertex set of Ǧ is written as the disjoint union
A∪B, where A ⊂V (G) is the set of cutvertices in G and B is the set of its blocks. Moreover, in
Ǧ, there is no edge between two elements of A, neither edges between elements of B. Therefore,
fixing a block B0 ∈ B as a root for Ǧ, the family B is precisely the set of vertices of even
height in the corresponding tree order ≤. Assuming that every graph in B admits an unfriendly
partition, we define a coloring c : V (G)→ 2 recursively as follows:

• We set c|B0 : V (B0)→ 2 any unfriendly partition for G[B0];

• For some n ∈ N, suppose that the coloring c is defined for every block of height 2n in Ǧ.
Then, fix B an arbitrary block of height 2n+2. Considering the tree structure of Ǧ, there
is a unique block B′ of height 2n which intersects B. Then, B∩B′ consists in an unique
cutvertex a ∈V (G). Hence, we consider c|B : B → 2 an unfriendly partition for G[B] such
that, after possibly switching all the colors, c|B(a) = c|B′(a). This guarantees that c is still
well defined after being extended to B.

The above construction of c certifies that this is indeed an unfriendly coloring in vertices
of V (G)\A. In fact, each v ∈V (G)\A satisfies {v}∪N(v)⊂ B for some block B ∈B, so that c|B
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is unfriendly in v. However, if v ∈ A is a cutvertex, then its neighborhood is written as the disjoint
union

⋃
B∈B
v∈B

N(v)∩B. Denoting c(v) = i, we also have |N(v)∩B∩c−1(i)| ≤ |N(v)∩B∩c−1(1− i)|

for every B ∈ B such that v ∈ B, since c|B is unfriendly at v in the induced subgraph G[B].
Therefore,

|N(v)∩ c−1(i)|= ∑
B∈B
v∈B

|N(v)∩B∩ c−1(i)| ≤ ∑
B∈B
v∈B

|N(v)∩B∩ c−1(1− i)|= |N(v)∩ c−1(1− i)|,

where the above expression does not depend on the degree of v being finite. In other words, c is
unfriendly in v.

If G is under the main hypothesis of Theorem 4.3.1, then its blocks also do not contain
rays passing through infinitely many vertices of infinite degree. Hence, this previous discussion
guarantees that Theorem 4.3.1 can be reduced to:

Lemma 4.3.2. Let G be a countable biconnected graph. If the rays in G contains only finitely

many vertices of infinite degree, then G admits an unfriendly partition.

The proof of the above lemma is supported by the existence of a normal spanning tree
T for G, as guaranteed by Theorem 2.2.2. If ≤ denotes its tree order, the main hypothesis of G

certifies the well definition of the following hierarchy over its vertices of infinite degree:

• We say that a vertex v ∈V (G) of infinite degree has rank 1 if the subgraph induced by
⌊v⌋\{v} is locally finite;

• For some α > 1, and supposing that vertices of rank β are defined for every β < α , we
say that a vertex v ∈V (G) of infinite degree has rank α if ⌊v⌋\{v} contains only vertices
of finite degree or having rank strictly less than α .

We claim every vertex v ∈V (G) of infinite degree has a rank. If not, some v0 ∈V (G) of
infinite degree has no rank. Then, some v1 ∈ ⌊v0⌋\{v0} of infinite degree has no rank as well.
In particular, v0 < v1. Inductively, therefore, we can construct a sequence v0 < v1 < v2 < .. .

such that vi ∈V (G) has infinite degree, but no rank, for every i ∈ N. Being totally ordered by
≤, the set {vn : n ∈ N} is then contained in some ray r of T . Since r is also a ray of G, this
contradicts the main hypothesis over G in Lemma 4.3.2. Hence, a proof of this lemma can be
done by induction on α = sup{rank of v : v ∈V (G),d(v) = ω}

α =

{
0, if G is locally finite;
sup{(rank of v)+1 : v ∈V (G),d(v) = ω}, otherwise.

Proof of Lemma 4.3.2. If G is locally finite, then the existence of an unfriendly partition is due
to Proposition 3.2.1. However, Proposition 3.2.6 can be applied to verify the following stronger
property:
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(⋆) Let K be any finite graph, disjoint of G, that is endowed with a coloring cK : V (K)→ 2.
Consider G⊕H some graph obtained by arbitrarily adding edges that connects vertices of K to
vertices of G. Then, there is c : V (G)∪V (H)→ 2 an extension of cK which is unfriendly for

vertices of V (G) and F−good for every finite set F ⊂V (G) of vertices of finite degree.

Hence, we will prove the above statement, rather than the original thesis of Lemma 4.3.2, by
induction on α . To that aim, if α > 0, fix A ⊂V (G) the set comprising the ≤−minimal vertices
of infinite degree in G. By definition, then, the elements of A are pairwise incomparable regarding
≤. Considering that, the core of the proof is given by the claim below:

Claim: A is finite.

Proof of the claim. For a contradiction, suppose that A is infinite. In particular, the root z of T

must have finite degree: otherwise, A = {z} by definition of A. Since T is normal and, for every
v ∈ A, ⌈v⌉\{v} is a finite set of vertices of finite degree, we also conclude that the subgraph of G

induced by ⌈A⌉=
⋃
v∈A

⌈v⌉ is locally finite. In particular, by the Star-Comb Lemma (2.1.2), there

is a comb H in T [⌈A⌉] whose teeth define an infinite subset {vn}n∈N ⊂ A.

Denote by r the spine of H, which, without loss of generality, we suppose that starts at z.
By definition of comb, for every n ∈ N there is a path Pn ⊂ T connecting vn to a vertex un ∈ r.
Moreover, Pn ∩Pm = /0 if n ̸= m. We choose the ordering for {vn}n∈N so that u0 < u1 < u2 < .. . .
Unless by passing {vn}n∈N to a subsequence, we can also assume that, in G, no vertex of⋃
x∈Pn+1\{un+1}

⌊x⌋ has a neighbor in ⌈un⌉. This is possible since ⌈un⌉ is finite and every vertex of

⌈un⌉ ⊂ ⌈vn⌉\{vn} has finite degree.

Once made the above simplifications, we are able to construct a ray in G containing the
vertices from {vn}n∈N, contradicting the main hypothesis of Lemma 4.3.2. To that aim, for each
n ≥ 1, let Qn and Q′

n be two disjoint paths (in G) connecting vn and z. These paths exist by the
Erdős-Menger Theorem (2.3.3), since G is biconnected by hypothesis. Note that Qn and Q′

n must
intersect the segment in H connecting un−1 and un, which we will denote by [un−1,un]. After all,
T is a normal tree, but there is no edges between vertices of ⌈un−1⌉ and

⋃
x∈Pn\{un}

⌊x⌋. Informally,

after starting at vn ∈ Pn, both paths Qn and Q′
n might contain some elements from

⋃
x∈Pn\{un}

⌊x⌋,

but need to intersect [un−1,un] in order to reach z, that lies on ⌈un−1⌉.

Therefore, presenting Qn and Q′
n in terms of its vertices as Qn = vny1y2y3 . . .ykz and

Q′
n = vny′1y′2 . . .y

′
lz, we can consider the instants of first intersection i = min{1 ≤ j ≤ k : yi ∈

[un−1,un]} and i′ = min{1 ≤ j ≤ k : y′j ∈ [un−1,un]}. Supposing that yi < y′i′ without loss of
generality, we denote by [un−1,yi] and [y′i′,un] the paths in H connecting un−1 to yi and y′i′ to un,
respectively. Then, the concatenation

Rn = [un−1,yi]yi−1yi−2 . . .y1vny′1y′2 . . .y
′
i′−1y′i′[y

′
i′,un]
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defines a un−1 −un path that contains a vertex of infinite degree. In its turn, proving the claim,
the concatenation R = R1R2R3R4 . . . describes a ray that contains infinitely many vertices of
infinite degree.

Figure 22 – A ray passing through infinitely many vertices of infinite degree

In red, we sketch the ray R constructed as in the claim within Lemma 4.3.2. The comb H is denoted by
the straight lines. The dashed ones, on the other hand, suggest how edges of G\T are distributed while
“respecting the tree order of” T , in an attempt to highlight that T is a normal tree.

Once established that A is finite, so is the set ⌈A⌉ =
⋃
v∈A

⌈v⌉. Then, consider the graph

G⊕K as in statement (⋆), where K is any finite graph endowed with a coloring cK : V (K)→ 2.
Arbitrarily, we now extend cK to a coloring cK∪⌈A⌉ over K ∪⌈A⌉.

Since A comprises all the ≤ −minimal vertices of infinite degree in G, a connected
component C of G \ ⌈A⌉ is either a locally finite graph or has the form G[⌊v⌋ \ {v}] for some
v ∈ A. In this latter case, the vertices of infinite degree in C have rank smaller than the rank of
G. In both situations, we might see the subgraph of G⊕K induced by C∪K ∪⌈A⌉ as a graph
of the form C⊕ (G[K ∪⌈A⌉]). Then, there exists πC : V (C)∪V (K)∪⌈A⌉ → 2 an extension of
cK∪⌈A⌉ which is unfriendly in every vertex of V (C) and F−good for every finite set F ⊂V (C) of
vertices of finite degree. Considering that, define the coloring c : V (G)∪K → 2 as follows:

c(v) =

{
cK∪⌈A⌉(v), if v ∈V (K)∪⌈A⌉;

πC(v), if v ∈C for some connected component C of G\⌈A⌉.

By construction, c is unfriendly in vertices lying on connected components of G\⌈A⌉. Moreover,
if F ⊂ V (G)\ ⌈A⌉ is a finite set of vertices of finite degree, there are only finitely many such
connected components C1,C2, . . . ,Cn which intersects F . Following the notation from Section 3.2,
we have

aπCi
(F ∩Ci,(V (Ci)∪V (K)∪⌈A⌉)\F ∩Ci)≥ bπCi

(F ∩Ci,(V (Ci)∪V (K)∪⌈A⌉)\F ∩Ci),

because πCi is Fi ∩C−good for every 1 ≤ i ≤ n. Since F =
n⋃

i=1

F ∩Ci, we can sum the above

inequalities over i and conclude that ac(F,V (G)∪K \F) ≥ bc(F,V (G)∪K \F). By Lemma
3.2.4, this proves that c is F−good for every finite set F ⊂ V (G) \ ⌈A⌉ of vertices of finite
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degree. Since ⌈A⌉ is finite, we can apply the Fixing Lemma (3.2.7) iteratively in order to obtain
H ⊂V (G) a finite set such that c∗H is unfriendly in every vertex of V (G), including those of
⌈A⌉. In addition, H is chosen so that c∗H is F−good for every finite set F ⊂V (G) of vertices
of finite degree, proving the statement (⋆).

In particular, the proof of Theorem 4.3.1 is concluded. However, for the sake of com-
pleteness, we remark that its statement could be obtained as a consequence of a deeper result in
the literature. More precisely, in (BERGER, 2017) the following criteria is found:

Theorem 4.3.3 (Berger (2017)). Every graph that does not contain a subdivision of an infinite

clique as a subgraph admits an unfriendly partition.

In the above theorem, we mean by subdivision of a graph G any graph that is constructed
after subdividing edges from an arbitrary subset of E(G). In its turn, subdividing an edge e = uv

of G consists in replacing e by a new path that connects u and v. In particular, any subdivision
of an infinite complete graph Kω contains a ray that passes through infinitely many vertices of
infinite degree, from where Theorem 4.3.1 is deduced.

However, we were not able to explain Theorem 4.3.3 in details in this dissertation,
justifying the study of the restricted case covered by Theorem 4.3.1. On the other hand, the
construction of a ray R as in the proof of Lemma 4.3.2 suggests that some generalization is
reachable:

Problem 4.3.4. Let G be a countable graph that contains no alternating ray. Does G admit an

unfriendly partition?

In the above question, an alternating ray in a graph G is the designation we give for a
ray that contains infinitely many vertices of finite degree and infinitely many vertices of infinite
degree as well. The proof just presented for Theorem 4.3.1 does not fit for Problem 4.3.4 only
because, under its weaker hypothesis, we cannot ensure that every vertex of infinite degree has a
rank (as was argued right before the proof of Lemma 4.3.2).

However, the ray R sketched by Figure 22 is alternating, as well as the ray R constructed at
the end of Section 4.2. There, neither the proof of Theorem 4.2.1 can be rewritten for solving the
above problem. This because, when forbidding only alternating rays, König’s Lemma guarantees
no more that the islands of G are finite. Then, can an adaptation of both results, Theorems 4.2.1
and 4.3.1, answer positively Problem 4.3.4? In the affirmative case, this solution would complete
the diagram of Figure 21 by drawing a new common generalization in its center.

4.4 A discussion about minimality
This section is extracted from the recently published paper (AURICHI; REAL, 2023),

written with some set-theoretic vocabulary. However, if the results from Section 3.4 are assumed
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(even without their proofs), the text is quite accessible for all readers.

In that direction, we first recall that Theorem 3.4.1 constructs a graph of size ℵω without
unfriendly partitions, although relying on an extra axiom for set theory. Within ZFC, on the
other hand, Theorem 3.4.4 is proven with similar ideas, but requiring (2ω)+ω vertices. In any
case, the literature concerning unfriendly partitions presents only the constructions of Shelah
and Milner (1990) as examples of graphs that cannot be colored in an unfriendly way. Since both
cardinals ℵω and (2ω)+ω are far from being countable, this section studies how economical are
the counterexamples given by Theorems 3.4.1 and 3.4.4.

More precisely, from now on in this section, let us denote by κ the least cardinal for
which there is a graph G = (V,E) on κ vertices, all them of infinite degree, having no unfriendly
partition. Then, the above discussions lead to the question of whether the equality κ = ℵω

can be concluded within ZFC. More than that, we can analyze whether the statements κ = ℵω

and κ = (2ω)+ω hold in models for ZFC+ℵω < 2ω , a theory in which the cardinals ℵω and
(2ω)+ω are distinct. Rather surprisingly, we will prove the independence assertions below:

Theorem 4.4.1. The following statements are independent from ZFC+ℵω < c:

1. κ = ℵω ;

2. κ = (2ω)+ω .

In particular, those statements are independent from the usual axioms of set theory.

In particular, by taking λ = ω in Theorem 3.4.4, it is straightforward that κ ≤ (2ω)+ω .
In an attempt to discuss how sharp is this inequality, on the other hand, Theorem 3.3.2 easily
provides a first lower bound for κ:

Proposition 4.4.2. ℵω ≤ κ.

Proof. For instance, suppose that κ < ℵω . Then, there is a graph G = (V,E) with |V | < ℵω ,
whose vertices have infinite degree and that has no unfriendly partition. Fix n ∈ N so that
|V | = ℵn. Since G has no vertices of finite degree, |N(v)| ∈ {ℵ0,ℵ1, . . . ,ℵn}. Noticing that
every successor cardinal is regular, G is under the hypothesis of Theorem 3.3.2. Therefore,
contradicting its choice, G has an unfriendly partition.

Consistently, however, we have κ ≤ ℵω : this follows from Theorem 3.4.1 or from
Theorem 3.4.4 when assuming the Continuum Hypothesis (CH), for example. On the other hand,
as a less immediate conclusion, we will prove that the equality κ = ℵω is actually independent
from ZFC+ℵω < 2ω , a theory in which the cardinals ℵω and (2ω)+ω are distinct. In particular,
this statement is independent from the usual axioms of set theory.
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First, we observe that Proposition 4.4.2 and Theorem 3.4.1 combined conclude that the
statement κ = ℵω is consistent with ZFC+ℵω < 2ω . In order to conclude that its negative is
also consistent, we will introduce another extra axiom for set theory. Before that, fix (P,≤) any
partially ordered set. We call D ⊂ P a dense subset in P if, for every p ∈ P, there is d ∈ D such
that d ≤ p. Finally, we say that P satisfies the countable chain condition if every collection of
pairwise incompatible elements of P is countable. In that terms, Martin’s Axiom is the following
statement:

Martin’s Axiom (MA): Fix (P,≤) a partially ordered set that satisfies the countable chain
condition. If D is a family of dense subsets of P with |D |< 2ω , then there exists a filter F of P

such that F ∩D ̸= /0 for every D ∈ D .

Convenient to our study, Martin’s Axiom is independent from ZFC+ℵω < 2ω . Moreover,
in a theory where MA holds, 2ω is a regular cardinal. Using some other properties that can be
consulted in (JUST; WEESE, 1997), for example, we are ready to prove the following:

Proposition 4.4.3. Suppose that Martin’s Axiom holds. Then, every graph G having all its

vertices of infinite degree and such that |V (G)|< 2ω admits an unfriendly partition.

Proof. We will apply Martin’s Axiom to the Cohen forcing. More precisely, we will consider the
partial order ≤ over P= {c : D → 2 | D ⊂V (G) is finite} defined by: c ≤ c′ if, and only if, c is
an extension of c′. Let dom(c) be the domain of a partial coloring c ∈ P. It is well know that
(P,≤) satisfies the countable chain condition. Moreover, by extending functions of finite domain
accordingly, it is easily verified that the items below define dense sets in P:

1. For each v ∈V (G), define Dv = {c ∈ P : v ∈ dom(c)}.

2. If v ∈V (G) is a vertex of regular degree κv, fix {vα}α<κv an enumeration of its neighbor-
hood. Now, for each α < κv, define the set

Rα
v = {c ∈ P : there are β0,β1 > α such that c(vβ0) = 0 and c(vβ1) = 1}.

3. Similarly to the item above, if v is a vertex of singular degree κv, fix {vα}α<κv an enumer-
ation of its neighborhood and {γξ}ξ<c f (κv) a cofinal sequence in κv of regular cardinals.
Given α < κv, let ξ < c f (κv) be the index such that γξ ≤ α < γξ+1. Define then

Sα
v = {c ∈ P : there are α < β0,β1 < γξ+1 such that c(vβ0) = 0 and c(vβ1) = 1}.

Therefore, the sets D = {Dv : v∈V (G)}, R = {Rα
v : v∈V (G) has regular degree κv,α <

κv} and S = {Sα
v : v ∈ V (G) has singular degree κv,α < κv} are families of dense sets in P.

Since |D | = |V (G)| < 2ω , |R| ≤ |V (G)| · |V (G)| = |V (G)| < 2ω and |S | ≤ |V (G)| · |V (G)| =
|V (G)| < 2ω , Martin’s Axiom guarantees the existence of a filter F ⊂ P that intersects every
dense set of D ∪R ∪S .
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We claim that the function c =
⋃
f∈F

f is well-defined and that its domain is V (G). In fact,

for every v ∈ V (G), once F ∩Dv ̸= /0, there is f ∈ F with v ∈ dom( f ). Moreover, if g ∈ F is
another coloring such that v ∈ dom(g), there is h ∈ F satisfying h ≤ f ,g, because F is a filter.
Hence, f (v) = h(v) = g(v), concluding the well definition of c.

Now, we will verify that c is an unfriendly partition. For that, let v ∈V (G) be any vertex
and denote by κv its degree. If κv is regular, let {vα}α<κv be the enumeration of its neighborhood
as fixed by the item 2 above. By the choice of F , for every α < κv there is f ∈ F ∩Rα

v . Then,
by definition of c, c(vβ0) = f (vβ0) = 0 and c(vβ1) = f (vβ1) = 1 for some ordinals β0,β1 > α .
This proves that sup{α < κv : c(vα) = 0} = sup{α < κv : c(vα) = 1} = κv. As κv is a regular
cardinal, it follows that |{α < κv : c(vα) = 0}|= |{α < κv : c(vα) = 1}|= κv. In particular, c is
unfriendly in v.

Finally, suppose that v is a singular cardinal. As done in the item 3 above, let {vα}α<κv

be an enumeration of its neighborhood and consider {γξ}ξ<c f (κv) the cofinal sequence (of regular
cardinals) fixed before. Hence, given ξ < c f (κv) and γξ ≤ α < γξ+1, again the choice of F

guarantees that there is f ∈ F ∩Sα
v . This means that c(vβ0) = f (β0) = 0 and c(vβ1) = f (vβ1) = 1

for some α < β0,β1 < γξ+1. In other words, sup{γξ ≤ α < γξ+1 : c(vα) = 0}= sup{γξ ≤ α <

γξ+1 : c(vα) = 1} = γξ+1, implying that |{γξ ≤ α < γξ+1 : c(vα) = 0}| = |{γξ ≤ α < γξ+1 :
c(vα) = 1}|= γξ+1 by the fact that γξ+1 is regular. Then, regarding the coloring c, we proved
that v has at least γξ+1−many neighbors of color 0 and at least γξ+1 neighbors of color 1, for
every ξ < c f (κv). Therefore, it has sup{γξ+1 : ξ < c f (κv)} = κv neighbors of each color. In
particular, c is unfriendly in v.

Exercise 4.4.4. In the above proof, verify that the sets of the form Dv, Rα
v and Sα

v are, in fact,

dense.

Corollary 4.4.5. The statement κ = ℵω is independent from ZFC+ℵω < 2ω .

Proof. We already argued that κ = ℵω is consistent with ZFC + ℵω < 2ω . Verifying the
consistency of its negative, we observe that κ ̸= ℵω under ZFC+MA+ℵω < 2ω . In fact, if G

is a graph without vertices of finite degree and |V (G)|= ℵω < 2ω , then, by Proposition 4.4.3, G

admits an unfriendly partition. Therefore, κ ̸= ℵω by the definition of κ.

On the other hand, Proposition 4.4.3 combined with Theorem 3.3.3 can prove that
(2ω)+ω vertices are needed to describe a graph with no unfriendly partitions whose vertices have
infinite degree. Corollary 4.4.5 and the next result, then, prove Theorem 4.4.1:

Corollary 4.4.6. κ is a singular cardinal. In particular, the statement κ=(2ω)+ω is independent

from ZFC+ℵω < c.
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Proof. For instance, suppose that κ is a regular cardinal. Then, if G is a connected graph whose
vertices have degree less than κ, all them of infinite degree, the first claim of the above proof
shows that |V (G)|< κ. By the minimality of κ, there is an unfriendly partition for G. Hence,
according to Theorem 3.3.3, there is also an unfriendly partition for every graph G such that
ℵ0 ≤ |N(v)| ≤ κ for each v ∈V (G). In particular, contradicting the definition of κ, there is no
graph with κ vertices, all them of infinite degree, that has no unfriendly partitions. Therefore, κ
must be a singular cardinal.

In addition, the inequality 2ω ≤ κ holds in ZFC+MA+ℵω < 2ω , as guaranteed by
Proposition 4.4.3. Since successor cardinals are regular and 2ω is regular under MA, the above
paragraph actually proves that (2ω)+ω ≤ κ. Note that this lower bound is sharp, because the
construction of Milner and Shelah given by Theorem 3.4.4 has precisely (2ω)+ω vertices. Then,
the statement κ = (2ω)+ω is consistent with ZFC+ℵω < 2ω .

On the other hand, the axioms used by Milner and Shelah to prove Theorem 3.4.1 are
also consistent with the statement ℵω < 2ω . Hence, it is consistent with ZFC+ℵω < 2ω that
there is a graph with less than (2ω)+ω vertices, all of them of infinite degree, that does not admit
an unfriendly partition. Thus, the statement κ ̸= (2ω)+ω is also consistent with ZFC+ℵω < 2ω .

Therefore, the equality κ = (2ω)+ω is independent from ZFC+ℵω < 2ω .

The fact that κ is a singular cardinal was already suggested by Theorems 3.4.1 and 3.4.4,
because both uncountable cardinals ℵω and (2ω)+ω have cofinality ω . Moreover, this countable
cofinality, in fact, played an important role for the constructions given by Milner and Shelah.
Then, we finish this section by asking if this property is unavoidable:

Problem 4.4.7. Can we prove, within ZFC, that κ has countable cofinality?





Part II

Topological approach for infinite graphs
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CHAPTER

5
THE END SPACE

Inspired by the contributions of the Hamburg group 1 this chapter discuss their topological
approach for infinite graph theory. The key object to be studied, the ends of a graph, was actually
introduced by Halin (1964/65), but most improvements in the area were obtained in the past
twenty years. The literature on this subject is quite extensive, compiling papers from several
authors, but many first statements can be actually redrawn by more modern tools.

In Sections 5.2 and 5.3, for example, we point out the main properties of the spaces |G|
and Ω(G), to be sooner defined. The results presented there were obtained still in the 90s, but
the recent work of Kurkofka, Melcher and Pitz (2021), as we shall see, unified most proofs.
Nevertheless, not every claim in this chapter will be completely detailed: sounding like Section 1.1
suggests, we tend to prove only the most important statements or those that motivate the studies
in Chapter 6, where new instances are introduced. Finally, despite the topological flavour of the
next discussions, we remark that Section 5.5 outlines some combinatorial applications of an end
structure.

5.1 Introduction
The topological approach for the study of infinite graphs arise when trying to formalize

the idea of directions on them. Intuitively, for a fixed graph G, this notion is brought by its
rays. However, regarding their connectedness, some distinct rays might have a similar behaviour.
This inspires the following equivalence relation over the set R(G) of rays in G: for every pair
r,s ∈ R(G), we write r ∼ s whenever r and s are infinitely connected. In its turn, the expression
“infinitely connected” means any of the following equivalent conditions:

i) There exists an infinite family of disjoint r− s paths;

ii) There exists a ray t ∈ R(G) such that r∩ t and s∩ t are infinite;
1 See <https://www.math.uni-hamburg.de/spag/dm/projects/topgrth.html>.

https://www.math.uni-hamburg.de/spag/dm/projects/topgrth.html
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iii) No finite set S ⊂V (G) separates r and s, i.e., r and s have its tails in the same connected
component of G\S.

Figure 23 – A locally finite graph and its four ends

The ends of this locally finite graph are highlighted

by the red circles.

Source: Elaborated by the author.

In particular, it is easily verified that ∼
is indeed an equivalence relation over R(G).
The corresponding equivalence classes are
called the ends of G, of which consists its
end space Ω(G) = R(G)/ ∼. Given a ray
r ∈ R(G), we write [r] when denoting its
end. This definition is back to Halin (1964/65),
but similar notions were developed by Hopf
(1943) and Freudenthal (1942) in order to ap-
proach representation problems in group the-
ory.

As Figure 23 suggests, we may under-
stand [r] as a limit point of the graph at which
r aims. This convergence notion, however, re-
quires a topology to be formalized. Then, we
will now describe a topological space |G| (to-
gether with its point set) as follows:

• An edge uv is identified with the unit segment [0,1] and its usual topology. The identifica-
tion may maps, say, u to 0 and v to 1, so we write uv = [u,v]. For any 0 < ε < 1, then, we
denote by [u,ε) the open segment in uv starting at u whose length is ε;

• A vertex v ∈V (G) belongs to |G|. A basic open set around it has the form

Vε(v) :=
⋃

u∈N(v)

[v,ε) . (5.1)

for some ε > 0, as sketched by Figure 24. In particular, this union is disjoint unless by v;

• An end [r] ∈ Ω(G) also belongs to |G|. A basic open set around it has a finite set S ⊂V (G)

and some ε > 0 as parameters. The connected component of G\S that contains a tail of
r is denoted by C(S, [r]), while the set of edges with an endpoint in S and the other in
C(S, [r]) is written as E(S, [r]). Finally, we define

Ω(S, [r]) = {[s] ∈ Ω(G) : S does not separate s and r}. (5.2)

Hence, the claimed open neighborhood around [r] is described by

Ĉ(S, [r],ε) :=C(S, [r])∪Ω(S, [r])∪
⋃

u∈C(S,[r])
uv∈E(S,[r])

[u,ε) (5.3)



5.1. Introduction 105

In this description, C(S, [r]) contains the vertices of the corresponding connected com-
ponent of G\S as well as its edges, which are under the identification made in the first
item.

Figure 24 – Basic open sets of |G|

At the left, in red, we sketch a basic open neighborhood for a vertex v in |G|. At the right, in its turn, we
present a basic open neighborhood for an end [r].

Source: Elaborated by the author.

Exercise 5.1.1. Consider G the graph from Figure 23. Suppose that it is drawn in an open

bounded subset of R2 precisely as in the figure (where vertices are points and edges are segments).

Let X ⊂ R2 be the set given by this representation of G. Show that |G| turns out to be X with its

subspace topology.

This definition for |G| is motivated by combinatorial issues, being broadly used when
extending classical theorems from finite graph theory to locally finite graphs. The interested
reader can find examples of these applications in the survey of Diestel (2010). Despite that,
Section 5.5 also discuss the role that ends play in some generalizations of Menger’s Theorem
and other near results regarding connectivity properties.

However, topologists might be more interested in the structure of the end space Ω(G)⊂
|G| with its inherited topology. In fact, when G is a tree, it well known that Ω(G) (called its
branch space in set-theoretic contexts) is an ultrametric space and conversely: every complete
ultrametric space is the end space of some tree. This is the core of Propositions 5.3.2 and 5.4.7, to
be presented throughout the next sections, but categorical discussions regarding this equivalence
can be consulted in (HUGHES, 2004) or in the master’s dissertation of Boska (2021). On the
other hand, a similar characterization of arbitrary end spaces concerns Problem 5.1 of Diestel
(1992):

Characterization of end spaces: Which topological spaces can be represented as Ω(G) for

some graph G?
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Although Diestel’s question was formally stated in 1992, other older conjectures, spe-
cially from Halin (1964/65), could provide its answer. Hence, the end structure of graphs has
been studied for more than fifty years. Only recently, Pitz (2023) compiled a sort of topological
conditions that precisely describe the family of end spaces of graphs, solving the above problem.
An overview of his answer, focusing on the main tools employed, is given by Section 5.4.

Before that, the next sections discuss the main properties obtained by the early literature
that approached Diestel’s question. For instance, Section 5.2 deals with covering hypothesis in
end spaces, while Section 5.3 gives a broad description for the metric case. In particular, we will
revisit the main result of (KURKOFKA; MELCHER; PITZ, 2021), which, in both studies, also
obtain conclusions for the global space |G|. Throughout the proofs to be presented, we will often
rely on the observations below, possibly without previous mention. Intuitively, they explain how
the definition of |G| formalizes the idea that a ray converges to its end:

Lemma 5.1.2. Let G be a connected graph. Then, the statements below hold:

• Given A ⊂ V (G) and [r] ∈ Ω(G), we have [r] ∈ A if, and only if, there is a comb in G

whose teeth belong to A and whose spine is (a ray equivalent to) r;

• For a ray r, we have V (r)∩Ω(G) = {[r]};

• If S ⊂V (G) is a finite set and r is a ray, we have C(S, [r]) =C(S, [r])∪Ω(S, [r]).

Proof. In order to prove the first item, suppose first that there is a comb C whose teeth belong to
A. Let r denote its spine. Observe that every finite set S ⊂V (G) intersects only finitely many of
the infinite disjoint paths that connects r to its teeth. Then, in the connected component C(S, [r])

there must lie infinitely many vertices from A as well, proving that [r] ∈ A.

Conversely, assume that [r] ∈ A. Let P0 be a path connecting the ray r to some vertex
v0 ∈ A. Suppose that finitely many disjoint paths P0,P1,P2, . . . ,Pn are defined, assuming that
every Pi connects r to some vertex vi ∈ A. The set S = V (P0)∪V (P1)∪V (P2)∪ ·· · ∪V (Pn) is
also finite. Hence, since [r] ∈ A, we fix vn+1 ∈C(S, [r]). Let Pn+1 be a path connecting a tail of r

to vn+1 in C(S, [r]). By the choice of S, we clearly have Pn+1 ∩Pi = /0 for every 0 ≤ i ≤ n. At the

end of this recursive definition, the comb defined by the vertex set r∪
∞⋃

n=0

Pn has r as spine and

{vn}n∈N ⊂ A as teeth.

In order to prove the second item, fix [s] ∈ Ω(G)∩V (r) for some ray r. According to the
item just proven, s is the spine of a comb whose teeth belong to V (r). This means that there is an
infinite family of disjoint paths connecting r and s, so that [s] = [r].

Aiming to prove the third item, fix S ⊂ V (G) a finite set and r ∈ R(G) a ray. We
clearly have C(S, [r])⊂C(S, [r]), while Ω(S, [r])⊂C(S, [r]) follows from the item just verified.
Conversely, if x ∈C(S, [r]) is a vertex of G or an inner point of one of its edges, we must have
x ∈C(S, [r]) by definition of its systems of open neighborhoods. Finally, if x = [s] for some ray
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s, the first item proven shows that s is the spine of a comb whose teeth belong to C(S, [r]). In
particular, in G\S, a tail of s is contained in C(S, [r]) as well. This means that [s] ∈ Ω(S, [r]) by
(5.2).

Exercise 5.1.3. Show that, for every graph G, the spaces |G| and Ω(G) are Hausdorff and

Fréchet-Urysohn.

Finally, we observe that many results to be presented in the next sections could be
simplified for locally finite (connected) graphs. For example, Proposition 8.6.1 in the book
(DIESTEL, 2018) contains a short proof for the fact that |G| is compact in this case. Indeed,
|G| and Ω(G) are rather familiar spaces when G is locally finite: the former is the Freudenthal
compactification of G when it is seen as an unidimensional complex, while the latter is a compact
and complete ultrametric space. However,

for arbitrary G, the spaces |G| and Ω(G) are usually non-compact and far
from being completely understood (KURKOFKA; MELCHER; PITZ,
2021, p.174).

5.2 Covering properties

We first remark that the notion of directions brought by the end structure can be under-
stood in an alternative (but equivalent) way. For example, in their study of a pursuit-evasion
game in an infinite graph G, Robertson, Seymour and Thomas (1991) relied on the following
definition2: we say that a direction in G is a function f of the form

f : {finite subsets of V (G)}→ {connected subgraphs of G}

such that f (S) is a (non-empty) connected component of G\S for every finite S ⊂ V (G) and,
if S′ ⊇ S is also finite, then f (S′)⊆ f (S). In particular, f (S) is always infinite: after all, for any
other finite set S′ ⊂V (G), we must have /0 ̸= f (S′∪S)⊂ f (S).

For example, when an end [r] ∈ Ω(G) is fixed, the map C(·, [r]) defines a direction. In
fact, for every finite S ⊂ V (G), the subgraph C(S, [r]) is a connected component of G \ S by
definition, being the one which contains a tail of r. Hence, given S′ ⊇ S also finite, the tail of r in
C(S′, [r]) is contained in C(S, [r]), so that C(S′, [r])⊂C(S, [r]). Curiously, every direction of G

can be described this way:

Proposition 5.2.1 (Robertson, Seymour and Thomas (1991), 2.5). Let f be a direction in an

infinite graph G. Then, there is a ray r ∈ R(G) such that f =C(·, [r]).
2 Originally, in (ROBERTSON; SEYMOUR; THOMAS, 1991), this notion of direction is called an

“ℵ0−haven”.
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Proof, following Theorem 2.2 of Diestel and Kühn (2003). Consider the set

S∗ = {v ∈V (G) : v has a neighbor in f (S) for every finite S ⊂V (G)}.

Suppose first that S∗ is infinite. Then, declaring P0 as a path containing only a single vertex
v0 ∈V0, consider the following recursive definition:

• If Pn is a defined path, which connects v0 to some vertex vn ∈ S∗, let un ∈ f (Pn) be one
of its neighbors. Its existence follows from the definition of S∗, as well as from the fact
that S∗ \Pn ⊂ f (Pn). Then, consider Pn+1 as a path in f (Pn) which connects un to some
vn+1 ∈ S∗.

At the end of this inductive proccess, it follows that the concatenation r = P0P1P2 . . . defines a
ray in G containing {vn}n∈N. In order to show that f =C(·, [r]), fix any finite set S ⊂V (G). By
definition of S∗, the vertex vn has a neighbor in f (S) for every n ∈ N, meaning that vn ∈ f (S) if
n > max{i ∈ N : vi ∈ S}. Therefore, f (S) =C(S, [r]), since f (S) contains a tail of r in G\S.

On the other hand, assume now that S∗ is empty. Then, define S0 = {v} for an arbitrary
v /∈ V (G). For some n ∈ N, suppose that Sn ⊂ V (G) is a finite non-empty set already defined.
For every s ∈ Sn, consider a finite set Ss ⊂V (G) such that s has no neighbor in f (Ss). Note that
Ss exists since S∗ = /0. Writing Un =

⋃
s∈Sn

Ss, define

Sn+1 = {s ∈Un : s has a neighbor in f (Un)},

which has the properties below:

• f (Sn+1) = f (Un). In fact, f (Un)⊆ f (Sn+1) because Sn+1 ⊂Un and f is a direction. By its
definition, however, Sn+1 comprises all the vertices of Un that have neighbors in f (Un).
Hence, since f (Sn+1) is the connected component of G\Sn+1 containing f (Un), we must
have the equality f (Sn+1) = f (Un);

• Sn∩(Sn+1∪ f (Sn+1)) = /0. This because, given s ∈ Sn, this vertex has no neighbor in f (Ss).
In particular, s has no neighbor in f (Un) = f (Sn+1), since Ss ⊂Un and f is a direction (so
that f (Un)⊂ f (Ss)). In particular, s /∈ Sn+1 and s /∈ f (Sn+1);

• f (Sn) contains both Sn+1 and f (Sn+1). In fact, vertices of Sn+1 are neighbors of some
vertices of f (Sn+1) = f (Un), meaning that Gn+1 := G[Sn+1 ∪ f (Sn+1)] is a connected
subgraph of G. Since Gn does not intersect Sn by the previous item, it follows that Gn+1 is
contained in some connected component of G\Sn. As a property of directions, it is already
known that f (Sn)∩ f (Sn+1) ̸= /0. Therefore, we must have V (Gn)⊂ f (Sn \S∗).

At the end of this recursive definition, we claim that
⋂
n≥1

V (Gn) = /0. For instance, suppose

that there is a vertex u in this intersection. Once V (Gn+1)⊂ f (Sn), we actually have u∈
⋂

n∈N
f (Sn).
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Since G is connected, there is a path P connecting v∈ S0 to u. Fixing i=max{n∈N : P∩Sn ̸= /0},
a subpath of P connects a vertex of Si to u, that also belongs to f (Si+1). Then, P∩ Si+1 ̸= /0,
because Si and f (Si+1) are contained in distinct connected components of G\Si+1 by the above
second item. This contradicts the choice of i, concluding that

⋂
n≥1

V (Gn) = /0.

Now, fix un ∈ Sn for every n ∈ N. Suppose that there is a star centered at some vertex
z ∈V (G) whose leaves belong to {un}n∈N. Since S∗ = /0, there must exist a finite set S ⊂V (G)

such that z has no neighbor in f (S). Let n be big enough so that Sm ∩S = /0 if m ≥ n. Observing
that f (Sm)∩ f (S) ̸= /0, because f is a direction, we have f (Sm)⊂ f (S)∪S. Hence, {um}m≥n ⊂
f (S). Then, the infinitely many paths connecting z to {um}m≥n must intersect the finite set S,
contradicting the fact that they are disjoint unless by z.

Therefore, by the Star-Comb Lemma (2.1.2), there is a comb C in G whose teeth belong
to {un}n∈N. Let r denote its spine. If S ⊂ V (G) is any finite set, we have {um}m≥n ⊂ f (S) for
some big enough n ∈ N, as in the above paragraph. Hence, f (S) contains a tail of r as well:
otherwise, the infinitely many disjoint paths connecting r to {um}m≥n would intersect the finite
set S. Hence, f (S) =C(S, [r]), proving that f =C(·, [r]).

Finally, consider the case in which S∗ is finite. Then, in the infinite connected graph
G0 = f (S∗) we define the direction f ′ given by f ′(S) = f (S∪S∗) for every finite S ⊂ f (S∗). In
this case, the set

S∗0 = {v ∈ f (S∗) : v has a neighbor in f ′(S) for every finite S ⊂V (G)}

is empty. This because, if v ∈ S∗0 and S ⊂V (G) is finite, then v has a neighbor in f (S∪S∗)⊆ f (S),
proving that v ∈ S∗. By the case just analyzed, therefore, there is r a ray in G0 such that, for every
finite S ⊂V (G), the subgraph f ′(S) is the connected component of G0 \S containing a tail of r.
Hence, f (S) ⊇ f (S∪S∗) = f ′(S) contains also a tail of r, concluding that f (S) =C(S, [r]). In
other words, f =C(·, [r]).

Exercise 5.2.2. Find a graph G and a direction f on it for which S∗, as defined in the above

proof, is not empty.

Although the above definition of directions in infinite graphs is a more abstract notion
than the one given by the ends, it is useful for concluding covering properties. Below, for example,
we give a criteria for verifying whether Ω(G) is a compact topological space. As a consequence,
we can also extend this result for spaces of the form |G|:

Lemma 5.2.3 (Diestel (2006), Theorem 4.1). Let G be any graph. Then, its end space Ω(G)

is compact if, and only if, for every finite set S ⊂V (G), there are only finitely many connected

components in G\S which contain rays.

Proof. First, suppose that Ω(G) is compact and fix S ⊂ V (G) a finite set. Note that C =

{Ω(S, [r]) : r ∈ R(G)} defines an open covering for Ω(G) whose elements are equal or disjoint.
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Since C admits a finite subcover, we conclude that only finitely many connected components of
G\S contain rays.

Now, for every finite set S ⊂V (G), suppose that G\S contains finitely many connected
components with rays. In addition, let C be any open cover for Ω(G). For a finite set S ⊂V (G),
we call a connected component C of G\S bounded if there is UC ∈ C such that C∩Ω(G)⊂UC,
where the closure of C is taken in |G|. Otherwise, we call C an unbounded component, which
contains a ray since C∩Ω(G) ̸= /0. If every C is bounded, then

{UC : C is a connected component of G\S containing a ray}

is a finite subcover of C . Hence, in order to conclude that Ω(G) is compact, we can suppose for
a contradiction that, for every finite set S ⊂ V (G), there is at least one unbounded connected
component in G\S. Denote by DS the union of such components.

In particular, DS ⊇DS′ if S ⊆ S′, because every unbounded connected component of G\S′

is contained in some (unbounded, thus) connected component of G\S. Then, the map S 7→ DS

only fails to be a direction because DS is not a single connected component of G\S. However,
it sill holds that DS∪S′ ⊂ DS ∩DS′ for each pair of finite sets S,S′ ⊂ V (G). In particular, this
shows that the family {A ⊂V (G) : A ⊃ DS for some finite S ⊂V (G)} is a filter on the power set
℘(V (G)) considering the inclusion. Thus, we can fix U an ultrafilter containing it. If S ⊂V (G)

is finite, then ⋃
{C : C is a component of G\S containing a ray}

clearly belongs to U , by containing DS. Hence, since this union is finite by hypothesis and U

is an ultrafilter, there is a unique connected component f (S) of G \ S that contains a ray and
belongs to U . By containing an unbounded connected component from the complement of some
(possible another) finite set, f (S) itself is unbounded.

Moreover, for finite sets S,S′ ⊂V (G), since f (S′)∩ f (S) ̸= /0 (because both components
are elements of U ), we have f (S′)⊂ f (S) if S′ ⊇ S. Therefore, the map f describes a direction
over G. It follows from Proposition 5.2.1 that f = C(·, [r]) for some ray r ∈ R(G). However,
since C is an open cover for Ω(G), there is U ∈C an open set containing the end [r]. In particular,
for some finite set S ⊂ V (G), we must have Ω(S, [r]) ⊂ U . Since Ω(S, [r]) = C(S, [r])∩Ω(G),
we conclude that f (S) = C(S, [r]) is a bounded connected component of G \ S, which is a
contradiction.

Corollary 5.2.4. A graph G is locally finite if, and only if, |G| is a compact topological space.

Proof. If |G| is compact, then G must be locally finite due to an obstruction when defining the
open neighborhoods of its vertices. More precisely, suppose that there is v ∈V (G) a vertex of
infinite degree κ . Let {vα}α<κ be an enumeration of its neighborhood. Consider the open cover
C of |G| whose elements are described by the items below:



5.2. Covering properties 111

• The open set containing v has the form
⋃

α<κ

[
v,

1
3

)
, as sketched in red in Figure 25;

• In each edge vvα ≃ [0,1], we fix the open interval
(1

4 ,
3
4

)
, as drawn in blue in Figure 25;

• Finally, as presented in orange in Figure 25, the open set |G| \
⋃

α<κ

[
v,

2
3

]
is an element of

C .

Figure 25 – A clever open cover for |G|

Source: Elaborated by the author.

Described this way, for each α < κ , the inner point 1
2 ∈ [v,vα ] is contained in precisely one

covering set: the interval contained in [v,vα ] that has the form
(1

4 ,
3
4

)
. Therefore, C cannot have

a finite subcover, since the degree of v is infinite.

Conversely, suppose that G is locally finite and let C be any open cover for |G|. Note that
G\S has finitely many connected components for every finite set S ⊂V (G), because every vertex
of S has finite degree. Hence, we are under the conditions of Lemma 5.2.3. In particular, there are
finitely many finite sets S1,S2, . . . ,Sn ⊂V (G) and finitely many ends [r1], [r2], . . . , [rn] ∈ Ω(G)

such that:

• For each 1 ≤ i ≤ n, there is Ui ∈ C an open set containing C(Si, [ri]) = C(Si, [ri])∪
Ω(Si, [ri]);

• Ω(G) =
n⋃

i=1

Ω(Si, [ri]).

In particular, by König’s Lemma (2.1.1) and the above second item, the vertices that do not

belong to
n⋃

i=1

C(Si, [ri]) define a graph whose connected components are finite. Moreover, these

connected components are those (finitely many) that contains vertices of S1 ∪ S2 ∪ ·· · ∪ Sn or
those (finitely many, since G is locally finite) in which vertices from S1 ∪ S2 ∪ ·· · ∪ Sn have
neighbors.



112 Chapter 5. The end space

To summarize, the vertices that do not belong to
n⋃

i=1

C(Si, [ri]) define a finite set S. Hence,

it is also finite the set F ⊂ E(G) comprising the edges incident to vertices in S. For each v ∈ S, let
Uv ∈C be any open set containing it. For each edge e∈F , once the unit segment [0,1] is compact,
let Ce ⊂ C be a finite subcover for e. Then, {Ui : 1 ≤ i ≤ n}∪{Uv : v ∈ S}∪

⋃
{Ce : e ∈ F} is a

finite subcover of C for |G|, proving that this is a compact space.

Corollary 5.2.4 addresses a message that was already pointed out in the introduction: the
topological approach for the study of infinite graphs is suitable for locally finite ones. In fact,
Proposition 8.6.1 from (DIESTEL, 2018) presents a simpler proof for the above result, without
relying on the more abstract definition of directions. However, this alternative interpretation for
the end structure still supports the following approximation theorem:

Theorem 5.2.5 (Kurkofka, Melcher and Pitz (2021), Theorem 1). Fix any collection of connected

components C = {C(S[r], [r]) : [r] ∈ Ω(G)}. Then, there is a normal tree T in G such that the

connected components of G\T refines C . In other words, for every connected component C of

G\T , there is an end [r] ∈ Ω(G) such that C ⊆C(S[r], [r]).

Figure 26 – A normal tree T as in Theorem 5.2.5

The paths presented by dashed black lines suggests that T is a normal tree in an underlying graph G. Drawn
as black circles, the connected components of G \T refine the family C = {C(S[r], [r]) : [r] ∈ Ω(G)},
whose elements are sketched by the orange ellipsis.

Source: Elaborated by the author.

Proof. As in Lemma 5.2.3, we say that a connected subgraph H of G is bounded if there is
[r] ∈ Ω(G) such that H is contained in C(S[r], [r]). Otherwise, we say that H is unbounded. Via
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depth-search algorithms, we will recursively construct a sequence of normal trees T0 ⊆ T1 ⊆
T2 ⊆ . . . with the following properties:

• The tree order of Ti+1 extends the tree order of Ti for every i < n;

• Ti is a rayless tree for every i < n;

As usual, we consider T0 any tree that contains only its root z. Supposing that Tn is defined for
some n ∈ N, let C be any connected component from G\Tn.

For a contradiction, suppose that, for every finite set S⊂C, there is exactly one unbounded
connected component f (S) in G\S. Hence, if S′ ⊇ S is another finite subset of C, the unbounded
component f (S′) must be contained in the unique unbounded component f (S) of G\S. In other
words, f is a direction in C. Then, by Proposition 5.2.1, there is r ∈ R(G) a ray such that, for
every finite set S ⊂C, f (S) is the connected component of C \S containing a tail of r. On the
other hand, f ((S∪S[r])∩C) is a connected subgraph of G\ (S∪S[r]) which contains a tail of r,
so that f (S∪Sr)⊂C(Sr, [r]). This, however, contradicts the fact that f (S∪Sr) is chosen as an
unbounded subgraph.

In other words, we proved that, for every connected component C of G \Tn, there is
SC ⊂C a finite set for which C \S has none or at least two unbounded connected components.
Then, by applying the depth-search procedure3 finitely many times in each unbounded con-
nected component C, we can define Tn+1 as a normal extension of Tn that contains

⋃
{SC :

C is an unbounded connected component of G\Tn}. Since SC is finite for each C, so is finite the
intersection Tn+1 ∩C, besides being connected by the application of the depth-search procedure.
In particular, Tn+1 is also a rayless tree. Note that Tn+1 ∩C = /0 if C is a bounded connected
component of G\Tn.

At the end of this recursive construction, T =
⋃

n∈N
Tn is a normal tree. For instance,

suppose that there is r a ray in T , which we can assume that starts at the root z. Since Tn is rayless
for every n ∈ N, we have r∩ (Tn+1 \Tn) ̸= /0. In particular, r meets an unbounded connected
component Cn of G\Tn. Moreover, SCn was chosen so that Cn \SCn has at least two unbounded
connected components, because, once r∩(Tn+2\Tn+1) ̸= /0, the ray r meets some of them. Hence,
we can fix Pn ⊂ Tn+1 \Tn a path connecting r to some vertex un ∈ SCn that has a neighbor in
Dn+1, a fixed connected component of Cn \SCn other than the one that contains a tail of r.

For distinct n,m ∈ N, note that Pn ∩Pm = /0, because Pn ⊂ Tn+1 \Tn and Pm ⊂ Tm+1 \Tm.
In other words, the subgraph of T induced by r∪

⋃
n∈N

Pn is a comb whose teeth belong to {un}n∈N.

Then, since S[r] is finite, choose N ∈ N big enough so that S[r]∩T ⊂ TN and S[r]∩Dn = /0 for
every n ≥ N. Therefore, for n ≥ N, there is a path in G\S[r] connecting a tail of r to un, which,

3 See the proof of Proposition 2.2.2.
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in its turn, has a neighbor in Dn. In other words, Dn ⊂C(S[r], [r]), contradicting the fact that Dn

is unbounded. To summarize, T is rayless.

Finally, it remains to show that T refines the family C . In fact, if C is a connected
component of G \T , then N(C) = {v ∈ T : v has a neighbor in C} is a chain in T , since T is
normal. However, T has no rays, so that N(C) is finite. If n ∈ N is large enough for which
N(C)⊂ Tn, then C is also a connected component of G\Tn. Therefore, C is bounded, because
Tn+1 ∩C = /0 (otherwise, some vertex of C would have a neighbor in Tn+1 \Tn). In other words,
C ⊂C(S[r], [r]) for some end [r] ∈ Ω(G), finishing the proof.

Exercise 5.2.6. Why did we need to define the family of connected components {Dn}n∈N? More

precisely, let N ∈ N and r be as in this penultimate paragraph of the above proof. Can we

conclude that Cn ⊂C(S[r], [r]) for any n ≥ N?

Theorem 5.2.5 suggests a close correlation between normal trees and end spaces. In fact,
in Section 5.4 we will discuss the role that normality plays in the recent characterization of
spaces of the form Ω(G), due to Pitz (2023). In its turn, we will finish this section by compiling
other covering properties that follows from the theorem just proven.

Actually, some of the next statements, as well as most key results from Section 5.3, were
first obtained in the literature before (KURKOFKA; MELCHER; PITZ, 2021). However, that
recent paper unified several proofs:

Corollary 5.2.7 (Kurkofka, Melcher and Pitz (2021), Corollary 3.1). Every end space is ultra-
paracompact. In other words, if G is a graph and C is an open cover for Ω(G), then there is C ′

a disjoint refinement for C . Namely, C ′ is another open cover for Ω(G), with pairwise disjoint

covering sets, such that every U ′ ∈ C ′ is contained in some U ∈ C .

Proof. Given a graph G and C an open cover for Ω(G), we can assume that elements of C are
basic open sets as in (5.2). Hence, for some index set I, we write C = {Ω(Si, [ri])}i∈I . For each
end [r] ∈ Ω(G), there is i ∈ I such that [r] ∈ Ω(Si, [ri]), because C covers Ω(G). In this case,
C(Si, [r]) =C(Si, [ri]) by definition of Ω(Si, [r]). Choosing S[r] = Si, we can apply Theorem 5.2.5
in order to find a rayless normal tree T such that, for every connected component C of G\T ,
there is i ∈ I for which C ⊆C(Si, [ri]).

Since T is normal and rayless, the set N(C) = {v ∈ T : v has a neighbor in C} is a finite
chain in T . This means that C∩Ω(G) is either empty or a basic open set of the form (5.2). If D

is another connected component of G\T , then D∩C = /0, so that D∩C = /0. In addition, every
ray r ∈ R(G) has a tail in some connected component of G\T , since, once more, T is normal
and rayless. Hence,

C ′ = {C∩Ω(G) : C is a connected component of G\T}

verifies the statement.
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Corollary 5.2.8 (Kurkofka, Melcher and Pitz (2021), Corollary 3.2). For every graph G, the

space |G| is paracompact, i.e., every open cover C admits a locally finite open refinement C ′.

In other words, every U ′ ∈ C ′ is contained in some U ∈ C and {U ′ ∈ C ′ : x ∈U ′} is finite for

every x ∈ |G|.

Proof. Given a graph G and C an open cover for |G|, we assume that the elements of C are
basic open sets. In particular, C contains an open cover for Ω(G), which, following the notation
from (5.3), we denote by {Ĉ(Si, [ri],εi)}i∈I for some index set I. Hence, every ray r of G has a
tail in C(Si, [ri]) for some i ∈ I. Writing S[r] = Si, we now apply Theorem 5.2.5 in order to find T

a rayless normal tree in G such that every connected component of G\T is contained in some
C(Si, [ri]).

As in the previous proof, since T is normal and rayless, every connected component C

of G\T that contains a ray (say, r) can be written as C =C(S, [r]) for some finite set S ⊂V (G)

(actually, S = N(C)). Then, write {C(S j, [r j])} j∈J for the set of connected components of G\T .
For each j ∈ J, set ε j = εi, in which i ∈ I is chosen such that C(S j, [r j])⊂C(Si, [ri]). Considering
that, {Ĉ(S j, [r j],ε j)} j∈J is a disjoint refinement for {Ĉ(Si, [ri],εi)}i∈I .

Now, let H denote the quotient space from |G| obtained by contracting, for each j ∈ J, the
set C(S j, [r j]) =C(S j, [r j])∪Ω(S j, [r j]) to an artificial point x j. Regarding H as a “graph”, there
might be parallel edges connecting x j to vertices of T . Due to this, we call H a multigraph. Even
though, the quotient topology on H is closely similar to the one presented in the Introduction.

For vertices of H ∩T and inner points of edges of H, the basic open neighborhoods in H

are precisely the ones of |G|. In its turn, for given j ∈ J and ε > 0, an open basic neighborhood
around x j has the form

⋃
e∈E(x j)

[x j,ε), where E(x j) denotes the set of all edges incident to x j in H

as a multigraph. In fact, this open basic neighborhood is obtained by passing the open basic set
Ĉ(S j, [r j],ε) to the quotient that defines H. Roughly speaking, the quotient topology in H would
be |H| if H were a graph rather than a multigraph (or if we have defined the structure | · | also for
multigraphs).

In any case, since H is a rayless, the described quotient topology is metrizable 4. In
particular, H is paracompact. Then, we are able to find CH an open cover for H such that:

• {U ∈ CH : x ∈U} is finite for every x ∈ H. Here, x might be a vertex (even of the form x j

for some j ∈ J) or the inner point of an edge;

• If U ∈ CH does not intersect {x j} j∈J , then U is also an open set in |G| and there is V ∈ C

such that U ⊆V ;

• If U ∈ CH contains x j for some j ∈ J, then U is contained in the open basic neighborhood
of x j obtained after passing Ĉ(S j, [r j],ε j) to the quotient that defines H.

4 See the introduction of Section 5.3 for more details
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Hence, the claimed refinement of C in |G| can be taken as

C ′ = {Ĉ(S j, [r j],ε j) : j ∈ J}∪{U ∈ CH : U ∩{x j} j∈J ̸= /0}.

Corollary 5.2.9 (Polat (1996a), Lemma 4.14). Every end space is collectionwise normal.

Proof. This a topological consequence from the fact that Ω(G) is ultra-paracompact (and, in
particular, paracompact) for every graph G.

Corollary 5.2.10 (Sprüssel (2008), Theorem 4.1). |G| is a normal topological space for every

graph G.

Proof. Follows from the fact that every paracompact topological space is normal.

Exercise 5.2.11 (Kurkofka, Melcher and Pitz (2021), Lemma 5.1). This is a guide for showing

that end spaces are actually hereditarily ultra-paracompact, in the sense that all its subspaces

also ultra-paracompact. Actually, it is sufficient to show that open subspaces have this latter

property. Then, fix G a graph and V ⊂ Ω(G) an open set:

• Consider M a ⊆−maximal family of disjoint rays whose ends belong to Ω(G)\V . Define

M =
⋃

M and note that M∩Ω(G)⊂ Ω(G)\V ;

• Show that, for every ray r in G\M, we have [r] ∈V . Conversely, show that every end in V

has a ray in G\M as a representative;

• Finally, prove that the map

f : Ω(G\M) → V

[r]G\M 7→ [r]

is a well-defined homeomorphism, where [r]G\M denotes the equivalence class of the ray r

in Ω(G\M). Conclude from Corollary 5.2.8 that V is ultra-paracompact.

5.3 Metric properties

The reader with some background in algebraic topology might strange the given definition
for |G|. After all, vertices are 0−dimensional complexes, so that, when identifying edges with the
unit interval, a graph G has the structure of a 1−complex. The topology of G as an unidimensional
CW−complex, however, is often not first countable. In fact, if there is in G a vertex v of infinite
degree, a routine diagonalization argument shows that v has no countable system of open
neighborhoods in this topology.
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Figure 27 – Different systems of open neighborhoods for a vertex

In red, we sketch two open basic neighborhoods for a vertex v, but regarding two different topologies.
At the left, we consider the topology of the underlying graph G as an unidimensional complex. In this
case, v has no countable system of open neighborhoods if d(v) is infinite. At the right, we represent a
neighborhood for v considering the space |G|.

Source: Elaborated by the author.

For graph-theorists, however, it is interesting to preserve the notion of distance that paths
suggest, which justifies the given definition for |G|. More precisely, if G is connected, between
two of its vertices u and v we set

d(u,v) = min{n ∈ N : there is a path of length n connecting u and v}.

Note that d is indeed a metric over V (G), that we can naturally extend to |G| \Ω(G)

if we consider that edges have diameter 1. More precisely, if x and y are points from edges
u1u2 = [u1,u2] and v1v2 = [v1,v2] respectively, we set

d(x,y) =

 |x− y|, if u1v1 = u2v2

min
i, j∈{1,2}

[|x−ui|+d(ui,v j)+ |y− v j|], otherwise.

Considering that, the open basic neighborhoods for a vertex v in |G| are precisely the open
balls around it considering the above metric d. Therefore, the subspace topology of |G| \Ω(G)

is induced by d. In particular, |G| is a metric space if Ω(G) = /0, i.e., if G is a rayless graph.

However, if Ω(G) ̸= /0 (even if Ω(G) is singleton), |G| might not be metrizable. For
instance, every two rays in an infinite clique K are equivalent, so that Ω(K) = {∗} is the
one point space. By definition of |K|, the family {C(S,∗) : S ⊂ V (K)} is a system of open
neighborhoods for ∗, but it has no countable subsystem if K is uncountable. Hence, |K| is not
first-countable and, then, neither a metric space. On the other hand, this counterexample is
already familiar: in Section 2.2, we observed that uncountable complete graphs also do not admit
normal spanning trees. In fact, as one of the goals of this section, we will prove the equivalence
below:

Theorem 5.3.1 (Diestel (2006), Theorem 3.1 (i)). Fix G an infinite graph. Then, G has a normal

spanning tree if, and only if, |G| is a metric space.



118 Chapter 5. The end space

Following Kurkofka, Melcher and Pitz (2021), we will present their proof for the above
result by relying on the approximation theorem (5.2.5) and some other intermediate technical
arguments in the literature. In particular, we will first establish a characterization for metrizability
in end spaces. Historically, this was first approached by Polat (1996a), who described when end
spaces are ultrametric5. The following observation motivates his study:

Proposition 5.3.2. Let T be a tree. Then, Ω(T ) is a complete ultrametric space.

Proof. Suppose that T is rooted at some vertex z and denote by ≤ the corresponding tree order.
Throughout this proof, we will always assume that the rays start at z, which fix a representative
r for every end [r] ∈ Ω(T ). In particular, if r and s are non-equivalent rays in T , then it is well
defined the vertex vs,r = maxr∩ s = max{t ∈ T : t ∈ r∩ s}. In fact, s∩ r is a totally ordered set
regarding T because it is a subset of a ray, being finite since [r] ̸= [s]. Then, we consider the map

d([r], [s]) =

{
0, if r = s;

1
n+1 , if r ̸= s, where n denotes the height of vs,r in T .

Hence, clearly d([r], [s]) = 0 if, and only if, [s] = [r]. In addition, d([r], [s]) = d([s], [r]) for every
pair of ends [r], [s] ∈ Ω(T ). In order to show that d is an ultrametric in Ω(T ), let [w] be a third
(distinct) end in T . If the height of vw,s is strictly smaller than the height of vr,s, then vw,s < vr,s,
since vw,s ∈ s and, thus, is comparable to vr,s. Hence, w∩s⊆ r∩s, so that vw,s ∈ r∩w. In particular,
we have vw,r ≥ vw,s. Note that this must be an equality: otherwise, since vw,r ∈ s, we would
contradict the definition of vw,s. To summarize, if the height of vw,s is strictly smaller than the
height of vr,s, then vw,r = vw,s, from where we verify that d([r], [s])< max{d([r], [w]),d([w], [s])}.
Clearly, by symmetry, this conclusion also holds if the height of vw,r is strictly smaller than the
height of vr,s.

Showing that d is a complete metric is quite similar to the proof of König’s Lemma
(2.1.1). In fact, consider {[rn]}n∈N a Cauchy sequence of ends in Ω(T ). In T \{z}, all but finitely
many elements of this sequence belong to a same connected component C0. In fact, there is
n0 ∈ N such that d([rn], [rm]) ≤ 1

2 for every n,m ≥ n0, or, equivalently, vrn,rm > z. Let v1 be a
neighbor of z in C0. Now, suppose that we have defined a path Pk = zv1v2v3 . . .vk in T for some
k ∈ N. In particular, the height of vk is k. Moreover, since {[rn]}n∈N is a Cauchy sequence, there
is nk ∈ N such that d([rn], [rm])≤ 1

k+2 for every n,m ≥ nk. By induction, we suppose that nk is
big enough so that rn contains the path zv1v2v3 . . .vk whenever n ≥ nk. Hence, for n,m ≥ nk, we
must have vrm,rn > vk, proving that the rays rn and rm have their tails in a common connected
component Ck of T \Pk. Thus, we choose vk+1 ∈ Ck as a neighbor of vk in Ck. Due to this
recursive process, it is defined a ray r = zv1v2v3 . . . whose end is the limit of the sequence
{[rn]}n∈N by construction.

5 We recall that a metric space X is ultrametric if the triangle inequality is strengthened as follows:
d(x,y)≤ max{d(x,z),d(z,y)} for every x,y,z ∈ X
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Suppose now that the heights of vw,r and vw,s are greater than or equal to the height of
vr,s, besides both vertices being comparable with vr,s. If these three heights are the same, then
d([r], [s]) = d([r], [w]) = d([w], [s]), because vr,s = vr,w = vw,s. If not, without loss of generality,
assume that vw,r > vr,s. If we had vw,s > vr,s, then vw,s and vw,r would be incomparable, because
vw,s would not belong to r by the definition of vs,r. However, this contradicts the fact that
vw,r and vw,s belong to w, which, being a ray, is totally ordered by ≤. In other words, we
proved the equality vw,s = vr,s while supposing that vw,r > vr,s. In this case, d([r], [s]) = d([w], [s])

and d([r], [s])≥ d([w], [r]), which also proves that d([r], [s]) = max{d([r], [w]),d([w], [s])}. This
finishes the verification that d is an ultrametric.

Finally, we will prove that d induces the topology of Ω(T ) as the end space of T . First,
let Ω(S, [r]) be any basic open set in Ω(T ), parameterized by a finite subset S ⊂ V (T ) and
an end [r] ∈ Ω(T ). Since T is a tree, we observe that there is precisely one edge between the
infinite connected component C(S, [r]) and a vertex v ∈ S. Indeed, we can also write Ω(S, [r]) =

Ω({v}, [r]). Note that v ∈ r once we assumed that r starts at the root z. If n denotes the height of
v, we claim that

{
[s] ∈ Ω(T ) : d([r], [s])< 1

n+1

}
⊂ Ω({v}, [r]). In fact, if d([s], [r])< 1

n+1 for an
end [s] ∈ Ω(T ), then the height of vs,r is greater than or equal to n. Therefore, since vs,r,v ∈ r,
we must have vs,r > v. Hence, the tails of r and s belong to the same connected component of
G\{v}, namely, the one that contains vs,r. This proves that [s] ∈ Ω({v}, [r]).

Conversely, fix some n ∈N and an end [r] ∈ Ω(T ). Let v ∈ r denotes the vertex of height
n in r and consider an end [s] ∈ Ω({v}, [r]). Since some tail of s intersects some tail of r in
G\{v}, because T is a tree, we must have vs,r > v by definition of vs,r. Then, d([r], [s])< 1

n+1 ,
since the height of vs,r is greater than the height of v. In other words, we proved that Ω({v}, [r])⊂{
[s] ∈ Ω(T ) : d([r], [s])< 1

n+1

}
. This concludes the verification that the topology of Ω(T ) is

induced by d.

The description of Polat for ultrametric end spaces is done via graphs that admit suitable
trees which encode the global end structure. Formally, we say that a subgraph H of a graph
G is end-faithful if the inclusion map ı : Ω(H)→ Ω(G) is bijective. More precisely, ı sends
the equivalence class of a ray r in H to the equivalence class of r in G. Note that ı is indeed
well-defined: if r′ is connected to r via an infinite family of disjoint paths in H, this same family
of paths shows that [r] = [r′] in Ω(G).

Roughly speaking, an end-faithful subgraph contains a representative of every [r]∈Ω(G),
but also do not separate rays that belong to the same equivalence class in G. Normality condition
over trees implies that this identification can be also topological:

Proposition 5.3.3 (Diestel (1992), Proposition 5.5). Let G be a graph which admits an end-

faithful normal tree T . Then, the inclusion map ı : Ω(T )→ Ω(G) is an homeomorphism.

Proof. Let ≤ denotes the tree order of T . Aiming to show that ı is continuous, fix a finite set
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S ⊂V (G) and an end [r] ∈ Ω(G). Note that the connected component C of T \S containing a
tail of r is also a connected subgraph of G\S, since T is a subgraph of G. Hence, C is contained
in the connected component of G\S in which r has a tail, proving that ı is continuous.

In order to prove that ı is an open map, fix a finite set S ⊂V (T ) and an end [r] ∈ Ω(G).
Note that ⌈S⌉ =

⋃
s∈S

⌈s⌉ is also finite, since ⌈s⌉ is finite for every s ∈ S. Let [r′] be an end in

Ω(G)\{[r]} such that r and r′ have their tails in a common connected component of G\ ⌈S⌉.
Since ı is surjective, we assume that both rays are contained in T and start at its root. By
contradiction, however, suppose that r and r′ do not have their tails in a same connected
component of T \S. Since T is a tree, this means that there is s∈ S which belongs to one of the rays
and do not belong to the other. In any case, we have s > x = maxr∩ r′ = max{t ∈ T : t ∈ r∩ r′}.
On the other hand, let P be a path in G \ ⌈S⌉ connecting vertices from the tails of r and r′ in
T \ S. By Proposition 2.2.3, however, the path P must intersect ⌈x⌉ ⊂ ⌈s⌉ ⊂ ⌈S⌉, which is a
contradiction. Therefore, r and r′ have their tails in the same connected component of T \ S,
proving that ı is an open map.

Therefore, Propositions 5.3.3 and 5.3.2 combined prove that every graph containing an
end-faithful normal tree has a complete ultrametric end space. The converse statement is rather
more involving and difficult to prove, as first obtained by Polat (1996a). In addition, he asked
whether the metrizability of end spaces would be an enough condition to find end-faithful normal
trees. Theorem 5.2.5 addresses this question positively, also presenting Polat’s result in a simpler
way:

Theorem 5.3.4 (Kurkofka, Melcher and Pitz (2021), Theorem 4.1). Let G be a graph. Then, the

following conditions are equivalent:

i) G contains an end-faithful normal tree;

ii) The end space Ω(G) is completely ultrametrizable;

iii) The end space Ω(G) is metrizable.

Proof. The implication i)⇒ ii) was already discussed, while ii)⇒ i) is trivial. Then, supposing
that the topology of Ω(G) is induced by some metric d, it remains to construct an end-faithful
normal tree for G. Similarly to previous proofs relying on the depth-search procedure, this will
be done after constructing a sequence of normal trees {Tn}n∈N such that Tn+1 extends Tn and
its tree order ≤. First, let T0 denote the tree that contains only its root z. Supposing that Tn is a
rayless normal tree defined for some n ∈N, fix C a connected component of G\Tn. As usual, we
observe that N(C) = {v ∈ Tn : v has a neighbor in C} is finite, by being a totally ordered subset
of Tn. Then, let uC ∈C be some neighbor of the ≤−maximal element vC ∈ N(C).
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For every [r] ∈C∩Ω(G) (if it exists), we fix B 1
n+1

[r] the open ball around [r] of radius
1

n+1 . By applying Theorem 5.2.5, we can define in C a rayless normal tree rooted at uC, abusively
denoted by Tn+1 ∩C, with the property below:

(⋆) Every connected component D of C \ Tn+1 satisfies D∩Ω(G) ⊂ B 1
n+1

[r] for some end

[r] ∈C∩Ω(G).

After this being done for every connected component C of G\Tn, the definition of Tn+1

is finished. Since the choice of the vertices uC and vC follows the depth-search procedure 6, Tn+1

is indeed a normal tree.

At the end of this recursive definition, let T ′ =
⋃

n∈N
Tn be the limit normal tree. Although

we can not conclude that T ′ is end-faithful, the following observation holds:

Claim: If a ray r in G is non-equivalent to any ray of T ′ (i.e., r attests that T ′ is not
end-faithful), then it has a tail in a connected component C of G\T ′ whose rays are all

equivalent to r. Moreover, the set N(C) = {v ∈ T ′ : v has a neighbor in C} is finite.

Proof of the claim. Since T ′ is normal and r is non-equivalent to any ray of T ′, the intersection
r∩T ′ is finite. Hence, r indeed has a tail in some connected component C of G\T ′. Let s be any
other ray in C. Observing that, for every n ≥ 1, C is contained in some connected component of
G\Tn, it follows from (⋆) that [r], [s]∈ B 1

n
[r′] for some end [r′]∈ Ω(G). Therefore, d([r], [s])< 2

n

by the triangle inequality, proving that [r] = [s] when considering n → ∞.

Finally, suppose that N(C) is infinite. Hence, it is contained in some ray s of T ′. By (⋆),
for every n ≥ 1, note that C and a tail of s are contained in the same connected component of
G\Tn. Thus, as in the previous paragraph, d([r], [s])< 2

n . By considering n → ∞, we conclude
that [r] = [s]. This, however, contradicts the fact that r and s are not equivalent rays, since
s ⊂ T ′.

Finally, for every ray r as in the above claim, denote by Cr the connected component of
G\T ′ containing its tail. Consider ur a neighbor of the ≤−maximal element vr ∈ N(Cr), whose
existence follows from the fact that N(Cr) is finite. In Cr, let Pr be a ray equivalent to r which
starts at ur. Finishing the proof, an end-faithful tree of G can be given by

T = T ′∪
⋃
{Pr : Cr is a connected component of G\T ′ which contains a ray r as in the claim}.

Note that T is indeed normal by the choice of ur and vr, as well as by the fact that Cr ̸= Cs

whenever s and r are non-equivalent rays ruled by the claim.

Exercise 5.3.5. Find a graph whose end space is not metrizable. Can it be countable? Can it

have a normal spanning tree?
6 Compare with the proof of Proposition 2.2.2.
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However, in face of Theorem 5.3.4, a natural question also arises: which graphs do admit
an end-faithful normal tree? A stronger problem in that direction was proposed by Halin (2000),
who asked if graphs with normal spanning trees can be characterized via forbidden minors7. In
fact, a normal spanning tree T in a graph G is also end-faithful: if ı : Ω(T )→ Ω(G) denotes the
inclusion map, the injection and surjection of ı follow from items i) and ii) of Proposition 2.2.3,
respectively.

In that direction, Diestel and Leader (2001) claimed that the graphs without normal
spanning trees could be described via two suitable classes of forbidden minors, which was
later shown incorrect by Pitz (2021). Moreover, in this latter paper, Pitz concluded that any list
of forbidden minors whose aim is to characterize graphs without normal spanning trees must
contain graphs of arbitrarily large size. In other words, to separate the graphs which do admit
normal spanning trees from the graphs which do not is far from being a completely understood
problem. As a consequence of the constructive result below, Corollary 5.3.7 is the more general
criteria in the literature that approach this goal:

Proposition 5.3.6 (Pitz (2020), Theorem 3). Let G be any graph and fix K ⊂V (G) finite. Denote

G′ = G\K. Then, G′ has a maximal normal tree T such that, for every connected component C

of G′ \T :

• The neighborhood N(C) = {v ∈ G \C : v has a neighbor in C} is infinite. In particular,

N(C)∩T is contained in a infinite ray rC of T ;

• Every v ∈ N(C) dominates rC, i.e., v is the center of a star whose leaves belong to rC.

Proof. As usual, we will construct an increasing sequence T0 ⊆ T1 ⊆ T2 ⊆ T3 ⊆ . . . of rayless
normal trees in G′, by first fixing T0 = {r} an arbitrary root. Suppose that Tn is defined for some
n ∈ N. Let Cn denote the collection of the connected components of G′ \Tn. Since Tn is rayless
and normal, N(C) = {v ∈ Tn ∪K : v has a neighbor x ∈C} is finite for every C ∈ Cn, because K

is finite and N(C) is a chain in the tree order ≤ of Tn.

For every vertex v ∈ N(C), fix xn
v ∈C a neighbor of it. Then, by the previous observation,

FC = {xn
v : v ∈ N(C)} is finite. Applying the depth-search procedure finitely many times 8, we can

extend Tn within C via a normal tree that contains FC. With an abusive notation, this extension
is denoted by Tn+1 ∩C, meaning that Tn+1 is indeed defined after we search for FC in every
connected component C of G\Tn.

Once finished this inductive process, we claim that T = n<ωTn satisfies the statement.
Since Tn is a normal tree for each n ∈ N, so is T . For instance, suppose that N(C) is finite for
some C ∈ C , in which C denote the family of connected components of G′ \T . Hence, for some

7 A minor of a graph G is a graph obtained from it by removing vertices, edges and contracting connected
vertex sets. For formal definitions and basic properties, see (DIESTEL, 2018, p.19).

8 See the proof of Proposition 2.2.2
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n ∈ N we must have N(C)∩T ⊂ Tn. In this case, C is also a connected component of G′ \Tn,
contradicting the fact that FC ⊂ Tn+1 \Tn. Therefore, the first item of the proposition holds.

Now, consider T ′ ⊃ T a tree in G′ extending the tree order of T . Let v ∈ T ′ \ T be
minimal, i.e., such that ⌈v⌉\{v} ⊂ T . Then, there is a path in G′ \ ˚⌈v⌉ connecting v to a vertex
of T , because the connected component C ∈ C containing v has infinitely many neighbors in T .
Since T ′ extends the tree order of T , this verifies that T ′ is not normal. In other words, T is a
maximal normal tree.

Finally, fixed C ∈ C and v ∈ N(C), let rC denote the ray of T containing N(C). For a
finite set S ⊂ V (G)\{v}, let n ∈ N be big enough so that v ∈ Tn and S∩T = S∩Tn. Consider
Cn ∈ Cn the connected component of G′ \Tn for which C ⊂Cn and, hence, v ∈ N(Cn). In Tn+1,
then, there is a path connecting xn

v (which is a neighbor of v in Cn) to a vertex v′ of rC, because
Tn+1 ∩Cn ⊂ G′ \S is connected. Therefore, v dominates the ray rC.

Corollary 5.3.7 (Halin (1978)). Every graph not containing a subdivision of an infinite clique

has a normal spanning tree.

Proof. Let G be a graph not containing a subdivision of an infinite clique. Considering K = /0,
let T be a maximal normal tree as in the above result. For a contradiction, suppose that T is
not spanning and fix v ∈ V (G) \V (T ). Denote also by C the connected component of G \T

containing this vertex. Then, there is r a ray in T containing the infinite set N(C) = {v ∈ T :
v has a neighbor in C}.

Consider any v1 ∈ N(C). By induction on n, suppose that there are defined vertices
v1,v2,v3, . . . ,vn ∈ N(C) and, for each distinct pair 1 ≤ i < j ≤ n, a path Pi, j such that:

• Pi, j connects vi to v j;

• Pi′, j′ ∩Pi, j = /0 if i′ ̸= i and j′ ̸= j;

• Pi, j′ ∩Pi, j = {vi} for distinct j, j′ ∈ {1,2, . . . ,n}\{i}.

In other words, the graph Gn =
⋃

1≤i< j≤n

Pi, j is a subdivision of a clique on n vertices. In particular,

Gn is finite, so that there is vn+1 ∈ r \V (Gn). Moreover, both v1 and vn+1 dominate the ray
r. Hence, there is in r \ (V (Gn)∪{vn+1}) a path P1,(n+1) connecting a neighbor of v1 and a
neighbor of vn+1. Similarly, if P1,n+1),P2,(n+1), . . . ,Pi,(n+1) are defined for some i < n, consider

P(i+1),(n+1) as a path in r \

(
V (Gn)∪

i+1⋃
j=1

Pj,(n+1)

)
connecting a neighbor of vi+1 to a neighbor

of vn+1. Again, this path indeed exists because vi+1,vn+1 ∈ N(C) dominate r.

At the end of this recursive process, the union
⋃

n∈N
Gn is an infinite clique contained in G,

contradicting the main hypothesis over it. Therefore, T is a normal spanning tree.



124 Chapter 5. The end space

Exercise 5.3.8. Compare the proofs of Propositions 5.2.1 and 5.3.6.

Besides the above proof for Corollary 5.3.7, this criteria was also obtained via other
works in infinite graph theory, mainly those due to Polat (1996b) and Robertson, Seymour and
Thomas (1991). However, all these approaches are somehow equivalent, once they rely on the
characterization below for graphs that contain subdivisions of infinite cliques. Theorem 12.6.9 of
the book (DIESTEL, 2018) discusses these similarities.

Exercise 5.3.9. Prove that a graph G contains a subdivision of an infinite clique if, and only

if, there is a ray r in G which is dominated by infinitely many vertices. Note that the proof of

Corollary 5.3.7 provides the less trivial implication.

We will now turn our attention back to the spaces of the form |G|, aiming to finally
prove Theorem 5.3.1. The existence of a normal spanning tree in |G| will follow from a clever
application of Proposition 5.3.4, which is inspired by the identification below:

Lemma 5.3.10 (Polat (1996a), 4.16). Let G be a graph. For every v∈V (G), fix a “new” artificial

ray rv that starts at v and such that rv∩V (G) = {v}. Then, V (G) =V (G)∪Ω(G)⊂ |G| endowed

with its subspace topology is homeomorphic to Ω(G+), where G+ is the graph given by

G+ = G∪
⋃

v∈V (G)

rv

Proof. Since G is a subgraph of G+, the rays which are equivalent in G are also equivalent in
G+. Now, if S ⊂V (G) is any finite set, suppose that two rays r and r′ have their tails in distinct
connected components C and C′ of G\S. Then, in G+ \S, the tails of r and r′ lie on the disjoint
connected components given by C∪

⋃
v∈C

rv and C′∪
⋃

v∈C′
rv. This proves that the inclusion map

ı : Ω(G)→ Ω(G+) is indeed well defined and injective.

For a vertex v ∈V (G), in its turn, the connected component of G+ \{v} containing a tail
of rv is precisely that tail. As a consequence, rv is equivalent to no other ray of G neither of the
form ru with u ̸= v. This means that Ω(G+) = Ω(G)∪{[rv] : v ∈V (G)}. Moreover, the function
ϕ : V (G)∪Ω(G)→ Ω(G+) defined by

ϕ(x) =

{
ı(x), if x ∈ Ω(G);
[rx], if x ∈V (G).

is thus a bijection. We observe that ϕ is continuous in vertices of G, since the inherited topology
on V (G) ⊂ |G| is discrete. Now, given an end [r] ∈ Ω(G), fix a representative r and a finite
set S ⊂ V (G+). Assume even that r ∩ (V (G+) \V (G)) = /0. Clearly, it is also finite the set
S′ = (S∩V (G))∪{v ∈ V (G) : S∩ rv ̸= /0}. Denote by C the connected component of G \ S′

containing a tail of r. If v ∈C, the ray rv is contained in the connected component of G+ \S in
which r has its tail, since S∩ rv = /0. Analogously, if [s] ∈C is an end, fix a representative s that is
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contained in G. Then, in G\S′, the tails of r and s also belong to the same connected component.
This analysis proves that ϕ is continuous in the end [r].

Conversely, for every v ∈V (G), since rv \{v} is precisely the connected component of
G+ \ {v} that contains a tail of rv, the singleton {[rv]} is an open set in Ω(G+). In particular,
ϕ−1 is continuous in [rv]. Now, consider an end [r] ∈ Ω(G+)∩Ω(G) and a finite set S ⊂V (G).
Again, we fix a representative r which is contained in G. Let [s] ∈ Ω(G+) be an end that has also
a representative in the connected component of G+ \S where r has its tail.

If [s] = [rv] for some v∈V (G), this means that there is a path P in G+\S connecting v to a
tail of r. Since P∩ru ⊆{u} for every u∈V (G), we observe that P⊂V (G). Therefore, v and a tail
of r belong to the same connected component of G\S. Now, suppose that [s] ∈ Ω(G+)∩Ω(G).
As before, we can choose a representative of [s] which is contained in G. Fix P a path in G+ \S

connecting the tails of r and s. Again, P∩ (ru \{u}) = /0 for every u ∈V (G), because both r and
s are contained in G. Then, P itself is contained in G, proving that r and s have their tails in the
same connected component of G\S. This verifies that ϕ−1 is continuous in [r].

Note that Theorem 5.3.4 and Lemma 5.3.10 combined proves a first implication which
Theorem 5.3.1 claims. In fact, if |G| is a metric space, then so is the subspace V (G). But, if G+

is constructed as in the above result, this means that Ω(G+) is a metrizable topological space as
well. By Theorem 5.3.4, then, there is an end-faithful normal tree T+ in G+. In particular, for
every v ∈V (G), the tree T contains a ray r which is equivalent to rv. Once T is connected, r must
contain the vertex v. In other words, T ∩V (G) =V (G), so that T [V (G)] is a normal spanning
tree for G. Hence, aiming to conclude Theorem 5.3.1, it only remains to verify the observation
below:

Proposition 5.3.11. If G admits a normal spanning tree, then |G| is metrizable.

Proof, following Theorem 3.1 (i) of Diestel (2006). For every ε > 0, consider the metric dε over
[0,1] given by dε(x,y) = ε|x− y| for every pair x,y ∈ [0,1]. Note that dε induces the usual
Euclidean topology on [0,1]. Now, fix a normal spanning tree T for G, whose tree order will be
denoted by ≤. Note that T is end-faithful, as discussed after the proof of Theorem 5.3.4. We will
first define a metric d over the vertices of T and its edges: given uv ∈ E(T ) with u < v, we set
d(u,v) = 1

2n+1 , where n denotes the height of u in T . For inner points x,y ∈ [u,v], we consider
d(x,y) = d 1

2n+1
(x,y), observing that d(u,v) = d 1

2n+1
(u,v) when taking x = u and u = v. Then, for

arbitrary vertices u,v ∈V (T ) =V (G), we set

d(u,v) =
k

∑
i=1

d(vi−1,vi),

in which v0v1v2 . . .vk is a presentation of the unique path in P connecting v0 = u and vk = v. In
its turn, for an end [r] ∈ Ω(G)≃ Ω(T ), fix a representative r = v0v1v2 . . . which starts at the root
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v0 = z of T . If v ∈V (T ) =V (G) is any vertex, we define k = max{i ∈ N : vi ≤ v} and set

d(v, [r]) = d(v,vk)+ lim
i→∞

d(vk,vi) = d(v,vk)+
∞

∑
i=k

d(vi,vi+1).

Since r is a ray in T , the series
∞

∑
i=k

d(vi,vi+1) converges, because it is geometric of ratio 1
2 . Thus,

d(v, [r]) is indeed well-defined.

Now, if [s] ∈ Ω(G) is chosen to be distinct of r, we also consider the representative s

that starts at z and define x = maxr∩ s = max{v ∈V (T ) : v ∈ r∩ s}. Then, we set d([r], [s]) =

d([r],x)+d(x, [s]).

Figure 28 – A metric for |G|

If T is a normal spanning tree in a graph G, we first define a metric over its vertices. This is done so that
edges connecting vertices of height n to vertices of height n+1 have length 1

2n+1 . Next, while respecting
the triangle inequality, this metric is extended to the remaining edges of G. Finally, the distances to ends
of G are calculated via geometric series.

Source: Elaborated by the author.

Finally, we will extend d to the edges of E(G) \E(T ) as Figure 28 suggests. Given
uv ∈ E(G) \E(T ), we can assume that u < v, since T is a normal spanning tree in G. Once
d(u,v) is already defined, we set d|[u,v] = dd(u,v), i.e., d(x,y) = d(u,v)|x− y| for every x,y ∈
[u,v]≃ [0,1]. More generally, if x and y are points from edges u1u2 = [u1,u2] and v1v2 = [v1,v2],
we consider d(x,y) = min

i, j∈{1,2}
[|x− ui|+ d(ui,v j)+ |y− v j|]. If [r] ∈ Ω(G), in its turn, we set

d(x, [r]) = min
i∈{1,2}

d(ui, [r]). This finishes the definition of d on |G|, which turns out to be a metric

by construction. Below, we briefly argue how d induces the topology of |G|:

• Under both |G| (with its usual topology) and (|G|,d), the open neighborhoods around
inner points of edges are open Euclidean intervals;
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• If v is a vertex, let n denote its height in T . Following the notation of (5.1), if Vε(v) is a
basic open neighborhood of v in |G|, then

{
x ∈ |G| : d(x,v)< 1

m

}
⊂Vε(v) whether m is

chosen to be bigger than n
ε
. This means that Vε(v) is also a basic open neighborhood for v

considering the metric d. On the other hand, clearly, every open ball around v of radius
less than 1

n is open in |G|;

• Let [r] ∈ Ω(G) be an end of G. As usual, fix the representative r = v0v1v2 . . . of [r] which
is a ray of T that starts in its root. Then, vn has height n for each n ∈ N, so that, for every
0 < ε < 1 and following the notation of (5.3), Ĉ(⌈vn+1⌉, [r],ε) is contained in the open
ball of radius 1

2n+1 around [r]. In other words, the open balls around [r] are indeed open
neighborhoods for this end in |G|. Conversely, if S ⊂V (G) is finite, then so is ⌈S⌉=

⋃
s∈S

⌈s⌉.

Fixing n = min{i ∈ N : vi /∈ ⌈S⌉}, we observe that the open ball of radius 1
2n+1 around [r]

is contained in Ĉ(⌈S⌉, [r],ε) for every 0 < ε < 1. After all, if uv is an edge that has an
endpoint in ⌈S⌉ and the other in C(⌈S⌉, [r]), then d(u,v)≥ 1

2n by construction. Therefore,
every basic open neighborhood around [r] as in (5.3) is also an open basic neighborhood
for this end regarding the metric d.

5.4 A closer look to Ω(G)

As pointed out in the Introduction, Diestel’s question regarding the characterization of
end spaces was solved only recently by Pitz (2023). This section brings an overview of his
answer, but omitting some technical details that can be found in the original paper. In particular,
we also discuss the representation result available in (KURKOFKA; PITZ, 2023), which strongly
supports the mentioned solution. This latter work shows that every end space arises from a
generalized notion of tree, extending the observations made by Theorem 5.3.4 and Proposition
5.3.3 about the description of metric spaces of the form Ω(G).

Hence, introducing the main notation of this section, we recall that, in a set-theoretic
context, an (order) tree is a partially ordered set ⟨T,≤⟩ where ˚⌈t⌉ = {s ∈ T : s < t} is well-
ordered by ≤ for every node t ∈ T . The order type h(t) of ˚⌈t⌉ is called the height of the
node t ∈ T , so that, for a given ordinal α , the set Lα(T ) = {t ∈ T : t has height α} defines
the α−level of T . If there is a predecessor s = max ˚⌈t⌉, we say that t ∈ T is a successor point.
Otherwise, the cofinality of ˚⌈t⌉ is infinite and we say that t is a limit point of T . For the least
ordinal α such that Lα(T ) = /0, we say that α is the height of T . Finally, we also denote
⌈t⌉= {s ∈ T : s ≤ t} and ⌊t⌋= {s ∈ T : s ≥ t}.

Throughout this section, trees will always be rooted, i.e., will always satisfy |L0(T )|= 1.
Moreover, a set R ⊂ T in which the order ≤ is total is called a chain of T , while a maximal
one is called a branch. On the other hand, an antichain in T is a set of pairwise incomparable
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elements regarding ≤. If T has no infinite branches, we say that T is rayless. Now, following the
notation of (KURKOFKA; PITZ, 2023), we say that R ⊂ T is a high-ray if it is a down-closed
chain of cofinality ω .

Figure 29 – Example of an infinite chain and three of

its tops.

Source: Elaborated by the author.

In particular, when endowed with its
usual order after fixing a root, a graph-

theoretic tree T as defined in Section 2.2 is
also a tree in this set-theoretic notion. In this
case, since every vertex has a finite distance
to the root, the tree T has height bounded by
ω , so that every infinite chain is a high-ray
and a branch. However, in arbitrary tree or-
ders, we might find ramifications at limit lev-
els, meaning that some infinite chains are not
maximal. More precisely, if R is an infinite
chain of T , we say that t ∈ T is a top of R

if it is a ≤−minimal upper bound of this set.
In other words, t > s for every s ∈ R and, if
t ′ < t, there is s ∈ R such that t ′ < s < t. In
particular, every top has limit height, as well
as every node t of limit height is the top of the
infinite chain ˚⌈t⌉.

Although order trees are defined as abstract posets, Figure 29 suggests that they can be
seen as graphs somehow. Within a notation first set by Diestel and Leader (2001), we say that a
T−graph is any graph obtained from an order tree T after the following definition of edges: we
declare every successor node as neighbor of its predecessor and, for a limit t ∈ T , we fix an edge
set connecting it to a cofinal sequence in ˚⌈t⌉. In addition, if G is a T−graph, we call it uniform
if, for every limit node t ∈ T , there is a finite set St ⊂ ˚⌈t⌉ such that N(t ′)∩ ˚⌈t⌉ ⊆ St for every
t > t ′.

In particular, the above paragraph shows how to construct T−graphs for every order
tree T . Describing uniform T−graphs, on the other hand, is not a trivial task. Actually, some
set-theoretic obstructions do not allow the existence of uniform T−graphs. For example, let G

be any ω1−graph. After applying the Pressing-Down Lemma iteratively9, we can find an infinite
subset {αn}n∈N and a limit ordinal ξ > sup

n∈N
such that: for every n ∈ N, there is an edge of the

form αnη for some η > ξ . In other words, G is not uniform. In fact, a criteria for the existence
of uniform graphs is given by:

Lemma 5.4.1 (Kurkofka and Pitz (2023), Theorem 4.5(i) and Proposition 5.4). Fix T an order

9 See Lemma III.6.14 in (KUNEN, 2011).
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tree. Then, there exists an uniform T−graph if, and only if, T is a special tree. In this case, any

two uniform T−graphs have homeomorphic end spaces.

In the above statement, we recall that an order tree T is special if we can write T =
⋃

n∈N
An

for some countable family of antichains {An : n ∈ N} in T . Then, as the main result of the paper
Kurkofka and Pitz (2023), the special order trees codify the family of all end spaces:

Theorem 5.4.2 (Kurkofka and Pitz (2023), Theorem 1). For every graph G, there exists a special

order tree T such that any uniform T−graph has its end space homeomorphic to Ω(G).

If Ω(G) is a metric space, then T as in the above result might be chosen to be any
end-faithful normal tree of G, as previously observed by Theorem 5.3.1 and Proposition 5.3.3. If
this is not the case, however, we must search for a suitable (special order) tree whose height is
even greater than ω . Following the original construction of Kurkofka and Pitz (2023), this is done
when approximating the claimed tree T by iterative applications of depth-search algorithms. More
precisely, for an (order) tree T , a pair (T,V ) is called a partition tree of G if V = {Vt : t ∈ T}
is a partition of V (G) into connected subsets satisfying the properties below:

• |Vt |= 1 if t ∈ T is not a limit point;

• The graph Ġ := G
V obtaining by contracting each part of V to a single vertex is a T−graph;

• For each successor t ∈ T , the neighborhood

N(V⌊t⌋) =
{

u ∈V (G)\V⌊t⌋ : u has a neighbor in V⌊t⌋
}

is finite, where V⌊t⌋ =
⋃
s≥t

Vs. In this case, we say that (T,V ) has finite adhesion.

Hence, by tracking some rays of G, we are able to describe high-rays of T . In other
words, given an end [r] ∈ Ω(G), it is well-defined the set

Θ([r]) = {t ∈ T : r has a tail in V⌊t⌋}. (5.4)

This is clearly a down-closed chain of T and, by Lemma 6.2 of (KURKOFKA; PITZ, 2023), it
has countable cofinality. When this cofinality is indeed infinite, we say that Θ([r]) corresponds
to the end [r], because Θ([r]) is thus an element of R(T ) = {high-rays of T}. If every [r]∈ Ω(G)

corresponds to precisely one high-ray of T , in the sense that Θ : Ω(G)→ R(T ) is a bijection,
we even say that the partition tree (T,V ) displays all the ends of G. In this case, comparing
to the definition of end-faithful subgraph presented in Section 5.3, T may be understood as an
“end-faithful normal (order) tree” of G. A first step when proving Theorem 5.4.2 is to ensure the
existence of such decomposition:

Proposition 5.4.3 (Kurkofka and Pitz (2023), Theorem 7.3). Every graph admits a partition tree

that display all its ends.
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Sketch of the proof. We will only describe how the claimed partition tree (T,V ) can be con-
structed. The proof that it displays all the ends of G can be consulted in the original paper of
Kurkofka and Pitz (2023). For some cardinal κ , we will recursively define a sequence of partition
trees {(Tα ,Vα)}α<κ for G.

Let T ′
0 be a maximal normal tree for this graph, whose tree-order is denoted by ≤.

Consider F0 the set of connected components of G \ T ′
0, so that each C ∈ F0 has its infinite

neighborhood N(C) contained in a ray rC of T ′
0. Then, the order ≤ can be extended to T0 :=

T ′
0 ∪F0, by declaring C > t for every C ∈ F0 and every t ∈ rC. If we set V 0

t = {t} for each t ∈ T ′
0

and V 0
C =V (C) for each C ∈F0, we partition G with the family V0 = {V 0

t : t ∈ T ′
0}∪{V 0

C : C ∈F0}.
It is easily verified that (T0,V0) is indeed a partition tree for G.

Now, for some α < κ , suppose that we have defined a partition tree (Tβ ,Vβ ) for every
β < α . In addition, we denote by κβ the height of Tβ . If α = β +1 for some β < α , we assume
by induction that the final level Fβ := Lκβ

(Tβ ) has the following form:

C ∈ Fβ ⇐⇒ C is a connected component of G\
⋃

t∈Tβ \Fβ

Vt . (5.5)

Moreover, for each C ∈ Fβ , we suppose that its neighborhood N(C) = {v ∈V (G)\C :
v has a neighbor in C} is contained in a ray rC such that, following the notation of (5.4), Θ([rC])

is a high-ray of Tβ . Then, for every C ∈ Fβ we can apply Lemma 7.2 from (KURKOFKA; PITZ,
2023) to obtain UC ⊂V (C) a connected vertex set that encodes suitable topological properties,
to be further detailed in this section. In particular, we mention:

Fact: Any connected component D of C \UC has finite neighborhood in G. In other words, the
set N(D) = {v ∈ G\D : v has a neighbor in D} is finite.

Then, rooted at a vertex that has some neighbor in UC, we can fix TD a maximal normal
tree10 for D. Hence, every connected component D′ of D \TD has infinitely many neighbors
within a branch rD′ of TD. Then, writing Vβ = {V β

t }t∈Tβ
and Vα = {V α

t }t∈Tα
, the partition tree

(Tα ,Vα) can be described as follows:

• The tree Tα extends the order tree Tβ , obtained after adding, for each C ∈ Fβ , the nodes of
TD for every connected component D of C \UC. In this case, we set t >C for every t ∈ TD,
as Figure 30 suggests. Moreover, for each connected component D′ of D\TD, we also see
D′ as a node of Tα , defining D′ > t for every t ∈ rD′;

• We set V α
t = V β

t for every t ∈ Tβ \Fβ . Given C ∈ Fβ and a connected component D of
C \UC, however, we define V α

C = UC and V α
t = {t} for every t ∈ TD. Finally, we set

V α

D′ =V (D′) for every connected component D′ of D\TD.
10 Note that TD could be obtained, for example, by applying Proposition 5.3.6 to G[D∪N(D)] with

K = N(D). This observation will further support the main discussion in Section 6.4.
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Figure 30 – Construction of Tα from Tβ

In black, we draw a node C in the final level of a partition tree (Tβ ,Vβ ). In red, we sketch how Tβ+1 is
obtained from Tβ .

Source: Elaborated by the author.

Then, G
Vα

is indeed a Tα−graph and |V α
t |= 1 for every successor t ∈ Tα . Relying on the

above Fact, the choice of V α
t for a limit node t ∈ Fβ guarantees that (Tα ,Vα) has finite adhesion.

Now, suppose that α is a limit ordinal. Assuming that Tγ extends the tree order of Tβ if
β < γ < α , it is well defined the limit tree T ′

α =
⋃

β<α

Tβ . Then, we can also define V ′
α = {V α

t }t∈T ′
α

as follows: given t ∈ T ′
α , there is β < α a successor ordinal such that t ∈ Tβ \ Fβ , by the

construction on the previous paragraphs. Thus, we set V α
t = V β

t , observing that V α
t = V γ

t for
every β ≤ γ < α .

Finally, if C is a connected component of G\
⋃

t∈T ′
α

V α
t , we observe by (5.5) that, for every

β < α , there is Cβ ∈ Fβ which contains C. Also by the construction on the previous paragraphs,
{Cβ}β<α (as a set o nodes) is a chain in T ′

α , meaning that it is contained in some infinite branch
RC. Hence, we extend T ′

α to an order tree Tα by declaring C as a top of RC for every such C.
In its turn, considering V α

C = C, this extends the family V ′
α to the partition of V (G) given by

Vα = {V α
t }t∈Tα

.

In order to conclude that (Tα ,Vα) is indeed a partition tree for G, we must verify whether
Ġ = G

Vα
is a Tα−graph. By induction on α , it suffices to show that, for each connected component

C of G\
⋃

t∈T ′
α

V α
t , the set TC := {t ∈ RC : Vt contains a vertex that has a neighbor in C} is cofinal

in RC. In fact, given v ∈ TC, we have v ∈ Tβ for some β < α . In addition, v has a neighbor in
Cβ , which proves that v ∈ RC since G

Vβ
is a Tβ−graph. In other words, we indeed have TC ⊂ RC.

For instance, suppose that TC is not cofinal in RC. Hence, there is t ∈ RC an upper bound for TC.



132 Chapter 5. The end space

Choosing t as a successor node in Tβ \Fβ for some β < α , we conclude that C is a connected
component of G\

⋃
t∈Tβ \Fβ

V β

t . This implies that C ∈ Fβ , which is a contradiction. Hence, TC is in

fact cofinal in RC, finishing the verification that (Tα ,Vα) is a partition tree for G.

Finally, the claimed end-faithful partition tree (T,V ) arises when considering T = Tα

and V = Vα for the first ordinal α such that Tα = Tα+1.

Corollary 5.4.4. Let G be a graph and fix (T ′,V ′) a partition tree which displays all its ends.

Then, there is T a special order tree such that the end space of any uniform T−graph is

homeomorphic to Ω(G). Moreover, T can be chosen to have the same height as T ′.

Sketch of the proof. Let T be obtained from T ′ according to the procedure below:

1. For every limit node t ∈ T ′, denote by S(t) the set of its successors, if there are some. Then,
since (T ′,V ′) has finite adhesion, the set Ns := N(V⌊s⌋) is finite for each s ∈ S(t);

2. Now, for every limit node t ∈ T ′ that has a successor and every finite X ⊂ ⌈t⌉, we declare
a new node v(t,X) to be a successor of t and a predecessor of each s ∈ S(t) with Ns = X .
We then remove t.

Since only non-empty levels of T ′ were modified to construct T , the heights of these
two trees are the same. The verification that the end space of every uniform T−graph is homeo-
morphic to Ω(G) can be consulted in the original proof of Theorem 1 in (KURKOFKA; PITZ,
2023).

Corollary 5.4.4 is a detailed rephrase of Theorem 5.4.2, which is, unless by the omitted
steps, now concluded. However, from now on in this section, we will mention other results that
are either used to fulfill the details of the above arguments or obtained from them with some
additional efforts.

First, we shall discuss which techniques are employed when choosing UC as in the Fact
within the proof of Theorem 5.4.3. In the verification that the partition tree just constructed
indeed display all the ends of G, one of the roles played by UC is to isolate the corresponding
end [rC] from the others. Inspired by this idea, for a given set of vertices U ⊂V (G) of a graph G,
we say that a superset U∗ ⊇U is an envelope for U if the following two properties are verified:

• U∗ has finite adhesion, in the sense that N(C) = {v ∈U∗ : v has a neighbor in C} is finite
for every connected component C of G\U∗;

• U∗ \U∗ =U \U , i.e., the boundaries of U and U∗ in the topological space |G| define the
same set of ends.
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Roughly speaking, U∗ may be obtained from U after adding vertices and rays that are
infinitely connected to its elements, which is formalized by the below result:

Lemma 5.4.5 (Kurkofka and Pitz (2023), Theorem 3.2). Every infinite subset U ⊂V (G) admits

an envelope.

Proof. Let W be a ⊆ −maximal family of disjoint spines of combs whose teeth belong to U .
Note that W exists by Zorn’s Lemma. In its turn, denote by S be the set of all vertices which are
infinitely connected to U . More precisely, S comprises the centers of infinite stars whose leaves
belong to U . We will prove that U∗ =U ∪S∪

⋃
W holds as an envelope for U .

For a while, suppose that U∗ does not have finite adhesion. This means that N(C) is
infinite for some connected component C of G \U∗. Then, consider the connected graph Ĉ

obtained from C by adding, for every v ∈ N(C), only one edge connecting v to some of its
neighbors in C. Hence, by the Star-Comb Lemma (2.1.2), one of the following items must hold,
but both lead to contradictions:

• There is a vertex v ∈ C which is a center of an infinite star in Ĉ whose set of leaves L

belong to N(C). In particular, there is a path P0 in G, containing some v0 ∈ L, that connects
v to a vertex u0 ∈U . For some n ∈ N, suppose that we have defined a sequence of paths

P0,P1, . . . ,Pn which are disjoint unless by v. Observe that the set S =
n⋃

i=0

V (Pi) \ {v} is

finite. Since the elements of W are disjoint, we suppose that r \S is a tail of r for every
r ∈ W , unless by adding to S initial segments of finitely many rays from W . In Ĉ \S, then,
there is a path P′

n+1 connecting v to some vertex vn+1 ∈ L\S. If vn+1 ∈ S, we can extend
P′

n+1 to a path Pn+1 in G\S whose endpoint other than v is some un+1 ∈U . Analogously,
if vn+1 ∈ r for some r ∈ W , we can extend P′

n+1 to a path Pn+1 in G\S whose endpoint
other than v is some un+1 ∈U . In this case, P′

n+1 contains a finite subpath of r \S which
starts at vn+1, while un+1 is some teeth of the comb in which r is a spine. In other words,
at the end of this inductive construction, the graph

⋃
n∈N

Pn describes a star centered at v

whose leaves are {un}n∈N ⊂U , contradicting the fact that v /∈ S;

• There is a ray s which is the spine of a comb in Ĉ whose teeth belong to U . In particular,
there is a path P0 in G, containing some v0 ∈ L, that connects s to a vertex u0 ∈ U . For
some n ∈ N, suppose that we have defined a finite sequence of disjoint paths P0,P1, . . . ,Pn.

Observe that the set S =
n⋃

i=0

V (Pi) is also finite. Since the elements of W are disjoint, we

suppose that r \S is a tail of r for every r ∈ W , unless by adding to S initial segments of
finitely many rays from W . In Ĉ \ S, then, there is a path P′

n+1 connecting a tail of s to
some vertex vn+1 ∈ L\S. If vn+1 ∈ S, we can extend P′

n+1 to a path Pn+1 in G\S whose
endpoint other than the one in s is some un+1 ∈ U . Analogously, if vn+1 ∈ r for some
r ∈ W , we can extend P′

n+1 to a path Pn+1 in G\S whose endpoint other than the one in s
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is some un+1 ∈U . In this latter case, P′
n+1 contains a finite subpath of r \S which starts at

vn+1, while un+1 is some teeth of the comb for which r is a spine. In other words, at the
end of this inductive construction, the graph s∪

⋃
n∈N

Pn describes a comb whose spine is s

and whose teeth are {un}n∈N ⊂U . However, since s ⊂C by the definition of Ĉ, the family
W ∪{s} contradicts the ⊆−maximality of W .

Therefore, U∗ has finite adhesion. It remains to show that U∗ \U∗ =U \U in the topological
space |G|. In fact, if [s] ∈ U is an end, then the representative s is the spine of a comb whose
teeth belong to U . In particular, these teeth belong to U∗, so that [s] ∈ U∗. This proves that
U∗ \U∗ ⊇U \U . Conversely, suppose for a contradiction that [s] /∈U for some [s] ∈U∗. Then,
there is a finite set F ⊂V (G) such that U ∩C(F, [s]) = /0. Since the elements of W are disjoint,
we suppose that r \F is a tail of r for every r ∈ W , unless by adding to F initial segments
of finitely many rays from W . However, in G \F there is a path P′ connecting a tail of s to
some vertex v ∈U∗, since [s] ∈U∗. If v ∈ S, then P′ can be extended to a path P in G\F which
connects a tail of s to a vertex u ∈U , by definition of S. Analogously, if v ∈ r\F for some r ∈W ,
then P′ can also be extended to a path P in G\F that connects v to a vertex u ∈U . In this case,
P′ contains a finite subpath of r, while u is some teeth of the comb for which r is a spine. In both
scenarios, however, we find u ∈U ∩C(F, [r]), which is a contradiction. Therefore, the inclusion
U∗ \U∗ ⊆U \U is verified.

Fixed a special tree T , we observe that Lemma 5.4.1 suggests the definition of a topology
over R(T ) = {high-rays of T}: the ray space of T now consists in the end space of some (and,
thus, any) uniform T−graph G. Indeed, considering the partition tree of G given by (T,{t}t∈T ),
the map Θ : Ω(G)→ R(T ) as defined in (5.4) is a bijection, so that the point set of R(T ) can
be identified with Ω(G). Within this notation, Theorem 5.4.2 claims that the topological spaces
which arise as end spaces of graphs are precisely the ones which arise as ray spaces of special
trees.

Although this is not a purely topological description of the class of all end spaces, such
characterization allows alternative approaches for studying that family. For example, the topology
of R(T ) can also be declared intrinsically in terms of the tree T . More precisely, an open basic
neighborhood around a high-ray R ∈ R(T ) can be chosen as a set of the form

[t,F ] = {s ∈ R(T ) : t ∈ s and t ′ /∈ s for every t ′ ∈ F}, (5.6)

where t ∈ R and F ⊂ T is a finite collection of tops of R. In subsection 2.4 of (PITZ, 2023), Pitz
formalizes the equivalence between these two ways of defining a topology on R(T ).

In addition, the above system of open basic neighborhoods defines a basis B for R(T )

which is generated by a natural clopen subbase for this space. In fact, B is obtained when
closing the family C = {[t] : t ∈ T} under complements and finite intersections, where [t] :=
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{R ∈ R(T ) : t ∈ R} is a clopen set in R(T ) for every t ∈ T . Since T is a special tree, it is rather
easy to verify the axioms below for this family C :

• C is nested, i.e., for every pair U,V ∈ C such that U ∩V ̸= /0, we have U ⊆V or V ⊆U ;

• C is noetherian, i.e., if U1 ⊆U2 ⊆U3 ⊆ . . . is an ⊆−increasing sequence of elements
from C , then there is n ∈ N such that Un =Un+k for every k ∈ N;

• C is hereditarily complete, i.e., the family CY = {U ∩Y : U ∈ C } is complete for every
closed subspace Y ⊂ R(T ). More precisely, every subfamily of CY which satisfies the
finite intersection property has non-empty intersection itself;

• C is σ−disjoint, i.e., we can write C =
⋃

n∈N
An for some countable family {An}n∈N of

antichains11 in C .

On the other hand, Pitz (2023) noticed that the above properties are precisely the ones
required to characterize all the end spaces of graphs, finally answering Diestel’s question
presented in the Introduction. Among other descriptions of similar spaces (such as path and
branch spaces of trees), a main result in his paper (PITZ, 2023) is recalled below:

Theorem 5.4.6 (Pitz (2023), Theorems 1.1 and 1.2). For a Hausdorff topological space X, the

following properties are equivalent:

i) X ≃ Ω(G) for some graph G;

ii) X ≃ R(T ) for some special tree T ;

iii) X admits a clopen subbase which is nested, noetherian, hereditarily complete and σ−disjoint.

In our preprint (AURICHI; REAL; JÚNIOR, 2023), written in a joint work with Paulo
Júnior, we give an alternative interpretation for the above result in terms of a topological game.
This is a clever approach, since games are often a simplified way to encode a tree. Intuitively,
under suitable game, some winning strategy when playing over a topological space X as in item
iii) can be used to construct a tree T as in item ii). As a poset, the elements of T are open sets of
X , which are ordered via reverse inclusion. The restriction of Theorem 5.4.6 to the metric case
illustrates this kind of construction:

Proposition 5.4.7. X is a complete ultrametric space if, and only if, it is the end space of some

(graph-theoretic) tree.

Proof. Proposition 5.3.2 precisely claims that end spaces of (graph-theoretic) trees are complete
ultrametric spaces. Conversely, fix (X ,d) a complete ultrametric space. For every x ∈ X and
n ≥ 1, denote by B 1

n
(x) the open ball of radius 1

n around x. For distinct points x,y ∈ X , we observe

11 In this topological context, we recall that an antichain is a collection of pairwise disjoint open sets.
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that, if there is z ∈ B 1
n
(x)∩B 1

n
(y), then d(x,y)≤ 1

n because d is an ultrametric. Hence, we must
have B 1

n
(x) = B 1

n
(y). In other words, we proved that the family Bn = {B 1

n
(x) : x ∈ X} is an open

cover for X whose elements are equal or disjoint.

Then, consider the tree T whose vertex set is given by {X}∪
⋃

n∈N
Bn. We assume that T is

rooted at X and we define an edge XU ∈ E(T ) for every U ∈B1. Given n ≥ 1 and x ∈ X , we also
declare an edge in T connecting B 1

n+1
(x) ∈ Bn+1 to B 1

n
(x) ∈ Bn. This finishes the description of

T , remaining to show that X ≃ Ω(T ).

In fact, for every x ∈ X , denote by ray rx in T starting at X and containing the vertices
from {B 1

n
(x)}n≥1. Since the metric d is complete, it follows that, if r is a ray of T starting

at X , then
⋂

r =
⋂

U∈r

U ̸= /0. Therefore, r = rx for some x ∈
⋂

r. This proves that the map

ϕ : X → Ω(T ) given by x 7→ [rx] is surjective. It is injective as well: if x ̸= y, there is n ≥ 1 big
enough so that B 1

n
(x)∩B 1

n
(y) = /0. In this case, rx and ry belong to distinct connected components

of T \{U ∈ T : U ⊇ B 1
n
(x),B 1

n
(y)}.

In order to show that ϕ is continuous, fix {xk}k∈N ⊂ X a sequence which converges to
a given x ∈ X . Let S ⊂ T be any finite set, so that, for some n0 ∈ N, we have B 1

k0
(y) /∈ S for all

y ∈ X . In particular, for every k ∈ N such that xk ∈ B 1
n0
(x), the tail of rxk starting at B 1

n0
(x) does

not intersect S. Since xk → x as k → ∞, this proves that {[rxk ]}k∈N converges to [rx], concluding
the continuity of ϕ in x.

Conversely, suppose that {[rxk ]}k∈N is a sequence in Ω(T ) which converges to an end
[rx] ∈ Ω(T ). In particular, given n ≥ 1, all but finitely many rays from {rxk}k∈N must contain
the open ball B 1

n
(x). In other words, there is k0 ∈ N such that xk ∈ B 1

n
(x) if k ≥ k0, proving that

{xk}k∈N converges to x. Hence, ϕ−1 is continuous in the end [rx].

Therefore, ϕ is an homeomorphism.

5.5 Applications and remarks

As pointed out in the Introduction, the end structure of infinite graphs is useful for
extending classical theorems from finite graph theory. With special attention to connectivity
results, in this section we will discuss some of these applications, although most details will be
omitted. Nevertheless, it is remarkable that a given statement regarding finite graphs might admit
more than one infinite version. When setting an infinite Menger-type theorem, for example, dif-
ferent references in the literature present distinct definitions for connecting paths and separators,
although all the notions are coincident for locally finite graphs.

Before comparing these concepts, it is useful to distinguish the role played by some
vertices of infinite degree. More precisely, fixed a graph G, we recall from Theorem 5.3.6 that
v ∈ V (G) dominates a ray r ∈ R(G) if it is infinitely connected to r, in the following sense:
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v ∈ C(S, [r]) for every finite set S ⊂ V (G) \ {v}, i.e., the vertex v and a tail of r belong to the
same connected component of G\S. Equivalently, v is the center of a star whose leaves belong
to r. In this case, v dominates any other ray equivalent to r, allowing us to say that v dominates
the end [r]. Then, combining notations from (POLAT, 1991) and (JACOBS et al., 2023), we set
the following definitions:

Definition 5.5.1 (Connecting paths). Let G be a graph. Depending on whether we are considering

connectivities of the form “vertex-vertex”, “vertex-end” and “end-end”, we define the paths
and the graphic paths as follows:

• Connectivity between vertices: for fixed vertex sets A,B ⊂V (G), an A−B path
or graphic path is a finite path P in which one endpoint belongs to A, the other belongs

to B and no inner vertex of the path belongs to A∪B, as defined in Section 2.1. If these

endpoints are a ∈ A and b ∈ B respectively, we say that P is an a−b path;

• Connectivity between vertices and ends: Fix v∈V (G) and [r]∈Ω(G). A graphic
v− [r] path is a ray equivalent to r starting at v. A v− [r] path is either a graphic v− [r]

path or a v−u path, in which u ∈V (G) is a vertex that dominates [r];

• Connectivity between ends: Fix [r1], [r2] ∈ Ω(G). A graphic [r1]− [r2] path is a

double ray in which one half-ray is equivalent to r1 and the other is equivalent to r2. In

its turn, a [r1]− [r2] path is either a graphic one or a v− [ri] path for some i ∈ {1,2} and

some vertex v ∈V (G) that dominates r3−i.

More generally, for sets A,B ⊂V (G)∪Ω(G), a graphic A−B path is a graphic a−b path P for

some a ∈ A and some b ∈ B such that {a,b}= P∩ (A∪B), where this latter closure is taken in

|G|. In addition, we say that two graphic paths P and Q are strongly disjoint if P∩Q = /0. In

its turn, if A,B ⊂ Ω(G) or A ⊂V (G) and B ⊂ Ω(G), an A−B path is simply an a−b path for

some a ∈ A and some b ∈ B.

Roughly speaking, the paths in Definition 5.5.1 differ from the graphic ones by allowing
dominating vertices to represent some reachable end. If we consider only graphic paths, Bruhn,
Diestel and Stein (2005) generalized Theorem 2.3.3 somehow verbatim, under the following
condition of topological separation:

Theorem 5.5.2 (Bruhn, Diestel and Stein (2005), Theorem 1.1). In a given connected graph

G, fix A,B ⊂V (G)∪Ω(G) two sets that are separated topologically, i.e., which satisfy A∩B =

A∩B = /0. Then, there exist S ⊂V (G)∪Ω(G) and a family P of strongly disjoint graphic A−B

paths such that:

• S =
⋃

P∈P

S∩P and |P∩S|= 1 for every P ∈ P;

• If Q is any graphic A−B path, then Q∩S ̸= /0.
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Comparing Theorem 5.5.2 with the original statement of the Erdős-Menger Theorem,
the subset S ⊂V (G)∪Ω(G) of the above thesis plays the role of an “A−B separator obtained
by the choice of precisely one element from each P ∈ P”. Nevertheless, when applied to the
graph G of Figure 31, there are no two disjoint graphic paths connecting the only two ends
[r1], [r2] ∈ Ω(G). But, since v∞ is adjacent to vn for each n ∈ Z, at least two vertices are needed
to separate [r1] and [r2]. The “{[r1]}−{[r2]} separator” claimed by Theorem 5.5.2, thus, is given
by either {[r1]} or {[r2]} in this case.

Figure 31 – Double rays in which both half-rays are dominated by a same vertex

v−3 v−2 v−1 v0 v1 v2 v3

v∞

Source: Elaborated by the author.

However, if we aim to forbid ends in separating sets, the broader notion of connecting
paths in Definition 5.5.1, rather than the graphic ones, is useful. Also considering the role
played by dominating vertices, this definition was first introduced by Polat (1991). In his work,
the separators allowed are composed only by vertices, although with reasonable topological
restrictions:

Definition 5.5.3 (Separators). Fix G a graph and X ⊂ Ω(G) a set of ends. We say that a vertex

set S ⊂V (G) is dispersed regarding X if, for every [r] ∈ X, there is a finite set F ⊂V (G) such

that C(F, [r])∩ S = /0. In this case, there are representatives of the end [r] in G \ S, as well as

every vertex that dominates [r] belongs to C(F, [r])∪F.

For subsets A,B ⊂ Ω(G), we say that S is an A−B separator if S is dispersed regarding

A∪B and there is no graphic A−B path in G\S. In particular, there is no A−B path in G\S.

The existence of separators as in the above definition is, similar to Theorem 5.5.2, closely
related to the topological separation of the sets A and B. This is the core of the result below, that
was originally proved using the notion of multiendings developed by Polat (1996b). However, we
will concluded it based on the more recent technique of enveloping a set o vertices, as formalized
by Lemma 5.4.5.

Lemma 5.5.4 (Polat (1991), Theorem 1.2). Let A,B ⊂ Ω(G) be sets of ends in an infinite graph

G such that A∩B = A∩B = /0. Then, there exists an A−B separator S ⊂V (G) with the following

property:

(⋆) S has finite adhesion, namely, for every end [r] ∈ A∪B, the connected component C of G\S

in which r has a tail has finite neighborhood in S. In other words,

N(C) = {v ∈ S : v has a neighbor in C} is finite.



5.5. Applications and remarks 139

Proof. Let W be a maximal set of pairwise disjoint rays in G whose ends belong to A. Consid-
ering U =

⋃
W∈W

V (W ), we claim that U \U = A. In fact, given an end [r] ∈ A, the ray r must

intersect infinitely many vertices of U : otherwise, a tail of r would contradict the maximality of
W when added to this family. In particular, C(F, [r])∩U ̸= /0 for every finite subset F ⊂V (G),
so that [r] ∈U \U . Conversely, let [r] ∈U be any end. Then, for every finite set F ⊂V (G), the
connected component of G\F containing a tail of r also contains a tail of a ray w ∈ W . Since
[w] ∈ A and A is closed in Ω(G), it follows that [r] ∈ A.

Relying on Lemma 5.4.5, fix U∗ an envelope for U . In particular, U∗ \U∗ = A. For an
end [r]∈ B, we observe that its representative r has a tail in a connected component C[r] of G\U∗.
If not, then r intersects U∗ in infinitely many vertices, so that [r] ∈U∗ \U∗ = A. However, this
contradicts the hypothesis that A∩B = /0.

For every [r] ∈ B, then, denotes by S[r] the neighborhood of C[r] in U∗, which is finite
since U∗ is an envelope. Recalling that U ⊂U∗, by the maximality of W there is no ray in C[r]

whose end belongs to A. Therefore, setting S′ =
⋃
[r]∈B

S[r], there is no graphic A−B path in G\S′.

We will now show that every end of A∪B can be separated from S′ by finitely many vertices.

Indeed, C(S[r], [r])∩S′ = /0 for every end [r]∈ B, since S′ ⊂U∗. For a contradiction, fixed
[r] ∈ A, suppose that C(F, [r])∩S′ ̸= /0 for every finite F ⊂V (G). In particular, S′ is infinite, so
that there is an infinite family {C[ri]}i∈N ⊂{C[s] : [s]∈ B} of connected components of G\U∗ that
have a neighbor in C(F, [r]). Hence, by choosing n big enough such that C[rn]∩F = /0, we must
have C(F, [rn]) =C(F, [r]). Since {[ri]}i∈N ⊂ B, this proves that [r] ∈ A∩B, which contradicts
the disjunction A∩B = /0. Hence, (A∪B)∩S′ = /0.

Finally, let S be an envelope for S′. We will verify that S is an A − B separator as
claimed. Indeed, the connected components of G\S have finite neighborhood in S. Moreover,
S \ S = S′ \ S′ ⊂ Ω(G) \ (A∪B), so that every end [r] ∈ A∪B has a representative in some
connected component of G\S. In particular, S is dispersed regarding A∪B. Finally, since S′ ⊂ S,
there is no A−B graphic path in G\S.

Relying on Lemma 5.5.4, Polat (1991) proves the next Menger-type theorem. Its state-
ment differs from Theorem 5.5.2 in the sense that the paths and the separators are now those
considered by Definitions 5.5.1 and 5.5.3, respectively. Moreover, the claimed separator S is not
required to be obtained by the choice of precisely one vertex from each path of the family P:

Theorem 5.5.5 (Polat (1991), Theorem 3.2). Let A,B ⊂ Ω(G) be two sets of ends such that

A∩B = A∩B = /0. Consider a maximum-sized family P of disjoint A−B paths and fix an A−B

separator S of minimum size. Then, |P|= |S|.

We will not present a proof for Theorem 5.5.5 in the next paragraphs since it will be
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revisited by Theorem 6.2.4 in Section 6.2. Instead, we will finish this section by discussing
other minor connectivity results regarding ends. Although some of them are consequences from
the above generalizations of Menger’s Theorem, we might fulfill its details for further didactic
references. Considering that, we start with the following example:

Lemma 5.5.6 (Bruhn and Stein (2007), Lemma 10). Let G be a locally finite connected graph.

Fix an end [r] ∈ Ω(G) and a finite set S ⊂V (G). Then, the maximum number of rays starting at

S which are equivalent to r is equal to the minimum size of a cut separating S and r.

Proof. Consider F ⊂ E(G) a minimum cut separating r and the vertices of S, i.e., such that no
vertex of S belongs to the connected component of G\F which contains a tail of r. Once G is
locally finite, the cut δ (S) satisfies this property, so that a minimum such F indeed exists and
it is finite. By this minimality assumption, every edge of F has an endpoint in the connected
component C0 of G\F in which r has its tail. Consider the subgraph G0 obtained from C0 after
adding to it precisely the edges of F and its endpoints. Incidentally, let S0 = V (G0) \V (C0)

denote the set of endpoints of the edges from F0 := F other the the ones that belong to C0.

By induction, suppose that a finite cut Fn in a connected subgraph Gn of G is defined
for some n ∈ N. We write as Cn for the connected component of G\Fn in which r has a tail. In
addition, we assume that Sn =V (Gn)\V (Cn) is a finite set which is separated from r by Fn, that
also has minimum size with such property. We suppose even that Fn is precisely the edge set
connecting Sn to Cn in Gn.

Under these assumptions, denote by S′n the set of endpoints of edges from Fn that lie in
Cn. Since Cn is connected and locally finite, there is Fn+1 a cut on this graph separating S′n and r.
We assume that Fn+1 has minimum size with this property, so that all edges from Fn+1 have an
endpoint in the connected component Cn+1 of Gn \Fn+1 which contains a tail of r. In addition,
the cut Fn+1 also separates Sn from r in Gn, so that |Fn| ≤ |Fn+1| by the minimality of Fn when
defined in Gn. Finally, we construct the connected subgraph Gn+1 by adding to Cn+1 the edges
of Fn+1 and its endpoints. Then, set Sn+1 :=V (Gn+1)\V (Cn+1).

Figure 32 – Definition of Hn

The paths of the family Pn are presented by dashed lines.
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Now, consider the graph Hn obtained from Gn \Cn+1 by adding the edges of Fn+1 and
its endpoints, as Figure 32 suggests. Then, let Pn be a maximum family of edge-disjoint paths
in Hn connecting Sn to S′n+1, as given by the Erdős-Menger Theorem for edges (see Corollary
2.3.4). Observing that Fn is a cut of minimum size in Hn separating Sn from S′n+1, because it has
minimum size while separating Sn from r, we must have |Pn|= |Fn|. At the end of this recursive
process, the union

⋃
n∈N

⋃
Pn contains |F0|= |F | many edge-disjoint rays starting at S0, since Hn

and Hn+1 intersects precisely at the edges of Fn. These rays define a family P as in Figure 33,
being equivalent to r due to the fact that r has a tail in Cn for every n ∈ N.

Figure 33 – Construction of a family of |F | many edge-disjoint rays

In red, we present the family P of |F | many edge-disjoint rays starting at vertices of S0. They are obtained
by concatenating suitable paths from the family

⋃
n∈N

Pn.

Source: Elaborated by the author.

Finally, consider G− the graph obtained from G\C0 after adding the edges of F and its
endpoints. Note that F separates the vertices of S and S′0 in G−, besides having minimum size
with that property. Then, by relying again on the Erdős-Menger Theorem for edges, we can also
extend the paths from P within G− so that they start at S.

Exercise 5.5.7. Consider the family of subgraphs {Cn : n ∈ N} as defined in the above proof.

Show that
⋂

n∈N
Cn = /0. If needed, search for a hint in the proof of Proposition 5.2.1.

Following the work of Jacobs et al. (2023), we will now apply Lemma 5.5.6 in order
to obtain a version of the Lovász-Cherkassky Theorem for locally finite graphs and their ends.
Before introducing it, we recall that a T−path in a graph G is a T −T path as in Definition 5.5.1,
namely, a path that meets the set T ⊂V (G) in precisely its endpoints. On the other hand, we say
that G is inner-Eulerian for T if every vertex of V (G)\T has even degree. Considering that,
the classical Lovász-Cherkassky Theorem is stated below:

Theorem 5.5.8 (Lovász-Cherkassky). In a given finite graph G, fix T ⊂ V (G). If G is inner-

Eulerian for T , the maximum number o pairwise disjoint edge-disjoint T−paths in G is equal

to
1
2 ∑

t∈T
λ (t,T \{t}),

where λ (t,T \{t}) denotes the minimum size of a cut separating t from T \{t}.
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Roughly speaking, Theorem 5.5.8 claims that there is a family of edge-disjoint T−paths

P attaining an optimal size. This because, in a family of at least 1+
1
2 ∑

t∈T
λ (t,T \{t}) paths,

two of them must contain a common edge of a minimum cut separating some vertex t from
T \{t}. In particular, for every t ∈ T , the maximum family P contains precisely λ (t,T \{t})
paths that have t as an endpoint. Considering this property, Jacobs et al. (2023) proposed the
following generalization of the Lovász-Cherkassky Theorem for locally finite graphs and their
ends:

Theorem 5.5.9 (Jacobs et al. (2023), Theorem 1). Let G be a locally finite graph and fix

T ⊂V (G)∪Ω(G) a discrete subset in the topological space |G|. Suppose that |δ (X)| is even or

infinite for every X ⊂V (G) in which T ⊂ X. Then, there is a family P of edge-disjoint graphic

T−paths such that, for every t ∈ T , the number of {t}− (T \{t}) paths is equal to λ (t,T \{t}).

In the above statement, a graphic T−path is a graphic T − T path, following the
notation from Definition 5.5.1. Analogously, λ (t,T \{t}) denotes the minimum size of an edge
set F ⊂ E(G) that separates t from T \{t}, in the sense that the connected component of G\F

which contains t does not contain a vertex from T \{t} neither the tail of a ray whose end belongs
to T \{t}.

Comparing the Theorems 5.5.8 and 5.5.9, the “inner-Eulerian” hypothesis over G is, in
the locally finite generalization, replaced by a parity condition over some finite cuts. Despite that,
the new assumption restricts to the original hypothesis for finite graphs. More precisely, if G is
finite and every vertex of G\T has even degree, let G̃ be the multigraph obtained by contracting
a set X ⊃ T to a new vertex v. Since G̃ has an even number of vertices of odd degree, the degree
of v must be even by the well-known handshaking lemma. Noticing that |δ (X)| is the degree of
v in G̃, the above result is, in fact, a generalization of the classical Lovász-Cherkassky Theorem
for finite graphs. On the other hand, its proof relies also on a countable version of Theorem 5.5.8
previously obtained by Joó (2023):

Theorem 5.5.10 (Joó (2023), Theorem 1.3). Let G be a (multi)graph and fix T ⊂ V (G) a

countable subset. Suppose that |δ (X)| is even or infinite for every X ⊂ V (G) which contains

T . Then, there is a family P of edge-disjoint T−paths such that, for every t ∈ T , there is a

cut separating t from T \ {t} obtained by the choice of precisely one edge from each path of

Pt = {P ∈ P : t is an endpoint of P}.

In fact, by applying Lemma 5.5.6, Theorem 5.5.9 is reduced to the hypothesis of Theorem
5.5.10:

Proof of Theorem 5.5.9. Since G is a connected locally finite graph, we argued in the previous
sections that |G| is a compact metric space and, in particular, second countable. Therefore, the
subset T ⊂V (G)∪Ω(G) is countable, because it is discrete. Hence, fix an enumeration {[ri]}i<κ

for T ∩Ω(G), where κ is a countable (possibly finite) cardinal.
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Once G is locally finite and T is discrete, there is a finite set F0 ⊂V (G) such that, in the
connected component C0 of G\F0 containing a tail of r0, there is no vertex of T neither a tail of
ri for some i > 0. We choose F0 with minimum size satisfying that property.

Analogously, suppose that disjoint finite sets F0,F1, . . . ,Fi ⊂ E(G) are defined for some
i < κ . For each j ≤ i, we assume that the connected component C j of G\Fj in which r j has a
tail does not contain a vertex from T neither the tail of rk whether k ∈ κ \{ j}. If κ = i+1, we
finish this recursive process. Otherwise, we denote by Ġ the (multi)graph that arises from G after
contracting the connected component C j to an artificial point x j for every j ≤ i. Endowing Ġ with
the corresponding quotient topology from |G|, the set Ti+1 = (T \{[r j] : j ≤ i})∪{x j : j ≤ i}
is also discrete. Then, there is a finite set Fi+1 ⊂ E(Ġ) separating ri+1 and Tj, in the following
sense: the connected component Ci+1 of Ġ \Fi+1 in which ri+1 has its tail does not contain a
vertex from Tj neither a tail of rk if k > i+1. Again, we choose Fi+1 of minimum size with that
property. Hence, as a subgraph of G, the connected component Ci+1 does not contain a vertex of
T neither a tail of rk if k ∈ κ \{i+1}. Moreover, Ci+1 is indeed the connected component of
G\Fi+1 in which ri+1 has its tail.

Hence, at the end of this recursive process, Ci is defined for every i < κ and satisfies
Ci∩T = {[ri]}. Denote by Ĉi the subgraph obtained from Ci after adding to it the edges of Fi and
its endpoints. By the choice of Fi, this edge set has minimum size while separating the vertices
of Si :=V (Ĉi)\V (Ci) from a tail of ri. Hence, by Lemma 5.5.6, there is a family Pi comprising
|Fi| many edge-disjoint rays starting at vertices of Si and which are equivalent to ri.

On the other hand, after contracting each connected subgraph Ci to an artificial vertex vi,
we define a multigraph Ĝ. Now, we can apply Theorem 5.5.10 to the vertex set T̂ = (T \Ω(G))∪
{vi : i < κ} in Ĝ, since, by the main hypothesis over G, the cardinal |δ (X)| is even or infinite for
every X ⊂V (Ĝ) that contains T̂ . Hence, there is a family P̂ of edge-disjoint T̂−paths in Ĝ with
the following property:

(∗) For every t ∈ T̂ , there is a cut separating t from T̂ \{t} obtained by the choice of precisely
one edge from each path of P̂t = {P ∈ P̂ : t is an endpoint of P}.

Therefore, the claimed family P of graphic T−paths for G is obtained from P̂ after
concatenating some of its elements with suitable paths in

⋃
n∈N

Pn. Explicitly, if P ∈ P̂ is a path

such that none of its endpoints in Ĝ belong to {vi : i < κ}, we set P as an element of P as well.
If not, P has an endpoint of the form vi for some i < κ . In this case, the edge e in P which is
incident at vi belongs to Fi. Hence, e is the first edge of an unique ray R′ ∈ Pi. Therefore, as
suggested by Figure 34 we set the concatenation PR′ as an element of P if the other endpoint of
P does not have the form v j for some j < κ . Otherwise, we proceed similarly in order to extend
PR′ to a double ray R′′PR′, where R′′ is the unique ray of P j that contains the single edge from
Fj ∩P. In this case, we set R′′PR′ as, in fact, an element of P .
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Finally, since P̂ satisfies property (∗) and |Pi|= |Fi| for every i < κ , we note that P

defined this way indeed verifies the statement of Theorem 5.5.9.

Figure 34 – Construction of an element of P

In dashed red lines, we sketch some paths of P̂ which have a vertex vi as one of their endpoints. These
paths are extended after being concatenated with suitable paths from Pi.

Source: Elaborated by the author.
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CHAPTER

6
THE EDGE-END SPACE

The last section of the previous chapter presented two extensions of the Lovász-Cherkassky
Theorem for infinite graphs. Due to Joó (2023), the first one states it for countable graphs, as
a result regarding the connectivity between its vertices. The second one, obtained by Jacobs et

al. (2023), studies the connectivity between ends as well, but it is restricted to the locally finite
case. In fact, this latter generalization is obtained via a reduction to the hypothesis of the former,
so that a natural question arises: can we extend the Lovász-Cherkassky Theorem for countable

graphs and their ends?

As we shall discuss in Section 6.2, the answer is “somehow”. After all, Lemma 5.5.6
(that supports the proof of Theorem 5.5.9) is not applicable for arbitrary graphs. For example, as
is the case in Figure 31, there might be an end which cannot be separated from a given (finite) set
of vertices by finitely many edges. However, we can get around this obstruction by considering a
slightly different notion of end, despite the same when restricted to locally finite graphs. Hence,
following the work of Hahn, Laviolette and Širáň (1997), this chapter brings combinatorial and
topological properties of edge-ends in infinite graphs, more suitable objects for the improvement
of edge-connectivity results. In particular, the next sections were extracted from our preprints
(AURICHI; REAL, 2023) and (AURICHI; REAL; JÚNIOR, 2023), which are on final stage of
writing.

6.1 Introduction

While ends are equivalence classes of rays that are infinitely (vertex-)connected, the
edge-ends are obtained after identifying rays which are infinitely edge-connected. More precisely,
if G is a graph and we fix r,s ∈ R(G), we say that r and s are edge-equivalent, writing r ∼E r,
whenever the tails of r and s belong to the same connected component of G\F for every finite
set F ⊂ E(G). If this is not the case, we say that some such F ⊂ E(G) separates r and s. It is
easily verified that ∼E is an equivalence relation over R(G), which is also highlighted by the
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following observation:

Lemma 6.1.1 (Hahn, Laviolette and Širáň (1997), Lemma 2). For two rays r and s of a graph

G, we have r ∼E s if, and only if, there is an infinite family of pairwise edge-disjoint r− s paths

whose endpoints in r and s are distinct.

Proof. Suppose first that there is a family P of r− s paths as in the statement. If F ⊂ E(G) is a
finite edge set, then some path P ∈ P does not intersect F . Moreover, we can choose P such that
its endpoints u ∈ s and v ∈ r are far from F in the following sense: the tails of r and s starting at
v and u respectively do not intersect F as well. Hence, these tails belong to the same connected
component of G\F . Since F is arbitrary, we proved that r ∼E s.

Conversely, suppose that r and s are edge-equivalent. In particular, there is a path P0

connecting r and s. Suppose that we have defined edge-disjoint r− s paths P0,P1, . . . ,Pn whose
endpoints in r and s, denoted by v0,v1, . . . ,vn and u0,u1, . . . ,un respectively, are distinct. Note

that the set F =
n⋃

i=0

E(Pi) is finite. Hence, since r ∼E s, the tails of r and s in G \F belong to

the same connected component. In these tails, we fix vertices vn+1 ∈ r \ {v0,v1, . . . ,vn} and
un+1 ∈ s\{u0,u1, . . . ,un}. Then, let Pn+1 be any path connecting vn+1 to un+1 in G\F . At the
end of this recursive process, the family P = {Pn}n∈N verifies the statement.

Now, the quotient R(G)/∼E , denoted by ΩE(G), is said to be the edge-end space of
the graph G. Then, the edge-end of a ray r refers to its equivalence class in ΩE(G), represented
by [r]E . Comparing this notion with the definition of end presented in the previous chapter,
we observe that, if r and s are equivalent under the usual relation ∼, then they are also edge-
equivalent. If G is locally finite, the converse also holds. In this case, if no finite edge set separates
two rays r and s in G, then neither a finite set of vertices does, because only finitely many edges
are incident to them. However, when there are vertices of infinite degree, ∼E might identify more
rays: although the graph in Figure 31 has two ends, for example, it has only one edge-end.

Despite that, the definition of the topological space |G| suggests a similar topology on
G and its edge-ends. Indeed, consider the space ∥G∥ whose point set comprises the vertices of
G, its edges (identified with the unit interval as in Section 5.1) and ΩE(G). In ∥G∥, the open
basic neighborhoods around vertices and inner points of edges are precisely the same as in |G|.
However, by fixing ε > 0 and a finite set F ⊂ E(G), an open basic neighborhood around an
edge-end [r]E ∈ ΩE(G) assumes now the following form:

ĈE(F, [r]E ,ε) :=CE(F, [r]E)∪ΩE(F, [r]E)∪
⋃

u∈CE(F,[r]E)
uv∈E(F,[r]E)

[u,ε) (6.1)
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In the above expression, CE(F, [r]E) denotes the connected component of G\F in which
r has a tail, while E(F, [r]E) refers to the cut δ (CE(F, [r]E)). Finally, ΩE(F, [r]E) comprises the
edge-ends of G that have a representative in CE(F, [r]E).

Exercise 6.1.2. Is ∥G∥ a Hausdorff space for every graph G?

In particular, {ΩE(F, [r]E) : F ⊂ E(G) finite} is a local basis at [r]E in ΩE(G), seen as a
topological subspace of ∥G∥. With this inherited substructure, the topology of ΩE(G) is a matter
of interest by itself. Following the spirit of Diestel’s question as stated in Introduction, Section 6.3
and Section 6.4 investigate the topological spaces that can be written in the form ΩE(G) for some
graph G. More precisely, the former section brings a graph-theoretic characterization of this
family via the topology of (usual) end spaces, while the latter one sets {ΩE(G) : G graph} as a
proper subclass of {Ω(G) : G graph}. Extracted from our preprint (AURICHI; REAL; JÚNIOR,
2023), part of this discussion deeply relies in the recent paper of Kurkofka and Pitz (2023),
whose main results were overviewed by Section 5.4.

Actually, the contributions in (AURICHI; REAL; JÚNIOR, 2023) were obtained as
an intersection of two studies. On one hand, Paulo Júnior was looking forward a topological

description of end spaces, which he obtained via a topological game. On the other, the author
of the dissertation applied the edge-end structure in order to generalize the Lóvasz-Cherkassky
Theorem, as we shall detail among other connectivity results in Section 6.2. In a joint work, a
search for topological properties of edge-end spaces naturally arisen.

Exercise 6.1.3. For a given graph G, show that its edge-end space ΩE(G) is Hausdorff and

Fréchet-Urysohn.

In general lines, this chapter will often compare edge-end spaces of given graphs with
end spaces of possible other ones. Thus, we finish this section by presenting a natural definition
in that direction: we consider the line graph G′ of a given graph G as the one obtained by setting
V (G′) = E(G) and

e f ∈ E(G′) if, and only if, e and f are adjacent edges.

Here, we mean by adjacent edges those that share a common endpoint. Then, the following
observation easily translates paths in G to paths in G′ and conversely:

Lemma 6.1.4. Fix e and f two non-adjacent edges in a connected graph G. Therefore, the two

statements below holds:

i) If v0v1v2 . . .vn is a path in G such that e = v0v1 and f = vn−1vn, then (vivi+1)i<n defines a

path in G′ connecting e and f ;

ii) Conversely, if e0e1e2 . . .en is a ⊆-minimal path in G′ connecting the edges e = e0 and

f = fn of G, then there is a path v0v1v2 . . .vn+1 in G such that ei = vivi+1 for each 0≤ i≤ n.
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Proof. The first item is trivial. In fact, if v0v1v2 . . .vn is a path in G, then vi1vi and vivi+1 are
distinct and adjacent edges for every 1 < i < n, defining a path in G′.

Now, suppose that e0e1e2 . . .en is a ⊆−minimal path in G′ connecting the edges e = e0

and f = fn. Hence, for each i< n, ei and ei+1 share an endpoint vi+1 in G, since those are adjacent
edges. Moreover, vi+1 ̸= v j+1 for every j < n distinct from i. Otherwise, if vi+1 = v j+1 and i < j

for instance, the edges ei and e j+1 would be adjacent, so that the path e0e1 . . .eie j+1 . . .en would
contradict the minimality of e0e1e2 . . .en.

Exercise 6.1.5. Does it hold ΩE(G)≃ Ω(G′) for every graph G?

6.2 Edge-connectivity results

As previously pointed out, this section aims to extend the Lovász-Cherkassky Theorem
for countable graphs and its edge-ends. Since ends and edge-ends are the same object in locally
finite graphs, the claimed extension generalizes both Theorems 5.5.10 and 5.5.9. In fact, we will
proceed similarly to the proof of this latter result, that consists in a reduction to the hypothesis of
the former. However, we shall replace Lemma 5.5.6 by another Menger-type result, which must
now be applicable to non-locally finite graphs.

This new tool will be obtained by restating Theorem 5.5.5 to edge-ends. In this edge-
related setting, however, we need to also adapt the definitions of paths and separators from 5.5.1
and 5.5.3, respectively. Then, we first say that a vertex v ∈V (G) of a graph G edge-dominates an
edge-end [r]E ∈ΩE(G) if v is infinitely edge-connected to r (and, thus, to any other representative
of [r]E). More precisely, v ∈CE(F, [r]E) for every finite set F ⊂ E(G). In this case, following the
proof of Lemma 6.1.1, there is an infinite family of edge-disjoint paths connecting v to infinitely
many vertices of r. Considering that, we state the definitions below:

Definition 6.2.1 (Connecting paths - edge version). Let G be a graph. For vertex sets A,B⊂V (G),

the definition A−B paths given by 5.5.1 is preserved. For connectivities between edge-ends and

vertices or edge-ends and edge-ends, we consider the following criteria:

• Connectivity between vertices and edge-ends: Fix v∈V (G) and [r]E ∈ΩE(G).

A graphic v−ω path is a ray which is edge-equivalent to r and starts at v. Then, a v− [r]E
path is either a graphic one or a {v}−{u} path for some vertex u ∈ V (G) that edge-

dominates [r]E;

• Connectivity between edge-ends: For edge-ends [r1]E , [r2]E ∈ ΩE(G), an [r1]E −
[r2]E path is one of objects below:

i) A v− [ri]E path, for some i ∈ {1,2} and some vertex v ∈V (G) that edge-dominates

[r3−i]E;
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ii) A double ray in which [r1]E and [r2]E are the edge-ends of its half-rays. This case

defines a graphic [r1]E − [r2]E path.

Finally, given A,B ⊂ ΩE(G) or A ⊂V (G) and B ⊂ ΩE(G), an A−B path is an a−b path for

some a ∈ A and some b ∈ B.

Definition 6.2.2 (Separators - edge version). Fix a graph G and vertex sets A,B ⊂V (G). Then,

we say that an edge set S ⊂ E(G) is an A−B separator if there is no A−B path in G\S. Now,

let X ⊂ ΩE(G) be a set of edge-ends. We say that S ⊂ E(G) is dispersed regarding X if, for every

[r]E ∈ X, there is a finite set F ⊂ E(G) such that no edge of S belongs to the subgraph induced

by CE(F, [r]E). In this case, we write S∩CE(F, [r]E) = /0.

For subsets A,B ⊂ ΩE(G), we say that S is an A−B separator if it is dispersed regarding

A∪B and, for every [r1]E ∈ A and every [r2]E ∈ B, there is no graphic [r1]E − [r2]E path in G\S.

In particular, there is no A−B path in G\F.

When discussing Menger-type results, we are interested in small separators, often mini-
mal or with minimum size. Then, in future proofs, we shall rely on the following remark without
explicit mention:

Lemma 6.2.3. Consider sets A and B such that either A ⊂V (G) or A ⊂ ΩE(G), as well as either

B ⊂ V (G) or B ⊂ ΩE(G). Suppose that there is a finite A−B separator F ⊂ E(G), which we

assume to be ⊆−minimal. Then, there is X ⊂V (G) such that F = δ (X). In other words, F is a

cut.

Proof. Considering the topology of ∥G∥, define the family

C = {C : C is a connected component of G\F such that A∩C ̸= /0}.

We will show that the claimed subset of V (G) can be chosen as X =
⋃

C∈C

V (C). In fact, for every

edge e ∈ F , there is an A−B path in G\ (F \{e}) by the minimality of F . Since F is an A−B

separator, this path contains e, although it passes through no other edge from F . Therefore, e has
an endpoint in X and the other in V (G)\X , so that e ∈ δ (X).

Conversely, by definition of C , an edge e ∈ δ (X) has endpoints in two distinct connected
components of G\F . Hence, we must have e ∈ F .

Now, fixing G′ the line graph of an infinite graph G, we observe that item i) in Lemma
6.1.4 provides a natural identification between edge-ends of G and some elements from Ω(G′).
More precisely, given a ray r = v0v1v2 . . . , we denote by θ(r) the ray in G′ whose vertex set is
θ(r) = {vivi+1}i∈N. We thus consider the induced map

Θ : ΩE(G) → Ω(G′)

[r]E 7→ [φ(r)]
(6.2)



150 Chapter 6. The edge-end space

We claim that Θ is well defined. In fact, if r and s are edge-equivalent rays in G, then there
are infinitely many edge-disjoint paths connecting (infinitely many) vertices of r to (infinitely
many) vertices of s. By Lemma 6.1.4, those paths correspond in G′ to infinitely many disjoint
paths connecting θ(r) to θ(s), so that [θ(r)] = [θ(s)]. Similarly, we argue that Θ is injective.
Indeed, suppose that r and s are rays in G satisfying [θ(r)] = [θ(s)]. In other words, θ(r) and θ(s)

are connected by infinitely many vertex-disjoint paths. Unless by passing to proper connected
subgraphs, we can assume that these paths are ⊆−minimal while connecting their endpoints.
Thus, by Lemma 6.1.4, they correspond in G to infinitely many edge-disjoint paths connecting
(infinitely many vertices from) r to (infinitely many vertices from) s, so that [r]E = [s]E .

Now, fix sets A,B ⊂ ΩE(G) such that A∩B = B∩A = /0. Considering Ω(G′) with its
end space topology, we claim that Θ(A)∩Θ(B) = /0 and, by symmetry, that Θ(A)∩Θ(B) = /0.
In order to prove this, fix r a ray in G such that [r]E ∈ B. Since A∩B = /0, there is a finite edge
set F ⊂ E(G) which separates r from A, i.e., A∩ΩE(F, [r]E) = /0. For a while, suppose that
Ω(F, [θ(r)])∩Θ(A) ̸= /0 in G′. In other words, a tail of θ(s) is contained in C(F, [θ(r)]) for some
ray s in G with [s]∈ A. Then, there is a (minimal) path in G′ connecting the tails of θ(r) and θ(s).
Again, by Lemma 6.1.4, this defines a path in G connecting r to s, but avoiding the edges from F .
However, this contradicts the fact that F separates r from A. Therefore, Ω(F, [θ(r)])∩Θ(A) = /0
in G′, proving that Θ(A)∩Θ(B) = /0. Supported by this remark, Theorem 5.5.5 can be written in
its edge analogous:

Theorem 6.2.4 (Erdős-Menger Theorem for edge-ends). Let A,B ⊂ ΩE(G) be two sets of ends

such that A∩B = A∩B = /0. Hence,

i) There is F an A−B separator, which we can choose to have minimum cardinality;

ii) If P is a family of edge-disjoint A−B paths with maximum size, then |P|= |F |.

Proof. Let A,B ⊂ ΩE(G) be the two sets of edge-ends such that A∩B = A∩B = /0. Then,
consider the cardinal

κ = sup{|P| : P is a family of edge-disjoint A−B paths}.

If κ is finite, the above supremum is clearly attained, even by a family P that we can
suppose to be ⊆ −maximal. If κ is infinite, in its turn, we fix a ⊆ −maximal family P of
edge-disjoint X −Y paths and consider the following two cases:

• Suppose that κ is countable but that P is finite. Given n ∈ N, by definition of κ there is
a family Pn of edge-disjoint A−B paths satisfying |Pn| ≥ 2n · |P|. However, since P

is ⊆−maximal, Q∩
⋃

P∈P

E(P) ̸= /0. In particular, there is rn ∈ P an A−B path such that

|{Q ∈ Pn : Q∩E(rn) ̸= /0}| ≥ 2n. Considering a subsequence of {rn}n∈N if necessary, we
can even assume that rn = rm =: r for every n,m ∈ N. Thus, by being infinite, r is either
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a ray or a double ray. In this latter case, unless by passing {Pn}n∈N to a subsequence,
r contains a ray r′ such that |{Q ∈ Pn : Q∩E(r′) ̸= /0}| ≥ n. Therefore, we can assume
that r is a ray such that |{Q ∈ Pn : Q∩E(r) ̸= /0}| ≥ n. Once r ∈ P is a A−B path, we
have [r]E ∈ A∪B. On the other hand, for every finite set F ⊂ E(G), a tail of r intersects
an A−B path Q from P|F |+1. Hence, in CE(F, [r]E) there are representatives of ends in A

and B. This proves that [r]E ∈ A∩B, contradicting the topological separation hypothesis.
Therefore, |P|= ℵ0 if κ = ℵ0;

• Suppose that κ is uncountable but |P| < κ . In particular, there is Q a family of edge-

disjoint A−B paths such that |P| < |Q|. However, |P| =

∣∣∣∣∣ ⋃
P∈P

E(P)

∣∣∣∣∣, because A−B

paths are countable. Hence, there is Q ∈ Q such that Q∩
⋃

P∈P

E(P) = /0. In this case, P ∪

{Q} contradicts the maximality of P . Thus, we must have |P|= κ if κ is uncountable.

In any case, P , being ⊆ −maximal, has maximum size. However, as discussed previously,
Θ(A)∩Θ(B) = Θ(A)∩Θ(B) = /0 in the line graph G′. From now on, then, let S ⊂V (G′) be a
Θ(A)−Θ(B) separator satisfying (⋆) as in Lemma 5.5.4.

Regarding S as an edge set in G, we observe that there is no graphic A−B path in G\S:
otherwise, the edge set of such a double ray would be the vertex set of a graphic Θ(A)−Θ(B)

path in G′ \S, contradicting the fact that S is a Θ(A)−Θ(B) separator. Moreover, S is a dispersed
set regarding A∪B in G. To see this, fix [r]E ∈ A∪B any edge-end. Since S is a dispersed set in G′

regarding Θ(A)∪Θ(B) , there is a finite set of vertices F ⊂V (G′) such that C(F, [θ(r)])∩F = /0.
Hence, by seeing F as a set of edges in G, Lemma 6.1.4 guarantees that there is no path
connecting an edge of S ⊂ E(G) to a tail of r in G\F . Therefore, S is an A−B separator.

Finally, for each P ∈ P , we define a finite set of edges TP as follows:

• If P is a finite path, we set TP = E(P);

• If P is a ray whose edge-end belongs to A∪B, consider C′
Θ([P]E)

the connected component
of G′ \S in which θ(P) has a tail. According to Lemma 6.1.4, C′

Θ([P]E)
is indeed the line

graph of the connected component C[P]E of G \ S in which P has a tail. Moreover, by
property (⋆), the neighborhood of C′

Θ([P]E)
in S is as a finite set S[P]E . Considering S[P]E

as an edge subset of G, note that S[P]E is the cut δ (C[P]E ). In this case, we define TP to be
S[P]E ∪ (E(P)∩S);

• Now, suppose that P is a double ray such that one half-ray P1 has its edge-end in A and
the other, named P2, has its edge-end as an element of B. Denote by C[P1]E and C[P2]E the
connected components of G \ S in which P1 and P2 have their tails, respectively. As in
the previous case, the cuts S[P1]E = δ (C[P1]E ) and S[P2]E = δ (C[P2]E ) are finite subsets of S.
Then, we set TP = S[P1]E ∪S[P2]E ∪ (E(P)∩S).



152 Chapter 6. The edge-end space

By the maximality of P , any graphic A− B path R must intersect F =
⋃

P∈P

TP: in

S∩E(P) for some P ∈ P or in S[r] for some edge-end [r] ∈V (R). In other words, F is an A−B

separator. Moreover, F has the size of the family P if κ = |P| is infinite, since TP is finite for
every P ∈ P . By the same reason, F is finite if so is κ . In this latter case, Theorem 6.2.4 is
reduced to Corollary 6.2.6, that will be sooner stated.

Then, the above proof of Theorem 6.2.4 is complete unless by studying the case in
which the sets A and B can be separated by finitely many edges. This discussion is isolated from
the whole proof because, besides being rather wide when written in details, it will be further
mentioned when generalizing the Lovász-Cherkassky Theorem for countable graphs and its
edge-ends. In that study, the following intermediate result, whose proof is an adaptation of the
one drawn for Lemma 5.5.6, will be useful:

Lemma 6.2.5. Let G be a connected graph and fix A ⊂ ΩE(G). Let F ⊂ E(G) be a finite edge set

that separates a given vertex set S ⊂V (G) from A. Suppose that F is minimal with that property.

Then, there is a family P of |F | many edge-disjoint S−A paths.

Proof. We first consider the case in which A is closed in ΩE(G). Setting k = |F |, we shall
construct the required family P recursively, as the limit object from a sequence {Pn}n∈N =

{Pn
1 ,P

n
2 , . . . ,P

n
k }n∈N of families of edge-disjoint finite paths. By its minimality, we can write

F = δ (V0) for some V0 ⊂V (G), denoting V ′
0 =V (G)\V0. Without loss of generality, we assume

that S ⊂V0 and A ⊂V ′
0.

Let S′ be the endpoints of the edges in F that belong to V ′
0. Consider Ĝ the subgraph of

G obtained by adjoining to G[V0] precisely S′ and the edges from F . Hence, by the minimality
of F , the Erdős-Menger Theorem for edges guarantees the existence in Ĝ of a family P of k

edge-disjoint S′−S paths. In particular, each edge from F belongs to precisely one path of P .

Setting G0 := G, P0 := P and F0 := F , suppose by induction that we have defined the
following objects and its properties:

• The family of paths Pn = {Pn
i : 1 ≤ i ≤ k}. For each 1 ≤ i ≤ k, denote by vn

i the endpoint
of Pn

i other than the one in S;

• Gn is a subgraph of G in which every end of A has a representative;

• A cut Fn in Gn of minimum size that separates a vertex set Sn ⊂V (Gn) from A. We assume
also that the last edge from each path of Pn is an element of Fn.

First, since Fn is a cut of Gn, let us write Fn = δ (Vn) and V ′
n := V (Gn) \Vn for some

Vn ⊂V (Gn). We assume that Gn+1 :=Gn[Vn] is the subgraph induced by the part of the bipartition
{Vn,V ′

n} in which every edge-end of A has a representative. Then, define

Sn+1 = {vn
j : finitely many edges separate vn

j from A}.
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For every 1 ≤ i ≤ k such that vn
i /∈ Sn+1, we set Pn+1

i = Pn
i . Since Sn+1 is finite, its defini-

tion allows us to find a finite set Fn+1 ⊂E(Gn+1) that separates Sn+1 from A. By choosing Fn+1 of
minimum size with that property, Fn+1 is a cut in Gn+1. Hence, we write Fn+1 = δ (Vn+1) for some
Vn+1 ⊂ V (Gn+1), considering V ′

n+1 := V (Gn+1)\Vn+1 the part of the bipartition {Vn+1,V ′
n+1}

containing Sn+1.

Denote by Kn ⊂ Fn the set of edges of Fn whose endpoints belong to Sn+1. Let A′ and B′

be the set of endpoints of edges from Fn and Fn+1, respectively, that do not belong to Gn+1[V ′
n+1].

Define Ĝn as the graph obtained after adding to Gn+1[V ′
n+1] the vertices of A′∪B′ and the edges

of Kn ∪Fn+1. By the edge version of the Erdős-Menger Theorem (2.3.4), there is a family P ′ of
edge-disjoint A′−B′ paths in Ĝn with a cut C′ obtained by the choice of precisely one edge from
each path of P ′. We observe that |C′| ≥ |Kn|. Otherwise, F ′

n = (Fn \Kn)∪C′ has strictly fewer
edges than Fn and separates A from Sn, contradicting the definition of Fn. Therefore, each edge
from Kn lies in precisely one path of P ′. By concatenating these paths with the previous paths
of Pn that end in Kn ⊂ Fn, we finish the definition of Pn+1.

After finishing this recursive process, consider P′
i =

⋃
n∈N

Pn
i for each 1≤ i≤ k. We observe

that, if P′
i is a ray, its edge-end belongs to A, so that P′

i is a S−A path. Otherwise, since A is
closed, there would be a finite set F ′ ⊂ E(G) such that A∩CE(F ′, [P′

i ]E) = /0. However, F ′ is not
contained in Gn for some n ∈ N big enough, contradicting the construction of P′

i . Similarly, if
P′

i is a finite path for some 1 ≤ i ≤ k, then P′
i = Pn

i for all but finitely many indices n ∈ N. If its
endpoint vi edge-dominates an edge-end from A, then P′

i is also a S−A path by definition.

Then, consider the set of indices I = {1 ≤ i ≤ k : P′
i is not a S−A path}. Let J ⊂ I be a

subset of maximum size for which there is a family PJ = {Pj : j ∈ J} of edge-disjoint S−A

paths satisfying the following properties:

• {P′
i : i /∈ J}∪{Pj : j ∈ J} is a set of edge-disjoint rays or finite paths;

• P′
j is an initial subpath of Pj for every j ∈ J.

If we prove that J = I, then P = {P′
i : i /∈ I}∪{Pi : i ∈ I} is the claimed family of edge-

disjoint S−A paths. Indeed, suppose that there exists l ∈ I \ J. Then, P′
l is a finite path whose

endpoint vl (other than the one in S) does not edge-dominate an end from A. In particular, vl

does not edge-dominate an edge-end from {[P′
i ]E : P′

i is a ray, i /∈ I}∪{[Pj]E : Pj is a ray, j ∈ J}
. Hence, there is L ⊂ E(G) a finite set of edges such that, in G \L, the connected component
C containing vl does not intersect

⋃
i/∈J

V (P′
i )∪

⋃
j∈J

V (Pj). However, by construction, vl cannot be

separated from A by finitely many edges, since P′
l is a finite path. Hence, in C there is a ray

starting at v′l whose edge-end belongs to A. Concatenating this ray with the finite path P′
l , we

contradict the maximality of J.
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Now, suppose that A ⊂ ΩE(G) is any subset that can be separated from S by the finite
set F ⊂ E(G). If F has minimum size with that property, we observe that F also separates
A from S. In fact, suppose that r is a graphic S−A path that misses F . Since [r]E ∈ A, fix
[r′]E ∈ A∩ΩE(F, [r]). Then, the tail of r′ in G\F is contained in CE(F, [r]′). Assuming that r′

starts at S, we contradict the main hypothesis over A.

Hence, by the case just analyzed, there is a family P of k = |F | edge-disjoint S−A

paths. Then, for every P ∈ P there is an edge-end [rP]E ∈ A such that P is either a ray which
is edge-equivalent to rP or a finite path such that one of its endpoints edge-dominates [rP]E . In
this latter case, by shortening the path P if necessary, we assume that its endpoint is the unique
vertex of P that edge-dominates the edge-end [rP]E .

Consider then the set X = {P ∈ P : [rP]E ∈ A\A}. Suppose that P is chosen so that
X has minimum size. Finishing the proof, we claim that X = /0. Otherwise, fix P ∈ P . Since
ΩE(G) is a Hausdorff space, there is L ⊂ E(G) a finite set for which [rQ]E /∈ ΩE(L, [rP]E) for
every Q ∈ P such that [rQ]E ̸= [rP]E . Moreover, by possibly adding (finitely many) edges to L,
we can assume that no edge from

⋃
Q∈P

[rQ]E ̸=[rP]E

E(Q) lies in CE(L, [rP]E). However, there is a ray r′

in CE(L, [rP]E) whose edge-end [r′]E belongs to A, since [rP]E ∈ A\A. Unless by changing the
choice of P within {Q ∈ P : [rQ]E = [rP]E}, we can assume that r′ starts in a vertex of P and
does not intersect

⋃
Q∈P

[rQ]E=[rP]E

V (Q) in any other point, because [r′]E ̸= [rP]E . This defines a S−A

path P′ by concatenating r′ with an initial segment of P, so that (P \{P})∪{P′} contradicts
the minimality of X .

After applying the above result for both sides of a bipartition of V (G) given by a minimum
cut, the following Corollary finishes the proof of Theorem 6.2.4:

Corollary 6.2.6. Let A,B ⊂ ΩE(G) be two sets of edge-ends of a graph G. Suppose that there is

a finite A−B separator F ⊂ E(G). If F has minimum size with that property, there is a family

P of |F |−many edge-disjoint A−B paths.

Proof. Since F has minimum size, we can write F = δ (V1) for some V1 ⊂ V (G). Consider
V2 =V (G)\V1 and let Si be the set of endpoints of edges of F in Vi, for i = 1,2. Assume that the
representatives of edge-ends in A have its tails in G[V1], while the representatives of edge-ends
in B have its tails in G[V2]. Hence, F is an edge set of minimal size separating A from S2 in
G[V1 ∪S2]. By Lemma 6.2.5, there is a family P1 = {P1

1 ,P
1
2 , . . . ,P

1
|F |} of edge-disjoint S2 −A

paths in this graph. Analogously, there is P2 = {P2
1 ,P

2
2 , . . . ,P

2
|F |} a set of edge-disjoint S1 −B

paths in G[V2 ∪ S1]. After changing the enumeration of the elements in P2 if necessary, we
observe that P1

i and P2
i intersects in a common edge from F for every 1 ≤ i ≤ |F |. Therefore,
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the concatenation P1
i P2

i is a well defined A−B path, so that P = {P1
i P2

i : 1 ≤ i ≤ |F |} is the
claimed family.

We are now ready to state a generalization of the Lovász-Cherkassky Theorem for
countable graphs and their edge-ends. This is done by combining Lemma 6.2.5 to the main idea
for proving Theorem 5.5.9, which reduces the problem to hypothesis of Theorem 5.5.10. To
that aim, in the below result, a T−path means a t1 − t2 path P as in Definition 6.2.1 satisfying
P∩T = {t1, t2}:

Theorem 6.2.7 (Lovász-Cherkassky for countable graphs and their edge-ends). Let G be a

countable graph and T ⊂V (G)∪ΩE(G) be a discrete subspace of ∥G∥. Suppose that |δ (X)|
is even or infinite for every X ⊂ V (G) in which T ⊂ X. Then, there exists a collection P of

edge-disjoint T−paths such that, for every t ∈ T , there is a cut separating t from T \{t} obtained

by the choice of precisely one edge from each path of Pt = {P ∈ P : t is an endpoint of P}.

Revisited proof of Theorem 5.5.9. Without loss of generality, we assume that G is connected.
Since G is countable and the graph G\F has finitely many connected components for every finite
set of edges F ⊂ E(G), the topological space V (G)∪ΩE(G) has a countable basis. Therefore, T

is also countable, by being a discrete subspace. Thus, for some countable (possibly finite) cardinal
κ , fix an enumeration {ti}i<κ for T ∩ΩE(G). Since T is discrete, we can find a finite edge set
F0 ⊂ E(G) so that CE(F0, t0)∩T = {t0}. By taking F0 of minimum size with that property and
denoting C0 =C(F0, t0), the separator F0 is actually the cut δ (C0).

By induction, suppose that we have defined finitely many cuts F0,F1, . . . ,Fi and disjoint
connected subgraphs C0,C1,C2, . . . ,Ci of G with the following properties:

• For every j < i, the cut Fj ⊂ E(G) is finite. Moreover, C j =CE(Fj, t j);

• For every j < i, C j ∩T = {t j}.

In order to define Fi+1 and Ci+1, consider G′
i the (multi)graph obtained from G after

contracting the connected subgraph C j to a vertex v j for every j ≤ i. Endowing G′
i with the

quotient topology that arises from ∥G∥ , the set T ′
i = {v0,v1, . . . ,vi}∪ (T \{t1, t2, . . . , ti}) is also

discrete. Therefore, we can find a finite set Fi+1 ⊂ E(G′
i) so that Fi+1 separates ti+1 from the other

elements of T ′
i . More precisely, by choosing Fi+1 with minimum size under these conditions,

Fi+1 is a cut in G with CE(Fi+1, ti+1)∩T = {ti+1}. We then denote Ci+1 =CE(Fi+1, ti+1).

Once Ci is defined for every i < κ , let G̃ be the (multi)graph obtained by contracting
each Ci to a vertex vi. Setting T ′ = {vi : i < κ}∪ (T ∩V (G)), by hypothesis |δ (X)| is even or
infinite for every X ⊂ V (G̃) containing T ′. Hence, Theorem 5.5.10 guarantees the existence
of a collection P ′ of edge-disjoint T ′−paths such that, for every t ∈ T ′, there is a cut Ct

separating t from T ′ \{t} which is obtained by the choice of precisely one edge from each path
of P ′

t = {P ∈ P ′ : t is an endpoint of P}.
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On the other hand, for each i < κ , fix Si = {a ∈V (G)\Ci : ab ∈ Fi for some b ∈V (G)}
the set of endpoints of edges in the cut Fi that lie on V (G) \Ci. By applying Lemma 6.2.5 in
the connected (induced) subgraph Hi =Ci ∪Si, we obtain Pi a collection of |Fi| edge-disjoint
Si −{ti} paths. In particular, every edge of Fi belongs to precisely one path of Pi.

Therefore, we describe the claimed collection P of edge-disjoint T−paths as follows:
for every i < κ , we concatenate different paths from P ′

vi
with different paths from the family

Pi. Note that |P ′
vi
|= |Cvi| ≤ |Fi|= |Pi|, because Fi separates vi from T ′ \{vi} in G̃. Then, this

construction of P is well defined, although some paths of Pi are not extended to paths of P if
|Cvi|< |Fi|.

The extensions presented in this section for Menger’s and Lovász-Cherkassky Theorems
suggest that other results from finite graph theory might be generalized in terms of edge-ends.
Despite that, the literature concerning edge-end spaces is still not broad, and, in fact, the original
paper of Hahn, Laviolette and Širáň (1997) is practically the unique reference on the subject.
Hence, we address the following problem for future investigations:

Problem 6.2.8. Which other connectivity results from finite graph theory can be extended to

infinite graphs and their edge-ends? In particular, which similar results concerning locally

finite graphs and their ends, such as those overviewed by Diestel (2010), can be stated also for

countable graphs when considering its edge-ends?

6.3 Edge-end spaces via end spaces

Since the definition of edge-ends is somehow inspired by the definition of ends, it is
natural to compare the classes of topological spaces {Ω(G) : G graph} and {ΩE(G) : G graph}.
Indeed, as pointed out in the Introduction, equivalent rays in a graph are also edge-equivalent,
attesting the weakness of this latter equivalence relation when compared with the former. This
suggests that the edge-end space of a graph G can be seen as the end space of possibly another
graph H, which might be obtained from G by operations that improve its connectivity. The
program that we shall first carry out in this section formalizes this idea, aiming to conclude the
observation below:

Theorem 6.3.1. Let G be a graph. Then, there is a graph H whose each vertex edge-dominates

at most one end and such that Ω(H)≃ ΩE(G).

In the above result, we say that a vertex v ∈V (H) edge-dominates an end [r] ∈ Ω(H) if
it edge-dominates the corresponding edge-end [r]E . Hence, the graph H claimed by Theorem
6.3.1 has the following property: if [r], [s] ∈ Ω(H) are distinct, then there is no vertex v ∈V (H)

which edge-dominates both [r]E and [s]E .
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In order to construct such H, fix, for each vertex v ∈ V (G) that edge-dominates some
end, a complete graph Kv on d(v) vertices. Then, fix also a bijection ρv : N(v)→V (Kv) between
N(v) := {u ∈V (G) : uv ∈ E(G)} and the vertices of Kv. Denoting by D the set of vertices of G

that edge-dominate some ray, the vertex set of H is written as V (H) := (V (G)\D)∪
⋃

v∈D

V (Kv),

so that the elements of the (disjoint) union
⋃

v∈D

V (Kv) are called expanded vertices.

The edge set of H, in its turn, is given by the (disjoint) union
⋃

v∈D

E(Kv) and the range of

the function ρ : E(G) ↪→ E(H) defined as follows:

• ρ(uv) = uv if u,v ∈V (G)\D;

• ρ(uv) = uρv(u) if u ∈V (G)\D but v ∈ D;

• ρ(uv) = ρu(v)ρv(u) if u,v ∈ D.

Roughly speaking, ρ is a map that attaches different edges incident in a vertex v ∈ D to
different vertices of Kv. Since adjacencies between vertices of V (G)\D are preserved, we regard
ρ as an inclusion map from E(G) to E(H). For a vertex x ∈ Kv, hence, we define its canonical

edge to be the unique edge of ρ(E(G)) that has x as an endpoint.

This inclusion map also translate rays of G into rays of H in a natural sense. In fact, if
r = v0v1v2v3 . . . is a ray in G, we consider the ray ρ(r) in H whose presentation by its edges is
ρ(v0v1)s1ρ(v1v2)s2ρ(v2v3) . . . , where, for every i ≥ 1,

• si = /0 is the empty edge if vi /∈ D;

• si = ρvi(vi−1)ρvi(vi+1) is the edge in Kvi which is adjacent to the canonical edges ρ(vi−1vi)

and ρ(vivi+1).

Clearly, finite paths of G can be recovered in H by the same construction. In other
words, if P = v0v1 . . .vn is a path in G, we denote by ρ(P) the path in H whose edges are
ρ(v0v1)s1ρ(v1v2)s2ρ(v2v3) . . .sn−1ρ(vn−1vn). Conversely, a path or a ray r in H has the form
ρ(s) for some path or some ray s of G, accordingly, whenever |E(r)∩E(Kv)| ≤ 1 for every
v ∈ D. In this sense, via ρ , the next technical result allows us to map edge-disjoint families of
paths in G to disjoint families of paths in H:

Lemma 6.3.2. Fix r a ray in G. Let R be a vertex or a ray that cannot be separated from r by

finitely many edges. Then, there is an infinite family {Pn}n∈N of edge-disjoint paths such that:

i) For every n ∈ N, Pn connects r and R, i.e., it has one endpoint in r and the other in R;

ii) If n ̸= m, then V (Pn)∩V (Pm)⊂ D.
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Proof. We first remark that, if R is a vertex, then the main hypothesis above actually says that
R dominates r. In this case, if another vertex v ∈V (G) can not be separated from R by finitely
many edges, then v belongs to D as well. This because v, R and a tail of r belong to the same
connected component of G\F for every finite set F ⊂ E(G).

Now, let P0 be a path connecting r and s. For some n ≥ 1, suppose that we have defined
finitely many edge-disjoint paths P0,P1, . . . ,Pn−1 that connect r and R. Moreover, we assume by
induction that V (Pi)∩V (Pj)⊂ D whenever i ̸= j. Then, by the observation made in the previous
paragraph, any vertex from V (G)\D can be separated from r and R by a finite set of edges. In

particular, there is a finite set F ⊂ E(G) that separates every vertex of
n−1⋃
i=0

V (Pi)\D from r and

R. By hypothesis, in G\F there is a path Pn that connects the tail of r to R (if it is a vertex) or to
its tail (if it is a ray). Moreover, V (Pn)∩V (Pi)⊂ D for every i < n by the choice of F .

At the end of this recursive process, {Pn}n∈N is the claimed family of paths.

In particular, if R = s is a ray that is edge-equivalent to r, then the above family {Pn}n∈N

comprises edge-disjoint paths connecting r and s whose elements intersect only (possibly) at
dominating vertices. Hence, in H, the family {ρ(Pn)}n∈N turns out to be a family of vertex-
disjoint paths connecting ρ(r) to ρ(s), since every expanded vertex is an endpoint of precisely
one canonical edge. This means that the map

Φ : ΩE(G) → Ω(H)

[r]E 7→ [ρ(r)]
(6.3)

is well-defined. Proving Theorem 6.3.1, our aim now is to verify that Φ is an homeomorphism.
First, we remark that its surjection also follows from Lemma 6.3.2:

Proposition 6.3.3. The map Φ is surjective.

Proof. Fix r = x0x1x2 . . . a ray in H. First, consider the case in which V (r)∩V (Kv) is finite for
every v ∈ D. We will recursively define a ray r′ = x′0x′1x′2 . . . of H as follows:

• We declare x′0 = x0. If x0 ∈ V (Kv) for some v ∈ D, we also define x′1 = xi1 , where i1 =

max{ j ∈ N : x j ∈V (Kv)}. Since Kv is a complete graph, x′0 and x′1 are indeed neighbors;

• We suppose that x′0,x
′
1,x

′
2, . . . ,x

′
n are already defined for some n ∈N. By induction, we can

write x′k = xik for every 1 ≤ k ≤ n and certain indices i1 < i2 < i3 < · · ·< in. Moreover, we
assume that, if x′n ∈V (Kv) for some v ∈ D, then in = max{ j ∈ N : x j ∈V (Kv)}. We thus
set x′n+1 = xin+1. In addition, if xin+1 ∈V (Kv) for some v ∈ D, we also set x′n+2 = xin+2 , in
which in+2 = max{ j ∈ N : x j ∈V (Kv)}.
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Defined this way, the ray r′ is actually a subgraph of r, so that [r′] = [r]. Note that r′ = ρ(s)

for some ray s in H, because |E(r)∩E(Kv)| ≤ 1 for every v ∈ D by construction. Therefore,
Φ([s]E) = [r′] = [r].

Now, suppose that V (r)∩V (Kv) is infinite for some v ∈ D. By definition of D, there is a
ray s in G that v edge-dominates. Then, there is {Pn}n∈N an infinite family of edge-disjoint paths
connecting v and s. By Lemma 6.3.2, we can assume that Pn ∩Pm ⊂ D if n ̸= m. Since expanded
vertices are endpoints of precisely one canonical edge, {ρ(Pn)}n∈N is a family of vertex-disjoint
paths that verifies the equivalence between ρ(s) and a ray rv composed by expanded vertices of
Kv. On the other hand, since V (r)∩V (Kv) is infinite and Kv is a complete graph, we have r ∼ rv.
Hence, Φ([s]E) = [ρ(s)] = [rv] = [r].

Rather strongly than showing that Φ is injective, we can conclude that distinct edge-ends
of G are mapped to ends of H which are not infinitely edge-connected:

Proposition 6.3.4. If r and s are rays of G such that [r]E ̸= [s]E , then ρ(r) and ρ(s) are not

edge-equivalent in H. In particular, [ρ(r)] ̸= [ρ(s)].

Proof. Fix r and s two rays that can be separated by a finite set F ⊂ E(G). In particular, ρ(F)

is also finite. For a while, suppose that, in H \ρ(F), there is a path P = x0x1 . . .xn connecting
the tails of ρ(s) and ρ(r). Suppose that |V (P)| is minimum with that property. Then, given
distinct xi,x j ∈ Kv for some v ∈ D, we must have j = i + 1 if i < j, because the subpath
P′ = x0x1 . . .xix j . . .xn is well defined and also connects ρ(s) to ρ(r). Hence, if xi ∈ D, the edges
xi−1xi and xi+1xi+2, if exist, are canonical. In other words, P = ρ(Q) for some path Q that
connects r and s in G. However, this contradicts the fact that F separates the rays r and s, because
E(P)⊂ E(H)\ρ(F) and, thus, E(Q)⊂ E(G)\F . Therefore, ρ(F) separates ρ(r) and ρ(s).

Corollary 6.3.5. Every vertex of H edge-dominates at most one end of Ω(H).

Proof. Fix v ∈V (H) a vertex that edge-dominates two distinct ends of H. Fix r and s representa-
tives for those ends. In particular, if F ⊂ E(H) is finite, there is a path P in H \F connecting
v to a tail of r. Then, F ′ = F ∪E(P) is also a finite set of edges, so that there is a path P′ in
H \F ′ connecting v to a tail of s. Therefore, by concatenating P and P′, we obtain a path in H \F

connecting the tails of r and s. This proves that r and s are infinitely edge-connected, although
they belong to different ends of H. Since Φ is surjective, this contradicts Proposition 6.3.4.

Proving Theorem 6.3.1, thus, we will now show that Φ is open and continuous:

Proposition 6.3.6. Φ is an homeomorphism.
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Proof. We will first verify that Φ is continuous. To this aim, for some [r] ∈ Ω(H) and some
finite S ⊂V (H), let Ω(S, [r]) be a basic open set in the end space of H. Since Φ is a bijection,
we can write the representative r as r = ρ(s) for some ray s in G. If a fixed vertex u ∈ S belongs
to D, let Fu = { fu} denote the singleton set containing its canonical edge fu. If not, u does not
edge-dominate the ray s, so that there is a finite set Fu ⊂ E(G) that separates s and u. Hence,
F =

⋃
u∈S

Fu is a finite set of edges. We then claim that the basic open set ΩE(F, [s]E) for the

edge-end space of G is contained in Φ−1(A). In fact, if F does not separate s and a ray s′,
there is P a path connecting s and s′ in G \F . By the choice of F , therefore, ρ(P) is a path
connecting ρ(s) and ρ(s′) in G\S. In other words, S does not separate ρ(s) and ρ(s′), proving
that Φ(ΩE(F, [s]E))⊂ Ω(S, [r]).

Conversely, in order to show that Φ is an open map, let ΩE(F, [s]E) be a basic open
set containing an edge-end [s]E ∈ ΩE(G) for some finite F ⊂ E(G). Hence, it is also finite
the set S = {x ∈V (H) : x is endpoint of ρ(e) for some e ∈ F}. Then, it is enough to verify that
Ω(S, [ρ(s)]) ⊂ Φ(Ω(F, [s]E)). To this aim, again by the fact that Φ is surjective, an element
[r] ∈ Ω(S, [ρ(s)]) has a representative of the form r = ρ(s′) for some ray s′ of G. Since S does
not separate ρ(s′) and ρ(s), there is P a path connecting the tails of these two rays in H \S. As
in Proposition 6.3.4, if we consider P to have as few vertices as possible, we can write P = ρ(Q)

for some path Q in G \F connecting s and s′. Hence, F does not separate s and s′, so that
[s′]E ∈ ΩE(F, [s]E) and, therefore, [r] = [ρ(s′)] ∈ Φ(ΩE(F, [s]E)).

Once established the proof of Theorem 6.3.1, we observe that, in particular, it fits the
edge-end spaces as subclass of {Ω(H) : H graph}. On the other hand, Section 6.4 shall verify that
the reverse inclusion does not hold: there exists a graph H for which Ω(H) is not the edge-end
space of any other graph. Before that, we will finish this section by discussing how Theorem
6.3.1 is actually a characterization of edge-end spaces, since we can conclude its converse:

Theorem 6.3.7. Let G be a graph in which every vertex edge-dominates at most one end of

Ω(G). Then, there is a graph H such that ΩE(H)≃ Ω(G).

Following the opposite direction of the construction that supports Theorem 6.3.1, H as
in the above result will be defined from G by operations that weaken its connectivity. In order to
start this construction, we first extract from the proof of Lemma 5.4.5 the following observation:

Lemma 6.3.8. Let [s] ∈ Ω(G) be an end of G and fix R[s] ⊂ [s] a maximal family of pairwise

(vertex-)disjoint rays. Denote by D[s] the set of vertices that dominate [s]. Then,

E[s] = D[s]∪
⋃

r∈R[s]

V (r) (6.4)

has finite adesion, i.e., for each connected component C of G \E[s], the set N(C) = {v ∈ E[s] :
v has a neighbor in C} is finite. Moreover, if r is a ray such that V (r)∩E[s] is infinite, then r and

s are equivalent.
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Then, for each end [s] ∈ Ω(G), we will fix E[s] as defined by (6.4) and, following the
notation from Section 5.4, we will call it an envelope for [s]. By the main hypothesis of Theorem
6.3.7, each vertex v ∈V (G) edge-dominates at most one such end [s] ∈ Ω(G). If this is the case,
we define a new vertex v′ and a bipartition τv : N(v)→{v,v′} according to the following rules:

τv(u) =

{
v, if u ∈ E[s];
v′, if u ∈V (G)\E[s].

From now on in this section, D⊂V (G) will denote the set of vertices that edge-dominates
an end of G. Then, we consider V (G)∪{v′ : v ∈ D} as the vertex set of the claimed graph H. Its
edge set is {vv′ : v ∈ D}∪ τ(E(H)), in which τ : E(G) ↪→ E(H) is the injective map given by:

τ(uv) =


uv, if u,v ∈V (G)\D;
uτv(u), if u ∈V (G)\D and v ∈ D;
τu(v)τv(u), if u,v ∈ D.

In other words, H is constructed from G after duplicating vertices of D, rearranging the
edges of G according to τ and defining an edge between a vertex and its copy. In particular, by
tracking the edges of G, the map τ also allows us to include paths and rays of G into H. For
example, given a ray r = v0v1v2 . . . in G, we denote by τ(r) the ray in H whose presentation by
its edges is τ(v0v1)s1τ(v1v2)s2τ(v2v3)s3 . . . , in which, for i ≥ 1:

• si = /0 is the empty edge if vi /∈ D or vi ∈ D and τvi(vi+1) = τvi(vi−1);

• si = viv′i if vi ∈ D and τvi(vi+1) ̸= τvi(vi−1).

Regarding the above notation, a path P = v0v1v2 . . .vn in G can also be seen within H: we
naturally define the path τ(P) whose edges are given by τ(v0v1)s1τ(v1v2)s2τ(v2v3) . . .sn−1τ(vn−1vn).
In particular, if {Pn}n∈N is an infinite family of (vertex-)disjoint paths connecting the rays r and
s in G, then {τ(Pn)}n∈N are (vertex-)disjoint paths connecting ρ(r) and ρ(s). Therefore, the map
below is well-defined and it is a natural candidate to be an homeomorphism between Ω(G) and
ΩE(H):

Ψ : Ω(G) → ΩE(H)

[r] 7→ [τ(r)]E
(6.5)

In order to verify that Ψ is indeed a bijection, the following technical observation is
helpful:

Lemma 6.3.9. Fix K′ a connected subgraph of H and let K be the subgraph of G whose edges

are given by τ−1(E(K′)) (and whose vertices are its endpoints). Then, K is connected.
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Proof. We will prove that there is no empty cut in K. To that aim, let {A1,A2} be a bipartition
of V (K) into non-empty parts. For a contradiction, assume that there is no edge of K with an
endpoint in A1 and the other in A2. However, there are edges e = u1v1 and f = u2v2, for some
u1,v1 ∈ A1 and u2,v2 ∈ A2. Since K′ is connected, there is a path in this graph whose presentation
via its edges is e0e1e2 . . .en, where e0 = τ(e) and en = τ( f ). Consider the index

i = max{0 ≤ j ≤ n : e j ∈ τ(E(G)) and τ
−1(e j) is an edge of K[A1]}.

This index is well-defined by the choice of e0 = e, but i < n by the choice of f = en. Then, ei+1

has one of the following forms, both contradicting the fact that A1 ∩A2 = /0:

• If ei+1 = vv′ for some v ∈ D, then, by construction, ei+2 ∈ τ(E(G)). Moreover, both
τ−1(ei) and τ−1(ei+2) have v as an endpoint. However, τ−1(ei+2) is an edge of K[A2] by
the maximality of i. Therefore, we should have v ∈ A1 ∩A2;

• If ei+1 ∈ τ(E(G)), then τ−1(ei+1) is an edge of K[A2] by the maximality of i. On the other
hand, since ei ∈ τ(E(G)) is adjacent to ei+1 in H, the edges τ−1(ei) and τ−1(ei+1) have a
common endpoint v ∈V (G). Then, we should have again v ∈ A1 ∩A2.

The fact that Ψ is surjective can be seen as an application of König’s Lemma, while Ψ is
injective due to the main hypothesis over G:

Proposition 6.3.10. Ψ is bijective.

Proof. Let r′ be a ray in H, whose presentation via edges might be written as f0 f1 f2 . . . . Since
the edges from {vv′ : v ∈ D} ⊂ E(H) are pairwise non-adjacent, τ−1(E(r′)) is an infinite set of
edges in G. Consider K the subgraph of G that contains precisely these edges and its endpoints,
being connected by the above lemma. We observe that every vertex v ∈V (K) has degree at most
4. In fact, if v /∈ D, then v ∈ V (H) has at most two neighbors in r′. Similarly, v and v′ have at
most two neighbors each in r′ if v ∈ D, so that v is the endpoint of at most four edges in K in this
case. By König’s Lemma (2.1.1), then, there is r a ray in K. Since E(K) = τ−1(E(r′)), the ray
τ(r) meets r′ in infinitely many edges, so that [τ(r)]E = [r′]E . This verifies the surjection of Ψ.

In order to conclude that Ψ is injective, let s and r be non-equivalent rays in G. In other
words, there is a finite set S ⊂V (G) that separates r and s. Since [s] ̸= [r], by our main hypothesis
over G no vertex of S edge-dominates both r and s. Hence, for each v ∈ S there is a finite set
Fv ⊂ E(G) that separates v from r or s. We thus claim that the finite set

⋃
v∈S

τ(Fv) separates τ(r)

and τ(s) in H. For instance, suppose that the tails of τ(s) and τ(r) belong to the same connected
component K′ of H \

⋃
v∈S

τ(Fv). Then, by Lemma 6.3.9, there is a path P in G connecting r and s
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such that τ(E(P))⊂ H \
⋃
v∈S

τ(Fv). However, there is v ∈V (P)∩S, because S separates r and s.

Since E(P)∩Fv = /0, this contradicts the fact that Fv separates the vertex v from r or s.

The continuity of Ψ follows easily from the fact that any edge-separator has a natural
vertex-separator associated, an argument also employed in Proposition 6.3.6 when we verified
that Φ is an open map:

Proposition 6.3.11. Ψ is continuous.

Proof. Let F ⊂ E(H) be a finite set of edges and fix [r′]E ∈ ΩE(H) an edge-end of H. Since Ψ

is surjective, there is a ray r in G such that [τ(r)]E = [r′]E . For each e ∈ F ∩ τ(E(G)), consider
Se the set of endpoints of τ−1(e). If e ∈ F has the form e = vv′ for some v ∈ D, define Se = {v}.
Then, S =

⋃
e∈F

Se is finite.

Let C be the connected component of G \ S in which there is a tail of r. If s is any
other ray in C and P is a path connecting r and s, then τ(P) connects τ(r) to τ(s) in H \F by
construction. This argument verifies the inclusion Ψ(Ω(S, [r]))⊂ ΩE(F, [r′]E), proving that Ψ is
continuous.

Whether v ∈ D, we observe that the criteria for defining the neighbors of v and v′ in H

was not mentioned in the proofs of the previous propositions. In fact, finally concluding Theorem
6.3.7, it is employed only to show that Ψ is an open map:

Proposition 6.3.12. Ψ is an open map.

Proof. Let S ⊂ V (G) be finite and fix C the connected component of G \ S in which there is
a ray s. Recall that we fixed a set E[s] ⊂ V (G) as in (5.4.5) in order to define τ . Choosing the
representative s so that V (s)⊂ E[s], we will now show that Ψ(Ω(S, [s])) is open in ΩE(H).

First, for each v ∈ S\E[s], we observe that there is Cv a connected component in G\E[s]

containing v. By Lemma 6.3.8, the set N(Cv) = {u ∈ E[s] : u has a neighbor in Cv} is finite.
Moreover, for each u ∈ N(Cv), one of the options below is verified:

• If u ∈ D, define the singleton set Fu = {uu′} ⊂ E(H);

• If u /∈ D, there is a finite set F ′
u ⊂ E(G) that separates u from r. Hence, we define Fu =

τ(F ′
u).

In any case, F1 =
⋃

v∈S\E[s]

⋃
u∈N(Cv)

Fu is a finite set of edges of H. Relying on the following claim, a

similar set can be defined:

Claim: It is finite the set

S′ = {v ∈ E[s] : there is no path connecting v and a tail of s in G\S}.
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Proof of the Claim. By definition, we first observe that S separates vertices of S′ \ S from s.
Therefore, Dε ∩S′ ⊂ S, where D[s], as in (5.4.5), is the set of vertices of G that dominate [s]. If
we assume for a contradiction that S′ is infinite, then S′∩

⋃
r∈R[s]

V (r) is infinite as well, where

R[s] is also defined by Lemma 6.3.8. If S′∩V (r) is infinite for some r ∈ R[s], then there is a path
connecting s to a vertex of S′∩V (r) in G\S, since [r] = [s]. This contradicts the definition of S′,
so that S′∩V (r) must be finite for every r ∈ R[s]. In particular, R ′

[s] = {r ∈ R[s] : S′∩V (r) ̸= /0}
is infinite and composed by pairwise disjoint rays. Hence, there is also some ray r ∈ R ′

[s] such
that S∩V (r) = /0, because S is finite. Therefore, due to the equivalence between the rays r and
s, there is in G \ S a path connecting a tail of s to a vertex of S′ ∩V (r). This contradicts the
definition of S′ once more, so that S′ must be infinite.

If v ∈ S′ edge-dominates s, we define the set Jv = {vv′} ⊂ E(H). Otherwise, there is a
finite set J′v ⊂ E(G) that separates s and v. In this case, we denote Jv = τ(J′v). Then, F2 =

⋃
v∈S′

Jv

is a finite set of edges of H. Thus, it is finite the set F = F1 ∪F2.

Let C′ be the connected component of H \F in which τ(s) has a tail. If another ray in
that component has the form τ(s′) for some ray s′ in G, then, by Lemma 6.3.9, there is a path P

in G connecting s and s′ such that τ(E(P))⊂ E(H)\F .

On the other hand, if [s] ̸= [s′], by Lemma 6.3.8 there is a connected component Cs′

in G\E[s] in which s′ has a tail. Hence, writing P in terms of its vertices as v0v1v2 . . .vn, also
assuming that v0 ∈ E[s] and vn ∈ Cs′ , fix i = min{0 ≤ j ≤ n : v j ∈ E[s] and v j+1 ∈ Cs′}. Since
vi ∈ E[s], one of the following cases must hold:

• If vi edge-dominates s, the edge viv′i is defined in H. Moreover, by definition of τvi , the
path P must contain this edge, because vi+1 ∈Cs′ . Hence, viv′i does not belong to F . By
definition of F1, this means that S∩Cs′ = /0, while, by definition of F2, vi /∈ S′;

• Supposing now that vi can be separated from S by finitely many edges, we have S∩Cs′ =

/0. Otherwise, E(P)∩F ′
vi
̸= /0, because P contains vi and connects the tails of s and s′,

contradicting the fact that τ(E(P))⊂ H \F1. Analogously, if v ∈ S′ for instance, then we
have E(P)∩ Jv′i

̸= /0 by the same reason, contradicting the fact that τ(E(P))⊂ H \F2.

In both cases, we conclude that v /∈ S′ and S∩Cs′ = /0. Then, Cs′ is a connected subgraph
of G\S containing vi+1 and a tail of s′, while there is also a path in G\S connecting vi and a tail
of s. Therefore, the tails of s and s′ belong to the same connected component of G\S, proving
that ΩE(F, [s]E)⊂ Ψ(Ω(S, [s])).

The reader might have noticed some similarities between the proofs that Φ (as in 6.3)
and Ψ (as in 6.5) are homeomorphisms. Indeed, Table 2 summarizes the main arguments which
support the details of Propositions 6.3.3 - 6.3.12. Moreover, it addresses the idea that Ψ is, in fact,
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obtained via a converse strategy than the one employed to define Φ. After all, checking whether
Φ is open and whether Ψ is continuous are two instances of a same heuristic, for example.

Table 2 – Comparison between the proofs that Φ and Ψ are homeomorphisms

Φ Ψ

Well-definition
By the choice of vertices

to blow up.

Since equivalent rays

are also edge-equivalent.

Injection
Choose the endpoints of a separating

edge set to define a vertex-separator.
By the main hypothesis over G.

Surjection
By the choice of vertices

to blow up.

By contracting the edges

of E(H)\ψ(E(G)).

Continuity

By construction, vertex-

separators of H are associated

to edge-separators in G.

Choose the endpoints of a separating

edge set to define a vertex-separator.

Open mapping
Choose the endpoints of a separating

edge set to define a vertex-separator.

By properties of envelopes, vertex-

separators of G are associated

to edge-separators in H.

Therefore, as the main conclusion of this section, Theorems 6.3.1 and 6.3.7 combined
state the following representation result for edge-end spaces:

Theorem 6.3.13. Let X be a topological space. Then, X ≃ ΩE(G) for some graph G if, and only

if, X ≃ Ω(H) for some graph H whose each vertex edge-dominates at most one end.

6.4 Topological consequences
Even though Theorem 6.3.13 characterizes the edge-end spaces, this result does not

highlight any topological behaviour that distinguishes this family from the usual end spaces.
On the contrary, interesting properties of edge-end spaces, such as ultraparacompactness, now
follows from Theorem 6.3.13 when combined to the studies of Chapter 5. However, this section
aims to better explore the end spaces of graphs whose vertices edge-dominates at most one end,
especially by revisiting the discussions from Section 5.4. In particular, we shall conclude the
proposition below, which is a key result of our paper (AURICHI; REAL; JÚNIOR, 2023):

Theorem 6.4.1. Let X be a first-countable and Lindelöf topological space. If X is the edge-end

space of some graph, then X is metrizable.

Before carrying out its proof, we will argue how Theorem 6.4.1 can detect graphs whose
end spaces are not edge-end spaces of other graphs. In fact, we recall that the binary tree is
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the tree T2 in which the root has degree 2 and any other vertex has degree 3. For a given ray r

of T2, fix an “artificial ray” θ(r) = vr
0vr

1vr
2 . . . , so that θ(r)∩T2 = /0. As sketched by Figure 35,

consider the order tree T obtained from T2 as follows: for every ray r of T2, we set vr
0 as a top of

r and vr
i < vr

i+1 for every i ∈ N.

Then, let G be the uniform T−graph in which, for every ray r ∈ R(T ), the vertex vr
0 is

adjacent to every vertex of r. In addition, every successor node of T is, in G, a neighbor of its
predecessor. The end space of G defined this way is, thus, given by Ω(G) = Ω(T2)∪{[θ(r)] :
r ∈ R(T2)}. After all, the high-rays of T are those from T2 or those that contain θ(r) for some
r ∈ R(T2).

Figure 35 – The Alexandroff duplicate of a Cantor space

In the order tree T sketched above, any uniform T−graph

G has a compact and first-countable end space. However,

due to the uncountable antichain {{θ(r)} : r ∈ R(T2)}, the

space Ω(G) is not metrizable.

Source: Elaborated by the author.

In particular, considering (5.6)
as a system of open basic neighborhoods
for the ray space of T , we observe that
Ω(G)≃ R(T ) is a first-countable space.
Moreover, according to Lemma 5.2.3,
Ω(G) is also a compact space, since G\
S has only finitely many connected com-
ponents for every finite set S ⊂ V (G).
Observing that compact metric spaces
are separable, Ω(G) must not be metriz-
able, once {{θ(r)} : r ∈ R(T )} is an
antichain of size continuum. For topol-
ogists, as Pitz (2023) remarked through
its Example 2.6, Ω(G) is often known as
the Alexandroff duplicate of the Cantor
space 2ω ≃ Ω(T2).

Exercise 6.4.2. Let T be a special Aron-

szajn tree (see (KUNEN, 2011, p.204))

and consider G any uniform T−graph.

Show that Ω(G) is also first-countable

but not metrizable.

From this example, Theorem 6.4.1 concludes the following:

Corollary 6.4.3. There are graphs whose end spaces cannot be written as edge-end spaces

of possibly other graphs. In other words, {ΩE(G) : G graph} is a proper subfamily of {Ω(G) :
G graph}.

The proof of Theorem 6.4.1, in its turn, is done by revisiting the construction of partition
trees that display all the ends of a given graph G, as detailed in Proposition 5.4.3. Due to the
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characterization for edge-end spaces obtained by the previous section, we are interested in the
case where every vertex of G edge-dominates at most one end. Under the hypothesis of Theorem
6.4.1, we then have:

Proposition 6.4.4. Let G be a connected graph whose each vertex dominates at most one end.

Suppose that Ω(G) is a first-countable Lindelöf topological space. Then, G has a partition tree

(T,V ) that display all its ends and such that:

i) T has countable height, bounded by ω ·ω;

ii) The subtree T̂ = {t ∈ T : t belongs to a high-ray of T} is countable.

Proof. Consider the sequence of partition trees {(Tα ,Vα)}α<κ as constructed in Proposition
5.4.3. Recall that, for an ordinal α > 0, the vertices on the final level of Tα defined a set of
nodes Fα with the following property: C ∈ Fα if, and only if, C is a connected component
of G \

⋃
t∈Tα\Fα

Vt . In each such component C, we fixed a suitable vertex set UC such that the

connected components of C\UC had finite neighborhood in G. In the partition tree (Tα+1,Vα+1),
then, UC became the top of the high-ray of Tα given by ˚⌈C⌉, as suggested by Figure 30. In its
turn, for each connected component D of C \UC, we fixed a maximal normal (graph-theoretic)
tree TD. Now, we observe that TD could be chosen as in Proposition 5.3.6 when applied to the
subgraph G[D∪N(D)] with K = N(D) = {v ∈V (G)\D : v has a neighbor in D}. Therefore, if
D′ is a connected component of D\TD, the following property now holds:

(⋆) The neighborhood N(D′) = {v ∈V (G)\D′ : v has a neighbor in D′} is infinite. Moreover,
all but finitely many of its elements lie in a ray rD′ of TD. In this case, every v ∈ N(D′)

dominates (and, in particular, edge-dominates) the end [rD′].

After pointed out this improvement, the definition of (Tα+1,Vα+1) is done as in the proof
of Proposition 5.4.3. In particular, the height of Tα+1 is at most hα +ω , where hα is the height
of Tα .

Relying on the fact that vertices of G edge-dominates at most one end, we now claim that
the final level Fω of Tω is empty. For instance, suppose that there is a vertex v ∈V (G)\

⋃
t∈Tω\Fω

Vt .

Once (Tn,Vn) is a partition tree for each n < ω , we must have v ∈ Cn for some Cn ∈ Fn. By
considering a big enough n0 < ω , let u ∈

⋃
t∈Tn0

V n0
t be a neighbor of v. By the above property

(⋆), the vertex u dominates the ray rCn for every n ≥ n0. However, if n > m ≥ n0, the choice
of UCm guarantees that rCn and rCm can be separated by finitely many vertices. After all, rCn is
contained in a connected component of Cm \UCm . In other words, u dominates infinitely many
non-equivalent rays, which is a contradiction.
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Hence, we can finish the definition of the sequence {(Tα ,Vα)}α<κ at the ordinal
κ = ω , so that T := Tω and V := Vω describes a partition tree (T,V ) which displays all
the ends of G. Moreover, by induction, Tn has height bounded by ω · n, meaning that T =⋃
n<ω

Tn has height bounded by ω ·ω . Thus, it remains to show that the subtree T̂ = {t ∈ T :

t belongs to a high-ray of T} is countable.

For instance, suppose that T̂ is uncountable and fix

η = min{ξ < ω ·ω : the α level of T̂ is uncountable}.

This ordinal exists because T̂ has countable height, while we have η > 0 since T̂ is rooted. If η

is a successor ordinal, written as η = ξ +1, let t ∈ Lξ (T̂ ) be a predecessor of an uncountable
family of nodes {ti}i<ω1 ⊂ Lη(T̂ ). By passing {ti}i<ω to another uncountable subsequence
if necessary, we can assume that N(V⌊ti⌋) = N(V⌊t j⌋) =: S for every i, j < ω1, since h(t) is
countable and (T,V ) has finite adhesion. Then, {Ω(S, [r]) : [r] ∈ Ω(G)} is an open cover for
Ω(G) whose distinct elements are disjoint. However, by definition of T̂ , there is a ray ri in G

that has a tail in V⌊ti⌋, for each i < ω1. Hence, S separates ri and r j if i ̸= j. This means that
{Ω(S, [ri]) : i < ω1} ⊂ {Ω(S, [r]) : [r] ∈ Ω(G)} is an uncountable subfamily whose elements are
pairwise disjoint, contradicting the assumption that Ω(G) is a Lindelöf topological space.

Therefore, η must be a limit ordinal, so that Lη(T ) = Fn for some n < ω . We argue that
n ̸= 0. Otherwise, fix an uncountable subset {Ci}i<ω1 ⊂ F0 ∩ T̂ . Recall that these are connected
components of G\T ′

0 , and, thus, are pairwise disjoint. Then, one of the following cases is verified,
but both lead to contradictions:

• If there is an uncountable subset I ⊂ ω1 such that rCi = rC j =: r for every i, j ∈ I, then each
Ci has infinitely many neighbors in the branch r of T ′

0 . As before, let ri be a ray in V⌊Ci⌋ for
each i ∈ I, whose existence is guaranteed by the definition of T̂ and by the fact that (T,V )

displays the ends of G. Then, given a finite subset S ⊂V (G), we have [ri] ∈ Ω(S, [r]) for
all but finitely many indices i ∈ I. Once I is uncountable, this contradicts the fact that Ω(G)

is a first-countable topological space;

• Then, there is an uncountable subset I ⊂ ω1 such that rCi ̸= rC j for every i, j ∈ I. In this
case, [rCi] ̸= [rC j ], because (T,V ) displays all the ends of G. Since rCi is a branch of T ′

0,
we have rCi ⊂ T̂ for each i ∈ I. Fix vi ∈ rCi a neighbor of the connected component Ci.
Being T̂ ∩T ′

0 countable by the minimality of η , there must be v ∈ T ′
0 such that v = vi

for uncountably many indices i ∈ I. According to Proposition 5.3.6, this means that v

dominates uncountably many non-equivalent rays, contradicting the main hypothesis over
G.

Then, we must have n > 0. Moreover, Fn−1∩ T̂ is countable, since this is a smaller (limit)
level of T̂ . Hence, for some C ∈ Fn−1 ∩ T̂ , the set {t ∈ Fn ∩ T̂ : t > C} is uncountable. As an
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element of T̂ , the node C has only countably many successors, because η is a limit ordinal.
Therefore, we can fix v0 ∈ T̂ a successor of C such that {t ∈ Fn ∩ T̂ : t > v0} is uncountable.
By construction, we recall that v0 is the root of a normal tree TD for a connected component
D of C \V t

C. Fixing an uncountable family {D′
i}i<ω1 ⊂ {t ∈ Fn ∩ T̂ : t > v0}, then, each D′

i is a
connected component of D\TD. Analogously to the above discussion, one of the following cases
is verified, but both also lead to contradictions:

• Suppose that there is an uncountable set I ⊂ ω1 such that rD′
i
= rD′

j
=: r for every i, j ∈ I.

Since {D′
i}i<ω1 ∈ Fn∩ T̂ , the branch r of TD is contained in T̂ . For each i ∈ I, let ri be a ray

in V⌊Ci⌋, whose existence is guaranteed by the definition of T̂ and by the fact that (T,V )

displays the ends of G. Then, given a finite subset S ⊂ V (G), we have [ri] ∈ Ω(S, [r])

for all but finitely many indices i ∈ I. This, however, contradicts the fact that Ω(G) is a
first-countable topological space;

• Then, there is an uncountable set I ⊂ ω1 such that rD′
i
̸= rD′

j
for every i, j ∈ I. In this case,

[rD′
i
] ̸= [rD′

j
], because (T,V ) displays the ends of G. Since rD′

i
is a branch of TD for every

i ∈ I, we have rD′
i
⊂ T̂ , allowing us to choose vi ∈ T̂ ∩TD a neighbor of D′

i. Observing that
T̂ ∩TD is countable by the minimality of η , there is v ∈ T̂ ∩TD a vertex such that v = vi

for every i within some uncountable subset of I. By Proposition 5.3.6, this means that v

dominates uncountably many distinct ends of G, contradicting a main hypothesis over this
graph.

Therefore, T̂ is countable.

Corollary 6.4.5. Let G be a graph as in Proposition 6.4.4. Then, there is an order tree T

such that Ω(G) is the end space of any uniform T−graph. Moreover, T can be chosen so that

T̂ = {t ∈ T : t belongs to a high-ray of T} is countable.

Proof. Let (T ′,V ′) denote the partition tree for G claimed by the previous result. Consider the
order tree T obtained from T ′ precisely as instructed in the proof of Corollary 5.4.4. In particular,
the height of T is also countable.

Now, let t ∈ T be a node that belongs to a high-ray of T . If t is a successor node in
T , then it is also a successor node in T ′ by construction of T . In particular, t also belongs to
a high-ray of T ′, so that t ∈ T̂ . If t is a limit point, however, then t = v(t ′,X) for some t ′ ∈ T ′

that has at least one successor and some finite subset X ⊂ ⌈t ′⌉. Actually, the node t ′ must lie
on a high-ray of T ′ (i.e., t ′ ∈ T̂ ′), because t itself belongs to a high-ray of T . Hence, since T̂ ′ is
countable and there are countably many finite subsets of ⌈t ′⌉ for every t ′ ∈ T̂ ′, it follows that T̂

is also countable.
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Relying on the above corollary, we now have the complete machinery to write a proof
for Theorem 6.4.1:

Proof of Theorem 6.4.1. Let G be a graph whose end space is first-countable and Lindelöf.
According to Corollary 6.4.5, there is T an order tree such that Ω(G) is the end space of any
uniform T−graph. Moreover, T can be chosen so that T̂ = {t ∈ T : t belongs to a high-ray of T}
is countable. However, R(T ) and R(T̂ ) describe the same topological space, since R(T ) =

R(T̂ ) (as point sets) and the basic open neighborhoods given by (5.6) are coincident for these
order trees. In particular, if G′ is a uniform T̂−graph, its end space is homeomorphic to Ω(G)≃
R(T ). However, G′ is countable, because so is T̂ . Therefore, Ω(G′) is metrizable by Theorem
5.3.1, since, as in Proposition 2.2.2, G′ has a normal spanning tree.

Finally, the conclusion established by Corollary 6.4.3 also brings another problem to
our attention: once the edge-end spaces do not comprise all the end spaces, which additional
topological properties describes this former family? In other words, can the answer of Pitz (2023)
to Diestel’s question stated in Chapter 5 be extended to also characterize edge-end spaces? The
representation criteria in Theorem 6.3.13 might light this investigation, since it was useful for
detecting a topological behaviour of edge-end spaces in this section. To summarize, we address
the following problem for future works:

Problem 6.4.6. Which topological properties precisely describe the family {ΩE(G) : G graph}?

In particular, inspired by Theorem 6.4.1, how the topology of Ω(G) is affected when the vertices

of an arbitrary graph G edge-dominates at most one end?
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partial, 39
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countable chain condition, 97
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edge-, 145
faithful, 119
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friend, 39

graph
T -, 128
line, 147
locally finite, 28
uniform, 128

height, 29
high-ray, 128
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kernel, 66

Martin’s Axiom, 97
max-cut, 40
multigraph, 115

neighbor, 27
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paracompact, 115
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double-, 26
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tail, 26

rayless, 26
regular, 53
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center, 26
leaf, 26

subgraph, 25

complete, 30
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tree
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branch, 127

graph-theoretic, 29
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normal, 30
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partition, 129
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tripartite, 58

unfriendly

3-partition, 74
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