• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.55.2018.tde-13032018-095808
Document
Author
Full name
Antonio Carlos Nogueira
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1998
Supervisor
Committee
Bruce, James William (President)
Garcia, Ronaldo Alves
Mochida, Dirce Kiyomi Hayashida
Tari, Farid
Vidalon, Carlos Teobaldo Gutierrez
Title in Portuguese
Superfícies em R4 e Dualidade
Keywords in Portuguese
Não disponível
Abstract in Portuguese
O objetivo central deste trabalho é estudar a geometria extrínseca de superfícies em R4. Um dos aspectos centrais de nosso trabalho é estender os resultados de dualidade obtidos por Bruce e Romero-Fuster em [11] para superfícies e curvas em R4. Usando então estes resultados, obtemos informações sobre a geometria de M relacionando, via dualidade, as singularidades das famílias de funções altura, projeções em planos e projeções em 3-espaços. Os resultados obtidos permitem estender o conceito de dualidade também para superfícies com fronteira em R4.
Title in English
Not available
Keywords in English
Not available
Abstract in English
In this work we study some aspects of the extrinsic differential geometry of surfaces in R4. Our main purpose is to extend de duality results obtained by Bruce and Romero-Fuster in [11] for surfaces and curves in R4. We use these duality results to obtain information about the geometry of the surface, by relating the singularities of the three families of orthogonal projections. These results allow us to extend the concept of duality for surfaces with boundary in R4.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-03-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.