
U
N

IV
ER

SI
D

A
D

E 
D

E 
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e 

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e 
Co

m
pu

ta
çã

o

Exact multiplicity of solutions of differential equations via a
computer-assisted method

Mário Cesar Monteiro do Prado
Tese de Doutorado do Programa de Pós-Graduação em
Matemática (PPG-Mat)





SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Mário Cesar Monteiro do Prado

Exact multiplicity of solutions of differential equations via a
computer-assisted method

Thesis submitted to the Institute of Mathematics and
Computer Sciences – ICMC-USP – in accordance
with the requirements of the Mathematics Graduate
Program, for the degree of Doctor in Science. FINAL
VERSION

Concentration Area: Mathematics

Advisor: Prof. Dr. Marcio Fuzeto Gameiro

USP – São Carlos
May 2019



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados inseridos pelo(a) autor(a)

                                       Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2: 
                                       Gláucia Maria Saia Cristianini - CRB - 8/4938 
                                       Juliana de Souza Moraes - CRB - 8/6176

M775e
Monteiro do Prado, Mário Cesar
   Exact multiplicity of solutions of differential
equations via a computer-assisted method / Mário
Cesar Monteiro do Prado; orientador Marcio Fuzeto 
Gameiro. -- São Carlos, 2019.
   82 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Matemática) -- Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, 2019.

   1. Differential equations. 2. Multiplicity of
solutions. 3. Non-existence. 4. Computer-assisted
methods. I. Gameiro, Marcio Fuzeto , orient. II.
Título. 



Mário Cesar Monteiro do Prado

Multiplicidade exata de soluções de equações diferenciais
via um método assistido por computador

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Matemática. VERSÃO
REVISADA

Área de Concentração: Matemática

Orientador: Prof. Dr. Marcio Fuzeto Gameiro

USP – São Carlos
Maio de 2019





ACKNOWLEDGEMENTS

I would like to thank Marcio for all his patience and support, to Paula for making my
days better, to my mother for all her dedication to me and my sister. This work would never be
accomplished without these people in my life.

I would like to thank to CAPES for the financial support without which this work would
not even have started.1

Special thanks goes to my cat.

1 This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Brasil (CAPES) - Finance Code 001"





RESUMO

PRADO, M. C. Multiplicidade exata de soluções de equações diferenciais via um método
assistido por computador. 2019. 82 p. Tese (Doutorado em Ciências – Matemática) – Instituto
de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2019.

Neste trabalho, desenvolvemos um método assistido por computador para determinar todas
as soluções de um determinado problema de valor de fronteira. Nossa abordagem combina
estimativas de energia, validação rigorosa de soluções numéricas e um teste computacional
rigoroso que verifica a inexistência de soluções nas regiões de interesse. O método obteve
sucesso na obtenção da multiplicidade exata de soluções de equilíbrio das equações de Swift-
Hohenberg nas dimensões um e dois e na equação unidimensional de Cahn-Hilliard.

Palavras-chave: Equações diferenciais, Multiplicidade de soluções, Não existência, Métodos
assistidos por computador.





ABSTRACT

PRADO, M. C. Exact multiplicity of solutions of differential equations via a computer-
assisted method. 2019. 82 p. Tese (Doutorado em Ciências – Matemática) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2019.

In this work, we develope a computer-aided method to determine all solutions of a given
boundary value problem. Our approach combines energy estimates, rigorous validation of
numerical solutions and a rigorous computational test for verifying the non-existence of solutions
in some regions of the solution space. The method was successful in obtaining the exact
multiplicity of equilibria of a Swift-Hohenberg equation in dimensions one and two and of a
one-dimensional Cahn-Hilliard equation, for some parameter values of these equations.

Keywords: Differential equations, Multiplicity of solutions, Non-existence, Computer-assisted
methods.
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CHAPTER

1
INTRODUCTION

In general, there are two usual (often mutually exclusive) points of view under which
differential equations are investigated: numerically and analytically. On the one hand we have
researchers who are dedicated to the elaboration, analysis and application of numerical methods
to problems or classes of specific problems without confirming the results via formal proofs.
Such an approach has in the computer one of the main tools of scientific production. On the
other hand, we have those who work on a purely abstract level and whose work resources are
often limited to pencil and paper.

However, this paradigm has become less prevalent in recent decades due, in part, to the
increasing number of works produced from a third point of view. The latter proposes to use the
computer in some step of a rigorous mathematical proof, thus producing the so-called textit
computer-aided demonstrations, which, once made, can validate a theorem by simply running a
computer program. Some of the results produced under this approach and which motivate and
support the present research project can be found in (YAMAMOTO, 1998), (DAY et al., 2005),
(DAY; LESSARD; MISCHAIKOW, 2007), (GAMEIRO; LESSARD; MISCHAIKOW, 2008)
and (GAMEIRO; LESSARD, 2010) and in the papers to which they refer.

In differential equations, many problems can be reduced to the determination of zeros
of functions or of fixed points of operators on a Banach space. However, numerical methods
that deal with problems in infinite-dimensional spaces can provide spurious solutions, since
the computational iterations inherent to these methods are executed over a finite-dimensional
subspace and not on the entire space of possible solutions.

There may be, for example, the need to determine if a close to zero numerical solution
corresponds to a non-trivial solution or if it is just a numerical approximation of the null
solution. This raises the question of legitimacy of the obtained numerical solution. In this sense,
a range of works (including those above) present methods for solving this problem, that is, with
the objective of rigorously validating numerical solutions. We can find in (DAY; LESSARD;
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MISCHAIKOW, 2007), for example, a method of validation of equilibrium solutions of PDE’s
that, besides guaranteeing with mathematical rigor the existence of an exact solution close to a
given numerical solution, provides the error involved in this numerical approximation.

It is important to emphasize that the validation method proposed by (DAY; LESSARD;
MISCHAIKOW, 2007) can be done with a feasible computational cost, less than twice that the
one necessary to repeat the numerical algorithm in refined levels of parameters in order to verify
the persistence of the obtained solution, what does not constitute a mathematical proof (despite
providing strong evidences about behavior of the studied system).

The method used in (DAY; LESSARD; MISCHAIKOW, 2007) was obtained from
small adaptations of the proposed ideas in (YAMAMOTO, 1998). In (GAMEIRO; LESSARD;
MISCHAIKOW, 2008) the estimates for the truncation error are improved and it is included
the FFT (Fast Fourier Transform) algorithm, decreasing the computational cost of the method.
Finally, in (GAMEIRO; LESSARD, 2010) the generalization of these estimates occurs as well
as the formulation of the method in dimension d ≥ 2 in a Banach space different from that used
in (DAY; LESSARD; MISCHAIKOW, 2007) and (GAMEIRO; LESSARD; MISCHAIKOW,
2008). In all these works the central idea is to obtain regions around numerical solutions (in a
specific Banach space) in which a given fixed point operator, associated to the original problem,
verifies the conditions of the Banach contraction mapping Theorem. More precisely, to each
of these regions is associated a set of polynomials, whose coefficients explicitly depend on
the considered numerical solution. The hypothesis of the Banach fixed point Theorem will be
satisfied if all these polynomials assume negative values in some real number r ≥ 0. This can
be rigorously verified by using interval arithmetic in the calculation of the coefficients and in
the evaluation of the polynomials at the number r. This ensures the existence of a unique exact
solution close to the numerical solution.

The above works deal only with local uniqueness. It is presented by (DAY et al., 2005) a
combination of a non-existence test based on a version of the mean value Theorem (Prop 4.3)
and the method for local uniqueness presented by (DAY; LESSARD; MISCHAIKOW, 2007) in
order to determine all the equilibria of a Swift-Hoenberg equation with unitary spatial dimension
in a given region of interest.

In this work, we adopted a strategy inspired by (DAY et al., 2005) (but now with
applications in dimensions 1 and 2 and with some reformulations) in order to determine all the
solutions of a given boundary value problem. Not only in a predertermined region, but in all the
solution space. For this, we start obtaining, from energy estimates, a bounded region in a given
Banach space (the same as suggested in (GAMEIRO; LESSARD, 2010)) in which all solutions
of the problem must be contained. Then we analyze this region, analytically obtained, by means
of the following sequence of computer-aided steps:

1. We search, within an initial region (in the first iteration, this is the region obtained by energy
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estimates), by numerical solutions via Galerkin’s projection followed by the application of
Newton’s method.

2. In order to validate the results obtained in the previous step, we apply an adapted version
of the method proposed in (GAMEIRO; LESSARD, 2013), obtaining regions around the
numerical solutions in which exactly one true solution exists.

3. We eliminate from the initial region the union of the regions where we proved existence
and uniqueness of solutions in the previous step. There may or may not be other solutions
in the remaining region, since it is not expected that all solutions to the problem will be
produced in a first application of the numerical method, despite the fact that this is the
situation in all the results presented in this work.

4. In the remaining region of the elimination process previously described we apply a rigorous
non-existence test using an algorithm of the type "Divide and conquer" in order to exclude,
with mathematical rigor, as many areas as possible (according to some stopping criteria,
which in practice is the diameter of the tested region) where no solutions exist.

5. If the non-existence test in the previous step is conclusive throughout the remaining region
from the deletion process of step 3, the process ends and the only solutions are those
validated in step 2. Otherwise, we apply all the previous steps in the regions where the test
was inconclusive until some stopping criteria is reached, in which case the method fails, or
step 5 is conclusive, and in this case the method is successful.
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CHAPTER

2
PRELIMINARIES

2.1 A few considerations about series

Throughout this section let (E, | · |) be a normed vector space.

Definition 2.1.1. Let {a j} j∈N ⊂ E be a sequence in E. We say that the series
∞

∑
j=1

a j converges

to s ∈ E, or we just write s =
∞

∑
j=1

a j, if the partial sums
N
∑
j=1

a j converges to s with respect to the

norm of E when N → ∞.

Definition 2.1.2. Let Λ be any enumerable set of indexes, A = {an, n ∈ Λ} ⊂ E an enumerable
subset of E, and Σ(Λ) = {σ : N−→ Λ; σ is bijective } the set of all the bijective maps from N to

Λ. We call an element of Σ(Λ) an ordering of Λ. When there exists s ∈ E such that s =
∞

∑
j=1

aσ( j)

independently of the choice of σ ∈ Σ(Λ) we must write s = ∑
n∈Λ

an and we say that the series

∑
n∈Λ

an is absolutely convergent.

Proposition 2.1.1. Let Λ be any enumerable set of indexes and A = {an, n ∈ Λ} ⊂ E an

enumerable subset of E. If
∞

∑
j=1

|aσ( j)|< ∞ for some fixed ordering σ ∈ Σ(Λ), then

∞

∑
j=1

aσ( j) =
∞

∑
j=1

aη( j), ∀η ∈ Σ(Λ),

that is, the series ∑
n∈Λ

an is absolutely convergent.

Proof. Suppose that
∞

∑
j=1

|aσ( j)|< ∞ for some ordering σ ∈ Σ(Λ) and let η be any other ordering

of Λ. Let us prove that
∞

∑
j=1

aσ( j) =
∞

∑
j=1

aη( j).
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Given ε > 0, choose N0 ∈ N such that
∞

∑
j=N0

|aσ( j)|< ε.

Choose M0 ∈N such that η({1, ...,M0})⊃ σ({1, ...,N0 −1}). For each M ≥ M0 define S(M) =

{ j ∈ {1, ...,M}; η( j) /∈ σ({1, ...,N0 −1})}. Then, we can write∣∣∣∣∣ ∞

∑
j=1

aσ( j)−
M

∑
j=1

aη( j)

∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
j=N0

aσ( j)− ∑
j∈S(M)

aη( j)

∣∣∣∣∣≤
≤

∞

∑
j=N0

|aσ( j)|+ ∑
j∈S(M)

|aη( j)|. (2.1)

But observe that
{aη( j), j ∈ S(M)} ⊂ {aσ( j), j ≥ N0},

so that

∑
j∈S(M)

|aη( j)| ≤
∞

∑
j=N0

|aσ( j)|.

Then we conclude that∣∣∣∣∣ ∞

∑
j=1

aσ( j)−
M

∑
j=1

aη( j)

∣∣∣∣∣≤ 2
∞

∑
j=N0

|aσ( j)|< 2ε, M ≥ M0,

that is,
∞

∑
j=1

aσ( j) =
∞

∑
j=1

aη( j)

We finish this section with the following useful characterization of absolutely convergent
series of real numbers.

Theorem 2.1.1. (TAO, 2006) Let Λ be an at most countable set and let f : Λ ↦→ R be a function.
Then the series ∑

n∈Λ

f (n) is absolutely convergent if and only if

sup

{
∑
n∈A

| f (n)|; A ⊂ Λ, A finite

}
< ∞.

This Theorem will be useful in the proof of Corollary 2.3.2.

2.2 Coefficient space and discrete convolution operator
The class of differential equations addressed in this work admits a reformulation in a

Banach space of sequences which is described in this section. We also introduce an operator that
arises naturally from this reformulation.

We start with some definitions that must be used throughout this work.
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Definition 2.2.1. Let d ∈ N. For M = (M1, ...,Md) ∈ Nd define

FM = {(k1, . . . ,kd) ∈ Zd, |ki|< Mi, i = 1, . . . ,d}.

Definition 2.2.2. For d ∈ N, k = (k1, ...,kd) ∈ Zd, and j = ( j1, ..., jd) ∈ Zd we define k± j =

(k1 ± j1, ...,kd ± jd). That is, the sum (subtraction) of d-dimensional indexes is defined by the
term by term sum (subtraction) of the components of these indexes.

Definition 2.2.3. If M = (Mi, j) is a real or complex matrix, we denote by |M| the real matrix
(|Mi, j|).

Definition 2.2.4. For q = (q1, ...,qd) ∈ Rd and s = (s1, ...,sd) ∈ Rd we define qs := qs1
1 · · ·qsd

d .

Definition 2.2.5. For k ∈ Z and s ∈ R, define:

ω
s
k =

{
1 if k = 0
|k|s if k ̸= 0

Definition 2.2.6. Let d ∈ N, k = (k1, . . . ,kd) ∈ Zd and s = (s1, . . . ,sd) ∈ Rd, and define

ω
s
k = ω

s1
k1
· · ·ωsd

kd

Definition 2.2.7. Denote by RZd
the vector space of sequences of real numbers indexed by Zd

provided with the usual term-by-term summation and term-by-term scalar multiplication. That
is, for {ak}k∈Zd ∈ RZd

, {bk}k∈Zd ∈ RZd
and λ ∈ R we have:

{ak}k∈Zd +{bk}k∈Zd = {ak +bk}k∈Zd

λ{ak}k∈Zd = {λak}k∈Zd .

Definition 2.2.8. Given s = (s1, . . . ,sd), with si ≥ 2 for i ∈ {1, . . . ,d}, define:

X s =

{
a = {ak}k∈Zd ⊂ RZd

; sup
k∈Zd

|akω
s
k |< ∞

}
.

Endowing X s with the vector space structure given by a+b = {ak +bk}k∈Zd and λa =

{λak}k∈Zd , a,b ∈ X s, λ ∈ R, we have the following.

Proposition 2.2.1. (GAMEIRO; LESSARD, 2010) The map

X s ∋ a ↦→ ‖a‖s := sup
k∈Zd

{|ak|ωs
k} ∈ R+

is a norm in the vector space X s and (X s,‖ · ‖s) is a Banach space.

In what follows, unless any observation is made, let d ∈ N, s = (s1, ...,sd) ∈ Rd, with
si ≥ 2, i = 1, ...,d.
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Proposition 2.2.2. If p ∈ N, a(1), ...,a(p) ∈ X s, and k ∈ Zd then the series

∑
k(1)+···+k(p)=k
k(1),..., k(p)∈Zd

a(1)
k(1)

· · ·a(p)
k(p)

is absolutely convergent.

Proof. Set Λk = {(k(1), . . . ,k(p)); k(1), ..., k(p) ∈Zd, k(1)+· · ·+k(p)= k}. Choose σ =(σ (1), ...,σ (p))∈
Σ(Λk), with σ (i) = (σ

(i)
1 , ...,σ

(i)
d ), i = 1, ..., p. Then

∞

∑
j=1

|a(1)
σ (1)( j)

· · ·a(p)
σ (p)( j)

| ≤ ‖a(1)‖s · · ·‖a(p)‖s

∞

∑
j=1

1
ωs

σ (1)( j)

· · · 1
ωs

σ (p)( j)

≤

≤ ‖a(1)‖s · · ·‖a(p)‖s

∞

∑
j=1

1
ω

s1

σ
(1)
1 ( j)

≤ ‖a(1)‖s · · ·‖a(p)‖s

∞

∑
j=1

1
ω2

σ
(1)
1 ( j)

=

= ‖a(1)‖s · · ·‖a(p)‖s

∞

∑
n=1

1
n2 =

π2

6
‖a(1)‖s · · ·‖a(p)‖s.

The result now follows from Theorem 2.1.1.

From proposition 2.2.2 we are allowed to make the following definition.

Definition 2.2.9. For p ∈ N and a(1), ...,a(p) ∈ X s define

a(1) · · ·a(p) = {(a(1) · · ·a(p))k}k∈Zd

with

(a(1) · · ·a(p))k = ∑
k(1)+···+k(p)=k
k(1),...,k(p)∈Zd

a(1)
k(1)

· · ·a(p)
k(p).

If a(1) = · · ·= a(p) =: a ∈ X s we write ap = {(ap)k}k∈Zd with (ap)k = (a · · ·a)k ∈ R, k ∈ Zd.

Theorem 2.2.1. (GAMEIRO; LESSARD, 2010) If p∈N and a(1), ...,a(p) ∈X s then a(1) · · ·a(p) ∈
X s.

Definition 2.2.10. The map

X s ×·· ·×X s ∋ (a(1), ...,a(p)) ↦→ a(1) · · ·a(p) ∈ X s

is called the discrete convolution operator of order p.

The discrete convolution will be necessary in the algebraic reformulation of the differen-
tial equations to be solved in this work.
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2.3 Hilbert basis

Throughout this section let H be a Hilbert space with inner product ⟨·, ·⟩.

Definition 2.3.1. (BREZIS, 2010) Let Λ be a contable set of indexes. We say that a contable set
Φ = {φn,n ∈ Λ} ⊂ H is an orthonormal Hilbert basis for H when:

1. ⟨φn,φm⟩= δmn, where δmn =

{
0 if m ̸= n

1 if m = n
, and

2. The linear space spanned by {φn,n ∈ Λ}, that is, the subspace of H formed by finite linear
combinations of φ ′

ns, is dense in H.

Theorem 2.3.1. (BREZIS, 2010) Let Φ = {φn,n ∈ Λ} be an orthonormal Hilbert basis for H.
Then for every u ∈ H, we have

u = ∑
n∈Λ

⟨u,φn⟩φn

and

‖u‖2
H = ∑

n∈Λ

|⟨u,φn⟩|2.

Reciprocally, if ∑
n∈Λ

|an|2 < ∞ then there exists u ∈ H such that ⟨u,φn⟩= an, ∀ n ∈ Λ.

Definition 2.3.2. Let Λ be a contable set and {φk,k ∈ Λ} ⊂ H an orthonormal Hilbert basis for
H. For u ∈ H define:

û(k) = ⟨u,φk⟩, k ∈ Λ.

The numbers û(k), k ∈ Λ, are called the Fourier coefficients of u with respect to the basis
{φk}k∈Λ. When there is no ambiguity as to the basis that we are taking into account we just write
û(k) to designate the Fourier coefficients of u ∈ H with respect to this basis.

Corollary 2.3.1. Under the notations of definition 2.3.2, for u, v ∈ H, we have

u = v ⇔ û(k) = v̂(k), ∀ k ∈ Λ.

Proof. For Theorem 2.3.1 we can write:

u = v ⇔‖u− v‖2
H = 0 ⇔ ∑

k∈Λ

|û(k)− v̂(k)|2 = 0 ⇔ û(k) = v̂(k) ∀ k ∈ Λ.

Theorem 2.3.2. Let d ∈ N and H be a Hilbert space of functions with orthonormal Hilbert basis
Ψ = {ψk}k∈Zd . For k ∈ Zd set

Λk := {(m,n) ∈ Z2d, m ∈ Zd, n ∈ Zd, m+n = k}.
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Let u, v ∈ H be such that uv ∈ H. If the basis functions satisfy the additive property

ψkψ j = ψk+ j, ∀ k, j ∈ Zd,

then

ûv(k) = ∑
(m,n)∈Λk

û(m)v̂(n), k ∈ Zd, u, v ∈ D. (2.2)

Proof. Choose k ∈ Zd. Let us prove that the summation

∑
(m,n)∈Λk

û(m)v̂(n)

is well defined, that is, it does not depends on the ordering of Λk .

Indeed, given σ ∈ Σ(ΛK), with σ( j) = (σ1( j),σ2( j)), j ∈ N, by Cauchy-Schwarz in l2

and the Theorem 2.3.1 we can write:

∞

∑
j=1

|û[σ1( j)]v̂[σ2( j)]| ≤

(
∞

∑
j=1

|û[σ1( j)]|2
) 1

2
(

∞

∑
j=1

|v̂[σ2( j)]|2
) 1

2

=

= ‖u‖H‖v‖H . (2.3)

Then, the conclusion follows from (2.3) and Proposition 2.1.1.

Next we prove the identity (2.2). We divide the proof in four steps.

Step 1 For u ∈ H define uM = ∑
k∈FM

û(k)ψk, M ∈ N. Observe that uM → u in H when

M → ∞. Indeed, set an ordering σ ∈ Σ(Zd), and let ε > 0. For such ε and σ , take N0 ∈ N such

that
∞

∑
j=N0

|û(σ( j))|2 < ε. We can ensure the existence of such N0 by Theorem 2.3.1. Now, take

M0 ∈ N such that FM0 ⊃ σ({1, ...,N0 −1}). So if M ≥ M0 we have:

|u−uM|2 = ∑
n∈Zd∖FM

|û(n)|2 = ∑
j∈N∖σ−1(FM)

|û(σ( j))|2 ≤

≤ 2
∞

∑
j=N0

|û(σ( j))|2 ≤ 2ε,

that is, lim
M→∞

uM = u in H. Besides that, if u, v ∈ H, since multiplication Π : D×D ∋ (u,v) ↦→
uv ∈ H is a continuous bilinear form, we have that

uMvM → uv in H when M → ∞. (2.4)

Step 2 For a fixed k ∈ Zd, by Cauchy-Schwarz in H we can write

| f̂ g(k)|= |⟨ f g,ψk⟩| ≤ ‖ f g‖H ,
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and since H ×H ∋ ( f ,g) ↦→ ‖ f g‖H is continuous (because Π and ‖ · ‖H are continuous), we
conclude that the map

H ×H ∋ ( f ,g) ↦→ f̂ g(k) (2.5)

is continuous. From (2.5) and (2.4) we get

ûv(k) = lim
M→∞

ûMvM(k). (2.6)

Step 3 By the additive property of the basis functions we can write

uMvM = ∑
k∈F2M

 ∑
m+n=k

m, n∈FM

û(m)v̂(n)

Ψk, M ∈ N. (2.7)

For a fixed k ∈ Zd choose M0 ∈ N such that k ∈ F2M0. Then, for the uniqueness of the
Fourier coefficients (see Corollary 2.3.1), we have

ûMvM(k) = ∑
m+n=k

m, n∈FM

û(m)v̂(n), M ≥ M0. (2.8)

From (2.6) and (2.8), we have:

ûv(k) = lim
M→∞

∑
m+n=k

m, n∈FM

û(m)v̂(n) (2.9)

Step 4 For a fixed k ∈ Z observe that the inequality (2.3) implies that the map βk :
H ×H → C given by

βk( f ,g) = ∑
m+n=k
m, n∈Zd

f̂ (m)ĝ(n)

is continuous. Then, since ûM(m) = v̂M(n) = 0 if m, n /∈ FM, and ûM(m) = û(m), v̂M(n) = v̂(n)

if m, n ∈ FM, we can write:

ûv(k) = lim
M→∞

∑
m+n=k

m, n∈FM

û(m)v̂(n) = lim
M→∞

∑
m+n=k
m, n∈Zd

ûM(m)v̂M(n) =

= lim
M→∞

βk(uM,vM) = βk(u,v) = ∑
m+n=k
m,n∈Zd

û(m)v̂(n),

finishing the proof of (2.2).

By induction principle, Theorem 2.3.2 can be generalized as follows.
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Corollary 2.3.2. Let p, d ∈ N and H be a Hilbert space of functions with orthonormal Hilbert
basis Φ = {ψk}k∈Zd . For k ∈ Zd set

Λk = {(m1, ...,mp) ∈ Zpd, m1 + · · ·+mp = k}.

Let u1, ...,up ∈ H be such that u1 · · ·uq ∈ H, q = 1, ..., p. If the basis functions satisfies the
additive property

ψkψ j = ψk+ j, ∀ k, j ∈ Zd,

then
û1 · · ·up(k) = ∑

m1+···+mp=k
m1,...,mp∈Zd

û1(m1) · · · ûp(mp), k ∈ Zd. (2.10)

Proof. Theorem 2.3.2 provides the result for p = 2. Let q ∈ N, q ≥ 3 and suppose the result is
true for p = q−1. Let v = u1 · · ·uq−1 ∈ H. Define Λq = {(m1, ...,mq)∈Zqd; m1+ · · ·+mq = k}.
Let us prove that the series

∑
m∈Λq

û1(m1) · · · ûq(mq)

is absolutely convergent using Theorem 2.1.1. Indeed, if A ⊂ Λq is finite, take M ∈ N such that
A ⊂ (FM)d ∩Λq. Then we can write:

∑
(m1,...,mq)∈A

|û1(m1)| · · · |ûq(mq)| ≤ ∑
(m1,...,mq)∈FM∩Λq

|û1(m1)| · · · |ûq(mq)|=

= ∑
m1+···+mq=k
m1,...,mq∈FM

|û1(m1)| · · · |ûq(mq)|=

= ∑
mq∈FM

 ∑
m1+···+mq−1=k−mq

m1,...,mq−1∈FM

|û1(m1)| · · · |ûq−1(mq−1)|

 |ûq(mq)|=

= ∑
mq∈FM

|v̂(k−mq)||ûq(mq)| ≤ (‖v‖H)
1
2 (‖uq‖H)

1
2 .

Remember that v = u1 · · ·up−1 ∈ H, with

v̂(k1) = ∑
j1+···+ jp−1=k1

û1( j1) · · · ûp−1( jp−1), k1 ∈ Zd,

so that we can write:

û1 · · ·up(k) = v̂up(k) = ∑
k1+k2=k

v̂(k1)ûp(k2) =

= ∑
k1+k2=k

[
∑

j1+···+ jp−1=k1

û1( j1) · · · ûp−1( jp−1)

]
ûp(k2) =
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= ∑
( j1+···+ jp−1)+k2=k

û1( j1) · · · ûp−1( jp−1)ûp(k2),

where the last equality holds because of absolute convergence of the last series, as proved in the
first part of this proof. For a proof of this fact we recommend, e.g., (TAO, 2006, Chap. 8).

2.3.1 Fourier Basis for L2 spaces

In order to obtain the algebraic reformulation of the class of differential equations
addressed in this work we will need some results about a specific Hilbert basis for L2 spaces of
functions defined on rectangular domains.

The next two Theorems are standard and can be found, e.g., in (BACHMANN; NARICI;
BECKENSTEIN, 2012) and (SAXE, 2013).

Theorem 2.3.3. (SAXE, 2013) The set
{

eikx
√

2π

}
k∈Z

, x ∈ R, constitutes an orthonormal Hilbert

basis for L2([0,2π]).

Changing variables we obtain the following.

Corollary 2.3.3. Let l > 0. Then
{

eikLx
√

2l

}
k∈Z

and
{

eikLx
√

l

}
k∈Z

, where x ∈ R, and L = 2π

l ,

constitute orthonormal Hilbert basis for L2([−l, l]) and L2([0, l]), respectively.

Theorem 2.3.4. (BACHMANN; NARICI; BECKENSTEIN, 2012) Let a,b,c,d ∈ R, a < b and
c < d. If { fk(x), k = 0,1,2, ...} and {g j(y), j = 0,1,2, ...} are orthonormal Hilbert basis for
L2([a,b]) and L2([c,d]), respectively, then

{Ψ(k, j)(x,y) = fk(x)g j(y), k, j = 0,1,2, ...}

is an orthonormal Hilbert basis for L2([a,b]× [c,d]).

Corollary 2.3.4. Let d ∈ N, l j > 0, j = 1, . . . ,d, and define Ω = [0, l1]×·· ·× [0, ld] . Then an
orthonormal Hilbert basis for L2(Ω) is given by:

Ψ =

{
eik1L1x1 · · ·eikdLdxd

√
l1 · · · ld

}
k=(k1,...kd)∈Zd

,

where x = (x1, ...,xd) ∈ Rd, and L j =
2π

l j
, j = 1, ...,d.

Corollary 2.3.5. Consider Ω and Ψ as in the previous Corollary. Let u ∈ L∞(Ω)⊂ L2(Ω). Then

(̂u j)(k) =
1

(l1 · · · ld)
j−1
2

∑
m1+···+m j=k
m1,...,m j∈Zd

û(m1) · · · û(m j).

Proof. Apply Corollary 2.3.2 with H = L2(Ω) and observe that u ∈ L∞(Ω)⇒ u j ∈ L2(Ω) ∀ j ∈
N.
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Proposition 2.3.1. Let d ∈ N, l j > 0, j = 1, . . . ,d, and define Ω = [−l1, l1]×·· ·× [−ld, ld] . If
f ∈ L2(Ω) is an even and real valued function, that is, f (x) = f (|x|) ∈ R for a.e. x ∈ Ω, then
f̂ (k) = f̂ (|k|) ∈ R, k ∈ Zd.

Proof. Observe that for k∈Zd there exists σi ∈{−1,+1}, i= 1, ...,d, such that k=(σ1|k1|, ...,σd|kd|).
Consider the linear change of variables σ : Ω −→ Ω given by σ(x) = (σ1x1, ...,σdxd). Then one
can write

f̂ (k) =
∫
Ω

f (x)e−ik1L1x1 · · ·e−ikdLdxd dx =
∫
Ω

f (x)e−iσ1|k1|L1x1 · · ·e−iσd |kd |Ldxd =

=
∫
Ω

f (σ(x))e−i|k1|L1σ1x1 · · ·e−i|kd |Ldσ1xd dx (2.11)

where the last equality holds because f (σ(x)) = f (x) = f (|x|). Changing variables in (2.11), we
obtain: ∫

Ω

f (σ(x))e−i|k1|L1σ1x1 · · ·e−i|kd |Ldσ1xd dx =

=
∫
Ω

f (x)e−i|k1|L1x1 · · ·e−i|kd |Ldxd dx = f̂ (|k|), (2.12)

since |det(Dσ−1)|= 1 and σ−1(Ω) = Ω. From (2.11) and (2.12) we obtain

f̂ (k) = f̂ (|k|), ∀ k ∈ Zd. (2.13)

To see that f̂ (k) ∈ R one can write

f̂ (k) =
∫
Ω

f (x)e−ik1L1x1 · · ·e−ikdLdxd dx =

=
∫
Ω

f (x)eik1L1x1 · · ·eikdLdxd dx = f̂ (−k) = f̂ (k) (2.14)

where the second and the last equalities hold, respectively, because f is real valued and by (2.13).
From (2.14) we conclude that f̂ (k) ∈ R, ∀k ∈ Zd, and the proof is complete.
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CHAPTER

3
FORMULATION OF THE PROBLEM

In this chapter we provide the formulation of the general problem addressed by the
method proposed in this work and we discuss two concrete examples that fit in this abstract
setting.

Let Ω be an open subset of Rd, d ≥ 1, f (x,λ ) =
p
∑
j=2

q j(λ )x j, where x ∈ R, λ ∈ I ⊂ R,

with I some open subset of R and q j(λ ) ∈ C, j = 1, . . . , p.

Let D be a subset of a given Hilbert space H of functions defined in Ω and consider a
one parameter family of linear differential operators {L(·,λ ) : D ⊂ H −→ H, λ ∈ I} .

In this work, fixed a parameter value λ , we are concerned in developing rigorous
numerical methods for finding all solutions of partial differential equations of the form:

L(u,λ ) = f (u,λ ) in Ω, u ∈ D, (3.1)

when the following hypothesis are satisfied.

Hypothesis 3.0.1. There exists an orthonormal Hilbert basis {Ψk}k∈Zd of H such that, for each
λ ∈ I and k ∈ Zd there exists µk(λ ) ∈ C satisfying L(Ψk,λ ) = µk(λ )Ψk in the classical sense.
Also, if u = ∑

k∈Zd
ckΨk ∈ D then:

1. L(u,λ ) ∈ H and L(u,λ ) = ∑
k∈Zd

ckµk(λ )Ψk, that is,

L̂(u,λ )(k) = µk(λ )ck, k ∈ Zd,u ∈ D; (3.2)

2. u j ∈ H and u j = ∑
k∈Zd

(c j)kΨk j = 2, . . . , p, that is

û j(k) = (c j)k, j = 2, . . . , p, k ∈ Zd,u ∈ D. (3.3)
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Hypothesis 3.0.2. There are constants s ∈ Rd
+ and C ≥ 0 such that, if u = ∑

k∈Zd
ckΨk ∈ H is a

solution of (3.1) for a given λ ∈ I, then c = {ck}k∈Zd ∈ X s with |ck| ≤ C
ωs

k
, k ∈ Zd.

It is a direct consequence of the Hypothesis 3.0.1 and 3.0.2 that if u = ∑
k∈Zd

ckΨk is a

solution of (3.1) then the coefficients ck ∈ C, k ∈ Zd, satisfy the following infinit dimensional
algebraic system of equations:

µk(λ )ck −
p
∑
j=2

q j(λ )(c j)k = 0, k ∈ Zd,

|ck| ≤ C
ωs

k
, k ∈ Zd.

(3.4)

On the other hand, observe that if c ∈ X s then

∑
k∈Zd

|ck|2 ≤ ‖c‖s

(
∑
j∈Z

1
| j|2s

)d

≤ ‖c‖s

(
π4

45

)d

< ∞.

Therefore, from Theorem 2.3.1 u := ∑
k∈Λ

ckΨk ∈ H. Furthermore, if c ∈ X s is a solution of (3.4)

and we are able to prove that u = ∑
k∈Λ

ckΨk ∈ D then Hypothesis 3.0.1 implies that u is a solution

of (3.1). That is, under the above assumptions we have the equivalence of problems (3.1) and
(3.4).

In this work we propose a computer assisted method for rigorously determining all the
solutions of the problem (3.4).

For sake of clarity, in the next section we present some sample problems in the form
(3.1) for which Hypotheses 3.0.1 and 3.0.2 are satisfied. Furthermore, we present their respective
algebraic formulation in the form (3.4). Finally, the equivalence between the both algebraic and
differential problems is established.

3.1 Sample problems

3.1.1 Equilibria of a Swift-Hohenberg-like equation

Throughout this section let li > 0, Li =
2π

li
, i ∈ {1, 2}, and Ω = [0, l1]× [0, l2] . We

denote by Ψ = {Ψk}k∈Z2 the orthonormal Hilbert basis of L2(Ω) given by

Ψk(x,y) =
eik1L1eik2L2
√

l1l2
, k ∈ Z2.

For a fixed parameter λ ∈ R+, consider the problem of finding all the solutions of

L(u,λ ) = u3, in Ω, u ∈ D, (3.5)

where
L(u,λ ) := λu− (1+∆)2u, (3.6)
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and

D = {u ∈C; u(x+ l1,y+ l2) = u(x,y) = u(|x|, |y|), (x,y) ∈ R2}, (3.7)

where C is the set of all functions u : R2 ↦−→ R such that the partial derivatives uxx, uyy, (∆u)xx

and (∆u)yy there exist in the classical sense over R2 and the restriction of these derivatives to Ω

are square-integrable, that is,

uxx, uyy, (∆u)xx, (∆u)yy ∈ L2(Ω),

with all derivatives understood in the classical sense.

The solutions of the problem given by (3.5), (3.6) and (3.7) correspond to those classical
equilibria of the Swift-Hohenberg-like equation

ut = λu− (1+∆)2u−u3 (3.8)

that are even and periodic in each space variable.

Theorem 3.1.1. Let D be as in (3.7). If u ∈ D and a = {ak}k∈Z2 is the sequence of Fourier
coefficients of the restriction of u to Ω with respect to the orthonormal Hilbert basis Ψ of L2(Ω),

that is, u = ∑
k∈Zd

akΨk, then

1. L(u,λ ) ∈ L2(Ω), L̂(u,λ )(k) = µk(λ )ak, where

µk(λ ) = L(Ψk,λ ) = λ − (1− k2
1L2

1 − k2
1L2

2)
2, k ∈ Z2;

2. û3(k) = 1
l1l2 ∑

k1+k2+k3=k
k1,k2,k3∈Z2

ak1ak2ak3,k ∈ Z2;

3. ak = a|k| ∈ R, k ∈ Z2.

Proof. It follows from the definition of the set C that L(u,λ ) ∈ L2(Ω). Integrating by parts the
integrals that provide the Fourier coefficients of uxx related to the basis Ψ and taking into account
that u(x,y) = u(x+ l1,y+ l2), (x,y) ∈ R2, we obtain:

ûxx(k) =
∫

Ω

uxxΨk =

=
1√
l1l2

∫
[0,l2]

e−ik2L2y
(∫

[0,l1]
uxxe−ik1L1xdx

)
dy =

=
1√
l1l2

∫
[0,l2]

e−ik2L2y
[
−
∫
[0,l1]

−ik1L1uxe−ik1L1xdx+ux(l1,y)−ux(0,y)
]

dy =

=
ik1L1√

l1l2

∫
[0,l2]

e−ik2L2y
(∫

[0,l1]
uxe−ik1L1xdx

)
dy =
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=
ik1L1√

l1l2

∫
[0,l2]

e−ik2L2y
[
−
∫
[0,l1]

−ik1L1ue−ik1L1xdx+u(l1,y)−u(0,y)
]

dy =

=
(ik1L1)

2
√

l1l2

∫
[0,l2]

∫
[0,l1]

ue−ik1L1xe−ik2L2ydxdy =

= (ik1L1)
2ak, k ∈ Z2.

Similarly, we have:
ûyy(k) = (ik2L2)

2ak, k ∈ Z2.

Therefore,
∆̂u(k) = [(ik1L1)

2 +(ik2L2)
2]ak, k ∈ Z2. (3.9)

On the other hand, since ∆u(x,y) = ∆u(x+ l1,y+ l2), (x,y) ∈ R2, we can calculate as follows:

(̂∆u)xx(k) =
∫

Ω

(∆u)xxΨk =

=
1√
l1l2

∫
[0,l2]

e−ik2L2y
(∫

[0,l1]
(∆u)xxe−ik1L1xdx

)
dy =

=
1√
l1l2

∫
[0,l2]

e−ik2L2y
[
−
∫
[0,l1]

−ik1L1(∆u)xe−ik1L1xdx+(∆u)x(l1,y)− (∆u)x(0,y)
]

dy =

=
ik1L1√

l1l2

∫
[0,l2]

e−ik2L2y
(∫

[0,l1]
(∆u)xe−ik1L1xdx

)
dy =

=
ik1L1√

l1l2

∫
[0,l2]

e−ik2L2y
[
−
∫
[0,l1]

−ik1L1(∆u)e−ik1L1xdx+(∆u)(l1,y)− (∆u)(0,y)
]

dy =

=
(ik1L1)

2
√

l1l2

∫
[0,l2]

∫
[0,l1]

(∆u)e−ik1L1xe−ik2L2ydxdy =

= (ik1L1)
2
∆̂u(k) = (ik1L1)

2[(ik2L2)
2 +(ik2L2)

2]ak, k ∈ Z2.

Similarly,
(̂∆u)yy(k) = (ik2L2)

2[(ik2L2)
2 +(ik2L2)

2]ak, k ∈ Z2.

Therefore
∆̂(∆u)(k) = [(ik2L2)

2 +(ik2L2)
2]2ak, k ∈ Z2. (3.10)

Then,
L̂(λ ,u)(k) = (λ −1)ak −2∆̂u(k)− ∆̂(∆u)(k) =

=
[
λ − (1− k2

1L2
1 − k2

1L2
2)

2]ak = µkak, k ∈ Z2, (3.11)

what conclude the proof of item 1.

Item 2 follows immediately from Corollary 2.3.5.

Now let us prove the last item. Since u(x+ l1,y+ l2) = u(x,y) = u(|x|, |y|), (x,y) ∈ R2,

we can write:
û(k) =

∫
[0,l2]

∫
[0,l1]

u(x,y)e−ik1L1xe−ik2L2ydxdy =
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=
∫
[0,l2]

∫
[0, l1

2 ]
u(x,y)e−ik1L1xe−ik2L2ydxdy+

∫
[0,l2]

∫
[

l1
2 ,l1]

u(x,y)e−ik1L1xe−ik2L2ydxdy =

=
∫
[0,l2]

∫
[0, l1

2 ]
u(l1 − x,y)e−ik1L1xe−ik2L2ydxdy+

∫
[0,l2]

∫
[

l1
2 ,l1]

u(x,y)e−ik1L1xe−ik2L2ydxdy =

=
∫
[0,l2]

∫
[

l1
2 ,l1]

u(x,y)e−ik1L1(l1−x)e−ik2L2ydxdy+
∫
[0,l2]

∫
[

l1
2 ,l1]

u(x,y)e−ik1L1xe−ik2L2ydxdy =

=
∫
[0,l2]

∫
[

l1
2 ,l1]

u(x,y)eik1L1xe−ik2L2ydxdy+
∫
[0,l2]

∫
[

l1
2 ,l1]

u(x,y)e−ik1L1xe−ik2L2ydxdy =

=
∫
[0,l2]

∫
[

l1
2 ,l1]

u(x,y)2cos(k1L1x)e−ik2L2ydxdy.

Applying the same routine to the integration variable y we obtain

û(k) =
∫
[0,l2]

∫
[

l1
2 ,l1]

u(x,y)2cos(k1L1x)e−ik2L2ydxdy =

=
∫
[

l1
2 ,l1]

2cos(k1L1x)
∫
[0,l2]

u(x,y)e−ik2L2ydydx =

=
∫
[

l1
2 ,l1]

2cos(k1L1x)
∫
[

l2
2 ,l2]

u(x,y)2cos(k2L2y)dydx =

= 4
∫
[

l1
2 ,l1]

∫
[

l2
2 ,l2]

u(x,y)cos(k1L1x)cos(k2L2y)dydx.

Therefore,

û(k) = û(|k|) ∈ R, k ∈ Z2. (3.12)

The following theorems aims to produce global bounds for the Fourier coefficients of
solutions of problem 3.5. 1

Proposition 3.1.1. (Energy estimates for two-dimensional Swift-Hohenberg equation.) If u ∈ D

is solution of (3.5) then

‖u‖L2(Ω) ≤
√

ν l1l2 and ‖∆u‖L2(Ω) ≤
√

2ν(ν +1)l1l2

Proof. From the fact that u is a solution of (3.5) we have:

νu− [u+2∆u+∆(∆u)]−u3 = 0 (3.13)

Multiplying the right hand side of (3.13) by u and integrating over Ω taking into account
that u ∈ D, we obtain:

1 Here we would like to thank Sarah ((DAY et al., 2005)) for contributing with the integration strategy
used to get the global bounds for the Fourier coefficients.
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0 =
∫
Ω

(ν −1)u2 −u4dx+
∫
Ω

−2u∆udx−
∫
Ω

(∆u)2dx ≤

≤
∫
Ω

(ν −1)u2 −u4dx+
∫
Ω

u2

ε
+ ε(∆u)2dx−

∫
Ω

(∆u)2dx (3.14)

Setting ε = 1, we get:

0 ≤
∫
Ω

νu2 −u4dx (3.15)

On the other hand,

∫
Ω

u2 ≤

∫
Ω

u4dx

 1
2

·

∫
Ω

1dx

 1
2

=

∫
Ω

u4dx

 1
2

·
√

l1l2 (3.16)

From (3.15) and (3.16), we can write:

0 ≤
∫
Ω

νu2 −u4dx ≤
∫
Ω

νu2dx− 1
l1l2

·

∫
Ω

u2dx

2

=

= ν‖u‖2
L2(Ω)−

1
l1l2

· ‖u‖4
L2(Ω) ⇒

⇒ ν − 1
l1l2

· ‖u‖2
L2(Ω) ≥ 0 ⇒

⇒‖u‖L2(Ω) ≤
√

ν l1l2. (3.17)

Furthermore, setting ε = 1
2 in (3.14), we have

1
2

∫
Ω

(∆u)2dx ≤
∫
Ω

(ν +1)u2 −u4dx ≤

≤ (ν +1)
∫
Ω

u2 ⇒

⇒‖∆u‖L2(Ω) ≤
√

2ν(ν +1)l1l2 (3.18)

Corollary 3.1.1. If u is a solution of (3.5), then∫
Ω

|∆(∆u)|dx ≤
(
|ν −1|+2

√
2(ν +1)+ν

)√
ν l1l2
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Proof. Simply integrate (3.13), use the estimates ‖u‖L2(Ω) and ‖∆u‖L2(Ω), and observe that

∫
Ω

|u3|dx ≤

∫
Ω

|u4|dx

 1
2
∫

Ω

u2dx

 1
2

≤
√

ν

∫
Ω

u2dx

where the last inequality is justified by (3.15).

Theorem 3.1.2 (Decay of Fourier Coefficients). Let L = (L1,L2) ∈ R2, with L1 > 0, L2 > 0,
and N = (N1,N2) ∈ Z2, N1 ≥ 2L2

L1 ,N2 ≥ 2L1
L2 . If u is a solution of (3.5) and a = {ak}k∈Z2 is the

sequence of Fourier coefficients of the restriction of u to Ω with respect to the basis Ψ then
a ∈ X (2,2) with:

|ak| ≤ ck(ν ,L), k ∈ Z2, (3.19)

where

ck(ν ,L) =



√
ν l1l2 if k = (0,0)(
|ν−1|+2

√
2(ν+1)+ν

)√
ν l1l2

(k2
1L2

1+k2
2L2

2)
2 if k ∈ FN e k ̸= (0,0)(

|ν−1|+2
√

2(ν+1)+ν

)√
ν l1l2

4L2
1L2

2ωs
k

if k /∈ FN .

(3.20)

Proof. If k = (0,0), we have:

a(0,0) =
1√
l1l2

∫
Ω

udx ≤ ‖u‖L2(Ω) ≤
√

ν l1l2.

On the other hand, observe that:

1. ∆(∆u) = ∑
k∈Z2

bkΨk, where bk = ak(k2
1L2

1 + k2
2L2

2)
2,

2. bk =
∫
Ω

∆(∆u)Ψk, with Ψk(x,y)≤ 1√
l1l2

, ∀k ∈ Z2,

3.
∫
Ω

|∆(∆u)|dx ≤
(
|ν −1|+2

√
2(ν +1)+ν

)√
ν l1l2,

4. k2
1L2

1 + k2
2L2

2 ≥ 2k1L1k2L2

5. k2
i L4

i ≥ 4L2
1L2

2 if ki ≥ N, i = 1,2.

Define b(ν , l1, l2) =
(
|ν −1|+2

√
2(ν +1)+ν

)√
ν l1l2. For itens 1, 2 and 3 we conclude that:

ak ≤
b(ν , l1, l2)

k4
1L4

1 + k4
2L4

2 +2k2
1L2

1k2
2L2

2
, k ̸= (0,0).

In particular, if k1 ̸= 0 and k2 ̸= 0 then:
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∙ for item 4:

a(k1,k2) ≤
b(ν , l1, l2)

k4
1L4

1 + k4
2L4

2 +2k2
1L2

1k2
2L2

2
≤ b(ν , l1, l2)

4L2
1L2

2ωs
k
.

∙ for item 5 :

a(k1,0) ≤
b(ν , l1, l2)

k4
1L4

1
=

b(ν , l1, l2)
k2

1L4
1ωs

k
≤ b(ν , l1, l2)

4L2
1L2

2ωs
k
, if k1 ≥ N,

a(0,k2) ≤
b(ν , l1, l2)

k4
2L4

2
=

b(ν , l1, l2)
k2

2L4
2ωs

k
≤ b(ν , l1, l2)

4L2
1L2

2ωs
k
, if k2 ≥ N.

Therefore,

ak ≤
b(ν , l1, l2)
4L2

1L2
2ωs

k
, k /∈ FN ,

which concludes the proof.

We summarize Theorems (3.1.1) and (3.1.2) in the following.

Theorem 3.1.3. Let L and N as in Theorem (3.1.2). If u is a solution of (3.5) and a = {ak}k∈Z2

is the sequence of Fourier coefficients of the restriction of u to Ω with respect to the basis Ψ then{
l1l2µk(λ )ak − (a3)k = 0, k ∈ Z2

ak = a|k|, |ak| ≤ ck(ν ,L), k ∈ Z2 , (3.21)

where

µk(λ ) = λ − (1− k2
1L2

1 − k2
1L2

2)
2, k ∈ Z2 (3.22)

and

ck(ν ,L) =



√
ν l1l2 if k = (0,0)(
|ν−1|+2

√
2(ν+1)+ν

)√
ν l1l2

(k2
1L2

1+k2
2L2

2)
2 if k ∈ FN e k ̸= (0,0)(

|ν−1|+2
√

2(ν+1)+ν

)√
ν l1l2

4L2
1L2

2ωs
k

if k /∈ FN .

(3.23)

In particular, a ∈ X (2,2).

Reciprocally, we have the following Theorem.

Theorem 3.1.4. Let a = {ak}k∈Zd be a solution of the following problem:

l1l2µk(λ )ak − (a3)k = 0, k ∈ Z2, a ∈ X (2,2) (3.24)

where

µk(λ ) = λ − (1− k2
1L2

1 − k2
1L2

2)
2, k ∈ Z2. (3.25)

Then, we have

u(x,y) = ∑
k∈Zd

akΨk(x,y) ∈C∞(R2)
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and we can obtain their derivatives by term-by-term differentiation. That is:

∂ αu
∂xα

(x,y) = ∑
k∈Zd

i|α|kαLαakΨk(x,y), α ∈ Z2
+ (3.26)

with absolute and uniform convergence on R2, and

u(x,y) = u(|x|, |y|) = u(x+ l1,y+ l2), (x,y) ∈ R2. (3.27)

In particular, (3.26) and (3.27) imply that u is a solution of (3.5).

Proof. Observe that δ :=
{

1
µk(λ )

}
k∈Zd

∈X (2,2). From Theorem (2.2.1) we know that a3 ∈X (2,2).

With this we get

µk(λ )ak − (a3)k = 0 ⇒ |ak| ≤
‖a3‖s‖δ‖s

ω
(4,4)
k

.

Therefore a ∈ X (4,4). Repeating this procedure we obtain a ∈ X (2n,2n) ∀n ∈ N. Then, for α ∈ Zd
+

we can take n ∈ N such that |k|α

ω
(2n,2n)
k

≤ 1
ω

2,2
k
. This implies the absolute convergence of the series

(3.26).

On the other hand, given (x,y) ∈ R2 and constants σ1,σ2 ∈ {−1,1} such that (x,y) =
(σ1|x|,σ2|y|), since the series of u converges uniformly on R2 and

ak = a(σ1k1,σ2k2) = a|k| ∀ k = (k1,k2) ∈ Zd,

we can calculate as follows:

u(x,y) =
1√
l1l2

∑
k∈Zd

akek1L1xek2L2y =

=
1√
l1l2

∑
k∈Zd

ake(σ1k1)L1|x|e(σ2k2)L2|y| =
1√
l1l2

∑
k∈Zd

a(σ1k1,σ2k2)e
(σ1k1)L1|x|e(σ2k2)L2|y| =

=
1√
l1l2

∑
k∈Zd

akek1L1|x|ek2L2|y| = u(|x|, |y|).

Furthermore, we have:

u(x+ l1,y+ l2) =
1√
l1l2

∑
k∈Zd

akek1L1(x+l1)ek2L2(y+l2) =

=
1√
l1l2

∑
k∈Zd

akek1L1x+2πk1ek2L2y+2πk2 =
1√
l1l2

∑
k∈Zd

akek1L1xek2L2y = u(x,y),

which concludes the proof of (3.27).

To see that u solves (3.5) observe that (3.26) implies that

νu− [u+2∆u+∆(∆u)] = ∑
k∈Z2

µk(λ )akΨk,
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and by (3.24) we conclude that

∑
k∈Z2

µk(λ )akΨk =
1

l1l2
∑

k∈Z2

(a3)kΨk = u3,

that is,
νu− [u+2∆u+∆(∆u)] = u3,

which concludes the proof that u is a solution of (3.5).

We now state the main result of this section, which summarizes the last two Theorems.

Corollary 3.1.2. If u is a solution of (3.5) then u ∈ C∞(R2). Furthermore, u = ∑
k∈Zd

akΨk is a

solution of (3.5) if and only if a is a solution of the problem given by (3.21), (3.22) and (3.23).

This work is devoted to present a method to find all solutions of the algebraic problem
like is the one given by (3.21), (3.22) and (3.23). As a consequence of the correspondence given
by Corollary (3.1.2) we will be able to find all solutions of some differential equations that
assume that kind of algebraic reformulation.

3.1.2 Cahn-Hilliard

Throughout this section let l > 0, L = 2π

l , Ω = (−l, l) and Ω+ = (0, l) . We denote
by Γ = {Γk}k∈Z the orthonormal Hilbert basis of L2(Ω) given by Γk(x) = eikLx

√
2l
, x ∈ Ω, k ∈ Z. If

A is any subset of Rn, denote by int(A) the interior of A and by A the closure of A in Rn. For a
fixed parameter ε ∈ R+, consider the problem of finding all the solutions of

L(u,ε) = u3, in Ω+, u ∈ D, (3.28)

where
L(u,ε) = ε

2
∆u+u, (3.29)

and
D = {u ∈C; ux(0) = ux(l) = 0}, (3.30)

where C is the set of all functions u : Ω+ −→ R such that the classical derivative uxx exists in
Ω+, and uxx ∈ L2(Ω+). The first order derivative in (3.30) is built by taking lateral limits as
follows:

ux(0) = lim
t→0+

u(t)−u(0)
t

, ux(l) = lim
t→0−

u(l + t)−u(l)
t

, (3.31)

that is, if u ∈ D then u has null normal derivatives over the boundary of Ω+. Next we obtain a
new setting of the previous problem more suitable for the energy estimates.

Proposition 3.1.2. Let u be a solution of (3.28). Define Ω̃ = {x ∈ Ω; x ̸= 0}, and define v :
Ω −→ R by v(x) = u(|x|). Then v is differentiable and satisfies:

ε
2
∆v(x) = v3(x)− v(x), x ∈ Ω̃, (3.32)
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and
vx(−l) = vx(l) = 0. (3.33)

Reciprocally, if v : Ω → R is differentiable, v(x) = v(|x|), x ∈ Ω, and if v is a solution of (3.32)
and (3.33) with vxx ∈ L2(Ω) then u := v|

Ω+
is a solution of (3.28).

Proof. Let u be a solution of (3.28)and define v(x) = u(|x|), x ∈ Ω. It is obvious that v is
differentiable at x ̸= 0. Also, by the hypothesis we can calculate as follows:

∙ lim
t→0+

v(t)−v(0)
t = lim

t→0+
u(t)−u(0)

t = 0;

∙ lim
t→0−

v(t)−v(0)
t = lim

t→0+
v(−t)−v(0)

−t =− lim
t→0+

v(t)−v(0)
t = 0.

Therefore, v is differentiable at x = 0 and vx(0) = 0.

Now, let us prove (3.32) and (3.33). Since 0 /∈ Ω̃, if B is an open ball contained in Ω̃ then
there exists a constant σ ∈ {−1,1} such that

|x|= σx,∀ x ∈ B.

Then, we can write:
v(x) = u(|x|) = u(σx), x ∈ B =⇒

=⇒ ∆v(x) = σ
2uxx(σx) = ∆u(|x|) = 1

ε2 [u
3(|x|)−u(|x|)], x ∈ B =⇒

=⇒ ε
2
∆v(x) = u3(|x|)−u(|x|) = v3(x)− v(x), x ∈ B.

Therefore,
ε

2
∆v(x) = v3(x)− v(x), x ∈ Ω̃, (3.34)

what proves (3.32). Also, since v(−x) = v(x), ∀x ∈ Ω, we can write:

vx(−l) := lim
t→0+

v(−l + t)− v(−l)
t

= lim
t→0+

v(l − t)− v(l)
t

=

= lim
t→0−

v(l + t)− v(l)
−t

=− lim
t→0−

v(l + t)− v(l)
t

=−ux(l) = 0.

The boundary condition vx(l) = 0 follows directly from the fact that vx(l) = ux(l) = 0, what
concludes the proof of (3.33).

Reciprocally, let v : Ω → R satisfying (3.32) and (3.33) with vxx ∈ L2(Ω) and v(x) =

v(|x|), x ∈ Ω. All the necessary conditions for u := v|
Ω+

to be a solution of (3.28), except
that ux(0) = 0, follows immediately from the properties of v. To see that ux(0) = 0, since v is
differentiable we can calculate as follows:

v(x) = v(−x)⇒ vx(0) =−vx(0)⇒ vx(0) = 0 ⇒ ux(0) = 0.
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Remark 3.1.1. Proposition (3.1.2) says that the solutions of problem (3.28) are restrictions to
Ω+ of solutions of the problem given by:

L(v,ε) = v3, in Ω̃, v ∈ D̃, (3.35)

where

D̃ = {v ∈ C̃; vx(−l) = vx(l) = 0} (3.36)

where C̃ is the set of all differentiable functions v : Ω −→ R such that the classical partial
derivative vxx exists in Ω̃, and vxx ∈ L2(Ω̃).

In what follows we provide the algebraic formulation (3.4) for the reformulated differen-
tial problem (3.35).

Theorem 3.1.5 (Energy estimates for two-dimensional Cahn-Hilliard equation). If v is a solution
of (3.35) then:

‖v‖L2(Ω) ≤
√

l1l2, ‖∆v‖L2(Ω) ≤
√

l1l2
ε2

Proof. From (3.32) and (3.33) we can calculate as follows:

ε
2
∆v = v3 − v in Ω̃ ⇒ ε

2
∫

Ω

v∆v =
∫

Ω

v4 −
∫

Ω

v2 ⇒

−ε
2
∫

Ω

|Ov|2 =
∫

Ω

v4 −
∫

Ω

v2 ⇒
∫

Ω

v4 −
∫

Ω

v2 ≤ 0. (3.37)

On the other hand,

∫
Ω

v2 ≤
(∫

Ω

v4
) 1

2
(∫

Ω

1
) 1

2

⇒
∫

Ω

v4 ≥ 1
2l

(∫
Ω

v2
)2

. (3.38)

From (3.37) and (3.38) we obtain

1
2l

(∫
Ω

v2
)2

−
∫

Ω

v2 ≤
∫

Ω

v4 −
∫

Ω

v2 ≤ 0 ⇒

⇒ 1
2l
‖v‖4

L2(Ω)−‖v‖2
L2(Ω) ≤ 0 ⇒

⇒‖v‖L2(Ω) ≤
√

2l. (3.39)

From (3.32) we can write:

ε
2
∆v = v3 − v ⇒ ε

4(∆v)2 = v6 −2v4 + v2 ⇒
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ε
4‖∆v‖2

L2(Ω) =
∫

Ω

v6 −2
∫

Ω

v4 +
∫

Ω

v2. (3.40)

From (3.32) and (3.33) we can write:

ε
2v3

∆v = v6 − v4 ⇒−ε
2
∫

Ω

3v2Ov ·Ov =
∫

Ω

v6 −
∫

Ω

v4 ⇒

⇒
∫

Ω

v6 ≤
∫

Ω

v4. (3.41)

From (3.40) and (3.41) we obtain

ε
4‖∆v‖2

L2(Ω) ≤
∫

Ω

v2 −
∫

Ω

v4 ≤ ‖v‖2
L2(Ω) ≤ 2l ⇒

⇒‖∆v‖L2(Ω) ≤
√

2l
ε2 . (3.42)

Corollary 3.1.3. If v is a solution of (3.35) and |v(x,y)| ≤ M ∀(x,y) ∈ Ω, for some M ∈R, then:∫
Ω

|∆(∆v)| ≤ 6(2M+1)l
ε2 .

Proof. First, observe that the statement |v(x,y)| ≤ M ∀(x,y) ∈ Ω, for some M ∈ R, makes sense
because v ∈C1(Ω). From (3.32), we can write:

ε
2
∆v = v3 − v in Ω̃ ⇒ ε

2
∆(∆v) = ∆(v3 − v) = 6v|Ov|2 +3v2

∆v in Ω̃. (3.43)

But, for (3.37) we have
∫

Ω
|Ov|2 ≤

‖v‖2
L2(Ω)

ε2 . Therefore,

∫
Ω

|∆(∆v)| ≤ 6M
‖v‖2

L2(Ω)

ε2 +3
(∫

Ω

v4
) 1

2

‖∆v‖L2(Ω) (3.44)

From (3.37) we know that
∫

Ω
v4 ≤

∫
Ω

v2. Plugging this estimate in (3.44) and using the
estimates for ‖v‖L2(Ω) and ‖∆v‖L2(Ω), we obtain:

∫
Ω

|∆(∆v)| ≤ 6M
2l
ε2 +3‖v‖L2(Ω)‖∆v‖L2(Ω) ≤

6(2M+1)l
ε2 . (3.45)

Theorem 3.1.6. If v ∈ D̃ and {v̂(k)}k∈Z2 is the sequence of Fourier coefficients of v with respect
to the orthonormal Hilbert basis Γ of L2(Ω), then:

1. L̂(v,ε)(k) = µkv̂(k), k ∈ Z2, where

µk(ε) = L(Γk,ε) = 1− ε
2(k2L2), k ∈ Z;
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2. v̂3(k) = 1
2l ∑

k1+k2+k3=k
k1, k2, k3∈Z

v̂(k1)v̂(k2)v̂(k3) = 0, k ∈ Z;

3. v̂(k) = v̂(|k|) ∈ R, k ∈ Z.

Proof. Let v be a solution of (3.35), with

v = ∑
k∈Z

v̂(k)Γk, in L2(Ω). (3.46)

Also, from (3.33) and since v is an even function, we can integrate by parts as follows:

∆̂u(k) =
∫

Ω

∆vΓk =
1√
2l

∫
Ω

vxxe−ikLx =
−ikL√

2l

∫
Ω

vxe−ikLx =

=
(−ikL)2
√

2l

∫
Ω

ve−ikLx =−k2L2
∫

Ω

vΓk =−k2L2v̂(k), k ∈ Z, (3.47)

what proves the first item.

The second item follows from Corollary 2.3.5. Finally, for Proposition 2.3.1 we know
that v̂(k) = v̂(|k|) ∈ R, what concludes the proof.

Theorem 3.1.7 (Decay of Fourier Coefficients). Let s = 2, L > 0, and N ∈ N. If v is a solution
of (3.35) with |v(x)| ≤ M, x ∈ Ω, and a = {ak}k∈Z is the sequence of Fourier coefficients of v

with respect to the basis Γ, then a ∈ X s and:

|ak| ≤ ck(ν ,L), k ∈ Z, (3.48)

where

ck(ε,L) =


√

2l if k = 0
6(2M+1)

√
l√

2(kL)4ε2 if 0 < k < N
6(2M+1)

√
l√

2N2L4ε2ωs
k

if k ≥ N.

(3.49)

Proof. From (3.32) we have ∆u(−l) = ∆u(l). Deriving (3.32) we conclude that (∆u)x(−l) =

(∆u)x(l) = 0, since v satisfies the conditions given by (3.33). These information plus equation
(3.47) allow us calculate as follows:∫

Ω

(∆v)xxΓk =
1√
2l

∫
Ω

(∆v)xxe−iklLx =
ikL√

2l

∫
Ω

(∆v)xe−ikLx =

=
(ikL)2
√

2l

∫
Ω

∆ve−ikLx =
(ikL)4
√

2l

∫
Ω

ve−ikLx = (kL)4
∫

Ω

vΓk =

= (kL)4v̂(k), k ∈ Z. (3.50)
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From (3.50) and Corollary (3.1.3) we obtain

|v̂(k)| ≤ 6(2M+1)
√

l√
2(kL)4ε2

, k ∈ Z, k ̸= 0. (3.51)

We summarize Theorems 3.1.6 and 3.1.7 in the following.

Theorem 3.1.8. If v is a solution of (3.35) and a= {ak}k∈Z is the sequence of Fourier coefficients
of v with respect to the basis Γ then{

2lµk(ε)ak − (a3)k = 0, k ∈ Z
a ∈ X2, ak = a|k|, |ak| ≤ Ck

ω2
k
, k ∈ Z , (3.52)

where
µk(ε) = 1− ε

2k2L2, k ∈ Z (3.53)

and

Ck =


√

2l if k = 0
6(2M+1)

√
l√

2(kL)4ε2 if 0 < k < N
6(2M+1)

√
l√

2N2L4ε2 if k ≥ N.

(3.54)

Analogously to the previous section we can prove the following reciprocal result.

Corollary 3.1.4. If v is a solution of (3.35) then v ∈ C∞(R2). Furthermore, v = ∑
k∈Zd

akΓk is a

solution of (3.35) if and only if a is a solution of the problem given by (3.52), (3.53) and (3.54).





43

CHAPTER

4
DEVELOPMENT OF THE METHOD

In the previous chapter we saw that solving some differential equations in some subsets
of Rd is equivalent to solve a system of algebraic equations of the form:

Fk(a,λ ) = 0, k ∈ Zd,

|ak| ≤ Ck
ωs

k
if k ∈ Fm,

|ak| ≤ C
ωs

k
if k /∈ Fm,

(4.1)

for some constants s ∈ Rd, m ∈ Nd, and Ck > 0,k ∈ Fm, and C > 0, with

Fk(·,λ ) : Xs −→ R, λ ∈ R

Fk(a,λ ) = µk(λ )ak −
p
∑
j=2

q j(λ )(a j)k, k ∈ Zd.
(4.2)

Definition 4.0.1. Define one parameter family of maps F (·,λ ) : X s −→ RZd
by

F (a,λ ) = {Fk(a,λ )}k∈Zd , (4.3)

where Fk(a,λ ) is given by (4.2).

Then, the problem given by (4.1) can be written in the form:
F (a,λ ) = 0, a ∈ X s,

|ak| ≤ Ck
ωs

k
if k ∈ Fm,

|ak| ≤ C
ωs

k
if k /∈ Fm.

(4.4)

In this chapter we present our approach for determining all solutions of the problem (4.4)
for suitable values of λ and under the assumption that

inf
k/∈Fm

|µk(λ )|> 0. (4.5)
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Remark 4.0.1. In the applications presented in this work it happens that |µk| → ∞ when k → ∞,

so that hypothesis (4.5) is fulfilled for some m ∈ Nd big enough.

We start with the following important definition.

Definition 4.0.2. Let m ∈ Nd. Define the finite dimensional subspace X s
(m) of X s by

X s
(m) = {x ∈ X s; xk = 0 if k /∈ Fm}.

Denote by Π(m) : X s −→ X s
(m) the projection over X s

(m), that is:

Π(m)u =

{
uk if k ∈ Fm

0 if k /∈ Fm
, u ∈ X s.

We will write u(m) to refer to Π(m)u and u(m) to refer to u−u(m), that is, u = u(m)+u(m), u ∈ X s.

If M ∈ Zd is such that Fm ⊂ FM then we define the sequence uM
m by

[
uM

m
]

k =

{
uk if k ∈ FM ∖Fm

0 if k /∈ FM ∖Fm

Finally, given M ∈ Nd such that Fm ⊂ FM, real numbers r > 0 and c > 0 and a set
C = {ck, k ∈ FM ∖Fm}, of positive real numbers, we define the following neighborhood of
0 ∈ X s :

B(r,c,C) = {x ∈ X s; |
[
x(m)

]
k | ≤

r
ωs

k
, |
[
xM

m
]

k | ≤
ck

ωs
k
, |
[
x(M)

]
k
| ≤ c

ωs
k
}. (4.6)

Consider λ fixed and let x1, ...,xq ∈X s
(m) be some numerical solution obtained by applying

Newton’s method to the truncated problem:

F (m)(x,λ ) = 0, with F (m)(x,λ ) = {Fk(x,λ )}k∈Fm and x ∈ X s
(m). (4.7)

Looking for such numerical solutions is the first step of the method. The second step of
the method consists in proving the existence of a unique exact solution of problem (4.4) in a
neighborhood of each approximated solution xi, i = 1, ...,q.

In order to prove the existence of a unique zero of F (·,λ ) around a numerical solution
x ∈ {x1, ...,xq} we introduce a Newton-like operator T (depending on x ) whose fixed points
correspond to zeros of F (·,λ ). Then we provide conditions that can be rigorously checked by a
computer for the mentioned fixed point operator be a contraction in a small neighborhood of x of
the form x+B(r,c,C), for some B(r,c,C) of the form (4.6). Once these conditions are checked
we have, by the Banach’s fixed point Theorem, the existence of a unique fixed point of T , i.e. a
zero of F (·,λ ), inside the neighborhood x+B(r,c,C). These ideas are developed in details in
the next section.
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4.1 Local uniqueness

4.1.1 Fixed point formulation

In what follows consider λ fixed and x ∈ {x1, ...,xq} a numerical solution of the truncated
problem (4.7).

Let A = A(x,λ ) : RZd −→ RZd
be a linear map, whose detailed construction is made

next, such that Av ∈ X s if v ∈ F (X s,λ ). Then we can associate to F the Newton-like operator

TF = TF (x,λ ) := I −AF : X s −→ X s, (4.8)

where I is the identity of X s.

Observe that if A is injective then the fixed points of T correspond to zeros of F (·,λ ).

4.1.1.1 Construction of A

For x ∈ X s
(m) define the linear operator A† = A†(x) : X s −→ RZd

by

(A†v)k =

{
F ′

k(x)v(m) if k ∈ Fm

µk(λ )vk if k /∈ Fm
. (4.9)

In the attempting of to emulate the acting of the abstract finite dimensional operator A†(x)|X s
(m)

in
terms of concrete operations to be performed in the computer, we start by choosing a bijection

J : Fm −→ {1, ...,#Fm}

and to it we associate the isomorfism

J : X s
(m) −→ R#Fm

given by
(Jw)i = wJ −1(i), w ∈ X s

(m), i ∈ {1, ...,#Fm}.

Observe that
(J−1w)k = wJ (k), w ∈ R#Fm, k ∈ Fm.

Both J and J and their respective inverses can be easily implemented in a computer. Also, we
can write the finite dimensional linear operator

A†(x)|X s
(m)

: X s
(m) ∋ w ↦→ {F ′

k(x)w}k∈Fm ∈ X s
(m)

as the following composition:

A†(x)|X s
(m)

= J−1 ∘ [J ∘A†(x)|X s
(m)

∘ J−1]∘ J = J−1 ∘B∘ J,

where we are denoting by B : R#Fm −→ R#Fm the map defined by

B = J ∘A†(x)|X s
(m)

∘ J−1.
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Then, A†(x)|X s
(m)

and B are conjugated operators, as the following diagram illustrates.

X s
(m)

A†
−→ X s

(m)

J−1 ↑ ↓ J

R#Fm B−→ R#Fm

(4.10)

The operator B can be concretely performed as a matrix multiplication, as we show next
for the case of cubic non-linearity, that is when

Fk(x,λ ) = µk(λ )xx − (x3)k, x ∈ X s,k ∈ Zd.

In this case, for n ∈ {1, ...,#Fm} and v ∈ R#Fm we can calculate as follows:

[B(v)]n = [J(A†J−1v)]n =
[
J
({

F ′
k(x)J

−1v
}

k∈Fm

)]
n
=

=
[
J
({

µk(λ )(J−1v)k −3(x2J−1v)k
}

k∈Fm

)]
n
=

= µJ −1(n)(λ )(J
−1v)J −1(n)−3(x2J−1v)J −1(n) =

= µJ −1(n)(λ )vn −3 ∑
j∈Fm

(x2)J −1(n)− j(J
−1v) j =

= µJ −1(n)(λ )vn −3
#Fm

∑
i=1

(x2)J −1(n)−J −1(i)(J
−1v)J −1(i) =

= µJ −1(n)(λ )vn −3
#Fm

∑
i=1

(x2)J −1(n)−J −1(i)vi =

=
#Fm

∑
i=1

[δi,nµJ −1(n)(λ )−3(x2)J −1(n)−J −1(i)]vi =
#Fm

∑
i=1

bn,ivi, (4.11)

where

bn,i = bn,i(λ ,x) := δi,nµJ −1(n)(λ )−3(x2)J −1(n)−J −1(i), i,n ∈ {1, ...,#Fm}. (4.12)

Then, denoting by B the square matrix with entries bn,i, n, i ∈ {1, ...,#Fm}, we can write

B(v) = Bv, v ∈ R#Fm

and

A†w = J−1BJw, w ∈ X s
(m).

Observe that if µk(λ ) ̸= 0 ∀k /∈ Fm then A† is an invertible map if and only if B is an non-singular
matrix. In this case the inverse of A† is given by

[(A†)−1v]k =

{
[J−1B−1Jv(m)]k if k ∈ Fm

1
µk(λ )

vk if k /∈ Fm,



4.1. Local uniqueness 47

Let B be a numerically obtained inverse of the matrix B. Then, we define the linear
operator A : RZd −→ RZd

as follows:

(Av)k = [A(x,λ )v]k =

{
[J−1BJv(m)]k if k ∈ Fm

1
µk(λ )

vk if k /∈ Fm,
(4.13)

which is well defined because of hypothesis (4.5).

Observe that Theorem (2.2.1) and hypothesis (4.5) give that AF (v) ∈ X s if v ∈ X s, that
is:

AF : X s −→ X s.

It is a straightforward task to show that AF : X s −→ X s is a non-linear Frechet differen-
tiable map with:

(AF )′(x)v = AGF (x)v, x,v ∈ X s,

where GF (x) : X s −→ RZd
is the linear map defined by:

[GF (x)v]k = F ′
k(x)v = µk(λ )vk −

p

∑
j=2

jq j(λ )(x j−1v)k, k ∈ Zd.

Observe that

AGF (x)v ∈ X s, ∀ x, v ∈ X s.

Once the fixed-point operator TF associated to the zero finding problem F (·,λ ) = 0 in a
neighborhood of a point x ∈ X s

(m) is built, the next step is to provide conditions that can be
rigorously checked by a computer for TF to be a contraction in a small neighborhood of x.

4.1.1.2 Theorem for local existence and uniqueness of fixed point

The next Theorem gives sufficient conditions for local existence and uniqueness of a
fixed point of Frechet differentiable operators in X s in a neighborhood of an approximated
solution x of problem (4.4).

Theorem 4.1.1 (Local existence and uniqueness). Let T : X s −→ X s be a Frechet differentiable
map, and let be fixed m, M ∈ Nd, with Fm ⊂ FM, real numbers c > 0 and δ ∈ (0,1), a set of
positive real numbers C = {ck > 0, k ∈ FM ∖Fm}, and x ∈ X s. Define the boxes B(r,c,C), r > 0,
as in (4.6). Suppose there exist constants

Yk ≥ 0, k ∈ Zd,

and real functions

Z(1)
k (r), r > 0, k ∈ Zd,

and

Z(2)
k (r), r > 0, k ∈ Zd,
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satisfying the following:

|Tk(x)− xk| ≤ Yk, k ∈ Zd, (4.14)

sup
v,w∈B(r,c,C)

|T ′
k (x+ v)w| ≤ Z(1)

k (r), r > 0, ∀ k ∈ Zd, (4.15)

sup
v∈B(r,c,C)
‖w‖s≤1

|T ′
k (x+ v)w| ≤ Z(2)

k (r), r > 0, ∀ k ∈ Zd. (4.16)

In this case, if there exists r > 0 such that :

Yk +Z(1)
k (r)≤


r

ωs
k

∀ k ∈ Fm
ck
ωs

k
∀ k ∈ FM ∖Fm

c
ωs

k
∀ k /∈ FM

(4.17)

and

Z(2)
k (r)≤ δ

ωs
k

∀ k ∈ Zd, (4.18)

then there exists a unique x ∈ x+B(r,c,C) such that T (x) = x.

Proof. First, let us prove that

T [x+B(r,c,C)]⊂ x+B(r,c,C).

Taking x = x+w, w ∈ B(r,c,C), we have:

|Tk(x+w)− xk| ≤

≤ |Tk(x)− xk|+ |Tk(x+w)−Tk(x)|=

= |Tk(x)− xk|+ |T ′
k (x+ v)w|, for some v ∈ B(r,c,C).

So,

|Tk(x)− xk| ≤ Yk + sup
v,w∈B(r,c,C)

|T ′
k (x+ v)w| ≤

≤ Yk +Z(1)
k (r)≤


r

ωs
k

∀ k ∈ Fm
ck
ωs

k
∀ k ∈ FM ∖Fm

c
ωs

k
∀ k /∈ FM

,∀ x ∈ x+B(r,c,C) ,

that is:

T (x) ∈ x+B(r,c,C), ∀ x ∈ x+B(r,c,C). (4.19)
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Next, let us prove that

‖T (x)−T (y)‖X s ≤ δ‖x− y‖X s, ∀ x, y ∈ x+B(r,c,C).

Indeed,

Tk(x)−Tk(y) = T ′
k (x+ v) · (x− y), for some v ∈ B(r,c,C),

that is,

|Tk(x)−Tk(y)| ≤

 sup
v∈B(r,c,C)
‖w‖s≤1

|T ′
k (x+ v)w|

‖x− y‖X s. (4.20)

However by hypotheses, we have:

sup
v∈B(r,c,C)
‖w‖s≤1

|T ′
k (x+ v)w| ≤ Z(2)

k (r)≤ δ

ωs
k
, ∀k ∈ Zd. (4.21)

From (4.20) and (4.21) we conclude that

ω
s
k |Tk(x)−Tk(y)| ≤ ω

s
k

 sup
v∈B(r,c,C)
‖w‖s≤1

|T ′
k (x+ v)w|

‖x− y‖X s ≤

≤ δ‖x− y‖X s, ∀ k ∈ Zd. (4.22)

Therefore,

‖T (x)−T (y)‖X s ≤ δ‖x− y‖X s, ∀x, y ∈ x+B(r,c,C). (4.23)

From (4.19) and (4.23), we can apply the Banach Fixed Point Theorem to conclude that there
exists unique x ∈ x+B(r,c,C) such that T (x) = x, as we wanted.

In what follows we consider µk(λ ) ∈C, k ∈ Zd,λ ∈R. Fix λ and take m ∈Nd such that
µk(λ ) ̸= 0 if k /∈ Fm. Also, let F = F (·,λ ) as in (4.2) and x ∈ X s

(m) be a numerical solution of
the truncated problem (4.7). Use these values of λ , m and x to build the linear operator A like in
(4.13).

Next we give explicit formulas for the bounds Yk, Z(1)
k (r) and Z(2)

k (r) in Theorem 4.1.1
when T is given by

T = TF = I −AF = I −A(x,λ )F (·,λ ),

where I is the identity of X s and Fk(x,λ ) is of the form:

Fk(x,λ ) = µk(λ )xx − (x3)k, x ∈ X s, k ∈ Zd. (4.24)
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4.1.2 Estimate of Yk

The definition of A gives

[F (x)− x]k = [AF (x)]k =

{
{J−1BJ[F (x)](m)}k, k ∈ Fm
Fk(x)
µk(λ )

, k /∈ Fm

Observe that
Fk(x) = 0, if k /∈ F(d(m1−1)+1,...,d(md−1)+1).

Therefore we have the following explicit formulas for the bound Yk:

Yk =


{|J−1BJ[F (x)](m)|}k, k ∈ Fm,∣∣∣Fk(x)

µk(λ )

∣∣∣ , k ∈ F(d(m1−1)+1,...,d(md−1)+1)∖Fm,

0, k /∈ F(d(m1−1)+1,...,d(md−1)+1).

(4.25)

Observe that all the expressions in (4.25) can be rigorously computed with interval arithmetic.

4.1.3 Derivative estimates

In this section we get explicit formulas for the bounds Z(1)
k (r) and Z(2)

k (r) for cubic
non-linearity, that is when Fk(x,λ ) is of the form (4.24).

We start obtaining the general formula for the derivatives of the operator T in a neighbor-
hood of x ∈ X s

(m) as follows:

T ′(x+ v)w = Iw− (AF )′(x+ v)w = Iw−AGF (x+ v)w =

=
(

I −AA†
)

w−A[GF (x+ v)−A†]w. (4.26)

By construction of A and A†, we have:

[
(

I −AA†
)

w]k =

{
[J−1(I −BB)Jw(m)]k if k ∈ Fm

0 if k /∈ Fm
. (4.27)

If k ∈ Fm, we can write:

[(GF (x+ v)−A†)w]k = F ′
k(x+ v)w−F ′

k(x)w(m) =

=−3(x2w(m))k −6(xvw)k −3(v2w)k, k ∈ Fm, (4.28)

If k /∈ Fm, we can write:

[(GF (x+ v)−A†)w]k = F ′
k(x+ v)w−µk(λ )wk =

=−3(x2w)k −6(xvw)k −3(v2w)k, k /∈ Fm. (4.29)



4.1. Local uniqueness 51

Therefore, defining

ξ (x,v,w) := [GF (x+ v)−A†]w ∈ X s, (4.30)

formulas (4.28) and (4.29) give

[ξ (x,v,w)]k =−3[x2(θkw(m)+w(m))]k −6(xvw)k −3(v2w)k, k ∈ Z2, (4.31)

where

θk =

{
0 if k ∈ Fm

1 if k /∈ Fm
.

Putting together the above identities we get:

T ′
k (x+ v)w =

{
[J−1(I −BB)Jw(m)]k −{J−1BJ[ξ (x,v,w)](m)}k, k ∈ Fm

1
µk(λ )

[ξ (x,v,w)]k, k /∈ Fm
∀ v, w ∈ X s.

(4.32)
Before proceeding to the estimates of the bounds Z(i)

k (r), i = 1,2, we go through the following
intermediary estimates.

4.1.3.1 ξ -Estimates

Fix m, M ∈Nd such that Fm ⊂ FM, x ∈ X s
(m), c > 0 and let C = {ck > 0, k ∈ FM ∖Fm} be

a set of positive real numbers. For each r > 0 let B(r,c,C) be as in (4.6). Also, denote by ω the
sequence given by

{
1

ωs
k

}
k∈Zd

∈ X s. Finally, define the sequence W = {Wk}k∈Zd , with Wk = 0 if
k /∈ FM ∖Fm and Wk = ckωk if k ∈ FM ∖Fm. In this case, if v, w ∈ B(r,c,C), then we can write:

v = rv1 + v2 + cv3, w = rw1 +w2 + cw3 (4.33)

with
|(v1)k|, |(w1)k| ≤

[
ω(m)

]
k ,

|(v2)k|, |(w2)k| ≤Wk

|(v3)k|, |(w3)k| ≤
[
ω(M)

]
k

k ∈ Zd. (4.34)

Substituting (4.33) into (4.31) and using the bounds (4.34) we get:

|[ξ (x,v,w)]k| ≤ 3
[
ω3
(m)

]
k
r3 +3

[
2
(
|x|ω2

(m)

)
k
+3c

(
ω2
(m)ω

(M)
)

k
+3
(

ω2
(m)W

)
k

]
r2+

+3
[
θk
(
|x2|ω(m)

)
k +4c

(
|x|ω(m)ω

(M)
)

k
+4
(
|x|ω(m)W

)
k +3c2

(
ω(m)ω

(M)ω(M)
)

k
+

+ 6c
(

ω(m)ω
(M)W

)
k
+3
(
ω(m)W 2)

k

]
r+

+3
(
W 3)

k +9c
(

W 2ω(M)
)

k
+9c2

(
Wω(M)ω(M)

)
k
+3c3

(
ω(M)ω(M)ω(M)

)
k
+

+6
(
|x|W 2)

k +12c
(
|x|ω(M)W

)
k
+6c2

(
|x|ω(M)ω(M)

)
k
+3
(
|x2|W

)
k+

+3c
(
|x2|ω(M)

)
k
, k ∈ Zd.

(4.35)



52 Chapter 4. Development of the method

Therefore, for d = 1, 2 we can use the bounds α
(d)
i , i = 0,1,2, and β

(d)
i , i = 0,1,

constructed in the Appendix of this work, to get:

|[ξ (x,v,w)]k| ≤
[ξ

(d)
1 (x,r)]k

ωs
k

, k ∈ Zd, (4.36)

where:

[ξ
(d)
1 (x,r)]k = 3ωs

k

[
ω3
(m)

]
k
r3+

+3
[
2ωs

k

(
|x|ω2

(m)

)
k
+3c[α(d)

2 (ω(m),ω(m),M)]k +3ωs
k

(
ω2
(m)W

)
k

]
r2+

+3
[
θkωs

k

(
|x2|ω(m)

)
k +4c[α(d)

2 (|x|,ω(m),M)]k +4ωs
k

(
|x|ω(m)W

)
k+

+3c2[α
(d)
1 (ω(m),M)]k +6c[α(d)

2 (W,ω(m),M)]k +3ωs
k

(
ω(m)W 2)

k

]
r+

+3ωs
k

(
W 3)

k +9c[α(d)
2 (W,W,M)]k +9c2[α

(d)
1 (W,M)]k +3c3[α

(d)
0 (M)]k+

+6ωs
k

(
|x|W 2)

k +12c[α(d)
2 (|x|,W,M)]k +6c2[α

(d)
1 (|x|,M)]k +3ωs

k

(
|x2|W

)
k+

+3c[β (d)
1 (|x2|,M)]k, k ∈ Zd.

(4.37)

Now consider v ∈ B(r,c,C) and ‖w‖s ≤ 1, that is |wk| ≤ 1
ωs

k
, k ∈ Zd. In this case, we can

write
v = rv1 + v2 + cv3, w = w(M)+w(M) (4.38)

with
|(v1)k| ≤

[
ω(m)

]
k , k ∈ Zd,

|(v2)k| ≤Wk, k ∈ Zd,

|(v3)k| ≤
[
ω(M)

]
k
, k ∈ Zd,

w(M) ≤
[
ω(M)

]
k , k ∈ Zd,

w(M) ≤
[
ω(M)

]
k
, k ∈ Zd.

(4.39)

Substituting (4.38) into (4.31) and using the estimates (4.39) we get:

|[ξ (x,v,w)]k| ≤ 3
[(

ω(m)ω(m)ω(M)

)
k +
(

ω(m)ω(m)ω
(M)
)

k

]
· r2+

+6
[(
|x|ω(m)ω(M)

)
k +
(
|x|ω(m)ω

(M)
)

k
+3
(
ω(m)Wω(M)

)
k+

+3
(

ω(m)Wω(M)
)

k
+3
(

ω(m)ω
(M)ω(M)

)
k
· c+3

(
ω(m)ω

(M)ω(M)
)

k
· c
]
· r+

+3θk
(
|x2|ω(m)

)
k +3

(
|x2|ω(M)

(m)

)
k
+3
(
|x2|ω(M)

)
k
+6
(
|x|Wω(M)

)
k+

+6
(
|x|Wω(M)

)
k
+6
(
|x|ω(M)ω(M)

)
k
· c+6

(
|x|ω(M)ω(M)

)
k
· c+

+3
(
W 2ω(M)

)
k +3

(
W 2ω(M)

)
k
+3
(

ω(M)ω(M)ω(M)

)
k
· c2+

+3
(

ω(M)ω(M)ω(M)
)

k
· c2 +6

(
Wω(M)ω(M)

)
k
· c+6

(
Wω(M)ω(M)

)
k
· c

(4.40)

Again, for d = 1, 2 we can use the α(d)-bounds from the Appendix to get:

|[ξ (x,v,w)]k| ≤
[ξ

(d)
2 (x,r)]k

ωs
k

, k ∈ Zd. (4.41)
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where:

[ξ
(d)
2 (x,r)]k = 3

[
ωs

k

(
ω(m)ω(m)ω(M)

)
k +[α

(d)
2 (ω(m),ω(m),M)]k

]
· r2+

+6
[
ωs

k

(
|x|ω(m)ω(M)

)
k +[α

(d)
2 (|x|,ω(m),M)]k +3ωs

k

(
ω(m)Wω(M)

)
k+

+3[α(d)
2 (ω(m),W,M)]k +3[α(d)

2 (ω(m),ω(M),M)]k · c+3[α(d)
1 (ω(m),M)]k · c

]
· r+

+3θkωs
k

(
|x2|ω(m)

)
k +3ωs

k

(
|x2|ω(M)

(m)

)
k
+3[β (d)

1 (|x2|,M)]k +6ωs
k

(
|x|Wω(M)

)
k+

+6[α(d)
2 (|x|,W,M)]k +6[α(d)

2 (|x|,ω(M),M)]k · c+6[α(d)
1 (|x|,M)]k · c+

+3ωs
k

(
W 2ω(M)

)
k +3[α(d)

2 (W,W,M)]k +3[α(d)
1 (ω(M),M)]k · c2+

+3[α(d)
0 (M)]k · c2 +6[α(d)

2 (W,ω(M),M)]k · c+6[α(d)
1 (W,M)]k · c

(4.42)

Observe that the uniform estimates of the α(d)-bounds, d = 1, 2, in the Appendix imply
the following uniform estimates for the ξ -bounds:

[ξ
(1)
i (x,r)]k = [ξ

(1)
i (x,r)]3M ∀ k ≥ 3M, i = 1,2, (4.43)

[ξ
(2)
i (x,r)](k1,k2) =


[ξ

(2)
i (x,r)](3M1,k2) if |k1| ≥ 3M1, 0 ≤ |k2| ≤ 3M2 −1

[ξ
(2)
i (x,r)](k1,3M2) if |k2| ≥ 3M2, 0 ≤ |k1| ≤ 3M1 −1

[ξ
(2)
i (x,r)](3M1,3M2) if |k1| ≥ 3M1, |k2| ≥ 3M2

, i = 1, 2.

(4.44)

Now we are finally ready to write explicit formulas for the bounds Z(i)
k (r), i = 1,2.

4.1.3.2 Estimate of Z(1)
k (r)

From (4.27), (4.33) and (4.34) we obtain:

|[
(

I −AA†
)

w]k|=

{
r|J−1[(I −BB)Jw1| ≤ r[J−1|I −BB|Jω(m)]k if k ∈ Fm

0 if k /∈ Fm
. (4.45)

Therefore, from (4.32), (4.36), (4.43), (4.44) and (4.45) we obtain the following:

In the one-dimensional case:

Z(1)
k (r) =


r[J−1|I −BB|Jω(m)]k +{J−1|B|J[ξ (1)

1 (x,r)](m)}k if k ∈ Fm

1
µk(λ )

[ξ
(1)
1 (x,r)]k

ωs
k

if k ∈ F3M∖Fm

1
µk(λ )

[ξ
(1)
1 (x,r)]3M

ωs
k

if |k| ≥ 3M.

(4.46)
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In the two-dimensional case:

Z(1)
k (r)=



r[J−1|I −BB|Jω(m)]k +{J−1|B|J[ξ (2)
1 (x,r)](m)}k if k ∈ Fm

1
µk(λ )

[ξ
(2)
1 (x,r)]k

ωs
k

if k ∈ FM∖Fm

1
µk(λ )

[ξ
(2)
1 (x,r)](3M1,k2)

ωs
k

if |k1| ≥ 3M1, 0 ≤ |k2|< 3M2

1
µk(λ )

[ξ
(2)
1 (x,r)](k1,3M2)

ωs
k

if |k2| ≥ 3M2, 0 ≤ |k1|< 3M1

1
µk(λ )

[ξ
(2)
1 (x,r)](3M1,3M2)

ωs
k

if |k1| ≥ 3M1, |k2| ≥ 3M2.

(4.47)

4.1.3.3 Estimate of Z(2)
k (r)

From (4.27), (4.38) and (4.39) we obtain:

|[
(

I −AA†
)

w]k|=

{
|J−1[(I −BB)Jw1| ≤ [J−1|I −BB|Jω(m)]k if k ∈ Fm

0 if k /∈ Fm
. (4.48)

Therefore, from (4.32), (4.41), (4.43), (4.44) and (4.48) we obtain the following:

In the one-dimensional case:

Z(2)
k (r) =


[J−1|I −BB|Jω(m)]k +{J−1|B|J[ξ (1)

2 (x,r)](m)}k if k ∈ Fm

1
µk(λ )

[ξ
(1)
2 (x,r)]k

ωs
k

if k ∈ F3M∖Fm

1
µk(λ )

[ξ
(1)
2 (x,r)]3M

ωs
k

if |k| ≥ 3M.

(4.49)

In the two-dimensional case:

Z(2)
k (r)=



[J−1|I −BB|Jω(m)]k +{J−1|B|J[ξ (2)
2 (x,r)](m)}k if k ∈ Fm

1
µk(λ )

[ξ
(2)
2 (x,r)]k

ωs
k

if k ∈ FM∖Fm

1
µk(λ )

[ξ
(2)
2 (x,r)](3M1,k2)

ωs
k

if |k1| ≥ 3M1, 0 ≤ |k2|< 3M2

1
µk(λ )

[ξ
(2)
2 (x,r)](k1,3M2)

ωs
k

if |k2| ≥ 3M2, 0 ≤ |k1|< 3M1

1
µk(λ )

[ξ
(2)
2 (x,r)](3M1,3M2)

ωs
k

if |k1| ≥ 3M1, |k2| ≥ 3M2.

(4.50)

4.1.4 Local uniqueness theorem for cubic non-linearity

Now we apply Theorem 4.1.1 for cubic non-linearity in dimension d = 1 and d = 2.
To be precise let Fk(a,λ ) = µk(λ )ak − (a3)k ∈ C with, λ ∈ R, k ∈ Zd, a ∈ X s, µk(λ ) ∈ C.
Suppose that there exist λ ∈R and m ∈Nd such that µk(λ ) ̸= 0 if k /∈ Fm. Given x ∈ X s

(m), define
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the Newton-like operator T = TF = I −A(x,λ )F (·,λ ), where F (·,λ ) = {Fk(·,λ )}k∈Zd and
A(x,λ ) is as given by (4.13). Let be given M ∈Nd such that Fm ⊂ FM, real numbers δ > 0, c > 0
and a set of positive real numbers C = {ck > 0,k ∈ FM ∖Fm}. For each r > 0 construct the box
B(r,c,C) as in (4.6) and the bounds Yk, given by the formula in (4.25), Z(i)

k (r), i = 1,2, k ∈ Z2,

given by the formulas (4.46) and (4.49), respectively, if d = 1, and by the formulas (4.47) and
(4.50), if d = 2.

Lastly, if d = 2 make the following definitions:

ζM2(k1,λ ) = min
|k2|≥3M2

|µ(k1,k2)(λ )|, |k1|< M1

ζM1(k2,λ ) = min
|k1|≥3M1

|µ(k1,k2)(λ )|, |k2|< M2

ζM(λ ) = min
|k1|≥3M1
|k2|≥3M2

|µ(k1,k2)(λ )|.

If d = 1 we just define:

ζM(λ ) = min
|k|≥3M

|µk(λ )|.

In this case, if d = 2 we have the following.

Corollary 4.1.1 (Of Theorem 4.1.1). Suppose that there exists 0 < r < 1 satisfying the following
finite set of inequalities:

Yk +Z(1)
k (r)≤


r

ωs
k

∀ k ∈ Fm
ck
ωs

k
∀ k ∈ FM ∖Fm

c
ωs

k
∀ k ∈ F3M ∖FM

(4.51)

Z(2)
k (r)≤ δ

ωs
k

∀ k ∈ F3M, (4.52)

[ξ
(2)
1 (x,r)](k1,3M2)

ζM2(k1,λ )
≤ c, |k1| ≤ 3M1 −1

[ξ
(2)
1 (x,r)](3M1,k2)

ζM1(k2,λ )
≤ c, |k2| ≤ 3M2 −1

[ξ
(2)
1 (x,r)](3M1,3M2)

ζM(λ )
≤ c

(4.53)

[ξ
(2)
2 (x,r)](k1,3M2)

ζM2(M2,λ )
≤ δ , |k1| ≤ 3M1 −1

[ξ
(2)
2 (x,r)](3M1,k2)

ζM1(k2,λ )
≤ δ , |k2| ≤ 3M2 −1

[ξ
(2)
2 (x,r)](3M1,3M2)

ζM(λ )
≤ δ

(4.54)

Then there exists a unique x ∈ x+B(r,c,C) such that F (x,λ ) = 0.
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Proof. Let k = (k1,k2) /∈ F3M. Suppose that k1 ≥ 3M1. In this case, since k1 ≥ 3M1 > 3m1 −2
we have Yk = 0. This and (4.61) give:

Yk +Z(1)
k (r) = Z(1)

k (r) =
1

µk(λ )

[ξ
(2)
1 (x,r)](3M1,k2)

ωs
k

≤

≤ 1
ζM1(k2,λ )

[ξ
(2)
1 (x,r)](3M1,k2)

ωs
k

≤ c
ωs

k
∀k /∈ F3M. (4.55)

Similarly we get

Z(2)
k (r)≤ δ

ωs
k
∀k /∈ F3M. (4.56)

Now observe that, (4.58), (4.59), (4.55), (4.56) fulfill the hypothesis of Theorem 4.1.1,
what proves the existence of a unique fixed point of T in x+B(r,c,C).

To see that fixed points of T correspond to zeros of F we calculate as follows:

Yk +Z(1)
k (r)≤ r

ωs
k
∀k ∈ Fm ⇒ |[(I −AA†)w]k| ≤

r
ωs

k
∀ ‖w‖s ≤ 1 ∀k ∈ Z2 ⇒

⇒‖I −AA†‖L (X s,X s) ≤ r < 1 ⇒ AA† is invertible ⇒ A is injective. (4.57)

Therefore,

T (x) = x ⇒ x−AF (x) = x ⇒ AF (x) = 0 ⇒ F (x) = 0 (A is injective ).

On the other hand, it is easy to see that if F (x) = 0 then T (x) = x.

If d = 1 we have the following.

Corollary 4.1.2. Suppose that there exists 0 < r < 1 satisfying the following finite set of
inequalities:

Yk +Z(1)
k (r)≤


r

ωs
k

∀ k ∈ Fm
ck
ωs

k
∀ k ∈ FM ∖Fm

c
ωs

k
∀ k ∈ F3M ∖FM

(4.58)

Z(2)
k (r)≤ δ

ωs
k

∀ k ∈ F3M, (4.59)

[ξ
(1)
1 (x,r)]3M

ζM(λ )
≤ c (4.60)

[ξ
(1)
2 (x,r)]3M

ζM(λ )
≤ δ (4.61)

then there exists a unique x ∈ x+B(r,c,C) such that F (x,λ ) = 0.
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4.2 Non-existence
Let m ∈ N2 and remember that ω =

{
1

ωs
k

}
k∈Z2

∈ X s and ω = ω(m)+ω(m), where

ω(m) is given component wise by [ω(m)]k =

{
ωk, if k ∈ Fm

0, if k /∈ Fm
.

Given real numbers b1
k < b2

k , k ∈ Fm, ck > 0, k ∈ FM ∖Fm and c > 0, define the following
subset of X s :

B = ∏
k∈Fm

[b1
k ,b

2
k ]× ∏

k∈FM∖Fm

[−ck,ck]× ∏
k/∈Fm

[
− c

ωs
k
,

c
ωs

k

]
⊂ X s. (4.62)

A subset of this form is called a box in X s. The first factor is called the main part of the box, the
second one is called the middle part and the last one is called the tail of the box.

If a ∈ B, one can write

a = a(m)+a(m) = a(m)+aM
m +a(M) (4.63)

where
|(a(M))k| ≤ (ω(M))k, k ∈ Zd

(aM
m )k ≤Wk, k ∈ Zd (4.64)

where W = {Wk}k∈Zd with

Wk =

{
ck
ωs

k
if k ∈ FM ∖Fm

0 if k /∈ FM ∖Fm
(4.65)

For k ∈ Fm, the identity (4.63) gives

Fk(a,λ ) = µk(λ )ak − (a3)k = µk(λ )ak − [(a(m)+aM
m +a(M))3]k =

= µk(λ )ak −
[
a(m)a(m)a(m)

]
k −
[
aM

m aM
m aM

m
]

k −
[
a(M)a(M)a(M)

]
k
−

−3
[
a(m)a(m)aM

m
]

k −3
[
a(m)aM

m aM
m
]

k −3
[
a(m)a(m)a(M)

]
k
−

−3
[
aM

m aM
m a(M)

]
k
−6
[
a(m)aM

m a(M)
]

k
−3
[
a(m)a(M)a(M)

]
k
−3
[
aM

m a(M)a(M)
]

k
=:

=: Fk(a(m),λ )+R(a,k),

(4.66)

Define b = {bk}k∈Zd , with

bk =

{
max{|b1

k |, |b2
k |} if k ∈ Fm

0 if k /∈ Fm
(4.67)

Applying the bounds given by (4.64) and (4.67) in the formula (4.66) gives the following
estimate

|R(a,k)| ≤ [ω(M)ω(M)ω(M)]kc3 +3[bω(M)ω(M)]kc2 +3[Wω(M)ω(M)]kc2+

+3[b2ω(M)]kc+3[W 2ω(M)]kc+6[bWω(M)]kc+

+(W 3)k +3[b2W ]k +3[bW 2]k

(4.68)
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From the estimates in the Appendix we can write:

|R(a,k)| ≤
[
α
(d)
0 (M)

]
k

ωs
k

c3 +3

[
α
(d)
1 (b,M)

]
k

ωs
k

c2 +3

[
α
(d)
1 (W,M)

]
k

ωs
k

c2+

+3

[
α
(d)
2 (b,b,M)

]
k

ωs
k

c+3

[
α
(d)
2 (W,W,M)

]
k

ωs
k

c+3

[
α
(d)
2 (b,W,M)

]
k

ωs
k

c+

+(W 3)k +3[b2W ]k +3[bW 2]k =: Ek(B,c)

(4.69)

The above computations can be summarized in the following.

Theorem 4.2.1. Let F (a,λ ) = {Fk(a,λ )}k∈Z2 = {µk(λ )ak − (a3)k}k∈Z2 ∈ RZ2
, a ∈ X s, and

let B and Ek(B,c) be as defined above. Define the finite sequence of intervals b̃ = {[b1
k ,b

2
k ]}k∈Fm .

Then

Fk(B,λ )⊂ [−Ek(B,c),Ek(B,c)]+Fk(b̃,λ ) =: I(B,λ ).

In particular, if

inf{Fk(b̃,λ )}−Ek(B,c)> 0 for some k ∈ Fm

then 0 /∈ Fk(B,λ ) and the problem F (·,λ ) = 0 has no solutions in the box B.

Remark 4.2.1. Theorem 4.2.1 provides a test to verify the non existence of solutions in a box
of the form (4.62). It says that the image of the box B by the real valued function Fk(·,λ ) is
contained in the real interval I(B,λ ). It is important to notice that by using interval arithmetic
the interval I(B,λ ) can be rigorously calculated. In practice, if the test given by Theorem 4.2.1
is not successful in the box B, we split it into two smaller boxes, and we check each of the new
boxes. We discard the sub-boxes where the test is successful and subdivide the others. We repeat
this process until the box B is fully exhausted. Observe that the smaller the box B, the closer
to the actual image Fk(B,λ ) is the interval Fk(b̃,λ ) calculated with interval arithmetcs. Also,
the bigger the projection m, the smaller the truncation error Ek(B,c). This idea, already used in
(DAY et al., 2005), provides an algorithm for proving the non-existence of solutions inside a box
in the form of B. This algorithm is encoded in the MATLAB function ExhaustingBox.m.

Next we explain how to use Theorems 4.1.1 and 4.2.1 to obtain the exact multiplicity of
solutions of problem (4.4).

Once again, consider problem (4.4) with a fixed parameter value λ . Let be given M ∈Nd,

positive real numbers c > 0, ck > 0,k ∈ FM, and define

B = ∏
k∈FM

[
− ck

ωs
k
,

ck

ωs
k

]
× ∏

k/∈FM

[
− c

ωs
k
,

c
ωs

k

]
.

Our proofs in the next section consist in applying the following steps:
Step 1 Find numerical solutions x1, ...,xq ∈ B, q ∈ N, of problem (4.4) using Newton method.
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Step 2 Find positive real numbers r1, ...,rq such that the equation in (4.4) possesses exactly one
solution in each of the boxes:

Bi = xi + ∏
k∈Fm

[
− ri

ωs
k
,

ri

ωs
k

]
× ∏

k∈FM∖Fm

[
− ck

ωs
k
,

ck

ωs
k

]
× ∏

k/∈FM

[
− c

ωs
k
,

c
ωs

k

]
⊂ B, i = 1, ...,q.

Step 3 Check that the remaining region R := B−∪q
i=1Bi has no solutions.

Step 3.1 We start decomposing this remaining region R into boxes; more precisely, we

need to construct boxes Ri = ∏
k∈Fm

[
b1

i,k
ωs

k
,

b2
i,k

ωs
k

]
× ∏

k∈FM∖Fm

[
− ck

ωs
k
, ck

ωs
k

]
× ∏

k/∈Fm

[
− c

ωs
k
, c

ωs
k

]
, i = 1, ...,n,

for some n∈N, such that R=B−∪q
i=1Bi =∪n

i=1Ri. This decomposition is made by the algorithm
encoded in the MATLAB function PROCESSING.m presented in the second section of the
Appendix. The next figure shows an example of this decomposition in the case of a two-
dimensional box containing three sub-boxes.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1 – Decomposition of the region [0,4]× [0,4]−{[0.5,3]× [0.5,1]∪ [1.25,3]× [2,3.5]∪ [1,1.5]× [0.75,3]}
given by the function PROCESSING.m

Step 3.2 Check the non-existence of solutions in each box Ri using the test given by
Theorem 4.2.1 and the splitting strategy of Remark 4.2.1. The main algorithm to perform this
step is encoded in the MATLAB function ExhaustingBox.m presented in the second section of
the Appendix.
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CHAPTER

5
RESULTS AND FINAL CONSIDERATIONS

5.1 Results
Next we present some results obtained by the application of the method described in the

last chapter to the sample problems presented in chapter 3. In what follows, two functions u and
v are called symmetric to each other if u =−v.

Theorem 5.1.1 (Two-dimensional Swift-Hoenberg equation). For λ = 0.001, L1 = 1, and L2 = 4,
problem (3.5) has exactly three solutions: the null solution and a pair of symmetric (non-constant)
solutions whose graphics of its numerical approximations are presented in Figure 3.

The proof was performed using m = (8,2), M = (8,8). In Figure 2 the blue boxes
are two-dimensional projections of the “uniqueness boxes” obtained by the Radii Polynomial
approach. Excluding these boxes from the existence box and splitting this remaining region into
sub-boxes we get 247 16−dimensional boxes whose two-dimensional projections are plotted in
red in the Figure 2. These 247 boxes were partitioned into 2416 other sub-boxes in which the
non existence test was successful.

Theorem 5.1.2 (One-dimensional Swift-Hoenberg equation). For λ ∈R+, consider the problem

L(u,λ ) = u3, in Ω, u ∈ D, (5.1)

where
L(u,λ ) = λu− (1+∆)2u, (5.2)

and
D = {u ∈C; u(x+ l) = u(x) = u(|x|), x ∈ R}, (5.3)

where C is the set of all functions u : R ↦−→ R such that the partial derivative (∆u)xx = uxxxx

exists in the classical sense over R and its restriction to Ω is square-integrable, that is,

uxxxx,∈ L2(Ω).
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Figure 2 – Projection into the first two dimensions of the existence boxes, in blue, and the partitioned remaining
region, in red, for λ = 0.001, L1 = 1 and L2 = 4.
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Figure 3 – The pair of symmetric solutions of problem (3.5) for λ = 0.001, L1 = 1 and L2 = 4.

1. If l = 1.1 and λ = 1.4 then the problem given by (5.1), (5.2) and (5.3) has exactly five
solutions: three constant solutions and one pair of symmetric non-constant solutions,
whose graphics are plotted in Figure 5.
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Figure 4 – Projection into the first two dimensions of the existence boxes, in blue, and the partitioned remaining
region, in red, for λ = 1.4, l = 2π/1.1

2. If l = 2π/1.1 and λ = 1.6 then the problem given by (5.1), (5.2) and (5.3) has exactly nine
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Figure 5 – The five solutions of problem (5.1) for λ = 1.4 and l = 2π/1.1

solutions. The same multiplicity holds for λ = 2. In both cases we have three constant
solutions and three pairs of symmetric (non-constant) solutions whose graphics of its
numerical approximations are plotted in Figure 7.
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Figure 6 – Projection into the first two dimensions of the existence boxes, in blue, and the partitioned remaining
region, in red, for λ = 2, l = 2π/1.1
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Figure 7 – The pairs of symmetric solutions of problem (5.1) for λ = 2 and l = 2π/1.1

The proof the first item was performed using m = 6, M = 40. In Figure 4 the blue boxes
are two-dimensional projections of the “uniqueness boxes” obtained by the Radii Polynomial
approach. Excluding these boxes from the “existence box” and splitting this remaining region
into sub-boxes we get 83 6−dimensional boxes whose two-dimensional projections are plotted
in red in the Figure 4. These 83 boxes were partitioned into 12323 other sub-boxes in which the
non existence test was successful after about 59 minutes.
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The proof the second item was performed using m = 5, M = 40 in both parameters
cases. For λ = 2, in Figure 6 the blue boxes are two-dimensional projections of the “uniqueness
boxes” obtained by the Radii Polynomial approach. Excluding these boxes from the “existence
box” and splitting this remaining region into sub-boxes we get 134 5−dimensional boxes whose
two-dimensional projections are plotted in red in the Figure 6. These 134 boxes were partitioned
into 12038 other sub-boxes in which the non existence test was successful after about 51 minutes.

Theorem 5.1.3 (One-dimensional Cahn–Hilliard equation). Problem (3.28) with ε = 0.4 and
l = 2 has exactly five solutions, three constant solutions and one pair of symmetric solutions
whose graphics of its numerical approximations are presented in Figure 9. If ε = 0.6 and l = 2
problem (3.28) has no non-constant solutions and it has exactly three constant solutions, u = 0,
u = 1 and u =−1.

For ε = 0.4 the proof were performed using m = 6, M = 60. In Figure 8 the blue boxes
are two-dimensional projections of the “uniqueness boxes” obtained by the Radii Polynomial
approach. Excluding these boxes from the “existence box” and splitting this remaining region
into sub-boxes we get 81 6−dimensional boxes whose two-dimensional projections are plotted
in red in the Figure 8. These 81 boxes was partitioned into 8550 other sub-boxes in which the
non existence test was successful after about 35 minutes.
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Figure 8 – Projection into the first two dimensions of the existence boxes, in blue, and the partitioned remaining
region, in red, for ε = 0.4, l = π

5.2 Final considerations
This work provides a method formulated from the combination of elementary math-

ematical tools and the careful use of the computer to produce rigorous results on existence,
non-existence and exact multiplicity of solutions for some differential equations. More precisely,
those that have an algebraic reformulation of type (4.4).

Briefly, the method proposed here start by bounding the Fourier coefficients of a so-
lution of the differential equation via energy estimates in the equation itself. This produces
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Figure 9 – The five solutions of problem (3.28) for l = pi and ε = 0.4

the Ck and C constants that define the algebraic problem (4.4) to be solved. Next, we obtain
as many numerical solutions as possible to the (4.4) problem and we ensure the existence and
uniqueness of an exact solution around each of the numerical solutions. For this, we apply the
method of radial polynomials, already described in many works, such as (LESSARD; JAMES;
REINHARDT, 2014), (HUNGRIA; LESSARD; JAMES, 2016), (LESSARD; REINHARDT,
2014), (GAMEIRO; LESSARD, 2011), (GAMEIRO; LESSARD, 2013), (LESSARD; JAMES;
RANSFORD, 2016) among others, which basically consists of associating a Newton-like oper-
ator whose construction is made in the subsection 4.1.1, to the problem given by (4.4) and of
obtaining computationally verifiable conditions given by Theorem 4.1.1, so that this operator
is a contraction in the neighborhood of a numerical solution. This stage triggers a series of
convolution estimates, presented in the appendix of this paper, in order to obtain, among others,
estimates for the derivatives of the fixed-point operator in the regions where it is desired to prove
the occurrence of the contraction.

The method of the radial polynomials provides regions of existence and uniqueness of
solutions of the problem (4.4). We exclude these regions from the region of existence of the
solutions obtained in the first step of the method. We split the remaining region of this process
into boxes in which we apply a non-existence test presented in Theorem 4.2.1, which basically
consists of estimating an interval (via interval arithmetic) containing the range of these boxes by
one of the component functions that define the operator of the problem (4.4), then verifying that
these intervals are strictly to the right of zero.

The larger the diameter of the box tested, the coarser the estimation of its image, what
makes necessary the successive splitting in smaller sub-boxes in which the test is reapplied.
In addition to the box diameter, the accuracy of its range estimation depends explicitly on the
constant C, determined by the parameters and the domain of the differential equation, which
limits the application of the method to certain parameter values and domains. Furthermore,
some domains produce equations whose solutions are close to each other, so that the regions
of uniqueness and existence obtained by the method of the radial polynomials, which isolate
the solutions from each other, are also small. This makes the remaining region referred to in the
previous paragraph contain points close to the solutions of the problem, which makes difficult



66 Chapter 5. Results and final considerations

verifying the non existence of solutions in the boxes that contains such points.

The method was successful in obtaining the exact multiplicity of equilibria of the one
and two-dimensional Swift-Hohenberg equation and of one-dimensional Chan-Hilliard equation.
Since the determination of the equilibria is of fundamental importance for the study of the
dynamics of the system, we believe that this work contributes to the validation of a method for
relevant studies in differential equations.
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APPENDIX

A
CONVOLUTION ESTIMATES

A.1 One-dimensional estimates

Throughout this work, for d ∈ N, m ∈ Nd, and s ∈ Rd we have adopted the notation

ω =

{
1

ωs
k

}
k∈Zd

, ω = ω(m)+ω
(m), m ∈ Nd,

where

[ω(m)]k =

{
ωk if k ∈ Fm

0 if k /∈ Fm
and [ω(m)]k =

{
ωk if k /∈ Fm

0 if k ∈ Fm

In this section we consider the one-dimensional setting, that is when d = 1.

Let mi ∈ N, M ∈ N, M > mi, i = 1,2, a ∈ X s
(m1)

, b ∈ X s
(m2)

with ak = a|k|, k ∈ Z, and
bk = b|k|, k ∈ Z. In what follows we obtain estimates of the forms:

|[aω
(M)]k| ≤

[β
(1)
1 (a,M)]k

ωs
k

, k ∈ Z, (A.1)

|[ω(M)
ω

(M)]k| ≤
[β

(1)
0 (M)]k

ωs
k

, k ∈ Z, (A.2)

|[abω
(M)]k| ≤

[α
(1)
2 (a,b,M)]k

ωs
k

, k ∈ Z, (A.3)

|[aω
(M)

ω
(M)]k| ≤

[α
(1)
1 (a,M)]k

ωs
k

, k ∈ Z, (A.4)
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|[ω(M)
ω

(M)
ω

(M)
ω

(M)]k| ≤
[α

(1)
0 (M)]k

ωs
k

, k ∈ Z, (A.5)

Since it is easy to verify the symmetries

[aω
(M)]k = [aω

(M)]|k|, [ω
(M)

ω
(M)]k = [ω(M)

ω
(M)]|k|, k ∈ Z

[abω
(M)]k = [abω

(M)]|k|, [aω
(M)

ω
(M)]k = [aω

(M)
ω

(M)]|k|, k ∈ Z,

[ω(M)
ω

(M)
ω

(M)]k = [ω(M)
ω

(M)
ω

(M)]|k|, k ∈ Z,

we limit ourselves to bound the above convolutions with non-negative indexes.

A.1.1 Estimates for [aω(M)]k, k ∈ Z+

Let M̃ ≥ M+m. For k ∈ {0,1, ...,M̃−1} we compute explicitly:

[aω
(M)]k = ∑

| j|<m
|k− j|≥M

|a j|
1

|k− j|s
=

1
ωs

k
∑

| j|<m
|k− j|≥M

|a j|ωs
k

|k− j|s
=:

β
(1)
1 (a,M)

ωs
k

. (A.6)

For k ≥ M̃ we can write

[aω
(M)]k = ∑

| j|<m
|k− j|≥M

|a j|
1

|k− j|s
=

1
ks ∑

| j|<m
|a j|
∣∣∣∣ k
k− j

∣∣∣∣s ≤

≤ 1
ks ∑

| j|<m
|a j|γ( j,M̃)s =:

β̃
(1)
1 (a,M̃)

ks ,

where, from now on, we define:

γ( j,n) =

{
1 if j ≤ 0
n

n− j if j > 0
, j ∈ Z, n ∈ N, n > j. (A.7)

So, we can take the uniform bound:

[β
(1)
1 (a,M)]k = β̃

(1)
1 (a,M̃),∀k ≥ M̃
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A.1.2 Estimates for [ω(M)ω(M)]k, k ∈ Z+

By definition:

[ω(M)
ω

(M)]k = ∑
| j|≥m

|k− j|≥m

1
| j|s

1
|k− j|s

.

So, if s ≥ 2 we get:

[ω(M)
ω

(M)]0 = ∑
| j|≥m

1
| j|2s = 2 ∑

j≥m

1
j2s ≤

2
(2s−1)(m−1)2s−1 =: [β (1)

0 (M)]k. (A.8)

For k ≥ 1 we have:

[ω(M)
ω

(M)]k = ∑
j≥M

|k− j|≥M

1
js

1
|k− j|s

+ ∑
j≥M

|k+ j|≥M

1
js

1
|k+ j|s

=

= ∑
j≥M

k− j≥M

1
js

1
(k− j)s + ∑

j≥M
j−k≥M

1
js

1
( j− k)s + ∑

j≥M

1
js

1
(k+ j)s =

=
k−M

∑
j=M

1
js

1
(k− j)s +2

∞

∑
j=M

1
js

1
(k+ j)s =

=
1
ks

k−M

∑
j=M

(
1
j
+

1
k− j

)s

+
2
ks

∞

∑
j=M

(
1
j
− 1

k+ j

)s

.

Therefore, given any M̃ ∈ N, M̃ ≥ 8, for k ∈ {1, ...,M̃−1} we have:

[ω(M)
ω

(M)]k ≤
1
ks

k−M

∑
j=M

(
1
j
+

1
k− j

)s

+

+
2
ks

[
N

∑
j=M

(
1
j
− 1

k+ j

)s

+
1

(s−1)Ns−1

]
=:

[β
(1)
0 (M)]k

ks (A.9)

For k ≥ M̃, if s ≥ 2 we have:

[ω(M)
ω

(M)]k ≤
1
ks

(
2
M

)s−2 k−M

∑
j=M

(
1
j
+

1
k− j

)2

+
2
ks

1
(s−1)(M−1)s−1 ≤

≤ 2
ks

(
2
M

)s−2 k−M

∑
j=M

(
1
j2 +

2
k j

)
+

2
ks

1
(s−1)(M−1)s−1 ≤

≤ 2
ks

(
2
M

)s−2
[

π2

6
−

M−1

∑
j=1

1
j2 +

2ln(k−M)

k

]
+

2
ks

1
(s−1)(M−1)s−1 ≤

≤ 2
ks

{(
2
M

)s−2
[

π2

6
−

M−1

∑
j=1

1
j2 +

2ln(M̃)

M̃

]
+

1
(s−1)(M−1)s−1

}
=:

β̃
(1)
0 (M,M̃)

ωs
k

. (A.10)

The last inequality holds because the function ln(x)
x is decreasing for x ≥ M̃ if M̃ ≥ 8. So, we can

take the uniform bound
[β

(1)
0 (M)]k = β̃

(1)
0 (M,M̃), k ≥ M̃
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A.1.3 Estimates for [abω(M)]k, k ∈ Z+

For 0 ≤ k ≤ 3M−1, we have:

[abω
(M)]k =

1
ωs

k
∑

| j|≤2m−2
|k− j|≥m

(ab) j
ωs

k
ωs

k− j
=:

α
(1)
2 (a,b,M)

ωs
k

. (A.11)

For k ≥ 3M, we have:

[abω
(M)]k =

1
ωs

k
∑

| j|≤2m−2
(ab) j

∣∣∣∣ k
k− j

∣∣∣∣s ≤
≤ 1

ωs
k

∑
| j|≤2m−2

(ab) jγ( j,M̃)s =:
α̃
(1)
2 (a,b,M̃)

ωs
k

. (A.12)

So, we can take the uniform bound

α
(1)
2 (a,b,M) = α̃

(1)
2 (a,b,M̃), k ≥ M̃.

A.1.4 Estimates for [aω(M)ω(M)]k, k ∈ Z+

Let M̃ ∈ N with M̃ ≥ 2M+m. For k ∈ Z+, we can write:

[aω
(M)

ω
(M)]k = ∑

| j|<m
|a j|
[
ω

(M)
ω

(M)
]

k− j
≤ ∑

| j|<m
|a j|

[β
(1)
0 (M)]k
ωs

k− j
, k ∈ Z+.

Therefore, for k ∈ {0, . . . ,M̃−1} we have

[aω
(M)

ω
(M)]k ≤

1
ωs

k
∑

| j|<m
|a j|

[ωs
kβ

(1)
0 (M)]k− j

ωs
k− j

=:
[α

(1)
1 (a,M)]k

ωs
k

.

For k ≥ M̃, if | j|< m we have |k− j| ≥ M̃−m ≥ 2M, so that

[β
(1)
0 (M)]k− j ≤ β̃

(1)
0 (2M), k ≥ M̃, | j|< m,

and we can write

[aω
(M)

ω
(M)]k ≤

β̃
(1)
0 (2M)

ωs
k

∑
| j|<m

|a j|
ωs

k
ωs

k− j
≤

≤
β̃
(1)
0 (2M)

ωs
k

∑
| j|<m

|a j|γ( j,M̃)s =:
[α

(1)
1 (a,M)]k

ωs
k

.
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A.1.5 Estimates for [ω(M)ω(M)ω(M)]k, k ∈ Z+

[ω(M)
ω

(M)
ω

(M)]k = ∑
| j|∈Z2

|k− j|≥M

[ω(M)
ω

(M)] j
1

|k− j|s
=

= ∑
| j|<M

|k− j|≥M

[ω(M)
ω

(M)] j
1

|k− j|s
+ ∑

| j|≥M
|k− j|≥M

[ω(M)
ω

(M)] j
1

|k− j|s
≤

≤ ∑
| j|<M

|k− j|≥M

[ω(M)
ω

(M)] j
1

|k− j|s
+ β̃

(1)
0 (M,M) ∑

| j|≥M
|k− j|≥M

1
ωs

j

1
|k− j|s

≤

≤ ∑
| j|<M

|k− j|≥M

[β
(1)
0 (M)] j

ωs
j

1
|k− j|s

+ β̃
(1)
0 (M,M)

[β
(1)
0 (M)]k

ωs
k

.

Therefore, given M̃ ≥ 8, for k ∈ {0, . . .M̃−1} we can define:

[α
(1)
0 (M)]k = ∑

| j|<M
|k− j|≥M

[β
(1)
0 (M)] j

ωs
j

ωs
k

|k− j|s
+ β̃

(1)
0 (M,M)[β

(1)
0 (M)]k,

and, for k ≥ M̃ we can take:

[ω(M)
ω

(M)
ω

(M)]k ≤ ∑
| j|<M

|k− j|≥M

[β
(1)
0 (M)] j

ωs
j

γ( j,M̃)s + β̃
(1)
0 (M,M)β̃

(1)
0 (M,M̃).

A.2 Two-dimensional estimates

Now let us consider estimates in the two-dimensional setting, that is when d = 2. In this
section, we set m = (m1,m2) ∈ N2, M = (M1,M2) ∈ N2 with Mi > mi, i = 1,2, s = (s1,s2) ∈
R2
+, si >= 2, i = 1,2. We will use the same symbol ω to denote the sequence {1/ωs

k}k∈Zd

independently of the dimension d. This will cause no confusion because the dimension of
the index of the convolution corresponds to the dimension of the sequences involved in the
convolution.

For example, we know that [ω(M1)ω(m2)]m1 is a convolution of one-dimensional se-
quences, while [ω(M)ω(m)](2,5) is a convolution of two-dimensional sequences.

A.2.1 Estimates for [abω(M)]k, k ∈ Z2
+

Let be given a ∈ X s
m and b ∈ X s

n with m = (m1,m2) ∈ N2 and n = (n1,n2) ∈ N2. For
M̃ = (M̃1,M̃2)N2 with M̃i > mi +ni −2, i = 1,2, we have:
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|[abω
(M)]k|= ∑

j∈Fm+n−(1,1)
k− j/∈FM

|(ab) j|
1

ωs
k− j

≤

≤ 1
ωs

k
∑

j∈Fm+n−(1,1)
k− j/∈FM

|(ab) j|
ωs

k
ωs

k− j
=:

[α
(2)
2 (a,b,M)]k

ωs
k

, k ∈ FM̃.

For k /∈ FM̃ we have the following uniform estimates.

If k1 ≥ M̃1 and k2 ∈ {0, . . . ,M̃2 −1} then:

|[abω
(M)]k| ≤

1
ωs

k
∑

j∈Fm+n−(1,1)
k− j/∈FM

|(ab) j|γ( j1,M̃1)
s1

ω
s2
k2

ω
s2
k2− j2

=:
[α

(2)
2 (a,b,M)]k

ωs
k

.

If k2 ≥ M̃2 and k1 ∈ {0, . . . ,M̃1 −1} then:

|[abω
(M)]k| ≤

1
ωs

k
∑

j∈Fm+n−(1,1)
k− j/∈FM

|(ab) j|γ( j2,M̃2)
s2

ω
s1
k1

ω
s2
k1− j1

=:
[α

(2)
2 (a,b,M)]k

ωs
k

.

Finally, if k1 ≥ M̃1 and k2 ≥ M̃2 then:

|[abω
(M)]k| ≤

1
ωs

k
∑

j∈Fm+n−(1,1)
k− j/∈FM

|(ab) j|γ( j2,M̃2)
s2γ( j1,M̃1)

s1 =:
[α

(2)
2 (a,b,M)]k

ωs
k

.

To get bounds for convolutions of the form [aω(M)ω(M)]k, k ∈ Z2, we need to bound,
via reduction to one-dimensional estimates, the convolutions of the form [ω(M)ω(M)]k, k ∈ Z2,

as we see in the next section.

A.2.2 Reduction to one-dimensional estimates

From the definition of two-dimensional convolution, for a given k = (k1,k2) ∈ Z2
+, we

can write:
[ω(M)

ω
(M)]k = ∑

j/∈FM
k− j/∈FM

1
ωs

jω
s
k− j

=

= ∑
| j1|<M1,| j2|≥M2

|k1− j1|<M1,|k2− j2|≥M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

+ ∑
| j1|<M1,| j2|≥M2

|k1− j1|≥M1,|k2− j2|<M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

+
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+ ∑
| j1|<M1,| j2|≥M2

|k1− j1|≥M1,|k2− j2|≥M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

+ ∑
| j1|≥M1,| j2|<M2

|k1− j1|<M1,|k2− j2|≥M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

+

+ ∑
| j1|≥M1,| j2|<M2

|k1− j1|≥M1,|k2− j2|<M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

+ ∑
| j1|≥M1,| j2|<M2

|k1− j1|≥M1,|k2− j2|≥M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

+

+ ∑
| j1|≥M1,| j2|≥M2

|k1− j1|<M1,|k2− j2|≥M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

+ ∑
| j1|≥M1,| j2|≥M2

|k1− j1|≥M1,|k2− j2|<M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

+

+ ∑
| j1|≥M1,| j2|≥M2

|k1− j1|≥M1,|k2− j2|≥M2

1
ω

s1
k1

ω
s1
k1− j1

1
ω

s2
k2

ω
s2
k2− j2

=

= [ω(M1)ω(M1)]k1 [ω
(M2)ω

(M2)]k2 +[ω(M1)ω
(M1)]k1 [ω(M2)ω

(M2)]k2+

+[ω(M1)ω
(M1)]k1[ω

(M2)ω
(M2)]k2 +[ω(M1)ω

(M1)]k1[ω(M2)ω
(M2)]k2+

+[ω(M1)ω
(M1)]k1[ω(M2)ω(M2)]k2 +[ω(M1)ω

(M1)]k1 [ω(M2)ω
(M2)]k2+

+[ω(M1)ω
(M1)]k1[ω

(M2)ω
(M2)]k2 +[ω(M1)ω

(M1)]k1 [ω(M2)ω
(M2)]k2+

+[ω(M1)ω
(M1)]k1[ω

(M2)ω
(M2)]k2 =

= [ω(M1)ω(M1)]k1[ω
(M2)ω

(M2)]k2 +[ω(M1)ω
(M1)]k1[ω(M2)ω(M2)]k2+

+2[ω(M1)ω
(M1)]k1[ω

(M2)ω
(M2)]k2 +2[ω(M1)ω

(M1)]k1[ω(M2)ω
(M2)]k2+

+2[ω(M1)ω
(M1)]k1[ω(M2)ω

(M2)]k2 +[ω(M1)ω
(M1)]k1 [ω

(M2)ω
(M2)]k2 ≤
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≤ 1
ωs

k

{
ω

s1
k1
[ω(M1)ω(M1)]k1[β

(1)
0 (M2)]k2 +ω

s2
k2
[ω(M2)ω(M2)]k2[β

(1)
0 (M1)]k1+

+2[β (1)
1 (ω(M1),M1)]k1[β

(1)
0 (M2)]k2 +2[β (1)

0 (M1)]k1 [β
(1)
1 (ω(M2),M2)]k2+

+ 2[β (1)
1 (ω(M1),M1)]k1[β

(1)
1 (ω(M2),M2)]k2 +[β

(1)
0 (M1)]k1[β

(1)
0 (M2)]k2

}
=: βk(M)

ωs
k

(A.13)

Observe that, if M̃ = (M̃1,M̃2) ∈ N2 with M̃i > 2Mi − 2, i = 1,2, then we have the
following uniform bounds.

If k1 ≥ M̃1 and k2 ∈ {0, . . . ,M̃2 −1} then:

βk(M)≤ β̃1(M,M̃1,k2)

where
β̃1(M,M̃1,k2) = ω

s2
k2
[ω(M2)ω(M2)]k2 β̃

(1)
0 (M1,M̃1)+

+2β̃
(1)
1 (ω(M1),M̃1)[β

(1)
0 (M2)]k2 +2β̃

(1)
0 (M1,M̃1)[β

(1)
1 (ω(M2),M2)]k2+

+2β̃
(1)
1 (ω(M1),M̃1)[β

(1)
1 (ω(M2),M2)]k2 + β̃

(1)
0 (M1,M̃1)[β

(1)
0 (M2)]k2.

If k2 ≥ M̃2 and k1 ∈ {0, . . . ,M̃1 −1} then:

βk(M)≤ β̃2(M,M̃2,k1)

where
β̃2(M,M̃2,k1) = ω

s1
k1
[ω(M1)ω(M1)]k1 β̃

(1)
0 (M2,M̃2)+

+2β̃
(1)
1 (ω(M2),M̃2)[β

(1)
0 (M1)]k1 +2β̃

(1)
0 (M2,M̃2)[β

(1)
1 (ω(M1),M1)]k1+

+2β̃
(1)
1 (ω(M2),M̃2)[β

(1)
1 (ω(M1),M1)]k1 + β̃

(1)
0 (M2,M̃2)[β

(1)
0 (M1)]k1.

Finally, if k1 ≥ M̃1 and k2 ≥ M̃2 then

βk(M)≤ β̃3(M,M̃)

where

β̃3(M,M̃) = +2β̃
(1)
1 (ω(M2),M̃2)β̃

(1)
0 (M1,M̃1)+2β̃

(1)
0 (M2,M̃2)β̃

(1)
1 (ω(M1),M̃1)+

+2β̃
(1)
1 (ω(M2),M̃2)β̃

(1)
1 (ω(M1),M̃1)+ β̃

(1)
0 (M2,M̃2)β̃

(1)
0 (M1,M̃1).

Analogously, we can calculate as follows

[ω(M)
ω

(M)
ω

(M)]k = [ω(M1)ω(M1)ω(M1)]k1[ω
(M2)ω

(M2)ω
(M2)]k2+
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+3[ω(M1)ω(M1)ω
(M1)]k1[ω(M2)ω

(M2)ω
(M2)]k2 +3[ω(M1)ω(M1)ω

(M1)]k1[ω
(M2)ω

(M2)ω
(M2)]k2+

+3[ω(M1)ω
(M1)ω

(M1)]k1 [ω(M2)ω(M2)ω
(M2)]k2 +3[ω(M1)ω

(M1)ω
(M1)]k1[ω

(M2)ω
(M2)ω

(M2)]k2+

+[ω(M1)ω
(M1)ω

(M1)]k1[ω
(M2)ω

(M2)ω
(M2)]k2 +6[ω(M1)ω

(M1)ω
(M1)]k1[ω(M2)ω

(M2)ω
(M2)]k2+

+[ω(M1)ω
(M1)ω

(M1)]k1[ω(M2)ω(M2)ω(M2)]k2 +3[ω(M1)ω
(M1)ω

(M1)]k1[ω(M2)ω(M2)ω
(M2)]k2+

+3[ω(M1)ω
(M1)ω

(M1)]k1[ω(M2)ω
(M2)ω

(M2)]k2 ≤

≤ 1
ωs

k

{
ω

s1
k1
[ω(M1)ω(M1)ω(M1)]k1[α

(1)
0 (M2)]k2 +3[α(1)

2 (ω(M1),ω(M1),M1)]k1 [α
(1)
1 (ω(M2),M2)]k2+

+3[α(1)
2 (ω(M1),ω(M1),M1)]k1[α

(1)
0 (M2)]k2 +3[α(1)

1 (ω(M1),M1)]k1[α
(1)
2 (ω(M2),ω(M2),M2)]k2+

+3[α(1)
1 (ω(M1),M1)]k1[α

(1)
0 (M2)]k2 +[α

(1)
0 (M1)]k1 [α

(1)
0 (M2)]k2+

+6[α(1)
1 (ω(M1),M1)]k1[α

(1)
1 (ω(M2),M2)]k2 +3[α(1)

0 (M1)]k1[α
(1)
2 (ω(M2),ω(M2),M2)]k2+

+3[α(1)
0 (M1)]k1[α

(1)
1 (ω(M2),M2)]k2 +ω

s2
k2 [ω(M2)ω(M2)ω(M2)]k2[α

(1)
0 (M1)]k1

}
=:

=:
α
(2)
0 (M,k)

ωs
k

. (A.14)

A.2.3 Estimates for [aω(M)ω(M)]k, k ∈ Z2
+

Let k1 ≥ M̃1 and k2 ∈ {0, . . . ,M̃2−1}. If j ∈ Fm then k1− j1 ≥ M̃1−m1+1, what implies
(if M̃1 −m1 + 1 > 2M1 − 2, i.e. M̃1 > 2M1 +m1 − 3) that [ω(M)ω(M)]k− j ≤ β̃1(M̃1−m1+1,k2− j2)

ωs
k− j

Therefore, we can write:

|[aω
(M)

ω
(M)]k|= ∑

j∈Fm

|a j|[ω(M)
ω

(M)]k− j ≤

≤ 1
ωs

k
∑

j∈Fm

|a j|
β̃1(M̃1 −m1 −1,k2 − j2)ωs

k
ωs

k− j
≤

≤ 1
ωs

k
∑

j∈Fm

|a j|
β̃1(M̃1 −m1 −1,k2 − j2)γ( j1,M̃1)

s1ω
s2
k2

ω
s2
k2− j2

.
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A.3 Algorithms

In the algorithms of this section, a box
n
∏
j=1

[a j,b j] is represented by the n-by-2 matrix

B = (B j,k)n×2, B j,1 = a j, B j,2 = b j, j = 1, . . . ,n.

The next function exclude from the box “T heoretical_Box” the boxes “Boxes_o f _Roots”
and splits the remaining region into sub-boxes. It makes use of the functions
MULT IPLE_DECOMPOSIT ION.m , INT ERSECT.m, EXCLUDE.m and Split.m.

function [ Boxes_Without_Roots ] = PROCESSING(Boxes_of_Roots, Theoretical_Box )

n_roots = length(Boxes_of_Roots(1,1,:));
TESTING_SET = Theoretical_Box;
for k = 1 : n_roots

[ Boxes ] = MULTIPLE_DECOMPOSITION( TESTING_SET,Boxes_of_Roots(:,:,k) );
TESTING_SET = Boxes;

end
Boxes_Without_Roots = Boxes;
end

If the box “B_in” is strictly contained in the box “B” the function Split.m returns
“Splittable”= 1 and the boxes “C” and “D” where only one of them contains the sub-box “B_in”.
If “B_in” is the same as “B” then the function returns “Splittable”= 0 and no splitting is made
on the box “B”.

function [ Splittable, C, D ] = Split( B_in,B )

n = length(B(:,1));
Splittable = 1;
C = B;
D = B;
d=[0, 0];
for j = 1 : n

if B_in(j,1)>B(j,1)
d = [j,1];
break

end
if B_in(j,2)<B(j,2)

d = [j,2];
break
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end
end
if d(2) == 0

Splittable = 0;
return

end
if d(2) == 1

Splittable = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C(j,2) = B_in(j,1); % The sub-box Bin stays within the box D.%
D(j,1)= B_in(j,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
return

end
if d(2) == 2

Splittable = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C(j,1) = B_in(j,2); % The sub-box Bin stays within the box C.%
D(j,2)= B_in(j,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
return

end
end

Given box “B” and a sub-box “B_in” of “B”, the next function excludes the box “B_in”
from the box “B” and splits the remaining region into “Sub_Boxes”. It just iterates the function
Split.m until there is no box strictly containing the box “B_in”.

function [ Sub_Boxes,number_subboxes ] = EXCLUDE( Bin,B)

n =length(B(:,1));
aux = zeros(n,2,2*n);
number_subboxes = 0;
B0 = B;
Splittable = 1;
while Splittable == 1

[ Splittable, C, D ] = Split( Bin, B0 );
if Splittable == 1

number_subboxes = number_subboxes + 1;
aux(:,:,number_subboxes) = C;
B0 = D;

end
end
Sub_Boxes = aux(:,:,1:number_subboxes);
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end

The next function returns the intersection “C” of the boxes “A” and “B” if the intersection
is not empty. In this case it returns “INTERSECTION” = 1. If the intersection is empty, it returns
a degenerated box and “INTERSECTION”= 0.

function [C, INTERSECTION] = INTERSECT( A, B )

n = length(A(:,1));
C = zeros(n,2);
for j=1:n

if (B(j,2) <= A(j,1) || B(j,1) >= A(j,2))
INTERSECTION = 0;
return

end
end
INTERSECTION = 1;
for j=1:n

C(j,1) = max([A(j,1) B(j,1)]);
C(j,2) = min([A(j,2) B(j,2)]);

end
end

The function “MULTIPLEDECOMPOSITION.m” excludes the box “Box” from each
box of the set of boxes “TESTINGBOXES”, and returns the resulting set of boxes named
“Boxes”.

function [ Boxes ] = MULTIPLEDECOMPOSITION(TESTINGBOXES, Box )
N = length(TESTINGBOXES(1,1,:));
n = length(Box(:,1));
Boxes = zeros(n,2,N*2*n); % When one box is excluded from another one,
N_Boxes = 0; % it is necessary at most 2*n sub-boxes
for j = 1:N % to cover the remaining region.

[C, INTERSECTION] = INTERSECT( TESTINGBOXES(:,:,j), Box );
if INTERSECTION == 1

[ Sub_Boxes, number_subboxes ] = EXCLUDE( C, TESTINGBOXES(:,:,j));
Boxes(:,:,N_Boxes + 1:N_Boxes + number_subboxes) = Sub_Boxes;
N_Boxes = N_Boxes + number_subboxes;

end
if INTERSECTION == 0
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Boxes(:,:,N_Boxes + 1) = TESTINGBOXES(:,:,j);
N_Boxes = N_Boxes + 1;

end
end
Boxes = Boxes(:,:,1: N_Boxes);
end

In the next function, the procedure “CheckBox.m” is an implementation of the test given
by Theorem 4.2.1. That is, it uses interval arithmetic to rigorously check the non existence of
solutions in a box. The function “ExhaustingBox.m” starts checking a single box. If the checking
fails, the algorithm splits the initial box into two smaller boxes to be tested again. The process
is stopped successfully if the check succeeds in all the tested boxes. The process is stopped
unsuccessfully if the check does not succeed in very small boxes. The input “Bounds” provides
the neccessary convolution estimates to apply the test given by Theorem 4.2.1.

function [r_boxes, proved, n_tested] = ExhaustingBox( box, Bounds )

m = length(box(:,1));
t_boxes = zeros(m,2,100000); %it keeps the boxes to be tested
n_t_boxes = 1; %it starts with only one box
t_boxes(:,:,1) = box; %
r_boxes = zeros(m,2,100000); %it keeps the very small boxes
n_r_boxes=0; %where the test do not work
proved = 0;
verified_boxes = 0;
n_tested=0;

while ( proved == 0 && n_t_boxes > 0 )
if n_t_boxes + 1 > length(t_boxes(1,1,:))

temp=zeros(m,2,2*length(t_boxes(1,1,:)));
temp(:,:,1:length(t_boxes(1,1,:)))=t_boxes;
t_boxes=temp;

end
if n_r_boxes + 1 > length(r_boxes(1,1,:))

temp=zeros(m,2,2*length(r_boxes(1,1,:)));
temp(:,:,1:length(r_boxes(1,1,:)))=r_boxes;
r_boxes=temp;

end
B=t_boxes(:,:,1); % the test is applied always to
check = CheckBox(B,Bounds); % the first box of the list
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if ( check == 1 ) % test succeeds
n_tested=n_tested+1;%count the number of checked boxes
if ( n_t_boxes == 1 )%no more boxes to be tested

if n_r_boxes==0 %test did not failed in very
proved = 1; %small boxes
disp(’box verified’) %the algorithm
return %is stopped successfully

else
r_boxes=r_boxes(:,:,1:n_r_boxes); %returns
disp(’Check failed in very small boxes’)%a set
return %of very small boxes where the test

end %did not work
else

t_boxes(:,:,1:n_t_boxes-1) = t_boxes(:,:,2:n_t_boxes);
n_t_boxes = n_t_boxes - 1; %exclude the tested box
verified_boxes = verified_boxes+1;%from the list of
continue %boxes to be tested

end %and go to the next box of the list
end
if ( check == 0 ) %

[maximo,direction] = max(t_boxes(:,2,1)-t_boxes(:,1,1));
if maximo > 1.e-8 %if the box is not to much small, split it

[C,D] = partition(t_boxes(:,:,1),direction); %along its
t_boxes(:,:,1) = C; %bigger direction
t_boxes(:,:,n_t_boxes+1) = D;%this gives rise to two
n_t_boxes = n_t_boxes + 1; %sub-boxes to be tested

else
n_r_boxes=n_r_boxes+1; %it rises a very small very box
r_boxes(:,:,n_r_boxes)=B;%where the test did not work
t_boxes(:,:,1:n_t_boxes-1) = t_boxes(:,:,2:n_t_boxes);
n_t_boxes = n_t_boxes - 1;

end
end

end

end
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