
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Structure of attractors and estimates of their 

fractal dimension  

 

 

 

Matheus Cheque Bortolan 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 



 
 
 

 
 

 

 

 
 
 
 
 

 

Structure of attractors and estimates of their fractal 

dimension  

 
 

Matheus Cheque Bortolan 

 
 
 

Advisor: Prof. Dr. Alexandre Nolasco de Carvalho 
 
 
 
 
 
 
 
 
 

Doctoral dissertation submitted to the Instituto de 
Ciências Matemáticas e de Computação - ICMC-USP, 
in partial fulfillment of the requirements for the degree 
of the Doctorate Program in Computer Science and 
Computational Mathematics. FINAL VERSION.  

 
 

 
 
 

USP – São Carlos 
March 2013 

 

 

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP 

 
Data de Depósito:     
 
Assinatura:________________________



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados fornecidos pelo(a) autor(a)

C739s
Cheque Bortolan, Matheus
   Structure of attractors and estimates of their
fractal dimension / Matheus Cheque Bortolan;
orientador Alexandre Nolasco de Carvalho. -- São
Carlos, 2013.
   106 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Matemática) -- Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, 2013.

   1. fractal dimension. 2. skew product semiflow.
3. Morse decomposition. 4. gradient-like dynamical
systems. 5. attractors of dynamical systems. I.
Nolasco de Carvalho, Alexandre, orient. II. Título. 



 
 
 

 

 

 
 
 
 
 

 

Estrutura de atratores e estimativas de suas dimensões 

fractais  

 
 

Matheus Cheque Bortolan 

 
 
 

Orientador: Prof. Dr. Alexandre Nolasco de Carvalho 
 

 
 
 
 
 
 
 
 
 
 

Tese apresentada ao Instituto de Ciências Matemáticas 
e de Computação - ICMC-USP, como parte dos 
requisitos para obtenção do título de Doutor em 
Ciências - Ciências de Computação e Matemática 
Computacional. VERSÃO REVISADA  

 
 

 
 
 

USP – São Carlos  
Março de 2013  

 

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP 

 
Data de Depósito:     
 
Assinatura:________________________



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi 
e Seção Técnica de Informática, ICMC/USP, 

com os dados fornecidos pelo(a) autor(a)

C739e
Cheque Bortolan, Matheus
   Estrutura de atratores e estimativas de suas
dimensões fractais / Matheus Cheque Bortolan;
orientador Alexandre Nolasco de Carvalho. -- São
Carlos, 2013.
   106 p.

   Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2013.

   1. dimensão fractal. 2. skew product semiflow. 3.
decomposição de Morse. 4. sistemas dinâmicos gradient-
like. 5. atratores de sistêmas dinâmicos. I. Nolasco
de Carvalho, Alexandre, orient. II. Título. 



“Out of the night that covers me,

Black as the pit from pole to pole,

I thank whatever gods may be

For my unconquerable soul.

In the fell clutch of circumstance

I have not winced nor cried aloud.

Under the bludgeonings of chance

My head is bloody, but unbowed.

Beyond this place of wrath and tears

Looms but the Horror of the shade,

And yet the menace of the years

Finds and shall find me unafraid.

It matters not how strait the gate,

How charged with punishments the scroll.

I am the master of my fate;

I am the captain of my soul.”

Invictus - William Ernest Henley
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Abstract

This work is dedicated to the study of the structure of attractors of dynamical systems

with the objective of estimating their fractal dimension. First we study the case of expo-

nential global attractors of some generalized gradient-like semigroups in a general Banach

space, and estimate their fractal dimension in terms of the maximum of the dimension of the

local unstable manifolds of the isolated invariant sets, Lipschitz properties of the semigroup

and rate of exponential attraction. We also generalize this result for some special evolution

processes, introducing a concept of Morse decomposition with pullback attractivity. Under

suitable assumptions, if (A, A∗) is an attractor-repeller pair for the attractor A of a semi-

group {T (t ) : t ≥ 0}, then the fractal dimension of A can be estimated in terms of the fractal

dimension of the local unstable manifold of A∗, the fractal dimension of A, the Lipschitz

properties of the semigroup and the rate of the exponential attraction. The ingredients of

the proof are the notion of generalized gradient-like semigroups and their regular attractors,

Morse decomposition and a fine analysis of the structure of the attractors. Also, making use

of the skew product semiflow and its Morse decomposition, we give some estimates of the

fractal dimension of the pullback attractors of non-autonomous dynamical systems.
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Resumo

Este trabalho é dedicado ao estudo da estrutura dos atratores de sistemas dinâmicos com

o objetivo de obter estimativas de suas dimensões fractais. Primeiramente estudamos o caso

de atratores globais exponenciais de alguns semigrupos gradient-like generalizados em um

espaço de Banach geral, e estimamos suas dimensões fractais em termos da máxima di-

mensão das variedades instáveis locais dos conjuntos invariantes isolados, a propriedades

de Lipschitz do semigrupo e da taxa de atração exponencial. Também generalizamos este

resultado para alguns processos de evoluções especiais, introduzindo um conceito de de-

composição de Morse com atração pullback. Sob hipóteses apropriadas, se (A, A∗) é um par

atrator-repulsor para o atrator A de um semigrupo {T (t ) : t ≥ 0}, então a dimensão fractal de

A pode ser estimada em termos da dimensão fractal da variedade instável de A∗, a dimen-

são fractal de A, as propriedades de Lipschitz do semigrupo e a taxa de atração exponencial.

Os ingredientes da demonstração são a noção de semigrupos gradient-like e seus atratores

regulares, decomposição de Morse e uma análise fina da estrutura dos atratores. Além disto,

fazendo uso do skew product semiflow e sua decomposição de Morse, damos estimativas da

dimensão fractal dos atratores pullback de sistêmas dinâmicos não-autônomos.
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Introduction

Over the last forty years, the study of qualitative properties of semigroups in Banach

spaces has received very much attention (see for instance [2], [15], [17], [25] and [46]). In par-

ticular, the study of global attractors has created a deep area of research and greatly improved

the understanding of qualitative properties of solutions for these infinite dimensional dy-

namical systems.

A particular aspect that has called the attention of many researchers, and for which a

very nice theory has been developed, is the fractal dimension of attractors. Starting with the

pioneering works [30] and [31], the theory has grown considerably and new strategies to find

bounds for the fractal dimension have been proposed (see for example [46, 18, 25, 15] and

references therein).

If we consider a compact set K in a metric space (X ,dX ) we have the notions of topo-

logical dimension (dimT (K )), Hausdorff dimension (dimH (K )) and of the fractal dimension

(c(K )) of K (we will define all these notions in Chapter 3), and we know that dimT (K ) É
dimH (K ) É c(K ). Then one might ask why to study the fractal dimension, since it is the worst

estimate for the dimensions of the same compact set K , and one particular result that makes

the fractal dimension a very interesting object of research is the following result (see [31]):

Theorem 0.0.1. Given a Banach space X , a compact subset K of X with fractal dimension

c(K ) <∞ and a finite dimensional subspace Y with dimY > 2c(K )+1, if P (X ,Y ) is the sub-

space of L (X ,Y ) of the projections with range Y , the set {P ∈ P (X ,Y ) : P |K is injective } is of

second category in P (X ,Y ).

The inverse of the projection restricted to K is continuous. In fact, in some situations,

this inverse is Hölder continuous (see [20, 41]). Another aspect is that the fractal dimension

computation is fairly easy when we compare it with the computation of the Hausdorff and
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topological dimensions.

If a gradient semigroup {T (n) : n ∈ N} has a global attractor A and its set of stationary

solutions E is finite, then

A =
⋃

e∈E

W u(e),

where we recall that

W u(e) = {x ∈ X : there is a global solution φ : Z→ X through x such that φ(n)
n→−∞−→ e}.

For gradient semigroups we know that the local unstable set W u
loc(e) is the intersection of

W u(e) with a neighborhood of e . Assume that W u
loc(e) is the graph of a Lipschitz map with

domain in a finite dimensional afine linear manifold e +Qe(X ) where Qe is a projection with

finite dimensional rank.

We know (following [12]) that, using the results on the Hausdorff dimension dimH(·), we

have

dimH (W u
loc(e)) = rank(Qe ) <∞, for each e ∈ E ,

dimH (T (n)W u
loc(e)) É dimH (W u

loc(e)), n ≥ 0.

It is not difficult to see that W u(e) =
⋃∞

n=0 T (n)W u
loc(e) and, from the σ−sub-additivity

property of the Hausdorff measure it follows that

rank(Qe ) = dimH (W u
loc(e))

É dimH (W u(e))

= dimH

( ∞
⋃

n=0
T (n)W u

loc(e)

)

É sup
n∈N

dimH (T (n)W u
loc(e))

É dimH (W u
loc(e))

= rank(Qe ),

and therefore dimH (W u(e)) = rank(Qe ), for all e ∈ E . Hence, since A =
⋃

e∈E W u(e), we have

that

dimH (A ) = max
e∈E

rank(Qe ). (∗)

In particular A is homeomorphic to a subset of RN where N = 2 max
e∈E

rank(Qe)+1.

It would be very nice to be able to prove a similar result to (∗) for the fractal dimension,
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and this will be indeed one of our main objective in this work. Nonetheless, such result

would not be expected since the manner in which the unstable manifold of a given equilibria

accumulates on other equilibria may be at a slow rate causing the dimension to increase (like

it happens with the set { 1
n

: n ∈N
∗}∪ {0}). However, if we take the sequence { 1

2n : n ∈N}∪ {0},

it is not difficult to see that the Hausdorff and fractal dimension coincide. Inspired by this,

we seek a bound for the fractal dimension of regular attractors with exponentially attracting

local unstable manifolds.

The result will be proved for generalized gradient-like semigroups in Chapter 3 and will

make use of the Morse decomposition of a generalized gradient-like semigroup. In Section

1.4.1 we introduce the basic concepts and results needed to prove the main result. Section

3.1 is dedicated to obtain an estimate on the fractal dimension of global attractors for gen-

eralized gradient-like Lipschitz semigroups for which the local unstable set of an isolated

invariant set is the graph of a Lipschitz map over a finite dimensional subspace of the phase

space.

In Chapters 1 and 2 we give a brief introduction to the theory of semigroups and evolu-

tion processes, respectively. Some of the results are quite recent, as the stability of gradient

semigroups under perturbations, and can be found in [1].

In Chapter 4 we will apply the estimates seen on Chapter 3 to non-autonomous dynami-

cal systems, and to this end we will study the skew product semiflows and the behavior of a

Morse decomposition for this object. More precisely in Section 4.1 we recall and state some

of the basic definitions and set the notation we will use throughout the chapter.

In Section 4.2 we construct a Morse decomposition for the global attractor of the skew

product semiflow {Π(t ) : t Ê 0} given a Morse decomposition for the global attractor of the

driving system {Θ(t ) : t Ê 0}, using the lift of this Morse decomposition. We also verify under

which conditions a given Morse decomposition in the global attractor of the skew product

semiflow {Π(t ) : t Ê 0} generates a Morse decomposition in the global attractor of the driving

system {Θ(t ) : t Ê 0}.

In Section 4.3 we construct a Morse decomposition for the pullback attractor of a non-

autonomous dynamical system and we obtain some dynamical properties of this Morse de-

composition, such as forward convergence, pullback convergence and the existence of a Lya-

punov function.

In Section 4.4 we describe how a Morse Decomposition of a pullback attractor is stable

under perturbation on the parameter of the associated driving system.

Finally, in Section 4.5 we present some applications of our theory, such as a non-autonomous
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differential equation defined only for t Ê 0

{

ẋ = f (t , x), t > 0,

x(0) = x0 ∈R
n ,

an asymptotically autonomous (backward and forwards) non-autonomous differential equa-

tion, i.e.
{

ẋ = f (t , x), t ∈R,

x(0) = x0 ∈R
n ,

where

sup
x∈Rn

‖ f (t , x)− f2(x)‖Rn
t→∞−→ 0, and sup

x∈Rn
‖ f (t , x)− f1(x)‖Rn

t→−∞−→ 0,

for suitable functions f1 and f2, and also a master-slave example, i.e. a system of partially

coupled equations














v̇ = f (u, v) t > 0

u̇ = g (u), t > 0

u(0) = u0 ∈R
n , v(0)= v0 ∈R

n

in which the second equation for u(t ) acts as a driving system for the unknown v(t ). Finally

we present a more concrete example to illustrate the use of the abstract theory, studying the

behavior of an planar system of ODE’s given by

d

d t
(x, y) = F (t , (x, y)), t ∈R,

where F : R×R
2 →R

2 has some special properties.

It is worth to point out that Chapters 3 and 4 describe the results obtained during the

development of this thesis.



Chapter

1

Semigroups

In this first chapter our goal is to introduce the concept of semigroups and its properties.

This concept is very common in the literature, and it has been extensively studied by many

authors (see [2, 15, 17, 18, 25, 36]). We can see in these references that the object that plays a

fundamental role in the study of asymptotic dynamics for a semigroup is the global attractor,

which we will see in the following section. Our purpose here (and also in Chapter 2) is to

make a brief introduction to the theory of semigroups (evolutions processes in Chapter 2)

and therefore we will not give the proof of all the results, only the ones that are essential for

the purpose of this work.

1.1 Attractors for semigroups

In this section we introduce the basic concepts and results that lead us to the characteri-

zation of the semigroups which possess a global attractor.

Let X be a metric space and d : X × X → [0,∞) its metric. Denote by C (X ) the set of all

continuous maps from X into itself.

We will write T to denote either the set of the integers Z or the set of real numbers R,

T
+ = {t ∈T : t Ê 0}, T− = {t ∈T : t É 0}, T−

t = t +T
− and T

+
t = t +T

+.

Given K ⊂ X and r > 0, the r−neighborhood of K is the set defined by Or (K ) := {x ∈ X :

d(x,K ) < r }.

Definition 1.1.1. A semigroup is a family {T (t ) : t ∈T
+} ⊂C (X ) such that
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(i) T (0)x = x, for all x ∈ X ,

(ii) T (t + s)= T (t )T (s), for all t , s ∈T
+,

(iii) T
+×X ∋ (t , x) 7→T (t )x ∈ X is continuous.

In the case that T = Z, the third condition is automatically satisfied and, since T (n) =
T (1)n , taking T := T (1), the semigroup can be rewritten as {T n : n ∈N} and will be simply the

family of operators {T n : n ∈N} ⊂C (X ).

Given a semigroup {T (t ) : t ∈T
+} ⊂C (X ) and a subset B of X , we define:

(a) For each t ∈T
+, the image of B under T (t ) by

T (t )B
.= {T (t )x : x ∈ B};

(b) The positive orbit of B by

γ+(B)
.=

⋃

t∈T+
T (t )B ;

(c) The partial orbit between two numbers t , t ′ ∈T
+ with t < t ′ by

γ+
[t ,t ′](B)

.=
⋃

s∈[t ,t ′ ]∩T+
T (s)B ;

(d) The orbit of T (t )B by

γ+
t (B)

.=
⋃

s∈T+
T (s + t )B =

⋃

s∈T+
t

T (s)B.

For each x ∈ X , the function T
+ ∋ t 7→ T (t )x ∈ X is the solution through x of the semi-

group {T (t ) : t ∈T
+}.

Definition 1.1.2. A semigroup {T (t ) : t ∈T
+} is said eventually bounded if for every bounded

set B ⊂ X there exists a tB ∈ T
+ such that γ+

tB
(B) is bounded. We say that {T (t ) : t ∈ T

+} is a

bounded semigroup if γ+(B) is bounded for all bounded sets B ⊂ X .

Remark 1.1.3. The fact that T ∈ C (X ) does not imply that T takes bounded subsets of X

into bounded subsets of X , since bounded subsets of X are not necessarily precompact. If we

assume that T is bounded in bounded subsets of X , considering the semigroup {T n : n ∈ N},

we have that γ+
[n,n′](B) is bounded for each bounded subset B of X and n,n′ ∈ N. In the case
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that T+ = R
+, to obtain that {T (t ) : t Ê 0} is bounded, we need to assume that {T (t ) : t Ê 0} is

eventually bounded and that γ+
[0,TB ](B) is bounded for all TB Ê 0 and for all B ⊂ X bounded.

The set where the orbit of B accumulates is called ω−limit set and plays an important

role in the study of the asymptotic behavior of a semigroup.

Definition 1.1.4. The ω-limit set of a subset B of X is defined by

ω(B) =
⋂

t∈T+
γ+

t (B).

Remark 1.1.5. Here, for a subset K ⊂ X , K denotes the closure of K in X .

Definition 1.1.6. A global solution of {T (t ) : t ∈ T
+} through x ∈ X is a continuous function

φ : T→ X such that φ(0) = x and T (t )φ(s)=φ(t +s), for all t ∈T
+ and s ∈T. A constant global

solution will be called stationary solution and its value is called an equilibrium point or a

fixed point. Since T (t ) is not necessarily injective, if there exists a global solution, it does not

need to be unique. When a global solution φ : T→ X through x ∈ X exists, we define the global

orbit of x relative to the global solution φ by γφ(x) := {φ(t ) : t ∈ T}. In this case, for t ∈ T we

write (γφ)−t (x) := {φ(s) : s É t , s ∈T} and define the α−limit set of x relative to φ by

αφ(x) =
⋂

t∈T+
(γφ)−t (x).

The following characterization for the ω−limit set will be frequently used in the upcom-

ing results and its proof is very straightforward.

Proposition 1.1.7. If B ⊂ X , then ω(B) is closed and

ω(B) = {y ∈ X : there exist sequences {tn}n∈N in T
+ and {xn}n∈N in B

such that tn
n→∞−→ ∞ and y = lim

n→∞
T (tn)xn}.

If φ : T→ X is a global solution of the semigroup {T (t ) : t ∈T
+} through x ∈ X , then αφ(x)

is closed and

αφ(x) = {v ∈ X : there exists a sequence {tn}n∈N in T
+ such that tn

n→∞−→ ∞ and φ(−tn) → v}.
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In what follows we define the notions of attraction, absorption and invariance under the

action of the semigroup {T (t ) : t ∈T
+}. To this end, we remember the definition of the Haus-

dorff semidistance dH (A,B) between two subsets A and B of X

dH (A,B)
.= sup

x∈A
inf
y∈B

d(x, y).

We will denote by dist(A,B) the usual distance between sets; that is,

dist(A,B)
.= inf

x∈A
inf
y∈B

d(x, y).

Let X be a metric space and {T (t ) : t ∈T
+} ⊂C (X ) be a semigroup.

Definition 1.1.8. If A and B are subsets of X , we say that A attracts B under the action of

{T (t ) : t ∈T
+} if

lim
t→∞

dH (T (t )B , A) = 0.

If there exists t0 ∈ T
+ such that T (t )B ⊂ A for all t Ê t0, t ∈ T

+, we say that A absorbs B. In

particular, if A absorbs B then A attracts B (the converse is not true).

The notion of invariance, given below, plays an important role on the study of the asymp-

totical dynamics of semigroups.

Definition 1.1.9. We say that a subset A of X is invariant (or positively invariant) under the

action of {T (t ) : t ∈T
+} if T (t )A = A (or T (t )A ⊂ A) for all t ∈T

+. An invariant unitary set cor-

responds to an equilibrium point of {T (t ) : t ∈T
+}; that is, a point x∗ ∈ X such that T (t )x∗ = x∗

for all t ∈T
+.

Finally, we are in condition to define the global attractor for a semigroup.

Definition 1.1.10. A set A is called a global attractor for {T (t ) : t ∈T
+} if it is compact, invari-

ant and attracts bounded subsets of X under the action of {T (t ) : t ∈T
+}.

Note that the global attractor for a semigroup {T (t ) : t ∈T
+} is unique. Indeed, if A and

Â are global attractors for this semigroup,

distH (A ,Â ) = distH (T (t )A ,Â )
t→∞−→ 0,

and thus A ⊂ Â . Analogously Â ⊂A and we have the result.
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Remark 1.1.11. Let {T (t ) : t ∈T
+} be a semigroup in a metric space X . Assume that {T (t ) : t ∈

T
+} has a global attractor A . We claim that, given x ∈A , there exists a bounded global solu-

tion φx : T→ X such that φx(0) = x. Indeed, T+ ∋ t 7→φ(t ) := T (t )x ∈ X is always well-defined,

now let x ∈ A = T (1)A , hence there exists x−1 ∈ A such that T (1)x−1 = x and proceeding in-

ductively, we obtain a sequence {x−n : n ∈ N} such that x0 = x and T (1)x−n−1 = x−n for all

n ∈N (remember that the sequence {x−n}n∈N is not uniquely determined). Define

φx(t ) =











T (t )x, t Ê 0

T ( j + t )x− j , t ∈ [− j ,− j +1)∩T, j = 1,2,3, · · ·

which is a bounded global solution in A through x in t = 0.

Conversely, each bounded global solution φ : R→ X for {T (t ) : t ∈T
+} is such that φ(T) ⊂

A . Having this, we conclude that

A = {x ∈ X : there exists a bounded global solution through x}. (1.1.1)

The next concepts are crucial in the characterization of the semigroups that possess a

global attractor.

Definition 1.1.12. A semigroup {T (t ) : t ∈T
+} is said asymptotically compact if, for any non-

empty, closed and bounded subset B ⊂ X , such that T (t )B ⊂ B, for all t ∈ T
+, there exists a

compact set J ⊂ B which attracts B.

Definition 1.1.13. We say that a semigroup {T (t ) : t ∈T
+} is point dissipative (bounded dis-

sipative/compact dissipative) if there exists a bounded subset B ⊂ X which attracts points

(bounded subsets/compact subsets) of X .

Remark 1.1.14. In the definition above, we can change the word attracts by the word absorbs

without changing the meaning of the concepts.

The following theorem characterizes the semigroups which have global attractors.

Theorem 1.1.15. A semigroup {T (t ) : t ∈ T
+} is eventually bounded, point dissipative and

asymptotically compact if and only if {T (t ) : t ∈T
+} has a global attractor A .
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1.1.1 Upper and lower semicontinuity of attractors

In this section we define the continuity of attractors relative to some perturbations of the

semigroup.

Definition 1.1.16. Let X be a metric space, d(·, ·) : X ×X →R
+ its metric, Λ a metric space and

{Aλ}λ∈Λ a family of subsets of X and λ0 ∈Λ.

(i) We say that {Aλ}λ∈Λ is upper semicontinuous at λ0 if

dH (Aλ,Aλ0 ) = sup
xλ∈Aλ

dist(xλ,Aλ0 )
λ→λ0−→ 0.

(ii) We say that {Aλ}λ∈Λ is lower semicontinuous at λ0 if

dH (Aλ0 ,Aλ) = sup
x∈Aλ0

dist(x,Aλ)
λ→λ0−→ 0.

To prove the upper and lower semicontinuity we often use the following characterization

result:

Lemma 1.1.17. Let Λ a metric space and {Aλ}λ∈Λ a family of subsets of X .

1. If any sequence {xλn
} with xλn

∈ Aλn
, λn

n→∞−→ λ0, has a convergent subsequence with

the limit belonging to Aλ0 , then {Aλ}λ∈Λ is upper semicontinuous at λ0. Conversely, if

{Aλ}λ∈Λ is upper semicontinuous at λ0, any sequence {xλn
} with xλn

∈ Aλn
has a con-

vergente subsequence with the limit belonging to A0.

2. If Aλ0 is compact and, for any x ∈ Aλ0 and λn
n→∞−→ λ0, there exists a sequence λnk

k→∞−→

λ0, and sequence {xλnk
} with xλnk

∈ Aλnk
which converges to x, then {Aλ}λ∈Λ is lower

semicontinuous at λ0. Conversely, if {Aλ}λ∈Λ is lower semicontinuous at λ0, λn
n→∞→ λ0

and x ∈ A0, there exist subsequence λnk

k→∞→ λ0 and sequence {xλnk
} with xλnk

∈ Aλnk

which converges to x.

Definition 1.1.18. We say that the family of semigroups {Tη(t ) : t ∈T
+}, η ∈ [0,1], is continu-

ous at η= 0 if Tη(t )x
η→0
−→ T0(t )x uniformly for (t , x) in compact subsets of T+×X .
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The upper semicontinuity of attractors is true in almost every case, as we can see with

the next result.

Theorem 1.1.19 (Upper semicontinuity). Let {Tη(t ) : t ∈T
+}, η ∈ [0,1], be a continuous family

of semigroups at η = 0. If {Tη(t ) : t ∈ T
+} has a global attractor Aη for each η ∈ [0,1] and

∪η∈[0,1]Aη is compact, then the family {Aη : η ∈ [0,1]} is upper semicontinuous at η= 0.

The lower semicontinuity is not as common as the upper semicontinuity, and it is also

harder to verify in the applications. It requires a finer study of local structures (the local

unstable sets of invariant sets), in particular of the local unstable sets of equilibria, as we will

see below.

Given a semigroup {T (t ) : t ∈ T
+} and A an invariant bounded set under the action of

{T (t ) : t ∈ T
+}, we have already seen that there exists a bounded global solution through

a, for each a ∈ A. The simplest global solutions are the constants; that is, the equilibrium

points. The class of global solutions that converge to an equilibrium y∗ as t goes to −∞ form

a set that we call unstable set W u(y∗) of y∗; that is,

W u(y∗) = {y ∈ X : there exists a global solution φy : T→ X

such that, φy (0) = y and φy (t )
t→−∞−→ y∗}.

Given a neighborhood V of y∗, the set of points y of V such that there exists a global

solution φy : T→ X such that φy (0) = y , φy (t )
t→−∞−→ y∗ and φy (t ) ∈V for all t ∈T

− is called a

local unstable set of y∗ and is denoted by W u
loc(y∗).

With this object and some additional assumptions, we can obtain the lower semiconti-

nuity of attractors.

Theorem 1.1.20 (Lower semicontinuity). Let {Tη(t ) : t ∈T
+}, η ∈ [0,1], be a continuous family

of semigroups at η= 0 which satisfies

(a) {Tη(t ) : t ∈T
+} has a global attractor Aη, for each η ∈ [0,1].

(b) If Eη denotes the set of the stationary solutions of {Tη(t ) : t ∈T
+}, there exists a p ∈N such

that Eη ⊃ {y
∗,η
1 , · · · , y

∗,η
p }, for all η ∈ [0,1].

(c) If W u
δ

(y
∗,η
j

) = {y ∈Oδ(y
∗,η
j

): there exists a global solution φy : T→ X such that, φy (0) = y,

φy (t )
t→−∞−→ y∗ and φy (t ) ∈ Oδ(y

∗,η
j

) for all t ∈ T
−}. Assume that, for some δ > 0 suffi-
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ciently small,

{W u
δ (y

∗,η
j

) : η ∈ [0,1]}

is lower semicontinuous at η= 0, for each j = 1, · · · ,p.

(d) A0 =∪p

j=1W u(y∗,0
j

)

Then, {Aη : η ∈ [0,1]} is lower semicontinuous at η= 0.

1.2 Gradient semigroups

In this section we will consider the gradient semigroups. This class of semigroups ap-

pear naturally in several applications and its characteristics allow us to describe with great

accuracy the structure of its attractors.

We remember that y∗ ∈ X is an equilibrium point for the semigroup {T (t ) : t ∈T
+} if the

set {y∗} is the orbit of a constant global solution; that is, T (t )y∗ = y∗, for all t ∈T
+. We denote

by E the set of equilibrium points of the semigroup {T (t ) : t ∈T
+}.

Definition 1.2.1. A semigroup {T (t ) : t ∈T
+} is said to be a gradient semigroup if it possesses

a Lyapunov function; that is, if there exists a continuous function V : X →R with the following

properties:

(i) T
+ ∋ t 7→V (T (t )x) is decreasing for each x ∈ X ;

(ii) If x is such that V (T (t )x) =V (x) for all t ∈T
+, then x ∈ E .

For gradient semigroups we have the following characterization result:

Lemma 1.2.2. If {T (t ) : t ∈ T
+} is a gradient semigroup, then ω(x) is a subset of E for each

x ∈ X . If there exists a global solution φ : T→ X through x then αφ(x) is a subset of E .

If {T (t ) : t ∈T
+} is gradient, has a global attractor A and E has only isolated points, then

E is finite and for each x ∈ X , ω(x) is an unitary set. In this case, if x ∈ A and φ : T→ A is a

global solution through x, then αφ(x) is an unitary set.

In a gradient semigroup the innner structure of the global attractor is known and it is

given in the next theorem.
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Theorem 1.2.3. Assume that {T (t ) : t ∈T
+} is a gradient semigroup, eventually bounded and

asymptotically compact for which the set of equilibrium points E is bounded. Then {T (t ) : t ∈

T
+} has a global attractor A =W u(E ), where

W u(E ) := {y ∈ X : there exists a global solution φ(·) : T→ X

through y (φ(0) = y) such that φ(t )
t→−∞−→ E }

is called the unstable set of E . If E = {e∗
1 , · · · ,e∗

n} is finite, then A =∪n
i=1W u(e∗

i
).

1.3 Generalized gradient-like semigroups

We introduce now the concept of generalized gradient-like semigroups using the essential

dynamical properties of gradient semigroups with a disjoint family of isolated invariants,

and as a particular case, we obtain the gradient-like semigroups (see Carvalho-Langa [10]).

We state similar results as in Carvalho-Langa [10], which prove that the properties defining

gradient-like semigroups are stable under small perturbations.

Definition 1.3.1. We say that Ψ= {Ξ∗
1 , · · ·Ξp} is a disjoint family of isolated invariants if there

exists δ > 0 such that Oδ(Ξi )∩Oδ(Ξ j ) =∅, 1 É i < j É p, and Ξi is the maximal invariant set

of Oδ(Ξi ) := {z ∈ X : dist(z,Ξi ) < δ}.

Let {T (t ) : t ∈ T
+} be a semigroup with a global attractor A which contains a disjoint

family of isolated invariant sets Ψ= {Ξ1, · · ·Ξp}. We define:

Definition 1.3.2. Let δ be as in Definition 1.3.1 and fix ǫ0 ∈ (0,δ). For Ξ ∈Ψ and ǫ ∈ (0,ǫ0), a

ǫ−chain from Ξ to Ξ is a sequence {Ξℓi
, · · · ,Ξℓk

} ⊂Ψ, a sequence t1,σ1, · · · , tk ,σk , with ti >σi ,

1É i É k, k É p, along with a sequence of points ui , 1É i É k, such that ui ∈Oǫ(Ξℓi
), T (σi )ui ∉

Oǫ0(∪k
i=1(Ξℓi

)) and T (ti )ui ∈ Oǫ(Ξℓi+1 ), 1 É i É k, with Ξ = Ξℓk+1 = Ξℓ1 . We say that Ξ ∈Ψ is

chain recurrent if there exist ǫ0 ∈ (0,δ) and ǫ−chains from Ξ to Ξ for each ǫ ∈ (0,ǫ0).

Definition 1.3.3. Let {T (t ) : t ∈ T
+} be a semigroup with a global attractor A . We say that

{T (t ) : t ∈T
+} is gradient-like relative to a disjoint family of isolated invariantsΨ= {Ξ1, · · · ,Ξp}

(or a generalized gradient-like semigroup) if,
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(GG1) For each global solution ξ : T→ X in A there exist 1 É i , j É p such that

lim
t→−∞

dist(ξ(t ),Ξi ) = 0 and lim
t→∞

dist(ξ(t ),Ξ j ) = 0.

(GG2) No element of Ψ= {Ξ1, · · · ,Ξp} is chain recurrent.

We introduce the definitions of unstable and stable sets.

Definition 1.3.4. Let {T (t ) : t ∈T
+} be a semigroup. The unstable set of an isolated invariant

set Ξ is given by

W u(Ξ) = {ζ ∈ X : there exists a global solution ξ : T→ X

such that ξ(0) = ζ and lim
t→−∞

dist(ξ(t ),Ξ) = 0}.

The stable set of an isolated invariant set Ξ for {T (t ) : t ∈T
+} is given by

W s(Ξ) = {ζ ∈ X : lim
t→+∞

dist(T (t )ζ,Ξ) = 0}.

Given a neighborhood V of Ξ, the set of points y of V for which there exists a global

solution φy : T→ X through y such that φy (t )
t→−∞−→ Ξ and φy (t ) ∈ V for all t ∈T

− is called a

local unstable set of Ξ and it is denoted by W u
loc(Ξ). Analogously we define a local stable set.

The hypotheses (GG1) and (GG2) carry important dynamical properties of a semigroup

with a Lyapunov function and a family of isolated invariants (see also Lemmas 1.3.7 and

1.3.8 below). From (GG1), we have that A = ∪p

i=1W u(Ξi ), since if x ∈ A then there exists a

global solution ξ : T → X in A and thus x ∈ W u(Ξi ), for some 1 É i É p and conversely, if

x ∈ W u(Ξi ) for some 1 É i É p then, since A attracts points, there exists a bounded global

solution through x, hence x ∈A . Also, hypothesis (GG2) says that no collection of orbits can

produce a closed path.

The following results are fundamental for the upcoming theory of gradient-like semi-

groups.

The first lemma is an immediate consequence of the continuity of the semigroups and it

ensures that, given an isolated invariant Ξ of a semigroup {T (t ) : t ∈T
+} and a point y near

Ξ, the finite orbit γ[0,t](t ) = {T (s)y : 0 É s É t } remains near Ξ for large values of t .
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Lemma 1.3.5. Let {T (t ) : t ∈ T
+} be a semigroup and Ξ an isolated invariant in Ψ. Given

t ∈T
+ and ǫ> 0 there exists δ> 0 such that {T (s)y : 0 É s É t , y ∈Oδ(Ξ)} ⊂Oǫ(Ξ).

The second of them in an important result which is used in several occasions to obtain

properties for there semigroups.

Proposition 1.3.6. Assume that {T (t ) : t ∈ T
+} is an asymptotically compact semigroup. Let

{σk}k∈N be a sequence in T
+ with σk

k→∞−→ ∞, {uk}k∈N a bounded sequence in X and, for Jk =

{s ∈ T : −σk É s < ∞}, define ξk : Jk → X by ξk (s) = T (s +σk)uk , s ∈ Jk . If {T (s)uk : k ∈

N, s ∈T
+} is bounded, there exists a bounded global solution ξ : T→ X of {T (t ) : t ∈T

+} and a

subsequence of {ξk }k∈N (which we again denote by {ξk }k∈N) such that

lim
k→∞

ξk (s)→ ξ(s), ∀s ∈T.

The third result guarantees that, for a generalized gradient-like semigroup {T (t ) : t ∈T
+},

given a bounded set B of X and a neighborhood O (Ψ) of the disjoint family of isolated in-

variants Ψ, there exists t0 = t0(B ,O (Ψ)) ∈T
+ such that all the solutions which begin in points

of B , must reach O (Ψ) before the time t0.

Lemma 1.3.7. Let {T (t ) : t ∈T
+} be a semigroup with a disjoint family of isolated invariants

Ψ = {Ξ1, · · · ,Ξp} and a global attractor A . If {T (t ) : t ∈ T
+} satisfies (GG1), given δ < δ0 =

1
2 min

1Éi , jÉp
i 6= j

dist(Ξi ,Ξ j ) and B ⊂ X bounded, there exists a t0 = t0(δ,B) > 0 such that {T (t )u0 : 0 É

t É t0}∩∪p

i=1Oδ(Ξi ) 6=∅ for all u0 ∈B.

Finally, the fourth result establishes that, if {T (t ) : t ∈ T
+} is a generalized gradient-like

semigroup, given a neighborhood O2(Ξ) of an invariant set Ξ ∈Ψ, there exists another neigh-

borhood O1(Ξ) of y∗ such that if a solution starts in O1(Ξ) and leaves O2(Ξ), then it never

returns to O1(Ξ).

Lemma 1.3.8. Let {T (t ) : t ∈T
+} be a generalized gradient-like semigroup. If Ψ= {Ξ1, · · · ,Ξp}

is the disjoint family of isolated invariants and A its global attractor, given 0< δ< δ0, there ex-

ists δ′ > 0 such that, if for some 1É i É p, dist(u0,Ξi ) < δ′ and, for some t1 > 0, dist(T (t1)u0,Ξi ) Ê

δ, then dist(T (t )u0,Ξ) > δ′ for all t Ê t1.

Now we prove that, for a generalized gradient-like semigroup, the ω−limit set of a point

lies in one single isolated invariant. We note that condition (GG1) is imposed only for solu-

tions in the attractor.
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Lemma 1.3.9. Assume that {T (t ) : t ∈ T
+} is a generalized gradient-like semigroup with a

disjoint family of isolated invariants Ψ = {Ξ1, · · · ,Ξp} and a global attractor A . Given u ∈ X

there exists Ξi ∈Ψ such that

T (t )u
t→∞−→ Ξi .

Proof: It follows from Lemma 1.3.8 that, given δ ∈ (0,δ0) there exists δ′ ∈ (0,δ) such that

d(v,Ξi ) < δ′ and if for some tv,δ> 0, d(T (tv,δ)v,Ξi ) Ê δ, then dist(T (t )v,Ξi ) > δ′ for all t Ê tv,δ.

On the other hand, since γ+(u) is bounded, it follows from Lemma 1.3.7 that, given δ′ there

exists a tδ′ = tδ′(γ+(u)) ∈T such that, for each v ∈ γ+(u),

{T (t )v : 0 É t É tδ′}∩∪p

i=1Oδ′(Ξi ) 6=∅.

From the fact that Ψ is finite follows that there exist an Ξ j ∈ Ψ and, for each δ ∈ (0,δ0), a

sδ ∈T
+ such that T (s)u ∈Oδ(Ξ j ) for all s Ê sδ. This completes the proof.

Definition 1.3.10. Let {T (t ) : t ∈ T
+} be a semigroup with a disjoint family of isolated in-

variants Ψ = {Ξ1, · · · ,Ξp} and a global attractor A . A homoclinic structure in A is a set

{Ξℓ1 , · · · ,Ξℓk
} ⊂Ψ along with a set of global solutions {ξ(i ) : T→ X , 1 É i É k} in A such that,

taking Ξℓk+1

.= ξℓ1 ,

lim
t→−∞

ξ(i )(t ) =Ξℓi
, lim

t→+∞
ξ(i )(t ) =Ξℓi+1 , 1 É i É k.

Now we can prove the following result, which relates (GG1) and (GG2) to the non-existence

of homoclinic structures.

Lemma 1.3.11. Let {T (t ) : t ∈T
+} be a semigroup with a disjoint family of isolated invariants

Ψ = {Ξ1, · · · ,Ξp} and a global attractor A . If {T (t ) : t ∈ T
+} satisfies (GG1), then (GG2) is

satisfied if and only if A does not possess homoclinic structures.

Proof: If A has a homoclinic structure and Ξ is an isolated invariant in this structure it is

easy to see that Ξ is chain recurrent.

On the other hand, if Ξ ∈Ψ is chain recurrent, there exist δ < δ0, {Ξℓ1 , · · ·,Ξℓr+1 } ⊂Ψ and

for each N ∋ k > 1
δ , points yk

1 , · · · , yk
r+1, t k

1 > τk
1 , · · · , t k

r > τk
r such that

dist(yk
i ,Ξℓi

) <
1

k
, dist(T (τk

i )yk
i ,Ψ) > δ, dist(T (t k

i )yk
i ,Ξℓi+1 ) <

1

k
, 1 É i É r.
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Choose σk
i
> 0 such that dist(T (σk

i
)yk

i
,Ξℓi

) Ê δ and dist(T (t )yk
i

,Ξℓi
) < δ, for all 0 É t < σk

i
.

From Lemma 1.3.5 it follows that σk
i

k→∞−→ +∞.

For t ∈ [−σk
i

,∞) let ξi ,k (t ) = T (σk
i
+ t )yk

i
.

From Proposition 1.3.6, there exists a global solution ξ(i ) : T → X . Since each ξ(i ) must

converge to an isolated invariant as t →+∞ and as t →−∞ and since ξ(i )(t ) ∈Oδ(Ξℓi
) for all

t < 0 we have that ξ(i )(t ) → Ξℓi
as t →−∞. We can assume that, between −σi

k
and t i

k
−σi

k
,

the solution ξk,i remains away from Ψ\{Ξℓi
,Ξℓi+1 } otherwise we could insert more points in

the ǫ−chains until this holds. From Lemma 1.3.8, ξ(i )(t )
t→∞−→ Ξℓi+1 .

The set {Ξℓ1 , · · · ,Ξℓk
} ⊂Ψ and the set of global solutions {ξ(i ) : T→ X , 1 É i É k} are such

that,

lim
t→−∞

dist(ξ(i )
n ,Ξℓi

) = 0, lim
t→+∞

dist(ξ(i )
n ,Ξℓi+1 ) = 0, 1 É i É k,

with Ξℓk+1

.=Ξℓ1 . Therefore A has a homoclinic structure.

Corollary 1.3.12. If {T (t ) : t ∈T
+} is a generalized gradient-like semigroup and A its attrac-

tor, there exist isolated invariants Ξα and Ξω such that Ξα has a trivial stable set in A ; that is,

W s
A

(Ξα) =Ξα where

W s
A (Ξα)

.= {y ∈A : such that T (t )y
t→∞−→ Ξα}

and Ξω has a trivial unstable set; that is, W u(Ξω) =Ξω.

In the following we consider a family of semigroups {Tη(t ) : t ∈ T
+}η∈[0,1]. We denote by

Eη the set of equilibrium points of {Tη(t ) : t ∈T
+} for each η ∈ [0,1].

Definition 1.3.13. We say that a family of semigroups {Tη(t ) : t ∈T
+}η∈[0,1] is collective asymp-

totically compact at η = 0 if, given sequences {ηk }k∈N with ηk
k→∞−→ 0, a bounded sequence

{uk}k∈N in X and a sequence {tk }k∈N in T
+ with tk

k→∞−→ ∞ and {Tηk
(tk )uk : k ∈ N} bounded,

then {Tηk
(tk )uk : k ∈N} is precompact.

Now we state the result of stability of the generalized gradient-like semigroups under

some kind of perturbations, as done in [10]. This allows us to characterize the attractors

of semigroups given as a small perturbation of generalized gradient-like semigroups, and if

we perturbe again the resulting semigroup we are still able to give a characterization of the

attractors.
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Theorem 1.3.14. Let {Tη(t ) : t ∈ T
+}, η ∈ [0,1], be a continuous and collective asymptotically

compact family of semigroups at η= 0. Suppose that

(a) {Tη(t ) : t ∈T
+} has a global attractor Aη for each η ∈ [0,1] and ∪η∈[0,1]Aη is bounded.

(b) There exists p ∈N such that Aη has p isolated invariant sets Ψη = {Ξ1,η, · · · ,Ξp,η} for all

η ∈ [0,1] and sup1ÉiÉp[dH (Ξi ,η,Ξi ,0)+dH (Ξi ,0,Ξi ,η)]
η→0
−→ 0.

(c) {T0(t ) : t ∈ T
+} is a gradient-like semigroup relative to the disjoint family of isolated

invariants Ψ0 = {Ξ1,0, · · · ,Ξp,0}.

Then there exists η0 > 0 such that, for all ηÉ η0, {Tη(t ) : t ∈T
+} is a gradient-like semigroup

relative to the disjoint family of isolated invariants Ψη. Consequently, there exists η0 > 0 such

that

Aη =∪p

i=1W u(Ξi ,η), ∀η ∈ [0,η0].

In the case where eachΞi consists of a single point; that isΞi = {y∗
i

}, it is clear that each y∗
i

is an equilibrium point of the semigroup {T (t ) : t ∈T
+} and we say simply that the semigroup

is gradient-like.

1.4 Gradient-like semigroups are gradient semigroups

The Fundamental Theorem on Dynamical Systems, suggested in [34] from the results in

[16], establishes that in any compact metric space an attractor can be described by isolated

invariant sets and the connections between them. In the terminology of [16], this decompo-

sition is called Morse decomposition (see Definition 1.4.8), and it was considered in different

contexts, in the case of groups by [16] and in the case of semigroups by [44], or even in a topo-

logical space, compact or not, in [21, 35, 36]. For a complete understanding of the subject,

we refer to [1], where all these results are proven in detail.

1.4.1 Morse decomposition of gradient-like semigroups

Let X be a metric space with metric d : X ×X →R
+. In what follows we present the notion

of a Morse decomposition for a global attractor A of a gradient-like semigroup {T (t ) : t Ê 0}.

We begin with the notion of attractor-repeller pair.
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Definition 1.4.1. Let {T (t ) : t Ê 0} be a semigroup with a global attractor A . We say that a

non-empty subset Ξ of A is a local attractor if there exists ǫ > 0 such that ω(Oǫ(Ξ)) = Ξ. The

repeller Ξ∗ associated with the local attractor Ξ is the set defined by

Ξ
∗ = {x ∈A : ω(x)∩Ξ=∅}.

The pair (Ξ,Ξ∗) is called an attractor-repeller pair of {T (t ) : t Ê 0}.

Remark 1.4.2. Note that, if Ξ is a local attractor, then Ξ
∗ is closed, invariant and Ξ∩Ξ

∗ =∅.

Observe that Ξ is a local attractor if and only if it is invariant and attracts Oǫ(Ξ) for some

ǫ> 0. Also, the above definition differ a little from the usual definition since we require that

the local attractor attracts a neighborhood of Ξ in X and not in A as in [16, 44]. We prove

that both definitions coincide.

Lemma 1.4.3. Let {T (t ) : t Ê 0} be a semigroup in X with global attractor A . If Ξ is a com-

pact and invariant set for {T (t ) : t Ê 0} and there exists ǫ > 0 such that Ξ attracts Oǫ(Ξ) ∩

A then, given δ > 0 there exists δ′ > 0 such that γ+(Oδ′(Ξ)) ⊂ Oδ(Ξ), where γ+(Oδ′(Ξ)) =
⋃

x∈Oδ′ (Ξ)
⋃

tÊ0 T (t )x.

Proof: Given 0 < δ < ǫ if there is no δ′ > 0 such that γ+(Oδ′(Ξ)) ⊂ Oδ(Ξ), there exist x ∈ Ξ,

X ∋ xn
n→∞−→ x and R ∋ tn

n→∞−→ ∞ such that d(T (tn)xn ,Ξ) = δ and T (t )xn ∈ Oδ(Ξ), t ∈ [0, tn].

Since {T (t ) : t Ê 0} has a global attractor, it is not hard to see that there exists a global solution

ξ : R→ X such that ξn : [−tn ,∞) → X given by ξn(t ) = T (tn + t )xn satisfying ξn(t )
n→∞−→ ξ(t ) for

each t ∈R. Clearly ξ(t ) ∈Oδ(Ξ)
⋂

A ⊂Oǫ(Ξ)
⋂

A for all t É 0, d(ξ(0),Ξ) = δ, and consequently

Ξ cannot attract Oǫ(Ξ)∩A .

Lemma 1.4.4. If {T (t ) : t Ê 0} is a semigroup in X with a global attractor A and S(t )
.= T (t )|A ,

clearly {S(t ) : t Ê 0} is a semigroup in the metric space A . IfΞ is a local attractor for {S(t ) : t Ê 0}

in the metric space A and K is a compact subset of A such that K ∩Ξ
∗ =∅, then Ξ attracts K .

Moreover Ξ is a local attractor for {T (t ) : t Ê 0} in X .

Proof: Let K be a compact subset of A such that K ∩Ξ
∗ =∅. If Ξ =ω(Oǫ(Ξ)∩A ) does not

attract K and 0 < δ< ǫ, there exist a δ′ ∈ (0,δ), a sequence {tn}n∈N in T
+ with tn

n→∞−→ ∞, x ∈K
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and K ∋ xn
n→∞−→ x such that d(T (t )xn ,Ξ) Ê δ′, 0 É t É tn . This implies that d(T (t )x,Ξ) Ê δ′ for

all t Ê 0 and, consequently, ω(x)∩Ξ=∅ and therefore x ∈Ξ
∗ which is a contradiction.

For the remaining part of the result, note that, from Lemma 1.4.3, there exists a δ′ ∈ (0,ǫ)

such that ω(Oδ′(Ξ)) ⊂ Oǫ(Ξ) ∩A and hence ω(Oδ′(Ξ)) ∩Ξ
∗ = ∅. From the invariance of

ω(Oδ′(Ξ))and from the property that Ξ attracts Oǫ(Ξ)∩A , we have that ω(Oδ′(Ξ)) ⊂Ξ. Since

ω(Oδ′(Ξ)) attracts Oδ′(Ξ) the result follows.

Lemma 1.4.5. Let {T (t ) : t Ê 0} be a semigroup in X with a global attractor A and an attractor-

repeller pair (Ξ,Ξ∗).

1. A global solution ξ : R → X of {T (t ) : t Ê 0} with the property that ξ(R)∩Ξ
∗ 6=∅ must

satisfy d(ξ(t ),Ξ∗)
t→−∞−→ 0.

2. A global solution ξ : R→ X of {T (t ) : t Ê 0} with the property that ξ(t ) ∈ Oδ(Ξ∗) for all

t É 0 and some δ> 0 such that Oδ(Ξ∗)∩Ξ=∅ must satisfy d(ξ(t ),Ξ∗)
t→−∞−→ 0.

Proof: If the conclusion of 1 is not true, there exist a δ′ > 0 and a sequence tn
n→∞−→ ∞ such

that d(ξ(−tn),Ξ∗) Ê δ′ and, for some t ∈ [−tn −1,−tn), d(ξ(t ),Ξ∗) < δ′. This contradicts the

fact that Ξ attracts the compact set K = {z ∈A : d(z,Ξ∗) Ê δ′} of A .

To prove 2 we observe that if ξ(R)∩Ξ
∗ = ∅, from Lemma 1.4.4 we have that ξ(R) ⊂ Ξ

which lead us to a contradiction. On the other hand, if ξ(R)∩Ξ
∗ 6=∅, it follows from 1 that

d(ξ(t ),Ξ∗)
t→−∞−→ 0. This completes the proof.

Lemma 1.4.6. Let {T (t ) : t Ê 0} be a semigroup in X with global attractor A and an attractor-

repeller pair (Ξ,Ξ∗). If ξ : R → X is a bounded global solution for {T (t ) : t Ê 0} through x ∉

Ξ∪Ξ
∗, then ξ(t )

t→∞−→ Ξ and ξ(t )
t→−∞−→ Ξ

∗. Moreover, if x ∈ X \A then, T (t )x
t→∞−→ Ξ∪Ξ

∗.

Proof: Since x ∉ Ξ
∗ we have that ω(x)∩Ξ is non-empty and, from the fact that Ξ is a local

attractor, we have that ξ(t )
t→∞−→ Ξ. On the other hand, if ξ(t ) does not converge to Ξ

∗ as

t →−∞ we divide the proof in two steps: if ξ(R)∩Ξ
∗ =∅, then ξ(R) is invariant and, from

Lemma 1.4.4, is attracted by Ξ which is a contradiction. Thus, ξ(R)∩Ξ
∗ is non-empty and

from Lemma 1.4.5 we have that d(ξ(t ),Ξ∗)
t→−∞−→ 0.

For x ∈ X \A we prove that T (t )x
t→∞−→ Ξ∪Ξ

∗. If γ+(x)∩Ξ 6=∅ we have that T (t )x
t→∞−→ Ξ.

On the other hand, if there exists δ> 0 with γ+(z)∩Oδ(Ξ) =∅ we state that T (t )x
t→∞−→ Ξ

∗. If
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our statement is false, there exist a ν> 0 and a sequence tn
n→∞−→ ∞ such that d(T (tn)x,Ξ∗) Ê

ν. Considering the sequence of functions ξn : [−tn ,∞) → X defined by ξn(t ) = T (t + tn)x,

t Ê−tn , we construct a global solution ξ : R→A such that d(ξ(0),Ξ∗) Ê ν and d(ξ(t ),Ξ) Ê δ

for all t ∈R. Therefore ω(ξ(0))∩Ξ=∅ and ξ(0) ∈Ξ
∗ which is a contradiction.

Corollary 1.4.7. If {T (t ) : t Ê 0} is a semigroup in X with a global attractor A and (Ξ,Ξ∗) is an

attractor-repeller pair for {T (t ) : t Ê 0}, then {T (t ) : t Ê 0} is a gradient-like semigroup relative

to the disjoint family of isolated invariants {Ξ,Ξ∗}.

With this we can begin the construction of a Morse decomposition for the attractor of a

gradient-like semigroup relative to an invariant family of isolated invariant sets. We begin

fixing the definition of Morse decomposition we will use here.

Definition 1.4.8. Given an increasing family ∅= A0 ⊂ A1 ⊂ ·· · ⊂ An =A , of n+1 local attrac-

tors, define Ξ j := A j ∩ A∗
j−1, for j = 1, · · · ,n. The ordered n-tuple Ψ

.= {Ξ1,Ξ2, · · · ,Ξn} is called

a Morse decomposition of A .

In what follows, our goal is to show that if {T (t ) : t Ê 0} is a gradient-like semigroup rela-

tive to a disjoint family of isolated invariants Ξ = {Ξ1, · · · ,Ξn} and with a global attractor A ,

then some reordering of Ξ is a Morse decomposition of A . The next result plays an impor-

tant role in this process and its proof is straightforward.

Lemma 1.4.9. Let {T (t ) : t Ê 0} be a semigroup with global attractor A and Ξ⊂A an isolated

invariant set. Then Ξ is a local attractor if and only if W u(Ξ) =Ξ.

Lemma 1.4.10. Let {T (t ) : t Ê 0} be a gradient-like semigroup relative to a disjoint family of

isolated invariantsΨ= {Ξ1, · · · ,Ξn}. Then there exists 1É k É n such thatΞk is a local attractor

for {T (t ) : t Ê 0} in X .

Let {T (t ) : t Ê 0} be a gradient-like semigroup relative to a disjoint family of isolated in-

variantsΨ= {Ξ1, · · · ,Ξn}. If (after a possible reordering)Ξ1 is a local attractor for {T (t ) : t Ê 0}

and

Ξ
∗
1 = {a ∈A : ω(a)∩Ξ1 =∅},

then each Ξi , i > 1 is contained in Ξ
∗
1 and for each a ∈ A \{Ξ1 ∪Ξ

∗
1 } and global solution

φ : R→A with φ(0) = a we have that

Ξ
∗
1

t→−∞←− φ j (t )
t→∞−→ Ξ1.
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Considering the restriction T1(t ) of T (t ) to Ξ
∗
1,0

.=Ξ
∗
1 we have that T1(t ) is a gradient-like

semigroup Ξ
∗
1 relative to the disjoint family of isolated invariants {Ξ2, · · · , Ξn} and we can

assume, without loss of generality, that Ξ2 is a local attractor for {T1(t ) : t Ê 0} in Ξ
∗
1 . If Ξ∗

2,1

is the repeller associated with the isolated invariant set Ξ2 of {T1(t ) : t Ê 0} in Ξ
∗
1 we can

proceed and consider the restriction {T2(t ) : t Ê 0} of the semigroup {T1(t ) : t Ê 0} to Ξ
∗
2,1 and

{T2(t ) : t Ê 0} is a gradient-like semigroup in Ξ
∗
2,1 relative to the family of isolated invariants

{Ξ3, · · · ,Ξn}.

Proceeding with this reasoning, after a finite number of steps, we obtain a reordering of

{Ξ1, · · · ,Ξn} in such a way thatΞ j is a local attractor for the restriction of {T (t ) : t Ê 0} toΞ
∗
j , j−1

(Ξ∗
0,−1

.=A ).

With this construction, if a global solution ξ : R→A satisfies

Ξℓ
t→−∞←− ξ(t )

t→∞−→ Ξk (1.4.1)

then ℓÊ k.

In order to see this, firstly we observe that if (Ξ,Ξ∗) is an attractor-repeller pair, any global

solution ζ : R→ X with ξ(0) ∈Ξ
∗ satisfies ξ (t ) ∈Ξ

∗ for all t ∈R. From the convergence of ξ(·)
to Ξk , necessarily ξ(0) ∈ Ξ

∗
k−1,k−2 . But Ξ∗

k−1,k−2 in invariant and contains only the isolated

invariants {Ξk ,Ξk+1, . . . ,Ξn}. Thus it follows immediately that ℓÊ k.

We prove now that this reordering of {Ξ1, · · · ,Ξn} (which we denote the same way) is a

Morse decomposition for A with a sequence carefully chosen A0 ⊂ A1 ⊂ A2 ⊂ ... ⊂ An of local

attractors.

Define A0 =∅, A1 =Ξ1 and for j = 2,3, · · · ,n

A j = A j−1 ∪W u(Ξ j ) =∪ j

i=1W u(Ξi ). (1.4.2)

It is clear that An =A and each A j is compact.

Theorem 1.4.11. Let {T (t ) : t Ê 0} be a gradient-like semigroup relative to a disjoint family

of isolated invariants Ψ = {Ξ1, · · · ,Ξn} reordered in such a way that Ξ j is a local attractor for

the restriction of {T (t ) : t Ê 0} to Ξ
∗
j−1, j−2. Then A j defined in (1.4.2) is a local attractor for

{T (t ) : t Ê 0} in X ,

Ξ j = A j ∩ A∗
j−1,

and Ψ is a Morse decomposition of A .
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Proof: From Lemma 1.4.4, is sufficient to prove that A j = A j−1 ∪W u(Ξ j ) is a local attractor

for {T (t ) : t Ê 0} restricted to the global attractor A .

Choose d > 0 such that Od (
⋃ j

i=1 W u(Ξi ))∩ (
⋃n

i= j+1 Ξi ) =∅. If there exist δ< d and δ′ < δ

such that γ+(Oδ′(A j )∩A ) ⊂Oδ(A j )∩A , then ω(Oδ′(A j )∩A ) attracts Oδ′(A j )∩A and (since

ω(Oδ′(A j ))∩A ) is invariant) is contained in A j , proving that A j is a local attractor in A . If

this is not the case, there exist a sequence {xk } in A \A j with d(xk , A j )
k→∞−→ 0, for each xk a

global solution ξk : R→ A through xk and a sequence tk
k→∞−→ ∞, such that d(ξk (t ), A j ) É δ

for all t ∈ [0, tk ] and d(ξk (tk ), A j ) = δ. In this way, we construct a global solution ξ : R→ A

such that d(ξ(t ), A j ) É δ for all t É 0 and d(ξ(0), A j ) = δ. This gives us a contradiction.

To prove that Ξ j = A j ∩ A∗
j−1 note that A j ⊃

⋃ j

i=1Ξi (see (1.4.2)) and A∗
j−1 = {z ∈ A :

ω(z)∩ A j−1 = ∅} ⊃
⋃n

i= j
Ξi . Therefore, given z ∈ A j ∩ A∗

j−1 we have that a global solution

ξ : R→A through z must satisfy

Ξℓ
t→−∞←− ξ(t )

t→∞−→ Ξk .

with k É ℓ É j (from the fact that z ∈ A j ) and j É k É ℓ (from the fact that z ∈ A∗
j
). This and

from the fact that {T (t ) : t Ê 0} is a gradient-like semigroup relative to the disjoint family of

invariants {Ξ1, · · · ,Ξn}, we obtain that z ∈ Ξ j . Thus A j ∩ A∗
j−1 ⊂ Ξ j . The other inclusion is

straightforward from the definition of A j and A∗
j−1.

Proposition 1.4.12. Let {T (t ) : t Ê 0} be a gradient-like semigroup relative to the disjoint fam-

ily of isolated invariants Ψ= {Ξ1, · · · ,Ξn} reordered in such a way that it is a Morse decompo-

sition of A . Then,
n
⋂

j=0
(A j ∪ A∗

j ) =
n
⋃

j=1
Ξ j .

Proof: Clearly
⋃n

j=1 Ξ j ⊂
⋂n

j=0(A j ∪A∗
j
). Now, let z ∈

⋂n
j=0(A j ∪A∗

j
) and k ∈ {1, · · · ,n} such that

z ∈ A j , k É j É n, and z ∈ A∗
j
, 1É j É k−1. It follows from Theorem 1.4.11 that z ∈ Ak ∩A∗

k−1 =
Ξk . This completes the proof.

1.4.2 Lyapunov functions and stability for gradient semigroups

Inspired in the work of Conley (see [16, 44]) we state the equivalence between gradient

semigroups and gradient-like semigroups relative to a disjoint family of isolated invariants

Ψ = {Ξ1, · · · ,Ξn}. The gradient-like semigroups relative to Ψ were presented in Definition
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1.3.3 and now we present the gradient semigroups relative to Ψ.

Definition 1.4.13. We say that a semigroup {T (t ) : t Ê 0} with a global attractor A and a

disjoint family of isolated invariants Ψ= {Ξ1, · · · ,Ξn} is a gradient semigroup relative to Ψ if

there exists a continuous function V : X → R such that [0,∞) ∋ t 7→V (T (t )x) ∈R is decreasing

for each x ∈ X , V is constant in Ξi for each 1 É i É n, and V (T (t )x) = V (x) for all t Ê 0 if

and only if x ∈
⋃n

i=1Ξi . A function V with such properties is called a Lyapunov function for

{T (t ) : t Ê 0}.

We have the following equivalence between generalized gradient semigroups and gener-

alized gradient-like semigroups.

Theorem 1.4.14. Let {T (t ) : t Ê 0} be a semigroup with a global attractor A and a disjoint

family os isolated invariants Ψ = {Ξ1, · · · ,Ξn}. Then {T (t ) : t Ê 0} is a gradient semigroup

relative to Ψ if and only if it is a gradient-like semigroup relative to Ψ. Moreover, the Lyapunov

function V : X →R of a gradient-like semigroup relative to Ψ can be chosen such that V (Ξm) =

m −1, m = 1, · · · ,n.

The equivalence between gradient semigroups and gradient-like semigroups relative to

a disjoint family of isolated invariants along with Theorem 1.3.14, prove that the gradient

semigroups relative to a disjoint family of isolated invariants are stable under certain pertur-

bations; that is:

Theorem 1.4.15. Let {Tη(t ) : t ∈ T
+}, η ∈ [0,1], be a continuous and collective asymptotically

compact family of semigroups at η= 0. Assume that

(a) {Tη(t ) : t Ê 0} has a global attractor Aη for each η ∈ [0,1] and ∪η∈[0,1]Aη is bounded.

(b) There exists n ∈N such that Aη has n isolated invariant sets Ξη = {Ξ∗
1,η, · · · ,Ξ∗

n,η} for all

η ∈ [0,1] and sup1ÉiÉn [dH (Ξ∗
i ,η,Ξ∗

i ,0)+dH (Ξ∗
i ,0,Ξ∗

i ,η)]
η→0
−→ 0.

(c) {T0(t ) : t Ê 0} is a gradient semigroup relative to Ξ0.

Then there exists η0 > 0 such that, for all ηÉ η0, {Tη(t ) : t ∈T
+} is a gradient semigroup relative

to Ξη.
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1.5 Exponential global attractors

In this section, we will consider a class of semigroups {T (t ) : t Ê 0} with a global attractor

A and a disjoint family of isolated invariants Ξ = {Ξ1, · · · ,Ξn}. If the unstable sets of these

isolated invariants have the property of exponential local attraction and a Lipschitz condi-

tion (uniform in bounded sets and exponential growth in t ), then the global attractor A

exponentially attracts bounded sets of X . The results presented here extend the results in [2]

for gradient semigroups and they can be found in [9].

In [2] the authors consider a C 1+µ gradient semigroup with global attractor A for which

the set of equilibrium points E is composed only by hyperbolic equilibrium points (there-

fore, a finite set). For this semigroup, they prove that A attracts compact subsets exponen-

tially (see Section 5.7 and Remark 7.11 in [2]).

In what follows, we extend the results of [2] in a broad perspective since we do not assume

that the isolated invariant are equilibrium points and not even assume hyperbolicity.

1.5.1 Gradient-like semigroups with exponential global attractors

The next result is a simple consequence of the definition of gradient semigroups relative

to a disjoint family of isolated invariants were firstly proven in [9].

Lemma 1.5.1. Let {T (t ) : t ∈ T
+} be a gradient semigroup relative to the disjoint family of

isolated invariants Ξ = {Ξ1, · · · ,Ξn}. If V : X → R is the associated Lyapunov function, Ξ ∈ Ξ

and V (Ξ) is not a minimum value for V in any neighborhood of Ξ, then there exists a global

solution ξ : T→ X such that ξ(T) 6⊂Ξ and ξ(t ) ∈W u(Ξ) for all t ∈T.

The two following lemmas are natural extensions of Lemmas 1.3.7 and 1.3.8 for gradient-

like semigroups relative to a disjoint family of isolated invariants.

Lemma 1.5.2. Let {T (t ) : t ∈ T
+} be a gradient-like semigroup relative to a disjoint family of

isolated invariants Ψ= {Ξ1, · · · ,Ξn}.

GivenΞ ∈Ψ and ǫ> 0, there exists δ> 0 such that, if v ∈Oδ(Ξ) and for some t1 > 0, T (t1)v ∉

Oǫ(Ξ), then T (t )v ∉Oδ(Ξ) for all t Ê t1.

Proof: Assume that there exist an ǫ> 0, a sequence {vk } in X with vk
n→∞−→ Ξ, sequences {τk }

and {tk } in T
+ with τk > tk > 0, dist(T (τk )vk ,Ξ)

k→∞−→ 0 and dist(T (tk )vk ,Ξ) Ê ǫ. Then Ξ is
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chain recurrent in Ψ, which is a contradiction.

Lemma 1.5.3. Let {T (t ) : t ∈ T
+} be a gradient-like semigroup relative to a disjoint family of

isolated invariants Ψ = {Ξ1, · · · ,Ξn}. If B is a bounded subset of X , given ǫ > 0 there exists

t0 ∈T
+ such that

{T (t )x : t ∈ 0 É t É t0}∩Oǫ

(
⋃n

i=1Ξ
)

6=∅, for all x ∈ B.

Proof: Assume that there exist sequences {xk } ⊂ B , tk
k→∞−→ ∞ such that {T (s)xk : 0 É s É

tk }∩Oǫ(
⋃n

i=1Ξ) =∅.

Choose τk
.= the largest integer less than or equal tk

2 . Then there exists a subsequence

of {T (τk )xk } (which we will denote the same way) convergent to a certain x0 ∈ X . It is easy

to see that {T (t )x0 : t ∈T
+}∩Oǫ(

⋃n
i=1Ξ) =∅ and this contradicts the fact that

⋃n
i=1Ξ attracts

points.

Definition 1.5.4. Let {T (t ) : t ∈T
+} be a gradient-like semigroup relative to the disjoint family

of isolated invariants Ξ = {Ξ1, · · · ,Ξn}. We say that a local unstable set of Ξ ∈Ψ is exponen-

tially attracting if there exist positive constants C0,̺0 and δ0 such that

dist(T (t )u0,W u
loc(Ξ)) ÉC0e−̺0t , (1.5.1)

when u0 ∈Oδ0(Ξ), t ∈T
+ and {T (s)u0 : 0 É s É t } ⊂Oδ0(Ξ).

Theorem 1.5.5. Let {T (t ) : t ∈ T
+} be a gradient-like semigroup relative to the disjoint fam-

ily of isolated invariants Ψ = {Ξ1, . . . ,Ξp } and with a global attractor A . Let V be a closed,

bounded and positively invariant neighborhood of A and assume that the restriction T (t )|V

of T (t ) to V is a Lipschitz continuous function with Lipschitz constant ceLt (L > 0), for each

t ∈T
+. Assume that each set Ξ ∈Ψ has an exponentially attracting unstable set.

Then, there exist a constant γ̃> 0 and, for each v ∈V , a function T
+ ∋ t 7→ ũ(t ) ∈A and a

constant c̃ > 0, such that

d(T (t )v, ũ(t )) É c̃ e−γ̃t , t ∈T
+. (1.5.2)
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Furthermore, the constant c̃ can be chosen independently of v in bounded sets of X and,

consequently, for each B ⊂ X bounded there exists a c(B) > 0 such that

dH (T (t )B ,A ) É c(B)e−γ̃t , t ∈T
+. (1.5.3)

Proof: We know that

d(T (t )w1,T (t )w2) É ceLt d(w1, w2), ∀w1, w2 ∈V , t ∈T
+. (1.5.4)

Choose δ,γ> 0 and c > 0, such that

d(T (t )w,W u
l oc (Ξ j )) É ce−γt for all j = 1, . . . , p, (1.5.5)

when t ∈T
+ e {T (s)w : 0 É s É t } ⊂Oδ(Ξ j ).

From Lemma 1.5.2, choose δ′ < δ such that, if v ∈Oδ′(Ξ j ), and for some t1 ∈T
+,

T (t1)v ∉Oδ(Ξ j ),

then

T (t )v ∉Oδ′(Ξ j ), for all t Ê t1.

Now, from Lemma 1.5.3, there exists t0 ∈T
+ such that, for all v ∈V

{T (t )v : 0É t É t0}∩
p
⋃

j=1
Oδ′(Ξ j ) 6=∅.

Therefore, given v ∈ V , there exist sequences {t−
i ( j )}m

j=1, {t+
i ( j )}

m
j=1 and {Ξi ( j )}m

j=1 such that

i ( j ) ∈ {1, . . . , p}, 1É j É m É p,

t−i (1) É t0, 0< t−i ( j ) − t+i ( j−1) É t0, 2 É j É m, t+i (m) =+∞,

T (t )v ∈Oδ(Ξi ( j )) for all t−
i ( j ) É t < t+

i ( j ), T (t+
i ( j ))v ∉Oδ(Ξi ( j )) and j ∈ {1, . . . ,m}.

Given v ∈ V , the positive orbit of v visits neighborhoods of the invariant sets belonging

to Ψ. We reorder and rename this sets Ξ1, . . . ,Ξm , m É p, using the order in which the δ′-

neighborhood of them is visited by the orbit of v .
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Now choose a point y1 ∈Ξ1 and for each t−
j
É t É t+

j
choose ψ(t ) such that

dist(T (t )v,W u
loc(Ξ j )) = d(T (t )v,ψ(t )), 1É j É m.

Define ũ : T+ →A by

ũ(t ) =































y1, 0 É t < t−1 ,

ψ(t ), t−1 É t É t+1 ,

T (t − t+j−1)ũ(t+j−1), t+j−1 É t É κ0
j , 2 É j É n,

ψ(t ), κ0
j < t É t+j , 2 É j É n.

where k0
j
∈ (t−

j
, t+

j
] is given by

γ1 := γ, γ j =
γ2

j−1

L+2γ j−1
e κ0

j = min

{

L+2γ j−1

L+γ j−1
t−j , t+j

}

, j = 2, . . . ,m. (1.5.6)

By hypothesis we have that

d(T (t )v, ũ(t )) É sup
v∈V

d(v, y1)eγt0 e−γt .= c̃1e−γt , 0É t < t−1 ,

d(T (t )v, ũ(t )) É ce−γ(t−t−1 ) É ceγt0 e−γt .= ĉ1e−γt , t−1 É t É t+1 .

Let c1 = max{c̃1, ĉ1}. We show that, for each j = 2, . . . ,m, the following statement is true

if (i) d(T (t )v, ũ(t )) É c j−1e−γ j−1t , t+j−2 É t < t+j−1 with some c j−1 > 0,

then(ii) d(T (t )v, ũ(t )) É c j e−γ j t , t+j−1 É t < t+j with some c j > 0.

Firstly note that, by hypothesis, if t+
j−1 É t É κ0

j
,

d(T (t )v, ũ(t )) É ce
L(t−t+

j−1)
d(T (t+j−1)v, ũ(t+j−1))

(i)
É cc j−1e

L(t−t+
j−1)−γ j−1t+

j−1 .

É cc j−1e (L+γ)t0 e
L(t−t−

j
)−γ j−1t−

j

(1.5.7)

and for κ0
j
É t É t+

j
,

d(T (t )v,ψ(t )) É ce
−γ(t−t−

j
) É ce

−γ j−1(t−t−
j

). (1.5.8)
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Taking a closer look at (1.5.7) and (1.5.8) we can note that, if t−
j
< κ0

j
< t+

j
, we have that1

L(κ0
j − t−j )−γ j−1t−j =−γ j−1(κ0

j − t−j ) =−γ jκ
0
j . (1.5.9)

s

s

s

s

s

(t−
j

,0)

�
�
�
�
�
�
�

�
�
�
�
�
�
�

(t−
j

,−γ j−1 t−
j

)

PPPPPPPPPPPPPPPPPPPPP

(k0
j

,0)

L(t−t−
j

)−γ j−1 t−
j

−γ j t

−γ j (t − t−
j

)

(t−
j

,−γ j t−
j

)

Figure: Determination of k0
j

and γ j .

Indeed, we claim that

L(t − t−j )−γ j−1t−j É−γ j t , t−j É t É κ0
j . (1.5.10)

−γ j−1(t − t−j ) É−γ j t , κ0
j < t É t+j . (1.5.11)

Now we are ready to complete the estimate. From (1.5.7) and (1.5.10) we obtain that, for

t−
j
É t É κ0

j

d(T (t )v, ũ(t )) É cc j−1e (L+γ)t0 e−γ j t ,

while (1.5.8) and (1.5.11) ensure that, for κ0
j
< t É t+

j
,

d(T (t )v, ũ(t )) É ce
−γ j−1(t−t−

j
) É ce−γ j t .

1The first equality in (1.5.9) determines k0
j

in terms of γ j−1 and t−
j

; and, once determined k0
j
, the second

equality in (1.5.9) determines γ j in terms of γ j−1. As a result we have the expressions presented in (1.5.6).
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From (1.5.7), for t+
j−1 É t É t−

j
,

d(T (t )v, ũ(t )) É cc j−1e
L(t−t+

j−1)−γ j−1(t+
j−1−t+t) É cc j−1e (L+γ)t0 e−γ j t , (1.5.12)

and (ii) holds with

c j = max{c,cc j−1e (L+γ)t0 },

and completes the proof.
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2

Evolution processes

Let X be a metric space and d(·, ·) : X × X → [0,∞) its metric. Recall that T denotes R

or Z (T+
t = {s ∈ T : s ≥ t }, T−

t = {s ∈ T : s ≤ t }), C (X ) denotes the set of continuous maps

from X into itself and P = {(t , s) ∈ T
2 : t Ê s}. An evolution process in X is a family of maps

{S(t , s) : (t , s)∈P } in C (X ) with the following properties

1. S(t , t ) = I , for all t ∈T,

2. S(t , s)= S(t ,τ)S(τ, s), for all t Ê τÊ s,

3. P ×X ∋ (t , s, x) 7→ S(t , s)x ∈ X is continuous.

If X is a normed vector space and S(t , s) is linear for each (t , s) ∈ P we say that {S(t , s) : t Ê
s ∈T} is a linear evolution process . This chapter is done following basically [6] and the reader

can also check [7] for more details.

2.1 Pullback attractors

In this section we present the notion of pullback attractors, the notions necessary to

present this concept and its relation to the global attractors of semigroups. For an evolu-

tion process {S(t , s) : (t , s)∈P } and a subset B ⊂ X , we define:

(a) For each (t , s) ∈P , the image of B under S(t , s),

S(t , s)B
.= {S(t , s)b : b ∈B}.
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(b) The orbit of B starting at time s ∈T

γs(B)
.=

⋃

tÊs

S(t , s)B.

(c) The pullback orbit of B at time t ∈T,

γp (B , t )
.=

⋃

sÉt

S(t , s)B.

Definition 2.1.1. Let {S(t , s) : (t , s) ∈ P } be an evolution process. Given t ∈ T, we say that a

set B(t ) ⊂ X pullback attracts (pullback absorbs) bounded subsets of X at time t under the

action of {S(t , s) : (t , s) ∈P } if

lim
s→−∞

distH (S(t , s)D,B(t ))= 0 (∃ T = T (t ,D) É t such that S(t , s)D ⊂ B(t ), ∀s É T ).

for each bounded subset D of X . A family {B(t ) : t ∈ T} pullback attracts (pullback absorbs)

bounded subsets of X under the action of {S(t , s) : (t , s) ∈P } if B(t ) pullback attracts (pullback

absorbs) bounded subsets of X at time t under the action of {S(t , s) : (t , s)∈P }, for each t ∈T.

If the exists a family {B(t ) : t ∈ R} of bounded subsets which pullback attracts (pullback

absorbs) bounded subsets of X we say that {S(t , s) : (t , s) ∈P } is pullback bounded dissipative.

Remark 2.1.2. In this definition, the final time is fixed while the initial time goes to −∞. Note

that this is not the same that go back in time. The evolution is always until the future instant

t starting at an initial time s going to −∞.

Note that, if a set pullback absorbs bounded sets at time t then it pullback attracts bounded

sets at time t .

Definition 2.1.3. Let {B(t ) : t ∈R} a family of subsets of X . We say that this family is invariant

under the evolution process {S(t , s) : (t , s)∈P } if

S(t , s)B(s)= B(t ), for all (t , s) ∈P .
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Definition 2.1.4. Let {S(t , s) : (t , s) ∈ P } be an evolution process in a metric space X . We say

that a family {A (t ) : t ∈R} of compact subsets of X is a pullback attractor for {S(t , s) : (t , s)∈P }

if it is invariant, pullback attracts bounded sets of X and is the family of closed sets which is

minimal with the property of pullback bounded dissipation; that is, if another family {C (t ) :

t ∈R} of closed sets pullback attracts bounded subsets of X , then A(t ) ⊆C (t ), for all t ∈R.

Remark 2.1.5.

1. We remark that the requirement of minimality in Definition 2.1.4 is additional relative

to the theory of global attractors for semigroups. This requirement is essential to ensure

the uniqueness of pullback attractors. The addition of the requirement is related to the

weakening of the invariance property imposed by the non-autonomous nature of the

evolution processes along with the possibility of the pullback attractor being unbounded

at −∞; that is, we allow that ∪sÉt A (s) is unbounded for all t ∈ R. If {T (t ) : t Ê 0} and

{T (t − s) : (t , s) ∈ P } is the associated non-autonomous evolution process, there might

be a family {A (t ) : t ∈ T} of compact invariant sets which pullback attracts bounded

subsets of X and it is not minimal. In fact, if T (t − s) = e−(t−s)x0, x0 ∈ T, (t , s) ∈ P ,

the family {[−e−t ,e−t ] : t ∈ T} is invariant, [−e−t ,e−t ] is compact and pullback attracts

bounded subsets of T at time t for each t ∈T.

2. The requirement of minimality in Definition 2.1.4 may be eliminated if we ask that

∪sÉt A (s) is bounded for all t ∈T.

Definition 2.1.6. We say that a solution ξ : T→ X of an evolution process {S(t , s) : (t , s) ∈ P }

is bounded backwards if there exists τ ∈T such that the set {ξ(t ) : t É τ} is bounded.

Remark 2.1.7.

1. It is not hard to see that if an evolution process {S(t , s) : (t , s)∈P } has a pullback attrac-

tor {A (t ) : t ∈} and ξ : T→ X is a bounded backwards solutions, then ξ(t ) ∈A (t ) for all

t ∈T.

2. Also, if {A (t ) : t ∈T} is a pullback attractor for the evolution process {S(t , s) : (t , s) ∈ P }
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and
⋃

sÉt A (s) is bounded for all t ∈R, then A (t ) is given by

A (t ) = {ξ(t )| ξ : T→ X is a global solution

bounded backwards for {S(t , s) : (t , s) ∈P }}, ∀t ∈T.
(2.1.1)

The next result relates the pullback attractors of autonomous evolution processes and

global attractors for semigroups. This result shows that the concept of pullback attractor

extends, in a natural way, the concept of global attractors for semigroups to the evolution

processes.

Theorem 2.1.8. If {T (t ) : t Ê 0} is a semigroup and S(t , s)= T (t − s), (t , s)∈P is the associated

evolution process then {T (t ) : t Ê 0} has a global attractor A if and only if {S(t , s) : (t , s) ∈ P }

has a pullback attractor {A (t ) : t ∈T}. In any one of the cases A (t ) =A for all t ∈T.

2.2 Existence of pullback attractors

As in the autonomous case, the notion ofω−limit will play an important role in the theory

of pullback attractors for evolution processes. Recall that T−
t = {s ∈T, s É t }.

Definition 2.2.1. Let {S(t , s) : (t , s) ∈ P } be an evolution process in a metric space X and B a

subset of X . The pullback ω-limit of B is defined by

ω(B , t )
.=

⋂

σÉt

⋃

sÉσ
S(t , s)B .

For each subset B of X , we have that

ω(B , t ) = {y ∈ X : there exist sequences {sk}k∈N in T
−
t , sk

k→∞−→ −∞

and {xk }k∈N in B , such that y = lim
k→∞

S(t , sk)xk }.
(2.2.1)

Clearly, if {S(t ) : t Ê 0} is a semigroup and S(t , s)= S(t −s), (t , s) ∈P we have that ω(B , t )
.=

⋂

sÊ0
⋃

rÊs S(r )B is independent of t and coincides with the definition of the ω−limit ω(B) of

B for semigroups (see [17, 46, 25]).

The result about the existence of pullback attractors is a generalization of an analogous

result to autonomous processes (see [2, 17, 25, 42, 46]):
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Theorem 2.2.2. Let {S(t , s) : (t , s) ∈P } be an evolution process in a metric space X . Then, the

following statements are equivalent

(a) {S(t , s) : (t , s) ∈P } has a pullback attractor {A (t ) : t ∈T}.

(b) There exists a family of compact sets {K (t ) : t ∈T} which pullback attracts bounded sub-

sets of X under the action of {S(t , s) : (t , s)∈P }.

In any of the cases

A (t ) =
⋃

{ω(B , t ) : B ⊂ X , B bounded }. (2.2.2)

2.3 Gradient-like evolution processes

2.3.1 Definition and main properties

In this section we extend the concept of gradient-like semigroups to evolution processes.

Note that a process will not, in general, possess any equilibrium point. Hence, a general-

ization of the concept of gradient-like semigroups to processes will require a structure that

replaces the role that an equilibrium has for a gradient-like semigroup. Those structures are

the isolated invariant families which we define next inspired by the definition of isolated

invariant sets given in Definition 1.3.1.

Definition 2.3.1. Let Ξ
.= {Ξ(t ) : t ∈T} be an invariant family for the evolution process {S(t , s) :

(t , s) ∈ P }. The family Ξ is called isolated if there exists a δ > 0 such that any global solution

ξ(·) with ξ(t ) ∈Oδ(Ξ(t )) for all t ∈Tmust be inΞ(·), i.e. ξ(t ) ∈Ξ(t ) for all t ∈T. A collectionΨ=

{Ξ1, · · ·Ξp} of isolated invariant sets is said a disjoint collection of isolated invariant families

if each Ξ
∗
i

is an isolated invariant family and there exists a δ∗ > 0 such that for every t ∈R

Oδ∗(Ξi (t ))∩Oδ∗(Ξ j (t )) =∅ for all i 6= j .

Remark 2.3.2. Let X be a Banach space, {S(t ) : t Ê 0} be a nonlinear semigroup on X , {S(t , s) :

S(t , s) = S(t − s), (t , s) ∈ PR} be the associated nonlinear evolution process. If J is an isolated

invariant set for {S(t ) : t Ê 0}, then J = {J (t ) ⊂ X : J (t ) = J , t ∈ R} is an isolated invariant

family for {S(t , s) : (t , s)∈PR}.
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Definition 2.3.3. Let {S(t , s) : (t , s) ∈ PR} be an evolution process and let Ψ = {Ξ1, · · ·Ξp} be

a disjoint collection of isolated invariant families in the pullback attractor {A (t ) : t ∈ R}. A

homoclinic structure in Ψ is a non-trivial set of orbits between elements of Ψ that form a

cycle: a nonempty set of global solutions {ξi : R→ X }k
i=1 such that

lim
t→−∞

dist(ξi (t ),Ξℓi
(t )) = 0 and lim

t→+∞
dist(ξi (t ),Ξℓi+1 ) = 0, 1 ≤ i ≤ k,

where Ξℓi
(·) ∈Ψ and Ξℓk+1 (·) =Ξℓ1 (·).

Definition 2.3.4. Let X be a Banach space and {S(t , s) : (t , s) ∈PR} be an evolution process in

X which has a pullback attractor {A (t ) : t ∈R}. We say that {S(t , s) : (t , s) ∈PR} is a generalized

gradient-like process if the following two hypotheses are satisfied:

(H1) There is a finite set Ψ = {Ξi : R→ X : 1 É i É p} of isolated invariant families in {A (t ) :

t ∈R} with the property that any global solution ξ : R→ X in {A (t ) : t ∈R} satisfies

lim
t→−∞

dist(ξ(t ),Ξi (t )) = 0 and lim
t→∞

dist(ξ(t ),Ξ j (t )) = 0,

for some 1 É i , j É p.

(H2) Ψ= {Ξ1, · · · ,Ξp} does not contain any homoclinic structure.

When {S(t , s) = S(t − s) : (t , s) ∈ PR} we say that {S(t ) : t Ê 0} is a generalized gradient-like

semigroup.

Next we introduce the definitions of unstable and stable sets:

Definition 2.3.5. Let {S(t , s) : (t , s) ∈ PR} be an evolution process. The unstable set of an iso-

lated invariant family Ξ is the set

W u(Ξ∗) = { (τ,ζ) ∈R×X : there exists a global solution ξ : R→ X

such that ξ(τ) = ζ and lim
t→−∞

dist(ξ(t ),Ξ(t )) = 0}.

Also, W u(Ξ∗)(τ)
.= {ζ ∈ X : (τ,ζ) ∈W u(Ξ∗)}.
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Remark 2.3.6. We note that when the evolution process {S(t , s) : s Ê t ∈ R} comes from a non-

linear semigroup {S(t ) : t Ê 0} (S(t , s) = S(t−s), for all (t , s) ∈PR), the above definition of stable

e unstable set coincide with the usual definition of a unstable set of an invariant set.

Unfortunately, in the case of a general evolution process {S(t , s) : (t , s) ∈ PR} this may not

hold. To make the usual definition of unstable sets for an invariant family {Ξ(t ) : t ∈ R} coin-

cide with Definition 2.3.5 we ask the following additional condition

If a solution ξ(t ) stays inside a suitably small neighborhood of Γ∗
i

for all t in an inter-

val of the form (−∞, t0] (respectively, [t0,∞)), then dist(ξ(t ),Ξ(t ))
t→−∞−→ 0 (respectively,

dist(ξ(t ),Ξ(t ))
t→∞−→ 0).

This condition is automatically satisfied in the case when the evolution process is given

by a semigroup, as seen in the next lemma.

Lemma 2.3.7. Let {S(t ) : t Ê 0} be an asymptotically compact semigroup, Ξ⊂ X be an isolated

invariant set and ξ : R→ X be a global solution for {S(t ) : t Ê 0}. Assume that U ,V are open

subsets of X with Ū ⊂ V e such that Ξ ⊂ U , Ξ being the maximal invariant set contained in

V . If there is a t0 ∈ R such that ξ(t ) ∈ U for all t Ê t0 (respectively, t É t0), then ξ(t )
t→∞−→ Ξ

(respectively, ξ(t )
t→−∞−→ Ξ).

Proof: Let us prove the case ξ(t ) ∈U for all t Ê t0. The other case is completely similar. We

argue by contradiction assuming that

lim sup
t→∞

dist(ξ(t ),Ξ) > 0.

Then, there exist ǫ> 0 and a sequence tk →∞ such that dist(ξ(tk ),Ξ) Ê ǫ. From the asymp-

totic compactness of the semigroup, this sequence has a convergent subsequence (which we

denote the same). If y = limk→∞ ξ(tk ), then dist(y,Ξ) Ê ǫ and y belongs to the set ω−limit set

of x0 = ξ(0). Thus y ∈ ω(x0) ⊂ Ū and ω(x0) is invariant under {S(t ) : t Ê 0}. That contradicts

the assumption that Ξ is the maximal invariant subset of V and concludes the proof.

2.3.2 Gradient-like processes under perturbation

We are now ready to state the main result of this section
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Theorem 2.3.8. Let X be a Banach space, η ∈ [0,1] be a parameter and {Sη(t , s) : (t , s) ∈P } be

a nonlinear evolution process in X with a pullback attractor {Aη(t ) : t ∈T}. Assume that,

(a) ∪η∈[0,1] ∪t∈R Aη(t ) is compact.

(b) S0(t , s) = S(t − s), t Ê s and {S(t ) : t Ê 0} is a generalized gradient-like nonlinear semi-

group with isolated invariant sets {Ξ∗
1,0, · · ·Ξ∗

n,0}.

(c) {Sη(t , s) : t Ê s ∈R} has finitely many isolated invariant familiesΨη= {Ξ∗
1,η(·), · · · ,Ξ∗

n,η(·)}

with

lim
η→0

[

sup
t∈R

distH (Ξ∗
i ,η(t ),Ξ∗

i ,0(t ))

]

= 0, for each 1 É i É n.

(d) ‖Sη(t +τ,τ)u−S0(t +τ,τ)u‖X
η→0
−→ 0 uniformly for τ ∈R and for (t ,u) in compact subsets

of T+×X .

(e) There exists δ > 0 and η1 > 0 such that for all η ∈ (0,η1), if ξη is a global solution in

{Aη(t ) : t ∈T} such that if lim sup
t→±∞

dist(ξη(t ),Ξ∗
i ,η(t )) < δ then

dist(ξη(t ),Ξ∗
i ,η(t )) → 0 as t →±∞.

Then there exists η0 > 0 such that, for all ηÉ η0, {Sη(t , s) : (t , s) ∈PR} is a generalized gradient-

like nonlinear evolution process. Consequently, there exists η0 > 0 such that

Aη(t ) =∪n
i=1W u(Ξ∗

i ,η)(t ), for all t ∈R and η ∈ [0,η0].

Theorem 2.3.8 generalizes the characterization result in [8] to perturbation of autono-

mous generalized gradient-like nonlinear semigroups. Hence, the limit problem does not

need to have a Lyapunov function, and Ξ
∗
i

does not need to be an equilibrium point. Of

course it remains to prove in applications the continuity of the isolated global solutions Ξ∗
i ,η

at η= 0, which is known to hold for example for normally hyperbolic global solutions.

Observe that Theorem 2.3.8 implies that the pullback attractors for {Sη(t , s) : (t , s) ∈ PR}

may be, in some situations, characterized as the union of the unstable sets of isolated global

solutions. Hyperbolicity is not required up to this point. Nonetheless, the persistence of the

isolated global solutions will require some kind of hyperbolicity (in general normal hyper-

bolicity).



Chapter

3

An estimate on the fractal dimension

We know begin the main part of this work, and use the structure of the global attractor

to estimate its fractal dimension. Before we proceed, let us briefly recall the definitions of

topological, Hausdorff and fractal dimension.

If K is a topological space, we say that K has finite topological dimension if there exists a

natural number d such that, for every open covering U of K , there is another covering U ′ of

K refining U with the property that each point of K belongs to at most d +1 sets in U ′. In

this case, the topological dimension dimT (K ) of K is the minimum d with this property. With

this notion, a subset of Rn with non-empty interior has topological dimension n and, if K is

a compact metric space with topological dimension dimT (K ) <∞, then it is homeomorphic

to a subset of Rn with n = 2dimT (K )+1 (see [33], [41]). For a more detailed discussion, the

reader can see [6].

Next we introduce the notion of Hausdorff dimension. For a given metric space (X ,ρ),

α> 0, ǫ> 0 and A ⊂ X let

µ(α)
ǫ (A) = inf

{

∞
∑

i=1
(diam(Bi ))α : A ⊂∪∞

i=1Bi , diam(Bi ) < ǫ

}

,

with the convention inf∅=∞. Since µ(α)
ǫ (A) increases as ǫ decreases, we define

µ(α)(A) = lim
ǫ→0

µ(α)
ǫ (A).

We have the following property of the set function µ(α) : 2X → [0,∞] (where 2X = {A : A ⊂
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X }):

Proposition 3.0.9. Given a metric space (X ,ρ) and α> 0, µ(α) : 2X → [0,∞] is a metric exterior

measure; therefore is a Borel measure.

Definition 3.0.10. For A ⊂ X , the Hausdorff dimension of A is defined by

inf{αÊ 0 : µ(α)(A) = 0} = sup{αÊ 0 : µ(α)(A) =∞}.

It is known (see [41]) that dimT (K ) É dimH (K ).

Finally we introduce the notion of fractal dimension. If K is a compact metric space let

N (r,K ) be the least number of balls of radius r necessary to cover K . The fractal dimension

(or also known as capacity or box-counting dimension) c(K ) of K is defined by:

c(K ) = lim sup
r→0

log N (r,K )

log(1/r )
.

Alternatively, c = c(K ) is the least real number such that, for all ǫ> 0 there exists a δ> 0 with

N (r,K ) É
(

1

r

)c+ǫ
, 0 < r < δ.

From this, it is easy to see that

dimH (K ) É c(K ). (3.0.1)

The fractal and Hausdorff dimension may differ significantly. One can easily see that the

set { 1
n

: n ∈ N
∗} ∪ {0} is a compact subset of R with zero Hausdorff dimension and fractal

dimension equal to 1
2 . It may even happen that the Hausdorff dimension is zero with the

fractal dimension being infinite (see [31] for such an example).

3.1 An estimate on the fractal dimension of attractors for gradient-

like semigroups

Recall that, from the definition, if K ⊂ G are both compact subspaces of X , then c(K ) É
c(G).

Now assume that X ,Y are Banach spaces, K ⊂ X , G ⊂ Y compact subsets and f : K →
G a Lipschitz function with Lipschitz constant L f > 0. Then c( f (K )) É c(K ). In fact, since
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N (ǫ, f (K )) É N (ǫ/L f ,K ) we have that

c( f (K )) = lim sup
ǫ→0+

ln N (ǫ, f (K ))

ln(1/ǫ)
É lim sup

ǫ→0+

ln N (ǫ/L f ,K )

ln(1/ǫ)

= lim sup
ǫ→0+

ln N (ǫ/L f ,K )

ln(L f /L f ǫ)
= lim sup

ǫ→0+

ln N (ǫ/L f ,K )

ln(L f /ǫ)− ln(L f )

= lim sup
ǫ→0+

1

1− ln(L f )
ln(L f /ǫ)

ln N (ǫ/L f ,K )

ln(L f /ǫ)
É c(K ).

As a consequence of this result, if we assume the above hypotheses and in addition X = Y

and K ⊂ f (K ), then c(K ) = c( f (K )).

Throughout this section we are interested in the calculation of the fractal dimension of

the attractor, in terms of the fractal dimensions of the unstable manifolds associated to the

isolated invariant sets. First we need to start with some results concerning the isolated in-

variant sets for a given gradient-like semigroup {T (t ) : t Ê 0}. The results of the following

section are taken from [3], which is a product of this work.

Definition 3.1.1. Let {T (t ) : t Ê 0} be a generalized gradient-like semigroup with global at-

tractor A , and Ψ = {Ξ1, · · · ,Ξn} a family of associated isolated invariant sets. We say that an

isolated invariant set Ξi is a source, if W s
l oc

(Ξi )∩A =Ξi ; and a sink if W u(Ξi ) = Ξi . Other-

wise, we say that Ξi is a saddle.

Theorem 3.1.2. Let {T (t ) : t Ê 0} be a generalized gradient-like semigroup with global attrac-

tor A and Ψ = {Ξ1, · · · ,Ξn} the associated isolated invariant sets. Then, there is at least one

source and at least one sink.

Proof. Assume there are no sources. Then given Ξi , there exists a Ξ j ( j 6= i ) and a global

solution ξ such that

Ξi
t→−∞←− ξ(t )

t→∞−→ Ξ j .

Inductively, we can construct a homoclinic structure since there is a finite number of isolated

invariant sets, which leads us to a contradiction. A similar argument proves the existence of

a sink.

Remark 3.1.3. Assume that {T (t ) : t Ê 0} is a generalized gradient-like semigroup with global

attractor A and Ψ = {Ξ1, · · · ,Ξn} the associated isolated invariant sets. We can easily show
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that the attractor A of {T (t ) : t Ê 0} coincides with the attractor A ′ of the discrete generalized

gradient-like semigroup {Sn : n ∈ N}, where S = T (1). In fact, it is clear that A ⊂ A ′. Con-

versely, the attractor A ′ is given as the union of unstable manifolds of the isolated invariant

sets, and given a point z ∈A ′, there exists an isolated invariant set Ξi and a global solution ξ

such that ξ(0) = z and ξ(−n)
n→∞→ Ξi . Now, we can define φ(−t ) for all t Ê 0 as follows: given

n ∈N, define

φ(−t ) = T (n − t )ξ(−n), for all 0 É t É n.

This obviously gives us a global solution φ of {T (t ) : t Ê 0} such that φ(0) = z and ξ(−t )
t→∞→ Ξi ,

which proves that A =A ′.

Due to this remark, we can now consider only the case of discrete generalized gradient-

like semigroups and we begin stating our first result on fractal dimension.

Proposition 3.1.4. Let {T n : n ∈ N} be a discrete semigroup with global attractor A . Let S =

T|A and assume that S is Lipschitz continuous with Lipschitz constant L > 1. Let (A, A∗) be an

attractor-repeller pair in A , and assume that there exist constants M Ê 1 and ω> 0 such that,

for all K compact subset of A with K ∩ A∗ =∅, we have distH(SnK , A) É Me−ωn , for all n ∈N.

Assume also that there is a neighborhood B of A∗ in A such that B ∩ A =∅.

Then

c(B) É c(A ) É max

{

ω+ ln(L)

ω
c(B),c(A)

}

.

Proof. Clearly, since B ⊂A , c(B) É c(A ). We only have to prove the right inequality. For this,

we divide the proof into four steps:

Step 1: Define Ωn = Sn(A \ B) \ Sn+1(A \ B), for all n ∈N. Note that Ω0 = (A \ B) \ S(A \ B) ⊂

S(B) \ B ⊂ S(B) and therefore c(Ω0) É c(S(B)) = c(B), because B ⊂ S(B) and S is a Lipschitz

continuous function.

Now we obtain an estimate on the minimum number of r -balls N (r,Ωk ) necessary to

cover Ωk in terms of the numbers of balls necessary to cover Ω0. Let nr,k
0 = N (r /Lk ,Ω0) and

{x1, . . . , x
n

r,k
0

} a finite sequence of points in Ω0 such that

Ω0 ⊂
n

r,k
0

⋃

i=1
B(xi ,r /Lk ).
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Set, for each i = 1, . . . ,nr,k
0 , ξi = Sk(xi ) ∈ Ωk . Then, for each y ∈ Ωk there exists z ∈ Ω0 such

that y = Sk (z), z ∈ B(xi ,r /Lk ) for some i = 1, . . . ,nr,k
0 and we have

‖y −ξi‖ = ‖Sk(z)−Sk (xi )‖ É Lk‖z −xi‖ < r, for all y ∈Ωk .

So, we just proved Ωk ⊂∪n
r,k
0

i=1 B(ξi ,r ), which gives N (r,Ωk ) É nr,k
0 .

Step 2: Given r > 0, since distH(Sn(A \ B), A) É Me−ωn for all n Ê 0, there exists a n0(r ) =
⌈ 1
ω ln( M

r
)
⌉

such that

G(r ) :=
(

⋃

jÊn0(r )
Ω j

)

∪ A ⊂Or (A),

where Or (A) denotes the r -neighborhood of A. So, if A ⊂ ∪N(r,A)
i=1 B(xi ,r ) with xi ∈ A for all

i = 1, . . . , N (r, A), then Or (A) ⊂∪N(r,A)
i=1 B(xi ,2r ) therefore N (2r,Or (A)) É N (r, A). We conclude

that N
(

r,G( r
2 )

)

É N ( r
2 , A).

Step 3: From Step 1, if H(r ) :=
⋃n0(r )

j=0 Ω j we have

N (r, H(r )) É n0(r ) max
k=0,...,n0(r )

N (r /Lk ,Ω0) = n0N (r /Ln0(r ),Ω0),

since L > 1.

Step 4: First, note that for each r > 0, we have that A = B ∪G( r
2 )∪H( r

2 ) and therefore

N (r,A ) É 3 max{N (r,B); N (r, H(r /2)); N (r,G(r /2))}

É 3 max{N (r,B); N (r /2, H(r /2)) ; N (r /2, A)}

É 3 max{N (r,B); n0(r /2)N (r /Ln0(r /2),Ω0); N (r /2, A)}.

Since the logarithm function is increasing, we obtain

ln N (r,A ) É ln3+max{ln N (r,B); lnn0(r /2)+ ln N (r /Ln0(r /2),Ω0); ln N (r /2, A)}.
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Hence

ln N (r,A )

ln(1/r )
É

ln3

ln(1/r )
+max

{

ln N (r,B)

ln(1/r )
;

lnn0(r /2)

ln(1/r )
+

ln N (r /Ln0(r /2),Ω0)

ln(1/r )
;

ln N (r /2, A)

ln(1/r )

}

.

Obviously, lim sup
r→0+

ln3

ln(1/r )
= 0. Now, we compute the other terms:

(a)

lim sup
r→0+

lnn0(r /2)

ln(1/r )
= lim sup

r→0+

ln1/ω

ln(1/r )
+ lim sup

r→0+

ln(ln(2M/r ))

ln(1/r )
= 0;

(b)

lim sup
r→0+

ln N (r /Ln0(r /2),Ω0)

ln(1/r )
= lim sup

r→0+

ln N (r /Ln0(r /2),Ω0)

ln(Ln0(r /2)/r Ln0 )

= lim sup
r→0+

1

1− n0(r /2)lnL

ln(Ln0(r /2)/r )

ln N (r /Ln0(r /2),Ω0)

ln(Ln0(r /2)/r )
,

but

lim sup
r→0+

1

1− n0(r /2)lnL

ln(Ln0(r /2)/r )

= lim sup
r→0+

(

n0(r /2) ln(L)

ln(1/r )
+1

)

,

and since 1
ω

ln( 2M
r

) É n0 É 1
ω

ln( 2M
r

)+1,

lim sup
r→0+

(

n0(r /2) ln(L)

ln(1/r )
+1

)

=
ω+ ln(L)

ω
,

which shows that

lim sup
r→0+

ln N (r /Ln0(r /2),Ω0)

ln(1/r )
É

ω+ ln(L)

ω
c(Ω0).

(c)

lim sup
r→0+

ln N (r /2, A)

ln(1/r )
= lim sup

r→0+

ln N (r /2, A)

ln(2/2r )

lim sup
r→0+

1

1+ ln(1/2)
ln(1/r )

ln N (r /2, A)

ln(2/r )
É c(A).
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Putting together (a), (b) and (c), we obtain

c(A ) É max

{

c(B),
ω+ ln(L)

ω
c(Ω0),c(A)

}

É max

{

ω+ ln(L)

ω
c(B),c(A)

}

.

Here we use the fact that c(Ω0) É c(B). The proof is now complete.

Now, using this proposition we can estimate the fractal dimension of a global attractor of

a discrete generalized gradient-like semigroup {T n : n ∈N} in terms of the fractal dimensions

of the local unstable manifolds of the isolated invariant sets.

Theorem 3.1.5. Let {T n : n ∈N} be a discrete generalized gradient-like semigroup with global

attractor A and Ψ = {Ξ1, . . . ,Ξp } the associated isolated invariant sets. Assume that the re-

striction T|A to A of the operator T is a Lipschitz continuous function with Lipschitz constant

L > 1 and assume also that there exist constants M > 1 and ω> 0 such that for every attractor-

repeller pair (A, A∗) in A and every compact subset K ⊂A with K ∩ A∗ =∅ we have

distH(T n(K ), A) É Me−ωn , for all n Ê 0.

Finally, assume that the local unstable manifolds {W u
l oc

(Ξi ), i , . . . , p} are given as graphs of

Lipschitz functions. Under these conditions

max
i=1,...,p

c(W u
l oc (Ξi )) É c(A ) É

ω+ ln(L)

ω
max

i=1,...,p
c(W u

l oc (Ξi )).

Proof. Since {T n : n ∈ N} is a discrete gradient-like semigroup, there exists at least one

source. Let Ξi be one of these sources and Bi a neighborhood of Ξi in A such that Bi ⊂

W u
l oc

(Ξi ) and T (Bi ) ⊂ W u
l oc

(Ξi ), so that c(Bi ) = c(T (Bi )) = c(W u
l oc

(Ξi )). Now, it is easy to see

that Ξi = A∗
i

, where Ai =∪ j 6=i W u
l oc

(Ξ j ). By Proposition 3.1.4,

c(Bi ) É c(A ) É max

{

ω+ ln(L)

ω
c(Bi ),c(Ai )

}

,

that is

c(W u
l oc (Ξi )) É c(A ) É max

{

ω+ ln(L)

ω
c(W u

l oc (Ξi )),c(Ai )

}

.

Now, restrict the operator T to the attractor Ai . Thus, we have a discrete generalized gradient-
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like semigroup with attractor A andΞ
1 =Ψ\{Ξi }, which has at least one sourceΞk , with k 6= i .

We can use the same argument above to prove that

c(W u
l oc (Ξk )) É c(Ai ) É max

{

ω+ ln(L)

ω
c(W u

l oc (Ξk )),c(Ak )

}

.

And joining these two results, we obtain

max
j=i ,k

c(W u
l oc (Ξ j )) É c(A ) É max

{

ω+ ln(L)

ω
c(W u

l oc (Ξi )),
ω+ ln(L)

ω
c(W u

l oc (Ξk )),c(Ak )

}

.

This process must stop, since there are just a finite number of isolated invariant sets, and

proceeding inductively we obtain the desired result.

Remark 3.1.6.

(a) The proof of this theorem suggests a certain order in the family of isolated invariant sets

and, after a possible index rearrangement, we can assume that Ψ = {Ξ1, . . . ,Ξp } and in

the proof, the first source in A to be chosen is Ξp , the second is Ξp−1 and so on. Such an

ordering can be used to form a new family N = {N1, . . . ,Nm} with m É p called energy

level decomposition for the attractor A , which is a Morse decomposition for A . For

more details see Section 5 of [1]. Using this decomposition we can see that the fractal

dimension of the sets W u
l oc

(Ξi ) is a non-increasing function of the index i , and we have

that

c(W u
l oc (Ξ1)) É c(A ) É

ω+ ln(L)

ω
c(W u

l oc (Ξ1)).

(b) We already knew that in this case the Hausdorff dimension of A is finite and thus the

topological dimension of A is also finite, which allows us to embed A in R
2dimT (A )+1.

Now we can embed A in an Euclidian space of higher dimension, but with a projection

with Hölder continuous inverse.

Our next result is an immediate corollary of the preceding theorem, once we recall some

basic facts concerning discrete gradient-like semigroups {T n : n ∈ N} with an attractor A

and a finite set E = {e1, . . . ,ep } of fixed hyperbolic points. First, the reader can check (see

[19] for a proof) that the local unstable (stable) manifold W u
l oc

(ei ) (W s
l oc

) is given by a graph

of a Lipschitz function. Now, in these conditions it is easy to see that there are only a finite
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number of attractor-repeller pairs (A, A∗), namely, the pairs (A, A∗), with

A =
⋃

i∈I
I⊂{1,...,p}

W u(ei ).

Using this fact and the exponential attraction of each fixed point, we can prove that there

exist constants M Ê 1 and ω > 0 such that for every attractor-repeller pair (A, A∗) and every

compact subset K of A with K ∩ A∗ =∅, we have

distH (T n(K ), A) É Me−ωn , for all n Ê 0.

From these two facts it follows the next result:

Corollary 3.1.7. Let {T n : n ∈ N} be a discrete gradient-like semigroup with an attractor A

and a finite set E = {e1, . . . ,ep } of fixed hyperbolic points. Assume that the restriction of T to

A is a Lipschitz function with Lipschitz constant L > 1. Let M Ê 1 and ω> 0 be two constants

such that for every attractor-repeller pair (Ai , A∗
i

), with Ai =∪ j 6=i W u
l oc

(e j ) and every compact

subset K of A with K ∩ A∗ =∅ we have

distH (T n(K ), A) É Me−ωn , for all n Ê 0.

Then

max
i=1,...,p

c(W u
l oc (ei )) É c(A ) É

ω+ ln(L)

ω
max

i=1,...,p
c(W u

l oc (ei )).

Under similar, although appropriately modified, hypotheses it is possible to show an

analogous result to Proposition 3.1.4, but using now local stable manifolds.

Proposition 3.1.8. Let {T n : n ∈ N} be a discrete semigroup with global attractor A . Let

S = T|A and assume that S is invertible with inverse S−1 a Lipschitz continuous map, with

Lipschitz constant L > 1. Let (A, A∗) be an attractor-repeller pair in A , and assume that there

exist constants M Ê 1 and ω > 0 such that, for all K compact subset of A with K ∩ A =∅, we

have distH(S−nK , A∗) É Me−ωn , for all n ∈N. Assume also that there is a neighborhood B of A

in A such that B ∩ A∗ =∅.

Then

c(B) É c(A ) É max

{

ω+ ln(L)

ω
c(B),c(A∗)

}

.
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Additionally we can also establish the next result.

Theorem 3.1.9. Let {T n : n ∈N} be a discrete generalized gradient-like semigroup with global

attractor A and Ψ = {Ξ1, . . . ,Ξp } the associated isolated invariant sets. Assume that the re-

striction T|A to A of the operator T is invertible with its inverse T −1 a Lipschitz continuous

function with Lipschitz constant L > 1 and assume also that there exist constants M > 1 and

ω> 0 such that for every attractor-repeller pair (A, A∗) in A and every compact subset K ⊂A

with K ∩ A =∅ we have

distH(T −n(K ), A∗) É Me−ωn , for all n Ê 0.

Finally, assume that the intersection of the local stable manifolds {W s
l oc

(Ξi ), i , . . . , p} with the

global attractor A are given as graphs of Lipschitz functions. Under these conditions

max
i=1,...,p

c(W s
l oc (Ξi )∩A ) É c(A ) É

ω+ ln(L)

ω
max

i=1,...,p
c(W s

l oc (Ξi )∩A ).

Remark 3.1.10. If the hypotheses of Corollary 3.1.7 are satisfied, S is invertible and the hy-

potheses of exponential attraction for the inverse to the local repellers are also satisfied then

c(A ) É min

{

ω+ lnL

ω
max

i=1,··· ,p
c(W u

l oc (ei )), max
i=1,··· ,p

c(W s
l oc (ei )∩A )

}

.

This can be easily seen if we return to the proof of Proposition 3.1.4. If S is Lipschitz continuous

with Lipschitz constant L > 1, then S−1 is also Lipschitz with Lipschitz constant 1/L < 1, and

the proof in this case is modified. More precisely, in Step 3,

N (r, H(r )) É n0N (r,Ω0).

Also, with the reversed hypotheses

c(A ) É min

{

max
i=1,··· ,p

c(W u
l oc (ei )),

ω+ lnL

ω
max

i=1,··· ,p
c(W s

l oc (ei )∩A )

}

.
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Remark 3.1.11. Consider the autonomous equation

ut = uxx +λ(u −βu3) (3.1.1)

for x ∈ [0,π] with Dirichlet boundary conditions. We consider the family of attractors {Aλ :

λ > 0}, varying with the parameter λ. Note that our argument implies that if we approach

a bifurcation point λ = n2, n ∈ N, our estimate on the fractal dimension of the attractor Aλ

explodes, since the rate of exponential attraction ω approaches to zero (see [22] where it is

proved that this attraction is in fact polynomial). However, we know that the fractal dimension

of the above Chafee-Infante equation is finite and of order
p
λ for all values of λ≥λ1 (the first

eigenvalue of the Laplacian operator) (see, for instance, [46, 41]). Despite of this fact, if we

choose λ′ near λ (λ′ > λ), then the estimate is finite, as we have the exponential attraction to

hyperbolic equilibria. Moreover, for any sequence {λn : n ∈N} such that λn is away from the

endpoints of the interval (n2, (n +1)2), uniformly for n ∈N, our estimate is of order
√

λn .

3.2 Non-autonomous dynamical systems and attractor-repeller

pairs

In this section we are interested in obtaining an estimate for the fractal dimension of a

pullback attractor for a gradient-like evolution process. We now will define attractor-repeller

pairs for evolution processes and extract some of their properties. For this purpose we fol-

low the ideas in [24], and some demonstrations are omitted since they can be found in this

reference.

To make the theory a little bit more general, we will consider non-autonomous dynamical

systems (which we define below).

Definition 3.2.1. Let (X ,dX ) and (P,dP ) be metric spaces. A non-autonomous dynamical sys-

tem (NDS), denoted by (θ,ϕ) or shortly ϕ when there is no confusion, consists of two ingredi-

ents:

(i) A model of the non-autonomous driving system, namely a dynamical system θ on P
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with time set T=Z or R; i.e.

θ0p = p, for all p ∈P,

θt+s p = θt (θs p), for all p ∈P, t , s ∈T,
(3.2.1)

and the map (t , p) 7→ θt p is continuous.

(ii) A model of the non-autonomously perturbed system, namely a cocycle ϕ over θ; i.e. a

continuous mapping

ϕ : T+×P ×X → X , (t , p, x) 7→ϕ(t , p, x)

such that the family ϕ(t , p, ·) =ϕ(t , p) : X → X of self-mappings of X satisfies the cocycle

property:

ϕ(0, p) = idX , for all p ∈P,

ϕ(t + s, p) =ϕ(t ,θs p)◦ϕ(s, p), for all t , s,∈T
+, p ∈ P.

(3.2.2)

P is called the base space and X is the state space.

Remark 3.2.2. Given an evolution process {S(t , s) : (t , s) ∈ P }, then we can construct a non-

autonomous dynamical system with base space P =R by setting

ϕ(t , s)
.= S(t + s, s), for all t Ê 0 and s ∈R,

thus the non-autonomous dynamical systems are a generalization of evolution processes, and

every result done from now on can be applied for evolution processes.

Definition 3.2.3. A family of subsets D̂ = {D(p)}p∈P of X is called a non-autonomous set. If

each fiber D(p) is closed/compact/open, then D̂ is called a non-autonomous closed/compact/open

set.

Definition 3.2.4. A non-autonomous set D̂ is said to be forward invariant under the NDS ϕ if

ϕ(t , p)D(p) ⊂ D(θt p) for all p ∈ P and t Ê 0. It is said to be invariant if ϕ(t , p)D(p) = D(θt p)

for all p ∈P and t Ê 0.
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Definition 3.2.5. Assume that D̂ is a non-autonomous set, then the (pullback) omega-limit

set of D̂, ωD̂ , is defined by

ωD̂ (p) :=
⋂

tÊ0

⋃

sÊt

ϕ(s,θ−s )D(θ−s p), for each p ∈P.

To simplify the notation, we will write ωD instead of ωD̂ .

Definition 3.2.6. Given two non-autonomous sets D̂ and Â, we say that Â pullback attracts D̂

if

lim
t→∞

distH (ϕ(t ,θ−t p)D(θ−t p), A(p)) = 0

holds for all p ∈ P, where d(A,B) stands for the Hausdorff semi-distance between two sets A

and B, i.e. d(A,B) := supx∈A infy∈B dx (x, y). As usual, we set d(∅, A) = 0 and d(A,∅) =∞, for

a nonempty set A.

Remark 3.2.7. 1. Clearly x ∈ ωD (p) if and only if there exist sequences tn → ∞ and xn ∈

D(θ−tn p) such that ϕ(tn ,θ−tn p)xn → x as n →∞.

2. For any two non-autonomous sets D̂1 and D̂2, we have

ωD1∪D2 (p) =ωD1 (p)∪ωD2 (p),

for each p ∈P.

3. If a non-autonomous closed set Ê pullback attracts another D̂, then ωD (p) ⊂ E (p) for all

p ∈P.

Definition 3.2.8. Let ϕ be a NDS. For a fixed p ∈ P and x ∈ X , a mapping σ·(p) : R → X is

called an entire p-orbit through x of ϕ if it satisfies the cocycle property















σ0(p) = x

σt+s (p) =ϕ(t ,θs p)σs (p), for all t Ê 0, s ∈R.

By the cocycle property of σ, it is clear that for arbitrary t Ê 0 and p ∈P we have

σt (p) =ϕ(t , p)σ0(p).
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Lemma 3.2.9. Assume that D̂ is a forward invariant non-autonomous compact set, then for

any p ∈ P and any point x ∈ ωD (p) there exists an entire p-orbit σ·(p) through x such that

σt (p) ∈ωD (θt p) for all t ∈R.

Proof: Let p ∈ P fixed and x ∈ωD (p). Define σ0(p) = x and for t Ê 0, σt (p) :=ϕ(t , p)σ0(p). It

is clear that σt (p) ∈ ωD (θt p) for all t Ê 0, by the invariance of ωD . Now, by definition of the

omega-limit set, there exist sequences tn →∞ and xn ∈ D(θ−tn p) such that ϕ(tn ,θ−tn p)xn →
x, n →∞. By the forward invariance of D̂ , for each k ∈Z

−, there exists N0 ∈N such that

ϕ(tn +k,θ−tn p)xn ∈ D(θk p), for all n Ê N0.

Using the compactness of D̂ and a diagonalization process, we can find a subsequence

nm →∞ and points x̃k ∈ D(θk p) such that

ϕ(tnm +k,θ−tnm
p)xnm → x̃k ,

for each k ∈Z
−. Define, for k É t É k +1, σt (p) =ϕ(t −k,θk p)x̃k . In this way it is easy to see

that σ·(p) : R→ X is an entire p-orbit through x such that σt (p) ∈ωD (θt p) for all t ∈R.

Corollary 3.2.10. Assume that D̂ is an invariant non-autonomous compact set. Then for any

p ∈ P and any point x ∈ D(p) , there exists an entire p-orbit σ·(p) through x that lies in D̂, i.e.

σt (p) ∈ D(θt p) for all t ∈R.

Definition 3.2.11. Assume that ϕ is an NDS with base space P and state space X . An universe

D̂ is a collection of nonempty non-autonomous sets which is closed with respect to set inclu-

sion, i.e. if D̂1 ∈ D̂ and D̂2 ⊂ D̂1 then D̂2 ∈ D̂. A non-autonomous compact set Ŝ ∈ D̂ is called a

D̂-pullback attractor of ϕ if

(i) Ŝ is invariant;

(ii) Ŝ is D̂-pullback attracting, i.e. Ŝ pullback attracts every D̂ ∈ D̂.

A continuous function ξ : P → X is called a global solution for the non-autonomous dy-

namical system ϕ if it satisfies

ϕ(t ,θ−t p)ξ(θ−t p) = ξ(p), for all t ∈T
+ and p ∈P.
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Proposition 3.2.12. Given an attraction universe D̂, the pullback attractor with respect to D̂

is unique.

Proof. Let Â and Â′ be two pullback attractors with respect to the attraction universe D̂.

Since Â′ ∈D, we have for every p ∈P that

distH (A′(p), A(p)) = lim
t→∞

distH (ϕ(t ,θ−t p)A′(θ−t p), A(p)) = 0,

and since A′(p) and A(p) are both compact, it follows that A′(p) ⊆ A(p). Analogously we

show that A(p) ⊆ A′(p) which concludes the result.

Definition 3.2.13 (Pullback absorbing set with respect to an attraction universe). Let D̂ be

an attraction universe of a NDS ϕ. A non-autonomous set B̂ ∈ D̂ is called pullback absorbing

with respect to D̂ if for each D̂ ∈ D̂ and p ∈P there exists a t0 Ê 0 such that

ϕ(t ,θ−t p)D(θ−t p) ⊂ B(p), for all t Ê t0.

Theorem 3.2.14 (Existence of a pullback attractor with respect to an attraction universe). Let

ϕ be a NDS and assume that the non-autonomous compact set B̂ is pullback absorbing with

respect to an attraction universe D̂. Then there exists a pullback attractor Â with respect to D̂,

where for each p ∈P, the fibers A(p) are defined by

A(p) =ωB (p). (3.2.3)

Proof. Let Â be defined by (3.2.3). Firstly, we will show that for every p ∈ P

lim
t→∞

distH (ϕ(t ,θ−t p)B(θ−t p), A(p)) = 0.

Assume to contrary that there exist a p ∈ P , a sequence {tn}nÊ0 ⊆ [0,∞) with tn →∞ as n →

∞, a sequence {xn}nÊ0 with xn ∈ B(θ−tn p) and an ǫ> 0 such that

distH (ϕ(tn ,θ−tn p)xn , A(p)) Ê ǫ, for every n Ê 0.
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Since B̂ is an absorbing family with respect to D̂, B̂ ∈ D̂ and tn →∞ as n →∞, we can assume

that yn
.= ϕ(tn ,θ−tn p)xn ∈ B(p) for every n Ê 0. By the compactness of B(p), we can also

assume that there exists y ∈ B(p) such that the sequence {yn}nÊ0 satisfies yn → y as n →∞.

But distH (yn , A(p)) Ê ǫ for every n Ê 0 and so distH (y, A(p)) Ê ǫ, which is a contradiction

since y ∈ωB (p) = A(p).

Now let D̂ ∈ D̂. The above calculation gives us that, given p ∈ P and ǫ > 0, there exists

t0 Ê 0 such that

distH (ϕ(t ,θ−t p)B(θ−t p), A(p)) < ǫ, for all t Ê t0.

Now, the family B̂ is pullback absorbing with respect to D̂ and so, for the t0 given above, there

exists t1 Ê 0 such that ϕ(t ,θ−t+t0 p)D(θ−t+t0 p) ⊂ B(θt0 p) for every t Ê t1.

Thus, for t Ê t1 we have

distH (ϕ(t ,θ−t p)D(θ−t p), A(p)) = distH (ϕ(t0,θ−t0 p)ϕ(t − t0,θ−t p)D(θ−t p), A(p))

É distH (ϕ(t0,θ−t0 p)B(θ−t0 p), A(p)) < ǫ,

which proves that Â pullback attracts every family D ∈D.

The compactness of A(p) follows since A(p) ⊂ B(p) and A(p) is closed, for every p ∈ P .

It remains to show the invariance of the family Â. Let x ∈ A(p) and t Ê 0. Then there are

sequences {tn}nÊ0 ⊂ [0,∞) and {xn}nÊ0 such that tn →∞ as n →∞, xn ∈ B(θ−tn p) for every

n Ê 0 and ϕ(tn ,θ−tn p)xn → x as n →∞. Using the continuity of ϕ(t , p), we have that

ϕ(t + tn ,θ−t−tn θt p)xn =ϕ(t + tn ,θ−tn p)xn =ϕ(t , p)ϕ(tn ,θ−tn p)xn →ϕ(t , p)x, as n →∞,

which proves that ϕ(t , p)x ∈ A(θt p).

Now if x ∈ A(θt p), there exist sequences {tn}nÊ0 ⊂ [0,∞) and {xn}nÊ0 such that tn →∞ as

n →∞, xn ∈ B(θt−tn p) for every n Ê 0 and ϕ(tn ,θt−tn p)xn → x as n →∞. Since tn →∞ as

n →∞, we can assume that tn Ê t for all n Ê 0.

We have then ϕ(tn ,θt−tn p)xn = ϕ(t , p)ϕ(tn − t ,θt−tn p)xn and since B is absorbing, we

can also assume that the sequence {ϕ(tn − t ,θt−tn p)xn}nÊ0 is contained in B(p). But B(p)

is compact, and we can assume that there exists y ∈ B(p) such that ϕ(tn − t ,θt−tn p)xn → y .
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Thus y ∈ A(p) and, by the continuity of ϕ(t , p), we have ϕ(t , p)y = x, which concludes the

invariance of Â and also the theorem.

We now introduce the concepts of local attractivity and repulsion, following [38] (see also

[24]).

Definition 3.2.15 (Local pullback attractivity). Let ϕ be a NDS with a pullback attractor Â .

A compact invariant family Â with Â ⊂ Â is called a local pullback attractor if there exists an

η> 0 such that

lim
t→∞

distH (ϕ(t ,θ−t p)Oη(A(θ−t p)), A(p)) = 0, for all p ∈ P, (3.2.4)

where Oη(A(q))
.= {x ∈ A (q) : distH (x, A(q)) < η}, for q ∈ P. The supremum of all η > 0 for

which the above relation holds is called local pullback radius of attraction of A.

Remark 3.2.16. We see that a local pullback attractor is a pullback attractor with respect to

the attraction universe D̂ defined by all the families {Oζ(A(p)) : p ∈P } where ζ ∈ (0,η].

Definition 3.2.17 (Local backward repulsion). Let ϕ be a NDS with a pullback attractor Â .

A compact invariant family Â∗ with Â∗ ⊂ Â is called a local repeller if there exists η> 0 such

that

lim
t→∞

distH (ϕ(−t , p)Oη(A∗(p)), A∗(θ−t p)) = 0, for all p ∈P, (3.2.5)

where ϕ(−t , p)B := [ϕ(t ,θ−t p)]−1B is defined as the inverse image of B by the map ϕ(t ,θ−t p) :

A (θ−t p) →A (p). The supremum of all η> 0 such that the above relation holds is called local

radius of repulsion of A∗.

Remark 3.2.18. We emphasize that the relations (3.2.4) and (3.2.5) do not hold, in general,

when η> 0 is the local radius of attraction and repulsion, respectively.

Theorem 3.2.19 (Existence of attractor-repeller pairs). Let ϕ be a NDS with a pullback attrac-

tor Â and Â∗ a local repeller. Then, there exists a uniquely determined local pullback attractor

Â, which is the maximal local pullback attractor outside Â∗ in the sense that A(p)∩A∗(p) =∅

for all p ∈ P and any local pullback attractor Â′ with Â′ ) Â has nonempty intersection with

Â∗; i.e., there exists p ∈ P such that A′(p)∩ A∗(p) 6=∅. The pair (Â, Â∗) is called an attractor-

repeller pair.
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Proof. Since Â∗ is a local repeller, if η∗ > 0 is the local radius of repulsion of Â∗ and η ∈ (0,η∗),

we have that

lim
t→∞

distH (ϕ(−t , p)Oη(A∗(p)), A∗(θ−t p)) = 0, for all p ∈P, (3.2.6)

Consider the universe of attraction containing all the families D̂ζ for ζ ∈ (0,η] which are

defined by

Dζ(p)
.=A (p) \Oζ(A∗(p)), for all p ∈P.

Now we will show that the family D̂η is pullback absorbing with respect to D̂ (note that

D̂η is a compact family). Choose ζ ∈ (0,η] and p ∈ P arbitrarily. Equation (3.2.6) gives us a

t0 Ê 0 such that

distH (ϕ(−t , p)Oη(A∗(p)), A∗(θ−t p)) <
ζ

2
for all t Ê t0,

which means that ϕ(−t , p)Oη(A∗(p)) ⊆Oζ/2(A∗(θ−t p)) for all t Ê t0. Thus, we obtain

ϕ(−t , p)Dη(p) =ϕ(−t , p)(A (p) \Oη(A∗(p)))

=A (θ−t p) \ϕ(−t , p)Oη(A∗(p))

⊇ Dζ(θ−t p), for all t Ê t0.

Applying ϕ(t ,θ−t p) in both sides we obtain the relation ϕ(t ,θ−t p)Dζ(θ−t p) ⊆ Dη(p) for all

t É t0 which proves that the family D̂η is pullback absorbing with respect to D̂.

Theorem 3.2.14 guarantees the existence of a pullback attractor Â with respect to D̂ with

Â ⊂ D̂η. Now, since A(p) ⊆ Dη/2(p) for all p ∈P we have that Oη/2(A(p)) ⊆ Dη(p) for all p ∈ P .

But D̂η ∈ D̂ and since Â pullback attracts D̂η, Â pullback attracts {Oη/2(A(p)) : p ∈ P }, which

shows that Â is a local pullback attractor.

Now, if η̃ ∈ [η,η∗) then using the same process we construct another local pullback at-

tractor ˆ̃A. But by construction and by the attraction property, we can see that Â = ˆ̃A, which

means that the local pullback attractor does not change if we vary η ∈ (0,η∗).

If Â′ is another pullback attractor with Â′ ) Â, there exists a p0 ∈ P such that A′(p0) )

A(p0). Let x ∈ A′(p0) \ A(p0) and σ·(p0) an entire p0-orbit through x. Since Â′ is a local

pullback attractor and x ∈ A′(p0) (then σs (p0) ∈ A′(θs p0) for all s ∈R), there exists η̃> 0 such

that
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lim
t→∞

distH (ϕ(t ,θ−t p0)Oη̃(σ−t (p0)), A′(p0)) = 0.

Claim: If C ⊆A (p0) \ A(p0) is a compact set then

lim
t→∞

distH (ϕ(−t , p0)C , A∗(θ−t p0)) = 0.

Indeed, if ǫ ∈ (0,η), since Â is a pullback attractor with respect to D̂ and D̂ǫ ∈ D̂, there

exists t0 É 0 such that

distH (ϕ(t ,θ−t p0)Dǫ(θ−t p0), A(p0)) ≤
distH (C , A(p0))

2
, for all t É t0,

which implies that C∩ϕ(t ,θ−tp0)Dǫ(θ−t p0) =∅ for all t É t0. Hence, Dǫ(θ−t p0)∩ϕ(−t , p0)C =

∅ for all t É t0, which means that distH (ϕ(−t , p0)C , A∗(θ−t p0)) < ǫ for all t É t0 and proves

our claim.

Now, by our claim, lim
t→∞

distH (σ−t (p0), A∗(θ−t p0)) = 0, and so for each n Ê 0 we can find

tn > n and xn ∈ A∗(θ−tn p0) such that limn→∞ distH (σ−tn (p0), xn) < η̃. In this way, xn ∈Oη̃(σ(θ−tn p0))

and

lim
n→∞

distH (ϕ(tn ,θ−tn p0)xn , A′(t0)) = 0.

Since xn ∈ A∗(θ−tn p0) and Â∗ is invariant, the sequence {ϕ(tn ,θ−tn p0)xn}nÊ0 is in A∗(p0). By

the compactness of A∗(p0) we can assume that there exists z ∈ A∗(p0) such thatϕ(tn,θ−tn p0)xn →

z as n →∞ and then it is clear that distH (z, A′(p0)) = 0, and by the compactness of A′(p0),

we have that z ∈ A′(p0), which proves that A′(p0)∩ A∗(p0) 6=∅ and completes the proof.

It is important to remark that the existence of a local pullback attractor does not guaran-

tee the existence of a local forward repeller (see [38]).

Theorem 3.2.20 (Dynamics of attractor-repeller pairs). Let ϕ be a NDS with a pullback at-

tractor Â . Let (Â, Â∗) be an attractor-repeller pair. The following statements hold:

(i) There exists a β> 0 such that

Oβ(A(p))∩Oβ(A∗(p)) =∅, for all p ∈ P.
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(ii) Let p0 ∈P be a fixed real number and C ⊆A (p0) \ A(p0) a compact set. Then

lim
t→∞

distH (ϕ(−t , p0)C , A∗(θ−t p0)) = 0.

(iii) Let K̂ be a compact non-autonomous set with K̂ ⊂ Â and lim inft→∞ d(K (θ−t p), A∗(θ−t p)) >

0. Then

lim
t→∞

distH (ϕ(t ,θ−t p)K (θ−t p), A(p)) = 0, for all p ∈P.

Proof. Let η> 0 and D̂ as in the proof of Theorem 3.2.19; i.e., η is the local radius of repulsion

of Â∗ and D̂ is the attraction universe containing all the families D̂ζ, with ζ ∈ (0,η].

(i) It was shown in the proof of Theorem 3.2.19 that Â ⊆ D̂η. This assertion then follows

by taking β
.= η

2 .

(ii) This is the Claim in the proof of Theorem 3.2.19.

(iii) Choose ζ< min{η, lim inf
t→∞

d(K (θ−t p), A∗(θ−t p))}. There exists t0 Ê 0 such that

d(K (θ−t p), A∗(θ−t p)) Ê ζ, for all t Ê t0,

which implies that K (θ−t p) ⊂ Dζ(θ−t p) for all t Ê t0. This finishes the proof since D̂ζ ∈

D̂ and Â is a pullback attractor with respect to D̂.

Proposition 3.2.21 (Nonuniqueness of attractor-repeller pairs). Let ϕ be a NDS with a pull-

back attractor ˆA . Let Â∗ and R̂∗ be two local repellers such that their corresponding attractors,

Â and R̂ respectively, are equal; i.e., Â = R̂. Then,

lim
t→∞

distH (A∗(θ−t p),R∗(θ−t p)) = 0,

for all p ∈P.

Proof. Arguing by contradiction, assume that there exist p ∈ P and sequences {tn}nÊ0 ⊆
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[0,∞), {xn}nÊ0 and ǫ> 0 such that tn →∞ as n →∞, xn ∈ A∗(θ−tn p) and

distH (xn ,R∗(θ−tn p)) Ê ǫ, for all n Ê 0.

Applying Theorem 3.2.20 (iii) for the attractor-repeller pair (R̂ , R̂∗), since

lim inf
n→∞

distH (xn ,R∗(θ−tn p)) Ê ǫ> 0,

we have that

lim
n→∞

distH (ϕ(tn ,θ−tn p)xn ,R(p)) = 0.

Since ϕ(tn ,θ−tn p)xn ∈ R∗(p) for all n Ê 0 and both A∗(p) and A(p) = R(p) are compact sets,

it follows that R(p)∩R∗(p) 6=∅, which is a contradiction and proves the result.

3.3 Morse decomposition for non-autonomous dynamical sys-

tems

The definition of a Morse decomposition via finite attractor-repeller pair sequence is ba-

sically the same as in the autonomous case.

Definition 3.3.1. Let ϕ be a NDS with pullback attractor Â . Assume that there exists a se-

quence of attractor-repeller pairs (Âi , Â∗
i

), for i = 0, · · · ,n, satisfying

∅= A∗
n(p)( A∗

n−1(p)( · · ·( A∗
0 (p) =A (p),

for all p ∈P, and also

∅= A0(p) ( A1(p)( · · ·( An(p) =A (p),

for all p ∈P. The collection {M̂1, M̂2, · · · , M̂n} defined by

Mi (p)
.= Ai (p)∩ A∗

i−1(p), for all p ∈ P and i ∈ {1, · · · ,n}

is called a Morse decomposition. Each family M̂i is called a Morse set.
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Note here that, unlike the autonomous case, we need to impose the condition∅= A0(p) (

A1(p) ( · · · ( An(p) = A (p) on the local pullback attractors, since Proposition 3.2.21 indi-

cates that local pullback attractors of the attractor sequence may coincide.

The definition of a Morse decomposition is a generalization of an attractor-repeller pair

in the sense that, if (Â, Â∗) is an attractor-repeller pair such that ∅( Â ( Â , then {Â, Â∗} is a

Morse decomposition.

We now present a proposition that summarizes the general properties of a Morse decom-

position.

Proposition 3.3.2. Let ϕ be a NDS with a pullback attractor Â . The Morse sets of a Morse

decomposition {M̂1, · · · , M̂n} are nonempty, invariant and isolated; i.e., there exists a β > 0

such that, for i 6= j

Oβ(Mi (p))∩Oβ(M j (p)) =∅, for all p ∈ P, and i 6= j .

Proof. Firstly, choose an arbitrary Morse set M̂i = Âi ∩ Â∗
i−1. Since Âi−1 ( Âi there exist

p0 ∈ P and a point x ∈ Ai (p0) \ Ai−1(p0). But x ∈ Ai (p0), so we can find an entire p0-orbit

σ·(p0) through x such that σt (p0) ∈ Ai (θt p0) for all t ∈ R and since Âi is a local pullback

attractor, for η> 0 being the local radius of attraction, we have that

lim
t→∞

distH (ϕ(t ,θ−t p0)Oη(σ−t (p0)), Ai (p0)) = 0.

Since x ∉ Ai−1(p0), Theorem 3.2.20 (ii) gives that lim
t→∞

distH (σ−t (p0), A∗
i−1(θ−t p0)) = 0, and

given n ∈N we can find sequences {tn}nÊ0 with tn →∞ and µn ∈ A∗
i−1(θ−tn p0) such that

dX (σ−tn (p0),µn) É
η

2
.

But then µn ∈Oη(σ−tn (p0)) and if yn
.=ϕ(tn ,θ−tn p0)µn we have that

lim
n→∞

distH (yn , Ai (p0)) = 0.

Since A∗
i−1(p0) and Ai (p0) are both compact, we can assume that yn → y0 ∈ Ai (p0)∩A∗

i−1(p0)

we have that Mi (p0) = Ai (p0)∩ A∗
i−1(p0) 6=∅.
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Furthermore,ϕ(t , p)Mi (p) ⊂ϕ(t , p)Ai (p)∩ϕ(t , p)A∗
i−1(p) = Ai (θt p)∩A∗

i−1(θt p) = Mi (θt p)

for all p ∈ P , t Ê 0 and i ∈ {1, · · · ,n}. Now, if x ∈ Mi (θt p) = Ai (θt p)∩A∗
i−1(θt p) and σ·(θt p) is a

θt p-orbit through x then, by the invariance of Âi and Â∗
i−1, σ·(θt p) ∈ M̂i and thus σ−t (θt p) ∈

Ai (p)∩ A∗
i−1(p). Therefore x =σ0(θt p)ϕ(t , p)σ−t (θt p) ∈ϕ(t , p)Mi (p).

Choose now another Morse set M j . We can assume without loss of generality that j > i

and then

M̂i ∩ M̂ j = Âi ∩ Â∗
i−1 ∩ Â j ∩ Â∗

j−1

= Âi ∩ Â j ∩ Â∗
i−1 ∩ Â∗

j−1

= Âi ∩ Â∗
j−1 ⊆ Â j−1 ∩ Â∗

j−1

=∅.

Finally the isolation property is a straightforward consequence of Theorem 3.2.20 (i).

The Morse decompositions are not uniquely defined, as in the autonomous case.

Definition 3.3.3. A Morse decomposition {M̂1, · · · , M̂n} is said to be finer than the Morse de-

composition {N̂1, · · · , N̂m} if

lim
t→∞

distH (∪n
i=1Mi (θ−t p),∪m

i=1Ni (θ−t p)) = 0,

for all p ∈P.

Remark 3.3.4. Let {M̂1, · · · , M̂n} be a Morse decomposition given by the local repellers

∅= Â∗
n ( Â∗

n−1 ( · · ·( Â∗
0 = Â ,

and its corresponding local pullback attractors

∅= Â0 ( Â1 ( · · ·( Ân = Â .

Assume we have a new local repeller B̂∗ and its corresponding local attractor B̂ satisfying

∅= Â∗
n ( Â∗

n−1 ( · · ·( Â∗
i ( B̂∗ ( Â∗

i−1 ( · · ·( Â∗
0 = Â ,
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and

∅= Â0 ( Â1 ( · · ·( Âi−1 ( B̂ ( Âi ( · · ·( Ân = Â ,

Then, the Morse decomposition {M̂1, · · · , M̂n} is finer than the Morse decomposition defined by

the new sequence, and this is seen simply noting that M̂i = Âi ∩ Â∗
i−1 ⊂ B̂ ∩ Â∗

i−1.

To finish this section we show a result of uniqueness of the local pullback attractors in a

Morse decomposition under stronger convergence hypotheses.

Proposition 3.3.5. Let ϕ be a NDS with pullback attractor Â and {M̂1, · · · , M̂n} be a Morse

decomposition obtained by the finite sequence of local repellers

Â = Â∗
0 ) Â∗

1 ) · · ·) Â∗
n =∅.

Moreover, assume that for all p, x ∈A (p) andσ·(p) a p-orbit through x there is an i ∈ {1, · · · ,n}

with

lim
t→∞

distH (σ−t (p), Mi (θ−t p)) = 0.

Then, the representation

Ai (p) = {x ∈A (p) : lim
t→∞

distH (σ−t (p),∪i
j=1M j (θ−t p)) = 0, for all entire p-orbits σ·(p) through x}

holds for all i ∈ {1, · · · ,n}; i.e., the local pullback attractors of the Morse decomposition are

uniquely defined.

Proof. (⊆) Let p ∈P fixed, x ∈ Ai (p) andσ·(p) an entire p-orbit through x. By the hypotheses,

choose j ∈ {1, · · · ,n} such that

lim
t→∞

distH (σ−t (p), M j (θ−t p)) = 0.

Then,

lim
t→∞

distH (σ−t (p), A∗
j−1(θ−t p)) É lim

t→∞
distH (σ−t (p), M j (θ−t p)) = 0.

Now, if j > i , then lim
t→∞

distH (σ−t (p), A∗
i (θ−t p)) = 0 since A∗

j−1(p) ⊂ A∗
i

(p), which contradicts

Theorem 3.2.20 (i) since σ−t (p) ∈ Ai (θ−t p) for all t ∈R.
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(⊇) Fix p ∈ P , let x ∈A (p)\Ai (p) andσ·(p) be an entire p-orbit through x. Then, Theorem

3.2.20 (ii) implies

lim
t→∞

distH (σ−t (p), A∗
i (θ−t p)) = 0. (3.3.1)

If lim
t→∞

distH (σ−t (p),∪i
j=1M j (θ−t p)) = 0, then

lim
t→∞

distH (σ−t (p), Ai (θ−t p)) = 0,

since M̂ j ⊂ Âi for j ∈ {1, · · · , i }, which contradicts (3.3.1) in view of Theorem 3.2.20 (i).

3.4 An estimate on the fractal dimension of pullback attrac-

tors

Let us begin this section by stating an abstract result concerning the fractal dimension of

a pullback attractor of a nonlinear evolution process.

Proposition 3.4.1. Let {T (t , s) : t Ê s} be a nonlinear evolution process with a pullback at-

tractor {A (t ) : t ∈ R}. Let also {A∗(t ) : t ∈ R} be a local repeller in A and {A(t ) : t ∈ R} its

corresponding local pullback attractor. Assume that the following conditions are satisfied

(a) There is a constant L > 1 such that, for all t ∈R, T (t , t −1)|A (t−1) is a Lipschitz mapping

with Lipschitz constant L;

(b) There are a family {B(t ) : t ∈R} and constants c1,c2 Ê 0 such that B(t ) is a neighborhood

of A∗(t ) in A (t ) for all t ∈R, B(t )∩ A(t ) =∅ and

c1 É c(B(t )) É c2, for all t ∈R;

(c) There are constants M ,ω > 0 such that if {K (t ) : t ∈ R} is a family of compact sets with

K (t ) ⊂A (t ) and K (t )∩ A∗(t ) =∅, for all t ∈R then

distH (T (t , s)K (s), A(t )) É Meω(s−t), for all s É t .
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Then, for all t ∈R, we have that

c1 É c(A (t )) É max

{

ω+ lnL

ω
c2,c(A(t ))

}

.

Proof. Let us fix t ∈R and, for n ∈N, we define the compact sets

Kn
.=A (t −n) \ B(t −n)

and also we define subsets K̃n ⊂ Kn by

K̃n
.= Kn \ T (t −n, t −n −1)Kn+1, for n ∈N.

Clearly we have that Kn ⊂A (t −n) and Kn ∩ A∗(t −n) =∅ for all n ∈N.

We also note that if z ∈ K̃n then z ∈ Kn, but z ∉ T (t −n, t −n −1)Kn+1. However z ∈A (t −

n) = T (t −n, t −n−1)A (t −n−1), and A (t −n−1)= (A (t −n−1)\B(t −n−1))∪B(t −n−1)

and hence z ∈T (t −n, t −n −1)B(t −n −1). Thus, K̃n ⊂ T (t −n, t −n −1)B(t −n −1).

By the precedent estimates we have that

c(K̃n) É c(T (t −n, t −n −1)B(t −n −1)) É c(B(t −n −1)),

because T (t −n, t −n−1)|A (t−n−1) is a Lipschitz mapping for every n ∈N, and, in this way we

obtain c(K̃n) É c2, for all n ∈N.

Now, let us define Ωn by

Ωn
.= T (t , t −n)K̃n , for all n ∈N.

Also, since K̃n ⊂ Kn , by the hypotheses (c) we have that

distH (Ωn , A(t )) É Me−ωn , for all n ∈N.

Claim: It holds that A (t ) \ B(t ) ⊂ (∪nÊ0Ωn)∪ A(t ).
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Indeed, let x ∈A (t ) \ B(t ). We have two possibilities for x:

(i) x ∉ T (t , t −1)K1 and, in this case, x ∈Ω0 = (A (t ) \ B(t )) \ T (t , t −1)K1;

(ii) x ∈ T (t , t −1)K1 and, in this case, there is y1 ∈K1 such that x = T (t , t −1)y1.

For y1 we also have two possibilities

(iii) y1 ∉ T (t −1, t −2)K2 and, in this case, y1 ∈ K̃1 and x = T (t , t −1)y1 ∈T (t , t −1)K̃1 =Ω1;

(iv) y1 ∈ T (t −1, t −2)K2 and, in this case, there is y2 ∈ K2 such that y1 = T (t −1, t −2)y2 and

so x = T (t , t −2)y2.

Now, applying this reasoning inductively, we obtain two possibilities for x: either x ∈Ωn

for some n ∈N or there is a sequence {yn}n∈N satisfying yn ∈ Kn , x = y0 and yn = T (t −n, t −

n −1)yn+1 for all n ∈N (and so x = T (t , t −n)yn for all n ∈N).

In the first possibility, clearly we have x ∈∪nÊ0Ωn . Now, if the second possibility happens,

using the hypothesis (c), we have for all n ∈N:

distH (x, A(t )) = distH (T (t , t −n)yn , A(t )) É distH (T (t , t −n)Kn , A(t )) É Me−ωn ,

and it follows that distH (x, A(t )) = 0 and, since A(t ) is compact, x ∈ A(t ), which concludes

the proof of our claim.

We define now, for every r > 0 and k Ê 0,

Nr,k
.= N

(

r /ck , K̃k

)

;

i.e., there are xk
1 , · · · , xNk

r,k
∈ K̃k such that K̃k ⊂∪Nr,k

i=1 B(xk
i

,r /Lk ).

In this way, if z ∈ Ωk , then there is x ∈ K̃k such that z = T (t , t − k)x, and there is i ∈

{1, · · · , Nr,k} such that ‖x−xk
i
‖ < r /Lk . Now, if we define ξk

i

.= T (t , t−k)xk
i

for all i = 1, · · · , Nr,k ,

we have

‖z −ξk
i ‖ = ‖T (t , t −k)x −T (t , t −k)xk

i ‖ É Lk‖x −xk
i ‖ < r,

thus Ωk ⊂∪Nr,k

i=1 B(ξk
i

,r ) and so N (r,Ωk ) É Nr,k .
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With the same arguments used in the autonomous case, namely in Proposition 3.1.4, we

know that, from hypothesis (c), if n(r )
.= ⌈ 1

ω ln
(

M
r

)

⌉ and G(r )
.=

(

∪iÊn(r )+1Ωi

)

∪ A(t ), we have

that G(r ) ⊂Or (A(t )) and hence N (2r,G(r )) É N (2r, A(t )) É N (r, A(t )).

If we define now H(r )
.=∪n(r )

i=0 Ωi it follows that

N (r, H(r )) É n(r ). max
i=0,··· ,n(r )

N (rΩi ) É n(r ). max
i=0,·,n(r )

Nr,i ,

where Nr,i = N (r /Li , K̃i ).

From the previous claim we see that A (t ) = B(t )∪G(r /2)∪ H(r /2) for every r > 0, and

therefore

N (r,A (t )) É3 max{N (r,B(t )); N (r,G(r /2)); N (r, H(r /2))}

É3 max{N (r,B(t )); N (r,G(r /2)); N (r /2, H(r /2))}

Émax

{

N (r,B(t )); N (r /2, A(t ));n(r /2). max
i=0,··· ,n(r /2)

Nr /2,i

}

.

Since the logarithm function is increasing we have, choosing r > 0 small so that ln(1/r ) >

0,

ln N (r,A (t ))

ln(1/r )
É

ln3

ln(1/r )
+max

{

ln N (r,B(t ))

ln(1/r )
;

ln N (r /2, A(t ))

ln(1/r )
;

lnn(r /2)

ln(1/r )
+ max

i=0,··· ,n(r /2)

ln Nr /2,i

ln(1/r )

}

.
(3.4.1)

We now compute the last term on the right hand side of (3.4.1):

ln Nr /2,i

ln(1/r )
=

ln N (r /2Li , K̃i )

ln(1/r )

=
ln N (r /2Li , K̃i )

ln(2Li /r )
.

(

i lnL+ ln2+ ln(1/r )

ln(1/r )

)

É
ln N (r /2Li , K̃i )

ln(2Li /r )
.

(

n(r /2)

ln(1/r )
lnL+

ln2

ln(1/r )
+1

)

,

and using the calculation from Proposition 3.1.4, taking lim sup for r → 0+ in both sides of
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(3.4.1), we have that

c(A (t )) É max

{

c(B(t )),c(A(t )),
ω+ lnL

ω
. sup

nÊ0
c(K̃n)

}

and thus

c(A (t )) É max

{

c(A(t )),
ω+ lnL

ω
.c2

}

.

The first inequality is straightforward and we conclude the proof of this proposition.

Corollary 3.4.2. Let {T (t , s) : t Ê s} be a nonlinear evolution process in a Banach space X with

pullback attractor {A (t ) : t ∈ R}. Assume that the process possesses a Morse decomposition

{M1, · · · , Mn} given by the finite sequence of local repellers A = A∗
0 ) A∗

1 ) · · ·) A∗
n =∅, and

its associated local pullback attractors∅ = A0 ( A1 ( · · ·( An =A . Assume that the following

conditions hold:

(a) There is a constant L > 1 such that, for all t ∈R, T (t , t −1)|A (t−1) is a Lipschitz mapping

with Lipschitz constant L;

(b) For each i ∈ {1, · · · ,n} there is a family {Bi (t ) : t ∈R} such that Bi (t ) is a neighbourhood of

Mi (t ) in Ai (t ) for all t ∈R, Bi (t )∩Ai−1(t ) =∅ and assume also that there exist constants

c1,c2, independent of i , such that

c1 É c(Bi (t )) É c2, for all t ∈R and i ∈ {1, · · · ,n};

where we set Mn+1 =A .

(c) There are constants M ,ω > 0 such that if {K (t ) : t ∈ R} is a family of compact sets with

K (t ) ⊂ Ai (t ) and K (t )∩Mi (t ) =∅, for all t ∈R then

distH (T (t , s)K (s), Ai−1(t )) É Meω(s−t), for all s É t and i ∈ {1, · · · ,n}.

Then, for all t ∈R, we have that

c1 É c(A (t )) É
ω+ lnL

ω
c2.
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Proof. Firstly, on account of hypothesis (b) i = n, we have that there is a family {Bn(t ) : t ∈R}

such that Bn(t ) is a neighborhood of Mn(t ) = An(t )∩ A∗
n−1(t ) = A (t )∩ A∗

n−1(t ) = A∗
n−1(t ) in

An(t ) =A (t ) for all t ∈R, Bn(t )∩ An−1(t ) =∅, and

c1 É c(Bn(t )) É c2, for all t ∈R.

Hypothesis (c), for i = n, implies that

distH (T (t , s)K (s), An−1(t )) É Meω(s−t), for all s É t ,

for every family {K (t ) : t ∈ R} of compact sets satisfying K (t ) ⊂ An(t ) = A (t ) and K (t ) ∩

Mn(t ) = K (t )∩ A∗
n−1(t ) =∅ for all t ∈R. Then, we can apply Proposition 3.4.1 to obtain

c1 É c(A (t )) É max

{

c(An−1(t )),
ω+ lnL

ω
.c2

}

, for all t ∈R.

Now define S(t , s)
.= T (t , s)|An−1(s) for all s É t . Note that the important fact in Proposition

3.4.1 is that the process is defined on a compact invariant family {A (t ) : t ∈ R}, and it does

not matter if this family is a pullback attractor or not. Then, we can apply this proposition to

the evolution process {S(t , s) : t Ê s} as long as we can verify the hypotheses.

To check the hypotheses we take i = n −1. We have the following:

(i) The pair (An−2, Mn−1) is an attractor-repeller pair of the evolution process {S(t , s) : t Ê

s}, since An−2(t ) ⊂ An−1(t ) and Mn−1(t ) = An−1(t )∩ A∗
n−2(t ) for all t ∈R;

(ii) S(t , t −1) is a Lipschitz map with constant L > 1 for all t ∈R;

(iii) There is a family {Bn−1(t ) : t ∈ R} such that Bn−1(t ) is a neighborhood of Mn−1(t ) in

An−1(t ) for all t ∈R, Bn−1(t )∩ An−2(t ) =∅ and

c1 É c(Bn−1(t )) É c2, for all t ∈R;
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(iv) Hypothesis (c), for i = n −1, implies that

distH (T (t , s)K (s), An−2(t )) É Meω(s−t), for all s É t ,

for every family {K (t ) : t ∈ R} of compact sets satisfying K (t ) ⊂ An−1(t ) = A (t ) and

K (t )∩Mn−1(t ) =∅ for all t ∈R.

Hence, we can apply Proposition 3.4.1 to the process {T (t , s) : t Ê s} defined in the compact

invariant family {An−1(t ) : t ∈R} and the attractor-repeller pair (An−2, Mn−1) to deduce

c1 É c(An−1(t )) É max

{

c(An−2(t )),
ω+ lnL

ω
.c2

}

, for all t ∈R.

Joining these two results we obtain

c1 É c(A (t )) É max

{

c(An−2(t )),
ω+ lnL

ω
.c2

}

, for all t ∈R.

Arguing now inductively, since A0(t ) =∅ for all t ∈R, we finally arrive at

c1 É c(A (t )) É
ω+ lnL

ω
.c2, for all t ∈R.

3.5 Example

To illustrate our results, consider the following non-autonomous logistic equation

ut = uxx +λu −β(t )u3, (3.5.1)

for x ∈ [0,π] with Dirichlet boundary conditions. We assume that there are positive constants

β1,β2 such that 0 <β1 ≤β(t ) ≤β2 for all t ∈R. The existence of global pullback attractors for

this equation is already known (see, for instance, [29]).

We consider the positive cone within H1
0 (0,π),

V + = {u ∈ H1
0 (0,π) : u(x) ≥ 0 for a.e. x ∈Ω}.



70 An estimate on the fractal dimension

For (3.5.1), we can define an order with respect to V +. That is, u0 ≤ v0 if v0 −u0 ∈ V +.

In order to investigate further the behavior of positive solutions the following definition

([27]) is crucial.

Definition 3.5.1. A positive function with values in C (Ø) is non–degenerate at ∞ (respectively

−∞) if there exists t0 ∈R such that u is defined in [t0,∞) (respectively (−∞, t0]) and there exists

a C 1(Ω) function ϕ0(x) > 0 in Ω, (vanishing on ∂Ω in case of Dirichlet boundary conditions)

and satisfying
∂ϕ0
∂n

< 0, such that

u(t , x) ≥ϕ0(x) for all x ∈Ω and all t ≥ t0

(respectively for all t ≤ t0).

From [27], we know that there exist two extremal (minimal and maximal) bounded global

solutions, ξm(·) and ξM (·) for (3.5.1), i.e. if ψ(·) is any bounded global solution for S(t , s) then

ξm(t ) ≤ψ(t ) ≤ ξM (t ), for all t ∈R.

Moreover, (3.5.1) has a pullback attractor A(t ) with

A(t ) ⊂ [ξm(t ),ξM (t )], for all t ∈R,

with ξm(t ),ξM (t ) ∈ A(t ) for all t ∈R.

As a direct application of the results in [27], [28] we obtain the following description of

the pullback attractor within the positive cone.

Theorem 3.5.2.

a) If λ<λ1 then ξM (t ) ≡ 0 for all t ∈R.

b) If λ>λ1 then ξM (t ) is strictly positive and is the unique non-degenerate global solution

at −∞ and +∞.

c) The pullback attractor for (3.5.1) in the positive cone satisfies A +(t ) ⊂ [0,ξM (t )]. In par-

ticular, any global solution in A +(t ) is no non-degenerate at −∞.

d) ξM (t ) pullback attracts exponentially fast every bounded set B ⊂ intV +.
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As the linearization around the zero solution of (3.5.1) coincides with that of the au-

tonomous case β(t ) = 1, if we suppose that λ ∈ (λ1,λ2) we know from Henry [19] that 0 is

an unstable equilibria with associated unstable manifold included in the positive cone of

codimension 1. From our point of view on Morse decomposition, we can conclude that 0 is

a local repeller in A +(t ). Now, by Theorem 3.5.2, item d), we obtain ξM (t ) as the associated

local attractor in the positive cone.

Thus, a direct application of Corollary 3.4.2 yields

c(A +(t )) É
ω+ lnL

ω
,

with ω the exponential rate of attraction to ξM (t ) (see [27, 28] for estimation of this param-

eter) and L the Lipschitz constant for T (t , s;u0) = u(t , s;u0) with respect to the initial data

u0.

Remark 3.5.3. Observe that, since the nonlinear term is odd, if u is a solution of (3.5.1) then

so is v = −u. As a consequence, the behaviour of solutions in the positive and negative cones

are symmetric and thus, if we denote by ξM (t ) the maximal bounded solution in the positive

cone, the minimal bounded solution in the negative cone is just −ξM (t ), so that we get in this

infinite dimensional dynamical system a similar behaviour as in Example 4.1.10.
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Chapter

4

Skew product semiflows and Morse

decompositions

Recently, the analysis of qualitative properties of evolution processes (non-autonomous

dynamical systems) in general phase spaces (infinite-dimensional Banach spaces or general

metric spaces) has received much attention (see, for instance, [24], [12], [15], [42], [37]). In

particular, the study of pullback attractors has started to develop a wide and deep research

area, providing qualitative information for the asymptotics of an increasing number of non-

autonomous models of phenomena from different areas of Science as Physics, Biology, Eco-

nomics, Engineering and others.

One of the drawbacks of the theory of pullback attractors is that it requires the vector

field to be defined for all times in R, and many models only consider the phenomenon after

a given initial time. Of course one can artificially define the vector field for times preceding

the given initial one and study the behavior of such system. But then, the pullback attractor

would change for each extension and the object “pullback attractor” would loose its impor-

tance in the study of the forwards dynamics.

This approach was followed by Chepyzhov and Vishik [15] in their seminal work on the

asymptotic behavior of non-autonomous problems. The crucial point here is to understand

that the dynamics of a non-autonomous evolution process is (as a general rule) related to un-

derstanding the dynamics of many (possibly infinite) non-autonomous evolution processes.

Once one realizes this feature, it becomes clear how rich and difficult is the subject “dynam-

ics of non-autonomous dynamical systems”. We already have some insights of that difficul-
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ties when we look at a simple concept like hyperbolicity. Indeed, in the autonomous case

we choose an equilibrium, linearized it and we can compute the spectrum of the linearized

operator to decide whether we have hyperbolicity or not. In the non-autonomous context,

we have no way to single out which solutions will be hyperbolic and, if we were able to single

out these solutions, how to verify that they actually are hyperbolic. Even the simple mat-

ter of obtaining a hyperbolic global solution from a hyperbolic equilibrium involves highly

non-trivial results on the roughness of exponential dichotomies (see [11],[12]).

In this chapter we use a different approach to deal with the structure of the pullback

attractor of a non-autonomous dynamical system and use it to give some estimates of their

pullback attractor. To this end we begin with the study of the skew product semiflow and this

study is a result of [4], which is a product of this work.

Let us now consider a general non-autonomous differential equation to illustrate the ap-

proach we will carry out in this paper. Consider the initial value problem

{

ẋ = f (t , x), t > 0

x(0) = x0 ∈R
n ,

(4.0.1)

where f : R+×R
n →R

n is a “nice” function which belongs to a metric space C . Assume that,

for each x0 ∈ R
n , the solution of (4.0.1) is defined for all t ≥ 0; that is, for each x0 ∈ R

n , there

is a function R
+ ∋ t 7→ x(t , f , x0) ∈R

n satisfying (4.0.1).

Now, following [45] we define the skew product semiflow associated to (4.0.1) in the fol-

lowing way

Π(t ) : Rn ×C →R
n ×C

Π(t )(x0, f ) = (x(t , f , x0), ft ),

where ft (s, x) = f (t + s, x) for all t , s ≥ 0 and x ∈ R
n . Suppose that the map R

+×C ×R
n ∋

(t , f , x0) 7→ (x(t , f , x0), ft ) ∈R
n ×C is continuous. It is easy to see that

x(t + s, f , x0) = x(t , fs , x(s, f , x0)).

From this, it is clear that

Π(t + s)(x0, f ) = (x(t + s, f , x0), ft+s ) = (x(t , fs , x(s, f , x0)), ft ( fs ))

=Π(t )(x(s, f , x0), fs) =Π(t )Π(s)(x0, f )
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and that R+×C ×R
n ∋ (t , f , x0) 7→ Π(t )(x0, f ) ∈ R

n ×C is continuous, which means that the

family {Π(t ) : t Ê 0} forms a semigroup with phase space Z =R
n ×C .

Assume that {Π(t ) : t ≥ 0} possesses a global attractor A in Z . Then, it may seem that we

have found a proper way to study the asymptotic dynamics of (4.0.1). In fact, the set A pos-

sesses dynamics associated to {Π(t ) : t ≥ 0} but it has no dynamics immediately associated

to (4.0.1). An element of A is an element of Rn ×C , that is, an initial condition y0 ∈ R
n and

a vector field g (which is not f in general) and Π(t )(y0, g ) = (x(t , g , y0), g t ) has no straightfor-

ward relation to (4.0.1). Let us try to unravel a little the connection of the points in A with

(4.0.1).

The first step to study the dynamics of (4.0.1) is to understand the attraction property of

{Π(t ) : t ≥ 0} as t →∞ relatively to the solution operator of (4.0.1).

Given a bounded subset B̃ of Rn×C , we have that A attracts B̃ under the action of {Π(t ) :

t ≥ 0} if

lim
t→∞

dH (Π(t )B̃ ,A ) = 0.

If, for a given bounded subset B ⊂ R
n , we only consider a bounded subset B̃ of the form

B × { f }, this attraction property can be written as

lim
t→∞

dH (x(t , f ,B)× { ft },A ) ≥ lim
t→∞

dH (x(t , f ,B), A(t )),

where A(t ) = {x ∈ R
n : (x, ft ) ∈ A } (note that A(t )× { ft } ⊂ A ). This means that the compact

set ARn := ∪
tÊ0

A(t ) ⊂R
n attracts bounded subsets of Rn .

Although the set ARn does not have any dynamical property with respect to the problem

(4.0.1), we will see that some families in it are crucial to understand the dynamics of (4.0.1).

Essentially, note that, given a non-autonomous differential equation such as (4.0.1), we

can refer to three different but closely related dynamical systems:

• The driving system {Θ(t ) : t Ê 0} associated to the dynamics of the time-dependent

terms appearing in the equation, and which is defined by Θ(t ) f (·, x) = ft (·, x) = f (t +
·, x),

• the skew-product semiflow {Π(t ) : t Ê 0} defined on the product space Z =R
n ×C ,

• and the associated non-autonomous dynamical system (ϕ,Θ)(Rn ,C ) with ϕ(t ,Θs f )x0 =
x(t + s, f , x0) (see Definition 4.1.1).

The aim of this part of the work is to describe the internal structure and dynamics (in the

sense of Morse Decomposition and Lyapunov functions) of the global attractor for the skew
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product semiflow and the pullback attractor for the associated non-autonomous dynamical

system. This description will be determined by the asymptotic configuration of the given

driving system Θ(t ). Indeed, we will show how a Morse Decomposition of the global attrac-

tor for Θ(t ) produces a Morse Decomposition for the attractors both of the skew-product

semiflow and the non-autonomous dynamical system. We will pay special attention to the

dynamical properties inherited by this description.

4.1 Preliminaries

In this section we state the definitions and some known results which will be used through-

out the following sections. In particular, we pay special attention to the concept of pullback

attractor.

4.1.1 Non-autonomous dynamical systems and pullback attractors

We recall the definition of an non-autonomous dynamical system, but here we will use a

more general one, where the driving system is only a semigroup rather than a group.

Definition 4.1.1. Consider two metric spaces (X ,dX ) and (P,dP ). A non-autonomous dynam-

ical system (NDS), denoted by (ϕ,Θ)(X ,P), consists of two ingredients:

(i) A driving semigroup {Θ(t ) : t Ê 0} in P.

(ii) A cocycle ϕ : R+×P × X → X over Θ, that is, a continuous map such that the family of

mappings ϕ(t , p) : X → X satisfies the cocycle property:

1) ϕ(0, p) = IX for all p ∈P,

2) ϕ(t + s, p) =ϕ(t ,Θ(s)p)ϕ(s, p) for all t , s Ê 0 and p ∈P.

The associated skew product semiflow (SPSF) {Π(t ) : t ≥ 0} ⊂C (X ×P ) is given by

Π(t )(x, p) = (ϕ(t , p)x,Θ(t )p).

It is clear that {Π(t ) : t Ê 0} is a semigroup with phase space X ×P .
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Remark 4.1.2. Given an NDS (ϕ,Θ)(X ,P) and an invariant set R ⊂ P under the action of {Θ(t ) :

t Ê 0}, we can consider the restrictionΘ(t )|R : R → R and the restrictionϕ|R+×R×X : R+×R×X →

X , so that we have a new NDS. In this case, the associated skew product semiflow {Π(t )|X×R :

t Ê 0} possesses X ×R as its phase space.

Definition 4.1.3. Given a global bounded solution η : R→ P of the driving system {Θ(t ) : t Ê

0}, a family of subsets D̂η = {Dη(t )}t∈R of X is called a non-autonomous η-set. If each fiber

Dη(t ) is closed/compact/open, then D̂η is called a non-autonomous closed/compact/open

η-set.

Definition 4.1.4. A non-autonomous η-set D̂η is said to be forward invariant under the NDS

(ϕ,Θ)(X ,P) if ϕ(t ,η(s))Dη(s) ⊂ Dη(t + s) for all s ∈ R and t Ê 0. It is said to be invariant if

ϕ(t ,η(s))Dη(s) = Dη(t + s) for all s ∈R and t Ê 0.

Definition 4.1.5. Given two non-autonomous η-sets D̂η and Âη, we say that Âη η-pullback

attracts D̂η if

lim
t→∞

dH (ϕ(t ,η(s − t ))Dη(s − t ), Aη(s)) = 0, for each s ∈R.

Definition 4.1.6. A η-universe D̂η is a collection of nonempty non-autonomous η-sets which

is closed with respect to set inclusion, i.e. if D̂1
η ∈ D̂η and D2

η(t ) ⊂ D1
η(t ) for all t ∈ R, then D̂2

η ∈

D̂η. A non-autonomous compact η-set Ŝη ∈ D̂η is called a D̂η-pullback attractor of (ϕ,Θ)(X ,P)

if

(i) Ŝη is invariant;

(ii) Ŝη η-pullback attracts all families D̂η ∈ D̂η.

Remark 4.1.7. The above definitions are a simple rewriting of the known definitions for the

non-autonomous setting given in [12] for the case of a non-injective driving system {Θ(t ) : t Ê

0}, where there may be more than one global solution through a given point p ∈ P.

Another important fact is the relationship between the global attractor of a skew prod-

uct semiflow and the pullback attractors of the evolution processes it may contain. Such a

relation is expressed in our next result.
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Theorem 4.1.8. Assume that the skew product semiflow {Π(t ) : t ≥ 0} possesses a global at-

tractor A , the driving system {Θ(t ) : t ≥ 0} has a global attractor A and η(·) : R→P is a global

bounded solution for {Θ(t ) : t ≥ 0}. Then, the evolution process {Tη(t , s) : t ≥ s} given by

Tη(t , s)x =ϕ(t − s,η(s))x, x ∈ X ,

possesses a D̂η-pullback attractor {Aη(t ) : t ∈R} with the property that Aη(t ) = {x ∈ X : (x,η(t )) ∈

A }, where D̂η is the collection of all non-autonomous η-sets D̂η such that ∪
t∈R

Dη(t ) is bounded

in X . Of course,

A =
{

⋃

t∈R
Aη(t )× {η(t )}, η(·) is a global bounded solution for {Π(t ) : t ≥ 0}

}

Proof: Define K = η(R), which is a compact set in P and invariant under the action of {Θ(t ) :

t Ê 0}. Thus the semigroup {ΠK (t ) : t Ê 0} given by the restriction ΠK (t ) = Π(t )|X×K : X ×
K → X ×K is well defined and has a global attractor AK . By Theorem 3.3 in [5], the non-

autonomous associated set {AK (p)}p∈K is a pullback attractor of the NDS (ϕ,Θ)(X ,K ), hence

the family {Aη(t )}t∈R given by Aη(t ) =AK (η(t )), for all t ∈ R, is the pullback attractor for the

evolution process {Tη(t , s) : t Ê s}. The last assertion is straightforward.

With this result, we can state the following (and its proof is a direct consequence of The-

orem 3.1.5):

Theorem 4.1.9. With the hypotheses of Theorem 4.1.8, assume that the skew product semiflow

{Π(t ) : t Ê 0} is a generalized gradient-like semigroup with the family of invariant sets Ψ =

{Ξ1, . . . ,Ξp } satisfying the hypotheses of Theorem 3.1.5, then for any bounded global solution

η(·) : R→ P of {Θ(t ) : t ≥ 0} in A , if {Aη(t ) : t ∈ R} is the pullback attractor of {Tη(t , s) : t ≥ s}

given by Tη(t , s)x =ϕ(t − s,η(s))x, x ∈ X we have that

c(Aη(t )) É
ω+ ln(L)

ω
max

i=1,...,p
c(W u

l oc (Ξi )), for all t ∈R,

where ω,L > 0 are the constants given in Theorem 3.1.5.
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4.1.2 Time dependence and translations

We now describe the set of functions which lead to the phase space P for the driving

system Θ(t ). For a more detailed approach, we refer to [45].

For any two Banach spaces V ,W we will let C (I ,W ), C (V ,W ) and C (I ×V ,W ) denote the

spaces of continuous functions defined on, respectively, I , V and I ×V , and taking values on

W , where I denotes an interval on the real line, and our primarily interest is in two cases:

I = R
+ and I = R. In addition to these spaces, we define Cb(V ,W ) (and Cb(I ×V ,W )) to be

the collection of all f ∈C (V ,W ) (and C (I ×V ,W )) such that for every bounded set B ⊂V (and

every compact set J ⊂ I ), there is a K0 Ê 0, such that ‖ f (u)‖W É K0 (and ‖ f (t ,u)‖W É K0), for

all u ∈ B (and (t ,u) ∈ J ×B).

These spaces of continuous functions are Frechét spaces with a metric topology which is

described by the uniform convergence on bounded sets. The metric in this case is generated

by a countable family of pseudonorms ‖·‖k as follows: Let Bk be the closed neighborhood of

the origin in V of radius k, and set Ik = I ∩ [−k,k]. Define

‖ f ‖k
.= sup

u∈Bk ,t∈Ik

‖ f (t ,u)‖W

A sequence fn is said to converge to f , i.e. f = lim
n→∞

fn , whenever

lim
n→∞

‖ f − fn‖k = 0, for all k Ê 1.

It turns out that Cb(I ×V ,W ) is a complete metric space with this metric.

We now restrict our attention to the cases I = R
+ or I = R. For each f ∈ C (I ×V ,W ), we

define the translate fτ by

fτ(t ,u)
.= f (t +τ,u), u ∈V and t ,τ ∈ I .

Note that fτ ∈C (I ×V ,W )
.=C for all τ ∈ I . Furthermore, the mapping ( f ,τ)→ fτ is a contin-

uous map of C × I into C , where C has the topology defined by the uniform convergence on

compact sets. Next, we define the positive orbit and the full orbit through f by

γ+( f )
.= { fτ : τ ∈R

+} and γ( f )
.= { fτ : τ ∈R}.
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Similarly, the positive hull and the full hull are defined by

P = H+( f )
.= γ+( f )

C
and P = H( f )

.= γ( f )
C

.

Example

In this subsection we develop an example in which we can describe the structure for

the closure of a given non-autonomous function. Note that one of the motivations of our

main results is to derive qualitative properties of non-autonomous dynamical systems from

a detailed description of the limit points on this structure.

Example 4.1.10. Given two continuous functions f , g : Rn →R
n , we define r : R+×R

n →R by

r (t , x) = h(t ) f (x)+ (1−h(t ))g (x),

where h : R+ →R
+ is defined as follows:

Let {an}, {bn}, {cn }, {dn} be sequences of real numbers with

(i) a0 = 0;

(ii) an < bn < cn < dn < an+1 for all n ∈N;

(iii) If tn
.= bn −an and τn

.= dn −cn , then tn ,τn →∞ as n →∞;

(iv) If γn
.= bn −cn and λn

.= an+1 −dn , then γn ,λn →∞ as n →∞.

Now, we define the function h in such a way that is smooth, 0 É h É 1, h(t ) = 1 if t ∈ [an ,bn]

for some n ∈N and h(t ) = 0 if t ∈ [cn ,dn] for some n ∈N.

If Θ(t )r (·, x) = r (t + ·, x) for each t Ê 0 and x ∈ X , let P = H+(r ) be the positive hull of r .

Then {Θ(t ) : t Ê 0} is a semigroup in P.

First, we choose the sequence t∗n = an + tn

2 , thus

Θ(t∗n )r (s, x) = r (s + t∗n , x) = f (x),

if s ∈ [0, tn

2 ]. Hence Θ(t∗n )r → f as n →∞ in the uniform convergence on bounded sets, which

shows that f ∈ω(r ), the omega-limit set of r . Choosing τ∗n = cn+ τn

2 we can see that Θ(τ∗n)r → g

as n →∞, which shows that g ∈ω(r ) in a similar way.
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Choosing γ∗
n = bn + γn

2 we see that

Θ(γ∗
n)r (t , x) = r (t +γ∗

n , x).

Using the Arzelà-Ascoli theorem and a diagonalization process, we can see that there exists

a function ξ∗ : R×R
n → R

n and a subsequence {γ∗
nk

} of {γ∗
n} such that Θ(γ∗

nk
)r → ξ∗ in the

topology of uniform convergence on bounded sets. Also, since Θ(γ∗
n)r (t , x) = r (t +γ∗

n , x), we

can see that if t ∈ [−γ∗
n ,bn−γ∗

n], then Θ(γ∗
n)r (t , x) = f (x) for all x ∈R

n . Thus ξ(t )
t→∞−→ f , where

ξ(t ) = ξ∗(t , ·) and, analogously, ξ(t )
t→−∞−→ g . It is clear that ξ is a global solution for the driving

system {Θ(t ) : t Ê 0}, therefore ξ is a connection between f and g .

With the same reasoning, we can construct a connection ψ between g and f . In this way

we can have some description of what happens in P = H(r ).

In this example, we can see that, if we want a Morse decomposition for the global attrac-

tor of {Θ(t ) : t Ê 0}, then f and g would be both in the same Morse set, and this will be used

in Section 4.5.

4.1.3 Homoclinic structures in ω-limit sets

At light of Example 4.1.10, we can state a more general result concerning ω-limit sets and

homoclinic structures of a given gradient-like semigroup with a finite number of stationary

points.

Proposition 4.1.11. Let {Π(t ) : t Ê 0} a semigroup with a global attractor A with a finite set

of stationary points E . Let z ∈ Z and assume that there exist x, y ∈ ω(z) such that x ∈ E and

x 6= y. Then x is a chain recurrent point.

Proof: It is straightforward from the definition of the ω-limit set.

Proposition 4.1.12. Let {Π(t ) : t Ê 0} be a semigroup with a global attractor A , a finite set of

stationary points E and assume that it satisfies (G1). Let z ∈ Z and assume that there exist

x, y ∈ω(z)∩E with x 6= y. Then, there is a finite collection {ξ1, · · · ,ξn} of global solutions and

points {z1, · · · , zn+1} ⊂ E , with z1 = x and zn+1 = y such that

zi
t→−∞←− ξi (t )

t→∞−→ zi+1, for i = 1, · · · ,n.
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Proof: See [11, Lemma 2.2].

This last proposition generalizes the case of Example 4.1.10 and gives us some informa-

tion about the structure of the ω-limit sets of gradient-like semigroups.

4.2 Morse decomposition for a skew product semiflow

In this section we will describe the relationships between the Morse decompositions of

the skew product semiflow, the driving semiflow and the pullback attractors associated to

evolution processes related to the global solutions of the driving semiflow.

Indeed, our primary interest is to obtain a Morse decomposition for the global attractor

A of the skew product semiflow {Π(t ) : t Ê 0} in terms of a Morse decomposition of the

global attractor A of the driving system {Θ(t ) : t Ê 0}.

4.2.1 The lift of a Morse decomposition from P to X ×P

Definition 4.2.1. Given any R ⊂ P and D ⊂ X ×P, we define the subset RD ⊂ X ×P by

RD = {(x, p) ∈D : p ∈ R}.

The set RD is called the lift of R in D.

Remark 4.2.2. If ψ2 : X ×P →P is the projection on the second coordinate, that is, ψ2(x, p) = p

for all (x, p) ∈ X ×P, then we can see that RD =ψ−1
2 (R)∩D.

We can now prove the main theorem of this section:

Theorem 4.2.3. Let (ϕ,Θ)(X ,P) be a non-autonomous dynamical system and {Π(t ) : t Ê 0} the

associated skew product semiflow. Assume that {Π(t ) : t Ê 0} possesses a global attractor A

and also that the driving system {Θ(t ) : t Ê 0} has a global attractor A with a Morse decompo-

sition {M1, · · · , Mn}. Assume also that [Θ(t )]−1(Mi ) ⊂ Mi , for all t Ê 0 and all i = 1, · · · ,n. Then,

the family {MA
1 , · · · , MA

n } is a Morse decomposition for the global attractor A of {Π(t ) : t Ê 0}.

Moreover, the sets MA
i

coincide with the global attractors of the semigroups {Πi (t ) : t Ê 0}

defined on X ×Mi by Πi (t ) =Π(t )|X×Mi
for each i = 1, · · · ,n.
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Proof: First we prove the non-emptiness of each MA
i

. Let p ∈ Mi (since it is non-empty, such

p exists) and take x ∈ X . Since A attracts points of X ×P under the action of {Π(t ) : t Ê 0},

we have that

lim
t→∞

dH (Π(t )(x, p),A ) = 0.

Since A is compact and non-empty, we know that there exists a sequence {tn}n∈N and a point

(x0, p0) ∈A such that tn →∞ and Π(tn)(x, p) → (x0, p0). But Π(tn)(x, p) = (ϕ(tn , p)x,Θ(tn )p),

and thus ϕ(tn , p)x → x0 and Θ(tn)p → p0. Since Mi is closed and invariant, p0 ∈ Mi for some

i ∈ {1, . . . ,n}. Hence (x0, p0) ∈A and p0 ∈ Mi , which shows that (x0, p0) ∈ MA
i

.

Now we prove the invariance of each MA
i

under the action of {Π(t ) : t Ê 0}. Let (x, p) ∈
MA

i
. Then

Π(t )(x, p) = (ϕ(t , p)x,Θ(t )p),

and, since A is invariant by Π, (ϕ(t , p)x,Θ(t )p) ∈A . From the invariance of Mi , Θ(t )p ∈ Mi

and thus Π(t )(x, p) ∈ MA
i

. Now, if (y, q) ∈ MA
i

, from the invariance of A , there exists (x, p) ∈
A such that

Π(t )(x, p) = (y, q),

which implies that y = ϕ(t , p)x and Θ(t )p = q ∈ Mi . Thus p ∈ [Θ(t )]−1(Mi ) ⊂ Mi , so p ∈ Mi

and hence (x, p) ∈ MA
i

.

Since MA
i

⊂A , to show that it is compact it remains to show that it is closed. Assume that

{(xn , pn)}n∈N is a sequence in MA
i

such that (xn , pn) → (x, p) as n →∞. Clearly (x, p) ∈A and

since {pn}n∈N ⊂ Mi , p ∈ Mi and thus (x, p) ∈ MA
i

.

Now, if (x, p) ∈ MA
i

∩MA
j

, with i 6= j , then it implies that p ∈ Mi ∩M j , which is a contra-

diction because they are disjoint. Therefore MA
i

and MA
j

are disjoint if i 6= j .

Now, given a global solution ξ : R→A for {Π(t ) : t Ê 0} we have that

ξ(t ) = (x(t ),η(t )), for all t Ê 0,

where η : R→ A is a global solution for {Θ(t ) : t Ê 0} and x : R→ X satisfies ϕ(t ,η(s))x(s) =
x(t + s) for all t Ê 0 and s ∈R. Since {M1, · · · , Mn} is a Morse decomposition for A , there exist

1É i < j É n such that

M j
t→−∞←− η(t )

t→∞−→ Mi .

We will show now that ξ(t ) → MA
i

. For this purpose, assume that this is not the case, that is,
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assume that there exist ǫ0 > 0 and a sequence {tn}n∈N with tn →∞ as n →∞ and

d(ξ(tn), MA
i ) Ê ǫ0, for all n ∈N.

But {ξ(tn)}n∈N ⊂ A and we can also assume that ξ(tn) → (x, p) ∈ A . Since η(tn) → Mi , it

follows that p ∈ Mi and thus (x, p) ∈ MA
i

, but

d((x, p), MA
i ) Ê ǫ0,

and since MA
i

is compact, this is a contradiction.

Analogously, ξ(t ) → MA
j

as t →−∞. In a similar way, we can prove that there are no ho-

moclinic structures in {MA
1 , · · · , MA

n }, as there are no homoclinic structures in {M1, · · · , Mn}.

To prove the second statement, fix i = 1, · · · ,n and let Ai be the global attractor of {Πi (t ) :

t Ê 0}. It is easy to see that Ai ⊂ A . Now if (x, p) ∈ Ai , then p ∈ Mi and thus (x, p) ∈ MA
i

.

Conversely, if (x, p) ∈ MA
i

, then (x, p) ∈ A , and thus there exists a global solution ξ : R→A .

But, by the invariance of Mi , we have that ξ(t ) ∈Ai for all t ∈R, and hence (x, p) ∈Ai .

4.2.2 The projection of a Morse decomposition from X ×P to P

We are now interested in the opposite problem. Indeed, we investigate when a given

Morse decomposition on the global attractor A of the skew product semiflow {Π(t ) : t Ê 0}

generates a Morse decomposition in the global attractor A of the driving system {Θ(t ) : t Ê
0}.

Definition 4.2.4. Given any D ⊂ X ×P and R ⊂ P, we define the subset DR by

DR = {p ∈R : (x, p) ∈D for some x ∈ X }.

The set DR is called the P-projection of D over R.

Remark 4.2.5. Notice again that if ψ2 : X ×P → P denotes the projection on the second coor-

dinate, then it is clear that DR =ψ2(D)∩R.

Lemma 4.2.6. Let D ⊂ X ×P be an invariant set under the action of {Π(t ) : t Ê 0}, R ⊂ P an

invariant set under the action of {Θ(t ) : t Ê 0} such that [Θ(t )]−1R ⊂ R for all t Ê 0. Then, the
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projection DR is invariant under the action of {Θ(t ) : t Ê 0}.

Proof: Let p ∈ DR . Then, by definition, there exists x ∈ X such that (x, p) ∈ D and by the

invariance of D under the action of {Π(t ) : t Ê 0}, we have that, for t Ê 0,

(ϕ(t , p)x,Θ(t )p) =Π(t )(x, p) ∈D,

which implies that Θ(t )p ∈ DR , since Θ(t )p ∈ R by invariance. On the other hand, given

q ∈ DR and y ∈ X such that (y, q) ∈ D, by the invariance again, there exists (x, p) ∈ D such

that Π(t )(x, p) = (y, q). This implies that y =ϕ(t , p)x and Θ(t )p = q . Thus p ∈ [Θ(t )]−1R ⊂ R

which proves the result.

For the following result, we will need to assume that the maps Θ(t ) : A →A are injective,

for each t Ê 0.

Theorem 4.2.7. Assume that {M 1, · · · ,M n} is a Morse decomposition for the global attrac-

tor A of the skew product semiflow {Π(t ) : t Ê 0}. Assume that the family {M 1
A

, · · · ,M n
A

} is

disjoint and that Θ(t )|A : A → A is injective for all t Ê 0. Then, {M 1
A

, · · · ,M n
A

} is a Morse

decomposition for the global attractor A of the driving system {Θ(t ) : t Ê 0}.

Proof: We know that M i
A

is compact and non-empty for each i = 1, · · · ,n. By Lemma 4.2.6,

each M i
A

is invariant under the action of {Θ(t ) : t Ê 0}. Now, given a global solution η :R→A

of {Θ(t ) : t Ê 0}, we choose a point x ∈ X such that (x,η(0)) ∈ A . Thus, there exists a global

solution ξ : R→A through (x,η(0)), and by the injectivity of Θ(t ), we have that

ξ(t ) = (x(t ),η(t )), for all t Ê 0.

Since {M 1, · · · ,M n} is a Morse decomposition for A , we have that, for some i < j ,

M j t→−∞←− ξ(t )
t→∞−→ M i ,

which means that

M
j

A

t→−∞←− η(t )
t→∞−→ M i

A
.

Again, there are no homoclinic structures in {M1
A

, · · · , Mn
A

} because there are no homo-

clinic structures in {M 1, · · · ,M n}.
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4.3 Morse decomposition for pullback attractors

We begin this section by stating some known results about the Morse decomposition for

pullback attractors of NDS in [5], where the approach used there requires that the set P be

compact and that {Θ(t ) : t Ê 0} be in fact a group over P , i.e. Θ(t ) : P → P is invertible, with

its continuous inverse given by Θ(t )−1 =Θ(−t ).

Given a set D ⊂ X ×P , we define the p-section of D as the set D(p) ⊂ X as

D(p) = {x ∈ X : (x, p) ∈D}.

In the same way, given a non-autonomous set D̂ = {D(p)}p∈P , with D(p) ⊂ X for all p ∈ P, we

define D ⊂ X ×P as

D =
⋃

p∈P

D(p)× {p}.

Also, given D ⊂ X ×P and R ⊂ P we define the X-projection of D over R by

PR(D) = ∪
p∈R

D(p).

In this setting, we can define the pullback attractor for the NDS (ϕ,Θ)(X ,P) in the following

way:

Definition 4.3.1. Let B be the collection of all bounded sets in X . A non-autonomous set Ŝ is

a pullback attractor of (ϕ,Θ)(X ,P) if:

(i) PP (S) ∈B and each S(p) is compact;

(ii) Ŝ is invariant under the NDS (ϕ,Θ)(X ,P), i.e.

ϕ(t , p)S(p) = S(Θ(t )p), for all t Ê 0 and p ∈ P ;

(iii) Ŝ pullback attracts all non-autonomous sets D̂ such that PP (D) ∈B, i.e.

lim
t→∞

dH (ϕ(t ,Θ(−t )p)D(Θ(−t )p),S(p)) = 0, for all p ∈ P.
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Theorem 4.3.2 (Theorem 3.3 in [5]; see also Proposition 3.31 in [24]). Assume that A is

the global attractor of the skew product semiflow {Π(t ) : t Ê 0}. Then, the associated non-

autonomous set Â is the pullback attractor of the NDS (ϕ,Θ)(X ,P).

Definition 4.3.3. Let A be the global attractor of the skew product semiflow {Π(t ) : t Ê 0}. A

non-autonomous compact pair (Â, R̂) is called a pullback attractor-repeller pair in Â if the

associated pair (A,R) is an attractor-repeller of the global attractor A of Π(t ).

Definition 4.3.4. Let A be the global attractor of the skew product semiflow {Π(t ) : t Ê 0}. Let

(Âi , R̂i ), i = 1, · · · ,n, be pullback attractor-repeller pairs in Â with

;= A0(p) Ú A1(p) Ú ·· · Ú An(p) =A (p)

and

A (p) = R0(p) !R1(p)! · · ·!Rn(p) =;

for all p ∈ P. Then, the family M̂ = {M̂i }n
i=1 of invariant non-autonomous compact sets, de-

fined by

M̂i = Âi ∩ R̂i−1, 1 ≤ i ≤ n,

is called a pullback Morse decomposition of A , and each M̂i is called pullback Morse set.

By Theorem 4.2.3 and Theorem 5.15 in [5] we can now prove the following result describ-

ing the internal asymptotic dynamics of a pullback Morse decomposition for the pullback

attractor Â :

Theorem 4.3.5. Assume that the driving system {Θ(t ) : t Ê 0} has a global attractor A with

a Morse decomposition {M1, · · · , Mn}. Assume also that [Θ(t )]−1(Mi ) ⊂ Mi , for all t Ê 0 and

all i = 1, · · · ,n. Take the family {MA
1 , · · · , MA

n }, which is a Morse decomposition for the global

attractor A of {Π(t ) : t Ê 0}. Then, the NDS (ϕ,Θ)(X ,A ) has a pullback Morse decomposition

{M̂1, · · · , M̂n}, where

Mi (p) = {x ∈ X : (x, p) ∈MA
i },

is the p-section of Mi , for all p ∈A and i = 1, · · · ,n. Assume that M̂ is described by pullback

attractor-repeller pairs (Âi , R̂i ), i = 1, . . . ,n such that PP (Ai )∩PP (Ri ) = ; for i = 1, . . . ,n.
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Then, the collection of pullback Morse sets determines the limiting behavior of NDS ϕ on Â .

More precisely, we have:

(i) For any singleton non-autonomous set x̂ in Â , by writing x̃ =
⋃

p∈P x(p)× {p}, if

dH (x̃,
n
⋃

i=1
∂Ri ) > 0,

we have

lim
t→+∞

dH (ϕ(t ,θ−t p)x(θ−t p),
n
⋃

i=1
Mi (p)) = 0.

(ii) If ϕ is invertible on Â then, for any singleton non-autonomous set x̂ in Â with

dH (x̃,
n
⋃

i=1
∂Ai ) > 0,

we have

lim
t→+∞

dH (ϕ(−t ,θt p)x(θt p),
n
⋃

i=1
Mi (p)) = 0.

(iii) Moreover, under the hypotheses of Theorems 4.3.2 and 4.3.5, the family {Mi (p)}p∈Mi
is

the pullback attractor of the NDS (ϕ,Θ)(X ,Mi ). In particular, we have that

lim
t→∞

sup
p∈Mi

dH (ϕ(t , p)B ,PMi
(MA

i )) = 0,

for all B ⊂ X bounded.

We can now state the main new result of this section, concerning the asymptotic behavior

of the solutions for the NDS (ϕ,Θ)(X ,P) as t →∞ and for any p ∈ P.

Theorem 4.3.6. Let (ϕ,Θ)(X ,P) be a non-autonomous dynamical system and {Π(t ) : t Ê 0}

the associated skew product semiflow. Assume that {Π(t ) : t Ê 0} possesses a global attrac-

tor A and also that the driving system {Θ(t ) : t Ê 0} has a global attractor A with a Morse

decomposition {M1, · · · , Mn}. Assume that [Θ(t )]−1(Mi ) ⊂ Mi , for all t Ê 0 and all i = 1, · · · ,n.

Let {MA
1 , · · · , MA

n } be the corresponding Morse decomposition for the global attractor A of
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{Π(t ) : t Ê 0}. Then, given (x, p) ∈ X ×P, there exists i = 1, · · · ,n such that

lim
t→∞

dH (ϕ(t , p)x,PMi
(MA

i )) = 0.

Proof: Let (x, p) ∈ X ×P , and consider the solution ξ : R+ → X ×P for the skew product

semiflow {Π(t ) : t Ê 0} through (x, p). We know that

ξ(t ) =Π(x, p) = (ϕ(t , p)x,Θ(t )p), for all t Ê 0.

Since {M1, · · · , Mn} is a Morse decomposition for the global attractor A of the driving system

{Θ(t ) : t Ê 0}, there exists i = 1, · · · ,n such that Θ(t )p → Mi as t →∞. We claim that ξ(t ) →
MA

i
. Assume, by contradiction, that this is not the case, i.e. there exist ǫ0 > 0 and a sequence

{tn}n∈N such that tn →∞ as n →∞ and

d(ξ(tn), MA
i ) Ê ǫ0, for all n ∈N.

But d(ξ(tn),A )
n→∞−→ 0 and we can assume that there exists (x0, p0) ∈ A such that ξ(tn) →

(x0, p0). But this implies that p0 ∈ Mi , which in turn implies that (x0, p0) ∈ MA
i

and gives a

contradiction, since

0 = d((x0, p0), MA
i )

n→∞←− d(ξ(tn), MA
i ) Ê ǫ0 > 0.

Thus, ξ(t ) → MA
i

, and then ϕ(t , p)x →PMi
(MA

i
).

Our last result in this section provides the equivalence between the existence of Morse

decomposition and Lyapunov function for the skew product semiflow {Π(t ) : t ≥ 0} from the

existence of a Lyapunov function (and thus a Morse decomposition) for the global attractor

of the driving system {Θ(t ) : t ≥ 0}.

Theorem 4.3.7. Let X and P be metric spaces, ϕ : R+×P ×X → X be a cocycle, Θ : R+×X → X

be the driving system with global attractor A and Π : R+× X ×P → X ×P be the associated

skew product semiflow. Assume that Π possesses a global attractor A and that {Θ(t ) : t Ê 0}

has a global attractor A . If there is a Lyapunov function for {Θ(t ) : t Ê 0}, then there is a

non-autonomous Morse decomposition MA = {MA
i

}n
i=1 and a continuous Lyapunov function

L : X ×P →R
+ with the following properties:
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(i) L(ϕ(t , p)x,Θ(t )p) É L(x, p) for any (x, p) ∈ X ×P and t Ê 0.

(ii) L(ϕ(t , p)x,Θ(t )p) = L(x, p) when x ∈ ∪n
i=1Mi (p) for all t Ê 0, and L takes different con-

stant value on different Morse sets.

(iii) L(ϕ(t , p)x,Θ(t )p) < L(x, p) when x ∈ X \∪n
i=1Mi (p) for all t > 0.

Proof: The Lyapunov function for {Θ(t ) : t Ê 0} generates a Morse decomposition for its

global attractor A . This Morse decomposition generates a Morse decomposition for the

global attractor A in the phase space X ×P . So the result follows from [1, Theorem 3.4 and

Proposition 3.5].

With these results, returning to the problem of the estimate of the fractal dimension, we

can state the following

Theorem 4.3.8. Let X and P be metric spaces, ϕ : R+×P × X → X be a cocycle, Θ : R+× X →

X be the driving system with global attractor A , a Morse decomposition {M1, · · · , Mn} and

Π : R+× X ×P → X ×P be the associated skew product semiflow with global attractor A . Let

η : R → A be a bounded global solution for {Θ(t ) : t Ê 0} and {T (t , s) : t Ê s} the evolution

process defined by T (t , s)=ϕ(t − s,η(s)). We know that {T (t , s) : t Ê s} has a pullback attractor

{A (t ) : t ∈ R} with a pullback Morse decomposition given by MA (t ) = {MA
i

(t )}n
i=1, for t ∈ R.

Assume that {T (t , s) : t Ê s} satisfies conditions (a), (b) and (c) of Corollary 3.4.2. Then

c1 É c(A (t )) É
ω+ lnL

ω
c2.

4.4 Small non-autonomous perturbations

We can see also how these structures behave under small non-autonomous perturba-

tions. The results below follow from [11]:

Theorem 4.4.1. Let X and P be metric spaces ϕ : R+×P×X → X be a cocycle, Θ : R+×X → X be

the driving system and Π : R+×X ×P → X ×P be the associated skew product semiflow. Assume

that Π has a global attractor A , {Θ(t ) : t Ê 0} has a global attractor A and that p0 ∈ A is a

fixed point of Θ. If A (p) = {x ∈ X : (x, p) ∈A }, assume that the following conditions hold:
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(a) There exists δ> 0 such that
⋃

d(p,p0)≤δ
A (p) is precompact.

(b) {ϕ(t , p0) : t ≥ 0} is a gradient-like semigroup relatively to the set of equilibria E0 = {y∗
1,0, · · · , y∗

n,0}.

(c) For each p sufficiently close to p0, there exists a global solution ηp : R+ →P of Θ through

p such that {ϕ(t − s,ηp (s)) : t ≥ s} possesses n isolated global solutions ξ
η,∗
i ,p : R→ X i =

1,2, · · · ,n, and sup
1≤i≤n

sup
t∈R

d(ξ
ηp ,∗
i ,p (t ), y∗

i ,0)
p→p0−→ 0.

(d) For each compact set K ⊂R
+×X and the global solution ηp : R+ → P of Θ through p,

sup
s∈R

sup
(t ,x)∈K

d(ϕ(t − s,ηp (s))x,ϕ(t − s, p0)x)
p→p0−→ 0.

(e) There exist µ > 0 such that, if ξp : R → X is a bounded solution of {ϕ(t − s,ηp (s)) :

t ≥ s} with p sufficiently close to p0 so that, if there are t0 ∈ R and i ∈ {1, · · · ,n} with

sup
t≤t0

dist(ξp (t ),ξ
ηp ,∗
i ,p (R)) <µ (resp. sup

t≥t0

dist(ξp (t ),ξ
ηp ,∗
i ,p (R)) <µ), then lim

t→−∞
d(ξp (t ),ξ

ηp ,∗
i ,p (t )) =

0 (resp. lim
t→∞

d(ξp (t ),ξ
ηp ,∗
i ,p (t )) = 0).

Then, for all p sufficiently close to p0, {ϕ(t−s,ηp (s)) : t ≥ s} is a non-autonomous gradient-

like evolution process with respect to the disjoint set of isolated invariant families E
ηp

p = {ξ
ηp ,∗
1,p , · · · ,ξ

ηp ,∗
n,p }.

Theorem 4.4.2. Let X and P be metric spaces ϕ : R+×P ×X → X be a cocycle, Θ : R+×X → X

be the driving system and Π : R+× X ×P → X ×P be the associated skew product semiflow.

Assume that Π has a global attractor A , {Θ(t ) : t Ê 0} has a global attractor A and p0 ∈A is a

fixed point of Θ. If A (p) = {x ∈ X : (x, p) ∈A }, assume that the following conditions hold:

a) There exists δ> 0 such that
⋃

d(p,p0)≤δ
A (p) is precompact.

b) {ϕ(t , p0) : t ≥ 0} is a generalized gradient-like semigroup with isolated invariant sets

{Γ∗
1,0, · · ·Γ∗

n,0}.

c) For each p sufficiently close to p0, there exists a global solution ηp : R+ →P of Θ through

p such that {ϕ(t − s,ηp (s)) : t ≥ s} possesses n ∈N isolated invariant families

Ψ
ηp

p = {Ξ
ηp ,∗
1,p (·), · · · ,Ξ

ηp ,∗
n,p (·)},
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with traces {Γ
ηp ,∗
1,p , · · · ,Γ

ηp ,∗
n,p }, which behave upper e lower semi-continuously as p goes to

p0 (sup1ÉiÉn [dist(Γ
ηp ,∗
i ,p ,Γ∗

i ,0)+dist(Γ∗
i ,0,Γ

ηp ,∗
i ,p )]

p→p0−→ 0).

d) For each compact set K ⊂R
+×X and the global solution ηp : R+ → P of Θ through p,

sup
s∈R

sup
(t ,x)∈K

d(ϕ(t − s,ηp (s))x,ϕ(t − s, p0)x)
p→p0−→ 0.

e) There exist µ > 0 such that, if ξp : R → X is a bounded solution of {ϕ(t − s,ηp (s)) :

t ≥ s} with p sufficiently close to p0 so that, if there are t0 ∈ R and i ∈ {1, · · · ,n} with

sup
t≤t0

dist(ξp (t ),Γ
ηp ,∗
i ,p ) < µ (resp. sup

t≥t0

dist(ξp (t ),Γ
ηp ,∗
i ,p ) < µ), then lim

t→−∞
d(ξp (t ),Ξ

ηp ,∗
i ,p (t )) =

0 (resp. lim
t→∞

d(ξp (t ),Ξ
ηp ,∗
i ,p (t )) = 0).

Then, for all p sufficiently close to p0, {ϕ(t − s,ηp(s)) : t ≥ s} is a generalized gradient-like

evolution process with isolated invariant families Ψ
ηp

p = {Ξ
ηp ,∗
1,p (·), · · · ,Ξ

ηp ,∗
n,p (·)}.

4.4.1 Asymptotically autonomous evolution processes

In this section we will consider asymptotically autonomous evolution processes. Loosely

speaking, an evolution process is asymptotically autonomous if it is very close to an au-

tonomous evolution processes when the initial times are very large. This idea leads to the

following definition (for a similar definition see [32]).

Definition 4.4.3. Let {S(t , s) : t Ê s} be an evolution process and {S0(t ) : t Ê 0} be a semigroup

in a metric space Z . We say that

⋆ {S(t , s) : t Ê s} is asymptotically autonomous at −∞ if

S(t + s, s)u0
s→−∞−→ S0(t )u0

⋆ {S(t , s) : t Ê s} is asymptotically autonomous at +∞ if

S(t + s, s)u0
s→+∞−→ S0(t )u0

uniformly for t in bounded intervals of [0,∞) and for u0 in compact subsets of Z .
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In order to obtain information about an asymptotically autonomous evolution process

using the results of the previous sections it is convenient to introduce a new evolution pro-

cess which is close, for all initial times, to an autonomous evolution process.

Let τ ∈ R, {S(t , s) : t Ê s} be an evolution process and {T (t ) : t Ê 0} be a semigroup, and

construct the following truncated evolution processes:

⋆ Forward truncation at time τ

Sτ(t , s) =



















S(t , s), if s É t É τ,

T (t −τ)S(τ, s), if s É τÉ t ,

T (t − s), if τÉ s É t .

⋆ Backward truncation at time τ

Sτ(t , s) =



















T (t − s), if s É t É τ,

S(t ,τ)T (τ− s), if s É τÉ t

S(t , s), if τÉ s É t .

We have the following property for the truncations:

Theorem 4.4.4. If {S(t , s) : t Ê s} is an asymptotically autonomous evolution process at −∞

(at +∞) and {S0(t ) : t Ê 0} is the associated semigroup. Assume that the semigroup satisfies a

uniform continuity condition, i.e. given ǫ > 0, a bounded interval I ⊂ R
+ and a compact set

K ⊂ Z there exists δ= δ(ǫ, I ,K ) such that ‖S0(t )u −S0(t )v‖ < ǫ, if ‖u − v‖ < δ, u, v ∈ K , for all

t ∈ I . Then the forward (backward) truncation of {S(t , s) : t Ê s} satisfies ‖Sτ(t + r,r )u −S0(t +

r,r )u‖Z −→ 0 as τ →−∞ (τ → +∞) uniformly for r ∈ R and for (t ,u) in compact subsets of

R
+×Z .

Proof: We first deal with the case of the forward truncation evolution process. We know that

for each τ ∈R, the forward truncation at τ is given by

Sτ(t , s) =



















S(t , s), if s É t É τ,

S0(t −τ)S(τ, s), if s É τÉ t ,

S0(t − s), if τÉ s É t .
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Now given ǫ > 0, a bounded interval I ⊂ R
+ and a compact set K ⊂ Z , from the uniform

continuity of {S0(t ) : t Ê 0}, there exists 0 < δ< ǫ such that

‖S0(t )u −S0(t )v‖Z < ǫ, if ‖u −v‖Z < δ,u, v ∈ K , for all t ∈ J ,

where J = [0,2M] and M = sup I .

Now, since the process {S(t , s) : t Ê s} is asymptotically autonomous at −∞, for the δ> 0

above, there exists r0 < 0 such that, if r É r0,

‖S(t + r,r )u −S0(t )u‖Z < δ, for all t ∈ I and u ∈K .

Now we have for τÉ r0,

Sτ(t + r,r )u −S0(t )u =



















S(t + r,r )u −S0(t )u, if t + r É τ,

S0(t + r −τ)S(τ,r )u −S0(t + r −τ)S0(τ− r )u, if r É τÉ t + r,

0, if τÉ r,

which implies1 that

sup
r∈R

‖Sτ(t + r,r )u −S0(t )u‖Z < ǫ, for all t ∈ I and u ∈K .

The case for asymptotically autonomous evolution process at +∞ follows analogously,

just reminding that for each bounded interval I ⊂ R
+ and each compact set K ⊂ Z , the set

∪
t∈I

S(t )K is also compact, since we have the uniform continuity property.

We can state the following result:

Theorem 4.4.5. Let X and P be a metric spaces ϕ : R+×P×X → X be a cocycle, Θ : R+×X → X

be the driving system and Π : R+× X ×P → X ×P be the associated skew product semiflow.

Assume that Π has a global attractor A , {Θ(t ) : t Ê 0} has a global attractor A and that p0 ∈A

is a fixed point of Θ. Assume also that there exists a bounded global solution η : R→ A such

that η(s)→ p0 as s →−∞ and that

a’) There exists s0 < 0 such that
⋃

sÉs0

A (η(s)) is precompact.

1Here, for the estimate of the term ‖S0(t +r −τ)S(τ,r )u−S0(t +r −τ)S0(τ−r )u‖Z , is where we have the need
to use the interval J for the uniform continuity property, since t +r −τ does not need to be in I , but t +r −τ ∈ J .
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b’) If T (t ) :=ϕ(t , p0), for all t Ê 0 then {T (t ) : t Ê 0} is a generalized gradient-like semigroup

with isolated invariant sets {Γ∗
1,0, · · ·Γ∗

n,0}.

c’) If S(t , s) :=ϕ(t − s,η(s)) for all t Ê s, the evolution process {ϕ(t − s,η(s)) : t ≥ s} possesses

n ∈N isolated invariant families

Ψ= {Ξ1(·), · · · ,Ξn(·)},

which behave upper e lower semi-continuously as s →−∞, that is

sup
1ÉiÉn

[dH (Ξ∗
i (s),Γ∗

i ,0)+dH (Γ∗
i ,0,Ξi (s))]

s→−∞−→ 0.

d’) There exist µ> 0 such that, if ξ : R→ X is a bounded solution of {ϕ(t − s,η(s)) : t ≥ s} so

that, if there are t0 ∈R and i ∈ {1, · · · ,n} with sup
t≤t0

d(ξ(t ),Γ∗
i

) <µ, then lim
t→−∞

d(ξ(t ),Ξ∗
i

(t )) =

0.

Then, there exists τ0 < 0 such that, for all τ É τ0, the forward truncated evolution process

{Sτ(t , s) : t Ê s} is a generalized gradient-like evolution process.

Proof: Since η(s) → p0 as s → −∞, the evolution process {S(t , s) : t Ê s} is asymptotically

autonomous at −∞, and thus the truncated process satisfies also item (d) of Theorem 4.4.2,

which gives us the result.

With this result, we can look more closely to the behavior of solutions ξ : R → X of the

evolution process {S(t , s) : t Ê s} at −∞.

Theorem 4.4.6. Under the hypotheses and notations of Theorem 4.4.5, if ξ : R→ X is a bounded

global solution for the evolution process {S(t , s) : t Ê s}, then there exists i = 1, · · · ,n such that

ξ(s)→ Γ
∗
i ,0 as s →−∞.

Proof: Let ξ : R→ X be a bounded global solution for the evolution process {S(t , s) : t Ê 0}.

Then, for each τ ∈R, the function ξτ : R→ X defined by

ξτ(t ) =
{

ξ(t ), if t É τ

T (t −τ)ξ(τ), if t Ê τ
,
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is a bounded global solution for the forward truncated evolution process {Sτ(t , s) : t Ê s}. By

Theorem 4.4.5, there exists τ0 < 0 and i = 1, · · · ,n such that dH (ξτ0 (s),Ξ∗
i

(s)) → 0 as s →−∞
and since dH (Ξ∗

i
(s),Γ∗

i ,0) → 0 as s →−∞ and ξτ0 (s)= ξ(s) for s É τ0, the result follows.

Analogously, we can state the result:

Theorem 4.4.7. Let X and P be metric spaces ϕ : R+×P×X → X be a cocycle, Θ : R+×X → X be

the driving system and Π : R+×X ×P → X ×P be the associated skew product semiflow. Assume

that Π has a global attractor A , {Θ(t ) : t Ê 0} has a global attractor A and that p0 ∈ A is a

fixed point of Θ. Assume also that there exists a bounded global solution η : R→A such that

η(s)→ p0 as s →∞ and that:

a’) There exists s0 > 0 such that
⋃

sÊs0

A (η(s)) is precompact.

b’) If T (t ) :=ϕ(t , p0), for all t Ê 0 then {T (t ) : t Ê 0} is a generalized gradient-like semigroup

with isolated invariant sets {Γ∗
1,0, · · ·Γ∗

n,0}.

c’) If S(t , s) :=ϕ(t − s,η(s)) for all t Ê s, the evolution process {ϕ(t − s,η(s)) : t ≥ s} possesses

n ∈N isolated invariant families

Ψ= {Ξ1(·), · · · ,Ξn(·)},

which behave upper e lower semi-continuously as s →∞, that is

sup
1ÉiÉn

[dH (Ξ∗
i (s),Γ∗

i ,0)+dH (Γ∗
i ,0,Ξi (s))]

s→∞−→ 0.

d’) There exist µ> 0 such that, if ξ : R→ X is a bounded solution of {ϕ(t − s,η(s)) : t ≥ s} so

that, if there are t0 ∈R and i ∈ {1, · · · ,n} with sup
t≥t0

dist(ξ(t ),Γ∗
i

) <µ, then lim
t→∞

d(ξ(t ),Ξ∗
i

(t )) =

0.

Then, there exists τ0 > 0 such that for all τ Ê τ0 the backward truncated evolution process

{Sτ(t , s) : t Ê s} is a generalized gradient-like evolution process.

Theorem 4.4.8. Under the hypotheses and notations of Theorem 4.4.7, if ξ : R→ X is a bounded

global solution for the evolution process {S(t , s) : t Ê s}, then there exists i = 1, · · · ,n such that

ξ(s)→ Γ
∗
i ,0 as s →∞.
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4.5 Applications

Let us now analyze several examples which can be useful for applications.

Example 4.5.1. Consider















ẋ = r (t , x), t > 0,

x(0) = x0 ∈R
n ,

(4.5.1)

with r (t , x) from Example 4.1.10, i.e., we have a smooth function r : R+×R
n →R

n given by

r (t , x) = h(t ) f (x)+ (1−h(t ))g (x), for all t ∈R
+ and x ∈R

n ,

where f , g : Rn →R
n are continuous functions.

We have already shown that f , g ∈ H(r ) and also that there is a connection between f and

g , and a connection between g and f . Thus we cannot have a Morse decomposition in H(r )

which separates f and g , since each one is connected to the other.

Nevertheless, we can choose one of these global solutions, for example ξ, and restrict our-

selves to K
.= ξ(R) ⊂ H(r ), which has a non-trivial Morse decomposition, i.e. M1 = { f } and

M2 = {g }, and thus generates a Morse decomposition for the associated skew product semiflow

and non-autonomous dynamical system related to (4.5.1).

Example 4.5.2. Consider a function f : R×R
n → R

n and the non-autonomous dynamical

system














ẋ = f (t , x), t ∈R

x(0) = x0.
(4.5.2)

Assume that there are functions f1, f2 : Rn →R
n such that

sup
x∈Rn

‖ f (t , x)− f2(x)‖Rn
t→∞−→ 0, and sup

x∈Rn
‖ f (t , x)− f1(x)‖Rn

t→−∞−→ 0.
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Now considering the space Cb(I ×R
n ,Rn) (see Subsection 4.1.2), we can see that

‖θ(t ) f (s, x)− f2(x)‖k = sup
x∈Bk ,s∈Ik

‖ f (t + s, x)− f2(x)‖Rn
t→∞−→ 0,

and

‖θ(t ) f (s, x)− f1(x)‖k = sup
x∈Bk ,s∈Ik

‖ f (t + s, x)− f2(x)‖Rn
t→−∞−→ 0,

for all k ∈N, which means that θ(t ) f
t→∞−→ f2 and θ(t ) f

t→−∞−→ f1 in the uniform convergence on

bounded sets, thus H( f ) = {θ(t ) f }tÊ0∪{ f1, f2} and this set has a Morse decomposition {M1, M2}

given by

M1 = { f1} and M2 = { f2}.

If the skew product semiflow {Π(t ) : t Ê 0} given by Π(t )(x0, g ) = (x(t , g , x0), g t ) in the phase

state R
n ×H( f ) has a global attractor A , then {MA

1 , MA
2 } is a Morse decomposition for A . In

this case, if A1 = {x ∈R
n : (x, f1) ∈A } and A2 = {x ∈R

n : (x, f2) ∈A } then

MA
1 = A1 × { f1} and MA

2 = A2 × { f2}.

Therefore, the solution x(t , f , x0) of the problem (4.5.2) converges to A1 as t → ∞ and A2 as

t → −∞. Moreover, we know that A1 (A2) is the global attractor of the problem ẋ = f1(x)

(ẋ = f2(x)), and if A1 (A2) has a Morse decomposition {M
A1
1 , · · · , M

A1
m } ({M

A2
1 , · · · , M

A2
p }) then

Theorem 4.4.8 (Theorem 4.4.6) guarantees that there exists i = 1, · · · ,m (j = 1, · · · , p) such that

x(t , f , x0) converges to M
A1
i

as t →∞ (M
A2
j

as t →−∞).

Example 4.5.3. Consider the system of autonomous differential equations































v̇ = f (u, v) t > 0

u̇ = g (u), t > 0

u(0) = u0 ∈R
n , v(0)= v0 ∈R

n ,

(4.5.3)

where the u component is decoupled, so the system (4.5.3) generates a skew product semiflow.

The u-component here may be considered to represent an independent system that drives the



4.5 Applications 99

v-component of the system in the sense that

v̇ = f (u(t ), v)

for any given solution u(t ) of u̇ = g (u). Assume that the system u̇ = g (u) generates a semigroup

{Θ(t ) : t Ê 0} in R
n , that is, Θ(t )u0 = u(t ,u0), where u(·,u0) is the unique solution for t > 0 of

the problem














u̇ = g (u), t > 0

u(0) = u0.

Assume also that {Θ(t ) : t Ê} has a global attractor A with a Morse decomposition {M1, · · · , Mn},

that the property of backward uniqueness of {Θ(t ) : t Ê 0} in A holds and also that the gen-

erated skew product semiflow {Π(t ) : t Ê 0} has a global attractor A . Then we have that for

every pair of points (u0, v0) ∈R
n ×R

n , the solution v(t , v0,u0) of the problem















v̇(t ) = f (Θ(t )u0, v(t )), t > 0

v(0)= v0,

satisfies v(t , v0,u0)
t→∞−→ PMi0

(MA
i0

), for some i0 = 1, · · · ,n, where i0 is such that Θ(t )u0
t→∞−→

Mi0 .

Example 4.5.4. This last example illustrates how we can use the general theory in a more

concrete case. Let us consider the planar system

d

d t
(x, y) = F

(

t , (x, y)
)

, t ∈R. (4.5.4)

Assume that F (t , (x, y)) → F1(x, y) as t →−∞ and that F (t , (x, y)) → F2(x, y) as t →∞, where

F1,F2 : R2 →R
2 satisfy

1. F1(x, y) = ( f (x), g (x, y)), where f (x) = x − x3 and g (x, y) = (1− x2)y − y3. Clearly they

satisfy the conditions of Example 4.5.3;
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2. F2 is given in polar coordinates by

F2(r cosθ,r sinθ) =G(r,θ) = (−r (r −1)(r −2),1).

From the Example 4.5.3, we know the Morse decomposition {MA
0 , MA

1 , MA
2 } for the global

attractor A of the planar system














ẋ = f (x)

ẏ = g (x, y)
,

given a Morse decomposition {M0, M1, M2} for the global attractor A = [−1,1] ⊂R of the equa-

tion ẋ = f (x), where M0 = {−1}, M1 = {1}, M2 = {0}. Indeed, it is not hard to see that the Morse

decomposition is this case is given by MA
0 = {(−1,0)}, MA

1 = {(1,0)} and MA
2 = {(0, y) : y ∈

[−1,1]}.

Now, we already know that the system d
dt

(x, y) = F2(x, y), t > 0 generates a generalized

gradient-like system, with invariant sets given by Ξ0 = {0}, Ξ1 = {(1,θ) : θ ∈ [0,2π]} and Ξ2 =

{(2,θ) : θ ∈ [0,2π]}.

Thus, by Example 4.5.2, we know that every solution ξ : R→R
2 of the system (4.5.4) satisfies

(a) ξ(t ) → MA
i

for some i = 1, · · · ,n as t →−∞,

(b) ξ(t ) →Ξ j for some j = 0,1,2 as t →∞.

−∞ ∞

b

b

b

b

b

b

b
ξ(t )

b
ψ(t )

Asymptotic behaviors for solutions ξ,ψ of (4.5.4).
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