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Abstract

We address the problem of existence and uniqueness (or finiteness) of ergodic

equilibrium states for a natural class of partially hyperbolic diffeomorphisms homo-

topic to Anosov. We propose to study the disintegration of equilibrium states along

the central foliation as a tool to develop the theory of equilibrium states for par-

tially hyperbolic dynamics. For a large class of low variational potentials we obtain

existence and uniqueness of the equilibrium state and we also obtain a dichotomy

between finiteness of ergodic equilibrium states and hyperbolicity of such measures.

We also prove that the measure of maximal entropy for accessible partially hy-

perbolic diffeomorphisms of 3-manifold having compact center leaves can be written

locally as the product of three measures defined on the local stable, central and

unstable foliations provided that such measure is unique. We verify that the local

product structure does not hold when the number of measures of maximal entropy

is larger than one.

Keywords: Equilibrium states, disintegration of measures, local product structure,

partially hyperbolic diffeomorphisms, measure of maximal entropy.
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Resumo

Abordamos o problema de existência e unicidade (ou finitude) dos estados de

equilíbrio ergódicos para uma classe natural de difeomorfismos parcialmente hiper-

bólicos homotópicos a um Anosov. Propomos estudar a desintegração dos estados

de equilíbrio ao longo da folheação central como uma ferramenta para desenvolver

a teoria de estados de equilíbrio para sistemas parcialmente hiperbólicos. Para uma

classe de potenciais com variação pequena obtemos existência e unicidade de esta-

dos de equilíbrio e também obtemos uma dicotomia entre finitude dos estados de

equilíbrio ergódicos e hiperbolicidade de tais medidas.

Obtemos também que as medidas de máxima entropia para difeomorfismos par-

cialmente hiperbólicos acessíveis definidos numa 3-variedade tendo folhas centrais

compactas podem ser escritas localmente como o produto de três medidas definidas

nas folheações stável, central e instável locais sempre que tal medida é única. Veri-

ficamos que a estrutura de produto local não é valida quando o número de medidas

de máxima entropia é maior que um.

Palavras-chaves: Estados de equilíbrio, desintegração de medidas, estrutura de

produto local, difeomorfismos parcialmente hiperbólicos, medidas de máxima en-

tropia.
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Chapter

1
Introduction

An equilibrium state for a continuous map f : M → M with respect to a

potential φ : M → R is an invariant Borel probability measure µ that maximizes

the quantity hµ(f) +
∫
φdµ among all invariant measures. In the particular case

φ ≡ 0, such maximizer is called measure of maximal entropy (if it exists). It is

an old and very important problem to know about existence and uniqueness of

equilibrium states. For hyperbolic dynamics and expanding endomorphisms this

problem was extensively studied by Sinai [52], Ruelle [50], and Bowen [5], [6].

In the other hand, considerable research was done for non-uniformly hyperbolic

systems. For one dimensional systems we mention the important contributions made

by Keller [28], Hofbauer [24], Buzzi [13], Buzzi and Sarig [15], Pesin and Senti [40],

Bruin [9], Bruin and Keller [10], Bruin and Todd [11], Iommi and Todd [27], among

others. In dimension bigger than one, Oliveira [36], Oliveira and Viana [38], and

Varandas and Viana [58], considered non-uniformyly expanding maps, Arbieto and

Prudente [1], Rios and Siquiera [45], Leplaideur, Oliveira and Rios [33], considered

partially hyperbolic horseshoes, Climenhaga, Fisher and Thompson [16], considered

the robustly transitive diffeomorphisms of Mañé and Bonatti-Viana, Pesin, Senti

and Zhang [41], [42], considered the Katok map and towers of hyperbolic type; for

a more complete picture of equilibrium states for non-uniformly hyperbolic see the

survey [18].

We also mention that R. Spatzier and D. Visscher [53] proved uniqueness of

equilibrium state for frame flows on closed, oriented, negatively curved n−manifold,

n odd and (n 6= 7) and potentials induced by potentials defined on unit tangent

bundles, i.e constant on the fibers of the bundle FM → SM where FM and SM
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are respectively frame bundle and unit tangent bundle.

1.1 Equilibrium states for partially hyperbolic diffeo-
morphisms in T3

We consider partially hyperbolic systems, i.e., diffeomorphisms of compact man-

ifolds f : M → M with an invariant spliting of the tangent bundle TM = Es ⊕
Ec ⊕Eu, such that vectors in Es are exponentially contracted under iteration, vec-

tors in Eu are exponentially expanded, while vectors in Ec are neither contracted

as strongly as any vector in Es nor expanded as strongly as any vector in Eu. For

those class of diffeomorphisms, it is well known that there are foliations Fσ tangent

to the sub-bundles Eσ for σ = s, u. In general, it is not true that there is a folia-

tion tangent to the central sub-bundle Ec (see for instance [47]). However, by Brin,

Burago, Ivanov [7] all absolutely partially hyperbolic diffeomorphism on T3 admit a

foliation tangent to Ec, the center foliation.

It is well known that all entropy-expansive maps have equilibrium states with

respect to any continuos potential. By the work of Diaz, Fisher, Pacifico and Vieitez

[20] all partially hyperbolic diffeomorphisms with 1-dimensional center direction are

entropy-expansive. Therefore, all partially hyperbolic diffeomorphisms on T3 have

equilibrium states with respect to any continuous potential. However, we can ask

the following.

Question 1.1.1. Do all absolutely partially hyperbolic diffeomorphisms on T3 have

a unique equilibrium state associated to Hölder continuous potentials?

J. Buzzi, T. Fisher, M. Sambarino and C. Vásquez [14] showed that the Mañé’s

example has a unique measure of maximal entropy, and R. Ures in [57] proved the

same property for any absolutely partially hyperbolic diffeomorphisms homotopic

to a linear Anosov diffeomorphism of T3. We call this class of diffeomorphisms as

Derived from Anosov diffeomorphisms (see Definition 2.2.7).

F. Rodriguez Hertz, A. Rodriguez Hertz, A. Tahzibi and R. Ures in [49] showed

that partially hyperbolic diffeomorphisms on T3 with compact central leaves have

finitely many ergodic measures of maximal entropy. In fact they show that “typi-

cally” ([49], Theorem 1), there is more than one measure of maximal entropy.

By a work of Hammerlindl [23], the absolutely partially hyperbolic diffeomor-

phisms on T3 are classified into two groups of diffeomorphisms mentioned above
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(Derived from Anosov and diffeomorphims with compact central leaves). Then, we

can ask the next.

Question 1.1.2. Do all Derived from Anosov diffeomorphisms have a unique equi-

librium state associated to Hölder continuous potentials?

By a recent work of Climenhaga, Fisher and Thompson [16], the Mañé’s example

has a unique equilibrium states with respect to Hölder continuous potential satisfying

some technical conditions.

Let f : T3 → T3 be a derived from Anosov diffeomorphism, it is well known that

f is semi-conjugated to a linear Anosov diffeomorphism A on T3 by a semiconjugacy

H. Let ψ : T3 → R be a potential Hölder continuous and considered the potential

φ definded by φ = ψ ◦H.

In this thesis we study equilibrium states for Derived from Anosov diffeomor-

phisms on T3 associated to potential φ = ψ ◦ H, for which we make to use of

disintegration of measures along the central foliation of these diffeomorphisms.

Our first result gives a partial answer to the question 1.1.2. We denote by C the

set of points where H fails to be injective.

Theorem A. Let f : T3 → T3 be a Derived from Anosov diffeomorphism and let

ψ : T3 → R be a Hölder continuous potential. Define φ = ψ ◦ H and let µ be an

ergodic equilibrium state for f with respect to φ:

1) If µ(C) = 0, then µ is the unique equilibrium state.

2) If µ(C) = 1, then µ is virtually hyperbolic (see 2.3.9) and there exists neces-

sarily another equilibrium state η for (f, φ).

The proof of the above theorem enables us to conclude a dichotomy between

finiteness of ergodic equilibrium states and hyperbolicity of such measures.

Theorem B. Let f and φ be as in Theorem A. Then either there is an ergodic

non-hyperbolic equilibrium state or the number of ergodic equilibrium states is finite.

Recall that f has a unique measure of maximal entropy. Moreover, we can

show that under small variation hypothesis of the potential, the equilibrium state is

unique.

Let λ1, λ2 and λ3 be the Lyapunov exponents of A such that λ3 < 0 < λ2 < λ1.

3



Theorem C. Let f and φ be as in Theorem A. If the potential satisfies supT3 φ −
infT3 φ < λ2, then there exists a unique equilibrium state for (f, φ).

The “small” variational condition in the above theorem is common in the liter-

ature to achieve uniqueness of equilibrium states and it has been considered by K.

Oliveira and M. Viana [38] for non-uniformly expanding maps on compact manifolds,

by I. Rios and J. Siqueira [45] for partially hyperbolic horsehoes, by F. Hofbauer

and G. Keller [25] for piece wise monotomic maps, by H. Bruin and M. Todd [12]

for interval maps, and by M. Denker, M. Urbánski [19] for rational maps on the

Riemann sphere.

Our approach to study the uniqueness (or finiteness) of the equilibrium states

for Derived from Anosov diffeomorphisms is based on using the disintegration of

equilibrium state along the central foliation. To prove Theorem A, we prove in

Lemma 3.1.1 that the conditional measure for equilibrium states along central foli-

ation are monoatomic, that is, it consist of a unique atom per leaf. Similar results

were studied by Ponce, Tahzibi and Varão in [43], [44]. Since that each center leaf

has a unique atom, we can construct another equilibrium state which is also virtually

hyperbolic. To show finiteness of ergodic equilibrium states when such measures are

hyperbolic (see Theorem B) we supposse that there exist an infinite number of such

measures, since such measures are virtually hyperbolic (see Lemma 3.1.1) is possible

to construct an hyperbolic ergodic equilibrium states. To prove the uniqueness of

equilibrium state for Derived from Anosov associated to potential with small vari-

ation (see Theorem C), we prove in Proposition 3.3.1 that the metric entropy of f

with respect to equilibrium states is less or equal than λ1.

1.2 Local product structure

The local product structure of measures of maximal entropy for uniformly hy-

perbolic diffeomorphisms was showed by the work of Ruelle and Sullivan [51], and

Leplaideur in [32] showed that the unique equilibrium states associated for Hölder

continuous potential for such diffeomorphisms has local product structure. Roughly

speaking such property means that locally the measure can be written as the prod-

uct of two measures defined in the stable and unstable manifold. For non-uniformly

hyperbolic diffeomophisms it was showed by Barreira, Pesin and Schemling [4] that

hyperbolic measures have “almost” local product structure and using this property
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of hyperbolic measures they prove the long-standing Eckmann-Ruelle conjecture in

dimension theory of smooth dynamical systems.

Since absolutely partially hyperbolic diffeomorphisms in T3 have measures of

maximal entropy and there exist stable, central and unstable foliations, we can ask:

Question 1.2.1. Can the measures of maximal entropy for absolutely partially hy-

perbolic diffeomorphisms in T3 be written locally as the product of three measures

defined on the local stable, central and unstable foliations?

The previous question was enunciated by F. Rodriguez Hertz in a context more

general (see [46], Section 4).

Our next result answer the above question for such diffeomorfisms with compact

central leaves, more specifically we prove:

Theorem D. Let f : M → M be a C1+α partially hyperbolic diffeomorphism of a

three dimensional closed manifold M . Assume that f is dynamically coherent with

compact one-dimensional central leaves and has the accessibility property. Then

1) If µ is the unique measure of maximal entropy for f (see item 1, Theorem

4.0.4), then for each x ∈ M , there are measures µsx, µux and µcx defined in

F sloc(x) (local stable manifold of x), Fuloc(x) and F cloc(x) respectively, such that

µ = ϕ∗µ
s
x × µcx × µux (1.1)

on ϕ(F sloc(x)×F cloc(x)×Fuloc(x)) where ϕ : F sloc(x)×F cloc(x)×Fuloc(x)→M is

defined by

ϕ(z, t, w) = Fuloc(F cloc(z) ∩ F sloc(t)) ∩ F csloc(w)

2) If µ is a hyperbolic ergodic measure of maximal entropy for f (see item 2,

theorem 4.0.4), then do not exist measures defined in the local stable, unstable

and central manifold such that (1.1) is true for µ.

We also verified that the local product structure does not hold for equilibrium

states of derived from Anosov diffeomorphisms which are virtually hyperbolics (see

Theorem 4.1.6).
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1.3 Structure of the thesis

This work is organized as follows:

In Chapter 2 we state some fundamental background concepts and results in

equilibrium states, partially hyperbolic dynamics, ergodic theory, measure disinte-

gration theory and local product structure of measures.

In Chapter 3 we study equilibrium states for Derived from Anosov diffeomor-

phisms. In the Section 3.1 we prove Theorem A showing ergodic equilibrium states

are virtually hyperbolic and that is used to construct twin measures. The construc-

tion of the above result is used to prove in the Section 3.2 Theorem B. In the Section

3.3 we prove Theorem C showing that equilibrium states associated to potentials

with small variation are not virtually hyperbolic. In the Section 3.4 we study the

center Lyapunov exponent of equilibrium states, showing an inequality between such

exponent and the center Lyapunov exponent of the linear part.

In Chapter 4 we study local product structure of measures of maximal entropy

for partially hyperbolic diffeomorphisms in 3-dimensional manifold, dynamically co-

herent with compact one-dimensional central leaves and with accessibility property.
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Chapter

2
Preliminaries

2.1 Equilibrium states

Let (M,µ,B) be a probability space, where (M,d) is a compact metric space, µ

a Borel probability measure and B is the Borel σ-algebra. Let f : M → M be a

measurable transformation. The measure µ is said to be f -invariant if

f∗µ(B) := µ(f−1(B)) = µ(B), for all B ∈ B.

We denoted byM(f) the set of f−invariant Borel probability measures. If f : M →
M is a continuous transformation, thenM(f) 6= ∅.

An f -invariant measure is called ergodic if f−1(B) = B, implies µ(B) = 0 or 1.

The ergodic measure set is denoted byMe(f).

Let P be a finite partition of M . The entropy of the partition P is defined by

Hµ(P) = −
∑
P∈P

µ(P ) log µ(P ).

We denoted by f−1(P) = {f−1(P ) : P ∈ P}, P ∨Q = {P ∩Q : P ∈ P , Q ∈ Q} and
Pn = ∨n−1j=0 f

−j(P).

Definition 2.1.1. Let f : M → M be a measurable transformation preserving

a probability measure µ in M . The metric entropy of f with respect to µ and a

measurable partition P of M is defined by

hµ(f,P) = lim
n→∞

1

n
Hµ(Pn).

And the metric entropy of f with respect to µ is defined by

hµ(f) := sup{hµ(f,P) : P is a partition of M}.
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Let f : M → M be a continuous transformation of a metric space (M,d) and

let K ⊆ M be an any compact subset. Let n ∈ N and ε > 0. We say that a subset

E ⊆ K is (n, ε)-separated if for x, y ∈ E, x 6= y, there exist i ∈ {0, 1, · · · , n} such

that d(f i(x), f i(y)) ≥ ε. Defined

hn(f,K, ε) := sup{#E : E ⊆ K is (n, ε)− separated}

and

h(f,K) := lim
ε→0

lim sup
n→∞

1

n
log hn(f,K, ε).

Definition 2.1.2. Let f : M → M be a continuous transformation of a compact

metric space M . The topological entropy of f is defined by

htop(f) := h(f,M).

Theorem 2.1.3 (Variational Principle). If f : M → M is a continuous transfor-

mation of a compact metric space, then

htop(f) = sup{hµ(f) : µ ∈M(f)}.

Definition 2.1.4. An f -invariant probability measure µ is called a measure of max-

imal entropy for f if

hµ(f) = htop(f).

Theorem 2.1.5 (Ledrappier-Walters Variational principle, [30]). Let M and N be

compact metric spaces and f : M → M , g : N → N , π : M → N be a continuous

maps such that π is surjective and π ◦ f = g ◦ π. Then

sup
µ:π∗µ=ν

hµ(f) = hν(g) +

∫
N

h(f, π−1(y))dν(y).

Definition 2.1.6. Consider a continuous map f : M →M on a compact manifold

M . We say that an f−invariant Borel probability measure µ is an equilibrium state

for f with respect to a potential φ ∈ C0(M,R) if it satisfies

hµ(f) +

∫
φdµ = sup{hη(f) +

∫
φdη : η ∈M(f)}.

Remark 2.1.7. In the above definition we can change M(f) by Me(f). This is a

consequence of the affine property of the metric entropy (that is h(1−t)µ+tν(f) =

(1 − t)hµ(f) + thν(f), for 0 < t < 1) which was generalized by Jacobs for ergodic
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decomposition (see 2.3.11). Let µ ∈ M(f) and {µP : P ∈ P} its ergodic decompo-

sition. By theorems 2.3.10 and 2.3.11, we have

hµ(f) +

∫
φdµ =

∫ (
hµP (f) +

∫
φdµP

)
dµ̃(P ).

So,

sup{hµ(f) +

∫
φdµ : µ ∈M(f)} ≤ sup{hµ(f) +

∫
φdµ : µ ∈Me(f)}.

Lemma 2.1.8. Let X be a compact metric space and let ψ : X → [−∞,∞) a map.

The following are equivalent:

1. ψ is upper semicontinuous.

2. {x : ψ(x) < c} is closet set for each c ∈ R.

3. If x, xn ∈ X and limn→∞ xn = x, then lim supn→∞ ψ(xn) ≤ ψ(x).

Proof. See [[29], Lemma 4.1.5].

We define the entropy function that is denoted by h :M(f)→ [0,∞) and defined

by

h(µ) := hµ(f).

Proposition 2.1.9. If the entropy function is upper semicontinuous, then f has an

equilibrium states with respect to any potential continuous φ : M → R. Moreover,

the equilibrium states set for (f, φ) is compact and convex subset ofM(f).

Proof. Defined Pφ :M(f) → R by Pφ(µ) = hµ(f) +
∫
φdµ. Since that the entropy

function is upper semicontinuous, we have Pφ and asM(f) is compact then, Pφ has

maximum, i.e., there exist µ ∈M(f) such that

hµ(f) +

∫
φdµ ≥ sup{hη(f) +

∫
φdη : η ∈M(f)}.

Then µ is an equilibrium states for (f, φ). On the other hand, for each k ∈ N we

define the sets

Fk := {µ : Pφ(µ) ≥ P (φ)− 1

k
}

where P (φ) = sup{hη(f) +
∫
φdη : η ∈ M(f)}. Since that Pφ is upper semicontin-

uous, we have that each Fk is closed (compact) set inM(f) (see 2.1.8). Hence,⋂
k∈N

Fk = {µ : hµ(f) +

∫
φdµ = P (φ)}

the equilibrium states set for (f, φ) is compact.
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Let f : M →M be a continuous transformation of a metric space (M,d). Given

ε > 0 let

Γ+
ε (x) := {y ∈M : d(fk(x), fk(y)) < ε for all k ≥ 0}.

If f is invertible we define

Γε(x) := {y ∈M : d(fk(x), fk(y)) < ε for all k ∈ Z}.

The map f is called ε−expansive if Γε(x) = {x}. Define

h∗f (ε) := sup
x∈M

h(f,Γ+
ε (x)).

Definition 2.1.10. Let f : M → M be a continuous transformation of a metric

space (M,d). f is called entropy expansive (or h-expansive) if exist some ε > 0 such

that

h∗f (ε) = 0.

And f is called asymptotically h-expansive if

lim
ε→0

h∗f (ε) = 0.

Remark 2.1.11. ε−expansive ⇒ entropy expansive (or h-expansive)⇒ asymptoti-

cally h-expansive.

The next theorem gives a relation to the entropy function and asymptotically

h-expansive.

Theorem 2.1.12 (Misiurewicz, [35]). If f : M →M is asymptotically h-expansive.

Then the entropy function is uppersemicontinuous.

Corollary 2.1.13. If f : M → M is asymptotically h-expansive. Then f has an

equilibrium states with respect to any continuous potentialφ : M → R.

2.2 Partially hyperbolic diffeomorphisms

Definition 2.2.1. Let M be a closed manifold. A diffeomorphism f : M → M is

called partially hyperbolic if the tangent bundle TM admits a Df -invariant descom-

position TM = Es ⊕ Ec ⊕ Eu such that all unit vectors vσ ∈ Eσ
x (σ = s, c, u) for all

x ∈M satisfy:

‖ Df(x)vs ‖<‖ Df(x)vc ‖<‖ Df(x)vu ‖
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and moreover ‖ Df |Es‖< 1 and ‖ Df−1 |Eu‖< 1.

We called f absolutely partially hyperbolic, if it is partially hyperbolic and for any

x, y, z ∈M
‖ Df(x)vs ‖<‖ Df(y)vc ‖<‖ Df(z)vu ‖

where vs ∈ Es
x, vc ∈ Ec

y and vu ∈ Eu
z .

The set of absolutely partially hyperbolic diffeomorphism is C1 open inside the

set of all diffeomorphisms of M .

For partially hyperbolic diffeomorphisms, it is well known that there are foliations

Fσ tangent to the sub-bundles Eσ for σ = s, u. The leaf of Fσ containing x will be

called Fσ(x), for σ = s, u. In general, it is not true that there is a foliation tangent

to the central sub-bundle Ec.

Definition 2.2.2. A diffeomorphism f : M → M partially hyperbolic is called

dinamically coherent if there exist invariant foliations F cσ tangent to Ecσ for σ =

s, u.

Note that by taking the intersection of these foliations, we obtain an invariant

foliation F c tangent to Ec that subfoliates F cσ for σ = s, u. Hertz-Hertz-Ures

[47] gave an example of partially hyperbolic diffeomorphism on T3 which is not

dinamically coherent. However, Brin, Burago, Ivanov [7] showed that all absolutely

partially hyperbolic diffeomorphism on T3 admit central foliation tangent to Ec.

Theorem 2.2.3 (Brin, Burago, Ivanov [7] ). All absolutely partially hyperbolic dif-

feomorphisms on T3 are dynamically coherent.

Definition 2.2.4. A partially hyperbolic diffeomorphism is called accessible if one

can join any two points in the manifold by a path which is piecewise tangent to either

Es or Eu.

Theorem 2.2.5 (Hertz-Hertz-Ures [48]). For all 1 ≤ r ≤ ∞, accessibility is open

and dense in the of Cr partially hyperbolic diffeomorphisms on a compact Rieman-

nian manifold M , preserving a smooth probability measure m, with one dimensional

center bundle.

Let f : T3 → T3 be a partially hyperbolic diffeomorphism. Consider f∗ : Z3 → Z3

the action of f on the fundamental group of Z3 . f∗ can be extended to R3 and the

extension is the lift of a unique linear automorphism A : T3 → T3.
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Definition 2.2.6. Given f : T3 → T3 be a partially hyperbolic diffeomorphism, the

unique linear automorphism A : T3 → T3 with lift f∗ : R3 → R3 as constructed in

the previous paragraph, is called the linearization of f .

It can be proved that the linearization A of an absolutely partially hyperbolic

diffeomorphism f , is a partially hyperbolic automorphism of torus (see [8]).

A. Hammerlindl in [23], proves that any absolutely partially hyperbolic diffeo-

morphism f on T3 is leaf conjugated to its linearization. This means that there

exist an homeomorphism G : T3 → T3 such that G sends the central leaves of f to

central leaves of f∗ and conjugates the dynamics of the leaf spaces. In particular

the central leaves of f are all homeomorphic. As a consequence of Hammerlindl’s

result, we have that absolutely partially hyperbolic diffeomorphism f on T3 fall into

distinct groups:

1. If f is homotopic to a linear Anosov, then every center leaf is dense in T3 and

is homeomorphic to a line.

2. If f is not homotopic to a linear Anosov, then every center leaf is homeomor-

phic to a circle S1.

Definition 2.2.7. Let f : T3 → T3 be an absolutely partially hyperbolic diffeomor-

phism. f is called Derived from Anosov (DA) diffeomorphism if is homotopic to a

linear Anosov A : T3 → T3.

Definition 2.2.8. A foliation F defined on a manifold M is quasi-isometric if the

lift F̃ of F to the universal cover of M has the following property: There exist

positive constants Q,Q′ such that for all x, y in a common leaf of F̃ we have

dF̃(x, y) ≤ Q ‖ x− y ‖ +Q′

where dF̃ denotes the Riemannian metric on F̃ and ‖ x− y ‖ is the distance on the

universal cover.

For absolutely partially hyperbolic diffeomorphisms on T3 the stable, unstable

and central foliations are quasi-isometric in the universal covering R3 (see [23], [7]).

12



2.2.1 Geometry of the center foliation

Let f : T3 → T3 be a Derived from Anosov diffeomorphism. By a well-known

result of Franks [21] f is semiconjugated to A. More specifically, there exists H :

T3 → T3 homotopic to the identity such that

H ◦ f = A ◦H.

Moreover, this semi conjugacy has the property that there exists a constant K > 0

such that if H̃ : R3 → R3 denotes the lift of H to R3 we have ‖H̃(x)− x‖ ≤ K for

all x ∈ R3, and given two points a, b ∈ R3, there exists a constant Ω > 0 with

H̃(a) = H̃(b)⇔‖ f̃n(a)− f̃n(a) ‖< Ω for all n ∈ Z.

Using this characterization of the semi conjugacy and the quasi-isometry property

on the center foliation proved by A. Hammerlindl [23], R. Ures proved the following

result.

Proposition 2.2.9 (Ures [57]). For all z ∈ T3, the pre-image H−1(z) is a compact

connected subset (i.e. an arc or point) of the center manifold with uniformly bounded

length.

Proposition 2.2.10 (Ures [57]). The H-image of a center manifold of f is a center

manifold of A, that is,

H(F cf (x)) = F cA(H(x)).

Conversely, observe that Proposition 2.2.9 implies that H−1(F cA(x)) is contained

in F cf (z) for any z ∈ H−1(x). Moreover, we have that H−1(F cA(x)) = F cf (z).

Lemma 2.2.11 (Ures [57]). If ν is an A−invariant measure and µ f -invariant

measure such that ν = H∗µ. Then

hµ(f) = hν(A).

Proof. By Ledrappier-Walters variational principle [30], we have

sup
µ:H∗µ=ν

hµ(f) = hν(A) +

∫
N

h(f,H−1(y))dν(y). (2.1)

Since thatH−1(y) is a compact connected interval (including the case of just a point)

of the center manifold with uniformly bounded length, we have h(f,H−1(y)) = 0,

for all y ∈ T3. Therefore of 2.1

hµ(f) ≤ sup
µ:H∗µ=ν

hµ(f) = hν(A).

The other inequality is immediate since that f is semiconjugated to A.
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2.3 Disintegration of measures

In order to prove uniqueness (or finiteness) of equilibrium states, we propose to

study the conditional measures of equilibrium states on the leaves of central foliation.

In what follows we review some basic properties of disintegration of measures.

Let (M,µ,B) be a probability space, where M is a compact metric space, µ

a probability measure and B the borelian σ-algebra. Given a partition P of M

by measurable sets, we associate the probability space (M̃ := M/P , µ̃, B̃) by the

following way. Let π : M → M̃ be the canonical projection, that is, π associates a

point x ofM to the partition element of P that contains it. Then we define µ̃ := π∗µ

and B̃ := π∗B.

Definition 2.3.1. Given a partition P. A family {µP}P∈P is a system of conditional

measures for µ (with respect to P) if

i) given φ ∈ C0(M), then P 7→
∫
φdµP is measurable.

ii) µP (P ) = 1 µ̃-a.e.

iii) µ =

∫
M̃

µPdµ̃, i.e if φ ∈ C0(M), then
∫

M

φdµ =

∫
M̃

∫
P

φdµPdµ̃.

When it is clear which partition we are referring to, we say that the family

{µP} disintegrates the measure µ. There exists an equivalent form of writing the

disintegration formula above:

µ =

∫
M

µxdµ

by considering the conditional measures µx, x ∈ M where µx = µy if y ∈ P(x). In

this work we use both formulation to simplify the notations whenever it is necessary.

Proposition 2.3.2 ( [22], [55]). If {µP} and {νP} are conditional measures that

disintegrate µ, then µP = νP µ̃-a.e.

Corollary 2.3.3. If T : M →M preserves a probability µ and the partition P, then
T∗µP = µT (P ), µ̃-a.e.

Proof. It follows from the fact that {T∗µP}P∈P is also a disintegration of µ and

essential uniqueness of system of disintegration.

Definition 2.3.4. We say that a partition P is measurable (or countably generated)

with respect to µ if there exist a measurable family {Ai}i∈N and a measurable set
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F of full measure such that if B ∈ P, then there exists a sequence {Bi}, where

Bi ∈ {Ai, Aci} such that B ∩ F =
⋂
iBi ∩ F .

Theorem 2.3.5 (Rokhlin’s disintegration [55]). Let P be a measurable partition of a

compact metric spaceM and µ a Borel probability. Then there exists a disintegration

by conditional measures for µ.

Let us state a simple but usefull remark which comes from essential uniqueness

of disintegration.

Remark 2.3.6. Let (M,B, µ) be a probability space, P a measurable partition of M

and X ⊂M a measurable subset of positive measure. Then X is called P−saturated
if for any x ∈ X then P(x), the atom of partition containing x, is contained in X.

Let µ|X be the normalized (probability) restriction of µ on X. For any P ∈ P such

that P ⊂ X, the conditional measures of µ and µ|X coincide, that is µP = (µ|X)P .

More generally, if X ⊂ M is a measurable subset with positive measure then P
induces a measurable partition on X. Namely,

PX := {PX |PX := P ∩X;P ∈ P}

is a measurable partition of X. So, by Rokhlin theorem we consider the conditional

measures (µ|X)PX} obtaining by disintegration of the probability µ|X on the atoms

of partition PX . We will use later in the thesis the following fact which can be

verified using the essential uniqueness of conditional measures: (µ|X)PX = (µP )|PX
and consequently µP ≤ (µ|X)PX on PX ⊆ P.

2.3.1 Atomic disintegration along foliations

In general the partition by the leaves of a foliation may be non-measurable. It

is for instance the case for the stable and unstable foliations of Anosov diffeomor-

phisms with respect to measures of non vanishing metric entropy (see [17], Theorem

3.1). Therefore, by disintegration of a measure along the leaves of a foliation we

mean the disintegration on compact foliated boxes. In principle, the conditional

measures depend on the foliated boxes, however, two different foliated boxes induce

proportional conditional measures. See [3] for a discussion on this issue.

Definition 2.3.7. We say that a foliation F has atomic disintegration with respect

to a measure µ if the conditional measures on any foliated box are sum of Dirac

measures.
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Equivalently we could define atomic disintegration as follows: there exist a full

measurable subset Z such that Z intersects all leaves in at most a countable set.

Although the disintegration of a measure along a general foliation is defined in

compact foliated boxes, it makes sense to say that a foliation F has a quantity

k0 ∈ N atoms per leaf. The meaning of “per leaf” should always be understood as

a generic leaf, i.e. almost every leaf. That means that there is a set A of µ-full

measure which intersects a generic leaf on exactly k0 points.

In the atomic disintegration case, it may happen that almost all leaves intersect

a full meaure set in a non finite but countable number of points.

Let us state a recent result of Yang-Viana1 [59].

Theorem 2.3.8. Let f be a DA diffeomorphism and µ an invariant measure with

hµ > λ1 then the disintegration of µ along central foliation can not be atomic.

Let f be a derived from Anosov (or more generally any partially hyperbolic

diffeomorphism) diffeomorphism.

Definition 2.3.9. An f -invariant measure µ is called virtually hyperbolic if there

exists a full measurable invariant subset Z such that Z intersects each center leaf in

at most one point.

The above definition was given in [34] in the context of algebraic automorphisms

and the existence of such measures in partially hyperbolic diffeomorphism also had

been noticed by (see for instance [54], [43]). If µ is virtually hyperbolic, then the

central foliation is measurable with respect to µ and conditional measures along

center leaves are dirac. Indeed the partition into central leaves is equivalent to the

partition into points.

We can deduce from Rokhlin’s disintegration theorem the ergodic decomposition

theorem (see [37], Theorem 5.1.3).

Theorem 2.3.10 (Ergodic decomposition). Let M be a complete separable metric

space, f : M →M be a mesurable transformation and µ be an invariant probability

measure. Then exist a measurable set M0 of M with µ(M0) = 1, a partition P of

M0 into measurable subsets and a family {µP : P ∈ P} of probability measure on

M , satisfying.
1We thank J. Yang for awaring us on the existence of this result when we were working on this

project on the same time.
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i) µP (P ) = 1 for µ̃−almost every P ∈ P.

ii) P → µP (E) is measurable, for every measurable set E ⊂M .

iii) µP (P ) is ergodic and f -invariant for µ̃−almost every P ∈ P.

iv) µ(E) =

∫
P
µP (E)dµ̃, for every measurable set E ⊂M .

The next result due to Jacobs is the generalized the property afim the metric

entropy for ergodic decomposition, for a proof see for instance ([37], Theorem 9.6.2).

Theorem 2.3.11 (Jacobs). Let M be a complete separable metric space, f : M →
M be a mesurable transformation and µ be an invarint probability measure. If {µP :

P ∈ P} is the ergodic decomposition of µ, then

hµ(f) =

∫
hµP (f)dµ̃.

2.3.2 Lyapunov exponent

Let M be a compact manifold and f : M → M be a diffeomorphism. Given

x ∈M and v ∈ TxM , define the Lyapunov exponent

λ(x, v) = lim sup
n→∞

1

n
log ‖ Dfnv ‖

For every x ∈ M the function λ(x, .) takes on finitely many values λ1(x) ≥ · · · ≥
λd(x) where d = dimM . If µ is a f -invariant measure, then by Osedelec’s theorem

(see for instance [39]), there exist Λ with µ(Λ) = 1 such that these numbers exist in

Λ and are called the Lyapunov exponent of (f, µ). The functions λi(x) are Borel and

are invariant under f ; in particular, if µ is an ergodic measure, then λi(x) = λi(µ)

is constant almost everywhere for each i = 1, · · · , d.

Definition 2.3.12. Let M be a compact manifold, f : M →M be a diffeomorphism

and µ be an f−invariant measure. If none of the Lyapunov exponent of (f, µ) is

equal to zero, then µ is called a hyperbolic measure.

Let A : T3 → T3 be a Anosov linear diffeomorphism with three invariant sub-

bundle T (T3) = Eu⊕Ec⊕Es and λ1 > λ2 > 0 > λ3 (or λ1 > 0 > λ2 > λ3) are three

Lyapunov exponents of A. Let ν be an A-invariant measure and ξ be a measurable

partition of T3 with respect to ν. We say that ξ is ν-subordinate to the foliation F
(=F cuA or FuA.) if for ν-almost every x, we have
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1) ξ(x) ⊂ F(x);

2) ξ(x) contains an open neighborhood of x inside the leaf F(x).

Let BF(x, ε) denote the open ball in F(x) centered at x of radius ε. Let ξ be a

measurable partition subordinated to F with conditional measures {νx}. For x ∈ Λ

define

δF(x) = lim
ε→0

log νxBF(x, ε)

log ε
.

This number is well defined independent of ξ (see [31], Proposition 7.3.1). δF is

called the dimension (or pointwise dimension) of ν on F−manifold.

The next result is due to Ledrappier and Young and holds in much more gener-

ality than the stated below. See [31].

Theorem 2.3.13. Let A : T3 → T3 be an Anosov linear diffeomorphism with three

invariant subbundle T (T3) = Eu⊕Ec⊕Es and λ1 > λ2 > 0 > λ3 are three Lyapunov

exponents of A. Let ν be an A-invariant measure, then

hν(A) = λ1δ
u + λ2(δ

cu − δu)

where δcu = δF
cu and δu = δF

u
.
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Chapter

3
Equilibrium states for derived from

Anosov diffeomorphisms

The existence of equilibrium states for partially hyperbolic diffeomorphisms with

1-dimensional center direction associated to any continuous potential is guaranteed

as a consequence of the work of Diaz, Fisher, Pacifico and Vieitez. In fact, they

proved that these systems are entropy expansive (see 3.0.1) and Misiurewicz proved

that for entropy-expansive systems the entropy function is upper semicontinuous

(see 2.1.12). By Proposition 2.1.9 we have the existence of equilibrium states for

these systems with respect to any continuous potential.

Theorem 3.0.1 (L. Diaz, T. Fisher M. Pacifico J. Vieitez, [20]). Let f : M → M

be a partially hyperbolic diffeomorphisms with Df -invariant descomposition TM =

Es ⊕ Ec ⊕ Eu such that dimEc = 1. Then f is entropy expansive.

In particular we have the existence of equilibrium states for partially hyperbolic

diffeomorphisms on 3-torus associated to any continuous potential.

Corollary 3.0.2. All partially hyperbolic diffeomorphisms on T3 have at least one

equilibrium states with respect to any continuous potential.

Question 3.0.3. Is it true that any Hölder continuous potential admits a unique

equilibrium state for a derived from Anosov diffeomorphism?

R. Ures proved that when the potential is constant all derived from Anosov

diffeomorphisms have a unique equilibrium state with respect to this potential.

Theorem 3.0.4 (Ures, [57]). Let f : T3 → T3 be a DA diffeomorphism. Then, f

has a unique measure of maximal entropy.
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Climenhaga, Fisher and Thompson in a recent work answered the above question

positively for a especial class of derived from Anosov diffeomorphisms. More specif-

ically, they proved uniqueness of equilibrium states for natural class of potentials in

the setting of Mañé and Bonatti-Viana class of robustly transitive diffeomorphisms

(see 3.0.5). We observe that in one hand their result is more general, as it treats

non partially hyperbolic setting. On the other hand, the class under consideration

in their result is the special type of systems which are localized perturbations of

uniformly hyperbolic dynamics. In fact their result “give a quantitative criterion for

existence and uniqueness of equilibrium state involving the topological pressure, the

norm and variation of the potential, the tail entropy, and the C0 size of the pertur-

bation from the original Anosov map for the Mañé and Bonatti type examples”. If

the potential is far from being constant, then the localized perturbation should be

small.

Theorem 3.0.5 (V. Climenhaga, T. Fisher and J. Thompson [16]). Let fA : T3 →
T3 be a Mañé example diffeomorphism and let φ : T3 → R be Hölder continuous po-

tential. Then in any C0-neighborhood of fA there exist a C1-open set U ⊂ Diff(T3)

which contains diffeomorphisms from the Mañé family of examples, and for every

g ∈ U we have:

• g is partially hyperbolic diffeomorphism and not Anosov.

• The system (T3, g, φ) has a unique equilibrium state.

We give a partial answer to the question 3.0.3. In the setting of derived from

Anosov diffeomorphisms we study the uniqueness (or finiteness) of ergodic equilib-

rium states associated to potentials defined for the Anosov (action on homotopy)

model. More specifically, let f : T3 → T3 be a derived from Anosov diffeomorphism.

By a well-known result of Franks [21] f is semiconjugated to a linear Anosov A.

More specifically, there exists H : T3 → T3 homotopic to the identity such that

H ◦ f = A ◦H (3.1)

Let ψ : T3 → R be a potential Hölder continuous and considered the potential φ

defined by φ = ψ ◦H.

T3

H
��

f // T3

H
��

φ=ψ◦H

��
T3 A // T3 ψ // R

20



We study uniqueness (or finiteness) of ergodic equilibrium states for DA diffeo-

morphisms with respect to the potential φ = ψ ◦H.

Let f : T3 → T3 be a Derived from Anosov diffeomorphism. By corollary 3.0.2

there exists equilibrium state for f with respect to any potential continuous. In our

case, when the potential is φ = ψ ◦H the existence of equilibrium states for (f, φ)

follow directly the existence of equilibrium states of (A,ψ).

Lemma 3.0.6. If ν is an equilibrium state for (A, φ), then any µ ∈M(f) such that

H∗µ = ν is an equilibrium state for (f, φ = ψ ◦H).

Proof. We claim that {µ ∈M(f) : H∗µ = ν} is not empty. In fact,

T (ϕ ◦H) :=

∫
ϕdν

defines a positive linear funtional in {ϕ ◦H : ϕ ∈ C0(T3)} ⊂ C0(T3) and T can be

extended to C0(T3), still positive. Since that T (1) = T (1◦H) = 1, by Riezs theorem

there exists η probability Borel measure in T3 such that T is identified with η. In

particular H∗η = ν. We considere the sequence µn =
1

n

∑n−1
i=0 f

i
∗η. By compactness

let µ such that limnk→∞ µnk = µ, then µ is a f -invariant and H∗µ = ν.

On other hand, by Lemma 2.2.11, we have

sup{hη(f) +

∫
φdη : η ∈M(f)} = sup{hH∗η(A) +

∫
ψdH∗η : η ∈M(f)}

≤ sup{hξ(A) +

∫
ψdξ : ξ ∈M(A)}

≤ hν(A) +

∫
ψdν

By the last inequality, we have that any measure µ ∈ M(f) such that H∗µ = ν is

an equilibrium state for (f, φ = ψ ◦H).

Remark 3.0.7. Reciprocaly, if µ is an equilibrium state for (f, φ = ψ ◦H), then H∗µ

is an equilibrium state for (A,ψ) and it is the unique one as ψ is Hölder continuous

(see [5]).

Let

C = {x ∈ T3 : #H−1H(x) > 1}.

We denoted by N (x) := H−1H(x). By the discussion in the section 2.2.1 each N (x)

is a compact connected interval (including the case of just a point) in F c(x). We say

that N (x) is a collapse interval if #N (x) > 1. Then C is union of these intervals
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C =
⋃

#N (x)>1

N (x) (3.2)

We call C, the set of collapse intervals.

Lemma 3.0.8. C is an f -invariant set and H−1H(C) = C.

Proof. Let y ∈ C, then y ∈ N (x) for any x. Since that #N (x) > 1 we can suppose

x 6= y. H(x) = H(y), by (3.1) we have

H(f(x)) = A(H(x)) = A(H(y)) = H(f(y))

f(y) ∈ N (f(x)). As, x 6= y then #N (f(x)) > 1. Therefore

f(C) = C.

On other hand, suppose that H−1H(C) * C. There exist y ∈ H−1H(C) such that

y /∈ C. then, H(x) = H(y), with x ∈ C and H(f(x)) = A(H(x)) = A(H(y)) =

H(f(y)). As y /∈ C and f(C) = C, we have y = x ∈ C. This is a contradiction and

proves that H−1H(C) = C.

Let µ ∈M(f) be an equilibrium states for f with respect to ψ◦H and by remark

2.1.7, we can suppose that µ is ergodic. The next result gives a partial answer for

the question 3.0.3, more specifically we showed the following result.

Theorem A. Let f : T3 → T3 be a DA diffeomorphism and let ψ : T3 → R be a

Hölder continuous potential. Define φ = ψ ◦H and let µ be an ergodic equilibrium

states for f with respect to φ:

1) If µ(C) = 0, then µ is the unique equilibrium state.

2) If µ(C) = 1, then µ is virtually hyperbolic (see 2.3.9) and there exists neces-

sarily another equilibrium state η for (f, φ).

Remark 3.0.9. Observe that clearly the first item of the above theorem implies that

in the second case (if it occurs) any other ergodic equilibrium state give total mass

to the union of collapse intervals C.
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3.1 Equilibrium states and virtual hyperbolicity

Observe that the partition into central leaves is not necessarily a measurable

partition and we are not allowed apriori to apply Rokhlin disintegration result to this

partition. However, the preimage by h of the partition into points is a measurable

partition (see [43]).

Lemma 3.1.1. If µ(C) = 1, then µ is virtually hyperbolic.

Proof. The similar arguments appear in [44] and here we repeat for completeness.

Under the hypothesis of the lemma we just consider the partition into collapse

intervals:

N := {N (x) : N (x) is a non trivial closed interval}

So we can speak about disintegration of µ along collapse intervals. We denote by

µN (x) the conditional measure supported on the collapse interval containing x. Of

course, if N (x) = N (y) then µN (x) = µN (y).

We claim that the disintegration is atomic. In fact, suppose that this is not the

case. Fix an orientation for the central leaves and for each collapse interval (any

element of the partition N ) and consider the left extreme point of them. It can

be proved that the left extreme point of collapse intervals form a measurable set

(see [44]). We call these sets as point zero, that is if x ∈ C then 0x means the left

extreme point associated to the segment N (x) where N (x) ∈ N which contains x.

If y ∈ N (x) then [0x, y] stands for the segment inside the center leaf which contains

0x and y.

We now consider the set

Hα = {y : [0x, y] ⊂ N (x) | µN (x)([0x, y]) ≤ α}

observe that Hα is an invariant set. This comes from the fact that f(N (x)) =

N (f(x)) and f∗µN (x) = µN (f(x)). Hence Hα is an invariant set. From the definition

of disintegration and Hα notice that µ(Hα) ≤ α. By ergodicity we have µ(Hα) = 0

for all α < 1. On the other hand, if αn = 1 − 1

n
, then Hαn ⊂ Hαn+1 . Since we are

assuming that we are not in the atomic case, we have

C \ {1x : x ∈ C} ⊂ ∪nHαn

where 1x denote the right extreme point associated to the segment N (x). Therefore

µ({1x : x ∈ C}) = 1, and this is a contradiction since µN (x)(1x) = 0.
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Thus, the disintegration is indeed atomic. In fact there exist at most one atom

in each collapse interval. Indeed, let An be the set of atoms with weight belonging to

the interval [ 1
n+1

, 1
n
). As disintegration is unique and µ is invariant, An is invariant

and by ergodicity and usual measure theory argument we get that all of the atoms

have full weight. Consequently there is at most one atom in each collapse interval.

So, we get a full measurable subsetM⊂ T3 such that intersects each center leaf in

at most a countable number of points. Observe that H restricted toM is injective.

Now the idea is to use theorem B of [43] and conclude that we have exactly

one atom per (global) leaf. Although their result is for volume measure, it applies

also in our setting. Let us review the main arguments. First of all we show that

the number of atoms on central leaves is bounded. By this we mean that there

exist a full measurable subset which intersects all center leaves in a finite (uniformly

bounded) number of points.

By contradiction, suppose that this is not the case. So every full measurable

subset of M intersects any typical center leaves in infinitely many points. Define

ν := H∗µ and observe that it is an invariant measure by the linear hyperbolic

automorphism. Any measurable subset ofH(M) of ν−full measure intersects almost

all center leaves in an infinite (countable) number of points.

Let {Ri} be a Markov partition for A and consider the partition P := {F cR(x), x ∈
Ri for some i} where F cR(x) denotes the connected component of F c(x) ∩ Ri and

contains x in its interior. The partition P is a measurable partition and by Rokhlin

theorem we can disintegrate ν along the elements of this partition. As ν is an equilib-

rium state for Anosov automorphism, it gives zero mass to the boundary of Markov

partition. Let νx be the conditional measure supported on F cR(x). Observe that,

as H(M) intersects typical leaves in a countable number of points, the conditional

measures νx should be atomic.

Proposition 3.1.2. There is a natural number α0 ∈ N such that for ν−almost every

x, νx contains exactly α0 atoms.

Proof. Firstly we observe that:

Lemma 3.1.3. A∗νx ≤ νA(x) restricted to the subsets of F cR(A(x)).

Observe that A∗νx and νA(x) are probability measures defined respectively on

A(F cR(x)) and F cR(A(x)). Fix an element of Markov partition Ri. By Remark 2.3.6,

νx, x ∈ Ri coincides with the disintegration of the normalized restriction of ν on Ri
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which we denote by ν|Ri . As ν is invariant A∗(ν|Ri) = ν|A(Ri), by essential uniqueness

of disintegration, A∗νx coincides with the disintegration of ν|A(Ri) along the partition

A(F cR(x)), x ∈ Ri.

For any j such that A(Ri) ∩ Rj 6= ∅, by Markov property A(Ri) crosses Rj

completely in the center-unstable direction and so for all x ∈ Ri,

F cR(A(x)) ⊂ A(F cR(x)).

Again by remark 2.3.6 we conclude that A∗νx ≤ νA(x) on F cR(A(x)).

Given any δ ≥ 0 consider the set Kδ = {x ∈ T3 | νx({x}) > δ}, that is, the set

of atoms with weight at least δ. If x ∈ Kδ then

δ < νx({x}) = A∗νx({A(x)}) ≤ νA(x)({A(x)}).

Thus A(Kδ) ⊂ Kδ, and by the ergodicity of A we have that ν(Kδ) is zero or one,

for each δ ≥ 0. Note that ν(A0) = 1 and ν(A1) = 0. Let δ0 be the critical point for

which ν(Aδ) changes value, i.e, δ0 = sup{δ : ν(Kδ) = 1}. This means that all the

atoms have weight δ0. Due to the atomicity of disintegration, the value of δ0 has

to be a strictly positive number. Since νx is a probability we have an α0 := 1/δ0

number of atoms as claimed.

In particular the above lemma shows that given a fixed length L ∈ R there exist

N ∈ N such that the number of atoms in any typical center plaque of size L is

at most N. Recall that we had supposed that H(M) intrinsically intersects center

leaves in infinitely many points. So, take a center plaque D ⊂ F cx with more than

N atoms. By backward contraction along central leaves by A we get a large n > 0

such that the length of A−n(D) is less than L. As ν is invariant and disintegration

is unique we get a center plaque with length less than L containing more than N

atoms which is absurd. The proof of lemma is complete.

25



3.1.1 Proof of Theorem A

1. If η is another equilibrium state for (f, ψ ◦ H), then H∗µ = H∗η (see remark

3.0.7). Let ϕ : T3 → R be any continuous map. Since H−1H(C) = C, implies

η(C) = 0. Hence,

∫
ϕdµ =

∫
T3\C

ϕdµ =

∫
T3\C

ϕ ◦H−1 ◦Hdµ =

∫
T3\C

ϕ ◦H−1dH∗µ

=

∫
T3\C

ϕ ◦H−1dH∗η =

∫
T3\C

ϕdη

=

∫
ϕdη

This implies, µ = η.

2. We have seen that if µ(C) = 1 then central foliation is measure theoretically

equivalent to the partition of T3 into points and consequently measurable. We denote

by (M̃, µ̃) the quotient space T3/F c equipped with the quotient measure. Observe

that by virtual hyperbolicity proved above, any element x̃ ∈ M̃ can be considered

as a unique collapse interval inside the center leaf F c(x). From now on we denote

this collapse interval by N (x̃). We denote by f̃ : M̃ → M̃ the induced map on the

quotient space. Clearly as µ is invariant by f then µ̃ obtained by natural quotient

is invariant by f̃ .

Now, by Lemma 3.1.1, we have that

µ =

∫
δa(x̃)dµ̃(x̃)

where a(x̃) ∈ N (x̃) and N (x̃) is the collapse interval corresponding to x̃. Let

b(x̃) 6= a(x̃) be the left extreme point of N (x̃). We define

η =

∫
δb(x̃)dµ̃(x̃)

η is well defined because {b(x̃)} is a measurable set. We claim that η is f−invariant
measure and H∗µ = H∗η, and ergodicity of µ implies ergodicity of η. To show that

η is invariant take any continuous ξ and observe that:∫
ξ ◦ fdη =

∫ ∫
ξ ◦ fdδb(x̃)dµ̃

=

∫
ξ(f(b(x̃)))dµ̃ =

∫
ξ(b(f̃(x̃)))dµ̃

=

∫
ξ(b(x̃))dµ̃ =

∫
ξdη.
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where the third equality comes from the invariance of collapse intervals and that

f preserves orientation on center foliation. The fourth equality is consequence of

invariance of µ̃ by f̃ .

To prove the ergodicity of η, consider any invariant subset D with η(D) > 0.

Observe that µ̃ is ergodic as an invariant measure of f̃ . As f(b(x̃)) = b(f̃(x̃)) and

D is invariant we have that {x̃ : χD(b(x̃)) = 1} is an f̃ invariant subset of M̃. So,

ergodicity of µ̃ implies that it has full measure. This implies that η(D) = 1.

By essential uniqueness of disintegration η 6= µ.

On the other hand, as H(a(x̃)) = H(b(x̃)) and φ = ψ ◦H we have:∫
φdη =

∫
φ(b(x̃))dµ̃ =

∫
φ(a(x̃))dµ̃ =

∫
φdµ.

This implies that η is an equilibrium state for (f, φ).

Question 3.1.4. Is there any φ = ψ ◦H with ψ : T3 → R Hölder continuous such

that its equilibrium states satisfied the case 2 of the above theorem ?

Currently we do not know φ = ψ ◦ H with ψ Hölder continuous that satisfies

item 2 of the above theorem, although continuous examples exist. Indeed, let ν be

a ergodic measure A−invariant such that ν(H(C)) = 1. By a result of Ruelle [50],

there exist a continuous map ψ : T3 → R such that ν is an equilibrium state for

(A,ψ). Hence, if µ is f−invariant such that H∗µ = ν, then µ(C) = 1 and µ is an

equilibrium state for (f, φ = ψ ◦H).

Remark 3.1.5. Let f be a C2 DA diffeomorphism and m be the measure of maximal

entropy for f . The center Lyapunov exponent λc(m) of m is positive (see [57],

Theorem 5.1). Considered the potential φ = log ‖Df(x)|Ec(x)‖. Note the φ is

Hölder continuous because f is C2 and the distribution Ec is Hölder. We claim that

any ergodic equilibrium state for (f, φ) is hyperbolic with positive center Lyapunov

exponent. In fact, let µ an ergodic equilibrium state for (f, φ), we have

hµ(f) + λc(µ) = hµ(f) +

∫
φdµ ≥ hm(f) +

∫
φdm = hm(f) + λc(m).

If λc(µ) ≤ 0, then hµ(f) ≥ hm(f) + λc(m) > htop(f). This is a contradiction and

proves the claim.

Question 3.1.6. If there is a potential that satisfied the item 2 of the above theorem.

Are there a finite number of ergodic equilibrium states associated to such potential?
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The next theorem gives a answer positive for the above question. The proof of

the above theorem enables us conclude a dichotomy between finiteness of ergodic

equilibrium states and hyperbolicity of such measures, more especifically we showed

the next result.

Theorem B. Let f and φ be as in Theorem A. Then either there is an ergodic

non-hyperbolic equilibrium state or the number of ergodic equilibrium states is finite.

3.2 Proof of Theorem B

Let µ, ν be an ergodic equilibrium states for (f, φ) such that µ(C) = ν(C) = 1.

By Lemma 3.1.1 we have that

µ =

∫
δa(x̃)dµ̃(x̃), ν =

∫
δb(x̃)dµ̃(x̃)

the next lemma prove that the atoms a(x̃), b(x̃) can not be in the same Pesin stable

manifold if µ 6= ν, more specifically we prove.

Lemma 3.2.1. Let µ =

∫
δa(x̃)dµ̃(x̃) and ν =

∫
δb(x̃)dµ̃(x̃) be f−invariant. If

lim
n→∞

d(fn(a(x̃)), fn(b(x̃)) = 0, then µ = ν.

Proof. Since f∗µ = µ and f∗ν = ν, we have µ = fn∗ µ =

∫
δfn(a(x̃))dµ̃ and ν = fn∗ ν =∫

δfn(b(x̃))dµ̃.

Let ϕ : T3 → R be any Lipschitz map. Hence,

|
∫
ϕdµ−

∫
ϕdν | = |

∫
ϕ(fn(a(x̃))dµ̃−

∫
ϕ(fn(b(x̃))dµ̃ |

≤
∫
| ϕ(fn(a(x̃))− ϕ(fn(b(x̃)) | dµ̃

≤
∫
kd(fn(a(x̃)), fn(b(x̃)))dµ̃

This implies that
∫
ϕdµ =

∫
ϕdν, since that Lipschitz map set is dense in C(T3),

we have that last equality is holds for ϕ ∈ C(T3).

Proof of Theorem B. To prove the dichotomy in the statement of the theorem,

suppose that there does not exist any ergodic equilibrium state with zero central

Lyapunov exponent. Now, by contradiction suppose that there is a sequence of

ergodic equilibrium states {µn} for (f, φ) with negative center Lyapunov exponent.
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By theorem A we have that µn(C) = 1. By Lemma 3.1.1 all µn are virtually

hyperbolic. Observe that for all n, H∗µn = ν where ν is the unique equilibrium

state for (A,ψ).

By uniqueness of disintegration we conclude that the dirac conditional measures

of µn are push forwarded to dirac disintegration of ν along central leaves of A. This

implies that µ̃m = µ̃n for all n,m where µ̃n is the quotient measure obtained from

the disintegration of µn along central foliation (see section 2.3). In other words, all

µn are virtually hyperbolic and for any two m,n there exist full measurable subsets

Zm, Zn, µm(Zm) = µn(Zn) = 1 such that Zm and Zn intersect almost all center leaves

in a unique point and the intersection point belong to the same collapse interval.

So,

µn =

∫
δan(x̃)dµ̃.

where µ̃ stands for the quotient measure for all µn. We emphasize that the dirac

masses an(x̃) are in the same collapse interval for all n. Now by compactness of

collapse intervals, let a(x̃) ∈ N (x̃) such that limn→∞ an(x̃) = a(x̃). Since for any n,

{an(x̃)} is a measurable invariant set it comes out that {a(x̃)} is measurable and

invariant. Define,

η =

∫
δa(x̃)dµ̃(x̃)

Thus,

lim
n→∞

µn = η

Since f is entropy expansive (see Theorem 3.0.1), we have

lim sup
n→∞

hµn(f) ≤ hη(f)

Hence,

lim sup
n→∞

hµn(f) +

∫
φdµn ≤ hη(f) +

∫
φdη

This implies that η is an equilibrium state for (f, φ). Then, H∗µn = H∗η and thus

η(C) = 1.

Since,

λc(µn) =

∫
log ‖ Df |Ec‖ dµn

we have,

0 ≥ lim
n→∞

λc(µn) = lim
n→∞

∫
log ‖ Df |Ec‖ dµn =

∫
log ‖ Df |Ec‖ dη = λc(η)
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We claim that λc(η) = 0. If not, λc(η) < 0 and by limn→∞ an(x̃) = a(x̃) there

exist n0 such that an(x̃) belong to local stable manifold of a(x̃), for n ≥ n0. By

Lemma 3.2.1, we have that η = µn, which it’s a contradiction. Then λc(η) = 0.

We have that η is an equilibrium state for (f, φ) with λc(η) = 0. Using similar

argument in the proof of the second item of Theorem A. it is easy to see that η is

an ergodic measure. This yields a contradiction to our assumption. This concludes

the proof of the dichotomy.

Recall that f has a unique measure of maximal entropy and our first result says

that if the equilibrium state gives zero mass to the collapse intervals set, then the

equilibrium state is unique. We can ask the next.

Question 3.2.2. Are there potentials whose equilibrium state give zero mass to the

collapse intervals set?

The next theorem answer the above theorem. Indeed, we can show that under

small variation hypothesis of the potential, the equilibrium state is unique.

Let λ1, λ2 and λ3 be the Lyapunov exponents of A such that λ3 < 0 < λ2 < λ1.

Theorem C. Let f and φ be as in Theorem A. If the potential satisfies supT3 φ −
infT3 φ < λ2, then there exists a unique equilibrium state for (f, φ).

3.3 Uniqueness of equilibrium states

Theorem C is a consequence of Theorem A and 2.3.8. However, we include a proof

which is interesting by itself. We prove in Proposition 3.3.1 that the metric entropy

of f with respect to equilibrium states with total mass to the collapse intervals set

is less or equal than λ1, and such result we using to prove uniqueness of equilibrium

state for Derived from Anosov associated to potential with small variation.

3.3.1 Equilibrium states and nonatomic desintegration

Let µ be an equilibrium state for (f, φ = ψ ◦H).

Proposition 3.3.1. If µ(C) = 1, then hµ(f) ≤ λ1.

Lemma 3.3.2. Let m be a probability measure on Rp × Rq, π projection onto Rp,

mt conditional measures of m along the fibers of π. Define

γ(t) = lim inf
ε→0

logm ◦ π−1Bp(t, ε)

log ε
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and let δ ≥ 0 be such that at m−a.e. (s, t)

δ ≤ lim inf
ε→0

logmtB
q(s, ε)

log ε

Then, at m−a.e. (s, t)

δ + γ(t) ≤ lim inf
ε→0

logmBp+q((s, t), ε)

log ε

Proof. The proof can be find in [31], but here we write for completeness.

Fix σ > 0, we can find N1 and a set A1 with m(A1) ≥ 1 − σ such that for all

(s, t) ∈ A1 and n ≥ N1,

mtB
q(s, 2e−n) ≤ e−nδenσ.

By the Lebesgue density theorem we can find N2 and a set A2 with m(A2) ≥ 1− 2σ

that for all (s, t) ∈ A2 and n ≥ N2,

m(A1 ∩Bp+q((s, t), e−n)) ≥ 1

2
mBp+q((s, t), e−n).

If (s0, t0) ∈ A2 and n ≥ N2, we have

mBp+q((s0, t0), e
−n) ≤ 2

∫
Bp(t0,e−n)

mt(A1 ∩Bq(s0, e
−n))m ◦ π−1(dt)

≤ 2e−nδenσm ◦ π−1Bp(t0, e
−n)

because for each t, there exist some u(t) with (t, u(t)) ∈ A1 ∩ Bq(s0, e
−n) and thus

A1 ∩ Bq(s0, e
−n) ∩ π−1{t} ⊂ Bq(u(t), 2e−n) ∩ π−1{t}. The lemma follows when

n −→∞ and σ −→ 0.

By Lemma 3.1.1, we have that if µ(C) = 1, then µ is virtually hyperbolic. Let

ν = H∗µ and R be a Markov’s rectangle of A. We normalize the restriction of ν

on A. Let F cu be a typical unstable leaf of A. Consider Rcu = R ∩ F cu. Observe

that Rcu is foliated by strong unstable plaques and also by central (weak unstable)

plaques. Denote by νcu the conditional measure of ν (normalized and restricted on

R) on Rcu.

Since disintegration of ν along central foliation is mono-atomic, we have

νcu =

∫
δa(t)dν

uu(t)

where a(t) is the unique atom on the central leaf of t and νuu is the quotient measure

on the quotient of Rcu by central plaques. This quotient space can be identified by

a strong unstable plaque.
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Lemma 3.3.3. If δcu denote the dimension of νcu, then

δuu := lim inf
ε→0

log νuu(Buu(x, ε))

log ε
= δcu

where Buu(x, ε) denote the open ball with center x and radius ε on the strong unstable

leaf of x.

Proof. The inequality

δcu ≥ lim inf
ε→0

log νuu(Buu(x, ε))

log ε
(3.3)

is immediate by Lemma 3.3.2.

On the other hand, we define:

D = {x ∈ Rcu : ∃α > 0|νcu(Buu(x, ε)×Bc(x, ε)) ≥ ανcu(Buu(x, ε)×F c(x)),∀ε > 0}

where Bc(x, ε) denote the open ball with center x and radius ε on the central leaf x.

We claim that νcu(D) = 1. In fact, we prove that all atom a(x) are in D. By

definition of conditional measure

1 = δa(x)(B
c(a(x), γ))) = lim

ε→0

νcu(Buu(a(x), ε))×Bc(a(x), γ))

νcu(Buu(a(x), ε)×F c(x))

since a(x) is the unique atom on the central leaf of x, we have that the last equality

is hold for all γ > 0.

Hence,

1 = lim
ε→0

νcu(Buu(a(x), ε))×Bc(a(x), ε))

νcu(Buu(a(x), ε)×F c(x))

we take a large enough n, then there exist ε0 > 0 such that

n− 1

n
νcu(Buu(a(x), ε)×F c(x)) < νcu(Buu(a(x), ε))×Bc(a(x), ε)), ∀ε < ε0

this proves the claim.

If x ∈ D and since that hc∗νcu = νuu (hc is the central holonomy in Rcu), then

νcu(Buu(x, ε)×Bc(x, ε)) ≥ ανcu(Buu(x, ε)×F c(x))
≥ ανuu(Buu(x, ε))

so,

δcu ≤ lim inf
ε→0

log νuu(Buu(x, ε)) + logα

log ε
. (3.4)

By (3.3) and (3.4) the lemma is proved.
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Proof of the Proposition 3.3.1. By Ledrappier and Young’s formula (see 2.3.13)

and hν(A) = hµ(f), it comes out that

hµ(f) = λ1δ1 + λ2(δ
cu − δ1)

where δ1 is the dimension the measure on the strong unstable leaf. By Lemma 3.3.2,

we have δ1 ≤ δcu and by Lemma 3.3.3, we have δ1 ≤ δuu.

So,

δuu(λ1 − λ2) ≥ δ1(λ1 − λ2)

by Lemma 3.3.3,

δuuλ1 ≥ λ1δ1 + λ2(δ
cu − δ1) = hµ(f)

since δuu ≤ 1, we have hµ(f) ≤ λ1.

3.3.2 Proof of Theorem C

Proof of Theorem C. We claim that if the potential φ satisfies the low variational

hypothesis of the theorem then the entropy of any equilibrium state of φ is larger

than λ1. To see this it is enough to take µ as any equilibrium state of φ and η the

measure of maximal entropy.

hµ(f) +

∫
φdµ ≥ hη(f) +

∫
φdη = λ1 + λ2 +

∫
φdη

So,

hµ(f) ≥ λ1 + λ2 + (

∫
φdη −

∫
φdµ) ≥ λ1 + λ2 − (supφ− infφ) > λ1.

By Proposition 3.3.1, we have that all ergodic equilibrium state that satisfies the low

variational hypothesis give zero mass to the union of collapse intervals C. Hence,

by item 1 of Theorem A, if the potential φ satisfies the low variational hypothesis,

then (f, φ) has a unique equilibrium state.
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3.4 Center Lyapunov exponent and equilibrium state

In this section we study the center Lyapunov exponent of the equilibrium states.

Ures in [57], showed that the center Lyapunov exponent of the measure of maximal

entropy is greater or equal to the center Lyapunov exponent of the linear part.

The Theorem 3.4.1 generalizes the previous result for equilibrium states and the

corollary 3.4.3 showes that the center Lyapunov exponent of the unique equilibrium

state associated to potential with small variation is positive.

Theorem 3.4.1. Let µ be an equilibrium state for f w.r.t. a potential φ = ψ ◦H.

If λc(µ) > 0, then

λ2 ≤ λc(µ) + supφ− inf φ.

The proof of this result is similar to arguments of Ures ([57], Theorem 5.1) and

it is based in a Pesin-Ruelle-like inequality proved by Y. Hua, R. Saghin and Z.Xia

in [26]. We repeat for completeness. Let W be a foliation. Let Wr(x) be the ball of

the leaf W (x) with radius r and centered at x. Let

χW(x, f) = lim sup
n→∞

1

n
log(vol(fn(Wr(x)))

χW(x, f) is the volume growth rate of the foliation at x. Let

χW(f) = sup
x∈M

χW(x, f)

Then, χW(f) is the maximum volume growth rate of W under f . Let us denote

χu(f) = χWu(f) when f is a partially hyperbolic diffeomorphism.

Theorem 3.4.2 ([26]). Let f be a C1+α partially hyperbolic diffeomorphism. Let µ

be an ergodic measure and λci(µ) the center Lyapunov exponent of µ. Then,

hµ(f) = χu(f) +
∑
λci>0

λci(µ).

proof of Theorem 3.4.1. We claim that

χu(f) ≤ λ1. (3.5)

In fact, since Wu is 1-dimensional the volume is the length. Then, consider

1

n
log(vol(fn(Wr(x))).
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Observe that χu(f) = χu(f̃) where f̃ is any lift of f to universal cover. On the one

hand, since Wu is quasi-isometric, we have that

1

n
log(vol(f̃n(W u

r (x̃))) ≤ 1

n
log(Qdiam(f̃n(W u

r (x̃)))

for some constant Q. On the other hand, H̃(f̃n(W u
r (x̃))) = Ãn(H̃(W u

r (x̃))). Let

C = diam(H̃(W u
r (x̃))). Then, diam(Ãn(H̃(W u

r (x̃)))) ≤ C exp(nλ1). Since H̃ is at

bounded distance from the identity we have that there exists a constant K such that

diam(f̃n(W u
r (x̃))) ≤ C exp(nλ1) +K. Thus,

1

n
log(vol(f̃n(W u

r (x̃))) ≤ 1

n
(Q(C exp(nλ1) +K))

Then, χu(f) ≤ λ1.

On the other hand, We have that

λ1 + λ2 +

∫
φdη = hη(f) +

∫
φdη ≤ hµ(f) +

∫
φdµ

where η is such that h∗η = vol. Hence,

λ1 + λ2 +

∫
φdη ≤ χu(f) + λc(µ) +

∫
φdµ ≤ λ1 + λc(µ) +

∫
φdµ

and then,

λ2 ≤ λc(µ) +

∫
φdµ−

∫
φdη ≤ λc(µ) + supφ− inf φ.

Therefore the theorem is proved.

The proof the above theorem, we have the next corollary.

Corollary 3.4.3. If µ is the unique equilibrium state for f with respect to a potential

φ = ψ ◦ H with supφ − inf φ < λ2. Then, the center Lyapunov exponent of µ is

positive.

Proof. Suppose λc(µ) ≤ 0. By Theorem 3.4.2 and (3.5)

λ1 + λ2 +

∫
φdη = hη(f) +

∫
φdη ≤ hµ(f) +

∫
φdµ ≤ λ1 +

∫
φdµ

where η is such that h∗η = vol. Hence,

λ2 ≤
∫
φdµ−

∫
φdη ≤ supφ− inf φ.

This is a contradiction and proves that λc(µ) > 0.
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Chapter

4
Local product structure

Ruelle and Sullivan in [51] showed that the unique measure of maximal entropy

for uniformly hyperbolic diffeomorphisms possesses local product structure, i.e., such

measure can be written as the product of two measures defined on the stable and

unstable manifold, more specifically they prove the next result.

Theorem 4.0.1 (Ruelle-Sullivan [51]). Let f : M −→M be an uniformly hyperbolic

diffeomorphism, µ be the unique measure of maximal entropy of f and log λ be the

topological entropy of f . Then for each x ∈M there is a measure µsx on F sε (x) (local

stable manifold of x) and a measure µux on Fuε (x) such that

1) supp(µsx) ⊂ F sε (x), supp(µux) ⊂ Fuε (x).

2) If d(x, x′) < δ, then

(P s
x,x′)∗µ

s
x′|F sδ (x′) = µsx|P s

x,x′(F sδ (x′))

where P s
x,x′ is the unstable holonomy. Analogously we have invariance of µu

for the stable holonomy.

3) f∗µ
s
x = λ−1µsf(x)|F sε (f(x)).

4) f∗µ
u
x = λµu

f (x)
|Fuε (f(x)).

5) [., .]∗(µ
u
x × µsx) = µ on Fuε (x)×F sε (x).

Where [., .] : Fuε (x)×F sε (x)→M is defined by [y, z] = F sε (y) ∩ Fuε (z).
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In [32], Leplaideur showed that the unique equilibrium states for uniformly hy-

perbolic diffeomorphisms associated to Hölder continuous potential possesses local

product structure, more specifically he proves the next result.

Theorem 4.0.2 (Leplaideur [32]). Let f : M −→ M be an uniformly hyperbolic

diffeomorphism and µ be the unique equilibrium state for f associated to Hölder

continuous potential φ. Then µ has local product structure.

dµ([y, z]) = ϕx(y, z)dµ
u
x(y)× dµsx(z)

where µux and µsx denote the contitional measures of µ with respect to any measurable

partition subordinate to the unstable and the stable foliation; y is any point in Fuloc
and z is any point in F sloc, and ϕx is non-negative Borel function.

Moreover µ, µux and µsx have pointwise dimensions, δ, δu and δs, µ almost every-

where constant, and

δ = δu + δs (4.1)

This last equality 4.1 is a particular case of a general fact in the non-uniform

hyperbolic case that was prove by Barreira, Pesin and Schemling [4] using that

hyperbolic measures for such systems have “almost” local product structure, more

specifically they proved:

Theorem 4.0.3 (Barreira-Pesin-Schmeling [4]). Let f be a C1+α diffeomorphism

on a smooth Riemannian manifold M without boundary, and µ an f -invariant com-

pactly supported ergodic Borel probability measure. If µ is hyperbolic then the fol-

lowing properties hold:

1) for every δ > 0 there exist a set Λ ⊂ M with µ(Λ) > 1 − δ and a constant

k ≥ 1 such that for every x ∈ Λ and every sufficiently small r (depending on

x), we have

rδµsx(B
s(x,

r

k
))µux(B

u(x,
r

k
)) ≤ µ(B(x, r)) ≤ r−δµsx(B

s(x, kr))µux(B
u(x, kr)).

2) The pointwise dimension of µ exists almost everywhere and it is equal to the

sum of the stable and unstable pointwise dimensions, i.e.,

δ = δs + δu.
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We are interested in studying local product structure for measure of maximal

entropy of partially hyperbolic diffeomorphisms defined in 3-manifolds. F. Hertz, A.

Hertz, A. Tahzibi and R. Ures in [49], studied measure of maximal entropy for such

systems, more specifically they prove the next result.

Theorem 4.0.4 (Hertz-Hertz-Tahzibi-Ures [49]). Let f : M → M be a C1+α par-

tially hyperbolic diffeomorphism of a three dimensional closed manifold M . Assume

that f is dynamically coherent with compact one-dimensional central leaves and has

the accessibility property. Then f has finitely many ergodic measures of maximal

entropy. There are two possibilities.

1) f has a unique measure of maximal entropy µ. The central Lyapunov exponent

λc(µ) vanishes and (f, µ) is isomorphic to a Bernoulli shift.

2) f has more than one ergodic measure of maximal entropy, all of which have

a non-vanishing central Lyapunov exponent. The central Lyapunov exponent

λc(µ) in non-zero and (f, µ) is a finite extension of a Bernoulli shift for any

such measure µ. Some of these measures have a positive central exponent and

some have a negative central exponent.

We can ask the following:

Question 4.0.5. Do all measure of maximal entropy for the previous systems have

local product structure? More specifically. Can the measures of maximal entropy

be written as the product of three measures defined on the local stable, central and

unstable foliations?

Our next result gives an answer to the previous question showing that measure of

maximal entropy for accessible partially hyperbolic diffeomorphisms of 3-manifold

having compact center leaves can be written locally as the product of three measures

defined on the local stable, central and unstable foliations when such measure is

unique and we verify that local product structure does not hold when the number

of measures of maximal entropy is larger than one, more specifically we prove the

following.

Theorem D. Let f : M → M be a C1+α partially hyperbolic diffeomorphism of a

three dimensional closed manifold M . Assume that f is dynamically coherent with

compact one-dimensional central leaves and has the accessibility property. Then
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1) If µ is the unique measure of maximal entropy for f (see item 1, theorem

4.0.4), then for each x ∈ M , there are measures µsx, µux and µcx defined in

F sloc(x) (local stable manifold of x), Fuloc(x) and F cloc(x) respectively, such that

µ = ϕ∗µ
s
x × µcx × µux (4.2)

on ϕ(F sloc(x)×F cloc(x)×Fuloc(x)) where ϕ : F sloc(x)×F cloc(x)×Fuloc(x)→M is

defined by ϕ(z, t, w) = Fuloc(F cloc(z) ∩ F sloc(t)) ∩ F csloc(w) (see Figure 4.1).

Figure 4.1:

2) If µ is a hyperbolic ergodic measure of maximal entropy for f (see item 2,

Theorem 4.0.4), then do not exist measures defined in the local stable, unstable

and central manifold such that (4.2) is true for µ.

4.1 Proof of Theorem D

Remark 4.1.1. F. Rodriguez Herz, A. Rodriguez Hertz, A. Tahzibi and R. Ures in

[49] showed the followings: Let M̂ = M/F c be the quotient space equipped with

the quotient topology, F be the dynamic induced on M̂ and π : M → M̂ be the

quotient map.
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1) (M̂, F ) is conjugated to an Anosov homeomorphism of T2.

2) If m is the unique measure of maximal entropy for (M̂, F ), then µ such that

π∗µ = m is a measure of maximal entropy for (M, f).

3) If µ is the unique measure of maximal entropy for f , then the conditional

measures of µ along the center foliation are atom free.

4) If µ is a hyperbolic ergodic measure of maximal entropy for f (see item 2,

theorem 4.0.4), then the conditional measures of µ along the center foliation

are atomic.

The Anosov homeomorphism F admits two topological foliations W s and W u

with similar dynamical properties as in the diffeomorphism case. If π(x) = x̂ with

x ∈M , then the leaves are topological manifolds and

W s(x̂) =
⋃
n

F−nW s
ε (F n(x̂)),W u(x̂) =

⋃
n

F nW u
ε (F−n(x̂))

Where

W s
ε (x̂) = {ŷ ∈ M̂ : d(F n(x̂), F n(ŷ)) ≤ ε},

W u
ε (x̂) = {ŷ ∈ M̂ : d(F−n(x̂), F−n(ŷ)) ≤ ε}.

By remark 4.1.1 we have that π∗µ = m and since that m is the measure of

maximal entropy for F we have by Theorem 4.0.1 that for each π(x) = x̂, with

x ∈M there are measures ms
x̂ and mu

x̂ defined in W s
loc(x̂) (local stable set of x̂) and

W u
loc(x̂) respectively, such that

m = [., .]∗m
s
x̂ ×mu

x̂ (4.3)

on [., .](W s
loc(x̂)×W u

loc(x̂)), where [ẑ, ŵ] = W u
loc(ẑ) ∩W s

loc(ŵ).

Since π |Fσloc(x): F
σ
loc(x)→ W σ

loc(x̂) (σ = s, u) is a homeomorphism, we can define

the measures

µσx = ((π |Fσloc(x))
−1)∗m

σ
x̂ (4.4)

in Fσloc(x) with σ = s, u.

Proposition 4.1.2. µsx is c-invariant on F cs and µux is c-invariant on F cu.
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Proof. We denote by hcxy the center holonomy on F cs between F sloc(x) and F sloc(y).

Since

hcxy ◦ (π |Fsloc(x))
−1 = (π |Fsloc(y))

−1

we have that (hcxy)∗µ
s
x = µsy.

Proof of Theorem D. Firt we consider the case when there exit a unique measure

of maximal entropy. Since π∗µ = m and m has local product structure and the

central Lyapunov exponent of µ is zero, we have by Invariance Principle of Avila

and Viana [2], that µ admits a disintegration along of the central foliation {µx̂ :

x̂ ∈ M̂} which is s-invariant and u-invariant, and varies continuously with x̂ on

suppπ∗µ = M̂ . Moreover, we have that supp(µx̂) = F c(x) and the measures µx̂ are

atom free.

Hence,

µ(A) =

∫
M̂

µx̂(A)dm,A ⊂M (4.5)

and we can define µcx in F cloc(x) by µx̂ |Fcloc(x).
On the other hand. Let z ∈ F sloc(x) and w ∈ Fuloc(x) fixed. We define

ψ : F cloc(x)→ F cloc(ϕ(z, x, w)︸ ︷︷ ︸
y

)

by ψ(t) = ϕ(z, t, w). Since {µx̂ : x̂ ∈ M̂} is s-invariant and u-invariant, we have

that

ψ∗µ
c
x = µcy (4.6)

If A ⊂ ϕ(F sloc(x)×F cloc(x)×Fuloc(x)), then of (4.3) and (4.5), we have

µ(A) =

∫
M̂

µx̂(A)d([, ]∗m
s
x̂ ×mu

x̂)

By (4.4), we have

µ(A) =

∫
M̂

µŷ(A)d([, ]∗ ◦ (π |Fsloc(x) ×π |Fuloc(x))∗µ
s
x × µux)(ŷ)

=

∫
Fsloc(x)×F

u
loc(x)

µ[π|Fs
loc

(x)(z),π|Fu
loc

(x)(w)](A)d(µsx × µux)(z, w).
(4.7)

On the other hand, by (4.6), we have
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µ[π|Fs
loc

(x)(z),π|Fu
loc

(x)(w)](A) = µcϕ(z,x,w)(A)

=

∫
Fcloc(ϕ(z,x,w))

1Adµ
c
ϕ(z,x,w)

=

∫
Fcloc(x)

1A ◦ ψ(t)dµcx(t)

=

∫
Fcloc(x)

1A ◦ ϕ(z, t, w)dµcx(t).

(4.8)

So, by (4.8) in (4.7), we have

µ(A) =

∫
Fsloc(x)×F

u
loc(x)

(

∫
Fcloc(x)

1A ◦ ϕ(z, t, w)dµcx(t))d(µsx × µux)(z, w)

=

∫
Fsloc(x)×F

c
loc(x)×F

u
loc(x)

(1A ◦ ϕ(z, t, w))d(µsx × µcx × µux)(z, t, w)

=

∫
M

1Ad(ϕ∗µ
s
x × µcx × µux)

= ϕ∗µ
s
x × µcx × µux(A).

Now we prove the second item of the theorem. Let us begin to prove the next

lemma.

Lemma 4.1.3. If µ such that

µ = ϕ∗µ
s
x × µcx × µux

with µsx, µux and µcx defined in F sloc(x), Fuloc(x), F cloc(x) respectively. Where ϕ :

F sloc(x)×F cloc(x)×Fuloc(x)→M is defined by

ϕ(z, t, w) = Fuloc(F cloc(z) ∩ F sloc(t)) ∩ F csloc(w).

Then {µcx} is s-invariant and u-invariant.

Proof. Since µ = ϕ∗µ
s
x × µcx × µux, we have

µ =

∫
Fuloc(x)

ϕ(·, ·, w)∗(µ
s
x × µcx)dµux(w).

We denote by µcsx the conditional measure of µ on F sloc(x)×F cloc(x), then

µcsx = ϕ(·, ·, x)∗(µ
s
x × µcx) (4.9)

On the other hand, we denote by µz the conditional measure of µcsx along the

center foliation. Let I be an interval in F cloc(z) with z ∈ F sloc(x), by definition of

conditional measure, we have that
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µz(I) = lim
δ→0

µcsx (ϕ(·, ·, x)(Iδ × hszx(I)))

µcsx (ϕ(·, ·, x)(Iδ ×F cloc(x)))

where hszx is the stable holonomy (hszx : F cloc(z)→ F cloc(x), hszx(t) = F cloc(x)∩F sloc(t))
and Iδ ⊂ F sloc(x).

So, by (4.9)

µz(I) = lim
δ→0

µsx(Iδ) · µcx(hszx(I))

µsx(Iδ) · µcx(F cloc(x))
= µcx(h

s
zx(I)).

In particular, µz = µcz. Hence,

(hszx)∗µ
c
z = µcx.

By the same arguments {µcx} is u-invariant.

Now we complete the proof of the second item of theorem. Suppose that µ =

ϕ∗µ
s
x × µcx × µux as in the above lemma. By Lemma 4.1.3 we have that {µcx} is

s-invariant and u-invariant. By item 4 of the remark 4.1.1 the conditional measures

{µx} of µ along the center foliation are atomic with the same finite number of atoms.

On the other hand, let z, w ∈ F cloc(x) such that z is an atom of µx and w is not

an atom. By the accessibility property of f there exist a path λ which is piecewise

tangent to Es or to Eu that joins z and w. So, λ can be covered by a finite number

of cubes F sloc(y)×F cloc(y)×Fuloc(y). Since that {µx = µcx} is s, u-invariant, we have

that w is a atom of µx, which it’s a contradiction. This concludes the proof of the

item 2 of the theorem.

For absolutely partially hyperbolic diffeomorphisms on T3 with compact center

leaves the previous theorem shows that the measure of maximal entropy can be

written as the product of three measures defined on the stable, central and unsta-

ble manifold when such measure is unique. When such measure is hyperbolic this

measure have not the above property. We can ask:

Question 4.1.4. Can the measures of maximal entropy for absolutely partially hy-

perbolic diffeomorphisms homotopic to a linear Anosov diffeomorphism of T3 (“De-

rived from Anosov”) be written as the product of three measures defined on the local

stable, central and unstable manifold?
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Currently the above question is open, but since that such measures are hyperbolic

(see [57]) have “almost” local product structure by Theorem 4.0.3.

Question 4.1.5. Do all equilibrium states of Derived from Anosov diffeomorphism

associated to potential that was studied in the chapter 3 can be written as the product

of three measures defined on the local stable, central and unstable manifold?

The next result answers negatively the above question for ergodic equilibrium

states with total mass to the collapse intervals set. Once equilibrium states associ-

ated to potential with small variation are hyperbolic (see Corollary 3.4.3), we have

that such measures have “almost” local product structure (see Theorem 4.0.3).

Theorem 4.1.6. Let f and φ be as in Theorem A. Let µ be an ergodic equilibrium

state for (f, φ). If µ is virtually hyperbolic (see item 2, Theorem A), then µ can not

be written as the product of three measures defined on the local stable, central and

unstable manifolds.

Proof. Let µ be an ergodic equilibrium state for Derived from Anosov diffeomor-

phism associated to any potential as was studied in the previous chapter. Once

µ(C) = 1, by Proposition 3.1.1 we have that µ is virtually hyperbolic. Denote by µcu

the conditional measure of µ (normalized and restricted on F sloc(x)×F cloc(x)×Fuloc(x)

) on F cloc(x) × Fuloc(x). Since disintegration of µ along central foliation is mono-

atomic, we have

µcu =

∫
δa(t)dµ

uu(t)

where a(t) is the unique atom on the central leaf of t and µuu is the quotient measure

on the quotient of F cloc(x)×Fuloc(x) by central plaques.

Let us assume that

µ = ϕ∗µ
s
x × µcx × µux

with µsx, µux and µcx defined in F sloc(x), Fuloc(x), F cloc(x) respectively. By Lemma 4.1.3,

µcx is s, u-invariant. Therefore, there exist z ∈ F cloc(x)×Fuloc(x) such that

µcu(B ∩ Fuloc(z)) = 1 (4.10)

where B is the set of unique atom in the center leaf of the conditional measure of

µcs along of the center foliation.

We claim that there exist a set D ⊂ F cloc(x)×Fuloc(x) such that D ∩ Fuloc(z) = ∅
and µcu(D) > 0. In fact, let ν = H∗µ and R be a Markov’s rectangle of A. We
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normalize the restriction of ν on R. Let F cu be a typical unstable leaf of A. Consider

Rcu = R ∩ F cu and denote by νcu the conditional measure of ν (normalized and

restricted on R) on Rcu. We can suppose that F cloc(x)×Fuloc(x) ⊂ H−1(Rcu).

We can take n > 0 such that

A−ncu (Rcu) ∩H(Fuloc(z)) = ∅

where Acu : Rcu → Rcu is defined by Acu(w) = Rcu ∩ F sA(Ar(w)(w)), with r(w) :=

min{n : An(w) ∈ R} (for more details see [32]). Since νcu gives positive measure for

all set open in Rcu (see [32], Lemma 5.10). In particular νcu(A−ncu (Rcu)) > 0. Hence,

D = H−1A−ncu (Rcu) satisfies the claim.

By the claim and (4.10), we have a contradiction and this ending the proof.
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