
Flat and round singularity theory

Mostafa Salarinoghabi





Mostafa Salarinoghabi

Flat and round singularity theory

Doctoral dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação – ICMC-USP,
in partial fulfillment of the requirements for the degree
of the Doctorate in Science – Mathematics. FINAL
VERSION

Concentration Area: Mathematics

Advisor: Prof. Dr. Farid Tari

USP – São Carlos
May 2016



Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados fornecidos pelo(a) autor(a)

Salarinoghabi, Mostafa
S634f Flat and round singularity theory /

Mostafa Salarinoghabi; orientador Farid Tari. –
São Carlos – SP, 2016.
136 p.

Tese (Doutorado - Programa de Pós-Graduação em
Matemática) – Instituto de Ciências Matemáticas e de
Computação, Universidade de São Paulo, 2016.

1. bifurcations. 2. evolutes. 3. plane curves.
4. inflections. 5. vertices. 6. singularities. I.
Tari, Farid, orient. II. Título.



SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Mostafa Salarinoghabi

A teoria da singularidade plana e redonda

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Matemática. VERSÃO
REVISADA

Área de Concentração: Matemática

Orientador: Prof. Dr. Farid Tari

USP – São Carlos
Maio de 2016





This thesis dedicated to my parents

for their endless love, support and encourangment,

and

to Pouya

who leads me through the valley of darkness

with light of hope and support.





ACKNOWLEDGEMENTS

First and foremost I want to thank my advisor prof. Farid Tari. It has been an honor
to be his Ph.D. student. I appreciate all his contributions of time and ideas, to make my Ph.D.
experience productive and stimulating. The joy and enthusiasm he has for his research was
contagious and motivational for me, even during tough times in the Ph.D. pursuit.

Besides my advisor, I would like to thank Dr. Masaru Hasegawa for his patience and his
useful helps. Also I want to thank all ICMC members (staffs and faculties), specially prof. Maria
Aparecida Soares Ruas, prof. Ali Tahzibi and prof. Behrooz Mirzaii. Also I would like to thank
"CAPES" for their financial support during my Ph.D. studies.

Special mention goes to my dear friends in particular, I am grateful to Pouya Mehdipour,
Jorge Luiz Deolindo, Thiago Henrrique de Freitas, Thales Maier de Souza, Salimeh Yasaie,
Fatemeh Yeganeh Mokari, Patrícia Tempesta, Martín Barajas Sichacá, Mona Mehdipour, Nelson
Antonio Silva, Victor Simões Barbosa, Ginnara Mexia Souto, Maria Carolina Zanardo, Iman
ghodrati and the other friends for your understanding and encouragement in my many, many
moments of crisis. Your friendship makes my life a wonderful experience. I can not list all the
names here, but you are always on my mind.

I would like to thank Pouya’s parents, Jorge’s family and sincerely thanks to my family:
my beloved parents and to my brothers Mahdi and Alireza, my sister Taravat, my brother’s wife
Somayeh and my sister’s husband Hosein for supporting me spiritually throughout writing this
thesis and my life in general.

Finally, I would like to thank the jury members: prof. Fábio Scalco Dias, prof. Bruna
Oréfice Okamoto and prof. Marcos Craizer for their time, interest, and valuable comments.





“Where there is matter, there is geometry.”

(Johannes Kepler)





RESUMO

SALARINOGHABI, M. . Flat and round singularity theory. 2016. 136 f. Doctoral disserta-
tion (Doctorate Candidate in Science – Mathematics) – Instituto de Ciências Matemáticas e de
Computação (ICMC/USP), São Carlos – SP.

Propomos nesta tese um método para estudar deformações de curvas planas que leva em con-
sideração a geometria delas, bem como as suas singularidades. Consideramos em detalhes os
fenômenos locais que ocorrem genericamente em famílias de curvas com dois parâmetros. Obte-
mos informações sobre as inflexões e vértices que aparecem nas curvas deformadas. Obtemos
também as configurações das evolutas das curvas e das suas deformações e aplicamos os nossos
resultados nas projeções ortogonais de curvas espaciais. Finalmente, consideramos o perfil de
uma superfície regular no espaço Euclidiano R3. O perfil é a imagem do conjunto singular
de uma projeção ortogonal da superfície, esta é uma curva plana e pode ter singularidades.
Estudamos as alterações na geometria do perfil quando a direção de projeção muda localmente
na esfera unitária.

Palavras-chave: bifurcações, evolutas, curvas planas, inflexões, vértices, singularidades.





ABSTRACT

SALARINOGHABI, M. . Flat and round singularity theory. 2016. 136 f. Doctoral disserta-
tion (Doctorate Candidate in Science – Mathematics) – Instituto de Ciências Matemáticas e de
Computação (ICMC/USP), São Carlos – SP.

We propose in this thesis a way to study deformations of plane curves that take into consideration
the geometry of the curves as well as their singularities. We deal in details with local phenomena
that occur generically in two-parameter families of curves. We obtain information on the
inflections and vertices appearing on the deformed curves. We also obtain the configurations
of the evolutes of the curves and of their deformations, and apply our results to orthogonal
projections of space curves. Finally, we consider the profile (outline, apparent contour) of a
smooth surface in the Euclidian 3-space. This is the image of the singular set of an orthogonal
projection of the surface. The profile is a plane curve and may have singularities. We study the
changes in the geometry of the profile as the direction of projection changes locally in the unit
sphere.

Key-words: bifurcations, evolutes, plane curves, inflections, vertices, singularities.
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CHAPTER

1
INTRODUCTION

In the first part of this thesis, we consider smooth (𝐶∞) parametrised plane curves (for a study
of curves given by equations see [10, 15]). Consider a plane curve with a cusp singularity. If
we are interested (locally) only in the singularity of the curve and the way it bifurcates, we can
reparametrise the curve and change coordinates in the plane (so we have the action of the group
𝒜 of germs of changes of coordinates in the source and target on map-germs (R, 0)→ (R2, 0)).
An 𝒜-model for the cusp curve is (𝑡2, 𝑡3) and a model of an 𝒜𝑒-versal deformation of this
singularity is (𝑡2, 𝑡3 + 𝑢𝑡); see Figure 1.1.

Figure 1.1 – Generic bifurcations of a cusp singularity.

We may also be interested in the geometry of the plane curve, such as its inflections and its
vertices. In this case, we are allowed only Euclidean motions in the plane as diffeomorphisms
destroy the geometry of the curve (but preserve its singularities). We can of course reparametrise
the curve.

Several question can be asked. What is the meaning of a generic deformation of the curve?
How many inflections and vertices appear in a generic deformation? What is the evolute of the
singular plane curve and how does it bifurcate in generic families of curves? Is there a theory
that can give a model of the deformation of the singularity of the curve as well as taking into
consideration its geometry?

Singular plane curves can be related to regular curves. For instance, an orthogonal projection
of a regular space curve to a plane is singular if the direction of projection is tangent to the space
curve. Geometric information on the projected curve provide geometric information about the
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space curve itself ([12, 14, 26, 34]).

In [14], Nuño-Ballesteros and Dias proposed a way to find models of the singularities of plane
curves as well as their contact with lines at the singular point of the curve. (The contact with
lines captures the inflections concentrated at the singular point of the curve.) They did this by
classifying germs of divergent diagrams (𝑓, 𝛼): R, 0 𝑓←− R, 0 𝛼−→ R2, 0 up to smooth
changes of coordinates. An alternative approach to using divergent diagrams is proposed in [26].
A classification of submersions up to smooth changes of coordinates in the source preserving an
𝒜-model of the singularity of the curve is given in [26]. The group acting is a Damon geometric
subgroup, so the classification tools of singularity theory can be used. Wall introduced in [32]
an equivalence relation which takes into consideration the tangent cone of the curve. He used
invariants of the curve to classify the singularities. The various proposed methods ([14, 26, 32])
can handled a single curve. However, finding a theory that explains the deformations of the
singularity of the curve in families as well as the changes in its geometry (appearance and
location of the inflections and vertices) is still an open problem. (Of course the question is not
restricted to curves and is valid for submanifolds of R𝑛.) A study of the particular case of families
of projections of space curves is carried out [26]. The way the singularities and the inflections of
the projected curve bifurcate when the direction of projections varies locally in the unit sphere is
given. The bifurcations in the dual of the projected curve are also determined in [26].

From Proposition 3.3, any deformation of a singular curve results in a non-versal deformation
of the family of distance squared functions on the curve. This indicates that the theory we are
seeking may not come from an action of some subgroup of the contact group 𝒦 on the set of
germs functions/mappings on the curve.

We describe in this thesis a method for studying the geometry of deformations of singular
plane curves, which we label 𝐹𝑅𝑆-deformation of plane curves (F for flat, R for round and S for
singular). When the curve is regular we label the deformations by 𝐹𝑅-deformations. The method
is similar to the one used to study bifurcations of vector fields and certain implicit differential
equations (see for example [1, 11, 16, 27, 28, 29, 30]).

For two germs of 𝑚-parameter deformations 𝛾𝑠 and 𝜂𝑢 of a (singular) plane curve, we define
the concept of 𝐹𝑅𝑆-equivalence. Basically, 𝐹𝑅𝑆-equivalence means the instantaneous config-
urations of the curves 𝛾𝑠 and 𝜂𝑘(𝑠) (including their singularities, vertices, inflections and their
evolutes) are the same.

We also define the concept of 𝐹𝑅𝑆-generic families (case by case). The idea is to show that
any two 𝐹𝑅𝑆-generic 𝑚-parameter families are 𝐹𝑅𝑆-equivalent. This allows us to obtain an
𝐹𝑅𝑆-model of 𝐹𝑅𝑆-deformations of a plane curve singularity. We do this in this thesis for all
the codimension ≤ 2 pheneomena and relate in each case the concept of 𝐹𝑅𝑆-genericity to that
of transversality of the (multi-) jet extension map to a stratification of the (multi-) jet space.

After a brief introduction of some preliminary concepts in Chapter 2, In Chapter 3 we deal
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with regular curves at inflections of any finite order (§3.1) and with the cusp (§3.2) and ramphoid
cusp (§3.3) singularities. We define in each case the meaning of a generic family and obtain
the conditions for two such families to be 𝐹𝑅𝑆-equivalent. We also obtain the configuration
of the deformed curve and of its evolute. (We observe that in [13] are obtained formulae for
the number of vertices and inflections of germs of singular plane curves and a relation between
these numbers.) As one application of 𝐹𝑅𝑆-equivalence, in Chapter 4 we apply our results to
orthogonal projections of space curves. Chapter 5 is devoted to profile of smooth surfaces in the
Euclidian 3-space. This is the image of the singular set of an orthogonal projection of the surface.
The profile is a plane curve and may have singularities. We study the changes in the geometry of
the profile as the direction of projection changes locally in the unit sphere. Finally we extend
𝐹𝑅𝑆-theory for discriminant of map germs from R2 to R2.
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CHAPTER

2
PRELIMINARY

In this chapter we give some basic concepts from singularity theory. Mostly, we will use [6],
[24] and [33] as references.

2.1 Germs of smooth mappings

Let 𝑋 and 𝑌 be two subsets of R𝑛 containing a point 𝑝 ∈ R𝑛. We say that 𝑋 is equivalent
to 𝑌 if there exists an open set 𝑈 ⊂ R𝑛 containing 𝑝 such that 𝑋 ∩ 𝑈 = 𝑌 ∩ 𝑈 . This defines
an equivalence relation among subsets of R𝑛 containing the point 𝑝. The equivalence class of a
subset 𝑋 is called the germ of 𝑋 at 𝑝 and is denoted by (𝑋, 𝑝).

Let 𝑈 and 𝑉 be two open subsets of R𝑛 containing a point 𝑝 ∈ R𝑛, and let 𝑓 : 𝑈 → R𝑚 and
𝑔 : 𝑉 → R𝑚 be two smooth maps. We say that 𝑓 ∼ 𝑔 if there exists an open set 𝑊 ⊂ 𝑈 ∩ 𝑉
containing 𝑝 such that 𝑓 = 𝑔 on 𝑊 , that is 𝑓 |𝑊 = 𝑔|𝑊 .

The relation ∼ is an equivalence relation and a germ at 𝑝 of a smooth map is by definition an
equivalent class under this equivalence relation. A map-germ at 𝑝 is denoted by 𝑓 : (R𝑛, 𝑝)→
R𝑚.

Sometimes we require that all the elements of the equivalence classes have the same value at
𝑝, say 𝑞. Then we write

𝑓 : (R𝑛, 𝑝)→ (R𝑚, 𝑞).

Suppose that 𝑓 : (R𝑛, 0)→ (R𝑚, 𝑞) be a map-germ at origin. The space of all such germs is
denoted by ℰ(𝑛,𝑚). When 𝑚 = 1, we denote ℰ(𝑛, 1) by ℰ𝑛. The setℳ𝑛 = {𝑓 ∈ ℰ𝑛 : 𝑓(0) =
0} is a maximal ideal of ℰ𝑛.

For a given positive integer 𝑘, the 𝑘th-power of the maximal idealℳ𝑛 is denoted byℳ𝑘
𝑛. It is

the set of germs of functions 𝑓 ∈ℳ𝑛 with zero partial derivatives of order less or equal to 𝑘 − 1
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at the origin. We also have

ℳ𝑘
𝑛 = ℰ𝑛.{𝑥𝑖11 . . . 𝑥𝑖𝑛𝑛 : 𝑖1 + · · ·+ 𝑖𝑛 = 𝑘}.

We denote by ℳ𝑘+1
𝑛 . ℰ(𝑛,𝑚) = ℳ𝑘+1

𝑛,𝑚 the set of map-germs 𝑓 : (R𝑛, 0) → (R𝑚, 0) with
vanishing partial derivatives of order less or equal to 𝑘 at the origin.

The 𝑘-jet space of smooth map-germs (R𝑛, 0)→ (R𝑚, 0) is defined as

𝐽𝑘(𝑛,𝑚) =ℳ𝑛.ℰ(𝑛,𝑚)
⧸︁
ℳ𝑘+1

𝑛 .ℰ(𝑛,𝑚).

The map 𝑗𝑘 :ℳ𝑛.ℰ(𝑛,𝑚)→ 𝐽𝑘(𝑛,𝑚) assigns to each map-germ 𝑓 its 𝑘th-jet. An element in
𝐽𝑘(𝑛,𝑚) corresponding to a map-germ 𝑓 ∈ℳ𝑛.ℰ(𝑛,𝑚) is denoted by 𝑗𝑘𝑓 . The set 𝐽𝑘(𝑛,𝑚)
can be identified with the set of polynomials of degree less than or equal to 𝑘, without the
constant terms. Given 𝑓 ∈ℳ𝑛.ℰ(𝑛,𝑚), 𝑗𝑘𝑓 is simply its Taylor polynomial of degree 𝑘 at the
origin.

2.1.1 Singularities of germs of smooth mappings

Let 𝑓 : 𝑈 ⊂ R𝑛 → R𝑚 be a smooth map and denote by 𝑑𝑓 : 𝑇𝑈 → 𝑇R𝑚 its derivative map.
The map 𝑓 is singular at 𝑝 ∈ 𝑈 if the rank of the linear map

(𝑑𝑓)𝑝 : R𝑛 → R𝑚

is not maximal, that is, if 𝑟𝑎𝑛𝑘(𝑑𝑓)𝑝 < 𝑚𝑖𝑛(𝑛,𝑚). The point 𝑝 is then said to be a singular point
of 𝑓 . Otherwise, we say that 𝑓 is non-singular at 𝑝 and 𝑝 is a regular point of 𝑓 . The critical set
of 𝑓 , denoted by Σ(𝑓), is the set of singular points of 𝑓 , that is,

Σ(𝑓) = {𝑝 ∈ 𝑈 |𝑟𝑎𝑛𝑘(𝑑𝑓)𝑝 < 𝑚𝑖𝑛(𝑛,𝑚)}.

The criminant of 𝑓 , denoted by 𝐶𝑟(𝑓), is

𝐶𝑟(𝑓) = {𝑝 ∈ 𝑈 |𝑟𝑎𝑛𝑘(𝑑𝑓)𝑝 < 𝑚}.

When 𝑛 ≥ 𝑚, 𝐶𝑟(𝑓) = Σ(𝑓), and when 𝑛 < 𝑚, 𝐶𝑟(𝑓) = 𝑈 . The discriminant of 𝑓 , denoted by
Δ(𝑓), is the image of 𝐶𝑟(𝑓) by 𝑓 :

Δ(𝑓) = 𝑓(𝐶𝑟(𝑓)).

2.2 Mather groups and their tangent space

Let 𝐺 be a Lie group and denote the tangent space of 𝐺 at 𝑓 by 𝑇𝑓𝐺.
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Definition 2.1. Given a smooth manifold 𝑀 and a Lie group 𝐺, an action of 𝐺 over 𝑀 is a

smooth map

𝐺×𝑀 →𝑀

(𝑔, 𝑥) ↦→ 𝑔.𝑥,

such that for any 𝑔, ℎ ∈ 𝐺, and 𝑥 ∈𝑀 , 1.𝑥 = 𝑥 and 𝑔.(ℎ.𝑥) = (𝑔ℎ).𝑥.

The action defines an equivalence relation in 𝐺. For 𝑥, 𝑦 ∈𝑀 we say that 𝑥 ∼ 𝑦 if and only if
there is 𝑔 ∈ 𝐺 such that 𝑦 = 𝑔.𝑥. The orbit of 𝑥 is the equivalence class of 𝑥, which is equal to
the set

𝐺.𝑥 = {𝑔.𝑥 , 𝑔 ∈ 𝐺}.

Theorem 2.1 ([24]). Let 𝐺 be a Lie group acting on a smooth manifold 𝑀 . Then the orbits 𝐺.𝑥,

𝑥 ∈𝑀 , are immersed submanifold of 𝑀 .

Let ℛ denotes the group of germs of all diffeomorphisms (R𝑛, 0) → (R𝑛, 0). This group is
called the right group and acts smoothly onℳ𝑛.ℰ(𝑛,𝑚) by

ℎ.𝑓 := 𝑓 ∘ ℎ−1.

The left group ℒ of germs of all diffeomorphisms (R𝑚, 0) → (R𝑚, 0) acts smoothly on
ℳ𝑛.ℰ(𝑛,𝑚) by

𝑘.𝑓 = 𝑘 ∘ 𝑓.

The group ℛ (resp. ℒ) is also called the group of changes of coordinates in the source (resp.
target).

The group 𝒜 := ℛ×ℒ acts smoothly onℳ𝑛.ℰ(𝑛,𝑚), and the action is defined by

(ℎ, 𝑘).𝑓 := 𝑘 ∘ 𝑓 ∘ ℎ−1.

Another interesting group, is the group of germs of diffeomorphisms 𝐻 : (R𝑛 × R𝑚, 0) →
(R𝑛 × R𝑚, 0) such that 𝐻(𝑥, 𝑦) = (𝑥, �̄�(𝑥, 𝑦)) with �̄�(𝑥, 0) = 0 for 𝑥 ∈ R𝑛 near the origin.
We denote this group by 𝒞. It acts smoothly onℳ𝑛.ℰ(𝑛,𝑚) by

𝐻.𝑓(𝑥) := 𝐻(𝑥, 𝑓(𝑥)) , 𝐻 ∈ 𝒞, 𝑓 ∈ℳ𝑛.ℰ(𝑛,𝑚).

The group 𝒞 is a normal subgroup of the contact group𝒦, where𝒦 is the group of germs of diffeo-
morphisms 𝐻 : (R𝑛 × R𝑝, 0)→ (R𝑛 × R𝑝, 0) which are written as 𝐻(𝑥, 𝑦) = (ℎ(𝑥), �̄�(𝑥, 𝑦))
such that ℎ ∈ ℛ and �̄�(𝑥, 0) = 0 for 𝑥 ∈ R𝑛 near to the origin. The action of 𝒦 over
ℳ𝑛.ℰ(𝑛,𝑚) is defined by

𝐻.𝑓(𝑥) := 𝐻(ℎ−1(𝑥), 𝑓(ℎ−1(𝑥))), 𝐻 ∈ 𝒦, 𝑓 ∈ℳ𝑛.ℰ(𝑛,𝑚).

The groupsℛ,ℒ,𝒜, 𝒞 and 𝒦 are called the Mather groups.
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2.2.1 Tangent spaces to the 𝒢-orbits

The tangent space at 𝑓 ∈ ℰ(𝑛, 𝑝), denoted by 𝜃𝑓 , is defined as the ℰ𝑛- module of vector fields
along 𝑓 . Therefore elements of 𝜃𝑓 are of the form 𝜉 : (R𝑛, 0) → 𝑇R𝑝 satisfying 𝜋𝑝 ∘ 𝜉 = 𝑓 ,
where 𝜋𝑝 : 𝑇R𝑝 → R𝑝 is the projection of the tangent fiber 𝑇R𝑝 of R𝑝 to R𝑝.

Let 𝒢 be a subgroup of 𝒦 and 𝜑 : (−𝜖, 𝜖)× R𝑛+𝑝, 0→ R𝑛+𝑝, 0 is a curve in 𝒢 such that 𝜑0 is
the identity element of 𝒢. Differentiating this map gives the vector field

𝑧 → 𝜕𝜑

𝜕𝑡
(𝑡, 𝑧)|𝑡=0.

We denote the set of all such vector fields by 𝐿𝒢 and call it the Lie algebra of the group 𝒢.

One can verify that 𝐿ℛ =ℳ𝑛.𝜃𝑛 and 𝐿ℒ =ℳ𝑝.𝜃𝑝 where 𝜃𝑛 = 𝜃1R𝑛 and 𝜃𝑝 = 𝜃1R𝑝 such that
1R𝑛 and 1R𝑝 are the identity maps of R𝑛 and R𝑝, respectively. Moreover, for any 𝑓 ∈ ℰ(𝑛, 𝑝) one
can define a ℰ𝑛-homomorphism

𝑡𝑓 : 𝜃𝑛 → 𝜃𝑓 ,

with 𝑡𝑓(𝜑) = 𝑑𝑓 ∘ 𝜑. Also, the map

𝑤𝑓 :𝜃𝑝 → 𝜃𝑓

𝜓 ↦→ 𝜓 ∘ 𝑓

is a ℰ𝑝-homomorphism and the module structure is induced via 𝑓 * : ℰ𝑝 → ℰ𝑛 with 𝑓 *(𝛼) = 𝛼∘𝑓
for 𝛼 ∈ ℰ𝑝. The tangent spaces to the 𝒢-orbits of 𝑓 at 𝑓 are given as follow:

𝐿ℛ.𝑓 = 𝑡𝑓(ℳ𝑛.𝜃𝑛),

𝐿ℒ.𝑓 = 𝑤𝑓(ℳ𝑝.𝜃𝑝),

𝐿𝒞.𝑓 = 𝑓 *(ℳ𝑝).𝜃𝑓 ,

𝐿𝒜.𝑓 = 𝐿ℛ.𝑓 + 𝐿ℒ.𝑓,

𝐿𝒦.𝑓 = 𝐿ℛ.𝑓 + 𝐿𝒞.𝑓.

Remark 2.1. Note that the tangent space 𝜃𝑓 is a free ℰ𝑛-module of rank 𝑝. Therefore, if

(𝑦1, . . . , 𝑦𝑝) is a local coordinate system in (R𝑝, 0), then the vector fields(︃
𝜕

𝜕𝑦1

)︃
∘ 𝑓, . . . ,

(︃
𝜕

𝜕𝑦𝑝

)︃
∘ 𝑓

form a basis for 𝜃𝑓 along 𝑓 . Thus, one can identify 𝜃𝑓 with ℰ(𝑛, 𝑝) and write the tangent spaces

as follow

𝐿ℛ.𝑓 =ℳ𝑛.{
𝜕𝑓

𝜕𝑥1
, . . . ,

𝜕𝑓

𝜕𝑥𝑛
},

𝐿ℒ.𝑓 = 𝑓 *(ℳ𝑝).{𝑒1, . . . , 𝑒𝑝},

𝐿𝒞.𝑓 = 𝑓 *(ℳ𝑝).ℰ𝑛.{𝑒1, . . . , 𝑒𝑝},

where {𝑒1, . . . , 𝑒𝑝} is the standard basis of R𝑝 (considered as elements of ℰ(𝑛, 𝑝)).
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Definition 2.2. For a given map-germ 𝑓 and a Mather group 𝒢, the 𝒢-codimension of 𝑓 is

defined as dimR(ℳ𝑛.ℰ(𝑛, 𝑝)/𝐿𝒢.𝑓) and is denoted by 𝑐𝑜𝑑𝒢(𝑓). Also, the 𝒢𝑒-codimension of 𝑓

is defined as

𝑐𝑜𝑑𝒢𝑒(𝑓) = dimR(ℰ(𝑛, 𝑝)/𝐿𝑒𝒢.𝑓),

where

𝐿𝑒ℛ.𝑓 = 𝑡𝑓(𝜃𝑛),

𝐿𝑒ℒ.𝑓 = 𝑤𝑓(𝜃𝑝),

𝐿𝑒𝒞.𝑓 = 𝑓 *(ℰ𝑝).𝑓,

𝐿𝑒𝒜.𝑓 = 𝐿𝑒ℛ.𝑓 + 𝐿𝑒ℒ.𝑓,

𝐿𝑒𝒦.𝑓 = 𝐿𝑒ℛ.𝑓 + 𝐿𝑒𝒞.𝑓.

The space 𝐿𝑒𝒢.𝑓 is so called the extended tangent space.

Note that, the diffeomorphisms in a Mather group keep the origin fixed (in the source and or in
the target). When studying deformations, the singularity can move away from the origin, so the
vector fields involved in defining the tangent spaces are allowed not to fix the origin. It is for this
reason that, the extended tangent spaces are defined.

2.3 Finite determinacy

A germ 𝑓 is said to be 𝑘-𝒢-determined if any 𝑔 with 𝑗𝑘𝑔 = 𝑗𝑘𝑓 is 𝒢- equivalent to 𝑓 . The 𝑘-jet
of 𝑓 is then called a sufficient jet. The least integer 𝑘 with this property is called the degree of
determinacy of 𝑓 . A 𝒢-determined germ is a 𝑘-𝒢-determined germ for some integer 𝑘.

Theorem 2.2 (Theorem 1.2 in [33]). For each 𝑓 and 𝒢, the following are equivalent:

(i) 𝑓 is 𝒢-determined,

(ii) for some 𝑘,ℳ𝑘
𝑛.ℰ(𝑛,𝑚) ⊂ 𝐿𝒢.𝑓 ,

(iii) 𝑐𝑜𝑑𝒜(𝑓) <∞,

(iv) 𝑐𝑜𝑑𝒜𝑒(𝑓) <∞.

2.3.1 Versal Unfolding

One of the most important concepts in the singularity theory of map germs is that of versal
unfolding.

Definition 2.3. Let 𝑓 ∈ℳ𝑛.ℰ(𝑛,𝑚). An 𝑎-parameter unfolding (𝑎, 𝐹 ) of 𝑓 is a map germ

𝐹 : (R𝑛 × R𝑎, (0, 0))→ (R𝑚 × R𝑎, (0, 0))

in the form 𝐹 (𝑥, 𝑢) = (𝑓(𝑥, 𝑢), 𝑢), where the map

𝑓 : (R𝑛 × R𝑎, (0, 0))→ (R𝑚, 0)
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satisfies 𝑓(𝑥, 0) = 𝑓(𝑥) and is called an 𝑎-parameter deformation of 𝑓 .

It is important to clarify the following fact about the deformation 𝑓 in Definition 2.3. Let
𝑓 : 𝑊 × 𝑈 → 𝑉 be a representative of the map-germ 𝑓 , where 𝑊 × 𝑈 is a neighbourhood of
(0, 0) ∈ R𝑛 × R𝑎 and 𝑉 is a neighbourhood of 0 ∈ R𝑚. For 𝑢 ∈ 𝑈 denote by 𝑓𝑢 : 𝑊 → 𝑉 the
smooth map given 𝑓𝑢(𝑥) = 𝑓(𝑥, 𝑢). Then 𝑓0(0) = 0 but 𝑓𝑢(0) is not necessarily the origin of
R𝑚 for 𝑢 ̸= 0. This means that the fibre 0 × R𝑎 is not necessarily preserved by 𝐹 . Also, the
singularities of 𝑓𝑢 may no longer be at the origin. This is why one needs to consider the extended
groups 𝒢𝑒.

Definition 2.4. Let 𝒢 be a Mather group with the identity element 𝐼𝒢 .

(i) A morphism between two unfoldings (𝑎, 𝐹 ) and (𝑏,𝐺) is a pair (𝛼, 𝜓) : (𝑎, 𝐹 )→ (𝑏,𝐺)
with 𝛼 : (R𝑎, 0)→ (𝒢, 𝐼), 𝜓 : (R𝑎, 0)→ (R𝑏, 0), such that

𝑓𝑢 = 𝛼(𝑢).𝑔𝜓(𝑢)

The unfolding (𝑎, 𝐹 ) is then said to be induced from (𝑏,𝐺) by (𝛼, 𝜓).

(ii) Two unfoldings (𝑎, 𝐹 ) and (𝑏,𝐺) are 𝒢-equivalent if there exists a morphism (𝛼, 𝜓) :
(𝑎, 𝐹 )→ (𝑏,𝐺), where 𝜓 is invertible.

(iii) An unfolding (𝑎, 𝐹 ) of a map-germ 𝑓 is said to be 𝒢-versal if any unfolding (𝑏,𝐺) of 𝑓

can be induced from (𝑎, 𝐹 ).

An analogous definition can be given for the extended group 𝒢𝑒 by substituting 𝒢 with 𝒢𝑒 in
Definition 2.4.

The least number 𝑎0 of parameters for a 𝒢-versal (resp. 𝒢𝑒-versal) unfolding is 𝑐𝑜𝑑𝒢(𝑓) (resp.
𝑐𝑜𝑑𝒢𝑒(𝑓)) and the versal unfolding (𝑎0, 𝐹 ) is called mini-versal. Mini-versal unfoldings are
unique up to equivalence. Any versal unfolding is equivalent to a suspension of a mini-versal
unfolding. Therefore, versal unfoldings (𝑎, 𝐹 ) and (𝑎,𝐺) of 𝑓 are equivalent.

The importance of a 𝒢-mini-versal unfolding (resp. 𝒢𝑒-mini-versal unfolding) of a map-germ
𝑓 is that it provides a 𝒢 (resp. 𝒢𝑒) model of all possible local deformations of the map-germ 𝑓 .
(See [33] for more details).

Theorem 2.3 (Theorem 3.4 in [33]). For each map-germ 𝑓 and a Mather group 𝒢, the following

are equivalent:

(a) 𝑓 is 𝒢-finite,

(b) 𝑓 has a 𝒢-versal unfolding,

(c) 𝑓 has a 𝒢𝑒-versal unfolding.
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Given an unfolding (𝑎, 𝐹 ) of a map-germ 𝑓 inℳ𝑛.ℰ(𝑛,𝑚), denote by �̇�𝑖, 𝑖 = 1, . . . , 𝑎, the
map-germs inℳ𝑛.ℰ(𝑛,𝑚) given by

�̇�𝑖(𝑥) := 𝜕𝑓

𝜕𝑢𝑖
(𝑥, 0),

where 𝑢𝑖’s are coordinates of the parameter space R𝑎.

Theorem 2.4 (Theorem 3.3 in [33]). An unfolding (𝑎, 𝐹 ) of a map-germ 𝑓 inℳ𝑛.ℰ(𝑛,𝑚) is

𝒢-versal if and only if

𝐿𝒢.𝑓 + R.{�̇�1, . . . , �̇�𝑎} =ℳ𝑛.ℰ(𝑛,𝑚),

and is 𝒢𝑒-versal if and only if

𝐿𝒢𝑒.𝑓 + R.{�̇�1, . . . , �̇�𝑎} = ℰ(𝑛,𝑚).

An unfolding (𝑎, 𝐹 ) of 𝑓 is said to be 𝒢-trivial (resp. 𝒢𝑒-trivial) if it is 𝒢-equivalent (resp.
𝒢𝑒-equivalent) to the constant unfolding (𝑎, 𝑓). A map-germ 𝑓 is 𝒢-stable (resp. 𝒢𝑒-stable) if all
its unfoldings are trivial.

Theorem 2.5 (Theorem 3.8 in [24]). A map-germ 𝑓 is 𝒢-stable (resp. 𝒢𝑒-stable) if and only if

𝑐𝑜𝑑𝒢(𝑓) = 0 (resp. 𝑐𝑜𝑑𝒢𝑒(𝑓) = 0).

2.4 Germs of functions

We deal here in some details with the case of germs of functions (i.e., 𝑚 = 1). The Hessian
matrix of a germ of a function 𝑓 : (R𝑛, 0)→ (R, 0) is given by

ℋ(𝑓)(0) =
(︃

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗

)︃
.

If 𝑓 is singular at the origin, we say that this singularity is non-degenerate if 𝑟𝑎𝑛𝑘ℋ(𝑓)(0) = 𝑛,
equivalently, if and only if 𝑑𝑒𝑡ℋ(𝑓)(0) ̸= 0.

Theorem 2.6 ([6]). Let 𝑓 : (R, 𝑡0) → R be smooth such that 𝑓 (𝑝)(𝑡0) = 0 for all 1 ≤ 𝑝 ≤ 𝑘,

while 𝑓 (𝑘+1)(𝑡0) ̸= 0. Then 𝑓 ∼ℛ 𝑔, where 𝑔 : (R, 0)→ R is defined by 𝑔(𝑡) = ±𝑡𝑘+1. We have

+ or − according to 𝑓 (𝑘+1)(𝑡0) is positive or negative.

Remark 2.2. (i) If 𝑘 is even, then 𝑡𝑘+1 ∼ℛ −𝑡𝑘+1 where ℎ(𝑡) = −𝑡. For 𝑘 odd they are not

ℛ-equivalent.

(ii) For 𝑘 ̸= 𝑙, 𝑡𝑘+1 and −𝑡𝑘+1 are notℛ-equivalent to 𝑡𝑙+1 (both at 𝑡 = 0).

Definition 2.5. When 𝑓 : (R, 𝑡0)→ R isℛ-equivalent to ±𝑡𝑘+1, then we say 𝑓 has type 𝐴𝑘 at

𝑡0 or has an 𝐴𝑘-singularity at 𝑡0.
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An extensive list of ℛ-finite germs of functions is given in [3]. Table 2.1 shows the simple
ℛ-finite germs of functions (R𝑛, 0)→ (R, 0).

Name Normal forme 𝑐𝑜𝑑𝒢(𝑓)
𝐴𝑘, 𝑘 ≥ 0 ±𝑥𝑘+1

1 +𝑄(𝑥2, . . . , 𝑥𝑛) 𝑘

𝐷𝑘, 𝑘 ≥ 4 𝑥2
1𝑥2 ± 𝑥𝑘−1

2 +𝑄(𝑥3, . . . , 𝑥𝑛) 𝑘

𝐸6 𝑥3
1 + 𝑥4

2 +𝑄(𝑥3, . . . , 𝑥𝑛) 6
𝐸7 𝑥3

1 + 𝑥1𝑥
4
2 +𝑄(𝑥3, . . . , 𝑥𝑛) 7

𝐸8 𝑥3
1 + 𝑥5

2 +𝑄(𝑥3, . . . , 𝑥𝑛) 8

𝑄(𝑥𝑟, . . . , 𝑥𝑛) = ±𝑥2
𝑟 ± · · · ± 𝑥2

𝑛.
Table 2.1 – Simple germs of functions ([3]).

Note that for the group ℛ, there are no ℛ-finitely determined map-germs inℳ𝑛.ℰ(𝑛,𝑚) if
𝑚 > 1. Therefore, the groupℛ is useful only when considering germs of functions.

As we will see in Chapter 3, it is important to consider also the direct product of the groupℛ
with translations, which we denote byℛ+.

Definition 2.6. Two families of germs of functions 𝐹 and 𝐺 : (R𝑛 × R𝑎, (0, 0)) → (R, 0) are

ℛ+-equivalent if there exist a germ of a diffeomorphism Φ : (R𝑛×R𝑎, (0, 0))→ (R𝑛×R𝑎, (0, 0))
of the form Φ(𝑥, 𝑢) = (𝛼(𝑥, 𝑢), 𝜓(𝑢)) and a germ of a function 𝑐 : (R𝑎, 0)→ R such that

𝐺(𝑥, 𝑢) = 𝐹 (Φ(𝑥, 𝑢)) + 𝑐(𝑢).

Theorem 2.7 (Theorem 3.12 in [24]). A deformation 𝐹 : (R𝑛 × R𝑎, (0, 0))→ (R, 0) of a germ

of a function 𝑓 inℳ𝑛 isℛ+-versal if and only if

𝐿ℛ𝑒.𝑓 + R{�̇�1, . . . , �̇�𝑛} = ℰ𝑛.

To verify ℛ+-versality of an 𝑟-parameter family of a singularity of type 𝐴𝑘, (𝑘 ≥ 1), we
should prove that every real polynomial 𝑝(𝑡) of degree ≤ 𝑘 − 1 and without constant term can
be written in the form

𝑝(𝑡) =
𝑟∑︁
𝑖=1

𝑐𝑖𝑗
𝑘−1(𝜕𝐹

𝜕𝑥𝑖
(𝑡, 𝑥0)(0))

for some real constants 𝑐𝑖, where 𝑥𝑖 denote the parameters for 𝑖 = 1, . . . , 𝑟 see [6] for more
details.

There is an equivalent formulation of this criterion. Let 𝑗𝑘−1( 𝜕𝐹
𝜕𝑥𝑖

(𝑡, 𝑥0)(0)) = 𝛼1𝑖𝑡+ 𝛼2𝑖𝑡
2 +

· · · + 𝛼𝑘−1,𝑖𝑡
𝑘−1 for 𝑘 = 1, ..., 𝑟. Then 𝐹 is ℛ+-versal if and only if the 𝑟 × (𝑘 − 1) matrix of

coefficients [𝛼𝑖𝑗] has rank 𝑘 − 1 (see chapter 6 of [6]).
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2.4.1 Discriminant and bifurcation sets

To an 𝑎-parameter family of germs of functions 𝐹 , we associate some germs of sets as follow.

The catastrophe set 𝐶𝐹 of a family 𝐹 : (R𝑛 × R𝑎, (0, 0))→ (R, 0) is defined by

𝐶𝐹 :=
{︃

(𝑥, 𝑢) ∈ (R𝑛 × R𝑎, (0, 0)) | 𝜕𝐹
𝜕𝑥1

(𝑥, 𝑢) = · · · = 𝜕𝐹

𝜕𝑥𝑛
(𝑥, 𝑢) = 0

}︃
.

The bifurcation set of 𝐹 is defined by

𝐵𝑖𝑓(𝐹 ) :=
{︃
𝑢 ∈ (R𝑎, 0) | ∃(𝑥, 𝑢) ∈ 𝐶𝐹 and 𝑟𝑎𝑛𝑘

(︃
𝜕2𝐹

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑥, 𝑢)

)︃
< 𝑛

}︃
.

The discriminant of 𝐹 is defined as

𝐷𝑖𝑠(𝐹 ) =
{︃
𝑢 ∈ (R𝑎, 0) | ∃𝑥 ∈ (R𝑛, 0) s.t. 𝐹 = 𝜕𝐹

𝜕𝑥1
= · · · = 𝜕𝐹

𝜕𝑥𝑛
= 0 at (𝑥, 𝑢)

}︃
.

Let 𝜋𝐶𝐹
= 𝜋2|𝐶𝐹

: 𝐶𝐹 → (R𝑎, 0), where 𝜋2 : (R𝑛 × R𝑎, (0, 0)) → (R𝑎, 0) is the projection to
the second component. We call 𝜋𝐶𝐹

the catastrophe map-germ of 𝐹 .

Proposition 2.1. Let 𝐹 and 𝐺 be two families of germs of functions (R𝑛 × R𝑎, 0) → (R, 0)
such that their catastrophe sets 𝐶𝐹 and 𝐶𝐺 are smooth submanifolds. Suppose that 𝐹 and 𝐺

areℛ+-equivalent. Then the catastrophe map-germs 𝜋𝐶𝐹
and 𝜋𝐶𝐺

are 𝒜-equivalent. Moreover,

there exists a germ of a diffeomorphism 𝜑 : (R𝑛, 0)→ (R𝑛, 0) such that 𝜑(𝐵𝑖𝑓(𝐹 )) = 𝐵𝑖𝑓(𝐺).

Proof. See the Proposition 3.1 in [24].

Remark 2.3. Let 𝐹 : (R× R𝑘−1, (0, 0))→ (R, 0) be anℛ+-versal family of an 𝐴𝑘-singularity.

Then, the bifurcation set of 𝐹 is diffeomorphic to the discriminant of anℛ-versal family of an

𝐴𝑘−1-singularity. Indeed, the family 𝐹 is given by

𝐹 = 𝑏1𝑡+ 𝑏2𝑡
2 + · · ·+ 𝑏𝑘−1𝑡

𝑘−1 + 𝑡𝑘+1.

Therefore 𝐵𝑖𝑓(𝐹 ) = {𝑢 ∈ (R𝑘−1, 0)|∃𝑡 ∈ R 𝑠.𝑡. 𝜕𝐹
𝜕𝑡

(𝑡) = 𝜕2𝐹
𝜕𝑡2

(𝑡) = 0}. Consider the family

𝐺 := 𝜕𝐹
𝜕𝑡

, dividing the family 𝐺 by the coefficient of 𝑡𝑘, we have an ℛ-versal family of an

𝐴𝑘−1-singularity with its discriminant is diffeomorphic to bifurcation of 𝐹 .

2.5 Contact between submanifolds

We can associate geometrical invariants to a submanifold 𝑀 ⊂ R𝑛 by comparing it with
submanifold model in such a way that an invariant at a given point 𝑝 in 𝑀 is defined as that
of the model that better approximates 𝑀 at 𝑝. We investigate in this section the concept of
contact between submanifolds as a singularity theory tool for the study of differential geometry
of submanifold of R𝑛.
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Definition 2.7. Let 𝑀𝑖, 𝑁𝑖 𝑖 = 1, 2 submanifolds of R𝑛 such that dim(𝑀1) = dim(𝑀2) = 𝑚,

dim(𝑁1) = dim(𝑁2) = 𝑑. The contact of 𝑀1 and 𝑁1 at 𝑦1 is the same type as the contact of

𝑀2 and 𝑁2 at 𝑦2 if there exists a germ of diffeomorphism 𝜑 : (R𝑛, 𝑦1) → (R𝑛, 𝑦2) such that

𝜑(𝑀1) = 𝑀2 and 𝜑(𝑁1) = 𝑁2.

The definition of contact between submanifolds in Definition 2.7 is local in nature, so the
ambient space R𝑛 can be replaced by any manifold 𝑍.

Theorem 2.8 ([25]). Let 𝑔𝑖 : (𝑀𝑖, 𝑥𝑖)→ (R𝑛, 0) be immersion-germs and 𝑓𝑖 : (R𝑛, 0)→ (R𝑘, 0)
submersion-germs, with 𝑁𝑖 = 𝑓−1

𝑖 (0), 𝑖 = 1, 2. Then the pairs (𝑀1, 𝑁1) and (𝑀2, 𝑁2) have the

same contact type if and only if 𝑓1 ∘ 𝑔1 and 𝑓2 ∘ 𝑔2 (as constant unfoldings) are 𝒦-equivalent.

Proposition 2.2 ([22]). Let 𝑀𝑖, 𝑖 = 1, 2, be two manifolds with 𝑑𝑖𝑚(𝑀1) = 𝑑𝑖𝑚(𝑀2) = 𝑛− 1,

and 𝑔𝑖 : (𝑀𝑖, 𝑥𝑖) → (R𝑛, 𝑦𝑖) be germs of immersion. Let 𝑓𝑖 : (R𝑛, 𝑦𝑖) → (R, 0) be germs of

submersions and 𝐹𝑓 = {𝑓−1(𝑐)|𝑐 ∈ (R, 0)}. Then the contact of 𝑔1(𝑀1) with 𝐹𝑓1 at 𝑦1 is of

the same type as the contact of 𝑔2(𝑀2) with 𝐹𝑓2 at 𝑦2 if and only if 𝑓1 ∘ 𝑔1 and 𝑓2 ∘ 𝑔2 are

ℛ+-equivalent.

In this section we consider the contact of a manifold 𝑀 immersed in R𝑛 with families of
submanifolds and show that this contact is generic in the following sense.

The space of smooth maps between two manifolds 𝑋 and 𝑌 denotes by 𝐶∞(𝑋, 𝑌 ). This
space is endowed with Whitney 𝐶∞-topology. (For more details one can see for example [24] ).
Let 𝐼𝑚𝑚(𝑋, 𝑌 ) denote the subset of 𝐶∞(𝑋, 𝑌 ) whose elements are proper 𝐶∞-immersions of
𝑋 to 𝑌 and 𝐸𝑚𝑏(𝑋, 𝑌 ) the space of proper 𝐶∞-embeddings of 𝑋 into 𝑌 . The set 𝐼𝑚𝑚(𝑋, 𝑌 )
(resp. 𝐸𝑚𝑏(𝑋, 𝑌 )) is equipped with induced Whitney 𝐶∞-topology. With this topology, the set
𝐼𝑚𝑚(𝑋, 𝑌 ) (resp. 𝐸𝑚𝑏(𝑋, 𝑌 )) is an open subset of 𝐶∞(𝑋, 𝑌 ) and when 𝑑𝑖𝑚(𝑌 ) ≥ 𝑑𝑖𝑚(𝑋),
𝐼𝑚𝑚(𝑋, 𝑌 ) is also dense in 𝐶∞(𝑋, 𝑌 ). When 𝑑𝑖𝑚(𝑌 ) ≥ 2𝑑𝑖𝑚(𝑋) + 1, the set 𝐸𝑚𝑏(𝑋, 𝑌 )
is dense in 𝐶∞(𝑋, 𝑌 ), and when 𝑋 is compact, it is also open.

A property 𝑃 in the topological space 𝐼𝑚𝑚(𝑋, 𝑌 ) (resp. 𝐸𝑚𝑏(𝑋, 𝑌 )) is said to be generic

if it is satisfied by a residual subset of 𝐼𝑚𝑚(𝑋, 𝑌 ) (resp. 𝐸𝑚𝑏(𝑋, 𝑌 )). A residual subset of a
topological space is a countable intersection of open dense subsets.

2.5.1 The family of height functions

A hyperplane in R𝑛 is determined by a unit vector 𝑤 in R𝑛 and a scalar 𝑟. If 𝐻(𝑤, 𝑟) denotes
such a hyperplane, then

𝐻(𝑤, 𝑟) = {𝑦 ∈ R𝑛|⟨𝑦, 𝑤⟩ − 𝑟 = 0},

where ⟨, ⟩ is the scalar product in R𝑛. We are interested in the contact of submanifolds with
families of parallel hyperplanes. The family of height functionsℋ : R𝑛 × 𝑆𝑛−1 → R is defined
by

ℋ(𝑦, 𝑤) = ⟨𝑦, 𝑤⟩.
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Given an immersion 𝑔 : 𝑀 → R𝑛 of a submanifold 𝑀 into R𝑛, we consider the family of height
functions 𝐻 : 𝑀 × 𝑆𝑛−1 → R on 𝑀 defined by 𝐻(𝑝, 𝑤) = ℋ(𝑔(𝑝), 𝑤) = ⟨𝑔(𝑝), 𝑤⟩.

For 𝑤 fixed, we denote by ℎ𝑤 : 𝑀 → R the function given by ℎ𝑤(𝑝) = 𝐻(𝑝, 𝑤). Following
Theorem 2.8, the contact of 𝑔(𝑀) with the family of parallel hyperplanes determined by 𝑤 ∈
𝑆𝑛−1 is measured by the 𝒦-singularities of the function ℎ𝑤.

Theorem 2.9 ([24]). (i) For an open and dense set of immersions of a smooth curve 𝐶 in R𝑛,

𝑛 ≥ 2, the family 𝐻 is locallyℛ+-versal.

(ii) For an open and dense set of immersions of a 2-dimensional surface 𝑀 in R𝑛, with

3 ≤ 𝑛 ≤ 7, the family 𝐻 is locallyℛ+-versal.

Theorem 2.10 ([24]). (i) For a generic immersed curve 𝐶 in R𝑛, the local 𝒦- singularities of

ℎ𝑤 are of type 𝐴𝑘, 𝑘 = 1, . . . , 𝑛.

(ii) For a generic immersed surface 𝑀 in R3, the local 𝒦- singularities of ℎ𝑤 are of type 𝐴𝑘,

𝑘 = 1, 2, 3.

Example 2.1 (Contact of plane curves with lines). Let 𝛾 be a plane curve and w ∈ 𝑆1 a unit
vector. When 𝛾 is a smooth curve the function ℎ𝑤 is singular at 𝑡0 if and only if 𝑤 = ±n(𝑡0).
Then it has an 𝐴1-singularity if and only if 𝜅(𝑡0) ̸= 0. The singularity is of type 𝐴2 if and only if
𝜅(𝑡0) = 0 and 𝜅′(𝑡0) ̸= 0, that is 𝑡0 is a first order inflection of 𝛾 (which we also call an ordinary
inflection).

According to Theorem 2.10, for generic curves, the only local singularities of ℎ𝑤 are those of
type 𝐴1 and 𝐴2. In 1-parameter families of curves 𝛾𝑠, we can get an 𝐴3-singularity for isolated
values of the parameter, say at 𝑠 = 0, and this happens when 𝜅0(𝑡0) = 𝜅′

0(𝑡0) = 0 but 𝜅′′
0(𝑡0) ̸= 0,

that is 𝑡0 is a second order inflections of 𝛾0. Note that for families of curves we denote the family
of height functions by �̃� .

2.5.2 Family of distance squared functions

A hypersphere in R𝑛 is determined by its centre 𝑎 ∈ R𝑛 and its radius 𝑟. Let

𝐶(𝑎, 𝑟) = {𝑦 ∈ R𝑛|⟨𝑦 − 𝑎, 𝑦 − 𝑎⟩ − 𝑟2 = 0}.

We are interested in the contact of a submanifold with a family of hyperspheres with the same
centre which is the family of distance squared functions 𝐷 : R𝑛 × R𝑛 → R such that

𝐷(𝑦, 𝑎) = ⟨𝑦 − 𝑎, 𝑦 − 𝑎⟩.

Given an immersion 𝑔 : 𝑀 → R𝑛 of a submanifold 𝑀 into R𝑛, we consider the family of
distance squared functions 𝐷 : 𝑀 × R𝑛 → R on 𝑀 defined by

𝐷(𝑝, 𝑎) = 𝐷(𝑔(𝑝), 𝑎) = ⟨𝑔(𝑝)− 𝑎, 𝑔(𝑝)− 𝑎⟩.
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For 𝑎 fixed, we denote by 𝐷𝑎 : 𝑀 → R the function given by 𝐷𝑎(𝑝) = 𝐷(𝑝, 𝑎). Following
Proposition 2.2, the contact of 𝑔(𝑀) with the family of hyperspheres with the same centre
𝑎 ∈ R𝑛 is measured by theℛ+-singularities of the function 𝐷𝑎.

Theorem 2.11 ([24]). (i) For an open and dense set of immersions of a curve 𝐶 in R𝑛, 𝑛 ≥ 2
the family 𝐷 is locallyℛ+- versal.

(ii) For an open and dense set of immersions of a 2-dimensional surface 𝑀 in R𝑛, with

3 ≤ 𝑛 ≤ 6, the family D is locallyℛ+-versal.

Theorem 2.12 ([24]). For a generic immersed curve 𝐶 in R𝑛, the 𝒦-singularities of 𝐷𝑎 are of

type 𝐴𝑘, 𝑘 = 1, . . . , 𝑛+ 1.

Theorem 2.13 ([24]). For a generic immersed surface 𝑀 in R3, the 𝒦- singularities of 𝐷𝑎 are

of type 𝐴𝑘, 𝑘 = 1, 2, 3, 4 or 𝐷4.

Example 2.2 (Contact of plane curves with circles). When 𝛾 is a smooth plane curve, we
parametrise it by arc length and denote by t and n its unit tangent and normal vectors, respectively.
The function 𝐷𝑎, 𝑎 ∈ R2, is singular at 𝑡0 if and only if 𝑎 = 𝛾(𝑡0) + 𝜆n(𝑡0) for some scalar 𝜆. If
the curvature 𝜅(𝑡0) ̸= 0, the singularity of𝐷𝑎 is of type𝐴2 if and only if 𝑎 = 𝛾(𝑡0)+1/𝜅(𝑡0)n(𝑡0)
and 𝜅′(𝑡0) ̸= 0, that is 𝑡0 is not a vertex of 𝛾. Varying 𝑡 (and assuming that the curvature does not
vanish in 𝑡) we get the evolute of the curve 𝛾 parametrised by

𝑒(𝑡) = 𝛾(𝑡) + 1
𝜅(𝑡)n(𝑡).

The singularity of 𝐷𝑎 is of type 𝐴3 if and only if 𝑎 is on the evolute and 𝜅′(𝑡0) = 0 but
𝜅′′(𝑡0) ̸= 0, that is 𝑡0 is a first order vertex of 𝛾 (which we also call an ordinary vertex).
According to Theorem 2.12, for generic curves, the only local singularities of 𝐷𝑎 are 𝐴1, 𝐴2, 𝐴3.
The family 𝐷 is an ℛ+-versal deformation of the generic singularities of its members (see
Theorem 2.11). As the evolute is the bifurcation set of 𝐷, it follows that it is a smooth curve at an
𝐴2-singularity of 𝐷𝑎 and a curve with a cusp singularity at an 𝐴3-singularity of 𝐷𝑎; Figure 3.1.
(See also [3] for an interpretation of the evolute as a caustic with generating family the family
𝐷.)

In 1-parameter families of curves 𝛾𝑠,𝐷(𝑎,𝑠) can have an𝐴4-singularity for isolated values of the
parameter 𝑠, say at 𝑠 = 0, and this happens if 𝑎 is on the evolute of 𝛾0 and 𝜅′

0(𝑡0) = 𝜅′′
0(𝑡0) = 0

but 𝜅′′′
0 (𝑡0) ̸= 0, that is 𝑡0 is a second order vertex of 𝛾0. For generic families of curves (meaning

that the big family of distance squared functions �̃�(𝑡, 𝑎, 𝑠) = ⟨𝛾𝑠(𝑡) − 𝑎, 𝛾𝑠(𝑡) − 𝑎⟩ is an
ℛ+-versal deformation of the 𝐴4-singularity of 𝐷(𝑎,0) on 𝛾0), the evolute of 𝛾𝑠 undergoes the
swallowtail transitions in Figure 3.2.
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2.5.3 Family of projections into hyperplanes

We consider here the contact of a submanifold in R𝑛 with lines. We shall bundle together all
parallel lines and represent them by their unit direction vectors 𝑤 ∈ 𝑆𝑛−1. We choose 𝑤⊥ to be
the hyperplane orthogonal to 𝑤. This is precisely 𝑇𝑤𝑆𝑛−1, the tangent space to the unit sphere
𝑆𝑛−1 at 𝑤. The family of orthogonal projections is 𝑃 : R𝑛 × 𝑆𝑛−1 → 𝑇𝑆𝑛−1 given by

𝑃 (𝑦, 𝑤) = (𝑤, 𝑦 − ⟨𝑦, 𝑤⟩𝑤).

Given an immersion 𝑔 : 𝑀 → R𝑛 of a submanifold 𝑀 into R𝑛, we consider the family of
orthogonal projections 𝑃 : 𝑀 × 𝑆𝑛−1 → 𝑇𝑆𝑛−1 on 𝑀 defined by

𝑃 (𝑝, 𝑤) = 𝑃 (𝑔(𝑝), 𝑤) = (𝑤, 𝑔(𝑝)− ⟨𝑔(𝑝), 𝑤⟩𝑤).

Following Theorem 2.8, the contact of 𝑔(𝑀) with the family of parallel lines to 𝑤 ∈ 𝑆𝑛−1 is
measured by the 𝒦-singularities the mapping 𝑃𝑤 given by

𝑃𝑤(𝑝) = 𝑔(𝑝)− ⟨𝑔(𝑝), 𝑤⟩𝑤.

Remark 2.4. The contact group 𝒦 is a natural one to use when one seeks to understand the

singularities of the zero level-sets of map-germs inℳ𝑛ℰ(𝑛,𝑚). If two germs are 𝒦-equivalent,

then their zero level-sets are diffeomorphic. The action of 𝒜 is finer than that of 𝒦. If two

map-germs 𝐹 and 𝐺 are 𝒜-equivalent, then 𝐺 = 𝑘 ∘ 𝐹 ∘ ℎ−1 for some (ℎ, 𝑘) ∈ 𝒜. So the

level sets 𝐺−1(𝑐) and 𝐹−1(𝑘−1(𝑐)) are diffeomorphic for any 𝑐 close to 0 ∈ R𝑝. Therefore, 𝒜
preserves the smooth structure of nearby level sets to the zero level set.

For surfaces in R3, given a point 𝑝 ∈𝑀 , we choose a local parametrisation x : 𝑈 ⊂ R2 →𝑀

of 𝑀 at 𝑝 with x(0) = 𝑝. The following Theorem gives information about contact of 𝑀 with
lines.

Theorem 2.14 (Theorem 4.12 of [24]). For an open and dense set of immersions of a surface

𝑀 in R3, the family of orthogonal projections is locally 𝒜𝑒-versal. The local 𝒜-singularities of

𝑃𝑤 are those in Table 2.2.

Name Normal form 𝒜𝑒-codimension

Immersion (𝑥, 𝑦) 0
Fold (𝑥, 𝑦2) 0
Cusp (𝑥, 𝑥𝑦 + 𝑦3) 0

42 (Lips/Beaks) (𝑥, 𝑦3 ± 𝑥2𝑦) 1
43 (Goose) (𝑥, 𝑦3 ± 𝑥3𝑦) 2

5 (Swallowtail) (𝑥, 𝑥𝑦 + 𝑦4) 1
6 (Butterfly) (𝑥, 𝑥𝑦 + 𝑦5 ± 𝑦7) 2
115 (Gulls) (𝑥, 𝑥𝑦2 + 𝑦4 + 𝑦5) 2

Table 2.2 – Local singularities of projections of surfaces in R3 to planes.
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2.6 Divergent diagrams

In [14], Nuño-Ballesteros and Dias proposed a way to find models of the singularities of
plane curves as well as their contact with lines at the singular point of the curve. They did this
by classifying germs of divergent diagrams (𝑓, 𝛼): (R, 0) 𝑓←− (R, 0) 𝛼−→ (R2, 0) up to
smooth changes of coordinates. In the following we briefly explain the concept of𝐴ℎ-equivalence
defined in [14].

Definition 2.8. A divergent diagram (𝑓, 𝛼) : (R𝑝, 0) 𝑓←− (R𝑛, 0) 𝛼−→ (R𝑞, 0) is a pair of smooth

germs 𝛼 : (R𝑛, 0)→ (R𝑞, 0) and 𝑓 : (R𝑛, 0)→ (R𝑝, 0).

Definition 2.9. Two divergent diagram (𝑓, 𝛼) and (𝑔, 𝛽) are equivalent and we write (𝑓, 𝛼) ∼
(𝑔, 𝛽), if there exist germ of diffeomorphisms 𝐻,𝐾 and ℎ such that the following diagrams

commute:
(R𝑝, 0) 𝑓←− (R𝑛, 0) 𝛼−→ (R𝑞, 0)
ℎ ↓ ↓ 𝐻 ↓ 𝐾

(R𝑝, 0) 𝑔←− (R𝑛, 0) 𝛽−→ (R𝑞, 0)

In particular for plane curves 𝛼 and 𝛽, if (ℎ𝛼, 𝛼) and (ℎ𝛽, 𝛽) are equivalent, where ℎ𝛼 and ℎ𝛽
are the height functions along the normal vectors of 𝛼 and 𝛽 respectively, then 𝛼 and 𝛽 are called
𝐴ℎ-equivalent and we denote this by 𝛼 ∼𝐴ℎ

𝛽.

For local singularities Dias and Nuño-Ballesteros classified all the plane curve diagrams (𝑓, 𝛼),
where 𝛼 is a germ of plane curve with 𝐴𝑒-codimension ≤ 2 and 𝑓 is any finitely determined
germ of a function.

Proposition 2.3 ([14]). Let (𝑓, 𝛼) be a plane curve diagram such that 𝛼 is regular and 𝑓 has

finite order 𝑚. Then (𝑓, 𝛼) is equivalent to the diagram

𝑡𝑚 ← 𝑡→ (𝑡, 0).

Assume now that 𝛼 is singular. If 𝛼′′(0) ̸= 0 and 𝛼 is 𝒜-finitly determined, then 𝛼 is 𝒜-
equivalent to the 𝐴2𝑘-singularity which is given by the map-germ 𝑡 ↦→ (𝑡2, 𝑡2𝑘+1), with 𝑘 ≥ 1. If
𝑘 = 1, we have an ordinary cusp and the authors of [14] proved that (𝑓, 𝛼) is equivalent to the
diagram

𝑡𝑚 ← 𝑡→ (𝑡2, 𝑡3).

For 𝑘 = 2 we have 𝐴4-singularity (𝑡2, 𝑡5) which is called ramphoid cusp.

Proposition 2.4 ([14]). Let (𝑓, 𝛼) be a plane curve diagram such that 𝛼 is of type 𝐴2𝑘, 𝑘 ≥ 2,

and 𝑓 has finite order 𝑚. Then (𝑓, 𝛼) is equivalent to either

𝑡𝑚 ← 𝑡→ (𝑡2, 𝑡2𝑘+1)
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or

𝑡𝑚 + 𝑡𝑚+2𝑟−1 + 𝑑1𝑡
𝑚+2𝑟+1 + · · ·+ 𝑑𝑘−𝑟−1𝑡

𝑚+2𝑘−3 ← 𝑡→ (𝑡2, 𝑡2𝑘+1)

for some 1 ≤ 𝑟 ≤ 𝑘 − 1 and 𝑑1, . . . , 𝑑𝑘−𝑟−1 ∈ R.

Corollary 2.1 ([14]). Let (𝑓, 𝛼) be a plane curve diagram such that 𝛼 is a ramphoid cusp and 𝑓

has finite order 𝑚. Then (𝑓, 𝛼) is equivalent to either

𝑡𝑚 + 𝑡𝑚+1 ← 𝑡→ (𝑡2, 𝑡5)

or

𝑡𝑚 ← 𝑡→ (𝑡2, 𝑡5).

Note that in [14] the authors have showed that two diagrams

𝑡𝑚 + 𝑡𝑚+1 ← 𝑡→ (𝑡2, 𝑡5) and 𝑡𝑚 ← 𝑡→ (𝑡2, 𝑡5)

are not equivalent. Moreover, if 𝛼(𝑡) = (𝑎2𝑡
2 + 𝑎3𝑡

3 + . . . , 𝑏5𝑡
5 + 𝑏6𝑡

6 + . . . ), with 𝑎2𝑏5 ̸= 0,
and 𝑓 = 𝑐𝑚𝑡

𝑚 + 𝑐𝑚+1𝑡
𝑚+1 + . . . with 𝑐𝑚 ̸= 0, then (𝑓, 𝛼) is equivalent to⎧⎪⎨⎪⎩𝑡

𝑚 + 𝑡𝑚+1 ← 𝑡→ (𝑡2, 𝑡5) if 2𝑎2𝑐𝑚+1 −𝑚𝑎3𝑐𝑚 ̸= 0,

𝑡𝑚 ← 𝑡→ (𝑡2, 𝑡5) if 2𝑎2𝑐𝑚+1 −𝑚𝑎3𝑐𝑚 = 0.

Theorem 2.15 ([14]). Let (𝑓, 𝛼) be a germ of plane curve diagram such that 𝛼 has 𝒜𝑒-
codimension ≤ 2 and 𝑓 has finite order 𝑚. Then (𝑓, 𝛼) is equivalent to one of the diagrams in

Table 2.3.

Type Germs

𝐴0 𝑡𝑚 ← 𝑡→ (𝑡, 0)
𝐴2 𝑡𝑚 ← 𝑡→ (𝑡2, 𝑡3)
𝐴4 𝑡𝑚 + 𝑡𝑚+1 ← 𝑡→ (𝑡2, 𝑡5)

𝑡𝑚 ← 𝑡→ (𝑡2, 𝑡5)
Table 2.3 – Classification of divergent diagrams for plane curves with local singularities 𝐴0, 𝐴2 and 𝐴4.

The above theorem is for general divergent diagrams. If the height function on the plane curve
𝛼 is considered, then we have the concept of 𝐴ℎ-equivalence, as mentioned in the Definition
2.9. If two plane curves 𝛼 and 𝛽 are 𝐴ℎ-equivalent, then they are 𝒜-equivalent as well. But, the
converse is not true.

The next theorem synthesize the𝐴ℎ-classification of all the plane curve germs of𝐴𝑒-codimension
≤ 2.

Theorem 2.16 ([14]). Let 𝛼 be a germ of plane curve singularity with 𝒜𝑒-codimension ≤ 2.

Then 𝛼 is 𝐴ℎ-equivalent to one of the local germs given in Table 2.4.
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Type Germ

𝐴0 (𝑡, 𝑡𝑘), 𝑘 ≥ 2
𝐴2 (𝑡2, 𝑡3)
𝐴4 (𝑡2, 𝑡4 + 𝑡5)

(𝑡2, 𝑡5 + 𝑡6)
(𝑡2, 𝑡5)

Table 2.4 – Local 𝐴ℎ-classification of plane curves

Remark 2.5. For a given regular plane curve germ 𝛼, if 𝑜𝑟𝑑(𝜅𝛼) denotes the order of the

curvature of 𝛼, then 𝑜𝑟𝑑(𝜅𝛼) is an 𝐴ℎ-invariant of 𝛼. More precisely, 𝛼 and 𝛽 are 𝐴ℎ-equivalent

if and only if 𝑜𝑟𝑑(𝜅𝛼) = 𝑜𝑟𝑑(𝜅𝛽). Moreover, if 𝜅𝛼(0) = 𝜅𝛽(0) then 𝛼 ∼𝐴ℎ
𝛽, if and only if

𝜅𝛼 ∼𝒜 𝜅𝛽 ([14]).

2.7 𝒦(𝐶)-equivalence

The problem of divergent diagram in §2.6 is that the group acting is not a geometric subgroup.
In [26] the authors introduced an alternative approach to that in [14]. They followed the method
in [8] by fixing a model 𝑋 for the 𝒜-singularity of the plane curve 𝛼. Then the height function
on 𝛼 can be thought of as a submersion on 𝑋 . They classified submersion up to smooth change
of coordinates that preserve the model curve 𝑋 . Here, the group acting is a geometric subgroup
of the contact group 𝒦, and the singularity theory classification techniques apply. In this section
we summarize these concepts.

Suppose that (𝑋, 0) ⊂ (R𝑛, 0) is the germ of reduced analytic subvariety of R𝑛 at 0 defined by
a polynomial ℎ in R[𝑥1, . . . , 𝑥𝑛]. A diffeomorphism 𝜑 : (R𝑛, 0)→ (R𝑛, 0) is said to preserve 𝑋
if (𝜑(𝑋), 0) = (𝑋, 0). The group of such diffeomorphisms is a subgroup of the groupℛ which
we denote byℛ(𝑋). Also, 𝒦(𝑋) denotes the subgroup of 𝒦 given by 𝒦(𝑋) = ℛ(𝑋) o 𝒞.

Let Θ(𝑋) be the ℰ𝑛-module of germs of vector fields in R𝑛 tangent to 𝑋 . The set of germs of
vector fields in Θ(𝑋) with no constant or linear terms is

Θ1(𝑋) := {𝜁 ∈ Θ(𝑋)|𝑗1𝜁 = 0}.

Definition 2.10. If 𝑓 is a smooth function, then Θ(𝑋).𝑓 = ℰ𝑛.{𝜁𝑓 |𝜁 ∈ Θ(𝑋)} and we have the

following tangent spaces to the 𝒦(𝑋)-orbits of 𝑓 at 𝑓 .

𝐿𝒦1(𝑋).𝑓 = Θ1(𝑋).𝑓 + 𝑓 *(ℳ2
1).ℰ𝑛.

𝐿𝒦(𝑋).𝑓 = Θ(𝑋).𝑓 + 𝑓 *(ℳ1).ℰ𝑛.

Theorem 2.17 ([26]). Let 𝐶 be a plane curve with local singularity of 𝒜𝑒-codimension ≤ 2
i.e. 𝐴0, 𝐴2 and 𝐴4-singularities. Then any 𝒦(𝐶)-finitely determined germ of a submersion

𝑓 : (R2, 0) → (R, 0) on a plane curve in column 2 of Table 2.5 is equivalent, by change of

coordinates that preserve these curves, together with multiplication by germs of functions, to one

of the germs in column 3 of Table 2.5.
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Name 𝒜-model for 𝐶 Submersion on 𝐶 𝒦(𝐶)-codim

𝐴0 𝑦 𝑦 + 𝑥𝑘, 𝑘 ≥ 1 𝑘 − 2
𝐴2 𝑦2 − 𝑥3 𝑥 0

𝑦 1

𝐴4 𝑦2 − 𝑥5 𝑥 0
𝑦 + 𝑥2 1
𝑦 + 𝑥3 2
𝑦 3

Table 2.5 – Submersions on local singular plane curves.

In [26], the authors applied their results to the family of orthogonal projections of a generic
space curve. For example, the bifurcation of generic projections of a space curve at a ramphoid
cusp are as in Figure 2.1.
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Figure 2.1 – Generic projections of space curves at a ramphoid cusp.

The 𝐴04-stratum in Figure 2.1 occurs when the projected plane curve has a second order
inflection. The 𝐴23-stratum happens when 𝛼 has cusp. The 𝐴123-stratum is when a branch with
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an inflection intersects transversally another branch and 𝐴322-stratum occurs when two branches
become tangential (tacnode).

The flat geometry of the curve 𝛼 is mainly about its inflections, which are obtained by
considering the dual curve. The dual curve is the discriminant of the family of height functions
on 𝛼. The authors of [26] also considered the dual of the projection at a ramphoid cusp 𝛼.
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CHAPTER

3
FLAT AND ROUND SINGULARITY THEORY OF

PLANE CURVES

We describe in this chapter a method for studying the geometry of deformations of singular
plane curves, which we label 𝐹𝑅𝑆-deformation of plane curves (F for flat, R for round and S for
singular). When the curve is regular we label the deformations by 𝐹𝑅-deformations.

We say that two germs of 𝑚-parameter deformations 𝛾𝑠 and 𝜂𝑢 of a (singular) plane curve are
𝐹𝑅𝑆-equivalent if there exists a germ of a homeomorphism 𝑘 : (R𝑚, (𝑆1, 0))→ (R𝑚, (𝑆2, 0)),
where 𝑆1 and 𝑆2 are stratifications of the parameter spaces, such that

(i) 𝛾𝑠 is diffeomorphic to 𝜂𝑘(𝑠) in each stratum of 𝑆1;
(ii) 𝛾𝑠 and 𝜂𝑘(𝑠) have the same number of inflections and vertices in each stratum;

(iii) the relative position of the singularities, points of self-intersections, inflections
and vertices on 𝛾𝑠 and 𝜂𝑘(𝑠) is the same in each stratum.

Of course we can define the notion of 𝐹𝑅𝑆-equivalence of deformations of a plane curve
with distinct number of parameters. We say that an 𝑚-parameter deformation 𝛾𝑠 and an 𝑛-
parameter deformation 𝜂𝑢 (say 𝑛 ≥ 𝑚) of a plane curve are 𝐹𝑅𝑆-equivalent if 𝛾𝑠 and 𝜂𝑢 are
𝐹𝑅𝑆-equivalent in the above sense, where 𝛾𝑠 is the 𝑛-parameter family given by

𝛾𝑠(𝑡, 𝑠1, . . . , 𝑠𝑚, 𝑠𝑚+1, . . . , 𝑠𝑛) = 𝛾𝑠(𝑡).

We start with regular curves at inflections of any finite order (§3.1) and with the cusp (§3.2)
and ramphoid cusp (§3.3) singularities. We define in each case the meaning of a generic family
and obtain the conditions for two such families to be 𝐹𝑅𝑆-equivalent. We also obtain the
configuration of the deformed curve and of its evolute.
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3.1 𝐹𝑅-deformations of regular curves

Let 𝛾 be a smooth and regular curve. Away from inflection points, the deformations of the
curve at a vertex 𝑡0 of finite order can be studied using the family of distance squared function
�̃�(𝑡, 𝑞, 𝑠). If the family �̃� on 𝛾𝑠 with 𝛾0 = 𝛾 is anℛ+-versal deformation of the singularity of
�̃�(𝑞,𝑠) at 𝑡0, then we have a well understood model of the deformation of the vertex of 𝛾 and of
the deformation of the evolute of 𝛾 ([2]).

Suppose now that 𝛾 has an inflection of finite order at 𝑡0, i.e., 𝜅(𝑡0) = 𝜅′(𝑡0) = . . . =
𝜅(𝑘)(𝑡0) = 0, 𝜅(𝑘+1)(𝑡0) ̸= 0 for some integer 𝑘 ≥ 0. To study the deformations of the inflection
we use the family of height function �̃� on 𝛾𝑠. If it is an ℛ+-versal deformation, then we also
have a well understood model of the deformation of the inflection. Observe that when 𝑘 ≥ 1,
𝜅′(𝑡0) = 0 so we also have a vertex concentrated at the inflection point. The distance squared
function at 𝑡0 has an 𝐴1-singularity and the evolute goes to infinity. To get information on the
vertex of the curve and to understand the behavior of the evolute at infinity we compactify the
plane (see also [34]). Consider the unit sphere 𝑆2 ⊂ R3 and the inverse of the stereographic
projection 𝜑 : R2 → 𝑆2 ∖ {(0, 0, 1)} given by

𝜑(𝑥, 𝑦) = ( 2𝑥
1 + 𝑥2 + 𝑦2 ,

2𝑦
1 + 𝑥2 + 𝑦2 ,

𝑥2 + 𝑦2 − 1
1 + 𝑥2 + 𝑦2 ). (3.1)

The map 𝜑 takes circles in the plane to circles on the unit sphere. These are given by the
intersection of 𝑆2 with planes in R3. We can parametrise families of parallel planes by their
common unit normal v = (𝑣1, 𝑣2, 𝑣3) ∈ 𝑆2 and we have a family of maps 𝒟 : 𝑆2 × 𝑆2 → R
given by 𝒟(𝑝, v) = ⟨𝑝, v⟩. The fibres of 𝒟v(𝑝) = 𝒟(𝑝, v) are the sought circles.

The contact of 𝛾 with circles in R2 is the same as that 𝜑(𝛾) with circles in 𝑆2. Parametrise
the family of curves in the form 𝛾𝑠(𝑡) = (𝑡, 𝛽𝑠(𝑡)). Then the contact of 𝜑(𝛾𝑠) with circles is
measured by the singularities of the member of the family �̃� : 𝐽 × 𝑆2 × R𝑚 → R given by

�̃�(𝑡, v, 𝑠) = 2𝑣1𝑡+ 2𝑣2𝛽𝑠(𝑡) + 𝑣3(𝑡2 + 𝛽𝑠(𝑡)2 − 1)
1 + 𝑡2 + 𝛽𝑠(𝑡)2 .

Suppose that 𝛾 = 𝛾0 has an inflection at 𝑡 = 0. The function 𝒟(v,0) is singular at 𝑡 = 0
if and only if 𝑣1 = 0 and it has a degenerate singularity if and only if 𝑣1 = 𝑣3 = 0, that is
v = v0 = (0, 1, 0). (Then the contact circle in the plane becomes a line at the inflection point
and its image by 𝜑 is a great circle in 𝑆2 through the north pole (0, 0, 1).) The point v0 represent
the point at infinity on the evolute of 𝛾 at infinity. We have the following Proposition.

Proposition 3.1. The height function �̃�v0 and the function �̃�(v0,0) have the same singularity type

at 𝑡 = 0. Furthermore, the family �̃� is anℛ+-versal deformation of the singularity of �̃�(v0,0) if

and only if the family �̃� is anℛ+-versal deformation of the singularity of �̃�v0 .

Proof. According to Proposition 2.2, it is enough to prove that the height function �̃�v0 and
the function �̃�(v0,0) have the same ℛ+-singularity type. Indeed, the height function �̃�v0(𝑡) =
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⟨𝛾(𝑡), 𝑣0⟩ = 𝛽0(𝑡) has an 𝐴≥𝑘-singularity at zero if and only if 𝛽′
0(0) = · · · = 𝛽

(𝑘)
0 (0) = 0.

On the other hand, considering the expression of 𝒟(v0,0) one can verify that 𝒟(v0,0) has an 𝐴≥𝑘-
singularity at zero if and only if 𝛽′

0(0) = · · · = 𝛽
(𝑘)
0 (0) = 0. Let �̃� be an (𝑚 + 3)-parameter

family of an 𝐴𝑘-singularity. Therefore, we have

𝑗𝑘−1
(︁𝜕�̃�
𝜕𝑣1

(𝑡, 0)
)︁
(0) =𝑡,

𝑗𝑘−1
(︁𝜕�̃�
𝜕𝑣2

(𝑡, 0)
)︁
(0) =𝑗𝑘−1𝛽0(𝑡), (3.2)

𝑗𝑘−1
(︁𝜕�̃�
𝜕𝑠𝑗

(𝑡, 0)
)︁
(0) =0.

Also, �̃� is an (𝑚+ 3)-parameter family of an 𝐴𝑘-singularity. Using the expression of �̃� we
have

𝑗𝑘−1
(︁𝜕�̃�
𝜕𝑣1

(𝑡, 0)
)︁
(0) =𝑗𝑘−1

(︃
2𝑡

1 + 𝑡2 + 𝛽0(𝑡)2

)︃
,

𝑗𝑘−1
(︁𝜕�̃�
𝜕𝑣2

(𝑡, 0)
)︁
(0) =𝑗𝑘−1

(︃
2𝛽0(𝑡)

1 + 𝑡2 + 𝛽0(𝑡)2

)︃
, (3.3)

𝑗𝑘−1
(︁𝜕�̃�
𝜕𝑠𝑗

(𝑡, 0)
)︁
(0) =0.

Therefore, using Taylor expansion one can verify that the coefficient matrix of system (3.2) has
rank 𝑘 − 1 if and only if the coefficient matrix of system (3.3) has rank 𝑘 − 1.

Remark 3.1. Another way to view Proposition 3.1 is as follows. When the family of height

function isℛ+-versal, the resulting family of curvature functions 𝜅(𝑡, 𝑠) is anℛ-versal family

(this gives the deformations of the inflections 𝜅(𝑡, 𝑠) = 0). This in turn implies that the derivative
𝜕𝜅
𝜕𝑡

(𝑡, 𝑠) is anℛ-versal family (and we get the deformations of the vertices 𝜕𝜅
𝜕𝑡

(𝑡, 𝑠) = 0).

Definition 3.1. As consequence of Proposition 3.1, we say that a deformation of a regular curve

𝛾 at an inflection of finite order is 𝐹𝑅-generic if the associated family of height functions is an

ℛ+-versal deformation of the singularity of the height function on 𝛾 along its normal direction.

We consider now in details inflection points of order one, two and three which occur generically
in 2-parameter families of curves. We start with some remarks on vertices of plane curves. Let
𝛾 be parametrised by arc-length with unit tangent and normal vectors t and n. Differentiating
the parametrisation 𝑒(𝑡) = 𝛾(𝑡) + 1

𝜅(𝑡)n(𝑡) of the evolute we get 𝑒′(𝑡) = − 𝜅′(𝑡)
𝜅(𝑡)2 n(𝑡), so the

evolute is singular at a vertex 𝑡0 of 𝛾. At a vertex 𝑡0, 𝑒′′(𝑡0) = −𝜅′′(𝑡0)
𝜅2(𝑡0) n(𝑡0), and 𝑒′′′(𝑡0) =

2𝜅′′(𝑡0)
𝜅(𝑡0) t(𝑡0)− 𝜅′′′(𝑡0)

𝜅2(𝑡0) n(𝑡0), so in the coordinate system with basis {t(𝑡0),n(𝑡0)}, we have

𝑗3(𝑒(𝑡)− 𝑒(𝑡0)) = (2𝜅′′(𝑡0)
𝜅(𝑡0)

(𝑡− 𝑡0)3,−𝜅
′′(𝑡0)
𝜅2(𝑡0)

(𝑡− 𝑡0)2 − 𝜅′′′(𝑡0)
𝜅2(𝑡0)

(𝑡− 𝑡0)3).
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Figure 3.1 – Inward vertex (left) and outward vertex (right).

Figure 3.2 – Birth of an inward and an outward vertex in a generic deformation of a second order vertex.

It follows that at an ordinary vertex (𝜅′′(𝑡0) ̸= 0), there are two possibilities for the cusp of
the evolute: turning toward the curve or away from it (Figure 3.1). We have the configuration in
Figure 3.1 left (resp. right) if 𝜅(𝑡0)𝜅′′(𝑡0) > 0 (resp. 𝜅(𝑡0)𝜅′′(𝑡0) < 0).

Definition 3.2. We call an ordinary vertex an inward vertex if the configuration of the curve and

of its evolute at the vertex are as in Figure 3.1 left and an outward vertex if the configuration is

as in Figure 3.1 right.

At a second order vertex, 𝜅′(𝑡0) = 𝜅′′(𝑡0) = 0 and 𝜅′′′(𝑡0) ̸= 0, the evolute has a singularity
𝒜-equivalent to (𝑡3, 𝑡4). In a generic family of curves, the evolute undergoes the swallowtail
transitions (Figure 3.2, [2, 5]). We have a birth of two vertices on the curve on one side of the
transition, one is an inward vertex and the other is an outward vertex. (The curvature function
does not change sign locally and it has one minimum at 𝑡1 and one maximum at 𝑡2, so 𝜅(𝑡2)𝜅′′(𝑡2)
and 𝜅(𝑡2)𝜅′′(𝑡2) have different signs at the vertices 𝑡1 and 𝑡2.)

Proposition 3.2. If 𝛾 has an ordinary inflection at 𝑝 then the evolute goes to infinity asymptoti-

cally along the normal line to 𝛾 at 𝑝 and can be modeled in some coordinate system by 𝑥𝑦 = 1.

The two components of the evolute live in the two quadrants determined by the tangent and

normal lines to 𝛾 at 𝑝 which contain the curve 𝛾 (see Figure 3.3).

Proof. At an ordinary inflection 𝜅 = 0 and 𝜅′ ̸= 0. We parametrise the curve, without loss
of generality, in the form 𝛾(𝑡) = (𝑡, 𝑏3𝑡

3 + 𝑏4𝑡
4 + 𝑂(𝑡5)) with 𝑏3 ̸= 0 and 𝑡 varying in a

small interval centred at zero. The ordinary inflection is at the origin and we have 𝜅(𝑡) =
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6𝑏3𝑡+12𝑏4𝑡2+𝑂(𝑡3)
(1+(3𝑏3𝑡2+4𝑏4𝑡3+𝑂(𝑡4))2)

3
2
. The evolute of 𝛾 is parametrised by

𝑒(𝑡) = (𝑡− 1+(3𝑏3𝑡2+4𝑏4𝑡3+𝑂(𝑡4))2

6𝑏3𝑡+12𝑏4𝑡2+𝑂(𝑡3) (3𝑏3𝑡
2 + 4𝑏4𝑡

3 +𝑂(𝑡4)),
𝑏3𝑡

3 + 𝑏4𝑡
4 +𝑂(𝑡5) + 1+(3𝑏3𝑡2+4𝑏4𝑡3+𝑂(𝑡4))2

6𝑏3𝑡+12𝑏4𝑡2+𝑂(𝑡3) )
= (1

2𝑡+𝑂(𝑡2), 1
6𝑏3𝑡

(1 +𝑂(𝑡))
(3.4)

The above parametrisation gives, in particular, the position of the components of the evolute. If
we put 𝑥 = 1

2𝑡+𝑂(𝑡2) and 𝑦 = 1
6𝑏3𝑡

(1+𝑂(𝑡) then, using Implicit Function Theorem one can write
𝑡 = 𝜑1(𝑥) = 𝑥𝜑2(𝑥) such that 𝜑2(0) ̸= 0. Substituting 𝑡 in 𝑦 we get 𝑦 = 1

3𝑏3𝑥𝜑2(𝑥)(1 + 𝑂(𝑥)).
Thus, 3𝑏3𝑥𝑦𝜑3(𝑥) = 0 such that 𝜑3(0) ̸= 0. Putting 𝑋 = 3𝑏3𝜑3(𝑥) we obtain that the expression
(3.4) can be written in the form 𝑥𝑦 = 1 in this coordinate system.

Figure 3.3 – Evolute of an ordinary inflection (normal line at the inflection in dots).

Second order inflections occur generically in 1-parameter families of curves. Following
Proposition 3.1 and Remark 3.1, we take the family to be anℛ+-versal deformation of the 𝐴3-
singularity of the height function at the second order inflection. We express below the genericity
of the family in terms of transversality to a stratification in the jet space.

A smooth curve 𝛾 can be written at each point 𝑝 as the graph of a function 𝑦 = 𝑓𝑝(𝑥),
with 𝑓𝑝(0) = 𝑓 ′

𝑝(0) = 0. Denote by 𝑊 𝑘 the set of polynomials in one variable of 2 ≤ degree
≤ 𝑘. We have then the Monge-Taylor map 𝑗𝑘𝜑𝛾 : 𝐽 → 𝑊 𝑘, given by 𝑗𝑘𝜑𝛾(𝑡) = 𝑗𝑘𝑓𝑝(0).
One can identify the polynomial 𝑗𝑘𝑓𝑝(0) with its coefficients (𝑎2, . . . , 𝑎𝑘) so we can write
𝑗𝑘𝜑𝛾(𝑡) = (𝑎2, . . . , 𝑎𝑘). A simple calculation shows that if 𝛾(𝑡) = (𝑡, 𝛽(𝑡)), then (𝑗𝑘𝜑𝛾)′(0) =
( 1

2!𝛽
′′′(0), . . . , 1

𝑘!𝛽
(𝑘+1)(0)).

A curve 𝛾 has an inflection at 𝑡 if and only if 𝑗𝑘𝜑𝛾(𝑡) belongs to the variety 𝐼 ⊂ 𝑊 𝑘 given by
𝑎2 = 0. It has a vertex at 𝑡 if and only if 𝑗𝑘𝜑𝛾(𝑡) belongs to the variety 𝑉 ⊂ 𝑊 𝑘 given by 𝑎3 = 0.
The higher order inflections define a variety 𝐻𝐼 ⊂ 𝑊 𝑘 which is given by 𝑎2 = 𝑎3 = 0. Observe
that𝐻𝐼 = 𝐼∩𝑉 , and at a second order inflection (𝑗𝑘𝜑𝛾)′(0) is tangent to 𝐼 and transverse to 𝑉 . A
1-parameter of curves 𝛾𝑠, with 𝛾0 = 𝛾, induces a Monge-Taylor map 𝑗𝑘Φ : (R×R, (0, 0))→ 𝑊 𝑘

with 𝑗𝑘Φ(𝑡, 𝑠) = 𝑗𝑘𝜑𝛾𝑠(𝑡). A necessary condition for transversality of Φ to 𝐻𝐼 is that the image
of 𝑑Φ(0, 0) is a plane. If that plane is transverse to 𝐻𝐼 , then it is transverse to 𝐼 . We can always
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write 𝛾𝑠(𝑡) = (𝑡, 𝛽𝑠(𝑡)). Then 𝑑Φ(0, 0) is transverse to 𝐻𝐼 if and only if 𝜕3𝛽
𝜕𝑠𝜕𝑡2

(0, 0) ̸= 0, which
is exactly the condition for the family of height functions �̃� : (R × 𝑆1 × R, (0,n0, 0)) → R,
with �̃�(𝑡, v, 𝑠) = ⟨𝛾𝑠(𝑡), v⟩ to be anℛ+-versal deformation of the 𝐴3-singularity of the height
function on 𝛾 along n0 = n(0).

Theorem 3.1. Let 𝛾 be a smooth and regular curve with a second order inflection point at 𝑝.

(i) The evolute goes to infinity asymptotically along the normal line to 𝛾 at 𝑝 and can be

modeled in some coordinate system by 𝑥2𝑦 = 1. The two components of the evolute live in the

two quadrants determined by the tangent and normal lines to 𝛾 at 𝑝 which contain the curve 𝛾

(see Figure 3.4, center ).

(ii) For an 𝐹𝑅-generic family of curves 𝛾𝑠 with 𝛾0 = 𝛾, the bifurcations in the evolute are as

shown in Figure 3.4. We have a birth of two inflections and an appearance of one outward vertex

on one side of the transition and of one inward vertex and no inflections on the other side of the

transition.

(iii) Any 𝐹𝑅-generic 1-parameter family of curves at a second order inflection is 𝐹𝑅-

equivalent to the model family 𝛾𝑢(𝑡) = (𝑡, 𝑡4 + 𝑢𝑡2).

Figure 3.4 – 𝐹𝑅-Generic bifurcation of the evolute at a second order inflection of the curve (normal lines at the
inflections in dots). The vertex changes from an outward to an inward vertex as it passes through the
second order inflection.

Proof. At an inflection of second order we can parametrise 𝛾 near 𝑡 = 0 in the form 𝛾(𝑡) =
(𝑡, 𝑏4𝑡

4 + 𝑏5𝑡
5 +𝑂(𝑡6)) with 𝑏4 ̸= 0. We have 𝜅(𝑡) = 12𝑏4𝑡2+20𝑏5𝑡3+𝑂(𝑡4)

(1+(4𝑏4𝑡3+5𝑏5𝑡4+𝑂(𝑡5))2)
3
2
, so the evolute of 𝛾

is parametrised by 𝑒(𝑡) = (2
3𝑡+𝑂(𝑡2), 1

12𝑏4𝑡2
(1 +𝑂(𝑡)), and this gives (i).

For (ii), as the family is generic, we can change parameter if necessary and take 𝛾𝑠(𝑡) =
(𝑡, 𝑠𝑡2 + �̄�3(𝑠)𝑡3 + �̄�4(𝑠)𝑡4 + 𝑂𝑠(𝑡5)), with �̄�3(0) = 0, �̄�4(0) = 𝑏4 and where 𝑂𝑠(𝑡5) denotes a
function in (𝑠, 𝑡) with the first four partial derivatives with respect to 𝑡 identically zero. The
curvature function 𝜅𝑠(𝑡) of 𝛾𝑠 has an ordinary contact with the 𝑡-axis at 𝑠 = 0 (it has a maximum
or a minimum at 𝑡 = 0). Given the genericity condition, we have 𝜕𝜅𝑠

𝜕𝑠
(0, 0) ̸= 0 so the graph 𝜅𝑠(𝑡)

intersects the 𝑡-axis in 2 points if 𝑠 < 0 and no points if 𝑠 > 0 or vice-versa. These points are
(first order) inflection points of the curve. Of course the maximum or minimum of 𝜅𝑠 is stable so
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we have one vertex on both sides of the transition and the vertex is between the two inflections
when these are present. For the nature of the vertices, 𝜅′′

𝑠 has locally constant sign and the sign of
𝜅𝑠 at the vertex changes as 𝑠 crosses the value 𝑠 = 0. Thus 𝜅𝑠𝜅′′

𝑠 has different sign at the vertices,
so we have an inward vertex on one side of the transition (where there are no inflections) and an
outward vertex on the other side of the transition (where there are two inflections). Combining
this with (i) and Proposition 3.2, we can draw the bifurcations on the evolute in generic families
and these are as in Figure 3.4 (Maple figure).

(iii) The calculations in (ii) depend only on the fact that the curve has a second order inflection
and on the family being 𝐹𝑅-generic. The family 𝛾𝑢(𝑡) = (𝑡, 𝑡4 + 𝑢𝑡2) satisfies these conditions,
so it can be taken as an 𝐹𝑅-model.

Theorem 3.2. Let 𝛾 be a smooth and regular curve with a third order inflection point at 𝑝.

(i) The evolute goes to infinity asymptotically along the normal line to 𝛾 at 𝑝 and can be

modeled in some coordinate system by 𝑥3𝑦 = 1.

(ii) For an 𝐹𝑅-generic 2-parameter family of curves 𝛾𝑠 with 𝛾0 = 𝛾, the bifurcations in

the evolute are as shown in Figure 3.5. The bifurcation diagram consists of a cusp curve

corresponding to second order inflections and a smooth curve corresponding to second order

vertices (see Figure 3.5, central figure).

(iii) Any 𝐹𝑅-generic 2-parameter family of curves at a third order inflection is 𝐹𝑅-equivalent

to the model family 𝛾𝑢(𝑡) = (𝑡, 𝑡5 + 𝑢1𝑡
3 + 𝑢2𝑡

2).

Proof. The proof is similar to that of Theorem 3.1. Here we can take an 𝐹𝑅-generic 2-parameter
family of curves in the form 𝛾𝑠(𝑡) = (𝑡, 𝑠1𝑡

2 + 𝑠2𝑡
3 + �̄�4(𝑠)𝑡4 + �̄�5(𝑠)𝑡5 +𝑂𝑠(𝑡6)), with �̄�4(0) = 0

and �̄�5(0) ̸= 0 and 𝑠 = (𝑠1, 𝑠2). Statement (ii) follows by analysing the curvature function 𝜅𝑠. In
fact, the curvature is given by

𝜅𝑠(𝑡) = 𝑂𝑠(𝑡4) + 20�̄�5𝑡
3 + 12�̄�4(𝑠)𝑡2 + 6𝑠2𝑡+ 2𝑠1(︃

1 + (𝑂𝑠(𝑡5) + 5�̄�5(𝑠)𝑡4 + 4�̄�4(𝑠)𝑡3 + 3𝑠2𝑡2 + 2𝑠1𝑡)2

)︃3/2 .

Then, calculating the first derivative of curvature and using Implicit Function Theorem, we find
that the second order inflections stratum is given by 𝑠 = (−10𝑡2 +𝑂(𝑡3), 20𝑡3 +𝑂(𝑡4)) and the
second order vertices stratum by 𝑠2 = −2

5𝑠
6
1 +𝑂(𝑠7

1). Statement (iii) follows from the fact that
(ii) depends only on the family being 𝑅-generic.

3.2 𝐹𝑅𝑆-deformations of a cusp

Let 𝛾(𝑡) = 𝛾0(𝑡) = (𝛼(𝑡), 𝛽(𝑡)), 𝑡 ∈ 𝐽 , and suppose that it is singular at 0 ∈ 𝐽 . For 𝑡0 ∈ 𝐽 .
If 𝛾 is not infinitely flat at 𝑡0, then it has a limiting normal line at 𝑡0 and this line is part of the
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Figure 3.5 – 𝐹𝑅-generic 2-parameter bifurcations of the evolute at a third order inflection (normal lines at the
inflections in dots). The central figure is the bifurcation set and the stratum 𝑆𝐼 (resp. 𝑆𝑉 ) is of second
order inflections (resp. vertices).

bifurcation set of the family of distance squared functions on the curve. We have the following
observation.

Proposition 3.3. Let 𝛾𝑠 be any 𝑚-parameter family of curves with 𝛾0(𝑡) = 𝛾(𝑡) singular at

𝑡 = 0. Then the big family of distance squared functions �̃� : (R× R𝑚 × R2, (0, 0, 0))→ (R, 0)
on 𝛾 with �̃�(𝑡, 𝑎, 𝑠) = ⟨𝛾𝑠(𝑡)−𝑎, 𝛾𝑠(𝑡)−𝑎⟩ is never anℛ+-versal deformation of the singularity

of 𝐷0(𝑡) = �̃�(𝑡, 0, 0) at 𝑡 = 0.

Proof. If 𝛾0 is infinitely flat, then it does not have anℛ+-versal deformation. Suppose now that
it is not, and that the first non-zero derivative of 𝛾 at 𝑡 = 0 is that of order 𝑘, with 𝑘 ≥ 2. We can
then write the family of curves in the form 𝛾𝑠(𝑡) = (𝛼𝑠(𝑡), 𝛽𝑠(𝑡)) with 𝛾0 = 𝛾, 𝛼0(𝑡) = 𝑡𝑘 and
𝑗𝑘𝛽0(𝑡) ≡ 0. Setting 𝑎 = (𝑎1, 𝑎2), we have �̃�(𝑡, 𝑎1, 𝑎2, 𝑠) = (𝛼𝑠(𝑡)− 𝑎1)2 + (𝛽𝑠(𝑡)− 𝑎2)2. The
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function 𝐷0(𝑡) = 𝑡2𝑘 +𝑂(𝑡2𝑘+2) has an 𝐴2𝑘−1-singularity at 𝑡 = 0 and 𝑗2 𝜕�̃�
𝜕𝑎1
|𝑠=0,𝑎=0(𝑡) = −2𝑡2,

if 𝑘 = 2 or 0 if 𝑘 > 2, 𝑗2 𝜕�̃�
𝜕𝑎2
|𝑠=0,𝑎=0(𝑡) = 0, and 𝑗2 𝜕�̃�

𝜕𝑠𝑖
|𝑠=0,𝑎=0(𝑡) = 0, 𝑖 = 1, . . . ,𝑚. Therefore,

�̃� can never be anℛ+-versal family of the 𝐴2𝑘−1-singularity of 𝐷0.

We can take 𝛾(𝑡0) to be the origin and write

𝛾(𝑡) = (𝛼′(𝑡0)(𝑡− 𝑡0) + 1
2!𝛼

′′(𝑡0)(𝑡− 𝑡0)2 + 1
3!𝛼

′′′(𝑡0)(𝑡− 𝑡0)3 +𝑂((𝑡− 𝑡0)4),
𝛽′(𝑡0)(𝑡− 𝑡0) + 1

2!𝛽
′′(𝑡0)(𝑡− 𝑡0)2 + 1

3!𝛽
′′′(𝑡0)(𝑡− 𝑡0)3 +𝑂((𝑡− 𝑡0)4)).

This gives the Taylor expansion map 𝑗𝑘𝜑𝛾 : 𝐽 → 𝐽𝑘(1, 2), with

𝑗𝑘𝜑𝛾(𝑡0) = (𝛼′(𝑡0),
1
2!𝛼

′′(𝑡0),
1
3!𝛼

′′′(𝑡0), . . . ; 𝛽′(𝑡0),
1
2!𝛽

′′(𝑡0),
1
3!𝛽

′′′(𝑡0), . . .).

Denote by (𝑎1, 𝑎2, . . . ; 𝑏1, 𝑏2, . . .) the coordinate in 𝐽𝑘(1, 2) (identified with R𝑘 × R𝑘). We
can stratify 𝐽𝑘(1, 2) into the following strata (together with the compliment of their union):

Cusps (𝐶): 𝑎1 = 𝑏1 = 0,
Inflections (𝐼): 𝑎1𝑏2 − 𝑎2𝑏1 = 0,

Vertices (𝑉 ): −2(𝑎1𝑏2 − 𝑎2𝑏1)(𝑎1𝑎2 + 𝑏1𝑏2) + (𝑎2
1 + 𝑏2

1)(𝑎1𝑏3 − 𝑎3𝑏1) = 0.

For the inflections and vertices strata, we took only the numerators and ignored the denomina-
tors in the equations of 𝜅 = 0 and 𝜅′ = 0. These vanish only at the singular points of the curve.
There are of course additional ̸= 0 (open) conditions in 𝐶, 𝐼 , 𝑉 which are not included above.

At a point on the cusp stratum we have 𝑎2 ̸= 0 or 𝑏2 ̸= 0. At such points, the strata 𝐼 and 𝑉
are codimension 1 varieties in 𝐽𝑘(1, 2) which contain the codimension 2 variety 𝐶. The variety
𝐼 is smooth along 𝐶 and the variety 𝑉 is diffeomorphic to the union of 2 smooth varieties 𝑉1 and
𝑉2 intersecting transversally along 𝐶. Because note that we have 𝑎2𝑏3 − 𝑎3𝑏2 ̸= 0 this implies
that 𝑎2

2 + 𝑏2
2 ̸= 0. Set 𝐴1 = 𝑎1𝑏2 − 𝑎2𝑏1 and 𝐵1 = 𝑎1𝑎2 + 𝑏1𝑏2 therefore⎛⎝𝐴1

𝐵1

⎞⎠ =
⎛⎝𝑏2 −𝑎2

𝑎2 𝑏2

⎞⎠⎛⎝𝑎1

𝑏1

⎞⎠ ,
and this implies that ⎛⎝𝑎1

𝑏1

⎞⎠ = 1
𝑎2

2 + 𝑏2
2

⎛⎝ 𝑏2 𝑎2

−𝑎2 𝑏2

⎞⎠⎛⎝𝐴1

𝐵1

⎞⎠ .
Applying the 𝑎1 and 𝑏1 in the equation of vertex stratum 𝑉 we get

−2𝐴1𝐵1 + [(𝑏2𝐴1 + 𝑎2𝐵1)2 + (−𝑎2𝐴1 + 𝑏2𝐵1)2][(𝑏2𝐴1 + 𝑎2𝐵1)𝑏3 − (−𝑎2𝐴1 + 𝑏2𝐵1)𝑎3] = 0.

Now set 𝐴1 = 𝐴1 + �̄�1 and 𝐵1 = 𝐴1 − �̄�1 one can get the vertex stratum diffeomorphic to the
union of 2 smooth varieties.

The tangent cone of 𝑉1 along 𝐶 is 𝑎1𝑏2 − 𝑎2𝑏1 = 0 and that of 𝑉2 is 𝑎1𝑎2 + 𝑏1𝑏2 = 0, so 𝑉1 is
tangent to 𝐼 along 𝐶 and 𝑉2 is transverse to it. In fact, we have a product stratification of 𝐽𝑘(1, 2)
by 𝐶, 𝐼, 𝑉 along 𝐶 with a transverse slice given by its intersection with a well chosen plane.
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To simplify the calculations, we reparametrise 𝛾, make isometric changes of coordinates in R2

and write

𝛾(𝑡) = (𝑡2, 𝛽(𝑡)) = (𝑡2, 𝑏3𝑡
3 +𝑂(𝑡4)) (3.5)

with 𝑏3 ̸= 0. In fact, any family of curves containing 𝛾 = 𝛾0 can be parametrised in the form

𝛾𝑠(𝑡) = (𝑡2, 𝛽(𝑡, 𝑠)) = (𝑡2, �̄�1(𝑠)𝑡+ �̄�2(𝑠)𝑡2 + �̄�3(𝑠)𝑡3 +𝑂𝑠(𝑡4)). (3.6)

A 1-parameter family of curves 𝛾𝑠, with 𝛾0 = 𝛾, induces a Taylor expansion map 𝑗𝑘Φ :
(R× R, (0, 0))→ 𝐽𝑘(1, 2) with 𝑗𝑘Φ(𝑡, 𝑠) = 𝑗𝑘𝜑𝛾𝑠(𝑡). If the image of 𝑑(𝑗𝑘Φ)(0, 0) is transverse
to 𝐶, then it will be transverse to 𝐼 and 𝑉 . If we take 𝛾𝑠 as (3.6) then the transversality of 𝑗𝑘Φ to
𝐶 occurs if and only if 𝜕2𝛽

𝜕𝑠𝜕𝑡
(0, 0) ̸= 0, which is the condition for the family of maps 𝛾𝑠 to be an

𝒜𝑒-versal deformation of the cusp singularity of 𝛾.

Definition 3.3. A germ of a 1-parameter family of curves 𝛾𝑠 with 𝛾0 = 𝛾 a germ of a cusp curve,

is said to be 𝐹𝑅𝑆-generic if it is an 𝒜𝑒-versal deformation of the cusp singularity of 𝛾.

I

V2

C

V1

Figure 3.6 – A 2-dimensional transverse slice of the stratification of 𝐽𝑘(1, 2) by 𝐶, 𝐼, 𝑉 . The figure in the centre
shows the position of the image of the curve 𝛾0 by the Taylor expansion map (dashed) with respect to
the stratification, and the left and right figures show the position of the image of the curve 𝛾𝑠, 𝑠 < 0
left and 𝑠 > 0 right (or vice-versa) as well as its intersection with the inflections and vertices strata.

Theorem 3.3. Any 𝐹𝑅𝑆-generic 1-parameter family of a germ of the cusp curve is 𝐹𝑅𝑆-

equivalent to the 𝐹𝑅𝑆-model family (𝑡2, 𝑡3 + 𝑢𝑡).

Proof. We know that for an 𝐹𝑅𝑆-generic family of curves 𝛾𝑠, the singularity of the curve
is deformed as in Figure 3.7. In particular, we have a birth of two inflections on one side of
the transition and none on the other. The inflections occur on the side where the curve has no
self-intersection (see for example [26]). We have

(𝑗𝑘𝜑𝛾0)′(𝑡0) = (𝛼′′(𝑡0),
1
2!𝛼

′′′(𝑡0),
1
3!𝛼

(4)(𝑡0), . . . ; 𝛽′′(𝑡0),
1
2!𝛽

′′′(𝑡0),
1
3!𝛽

(4)(𝑡0), . . .),

so for 𝛾0 parametrised as in (3.5) we have (𝑗𝑘𝜑𝛾0)′(0) = (2, 0, . . . , 0; 0, 3𝑏3, 0, . . . , 0). This
vector is clearly tangent to 𝐼 and 𝑉1 and is transverse to 𝑉2. The relative position of the image of
𝑗𝑘𝜑𝛾0 and of the strata 𝐶, 𝐼, 𝑉 is as in Figure 3.6 center. As 𝛾𝑠 is a generic family, the intersection



3.2. 𝐹𝑅𝑆-deformations of a cusp 49

of the image of 𝑗𝑘𝜑𝛾𝑠 with the strata 𝐶, 𝐼, 𝑉 is as in Figure 3.6, so we get, in particular, the
position of the vertices and inflections on 𝛾𝑠 (Figure 3.7, right). When there is one vertex (and no
inflections), 𝑗𝑘𝜑𝛾𝑠 does not give the position of the vertex on 𝛾𝑠 with respect to the point of self-
intersection. Here we take the family 𝛾𝑠 as in (3.6). As it is 𝐹𝑅𝑆-generic, we can take �̄�1(𝑠) = 𝑠.
The vertex occurs at a point 𝑡0 = 𝑂(𝑠2) and the points giving the point of self-intersection are
𝑡 = ±𝑡1 with 𝑡21 = − 1

𝑏3
𝑠 + 𝑂(𝑠2). Clearly, for 𝑠 small enough, −𝑡1 < 𝑡0 < 𝑡1. This property

depends only on the fact that the family 𝛾𝑠 is generic and not on the family itself.

Any two generic families 𝛾(𝑡, 𝑠) = 𝛾𝑠(𝑡) and 𝜂(𝑡, 𝑢) = 𝜂𝑢(𝑡) of the cusp are 𝒜-equivalent, so
𝛾(𝑡, 𝑠) = 𝜂(ℎ(𝑡, 𝑠), 𝑘(𝑠)), with ℎ(𝑡, 0) and 𝑘(𝑠) germs of a diffeomorphisms. The configuration
in Figure 3.6 depends only on the fact that the family is 𝐹𝑅𝑆-generic, so the diffeomorphism 𝑘

satisfies the properties (i), (ii), (iii) in the definition of 𝐹𝑅𝑆-equivalence.

Figure 3.7 – Generic bifurcations of a cusp. Vertices (resp. inflections) are represented by circular (resp. square)
dots.

Proposition 3.4. All the vertices that appear in an 𝐹𝑅𝑆-generic family of a cusp are outward

vertices.

Proof. By direct computations we get 𝜅(𝑡) = 0 at two points 𝑡1 and 𝑡2. Also, 𝜅′(𝑡) has 3 roots
which means that the graph of 𝜅 has 3 extrema 𝑡1, 𝑡2 and 𝑡3. Now straightforward calculations
give the sign of 𝜅′′(𝑡)𝜅(𝑡) in each region. See Figure 3.8 for more details.

We consider now the bifurcations in the evolute of 𝛾. The distance squared function on a
singular curve from any point on the normal line at the singular point has an 𝐴≥2-singularity at
the singular point of the curve. Thus, this normal line should be considered as part of the evolute.
We call the closure of the centres of osculating circles of the curve at its regular points the proper
evolute of the curve. We define the f ull evolute as the bifurcation set of the family of distance
squared functions on the curve. The full evolute is the union of the proper evolute together with
the normal line at the singular point counted with multiplicity.

Theorem 3.4. Let 𝛾 be a plane curve with an ordinary cusp at 𝑝.

(i) ([19]) The proper evolute of 𝛾 is a smooth curve and has an ordinary tangency at 𝑝 with

the limiting normal line to 𝛾 at 𝑝. The limiting normal line separates the curve and its evolute.

(ii) The full evolute of 𝛾 consists of its proper evolute together with its limiting normal line at

𝑝 counted twice.
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Figure 3.8 – Outward vertices in 𝐹𝑅𝑆-generic family of an ordinary cusp.

(iii) The distance squared function 𝐷𝑞 on 𝛾 has an 𝐴3-singularity at 𝑝 if 𝑞 = 𝑝 and an

𝐴2-singularity if 𝑞 ̸= 𝑝 is on the limiting normal line to 𝛾 at 𝑝.

(iv) The morphism between the family of distance squared functions on 𝛾 and that of an

ℛ+-versal deformation 𝑡4 +𝑢𝑡2 +𝑣𝑡 of an 𝐴3-singularity induces a map-germ 𝜑 : R2, 0→ R2, 0
with 𝜑(𝑞) = (𝑢, 𝑣), which is 𝒜-equivalent to the cusp map-germ (𝑥, 𝑦) ↦→ (𝑥, 𝑥𝑦 + 𝑦3).

(v) For an 𝐹𝑅𝑆-generic family of curves 𝛾𝑠 with 𝛾0 = 𝛾, the big bifurcation set of the family

of distance squared functions on 𝛾 is as in Figure 3.11, left. Its sections by 𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which

model the generic bifurcations in the evolute of 𝛾, are as in Figure 3.11, right and Figure 3.9.

One can also draw the evolute of 𝛾𝑠 by taking into consideration the position of the vertices and

inflections (Theorem 3.3) and the behavior of the evolute at the inflections.

Figure 3.9 – Bifurcations of a cusp and of its full evolute, Maple figures left and and sketched figures right (normal
lines at the inflections in dots).

Proof. (i) We take 𝛾 as in (3.5) with 𝑏3 ̸= 0 and 𝑡 varying in a small interval centred at zero.
Then

𝜅(𝑡) = 2(𝑡𝛽′′(𝑡)− 𝛽′(𝑡))
(4𝑡2 + 𝛽′(𝑡)2) 3

2
= 3𝑏3 + 8𝑏4𝑡+𝑂(𝑡2)

4𝑡(1 + (3
2𝑏3𝑡+ 2𝑏4𝑡2 +𝑂(𝑡3))2) 3

2
,
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so that 1/𝜅(𝑡) is locally a smooth function vanishing at 𝑡 = 0. Then the proper evolute is a
smooth curve parametrised by

𝑒(𝑡) = (𝑡2, 𝛽(𝑡)) + 4𝑡2 + 𝛽′(𝑡)2

2(𝑡𝛽′′(𝑡)− 𝛽′(𝑡))(−𝛽′(𝑡), 2𝑡) = (−𝑡2 +𝑂(𝑡3), 4
3𝑏3

𝑡+𝑂(𝑡2))

and has ordinary tangency with the limiting normal line 𝑥 = 0.

(ii) The full evolute is the bifurcation set of the family of distance squared functions

𝐷(𝑡, 𝑎, 𝑏) = (𝑡2 − 𝑎)2 + (𝛽(𝑡)− 𝑏)2 = 𝛽(𝑡)2 + 𝑡4 − 2𝛽(𝑡)𝑏− 2𝑎𝑡2 + 𝑎2 + 𝑏2. (3.7)

We have
1
2𝐷

′
(𝑎,𝑏)(𝑡) = 2𝑡3 − 2𝑎𝑡+ 𝛽′(𝑡)(𝛽(𝑡)− 𝑏),

1
2𝐷

′′
(𝑎,𝑏)(𝑡) = 6𝑡2 − 2𝑎+ 𝛽′′(𝑡)(𝛽(𝑡)− 𝑏) + 𝛽′(𝑡)2.

From𝐷′′
(𝑎,𝑏)(𝑡) we get 𝑎 = 3𝑡2 + 1

2𝛽
′′(𝑡)(𝛽(𝑡)−𝑏)+ 1

2𝛽
′(𝑡)2 and substituiting this in𝐷′

(𝑎,𝑏)(𝑡) = 0
gives

𝑡2
(︃

4𝑡− (𝑡𝛽′′(𝑡)− 𝛽′(𝑡))
𝑡2

𝑏+ (𝑡𝛽′′(𝑡)− 𝛽′(𝑡))𝛽(𝑡)− 𝑡𝛽′(𝑡)2

𝑡2

)︃
= 0. (3.8)

We get 𝑡 = 0 as a double root of (3.8) giving 𝑎 = 0 as a double curve in the bifurcation set of
the family 𝐷. For 𝑡 ̸= 0, we can solve (3.8) in 𝑏 to get

𝑏 = 4𝑡3 + (𝑡𝛽′′(𝑡)− 𝛽′(𝑡))𝛽(𝑡)− 𝑡𝛽′(𝑡)2

𝑡𝛽′′(𝑡)− 𝛽′(𝑡)

This gives (𝑎, 𝑏) = (−𝑡2 +𝑂(𝑡2), 4
3𝑏3
𝑡+𝑂(𝑡2)) as a parametrisation of the proper evolute. Thus,

the full evolute is the union of the proper evolute together with the limiting normal line at the
cusp counted twice.

(iii) From (3.7) if 𝑎 ̸= 0 then 𝐷(𝑎,𝑏) has an 𝐴1-singularity at 𝑡 = 0. It has an 𝐴2-singularity if
𝑎 = 0 and 𝑏 ̸= 0 and an 𝐴3-singularity if 𝑎 = 𝑏 = 0.

(iv) As 𝐹 (𝑡, 𝑢, 𝑣) = 𝑡4 + 𝑢𝑡2 + 𝑣𝑡 is an ℛ+-versal deformation of the 𝐴3-singularity, we
have 𝐷(𝑡, 𝑎, 𝑏) = 𝐹 (ℎ(𝑡, 𝑎, 𝑏), 𝜓(𝑎, 𝑏)) + 𝑐(𝑎, 𝑏) for some germs of smooth maps ℎ, 𝜓, 𝑐. The
map-germ 𝜓 takes the bifurcation set of 𝐷 (i.e. the evolute) to that of 𝐹 (i.e., the cusp (𝑢, 𝑣) =
(−6𝑡2, 8𝑡3)). We can calculate the 3-jet of 𝜓 and get

𝑗3𝜓(𝑎, 𝑏) = (−2𝑎− 3
2𝑏

2
3𝑏

2 − 3𝑏2
3𝑏4𝑏

3,−2𝑏3𝑎𝑏− 4𝑏3𝑏4𝑎𝑏
2 − 𝑏3

3𝑏
3).

As 𝑏3 ̸= 0, 𝑗3𝜓 ∼𝒜(3) (𝑎, 𝑎𝑏 + 𝑏3); where 𝒜(𝑘) = 𝒜/𝒜𝑘, with 𝒜𝑘 the subgroup of 𝒜 whose
elements have 𝑘-jets the germ of the identity. The cusp map (𝑎, 𝑏) ↦→ (𝑎, 𝑎𝑏 + 𝑏3) is 3-𝒜-
determined, so 𝜓 ∼𝒜 (𝑎, 𝑎𝑏+ 𝑏3). One can visualise the cusp map as the orthogonal projection
of the surface (𝑏, 𝜓(𝑎, 𝑏)) in 3-space along (1, 0, 0); see Figure 3.10. The cusp of 𝐵𝑖𝑓(𝐹 ) is the
discriminant of the projection (i.e., the image of its critical set), and 𝐵𝑖𝑓(𝐷) is its pre-image by
the cusp map 𝜓. One can see from Figure 3.10 why 𝐵𝑖𝑓(𝐷) (i.e., the full evolute) is as stated in
(ii).
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Figure 3.10 – Pre-image of the discriminant of a cusp map.

(v) Consider an 𝐹𝑅𝑆-generic family as in (3.6) with �̄�1(𝑠) = 𝑠. Then the big family of distance
squared function is �̃�(𝑡, 𝑎, 𝑏, 𝑠) = (𝑡2 − 𝑎)2 + (𝛽𝑠(𝑡)− 𝑏)2. We have

1
2�̃�𝑡 = 2𝑡3 − 2𝑎𝑡+ 𝛽′

𝑠(𝑡)(𝛽𝑠(𝑡)− 𝑏),
1
2�̃�𝑡𝑡 = 6𝑡2 − 2𝑎+ 𝛽′′

𝑠 (𝑡)(𝛽𝑠(𝑡)− 𝑏) + 𝛽′
𝑠(𝑡)2

and consider the projection 𝜋 : R× R2 × R→ R2 × R given by 𝜋(𝑡, 𝑎, 𝑏, 𝑠) = (𝑎, 𝑏, 𝑠). Then
the big bifurcation set 𝐵𝑖𝑓(�̃�) is the image by 𝜋 of the surface 𝑆 = {(𝑡, 𝑎, 𝑏, 𝑠) ∈ R×R2 ×R :
�̃�𝑡 = �̃�𝑡𝑡 = 0}. The surface 𝐵𝑖𝑓(�̃�) is singular if and only if the kernel direction of 𝜋 (i.e.
(1, 0, 0, 0)) is tangent to 𝑆, and this occurs when �̃�𝑡𝑡𝑡 = 0. As 𝛽′′′

0 (0) ̸= 0, �̃�𝑡𝑡𝑡 = 0 gives
𝑏 = 𝑏(𝑠, 𝑡). Now �̃�𝑡𝑡 = 0 gives 𝑎 = 𝑎(𝑠, 𝑡) and substituting in �̃�𝑡 we get an equation 𝑓(𝑠, 𝑡) = 0
where 𝑗2𝑓 = − 4

𝑏3
𝑡𝑠. Therefore, the singular set of 𝐵𝑖𝑓(�̃�) consists of two curves. These curves

are smooth with tangent directions along (0, 1, 0) and (0, 0, 1). In fact they can be parametrised
by map-germs with 2-jets in the form (−3𝑡2,− 2

𝑏3
𝑡 − 8𝑏4

𝑏2
3
𝑡2, 𝑏3𝑡

2) and (1
2𝑠

2, 0, 𝑠). In particular,
one branch is tangent to the plane 𝑠 = 0 and the other is transverse to it. As the tangency of
the branch with the plane 𝑠 = 0 is an ordinary one (𝑏3 ̸= 0), it intersects the planes parallels
to 𝑠 = 0 at two points if 𝑠 > 0 and none if 𝑠 < 0 or vice versa (depending on the sign of 𝑏3).
The intersection of the other branch with the planes parallel to 𝑠 = 0 is a single point. We also
observe that, away from the origin, the surface 𝐵𝑖𝑓(�̃�) is a cuspidal-edge along the singular
curves, and is tangent to the plane 𝑠 = 0 along a smooth curve. The surface 𝐵𝑖𝑓(�̃�) and its
sections by the planes 𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are depicted in Figure 3.11.

3.3 𝐹𝑅𝑆-deformations of the ramphoid cusp

As in the cusp case, we consider a stratification of the 𝑘-jet space 𝐽𝑘(1, 2). Here we also
need to consider multi-local strata, so the stratification is in the multi-jet space 2𝐽

𝑘(1, 2) ⊂
𝐽𝑘(1, 2)× 𝐽𝑘(1, 2) (see for example [4] for details). The strata of interest are the ramphoid cusp
stratum (𝑅𝐶) and the following strata (occurning in 1-parameter families of curves):
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Figure 3.11 – Big bifurcation set of the family of distance squared functions on a cusp curve (left) and its sections
by the planes 𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (right).

𝐶: cusp singularities
𝑆𝐼: second order inflections
𝐼𝑇 : an inflection intersecting transversally another branch
𝑇𝑐: two tangential branches (tacnode)
𝑆𝑉 : second order vertices
𝑉 𝑇 : a vertex intersecting transversally another branch

The local strata in 𝐽𝑘(1, 2) give product strata in 2𝐽
𝑘(1, 2), so it is enough to compute them in

𝐽𝑘(1, 2). Using the notation in §3.2, the 𝑅𝐶 stratum is given by 𝑎1 = 𝑏1 = 𝑎2𝑏3 − 𝑎3𝑏2 = 0 and
the other strata are given by the following equations:

𝐶:

⎧⎨⎩ 𝑎1 = 0
𝑏1 = 0

𝑆𝐼:

⎧⎨⎩ 𝑎1𝑏2 − 𝑎2𝑏1 = 0
𝑎1𝑏3 − 𝑎3𝑏1 = 0

𝑆𝑉 :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−2(𝑎1𝑏2 − 𝑎2𝑏1)(𝑎1𝑎2 + 𝑏1𝑏2) + (𝑎2
1 + 𝑏2

1)(𝑎1𝑏3 − 𝑎3𝑏1) = 0
4(𝑎1𝑏2 − 𝑏1𝑎2)[(2𝑎2 + 𝑏2)𝑎1 − (𝑎2 − 2𝑏2)𝑏1][(2𝑎2 − 𝑏2)𝑎1 + (𝑎2 + 2𝑏2)𝑏1]
−2(𝑎2

1 + 𝑏2
1)[(5𝑎2𝑏3 + 4𝑏2𝑎3)𝑎2

1 − 9(𝑎3𝑎2 − 𝑏3𝑏2)𝑎1𝑏1 − (4𝑎2𝑏3 + 5𝑏2𝑎3)𝑏2
1]

+4(𝑎2
1 + 𝑏2

1)2(𝑏4𝑎1 − 𝑏1𝑎4) = 0

For multi-local singularities we also need to take into consideration the value of 𝛾(𝑡), so for
𝛾(𝑡) = (𝛼(𝑡), 𝛽(𝑡)), we have the bi-jet Taylor expansion map 2𝑗

𝑘𝜑𝛾 : (R×R, (0, 0))→ 2𝐽
𝑘(1, 2),

with

2𝑗
𝑘𝜑𝛾(𝑡1, 𝑡2) =

(︁
(𝛼(𝑡1), 𝛼′(𝑡1), 1

2!𝛼
′′(𝑡1), . . . ; 𝛽(𝑡1), 𝛽′(𝑡1), 1

2!𝛽
′′(𝑡1), 1

3!𝛽
′′′(𝑡1), . . .),

(𝛼(𝑡2), 𝛼′(𝑡2), 1
2!𝛼

′′(𝑡2), . . . ; 𝛽(𝑡2), 𝛽′(𝑡2), 1
2!𝛽

′′(𝑡2), 1
3!𝛽

′′′(𝑡2), . . .)
)︁
.

Denote by ((𝑎0, 𝑎1, . . . 𝑎𝑘; 𝑏0, 𝑏1, . . . , 𝑏𝑘), (𝑎′
0, 𝑎

′
1, . . . 𝑎

′
𝑘; 𝑏′

0, 𝑏
′
1, . . . , 𝑏

′
𝑘)) the coordinates in 𝐽𝑘(1, 2)×

𝐽𝑘(1, 2). Then the multi-local strata of interest are given by the following equations:
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𝐼𝑇 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎0 − 𝑎′

0 = 0
𝑏0 − 𝑏′

0 = 0
𝑎1𝑏2 − 𝑎2𝑏1 = 0

𝑉 𝑇 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎0 − 𝑎′

0 = 0
𝑏0 − 𝑏′

0 = 0
−2(𝑎1𝑏2 − 𝑎2𝑏1)(𝑎1𝑎2 + 𝑏1𝑏2) + (𝑎2

1 + 𝑏2
1)(𝑎1𝑏3 − 𝑎3𝑏1) = 0

𝑇𝑐:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎0 − 𝑎′

0 = 0
𝑏0 − 𝑏′

0 = 0
𝑎1𝑏

′
1 − 𝑎′

1𝑏1 = 0.

As observed in §1, we consider codimension 2 phenomena, so we take a ramphoid cusp 𝒜ℎ-
equivalent to (𝑡2, 𝑡4 + 𝑡5). For a 2-parameter family of such a ramphoid cusp to be 𝐹𝑅𝑆-generic
(in any sense), it has to be an 𝒜𝑒-versal deformation of the ramphoid cusp singularity, so we can
take a local parametrisation of the family in the form

𝛾𝑠(𝑡) = (𝑡2, 𝛽(𝑡, 𝑠)) = (𝑡2, �̄�1(𝑠)𝑡+ �̄�2(𝑠)𝑡2 + �̄�3(𝑠)𝑡3 + �̄�4(𝑠)𝑡4 + �̄�5(𝑠)𝑡5 +𝑂𝑠(𝑡6)), (3.9)

with

�̄�1(𝑠) = 𝑠2, �̄�3(𝑠) = 𝑠1, �̄�2(0) = 0, �̄�4(0) = 𝑏4 ̸= 0, �̄�5(0) = 𝑏5 ̸= 0.

We have now a family of bi-jet Taylor expansion map 2𝑗
𝑘Φ : R× R× R2 → 2𝐽

𝑘(1, 2), given
by 2𝑗

𝑘Φ(𝑡1, 𝑡2, 𝑠) = 2𝑗
𝑘𝜑𝛾𝑠(𝑡1, 𝑡2).

The bifurcation set in the family 𝛾𝑠 consists of the projection to the 𝑠-parameter space R2 of
the pull-back of the stratification 𝑆 in 2𝐽

𝑘(1, 2) by 2𝑗
𝑘Φ. We can compute the initial parts of the

parametrisations or equations of the curves forming the bifurcation set in the same way as in
[26].

Theorem 3.5. Let 𝛾𝑠 be a 2-parameter 𝒜𝑒-versal deformation of the ramphoid cusp singularity

of 𝛾 = 𝛾0 which is 𝒜ℎ-equivalent to (𝑡2, 𝑡4 + 𝑡5). Then the map-germ 2𝑗
𝑘Φ is transverse (in a

stratified sense) to the strata 𝑅𝐶,𝐶, 𝑆𝐼, 𝐼𝑇, 𝑇 𝑐, 𝑆𝑉, 𝑉 𝑇 . The bifurcation set of the family 𝛾𝑠
consists of the origin (𝑅𝐶) and the following curves:

𝐶: 𝑠2 = 0,

𝑆𝐼: 𝑠2 = 1
16𝑏2

4
𝑠3

1 +𝑂(𝑠4
1),

𝐼𝑇 : 𝑠2 = − 1
4𝑏2

4
𝑠3

1 +𝑂(𝑠4
1),

𝑇𝑐: (𝑠1, 𝑠2) = (−2𝑏5𝑥
2 +𝑂((𝑥2)2), 𝑏5𝑥

4 +𝑂((𝑥2)3)),
𝑆𝑉 : (𝑠1, 𝑠2) = (10𝑏5𝑥

2 +𝑂(𝑥4), 5𝑏5𝑥
4 − 16𝑏6𝑥

5 +𝑂(𝑥6)),
𝑉 𝑇 : (𝑠1, 𝑠2) = (2𝑏5𝑥

2 +𝑂(𝑥4),−3𝑏5𝑥
4 + 16𝑏6𝑥

5 +𝑂(𝑥6)).
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Proof. The transversality to the strata 𝑅𝐶,𝐶, 𝑇𝑐 follows from Mather’s theorem on𝒜𝑒-versality
implying transversality to 𝒜-orbits. The expressions for the associated curves in the parameter
space follows by similar calculations to those in [26].

For the other local strata, the tangent space to the image of 𝑗𝑘𝜑𝛾𝑠(𝑡) is generated by the
following three vectors

v1 = 𝜕
𝜕𝑡
𝑗𝑘𝜑𝛾𝑠 = (2, 0, . . . , 0 ; 0, 0, 4𝑏4, 5𝑏5, 6𝑏6, . . .)

v2 = 𝜕
𝜕𝑠1
𝑗𝑘𝜑𝛾𝑠 = (0, 0, . . . , 0 ; 0, 0, 1, 0, . . . , 0)

v3 = 𝜕
𝜕𝑠2
𝑗𝑘𝜑𝛾𝑠 = (0, 0, . . . , 0 ; 1, 0, . . . , 0)

Consider the 𝑆𝐼 stratum given by 𝑎1𝑏2 − 𝑎2𝑏1 = 𝑎1𝑏3 − 𝑎3𝑏1 = 0. At 𝑗𝑘𝜑0(0) we have
𝑎2 ̸= 0, so from the first equation we get 𝑏1 = 𝑎1𝑏2/𝑎2 and substituting in the second equation
gives 𝑎1(𝑎2𝑏3 − 𝑎3𝑏3) = 0. However, 𝑎1 = 0 gives 𝑏1 = 0 (from the first equation) which
means that we are on the cusp stratum (singular curve). Therefore, the 𝑆𝐼 stratum is given by
𝑎1𝑏2− 𝑎2𝑏1 = 𝑎2𝑏3− 𝑎3𝑏3 = 0, which is a smooth codimension 2 variety in 𝐽𝑘(1, 2). Its tangent
space at 𝑗𝑘𝜑0(0) is the intersection of the kernels of the 1-forms 𝜉1 = 𝑑𝑏1 and 𝜉2 = 𝑑𝑏3. We have
𝜉1(v3) ̸= 0 and 𝜉2(v2) ̸= 0, so 𝑗𝑘Φ is transverse to the 𝑆𝐼 stratum. This means that it intersects
it on a smooth curve whose pre-image is also a smooth curve in (R× R2, 0). We can calculate
the initial jet of a parametrisation of this pre-image (see [26] for similar calculations) and find
that it is given by (𝑡, 𝑠1, 𝑠2) = (𝑡,−4𝑏4𝑡

3 +𝑂(𝑡4),−4𝑏4𝑡+𝑂(𝑡2)). It clear now why we need the
condition 𝑏4 ̸= 0 (i.e., to have a ramphoid cusp 𝐴ℎ-equivalent to (𝑡2, 𝑡4 + 𝑡5)) as the projection of
this curve to the parameter space R2 is a regular curve if and only if 𝑏4 ̸= 0 (more on this below).

The stratum 𝑆𝑉 is the intersection of two singular varieties (see §3.2 for the structure of the
first one). We are interested in the intersection of 𝑆𝑉 with the image of 𝑗𝑘Φ. As the equations
of 𝑆𝑉 involve only 𝑎𝑖, 𝑏𝑖 with 1 ≤ 𝑖 ≤ 4, we can work in the 4-jet space and consider the
intersection of the tangent space to the image of 𝑗4Φ at 𝑗4𝜑0(0) with 𝑆𝑉 . From the expressions
of v1, v2, v3, we can set 𝑎3 = 𝑎4 = 𝑏2 = 0 (in the equations of 𝑆𝑉 ). Then the sought intersection
is given by the equations

𝑎1(2𝑎2
2𝑏1 + 𝑎2

1𝑏3 + 𝑏2
1𝑏3) = 0 (3.10)

−𝑎2(𝑎2
1 + 𝑏2

1)(5𝑎2
1 − 4𝑏2

1)𝑏3 + 2(𝑎4
1 + 𝑏4

1 + 2𝑎2
1𝑏

2
1)𝑎1𝑏4 + 2(𝑏2

1 − 4𝑎2
1)𝑎3

2𝑏1 = 0 (3.11)

If 𝑎1 = 0 in (3.10), then (3.11) becomes 𝑏3
1𝑎2(𝑎2

2 + 2𝑏3𝑏1) = 0 and as 𝑎2 ̸= 0 at 𝑗4𝜑0(0),
we get 𝑏1 = 0. However 𝑎1 = 𝑏1 = 0 gives the cusp stratum, so (3.10) is equivalent to
2𝑎2

2𝑏1 + 𝑎2
1𝑏3 + 𝑏2

1𝑏3 = 0. This is a smooth hypersurface given by 𝑏1 = 𝜑1(𝑎1, 𝑎2, 𝑏3), with 𝜑1 a
smooth function with a vanishing 2-jet at 𝑗4𝜑0(0). Substituting in (3.11) and taking out a factor
of 𝑎1 gives 𝑏3 = 𝜑2(𝑎1, 𝑎2, 𝑏4), with 𝜑2 a smooth function with a vanishing 1-jet at 𝑗4𝜑0(0). It
follows that the intersection of 𝑆𝑉 with the image of 𝑗𝑘Φ at 𝑗4𝜑0(0) is a smooth curve. We
calculate the initial jet of a parametrisation of the pre-image of this curve by 𝑗𝑘Φ and find that it
is given by (𝑡, 𝑠1, 𝑠2) = (𝑡, 10𝑏5𝑡

2 + 32𝑏6𝑡
3 +𝑂(𝑡4), 5𝑏5𝑡

4 + 16𝑏6𝑡
5 +𝑂(𝑡6)). When projecting
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to the parameter space, we get a singular curve. The singularity is a ramphoid cusp if and only if
𝑏6 ̸= 0. This is a new condition that will be require for 𝐹𝑅𝑆-genericity.

We consider now the multi-local strata 𝐼𝑇 . It can be seen from its defining equations that it
is a stratum of codimension 3 variety. The tangent space to the image of 2𝑗

𝑘Φ is generated by
(v̄1, 0), (0, v̄1), (v̄2, v̄2), (v̄3, v̄3) with v̄𝑖 = (0, v𝑖) and the v𝑖’s are as above. The normal space to
the codimension 2 variety given by the first two equations defining 𝐼𝑇 , i.e 𝑎0− 𝑎′

0 = 𝑏0− 𝑏′
0 = 0

is the intersection of the kernel of the two 1-forms 𝜉1 = 𝑑𝑎0 − 𝑑𝑎′
0 and 𝜉2 = 𝑑𝑏0 − 𝑑𝑏′

0. The
projection of the image of 2𝑗

𝑘Φ to this space is given by ((𝑡21, 𝛽0(𝑡1)), (𝑡22, 𝛽0(𝑡2))). The limiting
tangent space of the projected image is given by ((1, 0), (0, 0)) and ((0, 0), (1, 0)) so is transverse
to the intersection of the kernels 𝜉1 and 𝜉2. The tangent space to the third equation defining 𝐼𝑇 is
the kernel of 𝜉3 = 𝑑𝑏1. Clearly 𝜉3(v̄3, v̄3) ̸= 0. Therefore, the limiting tangent space to the image
of 2𝑗

𝑘Φ at 2𝑗
𝑘𝜑0(0, 0) is transverse to the 𝐼𝑇 stratum. The pre-image in (R× R× R2, 0) of the

𝐼𝑇 stratum by 2𝑗
𝑘Φ is parametrised by (𝑡1, 𝑡2, 𝑠1, 𝑠2) = (𝑡,−𝑡, 2𝑏4𝑡

3 + 𝑂(𝑡4),−2𝑏4𝑡 + 𝑂(𝑡2)).
As 𝑏4 ̸= 0, its projection to the parameter space is a regular curve.

We proceed similarly for the 𝑉 𝑇 stratum. Here, we find that the pre-image in (R × R ×
R2, 0) of the 𝑉 𝑇 stratum by 2𝑗

𝑘Φ is parametrised by (𝑡1, 𝑡2, 𝑠1, 𝑠2) = (𝑡,−𝑡, 2𝑏5𝑡
2 + 8𝑏6𝑡

3 +
𝑂(𝑡4),−3𝑡4𝑏5 − 8𝑏6𝑡

5 +𝑂(𝑡6)). Here also we require 𝑏6 ̸= 0 for the projection of this curve to
the parameter space to have a ramphoid cusp singularity.

As a consequence of Theorem 3.5 and the comments in its proof, we define as follows
𝐹𝑅𝑆-generic families of a ramphoid cusp 𝐴ℎ-equivalent to (𝑡2, 𝑡4 + 𝑡5).

Definition 3.4. Let 𝛾0 = (𝑡2, 𝛽0(𝑡)) be smooth curve with 𝛽0(𝑡) = 𝑏4𝑡
4 + 𝑏5𝑡

5 + 𝑏6𝑡
6 + 𝑂(𝑡7)

and suppose that 𝑏4 ̸= 0, 𝑏5 ̸= 0 and 𝑏6 ̸= 0. A 2-parameter deformation 𝛾𝑠 of 𝛾0 is said to be

𝐹𝑅𝑆-generic if it is an 𝒜𝑒-versal deformation of the ramphoid cusp singularity of 𝛾0 at 𝑡 = 0.

Theorem 3.6. Let 𝛾𝑠 = (𝑡2, 𝛽(𝑡, 𝑠)) be an 𝐹𝑅𝑆-deformation of the curve 𝛾 = 𝛾0 with a

ramphoid cusp singularity at 𝑡 = 0 satisfying the hypothesis in Definition 3.4. Then 𝛾𝑠 is 𝐹𝑅𝑆-

equivalent to the model family (𝑡2, 𝑡4 + 𝑡5 + 𝑡6 + 𝑢𝑡3 + 𝑣𝑡). The 𝐹𝑅𝑆-bifurcations in 𝛾𝑠 are as

shown in Figure 3.12.

Proof. It follows from Theorem 3.5 that the bifurcations sets of the family 𝛾𝑠 and that of the
model are homeomorphic. The numerator of the curvature function of 𝛾𝑠 is given by

2𝑠1 − 6𝑠2𝑡
2 − 16(𝑏4 +𝑂(𝑠))𝑡3 +𝑂𝑠(𝑡4).

We have a maximum of 3 inflections on any curve 𝛾𝑠. Also as we cross the 𝐻𝐼-stratum, we get 3
inflections on 𝛾𝑠 with 𝑠 on one side of the 𝑆𝐼-stratum and 1 inflection for 𝑠 on the other side of
the stratum.
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Figure 3.12 – 𝐹𝑅𝑆-deformations of a ramphoid cusp. First order vertices (resp. inflections) are represented by
circular (resp. square) dots and second order vertices (resp. inflections) are represented by bigger
circular dots (resp. stars).

Similarly, the numerator of the derivative of the curvature function of 𝛾𝑠 is given by

−24𝑠1𝑡+𝑂(𝑠2)𝑡2 + 24𝑠2𝑡
3 +𝑂(𝑠2)𝑡4 − 120(𝑏5 +𝑂(𝑠))𝑡5 +𝑂𝑠(𝑡6).

We have a maximum of 5 vertices on any curve 𝛾𝑠. As we cross the 𝑆𝑉 -stratum, we get an extra
vertex on 𝛾𝑠 with 𝑠 on one side of the 𝐻𝑉 -stratum and one vertex less for 𝑠 on the other side of
the stratum.

To get the configuration of the inflections and vertices on 𝛾𝑠 with 𝑠 in a given stratum, we use
the results in §3.2 about the 𝐹𝑅𝑆-deformations of the cusp and the fact that changes occur only
as we cross a curve of the bifurcation set. Explicit calculations show that the configurations of
the vertices and inflections on the cusp stratum 𝐶 are as in Figure 3.12 2○ and 14○. It is now a
matter of going around the origin in the parameter space and plotting the inflections and vertices
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on the curve as we cross the various strata of the bifurcations set.

All the above information depend only on the fact that the family is 𝐹𝑅𝑆-generic and is the
same for all 𝐹𝑅𝑆-generic families. It follows from the definition of 𝐹𝑅𝑆-equivalence that any
𝐹𝑅𝑆-generic family is 𝐹𝑅𝑆-equivalent to the model family (𝑡2, 𝑡4 + 𝑡5 + 𝑡6 + 𝑢𝑡3 + 𝑣𝑡).

Theorem 3.7. Let 𝛾𝑠 = (𝑡2, 𝛽(𝑡, 𝑠)) be an 𝐹𝑅𝑆-deformation of the curve 𝛾 = 𝛾0 with a ram-

phoid cusp singularity at 𝑡 = 0 satisfying the hypothesis in Definition 3.4. Then the bifurcations

in its evolute are as in Figure 3.13.
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Figure 3.13 – 𝐹𝑅𝑆-deformations of the evolute of a ramphoid cusp (normal lines at the inflections in dots).

Proof. We start by determining the full evolute of 𝛾0. The distance squared function on 𝛾0 is
given by

𝐷(𝑡, 𝑎, 𝑏) = (𝑡2 − 𝑎)2 + (𝛽0(𝑡)− 𝑏)2 = 𝛽0(𝑡)2 + 𝑡4 − 2𝛽0(𝑡)𝑏− 2𝑎𝑡2 + 𝑎2 + 𝑏2.
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Using similar calculations to those in the proof of Theorem 3.4 part (ii), we get the line
𝑎 = 0 with multiplicity 3 as part of the bifurcation set of the family 𝐷. The proper evolute is
given by (𝑎, 𝑏) = (5𝑏5

8𝑏4
𝑡3 + 𝑂(𝑡4), 1

2𝑏4
− 15𝑏5

16𝑏2
4
𝑡+ 𝑂(𝑡2)). Observe that the function 𝐷(0,𝑏) has an

𝐴3-singularity for all points (0, 𝑏) along the normal line 𝑎 = 0 except at 𝑏 = 1
2𝑏4

where the
singularity is of type 𝐴4.

For the rest of proof, we use the configuration of the vertices and inflections in each stratum ob-
tained from Theorem 3.6 and Figure 3.12 and the results in §3.1 and §3.2 on 𝐹𝑅𝑆-deformations
of the evolute at a cusp and at a second order inflection and vertex. For example at cusp stratum
part (2) in Figure 3.12 we know from Theorem 3.6 that there is a birth of 2 vertices and one
inflection. According to Theorem 3.4 the full evolute at cusp point is two lines together with
a regular curve tangent to these lines. Also at inflections the evolute goes to infinity as we
mentioned in §3.1. Comparing curves (1) and (2) in Figure 3.13 we deduce that as the proper
evolute of (1) has inflection at (0, 1

2𝑏4
), hence the evolute in (2) must intersect the normal line.

Thereby, when (2) geting closer to (1) then two cusps in (2) joint together and construct the
proper evolute in (1) as well.

Remark 3.2. In [13], F. S. Dias and F. Tari proved that for a plane curve 𝛾 which has a

singularity at point 𝑡0, the number of vertices of 𝛾 concentrated at the singular point satisfies

𝑉 = 𝐼 + 𝜇− 2,

where 𝐼 and 𝜇 denote the number of inflections at the singular point and the Milnor number of

distance squared function 𝐷𝑐0 of 𝛾 respectively, where 𝑐0 is the point in the normal direction at

cusp point such that the proper evolute passes through this point.
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CHAPTER

4
VERTICES AND EVOLUTES OF PROJECTIONS OF

SPACE CURVES

In this chapter we apply the results in Chapter §3 to the family of orthogonal projections of
space curves. Let 𝛾 : 𝐼 → R3 be a 𝐶∞ space curve and let 𝐶∞(𝐼,R3) denotes the set of curves.
We equip this set with the Whitney 𝐶∞-topology.

For a given unit vector 𝑤 ∈ 𝑆2, the orthogonal projection of 𝛾 along the vector 𝑤 is the plane
curve 𝛼𝑤 : 𝐼 → 𝑤⊥ given by

𝛼𝑤(𝑡) = 𝛾(𝑡)− ⟨𝛾(𝑡), 𝑤⟩𝑤,

where 𝑤⊥ is the plane orthogonal to 𝑤 which we can identify with 𝑇𝑤𝑆2. Observe that if 𝑤 is
tangent to 𝛾 at 𝑡, then 𝛼′

𝑤(𝑡) = 0 and if 𝑤 is transverse to 𝛾 at 𝑡, then 𝛼𝑤(𝑡) is regular at 𝑡. In
§4.2 we consider the case when 𝛼𝑤(𝑡) has vertex at 𝑡. The contact of the projected plane curves
𝛼𝑤(𝑡) with circles gives information about the contact of 𝛾 with circular cylinder. In §4.2.2 we
study the contact of 𝛾 with cylinder. In §4.3 we consider the case when 𝛼𝑤(𝑡) is singular. We
prove that the family of projected plane curves 𝛼𝑤(𝑡) is 𝐹𝑅𝑆-generic family of an ordinary cusp
and of a ramphoid cusp as well.

4.1 Preliminaries

Theorem 4.1 ([12]). There is a residual subset Ω ⊂ 𝐶∞(𝐼,R3) such that if 𝛾 ∈ Ω then it is an

embedding and for any 𝑤 ∈ 𝑆2, 𝛼𝑤 = 𝑃𝑤 ∘ 𝛾 has only singularities of type 𝐴0, 𝐴1, 𝐴2, 𝐴3, 𝐴4,

𝐴5, 𝐷4, 𝐷5, 𝐷6 and �̃�7.

The curves in the set Ω ⊂ 𝐶∞(𝐼,R3) are called projection-generic by David ([12]).

For a given space curve 𝛾 there exist Frenet frame {𝑇 (𝑡), 𝑁(𝑡), 𝐵(𝑡)} at point 𝑡 where 𝑇 (𝑡),
𝑁(𝑡) and 𝐵(𝑡) are the tangent, normal and binormal vectors of 𝛾 at 𝑡 respectively.
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We denote the curvature and torsion of 𝛾 by 𝜅 and 𝜏 respectively. The plane generated by 𝑇 (𝑡)
and 𝑁(𝑡) is called the osculating plane and denoted by 𝒪(𝑡). Furthermore, the plane generated
by 𝑁(𝑡) and 𝐵(𝑡) is called the normal plane. The rectifying plane is the plane generated by 𝑇 (𝑡)
and 𝐵(𝑡).

The following definition is given in [14].

Definition 4.1. A space curve 𝛾 ∈ 𝐶∞(𝐼,R3) is said to be generic if it is projection-generic and

satisfies the following conditions:

(0) If 𝜏(𝑡) = 0 for some 𝑡 then 𝜏 ′(𝑡) ̸= 0.

(1) Assume that the secant line 𝑙 to 𝛾 at two points 𝛾(𝑡𝑖), 𝑖 = 1, 2, is contained in the osculating

planes 𝒪(𝑡𝑖) for any 𝑖 = 1, 2. Then 𝜏(𝑡𝑖) ̸= 0 for any 𝑖 = 1, 2.

(2) Let 𝑙 be a cross tangent to 𝛾 at 𝛾(𝑡𝑖) for any 𝑖 = 1, 2, tangent in 𝛾(𝑡1). Then 𝛾(4)(𝑡1) ̸⊂
𝒪(𝑡1).

(3) Let 𝑙 be a trisecant line to 𝛾 at three points 𝛾(𝑡𝑖), 𝑖 = 1, 2, 3. If 𝑙 ⊂ 𝒪(𝑡1), then 𝜏(𝑡1) ̸= 0
and 𝑙 ̸⊂ 𝒪(𝑡𝑖) for any 𝑖 = 2, 3.

(4) Let 𝑙 be a trisecant line to 𝛾 at three points 𝛾(𝑡𝑖), 𝑖 = 1, 2, 3. If 𝑙 is contained in a bitangent

plane 𝜋 to 𝛾 at two of these points, then 𝜋 does not osculate at any of the three points and

𝛾(3)(𝑡𝑖) is not contained in the bitangent plane.

(5) Let 𝑙 be a quadrisecant line to 𝛾 at four points 𝛾(𝑡𝑖), 𝑖 = 1, 2, 3, 4. Then, 𝑙 ̸⊂ 𝒪(𝑡𝑖) and

𝑙||𝛾(3)(𝑡𝑖) at most in two points.

In [14] it is shown that the subset of generic space curves is residual in 𝐶∞(𝐼,R3).

Proposition 4.1 ([14]). Let 𝛾 be a generic space curve and let 𝑤 ∈ 𝑆2 be such that 𝑤 does not

lie in any secant line of 𝛾 passing through 𝛾(𝑡0). Then the germ of 𝑃𝑤 ∘ 𝛾 at 𝑡0 has a singularity

of type:

𝐴0 ⇔ 𝑤 /∈ 𝑇 (𝑡0), moreover, it is 𝐴ℎ-equivalent to 𝐴02 if 𝑤 /∈ 𝒪(𝑡0),

𝐴03 if 𝑤 ∈ 𝒪(𝑡0) and 𝜏(𝑡0) ̸= 0,

𝐴04 if 𝑤 ∈ 𝒪(𝑡0) and 𝜏(𝑡0) = 0.

𝐴23 ⇔ 𝑤 ∈ 𝑇 (𝑡0) and 𝜏(𝑡0) ̸= 0.

𝐴44 ⇔ 𝑤 ∈ 𝑇 (𝑡0) and 𝜏(𝑡0) = 0.

The notations used in Proposition 4.1 are defined in [14]. In fact, the 𝐴ℎ-singularities of a
generic space curve for local singularities are summarized in Table 4.1.
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𝒜-class 𝐴ℎ-class Germ

𝐴0 𝐴02 (𝑡, 𝑡2)
𝐴03 (𝑡, 𝑡3)
𝐴04 (𝑡, 𝑡4)

𝐴2 𝐴23 (𝑡2, 𝑡3)
𝐴4 𝐴44 (𝑡2, 𝑡4 + 𝑡5)
Table 4.1 – 𝐴ℎ-local singularities.

4.2 Regular projections

In this section we study the regular projected plane curves and their contact with circles. As
we observed in Proposition 4.1, the projected plane curve 𝛼𝑤 has an inflection at 𝑡0 if and only if
𝑤 belongs to osculating plane 𝒪(𝑡0). Here, we consider the case when 𝑤 /∈ 𝒪(𝑡0).

If we let 𝑤 vary locally near the initial direction 𝑤0, then we will get the family of projected
plane curves 𝛼𝑤(𝑡). Without loss of generality we suppose that the point 𝑝 is the origin and
the initial direction is 𝑤0 = (0, 0, 1). As we want to preserve the geometry of the projected
curve, we are allowed only solid motions. We shall use rotations to fix the plane 𝑧 = 0 as
the plane of projection. We use the spherical coordinate for the vector 𝑤 so we write 𝑤 =
(sin(𝑣), cos(𝑣) sin(𝑢), cos(𝑢) cos(𝑣)) with 𝑢, 𝑣 ∈ R near zero.

Let

𝑅 =

⎛⎜⎜⎜⎝
cos(𝑣) − sin(𝑣) sin(𝑢) − sin(𝑣) cos(𝑢)

0 cos(𝑣) cos(𝑢) − sin(𝑢)
sin(𝑣) sin(𝑢) cos(𝑣) cos(𝑣) cos(𝑢)

⎞⎟⎟⎟⎠ (4.1)

be the matrix of rotation. Under (4.1), the projected plane curve 𝛼𝑤(𝑡) is taken to

𝛼𝑤(𝑡) =

⎛⎜⎜⎜⎝
− cos(𝑢) sin(𝑣)𝛾3(𝑡)− sin(𝑣) sin(𝑢)𝛾2(𝑡) + cos(𝑣)𝛾1(𝑡)

cos(𝑢)𝛾2(𝑡)− sin(𝑢)𝛾3(𝑡)
0

⎞⎟⎟⎟⎠ , (4.2)

which is a curve in the plane 𝑧 = 0.

The family of distance squared functions on the projected plane curve 𝛼𝑤 (4.2), is 𝐷 :
𝐼 × 𝑇𝑆2 → R such that

𝐷(𝑡, 𝑤, 𝑎, 𝑏) = ⟨𝛼𝑤(𝑡)− e, 𝛼𝑤(𝑡)− e⟩, where e = (𝑎, 𝑏, 0).

Let 𝐷(𝑤,e)(𝑡) := 𝐷(𝑡, 𝑤, 𝑎, 𝑏) be the distance squared function on 𝛼𝑤 from the point e on the
plane 𝑧 = 0.

4.2.1 Evolute of projections of space curves

The following theorem gives information about the𝒦-singularities of distance squared function
on a generic immersed curve in R3.
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Theorem 4.2 (Theorem 4.9 of [24]). For a generic immersed curve 𝐶 in R3, theℛ-singularities

of 𝐷(𝑤,e) are of type 𝐴𝑘, 𝑘 = 1, . . . , 5.

Theorem 4.3. The family of distance squared functions 𝐷, is an ℛ+-versal unfolding of

𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 local singularities of 𝐷(𝑤,e)(𝑡).

Proof. We prove here the versality of 𝐷 for special case when 𝑤0 is equal to the binormal vector
at 𝑡0 = 0. A proof for the general case is given in Appendix A. Without loss of generality we can
suppose that at 𝑡0 = 0, 𝑇 (0) = (1, 0, 0), 𝑁(0) = (0, 1, 0) and 𝐵(0) = (0, 0, 1). Applying the
Serret-Frenet formulae we have

𝛾′(0) = (1, 0, 0),

𝛾′′(0) = (0, 𝜅(0), 0),

𝛾(3)(0) = (−𝜅2(0), 𝜅′(0), 𝜅(0)𝜏(0)),

𝛾(4)(0) = (−𝜅(0)𝜅′(0), 𝜅′′(0)− 𝜅3(0)− 𝜅(0)𝜏 2(0), 2𝜅′(0)𝜏(0) + 𝜅(0)𝜏 ′(0)).

By using the Taylor expansion of 𝛾 we get an explicit formula for 𝛾 with respect to the frame
{𝑇 (0), 𝑁(0), 𝐵(0)};

𝛾(𝑡) =

⎛⎜⎝ 𝑡− 1
6 𝜅2𝑡3 − 1

8 𝜅𝜅′𝑡4 + ( 1
120 (𝜏2𝜅2 + 𝜅4 − 4𝜅′𝜅− 3𝜅2))𝑡5 + 𝑂(𝑡6)

1
2 𝜅𝑡2 + 1

6 𝜅′𝑡3 − ( 1
24 (−𝜏2𝜅− 𝜅3 + 𝜅′′))𝑡4 + ( 1

120 (−3𝜅′𝜏2 − 6𝜅′𝜅2 − 3𝜏 ′𝜏𝜅))𝑡5 + 𝑂(𝑡6)
− 1

6 𝜅𝜏𝑡3 + ( 1
24 (2𝜅′𝜏 + 𝜏 ′𝜅))𝑡4 + ( 1

120 (−𝜏3𝜅− 𝜏𝜅3 + 3𝜅′𝜏 ′ + 3𝜅′′𝜏 + 𝜏 ′′𝜅))𝑡5 + 𝑂(𝑡6)

⎞⎟⎠ , (4.3)

where 𝜅, 𝜅′, 𝜅′′, 𝜏 , 𝜏 ′ and 𝜏 ′′ are considered at 𝑡0 = 0. Note that always we have 𝜅 > 0.

One can get the conditions for𝐷(0,0,𝑎,𝑏)(𝑡) = 𝐷(𝑡, 0, 0, 𝑎, 𝑏) to have an𝐴𝑘-singularity at 𝑡0 = 0
for 𝑘 = 1, . . . , 5 by an straightforward calculation (see Table 4.2).

To verify ℛ+-versality of an 𝑟-parameter family of a singularity of type 𝐴𝑘, (𝑘 ≥ 1), we
should prove that every real polynomial 𝑝(𝑡) of degree ≤ 𝑘 − 1 and without constant term can
be written in the form

𝑝(𝑡) =
𝑟∑︁
𝑖=1

𝑐𝑖𝑗
𝑘−1(𝜕𝐹

𝜕𝑥𝑖
(𝑡, 𝑥0)(0))

for some real constants 𝑐𝑖, where 𝑥𝑖 denote the parameters for 𝑖 = 1, . . . , 𝑟 (see §2.4 and chapter
6 of [6] for more details).

There is an equivalent formulation of this criterion ([6]). Let 𝑗𝑘−1( 𝜕𝐹
𝜕𝑥𝑖

(𝑡, 𝑥0)(0)) = 𝛼1𝑖𝑡 +
𝛼2𝑖𝑡

2 + · · · + 𝛼𝑘−1,𝑖𝑡
𝑘−1 for 𝑘 = 1, ..., 𝑟. Then 𝐹 is ℛ+-versal if and only if the 𝑟 × (𝑘 − 1)

matrix of coefficients [𝛼𝑖𝑗] has rank 𝑘 − 1.
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We have

𝑗4(𝜕𝐷
𝜕𝑎

(𝑡, 0, 0, 𝑎, 𝑏)(0)) = −2𝑡+ (1/3)𝜅2𝑡3 + (1/4)𝜅𝜅′
𝑡4,

𝑗4(𝜕𝐷
𝜕𝑏

(𝑡, 0, 0, 𝑎, 𝑏)(0)) = −𝜅𝑡2 − (1/3)𝜅′
𝑡3 + (−(1/12)𝜅𝜏 2 − (1/12)𝜅3 + (1/12)𝜅′′)𝑡4,

𝑗4(𝜕𝐷
𝜕𝑢

(𝑡, 0, 0, 𝑎, 𝑏)(0)) = −(1/3)𝑎𝜅𝜏𝑡3 + ((1/12)𝑎(2𝜅′
𝜏 + 𝜏

′
𝜅) + (1/3)𝜅𝜏)𝑡4,

𝑗4(𝜕𝐷
𝜕𝑣

(𝑡, 0, 0, 𝑎, 𝑏)(0)) = −(1/3)𝑏𝜅𝜏𝑡3 + (1/12)𝑏(2𝜅′
𝜏 + 𝜏

′
𝜅)𝑡4,

so the coefficient matrix is

[𝛼𝑖𝑗] =

⎡⎢⎢⎢⎢⎢⎢⎣
−2 0 (1/3)𝜅2 (1/4)𝜅𝜅′

0 −𝜅 (1/3)𝜅′ (−1/12)𝜅𝜏 2 − (1/12)𝜅3 + (1/12)𝜅′′)
0 0 −(1/3)𝑎𝜅𝜏 ((1/12)𝑎(2𝜅′𝜏 + 𝜏 ′𝜅) + (1/3)𝜅𝜏)
0 0 −(1/3)𝑏𝜅𝜏 (1/12)𝑏(2𝜅′𝜏 + 𝜏 ′𝜅)

⎤⎥⎥⎥⎥⎥⎥⎦ .

For 𝑘 = 1, 2, the family of distance squared functions is always ℛ+-versal. For 𝑘 = 3, the
coefficient matrix [𝛼𝑖𝑗] is ⎡⎢⎢⎢⎢⎢⎢⎣

−2 0
0 −𝜅
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

which has rank 2 if and only if 𝜅 ̸= 0 (this holds because we assumed that 𝜅 > 0). Therefore 𝐷
is anℛ+-versal family of an 𝐴3-singularity if and only if 𝜅 ̸= 0. For 𝑘 = 4 the 4× 3 matrix⎡⎢⎢⎢⎢⎢⎢⎣

−2 0 1
3𝜅

2

0 −𝜅 0
0 0 0
0 0 −1

3 𝜏

⎤⎥⎥⎥⎥⎥⎥⎦
has rank 3 if and only if 𝜅𝜏 ̸= 0. Therefore the family of distance squared functions 𝐷, is
an ℛ+-versal of an 𝐴4-singularity if and only if 𝜅𝜏 ̸= 0. For 𝑘 = 5 the determinant of the
coefficient matrix [𝛼𝑖𝑗] is equal to −2

9𝜅
2𝜏 2. Thus we conclude that 𝐷 is anℛ+-versal unfolding

of an 𝐴5-singularity if and only if 𝜅𝜏 ̸= 0.

sing. condition on 𝐷(0,𝑥)(𝑡) versality

𝐴1 𝑎 = 0 always

𝐴2 𝑎 = 0 , 𝑏 = 1
𝜅(0) always

𝐴3 𝑎 = 0, 𝑏 = 1
𝜅(0) , 𝜅′(0) = 0 𝜅(0) ̸= 0

𝐴4 𝑎 = 0 , 𝑏 = 1
𝜅(0) , 𝜅′(0) = 0 , 𝜅(0)𝜏2(0) = 𝜅

′′(0) 𝜅(0), 𝜏(0) ̸= 0
𝐴5 𝑎 = 0 , 𝑏 = 1

𝜅(0) , 𝜅′ = 0 , 𝜅(0)𝜏2(0) = 𝜅′′(0) , 3𝜅(0)𝜏(0)𝜏 ′(0) = 𝜅′′′(0) 𝜅(0), 𝜏(0) ̸= 0
Table 4.2 – Conditions ofℛ+-versality of the family of distance squared function on 𝛾.
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Proposition 4.2. Let 𝛾 : 𝐼 → R3 be a space curve and 𝛼𝑤(𝑡) be the modified orthogonal

projection of 𝛾 along the vector 𝑤 given by (4.2). Then,

i) The distance squared function, 𝐷(𝑤,e), on 𝛼𝑤(𝑡) has an 𝐴1-singularity at 𝑡 = 0 if and only

if 𝛼𝑤(0)− e = 𝜂𝑇 (0)× 𝑤 for a non zero real number 𝜂 and a point e in the plane 𝑧 = 0.

ii) The distance squared function, 𝐷(𝑤,e), on 𝛼𝑤(𝑡) has an 𝐴2-singularity at 𝑡 = 0 if and only

if 𝛼𝑤(0)− e = 𝜂𝑇 (0)× 𝑤 and −𝜅(0)𝜂⟨𝐵(0), 𝑤⟩ = ⟨𝑇 (0), 𝑤⟩2 − 1.

iii) The curve 𝛼𝑤 has an ordinary vertex at 𝑡 = 0 if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼𝑤(0)− e = 𝜂𝑇 (0)× 𝑤,

−𝜅(0)𝜂⟨𝐵(0), 𝑤⟩ = ⟨𝑇 (0), 𝑤⟩2 − 1,

−𝜅′(0)𝜂⟨𝐵(0), 𝑤⟩+ 𝜅(0)𝜏(0)𝜂⟨𝑁(0), 𝑤⟩ − 3𝜅(0)⟨𝑁(0), 𝑤⟩⟨𝐵(0), 𝑤⟩ = 0.

Proof. We have

1
2𝐷

′(𝑡) =⟨𝛼′
𝑤(𝑡), 𝛼𝑤(𝑡)− 𝑒⟩,

1
2𝐷

′′(𝑡) =⟨𝛼′′
𝑤(𝑡), 𝛼𝑤(𝑡)− 𝑒⟩+ ⟨𝛼′

𝑤(𝑡), 𝛼′
𝑤(𝑡)⟩

=⟨𝜅(𝑡)𝑁(𝑡)− ⟨𝜅(𝑡)𝑁(𝑡), 𝑤⟩𝑤, 𝛼𝑤(𝑡)− 𝑒⟩+ 1− ⟨𝑇 (𝑡), 𝑤⟩2,
1
2𝐷

′′′(𝑡) =⟨𝜅′(𝑡)𝑁(𝑡), 𝛼𝑤(𝑡)− 𝑒⟩ − 𝜅2(𝑡)⟨𝑇 (𝑡), 𝛼𝑤(𝑡)− 𝑒⟩+ 𝜅(𝑡)𝜏(𝑡)⟨𝐵(𝑡), 𝛼𝑤(𝑡)− 𝑒⟩

− ⟨𝜅′(𝑡)𝑁(𝑡)− 𝜅2(𝑡)𝑇 (𝑡) + 𝜅(𝑡)𝜏(𝑡)𝐵(𝑡), 𝑤⟩⟨𝑤, 𝛼𝑤(𝑡)− 𝑒⟩

− 3⟨𝜅(𝑡)𝑁(𝑡), 𝑤⟩⟨𝑇 (𝑡), 𝑤⟩.

Therefore at 𝑡 = 0 we have

1
2𝐷

′(0) = 0⇔ 𝛼′
𝑤(0) ⊥ 𝛼𝑤(0)− 𝑒

⇔ 𝛼𝑤(0)− 𝑒 = 𝜂𝛼′
𝑤

⊥(0), where𝛼′
𝑤

⊥(0) is the orthogonal vector to 𝛼′
𝑤(0)

⇔ 𝛼𝑤(0)− 𝑒 = 𝜂𝑇 (0)× 𝑤 for some non zero real number 𝜂.

Note that here ⟨𝑤, 𝛼′
𝑤

⊥(0)⟩ = 0 and ⟨𝑇 (0) − ⟨𝑇 (0), 𝑤⟩𝑤, 𝛼′
𝑤

⊥(0)⟩ = 0, therefore 𝛼′
𝑤

⊥(0) =
𝑇 (0)× 𝑤. This proves (i). For (ii) we have

1
2𝐷′(0) = 1

2𝐷′′(0) = 0⇔

⎧⎪⎨⎪⎩ 𝛼𝑤(0)− 𝑒 = 𝜂𝑇 (0)× 𝑤,

⟨𝜅(0)𝑁(0)− ⟨𝜅(0)𝑁(0), 𝑤⟩𝑤, 𝛼𝑤(0)− 𝑒⟩+ 1− ⟨𝑇 (0), 𝑤⟩2 = 0.

Therefore

⟨𝜅(0)𝑁(0), 𝜂𝑇 (0)× 𝑤⟩ − ⟨𝜅(0)𝑁(0), 𝑤⟩⟨𝑤, 𝜂𝑇 (0)× 𝑤⟩+ 1− ⟨𝑇 (0), 𝑤⟩2 = 0.
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Hence 𝜅(0)𝜂⟨𝑁(0), 𝑇 (0) × 𝑤⟩ = ⟨𝑇 (0), 𝑤⟩2 − 1. As ⟨𝑁(0), 𝑇 (0) × 𝑤⟩ = ⟨𝑤,𝑁(0) × 𝑇 (0)⟩
and 𝑁(0)× 𝑇 (0) = −𝐵(0), we have

𝜂 = 1− ⟨𝑇 (0), 𝑤⟩2

𝜅(0)⟨𝐵(0), 𝑤⟩ .

For the last part (iii) we have

1
2𝐷′(0) = 1

2𝐷′′(0) = 1
2𝐷(3)(0) = 0 ⇔

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝛼𝑤(0) − 𝑒 = 𝜂𝑇 (0) × 𝑤,

𝜂 = 1−⟨𝑇 (0),𝑤⟩2

𝜅(0)⟨𝐵(0),𝑤⟩ ,

⟨𝜅′(0)𝑁(0), 𝛼𝑤(0) − 𝑒⟩ − 𝜅2(0)⟨𝑇 (0), 𝛼𝑤(0) − 𝑒⟩
−⟨𝜅′(0)𝑁(0) − 𝜅2(0)𝑇 (0) + 𝜅(0)𝜏(0)𝐵(0), 𝑤⟩⟨𝑤, 𝛼𝑤(0) − 𝑒⟩
−3⟨𝜅(0)𝑁(0), 𝑤⟩⟨𝑇 (0), 𝑤⟩ + 𝜅(0)𝜏(0)⟨𝐵(0), 𝛼𝑤(0) − 𝑒⟩ = 0.

By simplifying the above equalities we get

1− ⟨𝑇 (0), 𝑤⟩2

𝜅⟨𝐵(0), 𝑤⟩

(︂
− 𝜅′(0)⟨𝐵(0), 𝑤⟩+ 𝜅(0)𝜏(0)⟨𝑁(0), 𝑤⟩

)︂
= 3𝜅(0)⟨𝑁(0), 𝑤⟩⟨𝑇 (0), 𝑤⟩.

Observation 4.1. An straightforward calculation shows that the curvature of projected plane

curve 𝛼𝑤, is given by

𝜅𝛼𝑤(𝑡) = 𝜅(𝑡)⟨𝐵(𝑡), 𝑤⟩(︁
1− ⟨𝑇 (𝑡), 𝑤⟩2

)︁ 3
2
.

In §3.1 we studied the evolute of an ordinary vertex. We observed that the deformations
of a curve at a vertex 𝑡0 of finite order can be studied using the family of distance squared
function. If this family is anℛ+-versal deformation of an 𝐴𝑘-singularity, then we have a well
understood model of the deformation of the vertex. As seen in Theorem 4.3 the family of distance
squared function of a modified orthogonal projected plane curve 𝛼𝑤 is R+-versal so following
the discussion in §3.1, we conclude that the family 𝛼𝑤 of an 𝐴3-singularity is 𝐹𝑅-generic. The
evolute at an ordinary vertex is as in Figure 4.1.

Figure 4.1 – An ordinary vertex of the projected plane curve 𝛼𝑤.

The projected plane curve 𝛼𝑤 has a second order vertex at 𝑡0 if 𝜅𝛼𝑤(𝑡0) ̸= 0, 𝜅′
𝛼𝑤

(𝑡0) =
𝜅′′
𝛼𝑤

(𝑡0) = 0 and 𝜅′′′
𝛼𝑤

(𝑡0) ̸= 0. The following proposition gives information about space curve 𝛾
when its orthogonal projection has a second order vertex at 𝑡0 = 0.
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Proposition 4.3. Let 𝛾 : 𝐼 → R3 be a space curve and 𝛼𝑤(𝑡) be the modified orthogonal
projection of 𝛾 along the vector 𝑤 given by (4.2). Then, the plane curve 𝛼𝑤 has a second order
vertex at 𝑡 = 0 if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛼𝑤(0)− e = 𝜂𝑇 (0)× 𝑤,

𝜂 = 1−⟨𝑇 (0),𝑤⟩2

𝜅(0)⟨𝐵(0),𝑤⟩ ,

1−⟨𝑇 (0),𝑤⟩2

𝜅⟨𝐵(0),𝑤⟩

(︁
− 𝜅′(0)⟨𝐵(0), 𝑤⟩+ 𝜅(0)𝜏(0)⟨𝑁(0), 𝑤⟩

)︁
= 3𝜅(0)⟨𝑁(0), 𝑤⟩⟨𝑇 (0), 𝑤⟩,(︂

−2𝜅′2(0)𝜏(0)−𝜅′(0)𝜅(0)𝜏 ′(0)+𝜅(0)𝜅′′(0)𝜏(0)+3𝜅4(0)𝜏(0)−𝜅2(0)𝜏2(0)
𝜅2(0)𝜏(0)

)︂
⟨𝑇 (0), 𝑤⟩2 − 3𝜅2(0)⟨𝑁(0), 𝑤⟩2

+
(︂

3𝜅(0)𝜏 ′(0)+2𝜅′(0)𝜏(0)
𝜏(0)

)︂
⟨𝑇 (0), 𝑤⟩⟨𝑁(0), 𝑤⟩ − 4𝜅(0)𝜏(0)⟨𝑇 (0), 𝑤⟩⟨𝐵(0), 𝑤⟩(︂

2𝜅′2(0)𝜏(0)+𝜅(0)𝜅′(0)𝜏 ′(0)+𝜅2(0)𝜏3(0)+𝜅4(0)𝜏(0)−𝜅(0)𝜅′′(0)𝜏(0)−𝜅4(0)𝜏(0)
𝜅2(0)𝜏(0)

)︂
= 0.

Proof. By a direct calculation and using Proposition 4.2 one can get the proof.

Observation 4.2. Let 𝛾 : 𝐼 → R3 be a space curve and 𝛼𝑤(𝑡) be the modified orthogonal

projection of 𝛾 along a vector 𝑤. If 𝑤 = 𝐵(0), then using Proposition 4.3 we have

𝛼𝑤 has a second order vertex at 0⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛼𝑤(0)− e = −𝜂𝑁(0),

𝜂 = 1
𝜅(0) ,

𝜅′(0) = 0,

𝜅′′(0) = 𝜅(0)𝜏 2(0).

According to Theorem 4.3, the family of distance squared function of an 𝐴4-singularity is
ℛ+-versal, so using the discussion in §3.1, the projected plane curve 𝛼𝑤 is 𝐹𝑅-equivalent to the
𝐹𝑅-model family. The evolute at a second order vertex is given in Figure 4.2.

Figure 4.2 – An evolute at a second order vertex of a projected plane curve 𝛼𝑤.

A third order vertex is a point which 𝜅𝛼𝑤(𝑡0) ̸= 0, 𝜅′
𝛼𝑤

(𝑡0) = 𝜅′′
𝛼𝑤

(𝑡0) = 𝜅′′′
𝛼𝑤

(𝑡0) = 0 and
𝜅(4)
𝛼𝑤

(𝑡0) ̸= 0. A third order vertex is where the distance squared function has an 𝐴5-singularity.

To understand the way the evolute of 𝛼𝑤 bifurcates at an 𝐴5-singularity of the distance squared
functions as 𝑤 varies locally in 𝑆2, we consider sections of the bifurcation set of the family 𝐷
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by the planes 𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The sections are in general generic (see [7] for a general study of
such sections).

Theorem 4.4. Let 𝛾 : 𝐼 → R3 be a space curve and 𝛼𝑤 its orthogonal projection along the unit

vector 𝑤 as mentioned in (4.2). If 𝐷 denotes the family of distance squared functions on 𝛼𝑤 with

a third order vertex at 𝑡 = 0, then

i) the projection map 𝜋1 : 𝐵𝑖𝑓(𝐷) ⊂ 𝑇𝑆2 → 𝑆2 is 𝒜-equivalent to

𝜋2 : 𝐷𝑖𝑠(𝐴4) ⊂ R4 −→ (R2, 0)
(𝑎2, 𝑎3, 𝑎4, 𝑎5) ↦−→ (𝑎2, 𝑎3 ± 𝑎5)

where

𝐷𝑖𝑠(𝐴4) = {(𝑎2, 𝑎3, 𝑎4, 𝑎5) ∈ R4|𝑡5 + 𝑎2𝑡3 + 𝑎3𝑡2 + 𝑎4𝑡 + 𝑎5 = 0 has a real repeated root}

is the discriminant of an R-versal unfolding of an 𝐴4-singularity,

ii) the projection map 𝜋1 is generic,

iii) the way the evolute of 𝛼𝑤0 bifurcates at a third order vertex when 𝑤 varies in 𝑆2 near 𝑤0,

is shown in Figure 4.3.

Proof. Write 𝛾(𝑡) = (𝛾1(𝑡), 𝛾2(𝑡), 𝛾3(𝑡)). We can make changes of coordinate if necessary and
set 𝑝 = 𝛾(0) = 0 and 𝑤0 = (0, 0, 1) /∈ 𝑇0𝛾. Thus

𝛾1(𝑡) =𝑥1𝑡+ 𝑥2𝑡
2 + 𝑥3𝑡

3 + 𝑥4𝑡
4 + 𝑥5𝑡

5 +𝑂(𝑡6),

𝛾2(𝑡) =𝑦1𝑡+ 𝑦2𝑡
2 + 𝑦3𝑡

3 + 𝑦4𝑡
4 + 𝑦5𝑡

5 +𝑂(𝑡6),

𝛾3(𝑡) =𝑧1𝑡+ 𝑧2𝑡
2 + 𝑧3𝑡

3 + 𝑧4𝑡
4 + 𝑧5𝑡

5 +𝑂(𝑡6),

such that (𝑥1, 𝑦1) ̸= (0, 0). Now, consider the family of projected plane curves 𝛼𝑤 as in (4.2)
and let 𝐷 denote the family of distance squared functions on 𝛼𝑤 at an 𝐴5-singularity. We proved
in Theorem 4.3 that the family 𝐷 is an ℛ+-versal unfolding of an 𝐴5-singularity. According
to Proposition 2.1 there exists a germ of a diffeomorphism 𝜑 such that 𝜑(𝐵𝑖𝑓(𝐷)) = 𝐵𝑖𝑓(𝐺),
where 𝐺 is an ℛ+-versal model unfolding of an 𝐴5-singularity. Moreover, we know from
Remark 2.3 that there exists a germ of diffeomorphism 𝜓 such that 𝜓(𝐵𝑖𝑓(𝐺)) = 𝐷𝑖𝑠(𝐹 ),
where 𝐹 denotes the ℛ-versal model unfolding of an 𝐴4-singularity. Therefore, the germ of
diffeomorphism 𝛽 := 𝜓 ∘ 𝜑 takes 𝐵𝑖𝑓(𝐷) to 𝐷𝑖𝑠(𝐹 ). Using the diffeomorphism 𝛽 one can
prove that the projection maps 𝜋1 and 𝜋2 are 𝒜-equivalent (all calculation is given in Appendix
B).

Bruce and Giblin listed in [7] all smooth stable map-germs 𝜋 : (R𝑘×R𝑛, 𝐷𝑖𝑠(𝐴𝑘))→ (R2, 0).
For 𝑘 = 4 and 𝑛 = 0 they proved in Theorem 3.1 in [7] that 𝜋2 is equivalent to the map
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(𝑎2, 𝑎3, 𝑎4, 𝑎5) ↦→ (𝑎2, 𝑎3 ± 𝑎5). As 𝜋1 ∼𝒜 𝜋2, so at an 𝐴5-singularity of the distance squared
function, the map 𝜋1 : 𝐵𝑖𝑓(𝐷) ⊂ 𝑇𝑆2 → 𝑆2 is generic and this proves (ii).

For the rest of the proof we consider anℛ-versal unfolding of an 𝐴4-singularity and draw the
bifurcation of its discriminant on a fixed plane (𝑢, 𝑣) = (𝑎2, 𝑎3 + 𝑎5) (similar calculations hold
for "−" case). To do this we shall find all strata which appear in the discriminant of 𝐹 .

The swallowtail stratum (𝑆𝑊 ) : This happens when the family of distance squared functions
has an 𝐴4-singularity. Let 𝐹 = 𝑡5 + 𝑎2𝑡

3 + 𝑎3𝑡
2 + 𝑎4𝑡 + 𝑎5 be an ℛ-versal family of an

𝐴4-singularity. To have a swallowtail singularity we need 𝜕𝐹
𝜕𝑡

= 𝜕2𝐹
𝜕𝑡2

= 𝜕3𝐹
𝜕𝑡3

= 0. Therefore

𝜕𝐹

𝜕𝑡
=5𝑡4 + 3𝑎2𝑡

2 + 2𝑎3𝑡+ 𝑎4 = 0,

𝜕2𝐹

𝜕𝑡2
=20𝑡3 + 6𝑎2𝑡+ 2𝑎3 = 0,

𝜕3𝐹

𝜕𝑡3
=60𝑡2 + 6𝑎2 = 0.

Hence 𝑎2 = −10𝑡2, 𝑎3 = 20𝑡3, 𝑎4 = −15𝑡4 and by substituting in 𝐹 = 0 we get 𝑎5 = 4𝑡5.
Thus the swallowtail stratum is given by

(𝑢, 𝑣) = (𝑎2, 𝑎3 + 𝑎5) = (−10𝑡2, 20𝑡3 + 4𝑡5),

which is a curve with cusp singularity at 𝑡 = 0.

The 𝐴1𝐴2-stratum (𝐴1𝐴2): This occurs when there exist 𝑡1 ̸= 𝑡2 such that 𝐹 (𝑡1) = 𝐹 (𝑡2) = 0
and 𝐹 has an 𝐴2-singularity at 𝑡2 and an 𝐴1-singularity at 𝑡1. Therefore,

𝐹 (𝑡2) = 𝑡52 + 𝑎2𝑡
3
2 + 𝑎3𝑡

2
2 + 𝑎4𝑡2 + 𝑎5 = 0, (4.4)

𝜕𝐹

𝜕𝑡
(𝑡2) = 5𝑡42 + 3𝑎2𝑡

2
2 + 2𝑎3𝑡2 + 𝑎4 = 0, (4.5)

𝜕2𝐹

𝜕𝑡2
(𝑡2) = 20𝑡32 + 6𝑎2𝑡2 + 2𝑎3 = 0, (4.6)

𝐹 (𝑡1) = 𝑡51 + 𝑎2𝑡
3
1 + 𝑎3𝑡

2
1 + 𝑎4𝑡1 + 𝑎5 = 0, (4.7)

𝜕𝐹

𝜕𝑡
(𝑡1) = 5𝑡41 + 3𝑎2𝑡

2
1 + 2𝑎3𝑡1 + 𝑎4 = 0. (4.8)

We get 𝑎3 = −10𝑡32 − 3𝑎2𝑡2, 𝑎4 = 15𝑡42 + 3𝑎2𝑡
2
2 and 𝑎5 = −6𝑡52 − 𝑎2𝑡

3
2. Also by using Equations

(4.8) and (4.5) we have

5(𝑡41 − 𝑡42) + 3𝑎2(𝑡21 − 𝑡22) + 2𝑎3(𝑡1 − 𝑡2) = 0.

This implies that 𝑎2 = −(5/3)𝑡21 − (10/3)𝑡2𝑡1 − 5𝑡22. In addition, Equations (4.7) and (4.4) give

𝑡51 − 𝑡52 + 𝑎2(𝑡31 − 𝑡32) + 𝑎3(𝑡21 − 𝑡22) + 𝑎4(𝑡1 − 𝑡2) = 0.

Thus 𝑡2 = −(2/3)𝑡1. This implies that 𝑎2 = −(5/3)𝑡21, 𝑎3 = −(10/27)𝑡31, 𝑎4 = (20/27)𝑡41 and
𝑎5 = (8/27)𝑡51. Therefore the trace of the 𝐴1𝐴2-stratum on the plane (𝑢, 𝑣) = (𝑎2, 𝑎3 + 𝑎5) is a
curve given by

(−(5/3)𝑡21,−(10/27)𝑡31 + (8/27)𝑡51),

which is a cusp.
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Figure 4.3 – Bifurcations in the evolute at a third order vertex.

Observation 4.3. When we consider the "-" case in Theorem 4.4 one can observe that the

stratification in "-" case is homeomorph to stratification in "+" case, so they are 𝐹𝑅-equivalent.

Therefore at a third order vertex we have one 𝐹𝑅-model family. Also note that the cusp at

𝑢 = 𝑣 = 0 in Figure 4.3 is (4-5)-cusp.

Remark 4.1. In [9], Brocker and Lander drew the bifurcation diagrams for some simple singu-

larities, including 𝐴5, (see Figure 4.4). But according to Proposition 3.2 in [7], the authors of

[9] did not consider the generic case. Also in that book they have shown that the 𝐴1𝐴2-curve is

a line, but in fact it is a curve with a cusp singularity as proved in Theorem 4.4.

4.2.2 Projections of space curves and their contact with cylinder

In Example 2.2 we studied the distance squared function on the projected plane curve 𝛼𝑤. The
purpose of this section is to find a relation between the contact of 𝛼𝑤 with circles and contact of
space curve 𝛾 with circular cylinders. (see Theorem 4.5). Also some special cases have been
considered in Propositions 4.5 and 4.6.
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Figure 4.4 – Bifurcation diagram on the book of Brocker and Lander [9].

For a unit vector 𝑤, let 𝐿 denotes the line passing through a point c ∈ 𝑇𝑤𝑆2. We set Δ =
{(c, 𝑤) ∈ R3 × 𝑆2|⟨c, 𝑤⟩ = 0}. We define a family of functions

𝒞 : R3 ×Δ→ R
𝒞(𝑝, c, 𝑤) = ⟨𝑝− ⟨𝑝− c, 𝑤⟩𝑤 − c, 𝑝− ⟨𝑝− c, 𝑤⟩𝑤 − c⟩ .

The equation 𝒞(𝑝, c, 𝑤) = 𝑟2 (𝑟 > 0) defines the circular cylinder formed by points 𝑝 at a
distance 𝑟 from the line 𝐿. We denote this cylinder by 𝒞(c, 𝑟).

Let 𝛾 : 𝐼 → R3 be a space curve. We define a family of functions 𝐺 : 𝐼 ×Δ→ R by

𝐺(𝑡, c, 𝑤) = 𝒞(𝛾(𝑡), c, 𝑤).
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The contact of the space curve 𝛾 with cylinder is measured by singularities of germ of functions
𝑔(𝑡) = 𝐺(𝑡, c, 𝑤) for (c, 𝑤) ∈ Δ.

Figure 4.5 – Contact of space curves with cylinder.

Proposition 4.4. The following statements holds.

i) The cylinder 𝒞(c, 𝑟) has an 𝐴≥1-contact with the space curve 𝛾 at 𝑡 if and only if 𝛼𝑤(𝑡)−
c = 𝜆𝑁(𝑡) + 𝜇𝐵(𝑡) for some real numbers 𝜆 and 𝜇.

ii) The cylinder 𝒞(c, 𝑟) has an 𝐴≥2-contact with the space curve 𝛾 at 𝑡 if and only if⎧⎪⎨⎪⎩ 𝛼𝑤(𝑡)− c = 𝜆𝑁(𝑡) + 𝜇𝐵(𝑡),

𝜆 = 1
𝜅(𝑡)(⟨𝑇 (𝑡), 𝑤⟩2 − 1).

iii) The cylinder 𝒞(c, 𝑟) has an 𝐴≥3-contact with the space curve 𝛾 at 𝑡 if and only if⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼𝑤(𝑡)− c = 𝜆𝑁(𝑡) + 𝜇𝐵(𝑡),

𝜆 = 1
𝜅(𝑡)(⟨𝑇 (𝑡), 𝑤⟩2 − 1),

𝜇 = 1
𝜅(𝑡)𝜏(𝑡)(3𝜅(𝑡)⟨𝑇 (𝑡), 𝑤⟩⟨𝑁(𝑡), 𝑤⟩ − 𝜅′(𝑡)

𝜅(𝑡) (⟨𝑇 (𝑡), 𝑤⟩2 − 1)).

Proof. By a direct calculation we get 1
2𝑔

′(𝑡) = ⟨𝑇 (𝑡), 𝛼𝑤(𝑡) − c⟩. Therefore, 1
2𝑔

′(𝑡) = 0 ⇔
𝛼𝑤(𝑡)− c = 𝜆𝑁(𝑡) + 𝜇𝐵(𝑡). Also we have

1
2𝑔

′′(𝑡) = ⟨𝑇 ′(𝑡), 𝛼𝑤(𝑡)− c⟩+ ⟨𝑇 (𝑡), 𝛼′
𝑤(𝑡)⟩.

Thus

1
2𝑔

′(𝑡) = 1
2𝑔

′′(𝑡) = 0⇔ 𝛼𝑤(𝑡)− c = 𝜆𝑁(𝑡) + 𝜇𝐵(𝑡) and 𝜆 = 1
𝜅(𝑡)(⟨𝑇 (𝑡), 𝑤⟩2 − 1).
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Finally, the function 𝑔 has an 𝐴≥3 singularity at 𝑡 if and only if

1
2𝑔′(𝑡) = 1

2𝑔′′(𝑡) = 1
2𝑔′′′(𝑡) = 0⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝛼− c = 𝜆𝑁(𝑡) + 𝜇𝐵(𝑡),

𝜆 = 1
𝜅(𝑡) (⟨𝑇 (𝑡), 𝑤⟩2 − 1),

𝜇 = 1
𝜅(𝑡)𝜏(𝑡) (3𝜅(𝑡)⟨𝑇 (𝑡), 𝑤⟩⟨𝑁(𝑡), 𝑤⟩ − 𝜅′(𝑡)

𝜅(𝑡) (⟨𝑇 (𝑡), 𝑤⟩2 − 1)).

Theorem 4.5. The space curve 𝛾 has an 𝐴𝑘-contact with the cylinder 𝒞(c, 𝑟) at 𝑡 if and only if

its orthogonal projection 𝛼𝑤 along the vector 𝑤 has an 𝐴𝑘-contact with the circle 𝐶(e, 𝑟).

Proof. One can prove this theorem by a direct calculation. Note that, the contact of space curve
𝛾 with cylinder and the contact of plane curve 𝛼𝑤 with circles areℛ-equivalent.

In the following propositions we study some spacial cases when the vector 𝑤 belongs to
rectifying or normal planes of 𝛾 at 𝑡 = 𝑡0.

Proposition 4.5. If 𝑤 belongs to rectifying plane of 𝛾 at 𝑡 = 𝑡0, then the following statements

are equivalent;

i) 𝜅′(𝑡0) = 0,

ii) 𝑔 has an 𝐴3-singularity,

iii) the axis of cylinder passes through the evolute of 𝛼𝑤.

Proof. If𝑤 belongs to rectifying plane of 𝛾(𝑡) at 𝑡0, then ⟨𝑁(𝑡0), 𝑤⟩ = 0. Therefore, by Theorem
4.5, the contact of the space curve with a cylinder has an 𝐴3-singularity if and only if the contact
of the projected plane curve 𝛼𝑤 with a circle has an 𝐴3-singularity. As ⟨𝐵(𝑡0), 𝑤⟩ ̸= 0 and
⟨𝑇 (𝑡0), 𝑤⟩2 ̸= 1, then using Proposition 4.2 the distance squared function on 𝛼𝑤 has an 𝐴3-
singularity if and only if 𝜅′(𝑡0) = 0.

Moreover, applying Proposition 4.4, we obtain that 𝑔 has an 𝐴3-singularity if and only if

𝛼𝑤(𝑡0)− c = ⟨𝑇 (𝑡0), 𝑤⟩2 − 1
𝜅(𝑡0)

𝑁(𝑡0),

where 𝑐 = (𝑎, 𝑏, 𝑡) is a parametrisation of the axis of the cylinder. Furthermore, the evolute of
𝛼𝑤(𝑡) is given by

𝑒(𝑡) = 𝛼𝑤(𝑡)− 𝜂𝑇 (𝑡)×
(︃
⟨𝑇 (𝑡), 𝑤⟩𝑇 (𝑡) + ⟨𝑁(𝑡), 𝑤⟩𝑁(𝑡) + ⟨𝐵(𝑡), 𝑤⟩𝐵(𝑡)

)︃
.

Therefore we have 𝑒(𝑡0) = 𝛼𝑤(𝑡0) + 1−⟨𝑇 (𝑡0),𝑤⟩2

𝜅(𝑡0) 𝑁(𝑡0) which means that the axis of the cylinder
passes through the evolute of 𝛼𝑤 at its vertex.

Proposition 4.6. If 𝑤 belongs to the normal plane of 𝛾(𝑡) at 𝑡0, then the following are equivalent:
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i) 𝑔 has an 𝐴3-singularity at 𝑡0,

ii) 𝜅′(𝑡0)⟨𝐵(𝑡0), 𝑤⟩ = 𝜅(𝑡0)𝜏(𝑡0)⟨𝑁(𝑡0), 𝑤⟩,

iii) the axis of the cylinder passes through the evolute of 𝛼𝑤.

Proof. If 𝑤 belongs to the normal plane of 𝛾(𝑡) at 𝑡 = 𝑡0 then ⟨𝑇 (𝑡0), 𝑤⟩ = 0. Using this
assumption and according to Proposition 4.2 we observe that the distance squared function on
𝛼𝑤 has an 𝐴3-singularity if and only if 𝜅′(𝑡0)⟨𝐵(𝑡0), 𝑤⟩ = 𝜅(𝑡0)𝜏(𝑡0)⟨𝑁(𝑡0), 𝑤⟩.

In addition, using Proposition 4.4, we conclude that 𝑔 has an 𝐴3-singularity if and only if

𝛼𝑤(𝑡)− 𝑐 = 𝜆𝑁(𝑡) + 𝜇𝐵(𝑡),

𝜆 = −1
𝜅(𝑡) ,

𝜇 = 𝜅′(𝑡)
𝜅2(𝑡)𝜏(𝑡) .

On the other hand, the part (iii) of Proposition 4.2 shows that 𝛼𝑤(𝑡) − 𝑒 = 𝜂𝑇 (𝑡) × 𝑤 with
𝜂 = −1

𝜅(𝑡)⟨𝐵(𝑡),𝑤⟩ . Substituting 𝑤 = ⟨𝐵(𝑡), 𝑤⟩𝐵(𝑡) + ⟨𝑁(𝑡), 𝑤⟩𝑁(𝑡) proves that the axis of the
cylinder passes through the evolute of 𝛼𝑤.

4.3 Singular projections

Following the general results in Chapter 3 our objective here is to verify whether the family of
projection curves is 𝐹𝑅𝑆-equivalent to a given model family. We do this in Proposition 4.7 and
Theorem 4.6.

According to Proposition 4.1 the projected plane curve 𝛼𝑤 is singular if and only if 𝑤 ∈ 𝑇 (𝑡0).
We set without loss of generality 𝑇 (𝑡0) = (1, 0, 0). To find the family of projected plane curves
𝛼𝑤, firstly we consider the orthogonal projection of the space curve 𝛾 = (𝛾1, 𝛾2, 𝛾3) along
𝑤 = (𝑤1, 𝑤2, 𝑤3) ∈ 𝑆2. Then, we apply the spherical change of coordinates 𝑤1 = sin(𝑣) cos(𝑢),
𝑤2 = sin(𝑣) sin(𝑢) and 𝑤3 = cos(𝑣) and use rotations to fix the plane 𝑥 = 0 as the plane of
projection.

More precisely the rotation matrix is of the form 𝑅 = 𝑅𝑧(−𝑢)𝑅𝑦(𝜋/2 − 𝑣), where 𝑅𝑧(𝜂)
(respectively 𝑅𝑦(𝜉)) is the rotation matrix in R3 through an angle 𝜂 (resp. 𝜉) about the 𝑂𝑍-axis
(Resp. 𝑂𝑌 -axis). Consequently

𝑅 =

⎛⎜⎜⎜⎝
sin(𝑣) cos(𝑢) sin(𝑣) sin(𝑢) cos(𝑣)
− sin(𝑢) cos(𝑢) 0

− cos(𝑣) cos(𝑢) − cos(𝑣) sin(𝑢) sin(𝑣)

⎞⎟⎟⎟⎠ . (4.9)

The plane curve 𝛼𝑤 is the orthogonal projection of 𝛾 along 𝑤 which is given by
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𝛼 =

⎛⎜⎜⎜⎝
𝛾1 − (𝛾1𝑤1 + 𝛾2𝑤2 + 𝛾3𝑤3)𝑤1

𝛾2 − (𝛾1𝑤1 + 𝛾2𝑤2 + 𝛾3𝑤3)𝑣2

𝛾3 − (𝛾1𝑤1 + 𝛾2𝑤2 + 𝛾3𝑤3)𝑣3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
𝛼1

𝛼2

𝛼3

⎞⎟⎟⎟⎠ .
Next, substitute the 𝑤𝑖’s by the spherical coordinate and in virtue of the rotation (4.9), we have

𝑃 :=

⎛⎜⎜⎜⎝
𝑃1

𝑃2

𝑃3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
sin(𝑣) cos(𝑢) sin(𝑣) sin(𝑢) cos(𝑣)
− sin(𝑢) cos(𝑢) 0

− cos(𝑣) cos(𝑢) − cos(𝑣) sin(𝑢) sin(𝑣)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝛼1

𝛼2

𝛼3

⎞⎟⎟⎟⎠ ,
where

𝑃1 =𝛼1 sin(𝑣) cos(𝑢) + 𝛼2 sin(𝑣) sin(𝑢) + 𝛼3 cos(𝑣)

=𝛾1(1− sin(𝑣)2 cos(𝑢)2) sin(𝑣) cos(𝑢)− 𝛾2 sin(𝑣)3 cos(𝑢)2 sin(𝑢)

− 𝛾3 sin(𝑣)2 cos(𝑢)2 cos(𝑣) + 𝛾2(1− sin(𝑣)2 sin(𝑢)2) sin(𝑣) sin(𝑢)

− 𝛾1 sin(𝑣)3 cos(𝑢) sin(𝑢)2 − 𝛾3 sin(𝑣)2 sin(𝑢)2 cos(𝑣)

+ 𝛾3(1− cos(𝑣)2) cos(𝑣)− 𝛾1 cos(𝑣)2 sin(𝑣) cos(𝑢)− 𝛾2 cos(𝑣)2 sin(𝑣) sin(𝑢)

=𝛾1
(︀
sin(𝑣) cos(𝑢)− sin(𝑣)3 cos(𝑢)3 − sin(𝑣)3 sin(𝑢)2 cos(𝑢)− cos(𝑣)2 sin(𝑣) cos(𝑢)

)︀
+ 𝛾2

(︀
− sin(𝑣)3 cos(𝑢)2 sin(𝑢) + sin(𝑣) sin(𝑢)− sin(𝑣)3 sin(𝑢)3 − cos(𝑣)2 sin(𝑣) sin(𝑢)

)︀
+ 𝛾3

(︀
− sin(𝑣)2 cos(𝑣) cos(𝑢)2 − sin(𝑣)2 cos(𝑣) sin(𝑢)2 + cos(𝑣)− cos(𝑣)3)︀

=0,

𝑃2 =𝛼2 cos(𝑢)− 𝛼1 sin(𝑢)

=𝛾1
(︀
sin(𝑣)2 cos(𝑢)2 sin(𝑢)− sin(𝑢)− sin(𝑣)2 cos(𝑢)2 sin(𝑢)

)︀
+ 𝛾2

(︀
sin(𝑣)2 cos(𝑢) sin(𝑢)2 + cos(𝑢)− sin(𝑣)2 sin(𝑢)2 cos(𝑢)

)︀
+ 𝛾3

(︂
1
4𝑠𝑖𝑛(2𝑣)𝑠𝑖𝑛(2𝑢)− 1

4𝑠𝑖𝑛(2𝑣)𝑠𝑖𝑛(2𝑢)
)︂

= cos(𝑢)𝛾2 − sin(𝑢)𝛾1,

𝑃3 =− 𝛼1 cos(𝑣) cos(𝑢)− 𝛼2 cos(𝑣) sin(𝑢) + 𝛼3 sin(𝑣)

=𝛾1
(︀
sin(𝑣)2 cos(𝑢)3 cos(𝑣)− cos(𝑣) cos(𝑢) + sin(𝑣)2 cos(𝑣) sin(𝑢)2 cos(𝑢)− sin(𝑣)2 cos(𝑣) cos(𝑢)

)︀
+ 𝛾2

(︀
sin(𝑣)2 cos(𝑣) cos(𝑢)2 sin(𝑢)− cos(𝑣) sin(𝑢) + sin(𝑣)2 cos(𝑣) sin(𝑢)3 − sin(𝑣)2 cos(𝑣) sin(𝑢)

)︀
+ 𝛾3

(︀
sin(𝑣) cos(𝑣)2 cos(𝑢)2 + sin(𝑣) cos(𝑣)2 sin(𝑢)2 + sin(𝑣)− sin(𝑣) cos(𝑣)2)︀

=𝛾3 sin(𝑣)− 𝛾1 cos(𝑣) cos(𝑢)− 𝛾2 cos(𝑣) sin(𝑢).

Here 𝑢 and 𝑣 are considered near zero and 𝜋/2, respectively. Therefore by the change of variable
𝑣 → 𝑣 + 𝜋

2 the rotated projection plane curve 𝑃 has the form

𝑃 =

⎡⎢⎢⎢⎣
0

cos(𝑢)𝛾2(𝑡)− sin(𝑢)𝛾1(𝑡)
𝛾3(𝑡) cos(𝑣) + 𝛾1(𝑡) sin(𝑣) cos(𝑢) + 𝛾2(𝑡) sin(𝑣) sin(𝑢)

⎤⎥⎥⎥⎦ . (4.10)

4.3.1 The ordinary cusp

Suppose that 𝛾1(𝑡) = 𝑥1𝑡 + 𝑥2𝑡
2 + 𝑂(𝑡3), 𝛾2(𝑡) = 𝑦2𝑡

2 + 𝑦3𝑡
3 + 𝑂(𝑡4) and 𝛾3(𝑡) = 𝑧3𝑡

3 +
𝑧4𝑡

4 + 𝑧5𝑡
5 + 𝑂(𝑡6), where 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 are real numbers and 𝑥1 ̸= 0. Therefore 𝑃 (𝑡, 0, 0) has
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an ordinary cusp singularity when 𝑦2𝑧3 ̸= 0. According to Proposition 4.1, 𝑃 (𝑡, 0, 0) has an
ordinary cusp at 𝑡 = 0 when 𝜏(0) ̸= 0.

Due to Definition 3.3, to prove 𝐹𝑅𝑆-genericity of a family of plane curves with an ordinary
cusp singularity, it is enough to show that this family is an 𝒜𝑒-versal unfolding of the cusp
singularity. Therefore, in the following proposition we check the 𝒜𝑒-versality of the family of
projected plane curves 𝑃 given in (4.10).

Proposition 4.7. For a given space curve 𝛾, let 𝑃 as in (4.10) be its modified orthogonal

projection along the unit direction 𝑤. If the plane curve 𝑃(0,0)(𝑡) = 𝑃 (𝑡, 0, 0) has an ordinary

cusp singularity at 𝑡 = 0, then the family of modified projected plane curves 𝑃 is 𝒜𝑒-versal.

Therefore, this family is 𝐹𝑅𝑆-generic.

Proof. To verify 𝒜𝑒-versality of the family 𝑃 we must prove the following assertion

𝑇𝐴𝑒.𝑓 + R{𝜕𝑃
𝜕𝑢

(𝑡, 0, 0), 𝜕𝑃
𝜕𝑣

(𝑡, 0, 0)}+ R{(1, 0), (0, 1)} = ℰ(1, 2),

where 𝑓 = (𝑓1, 𝑓2) = 𝑃(0,0)(𝑡) = (𝛾2(𝑡), 𝛾3(𝑡)).

We have

𝜕𝑃

𝜕𝑢
(𝑡, 0, 0) = (−𝑥1𝑡+𝑂(𝑡2), 0),

𝜕𝑃

𝜕𝑣
(𝑡, 0, 0) = (0, 𝑥1𝑡+𝑂(𝑡2)),

where 𝑥1 ̸= 0. An ordinary cusp is 3-𝒜-finitely determined, so it is enough to work with the
3-jet space. We have

1
2𝑦2

𝑗3𝑡2
𝜕𝑓

𝜕𝑡
= (𝑡3, 0),

1
𝑧3

(0, 𝑓2) = (0, 𝑡3).

Hence ℳ3 ⊂ 𝑇𝒜𝑒.𝑓 . Furthermore, 1
2𝑦2
𝑗2𝑡𝜕𝑓

𝜕𝑡
= (𝑡2, 0) and 1

𝑦2
(0, 𝑓1) = (0, 𝑡2). Therefore

ℳ2 ⊂ 𝑇𝒜𝑒.𝑓 and this proves the versality of 𝑃 . We conclude by Definition 3.3 that the family
of projected plane curves 𝑃 is 𝐹𝑅𝑆-generic (see Figure 4.6).

Figure 4.6 – 𝐹𝑅𝑆-generic bifurcations of an ordinary cusp. Vertices (resp. inflections) are represented by circular
(resp. square) dots.
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4.3.2 The ramphoid cusp

Let 𝛾1(𝑡) = 𝑥1𝑡+ 𝑥2𝑡
2 +𝑂(𝑡3), 𝛾2(𝑡) = 𝑦2𝑡

2 + 𝑦3𝑡
3 +𝑂(𝑡4) and 𝛾3(𝑡) = 𝑧3𝑡

3 + 𝑧4𝑡
4 + 𝑧5𝑡

5 +
𝑂(𝑡6), where 𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 are real numbers and 𝑥1 ̸= 0.

The modified projected plane curve 𝑃 (𝑡, 0, 0) (given in (4.10)) has a ramphoid cusp singularity
at 𝑡 = 0 if 𝑦2 ̸= 0, 𝑧3 = 0 and 2𝑦3𝑧4 ̸= 𝑧5𝑦2. Indeed, 𝑃 (𝑡, 0, 0) = (0, 𝛾2(𝑡), 𝛾3(𝑡)). To
avoid an ordinary cusp, the coefficient 𝑧3 must be equal to zero. By the change of coordinate
(𝑥, 𝑦) ↦→ (𝑥, 𝑦2

2𝑦 − 𝑧4𝑥
2) in the target we get that the curve (𝛾2(𝑡), 𝛾3(𝑡)) is 𝒜-equivalent to

(𝑦2𝑡
2 + 𝑂(𝑡3), 𝑦2(𝑦2𝑧5 − 2𝑦3𝑧4)𝑡5 + 𝑂(𝑡6)). This curve has a ramphoid cusp singularity if the

coefficient of 𝑡5 in the second component (i.e. 𝑦2𝑧5 − 2𝑦3𝑧4) is not equal to zero as well.

For a ramphoid cusp, there are three 𝒜ℎ-classes represented by (𝑡2, 𝑡4 + 𝑡5), (𝑡2, 𝑡5 + 𝑡6),
(𝑡2, 𝑡5). In this thesis we study the ramphoid cusp 𝒜ℎ-equivalent to (𝑡2, 𝑡4 + 𝑡5).

Proposition 4.8. Let 𝑃(𝑢,𝑣)(𝑡) = 𝑃 (𝑡, 𝑢, 𝑣) be the modified orthogonal projection of the space

curve 𝛾 as in (4.10). Then 𝑃 is an 𝒜𝑒-versal unfolding of 𝑓(𝑡) = 𝑃(0,0)(𝑡) if and only if 𝑧4 ̸= 0.

Proof. As we mentioned in Proposition 4.7, to prove the versality of 𝑃 we need to show that

𝑇𝐴𝑒.𝑓 + R
{︃
𝜕𝑃

𝜕𝑢
(𝑡, 0, 0), 𝜕𝑃

𝜕𝑣
(𝑡, 0, 0)

}︃
+ R

{︁
(1, 0), (0, 1)

}︁
= ℰ(1, 2).

The ramphoid cusp is 5-𝒜-determined we can work in 5-jet space. We have

𝑗5𝜕𝑓

𝜕𝑡
= (2𝑦2𝑡+ 3𝑦3𝑡

2 + 4𝑦4𝑡
3 + 5𝑦5𝑡

4, 4𝑧4𝑡
3 + 5𝑧5𝑡

4 + 6𝑧6𝑡
5),

which implies 𝑗5𝑡4 𝜕𝑓
𝜕𝑡

= (2𝑦2𝑡
5, 0) therefore (𝑡5, 0) ∈ 𝑇𝐴𝑒.𝑓 if and only if 𝑦2 ̸= 0 (this always

holds at the ramphoid cusp).

Moreover, (0, 𝑓2) = (0, 𝑧4𝑡
4 + 𝑧5𝑡

5), (0, 𝑓 2
1 ) = (0, 𝑦2

2𝑡
4 + 2𝑦2𝑦3𝑡

5) and

𝑗5𝑡2
𝜕𝑓

𝜕𝑡
= (2𝑦2𝑡

3 + 3𝑦3𝑡
4, 4𝑧4𝑡

5).

Hence (0, 𝑡5) ∈ 𝑇𝒜𝑒.𝑓 if and only if 2𝑦3𝑧4 ̸= 𝑧5𝑦2 (this also holds at the ramphoid cusp). This
yieldsℳ5 ∈ 𝑇𝒜𝑒.𝑓 .

The next step is to consider the monomials of degree 4. Using 𝑗5𝑡3 𝜕𝑓
𝜕𝑡

= (2𝑦2𝑡
4, 0) and

(0, 𝑓 2
1 ) = (0, 𝑦2

2𝑡
4) one can conclude thatℳ4 ∈ 𝑇𝒜𝑒.𝑓 .

We have 𝑗5𝑡2 𝜕𝑓
𝜕𝑡

= (2𝑦2𝑡
3, 0), therefore (𝑡3, 0) ∈ 𝑇𝒜𝑒.𝑓 . The fact that (𝑓1, 0) = (𝑦2𝑡

2, 0)
implies that (𝑡2, 0) ∈ 𝑇𝒜𝑒.𝑓 .

On the other hand, we have 𝜕𝑃
𝜕𝑢

(𝑡, 0, 0) = (−𝑡, 0), 𝜕𝑃
𝜕𝑣

(𝑡, 0, 0) = (0, 𝑡), and

𝑗5𝜕𝑓

𝜕𝑡
= (2𝑦2𝑡, 4𝑧4𝑡

3) = 2𝑦2(𝑡, 0) + 4𝑧4(0, 𝑡3).

Therefore one can derive that (0, 𝑡3) ∈ 𝑇𝒜𝑒.𝑓 + R{(𝑡, 0), (0, 𝑡)} if and only if 𝑧4 ̸= 0.

Using (0, 𝑓1) = (0, 𝑦2𝑡
2 + 𝑦3𝑡

3), we deduce that (0, 𝑡2) is also in 𝑇𝒜𝑒.𝑓 + R{(𝑡, 0), (0, 𝑡)} if
𝑦2 ̸= 0.
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Our aim here is to prove that the family of projected plane curves 𝑃 (𝑡), is 𝐹𝑅𝑆-equivalent
to 𝐹𝑅𝑆-model family as in Theorem 3.6. To do this we need to show that the stratification
of the family of orthogonal projected plane curves is homeomorph to the stratification of the
𝐹𝑅𝑆-model family in Theorem 3.6.

Theorem 4.6. Let 𝛾 : 𝐼 → R3 be a generic space curve given by 𝛾1(𝑡) = 𝑥1𝑡 + 𝑥2𝑡
2 + 𝑂(𝑡3),

𝛾2(𝑡) = 𝑦2𝑡
2 +𝑦3𝑡

3 +𝑂(𝑡4) and 𝛾3(𝑡) = 𝑧3𝑡
3 +𝑧4𝑡

4 +𝑧5𝑡
5 +𝑧6𝑡

6 +𝑂(𝑡7). Let 𝑃 be the modified

projection of 𝛾 along the unit direction 𝑤 as in (4.10). If 𝑃 is an𝒜𝑒-versal family of the ramphoid

cusp 𝑃 (𝑡, 0, 0) which is 𝐴ℎ-equivalent to (𝑡2, 𝑡4 + 𝑡5), and 𝑧6 ̸= 0 then 𝑃 is 𝐹𝑅𝑆-generic.

Proof. According to Proposition 4.8, the family 𝑃 is an 𝒜𝑒-versal unfolding of the ramphoid
cusp if and only if 𝑧4 ̸= 0. To draw the bifurcations in the family 𝑃 we find all the strata which
in the bifurcation set of the family 𝑃 .

The (𝑅𝐶)-stratum: This consists of the origin, where 𝑃(0,0) has a ramphoid cusp of 𝐴ℎ-type
equivalent to (𝑡2, 𝑡4 + 𝑡5).

The (𝐶)-stratum: This is the set of (𝑢, 𝑣) where 𝑃(𝑢,𝑣) has a cusp singularity at some 𝑡.

We recall that 𝑃(𝑢,𝑣)(𝑡) = (𝑃2(𝑡), 𝑃3(𝑡)) such that 𝑃2(𝑡) and 𝑃2(𝑡) have the following expres-
sions:

𝑃2(𝑡) = cos(𝑢)𝛾2(𝑡)− sin(𝑢)𝛾1(𝑡),

𝑃3(𝑡) = cos(𝑣)𝛾3(𝑡) + sin(𝑣) cos(𝑢)𝛾1(𝑡) + sin(𝑣) sin(𝑢)𝛾2(𝑡). (4.11)

The curve 𝑃(𝑢,𝑣) is singular if and only if 𝑃 ′
2(𝑡) = 𝑃 ′

3(𝑡) = 0, that is

⎧⎪⎨⎪⎩2𝑡− 𝑥1𝑢+𝑂(2) = 0

4𝑡3 + 5𝑡4 + 𝑥1𝑣 +𝑂(2) = 0.
(4.12)

The Jacobian matrix of the linear part of the system of equations (4.12) at (0, 0, 0) is given by⎡⎣ −𝑥1 0
0 𝑥1

⎤⎦ ,
which is invertible. Consequently, by the implicit function theorem, we can write locally 𝑢 and 𝑣
as smooth functions of 𝑡 with

𝑢 = 2
𝑥1
𝑡+𝑂(𝑡2) and 𝑣 = −1

𝑥1
(4𝑡3 + 5𝑡4) +𝑂(𝑡5).

Therefore the (𝐶)-stratum is a smooth curve given by 𝑣 = −𝑥2
1

2 𝑢3 +𝑂(𝑢4).

The (𝐼𝑇 )-stratum: This happens when the height function on 𝑃(𝑢,𝑣)(𝑡) has a multilocal
singularity 𝐴0𝐴2. This means that there exist 𝑡, 𝑠 ∈ R with 𝑠 ̸= 𝑡, such that 𝑃(𝑢,𝑣)(𝑡) = 𝑃(𝑢,𝑣)(𝑠)
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and 𝜅(𝑠) = 0. Therefore we have

tan(𝑢) = 𝛾2(𝑡)− 𝛾2(𝑠)
𝛾1(𝑡)− 𝛾1(𝑠)

,

tan(𝑣) = 𝛾3(𝑡)− 𝛾3(𝑠)
𝛾1(𝑡)− 𝛾1(𝑠)

.
1

− cos(𝑢)− tan(𝑢) sin(𝑢) . (4.13)

Replacing 𝑢 and 𝑣 obtained from (4.13) to the equation 𝜅(𝑠) = 0, we get 𝑓(𝑡, 𝑠) = 6𝑠3 + 10𝑠2𝑡+
2𝑠𝑡2 +2𝑡3 +𝑔(𝑠, 𝑡) = 0, where 𝑔(𝑠, 𝑡) has order grater than 4. The function 𝑓(𝑠, 𝑡) is 3-ℛ-finitely
determined. Therefore 𝑓∼ℛ𝑗

3𝑓 which has singularity of type 𝐷−
4 at the origin. Then 𝑓−1(0) is

diffeomorphic to 𝑗3𝑓 = 2(3𝑠+ 𝑡)(−𝑡+ 𝑠)2 = 0. This implies that there exists a diffeomorphism
ℎ with 𝑗1ℎ = 𝑖𝑑 such that 𝑓 ∘ℎ−1 = 𝑗3𝑓 . Moreover 𝑓(𝑡, 𝑡) = 0 and the other solution is 𝑡 = −3𝑠.

By using the Taylor expansion of 𝑢 and 𝑣 we get the (𝐼𝑇 )-stratum given by

(𝑢, 𝑣) = (−2𝑠
𝑥1

+𝑂(𝑠2), 20𝑠3

𝑥1
+𝑂(𝑠4)).

The (𝑉 𝑇 )-stratum: This consists of (𝑢, 𝑣) where the distance squared function on 𝑃(𝑢,𝑣) has
a multilocal singularity 𝐴0𝐴3. Therefore there exist 𝑡, 𝑠 ∈ R with 𝑠 ̸= 𝑡, such that 𝑃(𝑢,𝑣)(𝑡) =
𝑃(𝑢,𝑣)(𝑠) and 𝜅

′(𝑠) = 0. By a direct calculation we get 𝑢 = 𝛾2(𝑡)−𝛾2(𝑠)
𝛾1(𝑡)−𝛾1(𝑠) and 𝑣 = 𝛾3(𝑡)−𝛾3(𝑠)

𝛾1(𝑠)−𝛾1(𝑡) .
Moreover 𝜅′(𝑠) = 0 if and only if(︁

𝛾
′
2(𝑠)𝛾

′′′
3 (𝑠) − 𝛾

′′′
2 (𝑠)𝛾

′
3(𝑠)
)︁(︁

𝛾
′
2(𝑠)2 + 𝛾

′
3(𝑠)2

)︁
− 3
(︁

𝛾
′
2(𝑠)𝛾

′′
2 (𝑠) + 𝛾

′
3(𝑠)𝛾

′′
3 (𝑠)

)︁(︁
𝛾

′
2(𝑠)𝛾

′′
3 (𝑠) − 𝛾

′′
2 (𝑠)𝛾

′
3(𝑠)
)︁

+

(︃
− 2
(︁

𝛾
′
2(𝑠)𝛾

′′′
3 (𝑠) − 𝛾

′′′
2 (𝑠)𝛾

′
3(𝑠)
)︁

𝛾
′
1(𝑠)𝛾

′
2(𝑠) +

(︁
−𝛾

′
1(𝑠)𝛾

′′′
3 (𝑠) + 𝛾

′′′
1 (𝑠)𝛾

′
3(𝑠)
)︁(︁

𝛾
′
2(𝑠)2 + 𝛾

′
3(𝑠)2

)︁
− 3
(︁

𝛾
′
2(𝑠)𝛾

′′
2 (𝑠) + 𝛾

′
3(𝑠)𝛾

′′
3 (𝑠)

)︁(︁
−𝛾

′
1(𝑠)𝛾

′′
3 (𝑠) + 𝛾

′′
1 (𝑠)𝛾

′
3(𝑠)
)︁

− 3
(︁

−𝛾
′
1(𝑠)𝛾

′′
2 (𝑠) − 𝛾

′′
1 (𝑠)𝛾

′
2(𝑠)
)︁

(︁
𝛾

′
2(𝑠)𝛾

′′
3 (𝑠) − 𝛾

′′
2 (𝑠)𝛾

′
3(𝑠)
)︁)︃

𝑢 +

(︃
2
(︁

𝛾
′
2(𝑠)𝛾

′′′
3 (𝑠) − 𝛾

′′′
2 (𝑠)𝛾

′
3(𝑠)
)︁

𝛾
′
3(𝑠)𝛾

′
1(𝑠) +

(︁
−𝛾

′
1(𝑠)𝛾

′′′
2 (𝑠) + 𝛾

′′′
1 (𝑠)𝛾

′
2(𝑠)
)︁

(︁
𝛾

′
2(𝑠)2 + 𝛾

′
3(𝑠)2

)︁
− 3
(︁

𝛾
′
2(𝑠)𝛾

′′
2 (𝑠) + 𝛾

′
3(𝑠)𝛾

′′
3 (𝑠)

)︁(︁
−𝛾

′
1(𝑠)𝛾

′′
2 (𝑠) + 𝛾

′′
1 (𝑠)𝛾

′
2(𝑠)
)︁

− 3
(︁

𝛾
′
1(𝑠)𝛾

′′
3 (𝑠) + 𝛾

′′
1 (𝑠)𝛾

′
3(𝑠)
)︁(︁

𝛾
′
2(𝑠)𝛾

′′
3 (𝑠) − 𝛾

′′
2 (𝑠)𝛾

′
3(𝑠)
)︁)︃

𝑣 = 0. (4.14)

Substituting 𝑢 and 𝑣 in to the Equation (4.14), we deduce 𝐹 (𝑠, 𝑡) = 𝐺(𝑠,𝑡)
𝛾1(𝑡)−𝛾1(𝑠) such that 𝐺(𝑠, 𝑡)

is divisible by 𝑡− 𝑠.

If we set �̂�(𝑠, 𝑡) = 𝐺(𝑠,𝑡)
𝑡−𝑠 , then �̂� has a singularity of type 𝐷+

4 at the origin and 𝑗3�̂�(𝑠, 𝑡) =
2(𝑡 + 𝑠)(3𝑠2 + 𝑡2). Therefor we have 𝑠 = −𝑡. We apply a similar method to find higher order
terms of 𝑠. In order to do this, we put 𝑠 = −𝑡 + 𝑡 and simplify the equation 𝜅′(𝑠) = 0. By
straightforward calculations we get 𝑡 = 𝑡2 +𝑂(𝑡3).

Substituting 𝑠 = −𝑡 + 𝑡2 + 𝑂(𝑡3) in the expressions of 𝑢 and 𝑣 we get 𝑢(𝑡) = 1
𝑥1
𝑡2 + 𝑂(𝑡3)

and 𝑣(𝑡) = −3
𝑥1
𝑡4 + 11

2𝑥1
𝑡5 +𝑂(𝑡6). Therefore the (𝑉 𝑇 )-stratum is a ramphoid cusp given by

(𝑢, 𝑣) = ( 1
𝑥1
𝑡2 +𝑂(𝑡3), −3

𝑥1
𝑡4 + 11

2𝑥1
𝑡5 +𝑂(𝑡6)).
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The (𝑆𝑉 )-stratum: This is the set of (𝑢, 𝑣) where the distance squared function of 𝑃 has an
𝐴4-singularity. If 𝐷 denotes the distance squared function on 𝑃 then we have

𝑗1𝐷′ =− 𝑥1𝑣,

𝑗1𝐷′′ =− 2𝑥2𝑣 − 4𝑎,

𝑗1𝐷′′′ =− 12𝑢𝑥1 − 6𝑥3𝑣, (4.15)

𝑗1𝐷(4) =− 48𝑢𝑥2 − 24𝑥4𝑣 − 48𝑏− 120𝑡.

Hence, using the implicit function theorem, we can write 𝑎, 𝑏, 𝑢 and 𝑣 as functions of 𝑡 as follow:

𝑎 =𝑎1𝑡+ 𝑎2𝑡
2 +𝑂(𝑡3),

𝑏 =𝑏1𝑡+ 𝑏2𝑡
2 +𝑂(𝑡3),

𝑢 =𝑢1𝑡+ 𝑢2𝑡
2 +𝑂(𝑡3),

𝑣 =𝑣1𝑡+ 𝑣2𝑡
2 +𝑂(𝑡3).

To obtain all the coefficients 𝑎𝑖 , 𝑏𝑖 , 𝑢𝑖 and 𝑣𝑖 we consider the system of equations 𝐷(𝑖)(𝑡) = 0
for 𝑖 = 1, 2, 3, 4, jet by jet.

The coefficient matrix of (4.15) is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡 𝑎 𝑏 𝑢 𝑣

0 0 0 0 −𝑥1

0 −4 0 0 −2𝑥2

0 0 0 −12𝑥1 6𝑥3

120 0 −48 −48𝑥2 24𝑥4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which has rank 4 if and only if 𝑥1 ̸= 0. Therefore we have

𝑎1 = 0 , 𝑏1 = −5
2 , 𝑢1 = 0 and 𝑣1 = 0.

Next, we have

𝑗2𝐷′(𝑡) =− 𝑣2𝑥1𝑡
2 = 0⇒ 𝑣2 = 0,

𝑗2𝐷′′(𝑡) =− 4𝑎2𝑡
2 = 0⇒ 𝑎2 = 0,

𝑗2𝐷′′′(𝑡) =(−12𝑥1𝑢2 + 60)𝑡2 = 0⇒ 𝑢2 = 5
𝑥1
,

𝑗2𝐷(4)(𝑡) =(−240𝑥2

𝑥1
+ 600− 360𝑧6 − 48𝑏2)𝑡2 = 0⇒ 𝑏2 = −5

2
(3𝑥1𝑧6 − 5𝑥1 + 2𝑥2)

𝑥1
.

Subsequently, for jet 3 we get

𝑗3𝐷′(𝑡) =− 𝑣3𝑥1𝑡3 = 0⇒ 𝑣3 = 0,

𝑗3𝐷′′(𝑡) =(−4𝑎3 − 20)𝑡3 = 0⇒ 𝑎3 = −5,

𝑗3𝐷′′′(𝑡) =− 12𝑢3𝑥1 + 120(3𝑥1𝑧6 − 5𝑥1 + 2𝑥2)
𝑥1

+ 300− 240𝑥2

𝑥1
− 120𝑧6)𝑡3 = 0⇒ 𝑢3 = 5(4𝑧6 − 5)

𝑥1
,

𝑗3𝐷(4)(𝑡) =
(︂
−1200𝑥3

𝑥1
− 840𝑧7 + 1800𝑧6 + 600(3𝑥1𝑧6 − 5𝑥1 + 2𝑥2)

𝑥1
− 240(4𝑧6 − 5)𝑥2

𝑥1
− 48𝑏3

)︂
𝑡3 = 0

⇒𝑏3 = 5
2

(30𝑥1𝑧6 − 7𝑥1𝑧7 − 8𝑥2𝑧6 − 25𝑥1 + 20𝑥2 − 10𝑥3)
𝑥1

.
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Similarly, we can obtain other coefficients. In particular 𝑣4 = 5
𝑥1

and 𝑣5 = 5(4𝑧6−5)
𝑥1

.

Therefore the (𝑉 𝑇 )-stratum is given by

(𝑢, 𝑣) = ( 5
𝑥1
𝑡2 + 𝑢3𝑡

3 +𝑂(𝑡4), 5
𝑥1
𝑡4 + 𝑣5𝑡

5 +𝑂(𝑡6)),

which is 𝒜-equivalent to

(𝑡2 +𝑂(𝑡3), 𝑥1

5 (𝑣5 − 2𝑢3)𝑡5 +𝑂(𝑡6)),

by using the change of coordinate (𝑢, 𝑣) ↦→ (𝑢, 𝑣 − 𝑢2) on target. This is a ramphoid cusp
singularity at origin if and only if 𝑥1

5 (𝑣5 − 2𝑢3) = −16
𝑥1
𝑧6 ̸= 0.

The (𝑇𝐶)-stratum: This consists of points (𝑢, 𝑣) such that 𝑃(𝑢,𝑣)(𝑡) has a multilocal singular-
ity for which two pieces of the curve have an ordinary tangency at a given point. We know from
[21] that this stratum is diffeomorphic to half a line. To find its parametrization, suppose that
ℎ(𝑡, 𝑤) = ⟨𝛾(𝑡), 𝑤⟩ be the height function along the unit vector 𝑤. The height function has two
singularities at the same level, that is

ℎ(𝑡, 𝑤)− 𝑑 = (𝑡− 𝑡1)2(𝑡− 𝑡2)2ℎ̃(𝑡, 𝑤),

for some smooth function ℎ̃(𝑡, 𝑤).

The direction of the projection is along the vector 𝛾(𝑡2)− 𝛾(𝑡1) and the (𝑇𝐶)-stratum in the
(𝑢, 𝑣) plane is given by

𝑢 =𝛾2(𝑡2)− 𝛾2(𝑡1)
𝛾1(𝑡2)− 𝛾1(𝑡1)

,

𝑣 =𝛾3(𝑡2)− 𝛾3(𝑡1)
𝛾1(𝑡2)− 𝛾1(𝑡1)

. (4.16)

We equate the coefficients of the 5-jet of ℎ(𝑡, 𝑤)− 𝑑 and (𝑡− 𝑡1)2(𝑡− 𝑡2)2ℎ̃(𝑡, 𝑤) as functions
in 𝑡. Therefore, we get 𝑡2 = −𝑡1 +𝑂(𝑡21). Subsequently, performing the same method we get the
higher terms for 𝑡2 that is 𝑡2 = −𝑡1 − 𝑡21 +𝑂(𝑡31).

Consequently, using (4.16), the (𝑇𝐶)-stratum is given by the following parametrization:

(𝑢, 𝑣) = (−1
𝑥1
𝑡2 + h.o.t,

1
𝑥1
𝑡4 + h.o.t).

The (𝑆𝐼)-stratum: This happens when the height function on 𝑃(𝑢,𝑣)(𝑡) has a higher order
inflection at some point 𝑡 (equivalently, height function has an 𝐴3-singularity). By an straight-
forward computation on curvature and its first derivative one can obtain 𝑣 = 0 as the desire
stratum.

One can observe that each stratum in the bifurcation of 𝑃 of a ramphoid cusp singularity
is homeomorph to corresponding stratum in Theorem 3.6. According to Definition of 𝐹𝑅𝑆-
equivalent in Chapter §3, to show that two families are 𝐹𝑅𝑆-equivalent we should check the
number and position of inflections and vertices in each stratum as well.
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At the cusp stratum we have

𝜅(𝑢,𝑣)(𝑡) = −2𝑥1𝑣 − 12𝑥1𝑢𝑡
2 + 6𝑥3𝑣𝑡

2 + 16𝑡3 + 𝑓(𝑡, 𝑢, 𝑣)⎛⎝(2𝑡− 𝑢𝑥1 + h.o.t)2 + (4𝑡3 + 5𝑡4 + 𝑣𝑥1 + h.o.t)2

⎞⎠3/2 , (4.17)

and

𝜅
′

(𝑢,𝑣)(𝑡) = −12𝑢𝑣𝑥2
1 + 12𝑥2

1𝑥2𝑣(𝑢2 + 𝑣2) + 24𝑥1𝑣(1− 2𝑥2𝑢)𝑡+ · · ·+ 120𝑡5 + 𝑔(𝑡, 𝑢, 𝑣)⎛⎝(2𝑡− 𝑢𝑥1 + h.o.t)2 + (4𝑡3 + 5𝑡4 + 𝑣𝑥1 + h.o.t)2

⎞⎠5/2 ,

(4.18)

where 𝑓(𝑡, 𝑢, 𝑣) ∈ℳ4
3,1 and 𝑔(𝑡, 𝑢, 𝑣) ∈ℳ6

3,1.

Now using the equation of the cusp stratum together with the fact that there are 2 inflections
and 3 vertices concentrated at the cusp point, one can conclude that there exist one inflection and
2 vertices in this stratum when 𝑢 > 0 and just one inflection when 𝑢 < 0. (See (2) and (14) in
Figure 4.7.)

For the other strata in (4.7), it is now a matter of going around the origin in the parameter
space and plotting the inflections and vertices on the curve as we cross the various strata of the
bifurcations set.

Consequently, the family 𝑃 is an 𝐹𝑅𝑆-generic family of a ramphoid cusp and is 𝐹𝑅𝑆-
equivalent to the model (𝑡2, 𝑡4 + 𝑡5 + 𝑡6 + 𝑢𝑡3 + 𝑣𝑡). The bifurcation of the ramphoid cusp
𝑃 (𝑡, 0, 0) is given in Figure 4.7.
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Figure 4.7 – Bifurcation of the ramphoid cusp. The dots represent the points of vertices and the squares represent
the points of inflections.
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CHAPTER

5
THE GEOMETRY OF ORTHOGONAL PROJECTION

OF SURFACES IN R3

The geometry of surfaces is a subject that fascinated many mathematicians and users of
mathematics. One way to study geometry of surfaces is to compare the surfaces in R3 with model
submanifolds.

In this chapter we deal with the contact of regular surface 𝑀 with parallel lines. As seen in
§2.5.3 this contact measured by singularities of family of orthogonal projections. For surfaces in
R3, given a point 𝑝 ∈𝑀 , we choose a local parametrisation 𝜑 : 𝑈 ⊂ R2 →𝑀 of 𝑀 at 𝑝 with
𝜑(0) = 𝑝. In Table 2.2 can be found the local 𝒜-codimension ≤ 2 singularities of an orthogonal
projection of 𝑀 . The image of the singular set of an orthogonal projection of the surface is
called profile or apparent contour. The profile is a plane curve and may have singularities. The
changing in the profile carry a great deal of information about the surface. The aim of this chapter
is to extend the 𝐹𝑅𝑆-theory for discriminants of map germs from R2 to R2. We do this by
considering the geometry of the profile of an orthogonal projection. For instance: How many
inflections, cusps and vertices do the profiles have? When do they have inflections, cusps and
vertices?

After a brief preliminaries in §5.1, we consider in §5.2 the fold singularity. In Theorems
5.2, 5.3 we investigate the geometric conditions for surface 𝑀 when the profile has vertex
or inflection at the point 𝑝. In §5.3 we study cusp singularity. Fold and cusp singularities are
𝒜𝑒-stable. The 𝒜𝑒-codimension 1 singularities of an orthogonal projection called swallowtail
and lips/beaks. We study these singularities and geometry of their profiles in §5.4 and §5.5
respectively.

We bring up the 𝒜𝑒-codimension 2 singularities of an orthogonal projection of the surface 𝑀
which are called butterfly, goose and gulls, in §5.6, §5.7 and 5.8 respectively. Theorems 5.7 and
5.8 are devoted to the profile at a butterfly singularity and a goose singularity respectively.
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One important geometric phenomena in the study of the profile is the second order vertex
point. To obtain theses points we consider the contact of surface 𝑀 with cylinder. In §5.8.1 we
consider the contact of a smooth surface 𝑀 with circular cylinder at the cusp of Gauss point and
obtain a new curve called 𝐴4-curve. This curve is a robust feature and consists of locus of all
points on surface which the profile has a second order vertex.

Finally in §5.9 we extend 𝐹𝑅𝑆-theory for discriminant of map germs from R2 to R2.

5.1 Preliminaries

In this part we give some basic concepts in the study of surfaces in R3.

5.1.1 The Monge form parametrization

As seen in §2.5.3 the family of orthogonal projections 𝑃 : 𝑈 × 𝑆2 → 𝑇𝑆2 on 𝑀 is given by

𝑃 (𝑥, 𝑦, 𝑤) = (𝑤, 𝜑(𝑥, 𝑦)− ⟨𝜑(𝑥, 𝑦), 𝑤⟩𝑤).

We denote the second component of 𝑃 by 𝑃𝑤 and consider 𝑃𝑤 as the orthogonal projection of
surface 𝑀 along the fixed direction 𝑤. In Table 2.2 we summarized the local 𝒜-singularities of
𝑃𝑤.

At each point 𝑝 on the surface 𝑀 , we can choose a coordinate system in R3 such that 𝑝 is the
origin, the plane 𝑦 = 0 is the projection plane and the surface 𝑀 is locally the graph of some
function 𝑧 = 𝑓(𝑥, 𝑦), with (𝑥, 𝑦) in an open subset 𝑈 of R2 containing origin. Then we have
the Monge form parametrisation 𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)), (𝑥, 𝑦) ∈ 𝑈 , of 𝑀 at 𝑝. Note that the
Taylor expansion of 𝑓 at the origin has no constant or linear terms. We write

𝑓(𝑥, 𝑦) =𝑎20𝑥
2 + 𝑎21𝑥𝑦 + 𝑎22𝑦

2 + 𝑎30𝑥
3 + 𝑎31𝑥

2𝑦 + 𝑎32𝑥𝑦
2 + 𝑎33𝑦

3

+ 𝑎40𝑥
4 + 𝑎41𝑥

3𝑦 + 𝑎42𝑥
2𝑦2 + 𝑎43𝑥𝑦

3 + 𝑎44𝑦
4 +𝑂(5). (5.1)

Let a surface 𝑀 be given in Monge form

𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) = 𝑥𝑒1 + 𝑦𝑒2 + 𝑓(𝑥, 𝑦)𝑒3

with 𝑓 as in (5.1), where

𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 = (0, 0, 1).

Consider the Monge form at 𝑞 = (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)). Firstly, we move 𝑞 to the origin via transla-
tion, and we obtain

𝜑(𝑥, 𝑦) = (𝑥, 𝑦,−𝑓(𝑥0, 𝑦0) + 𝑓(𝑥+ 𝑥0, 𝑦 + 𝑦0)) (5.2)

= 𝑥𝑒1 + 𝑦𝑒2 + (−𝑓(𝑥0, 𝑦0) + 𝑓(𝑥+ 𝑥0, 𝑦 + 𝑦0))𝑒3.
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We define an orthonormal frame at 𝑞 by

𝑒1 = (1, 0, 𝑓𝑥(𝑥0, 𝑦0))√︁
1 + 𝑓𝑥(𝑥0, 𝑦0)2

,

𝑒2 = (−𝑓𝑥(𝑥0, 𝑦0)𝑓𝑦(𝑥0, 𝑦0), 1 + 𝑓𝑥(𝑥0, 𝑦0)2, 𝑓𝑦(𝑥0, 𝑦0))√︁
1 + 𝑓𝑥(𝑥0, 𝑦0)2

√︁
1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

, (5.3)

𝑒3 = (−𝑓𝑥(𝑥0, 𝑦0),−𝑓𝑦(𝑥0, 𝑦0), 1)√︁
1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

.

We obtain the change of basis matrix

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎝

1√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2

−𝑓𝑥(𝑥0, 𝑦0)𝑓𝑦(𝑥0, 𝑦0)√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2

√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

−
𝑓𝑥(𝑥0, 𝑦0)√︀

1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

0
1 + 𝑓𝑥(𝑥0, 𝑦0)2√︀

1 + 𝑓𝑥(𝑥0, 𝑦0)2
√︀

1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2
−

𝑓𝑦(𝑥0, 𝑦0)√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

𝑓𝑥(𝑥0, 𝑦0)√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2

𝑓𝑦(𝑥0, 𝑦0)√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2

√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

1√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

⎞⎟⎟⎟⎟⎟⎟⎠,
(5.4)

therefore we have ⎛⎜⎜⎜⎝
𝑒1

𝑒2

𝑒3

⎞⎟⎟⎟⎠ = 𝐵

⎛⎜⎜⎜⎝
𝑒1

𝑒2

𝑒3

⎞⎟⎟⎟⎠ . (5.5)

Substituting (5.5) into (5.2), we obtain

𝜑(𝑥, 𝑦) = 𝑎(𝑥, 𝑦, 𝑥0, 𝑦0)𝑒1 + 𝑏(𝑥, 𝑦, 𝑥0, 𝑦0)𝑒2 + 𝑐(𝑥, 𝑦, 𝑥0, 𝑦0)𝑒3,

where

𝑎(𝑥, 𝑦, 𝑥0, 𝑦0) = (−𝑓(𝑥0, 𝑦0) + 𝑓(𝑥 + 𝑥0, 𝑦 + 𝑦0))𝑓𝑥(𝑥0, 𝑦0) + 𝑥√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2

,

𝑏(𝑥, 𝑦, 𝑥0, 𝑦0) = (−𝑓(𝑥0, 𝑦0) + 𝑓(𝑥 + 𝑥0, 𝑦 + 𝑦0))𝑓𝑦(𝑥0, 𝑦0)− 𝑓𝑥(𝑥0, 𝑦0)𝑓𝑦(𝑥0, 𝑦0)𝑥 + (1 + 𝑓𝑥(𝑥0, 𝑦0)2)𝑦√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2

√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

,

𝑐(𝑥, 𝑦, 𝑥0, 𝑦0) = −𝑓(𝑥0, 𝑦0) + 𝑓(𝑥 + 𝑥0, 𝑦 + 𝑦0)− 𝑓𝑥(𝑥0, 𝑦0)𝑥− 𝑓𝑦(𝑥0, 𝑦0)𝑦√︀
1 + 𝑓𝑥(𝑥0, 𝑦0)2 + 𝑓𝑦(𝑥0, 𝑦0)2

.

Set 𝑥(𝑠, 𝑡) and 𝑦(𝑠, 𝑡) such that 𝑎(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡), 𝑥0, 𝑦0) = 𝑠 and 𝑏(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡), 𝑥0, 𝑦0) = 𝑡.
Write 𝜑(𝑠, 𝑡) = 𝜑(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) and replace (𝑠, 𝑡) for (𝑥, 𝑦). We obtain the Monge form at
(𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)):

𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 𝑔(𝑥, 𝑦, 𝑥0, 𝑦0)) = 𝑥𝑒1 + 𝑦𝑒2 + 𝑔(𝑥, 𝑦, 𝑥0, 𝑦0)𝑒3,

where 𝑔(𝑥, 𝑦, 𝑥0, 𝑦0) is given by

𝑔(𝑥, 𝑦, 𝑥0, 𝑦0) = 𝐴20(𝑥0, 𝑦0)𝑥2 + 𝐴21(𝑥0, 𝑦0)𝑥𝑦 + 𝐴22(𝑥0, 𝑦0)𝑦2

+ 𝐴30(𝑥0, 𝑦0)𝑥3 + 𝐴31(𝑥0, 𝑦0)𝑥2𝑦 + 𝐴32(𝑥0, 𝑦0)𝑥𝑦2 + 𝐴33(𝑥0, 𝑦0)𝑦3 +𝑂(𝑥, 𝑦)4

with

𝐴20(𝑥0, 𝑦0) =𝑎20 + 3𝑎30𝑥0 + 𝑎32𝑦0 +𝑂(2),

𝐴21(𝑥0, 𝑦0) =𝑎21 + 2𝑎31𝑥0 + 2𝑎32𝑦0 +𝑂(2), (5.6)

𝐴22(𝑥0, 𝑦0) =𝑎22 + 𝑎32𝑥0 + 3𝑎33𝑦0 +𝑂(2).



88 Chapter 5. The geometry of orthogonal projection of surfaces in R3

5.1.2 The modified family of orthogonal projections

If 𝑤 ∈ 𝑇𝑝𝑀 , the 𝑃𝑤 is locally a diffeomorphism. Suppose that 𝑤0 ∈ 𝑇𝑝𝑀 . We can rotate the
coordinate axes if necessary and set 𝑤0 = (0, 1, 0). With the above settings, we have

𝑃𝑤0(𝑥, 𝑦) = (𝑥, 𝑓(𝑥, 𝑦)).

When considering the family of orthogonal projections, as we are not allowed to apply diffeomor-
phisms, the computations simplify if we use spherical coordinates. We parametrise the directions
near 𝑤0 = (0, 1, 0) by 𝑤 = (sin(𝑣) cos(𝑢), sin(𝑣) sin(𝑢), cos(𝑣)), with 𝑢 and 𝑣 close to 𝜋/2, and
rotate 𝑤 to the vector 𝑤0 = (0, 1, 0) to have the projection to the fix plane 𝑦 = 0. To be more
precise, the rotation matrix is

𝑅 =

⎡⎢⎢⎢⎣
sin(𝑢) − cos(𝑢) 0

sin(𝑣) cos(𝑢) sin(𝑣) sin(𝑢) cos(𝑣)
− cos(𝑢) cos(𝑣) − cos(𝑣) sin(𝑢) sin(𝑣)

⎤⎥⎥⎥⎦ . (5.7)

The projection of the point (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) after performing the rotation (5.7) and the changes
of coordinates 𝑢 ↦→ 𝑢+ 𝜋/2 and 𝑣 ↦→ 𝑣 + 𝜋/2 becomes

𝑃 (𝑥, 𝑦, 𝑢, 𝑣) =

⎡⎢⎢⎢⎣
cos(𝑢)𝑥+ sin(𝑢)𝑦

0
cos(𝑢) sin(𝑣)𝑦 − sin(𝑢) sin(𝑣)𝑥+ cos(𝑣)𝑓(𝑥, 𝑦)

⎤⎥⎥⎥⎦ (5.8)

In fact, 𝑃 is a map from𝑀×𝑆2 to R2 and we call it the modified family of orthogonal projections.
One can observe from rotation carried out above that the family 𝑃 of orthogonal projections on
𝑀 is 𝒜-equivalent to the modified family of projections 𝑃 .

The set of critical points of 𝑃 is denoted by Σ(𝑃𝑤). This set is called the contour generator of
𝑀 and is given by {︃

(𝑥, 𝑦) ∈ R2| determinant of Jacobian of 𝑃𝑤 = 0
}︃
, (5.9)

where 𝑃𝑤(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦, 𝑢, 𝑣) is as in (5.8). The image of Σ(𝑃𝑤) by 𝑃 is called the apparent
contour or profile of 𝑀 along the direction 𝑤.

Proposition 5.1 (Proposition 6.11 of [24]). (i) The contour generator is a singular curve at 𝑝 if

and only if 𝑝 is a parabolic point and 𝑤 is the unique asymptotic direction at 𝑝.

(ii) The profile is a smooth curve at 𝑃𝑤(𝑝) if and only if 𝑤 is not an asymptotic direction at 𝑝.

Theorem 5.1 (Koenderink’s Theorem). Suppose that the apparent contour is a smooth curve at

𝑃𝑤(𝑝). Then the Gaussian curvature of 𝑀 at 𝑝 is equal to the product of the curvature of the

apparent contour together with the curvature of the normal section of 𝑀 at 𝑝 along the direction

𝑤.
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Next definition devoted to some geometric concepts which we use during this chapter.

Definition 5.1. (i) A point 𝑝 in the surface 𝑀 is called a flecnodal point if there exists a

tangent line through 𝑝 which has at least 4-point contact with 𝑀 .

(ii) If 𝛼 : (−𝜖, 𝜖) → 𝑀 be a smooth curve on 𝑀 then 𝜅𝑔 = ⟨𝛼′′, 𝑡 × 𝑁⟩ is called geodesic

curvature. A point 𝑝 on 𝛼 is a geodesic inflection if 𝜅𝑔 = 0 at 𝑝.

5.2 Fold

An algebraic condition to have fold singularity is 𝑎22 ̸= 0 (Theorem 6.7 of [24]). The geometric
characterisation of a fold singularity of 𝑃𝑤0 at the point 𝑝 is that the direction of projection 𝑤 is
tangent to 𝑀 at 𝑝 but not asymptotic at 𝑝.

The fold singularity is 𝒜𝑒-stable so we consider 𝑃𝑤0 , with 𝑤0 = (0, 1, 0). Applying change of
coordinate 𝑦 ↦→ 𝑦 − 𝑎21

2𝑎22
𝑥 in (5.1) we obtain

𝑗4𝑓(𝑥, 𝑦) =
⎛⎝− (1/4)𝑎2

21/𝑎22 + 𝑎20

)︃
𝑥2 + 𝑎22𝑦

2 +
(︃

(1/4)𝑎32𝑎
2
21/𝑎

2
22−

(1/2)𝑎31𝑎21/𝑎22 + 𝑎30 − (1/8)𝑎33𝑎
3
21/𝑎

3
22

)︃
𝑥3+(︃

− 𝑎32𝑎21/𝑎22 + 𝑎31 + (3/4)𝑎33𝑎
2
21/𝑎

2
22

)︃
𝑦𝑥2+(︃

𝑎32 − (3/2)𝑎33𝑎21/𝑎22

)︃
𝑦2𝑥+ 𝑎33𝑦

3 +
(︃

(1/4)𝑎42𝑎
2
11/𝑎

2
22−

(1/8)𝑎43𝑎
3
21/𝑎

3
22 − (1/2)𝑎41𝑎21/𝑎22 + 𝑎40 + (1/16)𝑎44𝑎

4
21/𝑎

4
22

)︃
𝑥4+(︃

𝑎41 − (1/2)𝑎44𝑎
3
21/𝑎

3
22 − 𝑎42𝑎21/𝑎22 + (3/4)𝑎43𝑎

2
21/𝑎

2
22

)︃
𝑦𝑥3+(︃

(3/2)𝑎44𝑎
2
21/𝑎

2
22 + 𝑎42 − (3/2)𝑎43𝑎21/𝑎22

)︃
𝑦2𝑥2+(︃

− 2𝑎44𝑎21/𝑎22 + 𝑎43

)︃
𝑦3𝑥+ 𝑎44𝑦

4. (5.10)

The contour generator is given by 2𝑎22𝑦 +𝑂(2) = 0. As 𝑎22 ̸= 0, the implicit function theorem
guarantees that one can write 𝑦 locally as function of 𝑥 such that 𝑦 = 𝑏2𝑥

2 +𝑂(𝑥3). We find that

𝑏2 = −(4𝑎2
22𝑎31 − 4𝑎22𝑎21𝑎32 + 3𝑎33𝑎

2
21)

8𝑎3
22

.

Substituting 𝑦 = 𝑏2𝑥
2 + 𝑂(𝑥3) in 𝑃𝑤(𝑥, 𝑦), we obtain the expression of the profile which is a

regular plane curve (𝑥, 𝑌 (𝑥)) with

𝑌 (𝑥) = 4𝑎20𝑎22 − 𝑎2
21

4𝑎22
𝑥2 + 8𝑎3

22𝑎30 − 4𝑎21𝑎
2
22𝑎31 + 2𝑎2

21𝑎22𝑎32 − 𝑎3
21𝑎33

8𝑎3
22

𝑥3 +𝑂(𝑥4). (5.11)
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If 𝜅 denotes the curvature of profile then according to (5.11) we have

𝜅𝑐 = 𝜅(0) =4𝑎20𝑎22 − 𝑎2
21

4𝑎22
, (5.12)

𝜅′(0) =8𝑎3
22𝑎30 − 4𝑎21𝑎

2
22𝑎31 + 2𝑎2

21𝑎22𝑎32 − 𝑎3
21𝑎33

8𝑎3
22

. (5.13)

Theorem 5.2 ([17]). For a given surface 𝑀 in R3 let the projection map 𝑃𝑤(𝑥, 𝑦) = (𝑥, 𝑓(𝑥, 𝑦))
has a singularity of type fold at the origin. Then

(i) The profile has an ordinary vertex at 𝑃𝑤(0, 0) if and only if the origin is not a parabolic

point and 𝑀 has an 𝐴3-contact with 𝐶𝑤,𝜆 at the origin, where 𝐶𝑤,𝜆 denotes a cylinder

which contains the origin and whose axis is parallel to 𝑤 and contains a point (0, 0, 𝜆) =
(0, 0, 1/𝜅𝑐) such that 𝜅𝑐 is the curvature of the profile at 𝑃𝑤(0, 0).

(ii) The profile has a second order vertex at 𝑃𝑤(0, 0) if and only if the origin is not a parabolic

point and 𝑀 has an 𝐴4-contact with 𝐶𝑤,𝜆 at the origin.

(iii) The profile has a third order vertex at 𝑃𝑤(0, 0) if and only if the origin is not a parabolic

point and 𝑀 has an 𝐴5-contact with cylinder 𝐶𝑤,𝜆 at the origin.

Remark 5.1. According to Theorem 5.2, the profile has an ordinary vertex if and only if the

point 𝑝 is not parabolic and the cubic polynomial 𝐶3(𝑥, 𝑦) = 𝑎30𝑥
3 + 𝑎31𝑥

2𝑦 + 𝑎32𝑥𝑦
2 + 𝑎33𝑦

3

has the root (2𝑎22,−𝑎21). On the other hand, we know from definition of conjugate direction

that if 𝑤 = 𝑎𝜕𝑥 + 𝑏𝜕𝑦 then the conjugate of 𝑤 is �̄� = (𝑎𝑚+ 𝑏𝑛)𝜕𝑥 − (𝑎𝑙 + 𝑏𝑚)𝜕𝑦 where 𝑙, 𝑚

and 𝑛 are the coefficients of the second fundamental form of 𝑀 . As 𝑤 = (0, 1, 0) so 𝑎 = 0 and

𝑏 = 1 thus 𝑎𝑚 + 𝑏𝑛 = 𝑛 = 𝑓𝑦𝑦√
1+𝑓2

𝑥+𝑓2
𝑦

= 2𝑎22 and −(𝑎𝑙 + 𝑏𝑚) = −𝑚 = − 𝑓𝑥𝑦√
1+𝑓2

𝑥+𝑓2
𝑦

= −𝑎21

therefore 𝐶3(�̄�) = 0.

Next theorem gives information about the geometry of profile when it has an inflection.

Theorem 5.3. For a given surface 𝑀 in R3 let the projection map 𝑃𝑤(𝑥, 𝑦) = (𝑥, 𝑓(𝑥, 𝑦)) has

a singularity of type fold at the origin. Then generically

(i) The profile has an ordinary inflection at 𝑃𝑤(0, 0) if and only if the point 𝑝 is parabolic, the

direction of projection is not-asymptotic.

(ii) The profile has a second order inflection at 𝑃𝑤(0, 0) if and only if the point 𝑝 is Cusp of

Gauss and 𝑤 is not an asymptotic direction.

Proof. We take 𝑀 locally in the Monge form 𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) with 𝑓 as in (5.1).
According to (5.12) one can see that the profile has an ordinary inflection if and only if 4𝑎22𝑎20−
𝑎2

21 = 0 i.e. the point 𝑝 is parabolic point. As seen in §2.5.1, the contact of surface 𝑀 with
its tangent plane captured by singularities of height function along the normal direction 𝑁0 =



5.3. Cusp 91

(0, 0, 1) at 𝑝 which is given by 𝑓(𝑥, 𝑦). Putting 4𝑎22𝑎20 − 𝑎2
21 = 0 in (5.10) we get the height

function has 𝐴≥2-singularity at (0, 0).

A second order inflection happens when 𝜅𝑐 = 𝜅′
𝑐 = 0. Equivalently (4𝑎22𝑎20 − 𝑎2

21) = 0 and(︃
𝑎3

21𝑎33 − 2𝑎2
21𝑎22𝑎32 + 4𝑎21𝑎

2
22𝑎31 − 8𝑎3

22𝑎30

)︃
= 0. Substituting these in the (5.10) we get the

height function has 𝐴≥3-singularity, this means that 𝑝 is cusp of Gauss (see Figure 5.1 for evolute
at a second inflection point).

Remark 5.2. Generically, the profile at a fold singularity does not have a third order inflection.

Figure 5.1 – The profile has second order inflection if critical set passes through the cusp of Gauss point. The red
curve indicates the evolute at a second order inflection point.

5.3 Cusp

Suppose that 𝑃𝑤(𝑥, 𝑦) has singularity of type cusp at 𝑝 = 𝜑(0, 0), i.e. 𝑎22 = 0 and 𝑎21𝑎33 ̸= 0.
The geometric characterization for the cusp singularity is that the point 𝑝 is a hyperbolic point
and the direction of projection is an asymptotic direction (see chapter 6 of [24] for precise
details).

Recall that the cusp singularity is𝒜𝑒-stable. The singular set Σ(𝑃𝑤) is given by 𝑎21𝑥+𝑂(2) =
0. As 𝑎21 ̸= 0, by the implicit function theorem, we can write locally 𝑥 as a function of 𝑦 with

𝑥 = 𝑥(𝑦) = −3𝑎33

𝑎21
𝑦2 + 2(3𝑎33𝑎32 − 2𝑎44𝑎21)

𝑎2
21

𝑦3 +𝑂(𝑦4).

Substituting in 𝑃𝑤(𝑥, 𝑦) we get the parametrisation of the profile given by

(𝑋(𝑦), 𝑌 (𝑦)) =
(︁
− 3𝑎33

𝑎21
𝑦2 +𝑂(𝑦3),−2𝑎33𝑦

3 +𝑂(𝑦4)
)︁
, (5.14)
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witch has a cusp singularity.

According to discussion in §3.2 we know that there is an accumulation of 3 vertices and 2
inflections concentrated at the cusp point. Also from Theorem 3.4 the full evolute of a cusp is a
smooth curve which has an ordinary tangency at the cusp point together with its limiting normal
line at the cusp point counted twice. The limiting normal line to the profile at the cusp point
separates the profile and its proper evolute.

5.4 Swallowtail

The algebraic conditions for swallowtail singularity are

𝑎22 = 0, 𝑎33 = 0, 𝑎21 ̸= 0 and 𝑎44 ̸= 0. (5.15)

The following observation gives us information about versality of the family of modified orthog-
onal projections (5.8) at swallowtail singularity.

Proposition 5.2. Let 𝐹 (𝑥, 𝑦, 𝑢) = 𝑃 (𝑥, 𝑦, 𝑢, 0) be a 1-parameter family of a swallowtail singu-

larity 𝑃 (𝑥, 𝑦, 0, 0). 𝐹 is an 𝒜𝑒-versal family of a swallowtail singularity.

Proof. By the change of coordinate 𝑥 ↦→ 𝑥− 𝑢𝑦 in the source, we get the family 𝐹 (𝑥, 𝑦, 𝑢) =
𝑃 (𝑥, 𝑦, 𝑢, 0) = (𝑥, 𝑓(𝑥+ 𝑢𝑦, 𝑦)). The swallowtail is 4-𝒜-determined, so we need to show that

𝐿𝒜𝑒.𝐹0 + R.{�̇�} = ℰ(2, 2),

holds in the 4-jet space. We have

�̇� = 𝜕𝐹

𝜕𝑢
(𝑥, 𝑦, 0) =(0, 𝑦𝑓𝑥(𝑥, 𝑦)),

𝑗3(𝜕𝐹0

𝜕𝑥
) =(1, 2𝑎02 + 𝑎21𝑦 + 3𝑎30𝑥

2 + 2𝑎31𝑥𝑦 + 𝑎32𝑦
2

+ 4𝑎40𝑥
3 + 3𝑎41𝑥

2𝑦 + 22𝑎42𝑥𝑦
2 + 𝑎43𝑦

3),

𝑗3(𝜕𝐹0

𝜕𝑦
) =(0, 𝑎21𝑥+ 𝑎31𝑥

2 + 2𝑎32𝑥𝑦

+ 𝑎41𝑥
3 + 2𝑎42𝑥

2𝑦 + 3𝑎43𝑥𝑦
2 + 4𝑎44𝑦

3).

We shall work downwards on jet levels and start by showing that all monomials (𝑥𝑖𝑦𝑗, 0) and
(0, 𝑥𝑖𝑦𝑗) with 𝑖+ 𝑗 ≤ 4 are in the left hand side of

𝑗𝑘
(︃
𝐿𝒜𝑒.𝐹0 + R.{�̇�}

)︃
= 𝐽𝑘(2, 2). (5.16)

For any monomial 𝑄(𝑥, 𝑦) of degree ≤ 4 the terms (𝑄(𝑥, 𝑦), 0) is in the left hand side of
(5.16), because (𝑄(𝑥, 𝑦), 0) = 𝑄(𝑥, 𝑦)𝜕𝐹0

𝜕𝑥
. We observe that, using the first component of 𝐹 , the

monomials (𝑥𝑖, 0) and (0, 𝑥𝑖) are in 𝐿ℒ𝑒.𝐹0 and hence in the left hand side of (5.16). We get all
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monomials of degree 4 of the form (0, 𝑄1(𝑥, 𝑦)) using 𝑗4𝑄1(𝑥, 𝑦)𝜕𝐹0
𝜕𝑥

where 𝑄1 is of degree 3.
We also get (0, 𝑥2𝑦) from 𝑗4𝑥2 𝜕𝐹0

𝜕𝑥
. We have

(0, 𝑎44𝑦
4) ≡ 𝑗3(𝑥𝜕𝐹0

𝜕𝑥
)− 𝑗3(0, 𝑓(𝑥, 𝑦)).

As 𝑎44 ̸= 0, we get (0, 𝑦4). Now, 𝑗3(𝑦2 𝜕𝐹0
𝜕𝑦

) ≡ (0, 𝑎21𝑥𝑦
2), similarly, 𝑗3(𝑥𝜕𝐹0

𝜕𝑥
) ≡ (0, 𝑎21𝑥𝑦),

which give (0, 𝑥𝑦2) and (0, 𝑥𝑦) as 𝑎21 ̸= 0. We get (0, 𝑦3) from 𝑗3 𝜕𝐹0
𝜕𝑦

and (0, 𝑦2) from �̇� . Finally,
we get (0, 𝑦) from 𝑗3 𝜕𝐹0

𝜕𝑥
. Thus, 𝐹 is 𝒜𝑒-versal unfolding of the swallowtail singularity.

The critical set for the family 𝑃 (𝑥, 𝑦, 𝑢, 0) is the set

Σ(𝑃𝑤) = {(𝑥, 𝑦) ∈ R2|𝑎21𝑥+𝑂(2) = 0}. (5.17)

As 𝑎21 ̸= 0, by the implicit function theorem we can write locally 𝑥 as a function of 𝑦 and 𝑢 with

𝑥(𝑦, 𝑢) = 𝑢𝑦 − 4𝑎44

𝑎21
𝑦3 + 2𝑎20

𝑎21
𝑢2𝑦 − 𝑎32

𝑎21
𝑢𝑦2 +𝑂(4). (5.18)

Substituting (5.18) in 𝑃 (𝑥, 𝑦, 𝑢, 0) we get an expression for the profile which has 4-jet equal to(︃
2𝑢𝑦 − 𝑎32

𝑎21
𝑢𝑦2 − 4𝑎44

𝑎21
𝑦3 , −3𝑎44𝑦

4 + 𝑎21𝑢𝑦
2
)︃
. (5.19)

Because 𝑃 (𝑥, 𝑦, 𝑢, 0) is 𝒜𝑒-versal the profile (5.19) undergoes the swallowtail transition.

Theorem 5.4. For a given surface 𝑀 in R3 suppose that 𝑃𝑤0 has swallowtail singularity at 𝑝

where 𝑤0 = (0, 1, 0). Then

(i) The point 𝑝 is a felecnodal point and 𝑤 is an asymptotic direction at 𝑝.

(ii) The proper evolute of the profile of a swallowtail singularity is an ordinary cusp with

the cusp point coinciding with the swallowtail point. The full evolute of the profile is the

proper evolute together with 4 lines coinciding with the limiting normal line of the profile

at the swallowtail singularity (see Figure 5.2 center).

(iii) The bifurcation in the full evolute of the profile at a swallowtail singularity is as in Figure

5.2.

Proof. For item (i) we refer reader to [20]. We take 𝑀 locally in Monge form with 𝑓 as in (5.1).
We also consider the family 𝑃 (𝑥, 𝑦, 𝑢, 0).

The curvature of the profile is given by

𝜅𝑐 = 4𝑎2
21𝑢2 − 12𝑎21𝑎32𝑢2𝑦 + (12𝑎2

32𝑢2 − 48𝑎21𝑎44𝑢)𝑦2 + 96𝑎32𝑎44𝑢𝑦3 + 144𝑎2
44𝑦4 + 𝑂(5)(︂(︀

2𝑢 + −4𝑎32
𝑎21

𝑦 + −12𝑎44
𝑎21

𝑦2 + 𝑂(3)
)︀2 +

(︀
2𝑎21𝑢𝑦 − 3𝑎32𝑢𝑦2 − 12𝑎44𝑦3 + 𝑂(4)

)︀2)︂ 3
2

.
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Using (5.19), we get the expression for the proper evolute of the profile,

𝑒(𝑦) =
(︃
−12𝑎44𝑎21 + 32𝑎44 + 4𝑎21𝑢

𝑎21
𝑦3 +𝑂(𝑦4), 𝑢− (6𝑎21𝑢+ 36𝑎44)

2 𝑦2 +𝑂(𝑦3)
)︃
,

which has one ordinary cusp singularity at 𝑃𝑤(0, 0) for all 𝑢 near zero. Therefore, away from the
singularity points of the profile, there is one single vertex.

Using the numerator of curvature of the profile we conclude that the maximum number of
inflections in the bifurcation of profile is 4. Also the numerator of first derivative of curvature is
given by

𝑂(𝑢4) +𝑂(𝑢3)𝑦 +𝑂(𝑢3)𝑦2 +𝑂(𝑢2)𝑦3 +𝑂(𝑢2)𝑦4 + (20736𝑎21𝑎
3
44𝑢+𝑂(𝑢2))𝑦5

−41472𝑎4
44𝑦

7 +𝑂(8).

Hence, we have a maximum of 7 vertices. According to §3.2, we know that there is an accumula-
tion of 2 inflections and 3 vertices at each cusp singularity. Thus, we do not expect to observe
inflection in the bifurcation (which is true because according to item (i) swallowtail happens at
the flecnodal curve hence generically the bifurcation of critical set of 𝑃𝑤 does not intersect the
parabolic curve).

Using expression (5.19), we can locate the cusps of the profile at 𝑦 = 𝑦1 and 𝑦 = 𝑦2. Dividing
the numerator of the first derivative of the curvature by (𝑦 − 𝑦1)3(𝑦 − 𝑦2)3, we obtain another
point 𝑦 = 𝑦3 which indicates the vertex point in the bifurcation of the swallowtail singularity. A
straightforward calculation shows that 𝜅𝑐(𝑦3)𝜅′′(𝑦3) = 3072𝑎7

21𝑎44𝑢
7 +𝑂(𝑢8) this implies that

we have a change from an outward vertex to an inward vertex in the bifurcation of the swallowtail
singularity (for precise details of calculations see the Appendix C).

For the rest of proof, using similar calculations to those in the proof of Theorem 3.4 part (ii),
we get the full evolute (when 𝑢 = 0) as the proper evolute together with 4 lines located in the
normal direction at the point 𝑃𝑤(0, 0).

5.5 Lips/Beaks

When the point 𝑝 ∈ 𝑀 is a parabolic point and 𝑤 is an asymptotic direction then 𝑃 has a
lips/beaks singularity. This singularity has 𝒜𝑒-codimension one.

Proposition 5.3. Let 𝐹 (𝑥, 𝑦, 𝑣) = 𝑃 (𝑥, 𝑦, 0, 𝑣) be a 1-parameter family of a lips/beaks singu-

larity. Then the family 𝐹 is an 𝒜𝑒-versal family.

Proof. The proof is similar to proof of Proposition 5.2 and Theorem 6.8 of [24] and is omitted.
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Figure 5.2 – The bifurcation in the evolute of the profile at a swallowtail singularity. Dots represents the vertex
points.

Koenderink’s theorem shows that if 𝜅𝑛(𝑤) ̸= 0 then 𝐾 = 𝜅𝑛(𝑤)𝜅𝑐, where 𝜅𝑛(𝑤) is the
normal curvature along 𝑤 at 𝑝 ∈𝑀 and 𝜅𝑐 is the curvature of the profile of 𝑀 along 𝑤 at a point
corresponding to 𝑝.

Set

�̃�(𝑥, 𝑦) = �̄�(𝑥, 𝑦)�̄�(𝑥, 𝑦)− �̄�(𝑥, 𝑦)2, (5.20)

where

�̄� = ⟨𝜑𝑥𝑥, 𝜑𝑥 × 𝜑𝑦⟩, �̄� = ⟨𝜑𝑥𝑦, 𝜑𝑥 × 𝜑𝑦⟩, �̄� = ⟨𝜑𝑦𝑦, 𝜑𝑥 × 𝜑𝑦⟩.

One can observe that 𝐾 = 0 if and only if �̃� = 0. Hence, the intersection points of �̃�(𝑥, 𝑦) = 0
and Σ(𝑃𝑤) correspond to inflections of the profile along 𝑤.

If 𝜅𝑛(𝑤) = 0, that is, 𝑤 is asymptotic at 𝑝 then the profile along 𝑤 has a cusp at a point
corresponding to 𝑝. Set

𝐶(𝑥, 𝑦) = 𝑎2�̄�(𝑥, 𝑦) + 2𝑎𝑏�̄�(𝑥, 𝑦) + 𝑏2�̄�(𝑥, 𝑦), (5.21)

for a tangent vector 𝑤 = 𝑎𝜑𝑥(𝑥, 𝑦) + 𝑏𝜑𝑦(𝑥, 𝑦). The zero set 𝐶(𝑥, 𝑦) = 0 is the locus of points
where 𝑤 is asymptotic. Therefore, intersections between 𝐶(𝑥, 𝑦) = 0 and Σ(𝑃𝑤) correspond to
cusps of the profile along 𝑤.

To analyze the vertices of the profile, we consider cylindrical directions. These are defined in
[17] as follows.

Definition 5.2. Assume that a surface 𝑀 is given in Monge form 𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) at the

origin with 𝑓 as in (5.1). We denote the cubic part of 𝑓 by 𝑓3(𝑥, 𝑦). The tangent direction at the

origin along 𝑤 = 𝑎𝜑𝑥(0, 0) + 𝑏𝜑𝑦(0, 0) is a cylindrical direction at the origin if 𝑓3(�̄�, �̄�) = 0,

where �̄� = �̄�𝜑𝑥(0, 0) + �̄�𝜑𝑦(0, 0) is the conjugate of 𝑤 at the orign.
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If 𝑀 is given in Monge form 𝑧 = 𝑓(𝑥, 𝑦) with 𝑓 as in (5.1) then we have

𝜅1(0, 0) = 2𝑎20, 𝜅2(0, 0) = 2𝑎22,

𝑤1𝜅1(0, 0) = 6𝑎30, 𝑤2𝜅1(0, 0) = 2𝑎31, 𝑤1𝜅2(0, 0) = 2𝑎32, 𝑤2𝜅2(0, 0) = 6𝑎33,

where 𝑤𝑖𝜅𝑗 is the directional derivative of 𝜅𝑗 along 𝑤𝑖. Hence, 𝑓3 can be written in the form

𝑓3 = 𝑤1𝜅1(0, 0)𝑥3 + 𝑤2𝜅1(0, 0)𝑥2𝑦 + 𝑤1𝜅2(0, 0)𝑥𝑦2 + 𝑤2𝜅2(0, 0)𝑦3.

By these assumptions we can extend the definition of cylindrical direction at a point close to
origin.

Definition 5.3. Let 𝑀 be parameterized by a smooth map 𝜑, and let 𝑤 = 𝑎𝜑𝑥(𝑝) + 𝑏𝜑𝑦(𝑝) and

�̄� = �̄�𝜑𝑥(𝑝) + �̄�𝜑𝑦(𝑝) be conjugate of 𝑤 at 𝜑(𝑝). A tangent direction at 𝜑(𝑝) generated by 𝑤 is a

cylindrical direction at 𝜑(𝑝) if

𝑤1𝜅1(𝑝)�̄�3 + 𝑤2𝜅1(𝑝)�̄�2�̄�+ 𝑤1𝜅2(𝑝)�̄��̄�2 + 𝑤2𝜅2(𝑝)�̄�3 = 0.

Remark 5.3. Assume that 𝜑(𝑝) is not a parabolic point and 𝑤 is not an asymptotic direction

at 𝜑(𝑝). Then 𝑤 is cylindrical at 𝜑(𝑝) if and only if 𝑀 has 𝐴≥3-contact with a cylinder whose

axis is parallel to 𝑤 and whose radius is 𝜆 = 𝜅𝑛(𝑤)/𝐾(𝑝) at 𝜑(𝑝), where 𝜅𝑛(𝑤) is the normal

curvature along 𝑤 at 𝜑(𝑝) (see Proposition 4.11 in [17]). Moreover, this condition is equivalent

to the condition that the profile of 𝑀 along 𝑤 has 𝐴≥3-contact with a circle whose radius is 𝜆 at

a point 𝑞 corresponding point to 𝜑(𝑝) (Proposition 4.12 in [17]).

A plane curve has a vertex at a point if and only the curve has 𝐴≥3-contact with a circle
there. Therefore, 𝑤 is a cylindrical direction at 𝜑(𝑝) if and only if the profile along 𝑤 has a
vertex at a point corresponding to 𝜑(𝑝). Let tangent vectors 𝑤 = 𝑎𝜑𝑥(𝑥, 𝑦) + 𝑏𝜑𝑦(𝑥, 𝑦) and
�̄� = �̄�𝜑𝑥(𝑥, 𝑦) + �̄�𝜑𝑦(𝑥, 𝑦) are conjugate. For �̄� set

𝑉 (𝑥, 𝑦) = 𝑤1𝜅1(𝑥, 𝑦)�̄�3 + 𝑤2𝜅1(𝑥, 𝑦)�̄�2�̄�+ 𝑤1𝜅2(𝑥, 𝑦)�̄��̄�2 + 𝑤2𝜅2(𝑥, 𝑦)�̄�3. (5.22)

The zero set 𝑉 (𝑥, 𝑦) = 0 is the locus of points where 𝑤 is cylindrical. So, the points of
intersection between 𝑉 (𝑥, 𝑦) = 0 and Σ(𝑃𝑤) correspond to vertices of the profile along 𝑤.

Theorem 5.5. For a given surface 𝑀 in R3 let the modified orthogonal projection 𝑃𝑤0 has

lips/beaks singularity where 𝑤0 = (0, 1, 0). Then

i) There is a birth of two inflections and two vertices in the bifurcation of the profile at a lip

singularity.

ii) There are 3 different beaks type singularities. In the first type, which we call it 𝐷+
4 -beak,

there is a birth of 2 inflections and 2 vertices on one side and no inflections and no vertices

on the other side of bifurcation of the profile. In the second type, which we call it 𝐷−
4 -beak,
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there is a birth of 2 inflections and 4 vertices on one side and 2 vertices and no inflection

on the other side of bifurcation of the profile. The third beak type is called 𝐷5-beak and

happens at an isolated point on the parabolic set of the surface 𝑀 .

Proof. We take the surface 𝑀 locally in Monge form parametrisation 𝑧 = 𝑓(𝑥, 𝑦) with 𝑓 as in
(5.1). Let us investigate the configuration of Σ(𝑃𝑤), �̃�(𝑥, 𝑦) = 0, 𝐶(𝑥, 𝑦) = 0, and 𝑉 (𝑥, 𝑦) = 0
for lips and beaks. Set 𝑤0 = (0, 1, 0) and 𝑤 = (0, 1, 𝑣).

Suppose that the type of singularity of 𝑃𝑤0 is lips or beaks. Then we have

𝑎20 ̸= 0, 𝑎21 = 𝑎22 = 0, 𝑎33 ̸= 0, 3𝑎31𝑎33 − 𝑎2
32 ̸= 0.

Remark that the singularity of 𝑃𝑤0 is lips (resp. beaks) if and only if 3𝑎31𝑎33 − 𝑎2
32 > 0 (resp.

< 0). The critical set Σ(𝑃𝑤) is given by

Σ(𝑃𝑤) = {𝑓𝑦(𝑥, 𝑦) = 𝑣} = {−𝑣 + 𝑎31𝑥
2 + 2𝑎32𝑥𝑦 + 3𝑎33𝑦

2 +𝑂(3) = 0}.

It undergoes Morse transition in Figure 5.3 left (resp. Figure 5.3 right) if the type of singularity
of 𝑃𝑤0 is lips (resp. beaks).

∅

Figure 5.3 – The two types of Morse transitions.

Straightforwad calculations show that

�̃�(𝑥, 𝑦) = 4𝑎20𝑎32𝑥+ 12𝑎20𝑎33𝑦 + 4(𝑎2
31 − 3𝑎30𝑎32 − 𝑎20𝑎42)𝑥2

+ 4(𝑎31𝑎32 − 9𝑎30𝑎33 − 3𝑎20𝑎43)𝑥𝑦 + 4(𝑎2
32 − 3𝑎31𝑎33 − 6𝑎20𝑎44)𝑦2 +𝑂(3).

(5.23)

Since 𝑤 = (0, 1, 𝑣) can be written as 𝑤 = 𝑎𝜑𝑥 + 𝑏𝜑𝑦, we have

𝑎 = 0, 𝑏 = 1, 𝑓𝑦(𝑥, 𝑦) = 𝑣.

We remark that the locus 𝑓𝑦(𝑥, 𝑦) = 𝑣 gives Σ(𝑃𝑤) in the parameter space. Then

𝐶(𝑥, 𝑦) = �̄�(𝑥, 𝑦) = 2𝑎32𝑥+ 6𝑎33𝑦 + 2𝑎42𝑥
2 + 6𝑎43𝑥𝑦 + 12𝑎44𝑦

2 +𝑂(3). (5.24)

It follows from (5.23) and (5.24) that the vector (1,− 𝑎32
3𝑎33

) is tangent to both curves �̃�(𝑥, 𝑦) = 0
and 𝐶(𝑥, 𝑦) = 0 at the origin. Moreover, since �̃�(𝑥, 𝑦) = 0 divides the parameter space near
the origin into the hyperbolic and elliptic region, �̃�(𝑥, 𝑦) = 0 and 𝐶(𝑥, 𝑦) = 0 have 2𝑘-point
(𝑘 ≥ 1) contact at the origin. Actually, when 3𝑎31𝑎33 − 𝑎2

32 ̸= 0 these two curves have 2-point
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contact at the origin because (5.24) shows that 𝐶(𝑥, 𝑦) = 0 can be parameterized near the origin
by

𝑐(𝑡) =
(︃
𝑡,− 𝑎32

3𝑎33
𝑡+ −3𝑎2

33𝑎42 + 3𝑎32𝑎33𝑎43 − 2𝑎2
32𝑎44

9𝑎2
33

𝑡2 +𝑂(3)
)︃
.

Therefore we have

(�̃� ∘ 𝑐(𝑡))′|𝑡=0 = 0, (�̃� ∘ 𝑐(𝑡))′′|𝑡=0 = 8(𝑎2
32 − 3𝑎31𝑎33) ̸= 0.

We have

𝑉 (𝑥, 𝑦) = −48
(︁
(𝑎30𝑎

3
32 − 𝑎3

31𝑎33)𝑥3

+ 𝑎32(𝑎31𝑎
2
32 − 6𝑎2

31𝑎33 + 9𝑎30𝑎33)𝑥2𝑦

+ (𝑎4
32 − 3𝑎31𝑎

2
32𝑎33 − 9𝑎2

31𝑎
2
33 + 27𝑎30𝑎32𝑎

2
33)𝑥2𝑦

+ 𝑎33(2𝑎3
32 − 9𝑎31𝑎32𝑎33 + 27𝑎30𝑎

2
33)𝑦3

)︁
+𝑂(4). (5.25)

We denote the cubic part of 𝑉 by 𝑉3. The discriminant of 𝑉3 is given by

Δ = 216 · 34(3𝑎31𝑎33 − 𝑎2
32)6Δ′, (5.26)

where
Δ′ = 3𝑎2

31𝑎
2
32 − 4𝑎30𝑎

3
32 − 4𝑎3

31𝑎33 + 18𝑎30𝑎31𝑎32𝑎33 − 27𝑎2
30𝑎

2
33. (5.27)

We remark that Δ′ coincides with the discriminant of the cubic part of 𝑓 as in (5.1). Since

Δ′ = −27𝑎2
32

(︃
𝑎30 + 2𝑎3

32 − 9𝑎31𝑎32𝑎33

27𝑎2
33

)︃2

− 4(3𝑎31𝑎33 − 𝑎2
32)3

27𝑎2
33

, (5.28)

if 3𝑎31𝑎33 − 𝑎2
32 > 0 then Δ′ < 0 which is equivalent to Δ < 0. On the other hand, if

3𝑎31𝑎33 − 𝑎2
32 < 0 then Δ can take negative, positive and zero values.

Now we consider the case of lips, so we have 3𝑎31𝑎33 − 𝑎2
32 > 0. Since Δ < 0, 𝑉 has a

𝐷+
4 -singularity at the origin, thus 𝑉 (𝑥, 𝑦) = 0 is locally a smooth curve passing through the

origin. Moreover, the zero set 𝑉 (𝑥, 𝑦) = 0 is transverse to both zero sets �̃�(𝑥, 𝑦) = 0 and
𝐶(𝑥, 𝑦) = 0 at the origin because we have

𝑉3(1,−
𝑎32

3𝑎33
) = 16(3𝑎31𝑎33 − 𝑎2

32)3

9𝑎2
33

̸= 0. (5.29)

It follows that the arrangement of Σ(𝑃𝑤0), �̃�(𝑥, 𝑦) = 0, 𝐶(𝑥, 𝑦) = 0 and 𝑉 (𝑥, 𝑦) = 0 is as
in Figure 5.4 and the arrangement of cusps, inflections, and vertices on Σ(𝑃𝑤0) is shown in
Figure 5.5. Remark that Σ(𝑃𝑤0) is an isolated point. Hence, the bifurcation of the profile along
𝑤 is as in Figure 5.6.

Now we consider the case of beaks, so 3𝑎31𝑎33 − 𝑎2
32 < 0. The critical set Σ(𝑃𝑤0) has two

local branches which are smooth curves and intersect transversally at the origin. We have Σ(𝑃𝑤0)
given by

Σ(𝑃𝑤0) = {𝑎31𝑥
2 + 2𝑎32𝑥𝑦 + 3𝑎33𝑦

2 +𝑂(3) = 0}.
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V
K

C Σ(𝑃𝑤)
𝐶(𝑥, 𝑦) = 0
�̃�(𝑥, 𝑦) = 0
𝑉 (𝑥, 𝑦) = 0

Figure 5.4 – The arrangement of Σ(𝑃𝑤0), �̃�(𝑥, 𝑦) = 0, 𝐶(𝑥, 𝑦) = 0, and 𝑉 (𝑥, 𝑦) = 0.

vertex

cusp

inflection

∅

Figure 5.5 – The arrangemant of cusps, inflections, and vertices on Σ(𝑃𝑤0).

∅

Figure 5.6 – The bifurcation of the profile at a lip singularity. Discs represent vertex points and full squares represent
inflection points.

Since 𝑎33 ̸= 0, the branches can be expressed as the zero sets of

𝑃 (𝑥, 𝑦) =
−𝑎32 +

√︁
𝑎2

32 − 3𝑎31𝑎33

3𝑎33
𝑥− 𝑦 +𝑂(2) and

𝑄(𝑥, 𝑦) =
−𝑎32 −

√︁
𝑎2

32 − 3𝑎31𝑎33

3𝑎33
𝑥− 𝑦 +𝑂(2). (5.30)

The vectors

(1, 𝛼1) = (1,
−𝑎32 +

√︁
𝑎2

32 − 3𝑎31𝑎33

3𝑎33
)

and

(1, 𝛼2) = (1,−
𝑎32 +

√︁
𝑎2

32 − 3𝑎31𝑎33

3𝑎33
),

are tangent respectively to 𝑃 (𝑥, 𝑦) = 0 and 𝑄(𝑥, 𝑦) = 0 at the origin. Let 𝐶1 denotes the linear
term of 𝐶, namely, 𝐶1(𝑥, 𝑦) = 2𝑎32𝑥 + 6𝑎33𝑦. The zero set 𝐶1(𝑥, 𝑦) = 0 locally divides the
parameter space into two regions {𝐶1(𝑥, 𝑦) > 0} and {𝐶1(𝑥, 𝑦) < 0}. Since

𝐶1(1, 𝛼1)𝐶1(1, 𝛼2) = 4(3𝑎31𝑎33 − 𝑎2
32) < 0,

the vectors (1, 𝛼1) and (1, 𝛼2) lie in different regions. Hence, the arrangement of Σ(𝑃𝑤0),
𝐶(𝑥, 𝑦) = 0, and �̃�(𝑥, 𝑦) = 0 is as in Figure 5.7.
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(1,−𝑎32/(3𝑎33))

(1, 𝛼𝑖)

(1, 𝛼𝑗)

Figure 5.7 – The arrangement of Σ(𝑃𝑤0), �̃�(𝑥, 𝑦) = 0, 𝐶(𝑥, 𝑦) = 0, and 𝑉 (𝑥, 𝑦) = 0.

Firstly, we assume that Δ < 0, i.e., Δ′ < 0 i.e, the curve 𝑉 (𝑥, 𝑦) has 𝐷+
4 -singularity at

the origin (this is why we called this type the 𝐷+
4 -beaks). As mentioned in the case of lips,

𝑉 (𝑥, 𝑦) = 0 is locally a smooth curve and transverse to the both curve �̃�(𝑥, 𝑦) = 0 and
𝐶(𝑥, 𝑦) = 0 at the origin.

The zero set 𝑉3(𝑥, 𝑦) = 0 divides the region near the origin into two region {𝑉3(𝑥, 𝑦) > 0}
and {𝑉3(𝑥, 𝑦) < 0}. We have

𝑉3(1, 𝛼1)𝑉3(1, 𝛼2) = −256(3𝑎31𝑎33 − 𝑎2
32)3Δ′

3𝑎2
33

< 0. (5.31)

This meas that (1, 𝛼1) and (1, 𝛼2) lie in different regions with respect to 𝑉3 = 0. So the
arrangement of Σ(𝑃𝑤0), �̃�(𝑥, 𝑦) = 0, 𝐶(𝑥, 𝑦) = 0, and 𝑉 (𝑥, 𝑦) = 0 is as in Figure 5.8 and
the arrangement of cusps, inflections, and vertices on Σ(𝑃𝑤) is as in Figure 5.9. Hence, the
bifurcation of the profile along 𝑤 is as in Figure 5.10.

Figure 5.8 – The arrangement of Σ(𝑃𝑤0), �̃�(𝑥, 𝑦) = 0, 𝐶(𝑥, 𝑦) = 0, and 𝑉 (𝑥, 𝑦) = 0 at the 𝐷+
4 -beaks.

Figure 5.9 – The arrangemant of cusps, inflections, and vertices on Σ(𝑃𝑤) at the 𝐷+
4 -beaks.

Now we assume that Δ > 0, i.e., Δ′ > 0. Then 𝑉 has a 𝐷−
4 -singularity at the origin (we call

this beaks type 𝐷−
4 -beaks) and thus 𝑉 (𝑥, 𝑦) = 0 has locally three smooth transverse branches
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Figure 5.10 – The bifurcation of the profile along 𝑤 when 𝑃𝑤0 has 𝐷+
4 -beaks singularity.

passing through the origin. The zero set 𝑉3(𝑥, 𝑦) = 0 divides the region near the origin into six
regions, three {𝑉3(𝑥, 𝑦) > 0} and three {𝑉3(𝑥, 𝑦) < 0}. Since 3𝑎31𝑎33 − 𝑎2

32 < 0, (5.29) shows
that 𝑉3(1,− 𝑎31

3𝑎33
) < 0. Hence, (1,− 𝑎32

3𝑎33
) belongs to a region {𝑉3(𝑥, 𝑦) < 0}. Since Δ′ > 0, it

follows from (5.31) that we have 𝑉3(1, 𝛼1)𝑉3(1, 𝛼2) > 0. Moreover, we have

𝑉3(1, 𝛼1) = 16(𝑎2
32 − 3𝑎31𝑎33)((2𝑎3

32 − 9𝑎31𝑎32𝑎33 + 27𝑎30𝑎2
33)
√︀

𝑎2
32 − 3𝑎31𝑎33 + 2(𝑎2

32 − 3𝑎31𝑎33)2)
9𝑎2

33
,

𝑉3(1, 𝛼2) = 16(𝑎2
32 − 3𝑎31𝑎33)(−(2𝑎3

32 − 9𝑎31𝑎32𝑎33 + 27𝑎30𝑎2
33)
√︀

𝑎2
32 − 3𝑎31𝑎33 + 2(𝑎2

32 − 3𝑎31𝑎33)2)
9𝑎2

33
.

If 2𝑎3
32 − 9𝑎31𝑎32𝑎33 + 27𝑎30𝑎

2
33 ≥ 0, then 𝑉3(1, 𝛼1) > 0, and thus 𝑉3(1, 𝛼2) > 0 because

𝑉3(1, 𝛼1)𝑉3(1, 𝛼2) > 0. On the other, if 2𝑎3
32 − 9𝑎31𝑎32𝑎33 + 27𝑎30𝑎

2
33 < 0, then We conclude

similarly that 𝑉3(1, 𝛼1) > 0 and 𝑉3(1, 𝛼2) > 0. Therefore, we always have 𝑉3(1, 𝛼1) > 0 and
𝑉3(1, 𝛼2) > 0. Accordingly, the arrangement of 𝑉3(𝑥, 𝑦) = 0, (1,− 𝑎32

3𝑎33
), and (1, 𝛼𝑖) is as in

Figure 5.11. Hence, the arrangement of Σ(𝑃𝑤0), 𝐶(𝑥, 𝑦) = 0, �̃�(𝑥, 𝑦) = 0 and 𝑉 (𝑥, 𝑦) = 0 is
as in Figure 5.12. From Figure 5.12, it follows that the arrangement of cusps, inflections, and
vertices on Σ(𝑃𝑤) is as in 5.13, and thus the bifurcation of the profile along 𝑤 is as in Figure
5.14.

When Δ = 0 i.e. 𝑉 (𝑥, 𝑦) has 𝐷5-singularity. Therefore, this happens at an isolated point on
the parabolic set. We call this 𝐷5-beaks singularity.

Remark 5.4. According to Theorem 4.2 of [17] the sub-parabolic curve passes through an

isolated point on parabolic set where 𝐷5-beaks singularity happens at this point.

(1,−𝑎32/(3𝑎33))

(1, 𝛼𝑖)

(1, 𝛼𝑗)
+○

−○

+○−○

+○

−○

Figure 5.11 – The arrangement of 𝑉3(𝑥, 𝑦) = 0, (1,− 𝑎32
3𝑎33

), and (1, 𝛼𝑖).

5.5.1 Evolute of the profile at a lips/beaks singularity

In this part we study the evolute of the profile when 𝑃𝑤 has a lips/beaks singularity.

Theorem 5.6. For a given surface 𝑀 in R3 let 𝑃𝑤0 has a lips/beaks singularity. Then
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Figure 5.12 – The arrangement of Σ(𝑃𝑤0), 𝐶(𝑥, 𝑦) = 0, �̃�(𝑥, 𝑦) = 0, and 𝑉 (𝑥, 𝑦) = 0 at the 𝐷−
4 -beaks.

Figure 5.13 – The arrangement of cusps, inflections, and vertices on Σ(𝑃𝑤) at the 𝐷−
4 -beaks.

Figure 5.14 – The bifurcation of the profile along 𝑤 when 𝑃𝑤0 has 𝐷−
4 -beaks singularity.

i) There is no line in the full evolute of the profile of a lip singularity (Figure 5.15 center).

The bifurcation of the evolute of the profile at a lip singularity is given in Figure 5.15.

ii) The proper evolute of the profile of a 𝐷+
4 -beak (resp. 𝐷−

4 -beak) consists of two tangential

parabola passing through the point (0, 1
2𝑎20

) see Figure 5.16 (resp. Figure 5.17) center. The

full evolute of the profile of a 𝐷+
4 -beak (resp. 𝐷−

4 -beak) singularity is the proper evolute

together with 6 lines coinciding at the limiting normal line of beaks point and tangent to

the proper evolute at the point (0, 1
2𝑎20

).

Proof. Using information on the evolute at an inflection point and at a cusp point, one can obtain
the bifurcation in the full evolute at a lips/beaks singularity as is given in Figure 5.15. Note that
as we are considering the real number case so the full evolute at an isolated point is an empty set.

At a 𝐷+
4 -beak singularity, we have 2 cusps, 2 inflections and 2 vertices on one side of the

transition and regular curves with no points of inflections or vertices on the other side of the
transition (see Figure 5.10). We can find the expression of each branch of the critical set in beaks
singularity as in (5.30). Substituting (5.30) in the projection map one can obtain the expression
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∅

Figure 5.15 – The bifurcation of the evolute of profile along 𝑤 when 𝑃𝑤0 has lips singularity.

of profile as follow:

𝑃 (𝑥, 𝛼1𝑥+𝑂(𝑥2)) =(𝑥, 𝑎20𝑥
2 + (𝑎30 + 𝑎31𝛼1 + 𝑎32𝛼

2
1 + 𝑎33𝛼

3
1)𝑥3 +𝑂(𝑥4)⏟  ⏞  

𝑃1(𝑥)

),

𝑃 (𝑥, 𝛼2𝑥+𝑂(𝑥2)) =(𝑥, 𝑎20𝑥
2 + (𝑎30 + 𝑎31𝛼2 + 𝑎32𝛼

2
2 + 𝑎33𝛼

3
2)𝑥3 +𝑂(𝑥4)⏟  ⏞  

𝑃2(𝑥)

).

Consider the function 𝑔(𝑥, 𝑦) = (𝑦 − 𝑃1(𝑥))(𝑦 − 𝑃2(𝑥)). The profile can be locally defined by
𝑔(𝑥, 𝑦) = 0. To find the full evolute of the profile of 𝑃𝑤0 we consider the bifurcation set of the
family of distance squared functions

𝐷 = (𝑥− 𝑎)2 + (𝑦 − 𝑏)2 − 𝜂𝑔(𝑥, 𝑦). (5.32)

We have

𝐷𝑥 = 2(𝑥− 𝑎)− 𝜂𝑔𝑥 ⇒ 𝑎 = 1
2(2𝑥− 𝜂𝑔𝑥),

𝐷𝑦 = 2(𝑦 − 𝑏)− 𝜂𝑔𝑦 ⇒ 𝑏 = 1
2(2𝑦 − 𝜂𝑔𝑦),

𝐷𝜂 = −𝑔 ⇒ 𝑦 = 𝑃1(𝑥) or 𝑦 = 𝑃2(𝑥).

The Hessian matrix of 𝐷 is given by

ℋ(𝐷) =

⎛⎜⎜⎜⎝
2− 𝜂𝑔𝑥𝑥 −𝜂𝑔𝑥𝑦 −𝑔𝑥
−𝜂𝑔𝑥𝑦 2− 𝜂𝑔𝑦𝑦 −𝑔𝑦
−𝑔𝑥 −𝑔𝑦 0

⎞⎟⎟⎟⎠ . (5.33)

The determinant of (5.33) is equal to

det(ℋ(𝐷)) = −2(𝑔2
𝑥 + 𝑔2

𝑦)⏟  ⏞  
𝐵

+𝜂 (𝑔𝑦𝑦𝑔2
𝑥 − 2𝑔𝑥𝑦𝑔𝑥𝑔𝑦 + 𝑔𝑥𝑥𝑔

2
𝑦)⏟  ⏞  

𝐴

. (5.34)
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Substituting 𝑦 = 𝑃1(𝑥) into 𝐴 and 𝐵 in (5.34) we get

𝐴 =− 128(𝑎20(𝑎2
32 − 3𝑎31𝑎33)9/2)

19683𝑎6
33

𝑥9 +𝑂(𝑥10),

𝐵 =− 32(𝑎2
32 − 3𝑎31𝑎33)3

729𝑎4
33

𝑥6 +𝑂(𝑥7).

Equating (5.34) to zero we get 𝜂 = − 𝐵6𝑥6+𝐵7𝑥7+𝑂(𝑥8)
𝐴9𝑥9+𝐴10𝑥10+𝑂(𝑥11) , where 𝐵𝑖 (resp. 𝐴𝑖) denotes the

coefficient of 𝑥𝑖 in 𝐵 (resp. 𝐴). After simplifying 𝜂 we get 𝜂 = − 𝐵6+𝐵7𝑥+𝑂(𝑥2)
𝑥3(𝐴9+𝐴10𝑥+𝑂(𝑥2)) . If we

substitute 𝑦 = 𝑃2(𝑥) into 𝐴 and 𝐵 we get also 𝜂 = − �̄�6+�̄�7𝑥+𝑂(𝑥2)
𝑥3(𝐴9+𝐴10𝑥+𝑂(𝑥2)) . This means that 6 lines

appear as a part of the full evolute. By straightforward calculation one can get the proper evolute
given by

𝑎 = 1
18𝑎20𝑎2

33

(︃
2𝑎3

32 − 9𝑎31𝑎32𝑎33 + 27𝑎30𝑎
2
33 + 2(𝑎2

32 − 3𝑎31𝑎33)
3
2

)︃
𝑥2 +𝑂(𝑥3),

𝑏 = 1
2𝑎20

− 1
18𝑎2

20𝑎
2
33

(︃
2𝑎2

32 − 9𝑎31𝑎32𝑎33 + 27𝑎30𝑎
2
33 + 2(𝑎2

32 − 3𝑎31𝑎33)
3
2

)︃
𝑥+𝑂(𝑥2).

Therefore the proper evolute is a pair of parabolas (for each branch we got one parabola) passing
through (0, 1

2𝑎20
) and tangent to limiting normal line of beaks point as shown in Figure 5.16

center.

Similar calculations hold for 𝐷−
4 -beak (see Figure 5.17).

Figure 5.16 – The bifurcation of the full evolute of the profile at a 𝐷+
4 -beaks singularity. Discs represent vertex

points and full squares represent inflections.

5.6 Butterfly

Suppose that the given surface 𝑀 is parametrized by the Monge form (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) with
𝑓(𝑥, 𝑦) as in (5.1). According to Theorem 6.7 in [24], the algebraic conditions to have butterfly
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Figure 5.17 – The bifurcation of the full evolute of the profile at a 𝐷−
4 -beaks singularity. Discs represent vertices

and full squares represent inflection points.

are

𝑎22 = 0, 𝑎33 = 0, 𝑎44 = 0, 𝑎21 ̸= 0, 𝑎55 ̸= 0,

(8𝑎55𝑎77 − 5𝑎2
66)𝑎2

21 + 2𝑎55(𝑎32𝑎66 − 20𝑎43𝑎55)𝑎21 + 35𝑎2
32𝑎

2
55 ̸= 0. (5.35)

Let 𝑃𝑤 be the modified family of orthogonal projections of 𝑀 as in 5.8.

Proposition 5.4 (Theorem 6.8 in [24]). The modified family of the orthogonal projections (5.8),
is 2-parameter𝒜𝑒-versal unfolding at a butterfly singularity if the flecnodal curve is not singular.

Theorem 5.7. For a given regular surface 𝑀 let 𝑃𝑤 denotes the modified orthogonal projection

of 𝑀 as in 5.8. If 𝑃𝑤0 with 𝑤0 = (0, 1, 0) has a butterfly singularity then

(i) The point 𝑝 is a flecnodal point, 𝑤0 an asymptotic direction at 𝑝 and tangent to flecnodal

curve at 𝑝.

(ii) The bifurcation diagram of the profile at a butterfly singularity is given in Figure 5.18.

There are at most 2 ordinary vertices and no inflections in the bifurcation of the profile,

one is outward and the other is inward vertex. These are as in Figure 5.18.

(iii) The bifurcation in the evolute at a butterfly singularity is given in Figure 5.19.

Proof. For (i) see [20]. For (ii) the critical set Σ(𝑃𝑤) at a butterfly singularity is given by

{(𝑥, 𝑦) ∈ R2|𝑎21𝑥+𝑂(2) = 0}.



106 Chapter 5. The geometry of orthogonal projection of surfaces in R3

Thus, since 𝑎21 ̸= 0 by the implicit function theorem, we obtain 𝑥 = 𝑥(𝑦, 𝑢, 𝑣). Substituting 𝑥 in
𝑃𝑤 we get the expression for the profile given by (𝑋(𝑦, 𝑢, 𝑣), 𝑌 (𝑦, 𝑢, 𝑣)) with

𝑋(𝑦, 𝑢, 𝑣) = − 𝑣

𝑎21
+
(︁2𝑢+ 2𝑎32𝑣

𝑎2
21

)︁
𝑦 +

(︁
− 𝑎32𝑢

𝑎21
+ (3𝑎21𝑎43 − 4𝑎2

32)𝑣
𝑎3

21

)︁
𝑦2

+
(︁
− 2(𝑎21𝑎43 − 𝑎2

32)𝑢
𝑎2

21
+ 4(𝑎2

21𝑎54 − 3𝑎21𝑎32𝑎43 + 2𝑎3
32)𝑣

𝑎4
21

)︁
𝑦3

− 5𝑎55

𝑎21
𝑦4 +𝑂(5),

𝑌 (𝑦, 𝑢, 𝑣) =
(︁
𝑎21𝑢+ 𝑎32𝑣

𝑎21
)︁
𝑦2 +

(︁(3𝑎21𝑎43 − 4𝑎2
32)

𝑎2
21

+ 2𝑎2
32

𝑎2
21
− 𝑎43

𝑎21

)︁
𝑣𝑦3 +𝑂(𝑢, 𝑣)𝑦4

+
(︁
− 4𝑎55 +𝑂(𝑢, 𝑣)

)︁
𝑦5 +

(︁
− 5𝑎32𝑎55

𝑎21
+ 𝑎66 +𝑂(𝑢, 𝑣))𝑦6

+
(︁−5𝑎43𝑎55

𝑎21
+ 𝑎77 +𝑂(𝑢, 𝑣)

)︁
𝑦7 +𝑂(8).

The bifurcation diagram of the profile at the butterfly singularity has the following strata:

1. The swallowtail stratum (𝑆𝑊 ) happens when

𝜕𝑔

𝜕𝑦
= 𝜕2𝑔

𝜕𝑦2 = 𝜕3𝑔

𝜕𝑦3 = 0,

where 𝑔 is the second component of 𝑃 (𝑥− 𝑢𝑦, 𝑦, 𝑢, 𝑣). The calculation can be carried out with
the help of a computer algebra package such as Maple or Mathematica (see Appendix D for
Maple codes). We found that the swallowtail stratum is parametrized by

(−30
𝑎55

𝑦3 +𝑂(𝑦4), 1
𝑎21

𝑦2 +𝑂(𝑦3)).

Hence the (𝑆𝑊 )-stratum is locally a cusp (see 4 and 14 of Figure 5.18).

2. The multi-local stratum ((𝐹𝐶)): This occurs when the projection 𝑃𝑤 has a cusp at (𝑥1, 𝑦1)
and a fold at (𝑥2, 𝑦2) with 𝑔𝑤(𝑥1, 𝑦1) = 𝑔𝑤(𝑥2, 𝑦2) and (𝑥1, 𝑦1) ̸= (𝑥2, 𝑦2) (𝑔𝑤(𝑥, 𝑦) = 𝑔(𝑥, 𝑦, 𝑢, 𝑣)
as defined in the (SW)-stratum). Here we obtain 𝑥1 = 𝑥2 and 𝑦1 ̸= 𝑦2. For a fold at (𝑥1, 𝑦2)
we need 𝜕𝑔𝑤

𝜕𝑦
(𝑥1, 𝑦2) = 0 and for a cusp at (𝑥1, 𝑦1) we need 𝜕𝑔𝑤

𝜕𝑦
(𝑥1, 𝑦1) = 𝜕2𝑔𝑤

𝜕𝑦2 (𝑥1, 𝑦1) = 0.
Therefore, considering 𝑔𝑤 as a function of 𝑦 for a given 𝑥1 = 𝑥2 = 𝑥, there exists a real 𝜔 such
that 𝑔𝑤(𝑥, 𝑦)− 𝜔 has a repeated root and a triple root. Therefore we have

𝑔𝑤(𝑥, 𝑦)− 𝜔 = (𝑦 − 𝑦1)2(𝑦 − 𝑦3)3(𝜃𝑦2 + 𝛼𝑦 + 𝛽).

Comparing coefficients of this with 𝑔𝑤(𝑥, 𝑦) gives 𝑢 = �̄�𝑦3
2 + 𝑂(4) and 𝑣 = �̄�𝑦2

2 + 𝑂(3) with
�̄� = −200𝑎21𝑎2

55
𝑎21𝑎43−𝑎2

32
and �̄� = 10𝑎55𝑎2

21
𝑎21𝑎43−𝑎2

32
(note that according to Observation 5.4 the flecnodal curve

is not singular, equivalently 𝑃𝑤 is 𝒜𝑒-versal. According to Theorem 6.8 of [24], an algebraic
condition to have 𝒜𝑒-versality of a butterfly singularity is 𝑎2

32 − 𝑎21𝑎43 ̸= 0).

3. The (𝑉 𝑇 )-stratum: Here a vertex in one branch of the profile intersects transversally another
branch of the profile. This stratum is captured by the singularities of distance squared function
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on the profile which is given by

𝐷 =
(︁
𝑋(𝑦, 𝑢, 𝑣)− 𝑎

)︁2
+
(︁
𝑌 (𝑦, 𝑢, 𝑣)− 𝑏

)︁2
.

The solution of system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑋(𝑦1, 𝑢, 𝑣) = 𝑋(𝑦2, 𝑢, 𝑣)

𝑌 (𝑦1, 𝑢, 𝑣) = 𝑌 (𝑦2, 𝑢, 𝑣)
𝜕𝐷
𝜕𝑦1

(𝑦1, 𝑢, 𝑣) = 0
𝜕2𝐷
𝜕𝑦2

1
(𝑦1, 𝑢, 𝑣) = 0

𝜕3𝐷
𝜕𝑦3

1
(𝑦1, 𝑢, 𝑣) = 0,

(5.36)

gives us the desire stratum. By a direct calculations, using implicit function theorem, we get the
following parametrisation of the stratum

(𝑢, 𝑣) = (−10𝑎55

3 𝑦3
1 +𝑂(4), 2𝑎55𝑦

2
1 +𝑂(3)).

4. The second order vertex stratum (𝑆𝑉 ): Here the profile along 𝑤 has a second order vertex,
so 𝜅′

𝑐(𝑦) = 𝜅′′
𝑐 (𝑦) = 0. Using the implicit function theorem we obtain a local parametrization

giving by (70𝑎55
11 𝑡3 +𝑂(4),−10𝑎55

11 𝑡2 +𝑂(3)) for this stratum (see 16 and 2 of Figure 5.18).

Using the numerator of the curvature and its first derivative of the profile, we get a maximum
of 6 inflections and 11 vertices in the bifurcation of the profile at a butterfly singularity. As there
is an accumulation of 3 vertices and 2 inflections in cusp points and since there are 3 cusps
in the bifurcation of profile of a butterfly singularity, so all the inflections and 9 vertices are
concentrated at the cusp points. Therefore there are just 2 vertices in the bifurcation of the profile
at a butterfly singularity. As seen in §3.1, when we pass through the second order vertex stratum
two vertices appear which one of these vertices is outward and the other is inward vertex.

(iii) Following the behavior on each stratum and using the evolute at an ordinary inflection
(Figure 3.3), ordinary cusp (Figure 3.9) and second order vertex (Figure 3.2) we draw the
bifurcation in the evolute of the profile at a butterfly singularity as in Figure 5.19. Note that at
the origin using similar calculations to those in the proof of Theorem 3.4 part (ii), we get the
line 𝑎 = 0 with multiplicity 6 as part of the bifurcation set of the family of distance squared
functions 𝐷. The proper evolute is given by (𝑎, 𝑏) = (15𝑎55

𝑎21
𝑦4 +𝑂(𝑦5),−20𝑎55

𝑎2
21
𝑦3 +𝑂(𝑦4)).

5.7 Goose

According to Theorem 6.7 of [24], the algebraic conditions at a goose singularity are

𝑎22 = 0, 𝑎21 = 0, 𝑎2
32 − 3𝑎31𝑎33 = 0, 𝑎33 ̸= 0,

𝛿 = 27𝑎41𝑎
3
33 − 18𝑎42𝑎32𝑎

2
33 + 9𝑎43𝑎

2
32𝑎33 − 4𝑎44𝑎

3
32 ̸= 0. (5.37)
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Figure 5.18 – The bifurcation of the profile at a butterfly singularity. Full discs represent vertex points.

Let 𝑃𝑤 be the modified orthogonal projection of surface 𝑀 along 𝑤 as mentioned in (5.8). The
following observation shows the condition about 𝒜𝑒-versality of 𝑃𝑤 at a goose .

Observation 5.1 (Theorem 6.8 of [24]). If the orthogonal projection of surface 𝑀 along unit

vector 𝑤0 has a goose singularity then the family of modified orthogonal projections 𝑃𝑤 is an

𝒜𝑒-versal if and only if 𝑎20 ̸= 0.

Since the point 𝑝 ∈𝑀 is not flat umblic, so 𝑎20 ̸= 0. Hence according to Observation 5.1 the
family of modified orthogonal projections at a goose singularity is 𝒜𝑒-versal.
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Figure 5.19 – The bifurcation in the evolute of the profile at a butterfly singularity.

The critical set Σ(𝑃𝑤) at a goose singularity is given by

𝑣 − 2𝑎20𝑥𝑢+
(︁
− 3𝑎30𝑢+ 𝑎2

32
3𝑎33

)︁
𝑥2 +

(︁
2(−2𝑎2

32𝑢

3𝑎33
+ 𝑎32)

)︁
𝑦𝑥+

(︁
3(−𝑎32𝑢+ 𝑎33)

)︁
𝑦2

+
(︁
− 4𝑎40𝑢+ 𝑎41

)︁
𝑥3 +

(︁
2(−3𝑎41𝑢+ 𝑎42)

)︁
𝑦𝑥2 +

(︁
3(−2𝑎42𝑢+ 𝑎43)

)︁
𝑦2𝑥

+
(︁
4(−𝑎43𝑢+ 𝑎44)

)︁
𝑦3 +𝑂(4) = 0. (5.38)

After performing the change of coordinate 𝑦 ↦→ 𝑦− 𝑎32
3𝑎33

𝑥 on (5.38), the critical set (5.38) becomes
3𝑎33𝑦

2 + 𝛿𝑥3 +𝑂(4) = 0 where 𝛿 is given in (5.37). Subsequently, a local parametrization for
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the critical set given by 𝑦 = 𝑐1𝑡
3 + 𝑂(𝑡4) and 𝑥 = 𝑑1𝑡

2 + 𝑂(𝑡3) such that 𝑐1 ̸= 0 and 𝑑1 =(︁−81𝑎4
33𝑐

2
1

𝛿

)︁(1/3)
. Substituting this parametrization into 𝑃𝑤 we get the profile at (𝑢, 𝑣) = (0, 0),

𝒜-equivalent to

(𝑡2, 𝛽9𝑡
9), (5.39)

where

𝛽9 = −1458.32/3𝑎9
33𝑐

7
1(︁−𝑎4

33𝑐
2
1

𝛿

)︁1/3
𝛿2
̸= 0.

Theorem 5.8. For a given surface 𝑀 in R3 let 𝑃𝑤 be the family of modified orthogonal projec-

tions of 𝑀 as in 5.8. If 𝑃𝑤0 has a goose singularity at 𝑝 ∈𝑀 where 𝑤0 = (0, 1, 0), then

(i) The point 𝑝 is a parabolic point, 𝑤0 an assymptotic direction at 𝑝 and the Gauss image of

the parabolic set has a geodesic inflection.

(ii) There are at most 3 ordinary vertices and 3 ordinary inflections in the bifurcation of the

profile at a goose singularity.

(iii) The bifurcation of the full evolute of the profile at a goose singularity is given in Figure

5.21.

Proof. For the surface𝑀 we take the Monge form parametrisation 𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦)) with
𝑓 as in (5.1). For (i) see Theorem 6.7 of [24]. For (ii) and (iii) let 𝐹 (𝑥, 𝑦, 𝑢, 𝑣) = 𝑃 (𝑥−𝑢𝑦, 𝑦, 𝑢, 𝑣)
and 𝑔 denotes the second component of 𝐹 . The following stratum appear in the bifurcation of
the profile at a goose singularity.

Lips/beaks-stratum (L/B): This happens when critical set Σ(𝑃𝑤) is singular. This means that
we have 𝜕𝑔

𝜕𝑦
= 𝜕2𝑔

𝜕𝑦2 = 𝜕2𝑔
𝜕𝑦𝜕𝑥

= 0. A direct calculation using the implicit function theorem, leads to
the following parametrization for the (𝐿/𝐵)-stratum:

(𝑢, 𝑣) =
(︁ 𝛿

18𝑎20𝑎3
33
𝑡2 +𝑂(𝑡3), 2𝛿

27𝑎3
33
𝑡3 +𝑂(𝑡4)

)︁
.

One way to study the geometry of the profile at a goose singularity is to consider intersection
of critical set Σ(𝑃𝑤) with the curves 𝐶(𝑥, 𝑦) = 0, �̃�(𝑥, 𝑦) = 0 and 𝑉 (𝑥, 𝑦) = 0.

We have 𝑤 = 𝑎𝜑𝑥 + 𝑏𝜑𝑦 therefore after performing the changes of coordinate 𝑢 ↦→ 𝑢 + 𝜋
2

and 𝑣 ↦→ 𝑣 + 𝜋
2 we get 𝑎 = − cos(𝑣) sin(𝑢) and 𝑏 = cos(𝑣) cos(𝑢). By a similar calculation to

those in Theorem 5.5, one can obtain the expression of the curves �̃�(𝑥, 𝑦) = 0, 𝐶(𝑥, 𝑦) = 0 and
𝑉 (𝑥, 𝑦) = 0 as follow:

𝐶(𝑥, 𝑦) =− 2
9

(︂
9𝑎20𝑎2

33 cos(𝑢)2 − 9𝑎20𝑎2
33

𝑎2
33

)︂
− 2

9

(︂
27 cos(𝑢)2𝑎30𝑎2

33 − cos(𝑢)2𝑎3
32 − 27𝑎30𝑎2

33 + 𝑎3
32

𝑎2
33

)︂
𝑥

− 2
9

(︂
18 sin(𝑢) cos(𝑢)𝑎32𝑎2

33 + 3 cos(𝑢)2𝑎2
32𝑎33 − 27 cos(𝑢)2𝑎3

33 − 3𝑎2
32𝑎33

𝑎2
33

)︂
𝑦 + 𝑂(2),

�̃�(𝑥, 𝑦) =12𝑎20𝑎33𝑦 + 𝑂(2), (5.40)

𝑉 (𝑥, 𝑦) =− 96𝑎32 cos(𝑣)3 sin(𝑢)2𝑎3
20
(︀
𝑎32 sin(𝑢)− sin(𝑢)𝑎33 − 3𝑎33 cos(𝑢)

)︀
𝑦 + 𝑂(2).
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The critical set at the origin has cusp singularity. Hence, locally the critical set is a cubic
polynomial and the curves 𝐶(𝑥, 𝑦), �̃�(𝑥, 𝑦) and 𝑉 (𝑥, 𝑦) are smooth curves (away from the
origin). Therefore locally the maximum number of cusps, ordinary inflections and ordinary
vertices in the bifurcation of the profile at a goose singularity is 3.

Note that as seen in §5.5, we have only one type of lips singularity which the discriminant of
vertex curve 𝑉 (𝑥, 𝑦) = 0 has 𝐷+

4 -singularity. Therefore in (L/B)-stratum the 𝐷+
4 -beak happens.

As mentioned in (5.39) at the origin the profile is a (2-9)-cusp. The full evolute of such a
singularity captured by considering the bifurcation of family of distance squared functions

𝐷(𝑎,𝑏)(𝑡) = (𝑡2 − 𝑎)2 + (𝛽4𝑡
4 + 𝛽6𝑡

6 + 𝛽8𝑡
8 + 𝛽9𝑡

9 − 𝑏)2,

where

𝛽4 = 3 8
3𝑎20

(︃
𝑎4

33𝑐
2
1

(−𝛿) 2
3

)︃
̸= 0.

A direct calculation shows that the proper evolute of the profile at the origin has the following
parametrization.

𝑒(𝑡) =
(︃

3𝛽6

2𝛽4
𝑡4 − 64𝛽4

4 − 64𝛽8𝛽4 + 72𝛽2
6

𝛽2
4

𝑡6 + 45𝛽9

8𝛽4
𝑡7 +𝑂(8), 1

𝛽4
− 3𝛽6

2𝛽2
4
𝑡2 +𝑂(3)

)︃
.

The full evolute is given by the proper evolute together with 3 lines coinciding with the limiting
normal line of the proper evolute, passing through the point (0, 1

𝛽4
).

The rest of the proof is a matter of considering the behavior of the evolute at an inflection
point, the evolute at a lip singularity and the evolute at a 𝐷+

4 -beak singularity as given in Figures
5.15, 5.16 respectively (see Figure 5.21).

5.8 Gulls

Suppose that the surface 𝑀 is parametrised by the Monge form parametrization 𝜑(𝑥, 𝑦) =
(𝑥, 𝑦, 𝑓(𝑥, 𝑦)), where 𝑓 is given by (5.1). A modified orthogonal projection of 𝑀 has gulls
singularity if

𝑎22 = 0, 𝑎21 = 0, 𝑎33 = 0, 𝑎32 ̸= 0, 𝑎44 ̸= 0,

𝑎55𝑎
2
32 − 2𝑎43𝑎44𝑎32 + 4𝑎31𝑎

2
44 ̸= 0.

The gulls singularity happens when the point 𝑝 = 𝜑(0, 0) is the cusp of Gauss and the direction 𝑤
is asymptotic. The following observation gives a necessary and sufficient condition for versality
of a family of modified projections.
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Figure 5.20 – The bifurcation of the profile at a goose singularity. The full squares represent inflection points and
full discs represent vertices.

Observation 5.2 (Theorem 6.8 of [24]). For the surface 𝑀 let 𝑧 = 𝑓(𝑥, 𝑦) be the Monge form

parametrisation at the origin 𝑝, with 𝑓 as in (5.1). The family of modified orthogonal projections

𝑃 is 𝒜𝑒-versal at a gulls singularity if and only if 𝑎2
32 − 4𝑎20𝑎44 ̸= 0.

Remark 5.5. The critical set of the projection map 𝑃 is given by

Σ(𝑃𝑤) = {𝑣 + 2𝑎32𝑥𝑦 + 𝑎31𝑥
2 − 2𝑎20𝑥𝑢+𝑂(3) = 0}, (5.41)

which has an 𝐴−
1 -singularity at (𝑢, 𝑣) = (0, 0) since 𝑎32 ̸= 0.

To draw the bifurcation of the profile at a gulls singularity, we need to find all the possible
strata in the bifurcation of the profile. But before doing this we devote the next section to answer
the following question:

Question: When the profile at a gulls singularity has second order vertex?

5.8.1 𝐴4-contact of surface with cylinder at the cusp of Gauss point

As seen in Theorem 5.2 (ii), the profile has a second order vertex at 𝑃 (𝑝) if and only if the
surface 𝑀 has an 𝐴4-contact with cylinder at a non-parabolic point 𝑝 ∈𝑀 . A gulls singularity
happens at the cusp of Gauss point, which we can consider this as the origin. Therefore we
consider the 𝐴4-contact of 𝑀 with cylinder at a point 𝑞 = (𝑥0, 𝑦0, 𝑓(𝑥0, 𝑦0)) near the origin.
According to §5.1.1 the Monge form at this point is given by 𝜑 = (𝑥, 𝑦, 𝑔(𝑥, 𝑦, 𝑥0, 𝑦0)) with 𝑔 as
in (5.6).

Consider the vector 𝑤 = (𝑤1, 𝑤2, 𝑤3) in the orthonormal frame 𝑒 as mentioned in (5.3) and let
a = (𝑎1, 𝑎2, 𝑎3) be a point in the plane 𝑇𝑤𝑆2. Then by using [17] the contact of 𝑀 with cylinder
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Figure 5.21 – The bifurcation of the evolute of the profile at a goose singularity.

measured by singularities of the function

𝜓 =
⟨
𝜑− ⟨𝜑,𝑤⟩𝑤 − a, 𝜑− ⟨𝜑,𝑤⟩𝑤 − a

⟩
. (5.42)

The contact map (5.42) has an 𝐴≥1-singularity at origin if and only if 𝑤3 = 0, 𝑎1 = 𝑎2 = 0 and
𝑎3 = 𝜆 for a non-zero real number 𝜆. Furthermore, 𝜓 has an 𝐴≥2-singularity if and only if the
determinant of Hessian of 𝜓 at the origin is zero. This implies that 𝜆 = 2(𝐴20𝑤2

1+𝐴21𝑤1𝑤2+𝐴22𝑤2
2)

4𝐴20𝐴22−𝐴2
21

.
By Theorem 4.1 of [18], there exist a non-zero vector (𝜂, 𝜉) and a non-zero real number 𝑠 such
that ⎡⎣ 𝜕2𝜓

𝜕𝑥2 (0, 0) 𝜕2𝜓
𝜕𝑥𝜕𝑦

(0, 0)
𝜕2𝜓
𝜕𝑥𝜕𝑦

(0, 0) 𝜕2𝜓
𝜕𝑦2 (0, 0)

⎤⎦ = 𝑠

⎡⎣ 𝜂2 −𝜂𝜉
−𝜂𝜉 𝜉2

⎤⎦ . (5.43)

A straightforward calculation shows that 𝑠 = 2
𝐴2

21−4𝐴20𝐴22
, 𝜉 = −(𝐴21𝑤1 + 2𝐴22𝑤2) and

𝜂 = 2𝐴20𝑤1 +𝐴21𝑤2. The contact map (5.42) has an 𝐴≥3-singularity if and only if 𝜓3(𝜉, 𝜂) = 0,
where 𝜓3 is the cubic part of 𝜓 (see Theorem 4.1 of [18]). This implies that

4(𝐴20𝑤
2
1 + 𝐴21𝑤1𝑤2 + 𝐴22𝑤

2
2)

4𝐴20𝐴22 − 𝐴2
21

𝑄1(𝑥0, 𝑦0, 𝑤1, 𝑤2) = 0,
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with

𝑄1(𝑥0, 𝑦0, 𝑤1, 𝑤2) =(−𝐴3
21𝐴30 + 2𝐴20𝐴

2
21𝐴31 − 4𝐴2

20𝐴21𝐴32 + 8𝐴3
20𝐴33)𝑤3

1

+ (−6𝐴21𝐴22𝐴30 + · · · )𝑤2
1𝑤2 + (−12𝐴21𝐴

2
22𝐴30 + · · · )𝑤1𝑤

2
2

+ (−8𝐴3
22𝐴30 + · · · )𝑤3

2 +𝑂(4).

We know that if 𝑎21 = 𝑎22 = 𝑎33 = 0 and (𝑤1, 𝑤2) = (0, 1), that is (𝑥, 𝑦) = (0, 0) is cusp of
Gauss and 𝑤 is asymptotic, then 𝑄1(0, 0, 0, 1) = 0. This means that 𝜓 has an 𝐴≥3-singularity.
Therefore at the cusp of Gauss we can consider 𝑄1 to obtain the 𝐴≥3-contact of 𝑀 with cylinder.

According to Theorem 4.1 of [18] the contact map (5.42) has an 𝐴≥4-singularity if and only if

8𝑠𝜓4(𝜉, 𝜂) +

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒

𝜂2 −𝜉𝜂 𝜉2

𝜕3𝜓
𝜕𝑥3 (0, 0) 𝜕3𝜓

𝜕𝑥2𝜕𝑦
(0, 0) 𝜕3𝜓

𝜕𝑦2𝜕𝑥
(0, 0)

𝜕3𝜓
𝜕𝑥2𝜕𝑦

(0, 0) 𝜕3𝜓
𝜕𝑦2𝜕𝑥

(0, 0) 𝜕3𝜓
𝜕𝑦3 (0, 0)

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ = 0,

where 𝜓4 denotes the quartic part of 𝜓. By a direct calculation we get

16(𝐴20𝑤
2
1 + 𝐴21𝑤1𝑤2 + 𝐴22𝑤

2
2)

(4𝐴20𝐴22 − 𝐴2
21)2 𝑄2(𝑥0, 𝑦0, 𝑤1, 𝑤2) = 0.

At the cusp of Gauss, we have 𝑄2(0, 0, 0, 1) = 0. So we can use the polynomial 𝑄2 to obtain the
𝐴≥4-contact.

Now using the parametrization 𝑤1 = sin(𝑡), 𝑤2 = cos(𝑡) and putting 𝑥0 = 𝑥, 𝑦0 = 𝑦 for
simplicity, we get the system of equations⎧⎪⎨⎪⎩𝑄1(𝑥, 𝑦, 𝑡) = 0

𝑄2(𝑥, 𝑦, 𝑡) = 0,

such that

𝑄1(𝑥, 𝑦, 𝑡) =𝑎2
20𝑎

2
32𝑥𝑡+ 𝑎20𝑎31𝑎

3
32𝑥

2𝑡+ 𝑎30𝑎
3
32𝑥

3 + 2𝑎20𝑎
3
32𝑥𝑦𝑡

+ 𝑎31𝑎
3
32𝑥

2𝑦 + 𝑎4
32𝑥𝑦

2 +𝑂(4),

𝑄2(𝑥, 𝑦, 𝑡) =𝑎2
21𝑎

2
32𝑥𝑡+ 𝑎20𝑎31𝑎

3
32𝑥

2𝑡+ 𝑎2
31𝑎

3
32𝑥

3 − 3𝑎30𝑎
4
32𝑥

3

+ 2𝑎20𝑎
4
32𝑥𝑦𝑡+ 𝑎31𝑎

4
32𝑥

2𝑦 + 𝑎5
32𝑥𝑦

2 +𝑂(4).

Using the change of coordinate 𝑦 ↦→ 𝑦 − 𝑎31
2𝑎32

𝑥− 𝑎20
𝑎32
𝑡 we get

𝑄1(𝑥, 𝑦, 𝑡) =− 1
4𝑎

2
32𝑥((𝑎2

31 − 4𝑎30𝑎32)𝑥2 − 4𝑎2
32𝑦

2) +𝑂(4) = 0,

𝑄2(𝑥, 𝑦, 𝑡) =1
4𝑎

3
32𝑥(3(𝑎2

31 − 4𝑎30𝑎32)𝑥2 + 4𝑎2
32𝑦

2) +𝑂(4) = 0. (5.44)

The common root of the system of equations (5.44) is 𝑥 = 0. Therefore locally we can write
𝑥 as a function of 𝑦 and 𝑡 such that 𝑥 = 𝑐20𝑦

2 + 𝑐21𝑦𝑡 + 𝑐22𝑡
2 + 𝑂(3). By a straightforward
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calculation we obtain

𝑐20 =−2𝑎44

𝑎32
,

𝑐21 =4𝑎20𝑎44 − 𝑎2
32

𝑎2
32

,

𝑐22 =0,

𝑐30 =2𝑎44(4𝑎31𝑎44 − 𝑎32𝑎43)
𝑎3

32
,

𝑐31 =64𝑎20𝑎31𝑎
2
44 + 20𝑎20𝑎

2
32𝑎55 − 44𝑎20𝑎32𝑎43𝑎44 + 4𝑎31𝑎

2
32𝑎44 + 𝑎3

32𝑎43

2𝑎4
32

,

𝑐32 =4𝑎2
20𝑎43𝑎44 − 4𝑎20𝑎31𝑎32𝑎44 − 𝑎20𝑎

2
32𝑎43 + 𝑎31𝑎

3
32

𝑎4
32

,

𝑐33 =0.

Substituting 𝑥 = 𝑐20𝑦
2 + 𝑐21𝑦𝑡+ 𝑐22𝑡

2 +𝑂(3) in 𝑄2(𝑥, 𝑦, 𝑡) and after performing some suitable
change of coordinates, we get 𝑦 = −𝑎20

𝑎32
𝑡 − 3(𝑎2

20𝑎32𝑎43−4𝑎2
20𝑎31𝑎44)

2𝑎4
32

𝑡2 + 𝑂(3). Therefore the
parametrization of the 𝐴4-curve is given by⎧⎪⎨⎪⎩

𝑥 = 𝑎20(𝑎2
32−6𝑎20𝑎44)
𝑎3

32
𝑡2 + 𝑥3𝑡

3 +𝑂(𝑡4),

𝑦 = −𝑎20
𝑎32
𝑡+ 𝑦2𝑡

2 +𝑂(𝑡3),
(5.45)

where

𝑥3 =𝑎20(48𝑎2
20𝑎31𝑎

2
44 + 20𝑎2

20𝑎
2
32𝑎55 − 48𝑎2

20𝑎32𝑎43𝑎44 + 12𝑎20𝑎31𝑎
2
32𝑎44 + 3𝑎20𝑎

3
32𝑎43 − 2𝑎31𝑎

4
32)

2𝑎6
32

,

𝑦2 =−3(−4𝑎2
20𝑎31𝑎44 + 𝑎2

20𝑎32𝑎43)
2𝑎4

32
.

Proposition 5.5. The 𝐴4-curve has 4-point contact with the parabolic curve 𝐾 = 0 at the cusp

of Gauss.

Proof. The parabolic curve does not depend on the choice of a Monge form and is captured by
(𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓 2

𝑥𝑦)(𝑥, 𝑦). Therefore the expression of the parabolic curve is given by

𝐾(𝑥, 𝑦) =4𝑎20𝑎32𝑥+ (4𝑎20𝑎42 + 12𝑎30𝑎32 − 4𝑎2
31)𝑥2 + (12𝑎20𝑎43 − 4𝑎31𝑎32)𝑦𝑥

+ (24𝑎20𝑎44 − 4𝑎2
32)𝑦2 +𝑂(3). (5.46)

If we denote the 𝐴4-curve by 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) with 𝑥(𝑡) and 𝑦(𝑡) as in (5.45) then

𝐹 = 𝐾(𝛾(𝑡)) = −6𝑎3
20(32𝑎20𝑎31𝑎

2
44 − 8𝑎20𝑎32𝑎43𝑎44 − 4𝑎31𝑎

2
32𝑎44 + 𝑎3

32𝑎43)
𝑎5

32
𝑡4 +𝑂(𝑡5).

Generically the coefficient of 𝑡4 in 𝐹 is not zero. Hence 𝐹 (0) = 𝐹 ′(0) = 𝐹 ′′(0) = 𝐹 ′′′(0) = 0
and 𝐹 (4)(0) ̸= 0.



116 Chapter 5. The geometry of orthogonal projection of surfaces in R3

5.8.2 Stratification of the family of modified orthogonal projections at a
gulls singularity

In this part we deal with the bifurcation of the profile at a gulls singularity and study its
geometry.

Proposition 5.6. Let 𝑀 be a surface in R3 and 𝑃𝑤 be the family of the modified orthogonal

projections of a gulls singularity. Then the following strata will appear in the bifurcation of the

profile of 𝑃𝑤.

i) The tacnode stratum (TC) is half a curve and is parametrised by

(𝑢, 𝑣) =
(︁
− (4𝑎31𝑎44 − 𝑎32𝑎43)

2𝑎20𝑎32
𝑡2 +𝑂(𝑡3), 𝑣4𝑡

4 +𝑂(𝑡5)
)︁
,

where

𝑣4 = 8𝑎20𝑎31𝑎
2
44 − 10𝑎20𝑎

2
32𝑎55 + 8𝑎20𝑎32𝑎43𝑎44 − 12𝑎31𝑎

2
32𝑎44 + 3𝑎3

32𝑎43

2𝑎20𝑎2
32

.

ii) The parametrization of the swallowtail stratum (SW) is given by

(𝑢, 𝑣) = (4𝑎44

𝑎32
𝑡+𝑂(𝑡2), −4𝑎44(12𝑎20𝑎44 − 𝑎2

32)
𝑎2

32
𝑡3 +𝑂(𝑡4)).

iii) The beaks stratum (B) is given by (𝑢, 𝑣) = (𝑎32
𝑎20
𝑡+𝑂(𝑡2), 3𝑎2

32−4𝑎44𝑎20
𝑎20

𝑡3 +𝑂(4)).

iv) The second order inflection stratum (SI) consists of the origin.

v) The second vertex stratum has 3 branches such that one is a cusp and two other are

tangential parabolas.

Proof. We equip the surface 𝑀 by the Monge form parametrisation 𝜑(𝑥, 𝑦) = (𝑥, 𝑦, 𝑓(𝑥, 𝑦))
with 𝑓 as in (5.1).

i) We know that the stratification must become homeomorph to the 𝒜-stratification given in
page 84 of [23], therefore the tacnode stratum is half a curve. To obtain a precise parametrization
for this stratum we use the fact that a tacnode happens at two different points 𝑝1 = 𝜑(𝑥1, 𝑦1) and
𝑝2 = 𝜑(𝑥2, 𝑦2) in the critical set Σ(𝑃𝑤) with 𝜑(𝑥1, 𝑦1) = 𝜑(𝑥2, 𝑦2) and both are tangential folds.
Therefore after performing the change of coordinate 𝑥 ↦→ 1

cos(𝑢)𝑥 − tan(𝑢)𝑦 we may assume
that 𝑥1 = 𝑥2 = 𝑥. Now if we denote the third component of 𝜑 by 𝑔, then the tacnode stratum is
captured by the solution of system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔(𝑥, 𝑦1)− 𝑔(𝑥, 𝑦2) = 0,
𝜕𝑔
𝜕𝑦

(𝑥, 𝑦1) = 0,
𝜕𝑔
𝜕𝑦

(𝑥, 𝑦2) = 0,
𝜕𝑔
𝜕𝑥

(𝑥, 𝑦1)− 𝜕𝑔
𝜕𝑥

(𝑥, 𝑦2) = 0.

(5.47)
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From the second and third equations of (5.47) we have −2𝑎32𝑥+𝑂(2) = 0. Since 𝑎32 ̸= 0, by
the implicit function theorem we have

𝑥 = −2𝑎44

𝑎32
𝑦2

1 −
2𝑎44

𝑎32
𝑦1𝑦2 + 3

2𝑦1𝑢−
2𝑎44

𝑎32
𝑦2

2 + 3
2𝑦2𝑢+𝑂(3).

By substituting 𝑥 in the last equation of (5.47) we get 𝑢 = 𝑎32
2𝑎20

𝑦2 + 𝑎32
2𝑎20

𝑦1 +𝑂(2). Finally after
putting 𝑥 and 𝑢 in the first equation of (5.47) we have

2𝑎20𝑎32(−𝑦1 + 𝑦2)(𝑦2 + 𝑦1)(4𝑎20𝑎44 − 𝑎2
32) +𝑂(2) = 0.

Since 𝑦1 ̸= 𝑦2, we have 𝑦2 = −𝑦1 +𝑂(2). Also from the first or second equations of (5.47) we
can find 𝑣 as well. Consequently, the parametrization of tacnode stratum is given by (𝑢, 𝑣) =(︁
− (4𝑎31𝑎44−𝑎32𝑎43)

2𝑎20𝑎32
𝑡2 + h.o.t, 𝑣4𝑡

4 + h.o.t
)︁
, where

𝑣4 = 8𝑎20𝑎31𝑎
2
44 − 10𝑎20𝑎

2
32𝑎55 + 8𝑎20𝑎32𝑎43𝑎44 − 12𝑎31𝑎

2
32𝑎44 + 3𝑎3

32𝑎43

2𝑎20𝑎2
32

.

ii) Following the notations of part (i), the swallowtail stratum is obtained by solving the system
of equations

𝜕𝑔

𝜕𝑦
= 𝜕2𝑔

𝜕𝑦2 = 𝜕3𝑔

𝜕𝑦3 = 0.

By a direct calculation using the implicit function theorem, one can obtain the parametrization
of the swallowtail stratum.
iii) The beaks stratum happens when the critical set has a singularity. To find this stratum we
should consider the following system of equations:

𝜕𝑔

𝜕𝑦
= 𝜕2𝑔

𝜕𝑦2 = 𝜕2𝑔

𝜕𝑦𝜕𝑥
= 0.

We have 𝜕2𝑔
𝜕𝑦𝜕𝑥

= −2𝑎20𝑢 + 𝑂(2) = 0 and hence the implicit function theorem implies that
𝑢 = 𝑎31

𝑎20
𝑥+ 𝑎32

𝑎20
𝑦 +𝑂(2). After substituting 𝑢 in 𝜕2𝑔

𝜕𝑦2 , we will obtain 𝑥 as a function of 𝑦 and so

𝑥 = −3(2𝑎20𝑎44−𝑎2
32)

𝑎20𝑎32
𝑦2 +𝑂(𝑦3). Moreover, one can obtain 𝑣 from the equation 𝜕𝑔

𝜕𝑦
= 0. Therefore

this stratum is given by

(𝑢, 𝑣) = (𝑎32
𝑎20𝑡+𝑂(𝑡2), 3𝑎2

32 − 4𝑎44𝑎20

𝑎20
𝑡3 +𝑂(4)).

iv) According to part (iii) of Theorem 5.3 we know that the profile has a second order inflection
when the critical set passes through the cusp of Gauss point. Therefore the second order inflection
stratum only consists of the origin.
v) In §5.8.1 we obtained the 𝐴4-curve. Following the notations used in §5.8.1 when we substitute
𝑥 = 𝑐20𝑦

2 + 𝑐21𝑦𝑡+ 𝑐22𝑡
2 +𝑂(3) in 𝑄2(𝑥, 𝑦, 𝑡), it becomes 𝒜-equivalent to 𝑡𝑦3 ± 𝑡7. The zero

set of this singularity has 2 branches given by⎧⎪⎨⎪⎩
𝑡 = 10(−2𝑎32𝑎43𝑎44+4𝑎31𝑎2

44+𝑎32𝑎55)
𝑎32(𝑎2

32−4𝑎20𝑎44) 𝑦2 +𝑂(𝑦3),

𝑡 = −𝑎32
𝑎20
𝑦 − 3(𝑎32𝑎43−4𝑎31𝑎44)

2𝑎20𝑎32
𝑦2 +𝑂(𝑦3).

(5.48)
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On the other hand if we write the vector 𝑤 in the fram {𝑒1, 𝑒2, 𝑒3}, with

𝑒1 = (1, 0, 0), 𝑒2 = (0, 1, 0), 𝑒3 = (0, 0, 1),

then
𝑤 = − cos(𝑣) sin(𝑢)𝑒1 + cos(𝑣) cos(𝑢)𝑒2 − sin(𝑣)𝑒3.

Now by applying the change of basis matrix (5.4), we can write 𝑤 in the new orthonormal frame
{𝑒1, 𝑒2, 𝑒3} as mentioned in (5.3). Then we get

𝑤 = 𝑤1𝑒1 + 𝑤2𝑒2 + 𝑤3𝑒3,

with 𝑤1 = sin(𝑡(𝑦)) and 𝑤2 = cos(𝑡(𝑦)) where 𝑡(𝑦) is given in (5.48). The rest is a matter of
using the implicit function theorem to get the second order vertex stratum parametrized by⎧⎪⎨⎪⎩

𝑢 = 10(𝑎32𝑎43−4𝑎31𝑎44)
𝑎32(𝑎2

32−4𝑎20𝑎44) 𝑦
2 +𝑂(𝑦3),

𝑣 = ±(𝑎32
𝑎20
𝑦 + 3(𝑎32𝑎43−4𝑎31𝑎44)

2𝑎20𝑎32
𝑦2 +𝑂(𝑦3)),

(5.49)

and⎧⎪⎨⎪⎩
𝑢 = −𝜖𝑎32

𝑎20
𝑦2 +𝑂(𝑦3),

𝑣 = ±
√

3𝜖(𝑎32𝑎43−4𝑎31𝑎44)
𝑎20

𝑦3 +𝑂(𝑦4),
(5.50)

where 𝜖 = ±1 and 𝜖(𝑎32𝑎43 − 4𝑎31𝑎44) > 0.

The parametrization (5.49) gives 2 tangential parabolas and (5.50) gives a cusp.

Remark 5.6. Note that in Proposition 5.6 when (𝑢, 𝑣) = (0, 0), then the expression of the vertex

curve 𝑉 (𝑥0, 𝑦0) = 0 is given by

𝑉 (𝑥0, 𝑦0) =− 8𝑎3
30𝑥

3
0 − 8𝑎31𝑎

3
32𝑥

2
0𝑦0 − 8𝑎4

32𝑥0𝑦
2
0 + · · · − 16𝑎44𝑎

3
32𝑦

4
0 +𝑂(5) = 0. (5.51)

This curve has a 𝐷4-singularity. The discriminant of the cubic part of (5.51) is equal to

Δ = −𝑎14
32(4𝑎30𝑎32 − 𝑎2

31)𝑦6
0.

Therefore the vertex curve (5.51) has a⎧⎪⎨⎪⎩𝐷
+
4 -singularity if 4𝑎20𝑎32 − 𝑎2

31 > 0,

𝐷−
4 -singularity if 4𝑎20𝑎32 − 𝑎2

31 < 0.

According to Theorem 5.5, the 𝐷5-beaks occurs at an isolated point on the parabolic set.
Therefore generically around the cusp of Gauss point the vertex curve either has a 𝐷+

4 -singularity
or a 𝐷−

4 -singularity. We call these two gulls singularities by 𝐷+
4 -gulls or 𝐷−

4 -gulls, respectively.

In Figure 5.23 we draw the bifurcation of the profile at a gulls singularity. Note that according
to Proposition 5.6 the stratification depends on sign of coefficients of the parametrization of each
stratum. There are many possibilities, but one can observe that all stratifications are homeomorph.



5.9. On 𝐹𝑅𝑆-theory for discriminant of map germs R2 → R2 119

Figure 5.22 – The position of inflections and vertices in the curve (23) of Figure 5.23. Discs represent vertex points
and full squares represent inflection points.

When we cross the beak-stratum ( 2 and 14 in Figure 5.23), by using Theorems 5.4 and 5.5
we can determine the position of inflections and vertices in the curves 23 or 13 in Figure 5.23
(see for example Figure 5.22)

Therefore, we expect to have inflection transverse stratum in the bifurcation of the profile at a
gulls singularity. The inflection transverse stratum and vertex transverse stratum are captured by
some complicated singularities and we leave them for future work.

The next step is to consider the geometry of the profile at a gulls singularity. To do this we must
study the intersection of the curves �̃�(𝑥, 𝑦) = 0, 𝑉 (𝑥, 𝑦) = 0 and 𝐴4-curve with the critical set
Σ(𝑃𝑤) in order to find the maximum number of ordinary vertices and ordinary inflections in
the bifurcation of the profile at a gulls singularity. This is a work in progress and the following
conjecture is important for us.

Conjecture. In the bifurcation of the profile at a 𝐷+
4 -gulls singularity there are at most 15

vertices (9 vertices concentrated at 3 cusps) and 8 inflections (6 vertices concentrated at 3 cusps).

5.9 On 𝐹𝑅𝑆-theory for discriminant of map germs R2 → R2

Finding a theory that explains the deformations of the singularity of a submanifold of R𝑛 as
well as the changes in its geometry is still an open problem. In Chapter 2 we introduce a way to
answer this problem for family of plane curves with 𝒜𝑒-codimension ≤ 2. Following to what
we defined for families of plane curves, we can extend the definition of 𝐹𝑅𝑆-equivalence for
discriminant of map germs 𝑓 : R2 → R2.

Definition 5.4. Two germs of𝑚-parameter deformations 𝐹𝑠 and𝐺𝑢 of a map germ 𝑓 : R2 → R2

are 𝐹𝑅𝑆-equivalent if there exists a germ of a homeomorphism

𝑘 : (R𝑚, (𝑆1, 0))→ (R𝑚, (𝑆2, 0)),

where 𝑆1 and 𝑆2 are stratifications of the parameter spaces such that

(i) 𝐹𝑠 is diffeomorphic to 𝐺𝑘(𝑠) in each stratum of 𝑆1;

(ii) Δ(𝐹𝑠) and Δ(𝐺𝑘(𝑠)) have the same number of inflections and vertices in each

stratum;

(iii) the relative position of the singularities, points of self-intersections, inflections

and vertices on Δ(𝐹𝑠) and Δ(𝐺𝑘(𝑠)) is the same in each stratum.
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Figure 5.23 – The bifurcation of the profile at a gulls singularity.

Here Δ(𝐹 ) = 𝐹 (Σ(𝐹 )) is the discriminant of 𝐹 .

According to what we observed in the geometry of the profiles in this chapter we can obtain
𝐹𝑅𝑆-model for the discriminant of a map germ R2 → R2 with 𝒜𝑒-codimension ≤ 2. For
example at a 𝐷+

4 -beaks singularity, we found some conditions on the coefficients of the Monge
form. With these conditions we can construct an 𝐹𝑅𝑆-model case by case.

Finally, a family of a map-germ R2 → R2 with 𝒜𝑒-codimension ≤ 2 is 𝐹𝑅𝑆-generic if it is
𝐹𝑅𝑆-equivalent to the corresponding 𝐹𝑅𝑆-model family.
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APPENDIX

A
MAPLE CODES IN THE PROOF OF THEOREM 4.3

Mapel codes in the general proof of Theorem 4.3. Here K, L, T and P represent 𝜅′, 𝜅′′, 𝜏 ′ and
𝜏 ′′ respectively.

> > 

> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

(2)(2)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
distance squared function

K is the first derivative of curvature (k)

 L is the second derivative of curvature

T is the first derivative of torsion
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> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(3)(3)

This equation is not equal to zero (***)

Determinant of matrix M

# Comparing the determinant of M with (***) we get this
determinant is not equal zero.
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APPENDIX

B
MAPLE CODES IN THE PROOF OF THEOREM 4.4

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

# Determinant of the Jacobian of phi which is not zero

# Determinant of the Jacobian of psi which is not zero
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APPENDIX

C
MAPLE CODES IN THE PROOF OF THEOREM 5.4

(3)(3)

> > 

> > 

> > 

> > 

> > 

(1)(1)

(2)(2)

(4)(4)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
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> > 

> > 

(6)(6)

> > 

> > 

(5)(5)

> > 

0
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> > 

> > 

> > 

(9)(9)

(7)(7)

> > 

(8)(8)

(10)(10)

(6)(6)

> > 

> > 

> > 
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> > 

> > 

> > 

> > 

> > 

> > 

(17)(17)

(13)(13)

(12)(12)

> > 

> > 

(6)(6)

(10)(10)

(15)(15)

(16)(16)

> > 

(11)(11)

(14)(14)
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APPENDIX

D
MAPLE CODES IN THE PROOF OF THEOREM 5.7

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
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> > 

> > 

> > 

(2)(2)

> > 

> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

> > 
> > 

(3)(3)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

Figure D.1 – The 𝑉 𝑇 -stratum in the bifurcation of the profile at a butterfly singularity.
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> > 

> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

> > 

(2)(2)

> > 

> > 

> > 

> > 

> > 
> > 

> > 

> > 

> > 

> > 

> > 

> > 

Figure D.2 – The 𝐹𝐶-stratum in the bifurcation of the profile at a butterfly singularity.
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(3)(3)

> > 

> > 

(2)(2)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

(4)(4)

> > 

> > 

> > 

Figure D.3 – The 𝑆𝑉 -stratum in the bifurcation of the profile at a butterfly singularity.
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