• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.1999.tde-07022001-135507
Document
Author
Full name
Vera Lucia Carbone
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1999
Supervisor
Committee
Taboas, Placido Zoega (President)
Aki, Sueli Mieko Tanaka
Baptistini, Margarete Teresa Zanon
Title in Portuguese
Existência e bifurcações de soluções periódicas da equação de Wright.
Keywords in Portuguese
bifurcação de Hopf
ponto ejetivo
soluções periódicas
Abstract in Portuguese
Este trabalho é concernente a periodicidade na equação de Wright. Provaremos a existência de soluções periódicas não constantes, explorando o conceito de ejetividade de um teorema de ponto fixo. Além disso, provamos a existência de uma seqüência infinita de Bifurcação de Hopf.
Title in English
Existence and bifurcations of periodic solutions of the Wright's equations.
Keywords in English
ejetive point
Hopf bifurcation
periodic solutions
Abstract in English
This work is concerned with periodicity in the Wright's equation. We prove the existence of nonconstant periodic solutions by exploiting the ejectivity concept in a theorem of fixed point. Furthemore, we prove the existence of an infinite sequence of Hopf Bifurcations.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Mestrado.pdf (271.09 Kbytes)
Resumo.pdf (70.83 Kbytes)
Publishing Date
2001-09-24
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.