• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-06032018-084334
Documento
Autor
Nome completo
Eliane Zerbetto Traldi
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1999
Orientador
Banca examinadora
Manzoli Neto, Oziride (Presidente)
Barros, Tomas Edson
Campos, José Eduardo Prado Pires de
Título em português
Sistemas Aumentados de Grupos e Shifts de Tipo Finito
Palavras-chave em português
Não disponível
Resumo em português
Seja (G, X, x) uma terna consistindo de um grupo finitamente apresentado G, um epimorfismo x : G → Z, e um elemento distingüido x ∈ G tal que x(x) = 1. Dado um grupo simétrico, construímos um grafo direcionado finito ⌈ que descreve o conjunto Φr de representações ρ Ker (x) → Sr bem como a aplicação σx : Φr → Φr definida por (σxρ)(a) = ρ(x-1 ax) para todo a ∈ Ker(x). O par (Φr, σx) tem a estrutura de um shift de tipo finito. Discutimos propriedades básicas e aplicações do shift representação (Φr, σx), incluindo aplicações à Teoria de Nós.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
Let (G, X, x) be a triple consisting of a finitely presented group G, an epimorphism x: G → Z, and a distinguished element x ∈ G such that X(x) = 1. Given a finite symmetric group Sr, we construct a finite directed graph ⌈ that describes the set of Φr of representations p: Ker(x) → Sr as well as the mapping σx : Φr → Φr defined by (σxρp)(a) = ρ(x-lax) for all a ∈ Ker(x). The pair (Φr, σx) has the structure of a shift of finite type. We discuss basic properties and applications of the representation shift (Φr, σx), including applications to knot theory.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
ElianeZerbettoTraldi.pdf (940.30 Kbytes)
Data de Publicação
2018-03-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.