• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2017.tde-03022017-150115
Documento
Autor
Nome completo
Thales Maier de Souza
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2017
Orientador
Banca examinadora
Fu, Ma To (Presidente)
Bonotto, Everaldo de Mello
Frota, Cícero Lopes
Planas, Gabriela Del Valle
Título em português
Atratores para equações de ondas não autônomas com condição de fronteira da acústica
Palavras-chave em português
Atrator Pullback
Atrator Uniforme
Condição de Fronteira da Acústica
Equação da Onda
Resumo em português
Esta tese é dedicada ao estudo de uma classe de equações de ondas com condições de fronteira da acústica. Investigamos a dinâmica assintótica de tais equações no caso em que o sistema está sujeito à ação de uma força externa não autônoma. Nessa situação, adicionando uma dissipação fraca, provamos que o problema gera um processo de evolução dissipativo. O nosso objetivo é então o estudo da existência de atratores não autônomos. Num primeiro momento estabelecemos a existência de um atrator do tipo \pullback", minimal, dentro de um universo de conjuntos temperados. Também estudamos a semicontinuidade superior dos atratores quando a perturbação não autônoma tende para zero. Nosso resultado permite considerar forcas externas não limitadas e perturbações não lineares com crescimento crítico (de Sobolev). Num segundo momento, fazemos um estudo sobre a existência de atratores uniformes. Em vista de resultados recentes de Zelik (2015), consideramos forcas externas mais gerais do que a dita classe das forcas compactas por translação (translation-compact). Parte desta tese foi aceita para publicação na revista \Differential and Integral Equations" sob o ttulo \Pullback dynamics of non-autonomous wave equations with acoustic boundary condition".
Título em inglês
Attractors for non-autonomous wave equations with acoustic boundary condition
Palavras-chave em inglês
Acoustic Boundary Condition
Pullback Attractor
Uniform Attractor
Wave Equation
Resumo em inglês
This thesis is concerned with the study of a class of wave equations with acoustic boundary conditions. We investigate the long-time dynamics of such equations in the case where the system is subject to a non-autonomous external force. In this situation, by adding a weak dissipation, we prove that the problem generates a dissipative evolution process. Our goal is then the existence of non-autonomous attractors. In this direction, we first establishes the existence of a minimal pullback attractor within a universe of tempered sets. We also studied the upper semi-continuity of attractors when the non-autonomous perturbation tends to zero. Our result allows to consider unbounded external forces and nonlinear perturbation with critical (Sobolev) growth. Secondly, we establish the existence of uniform attractors, as well. In view of recent results Zelik (2015) we consider more general external forces than the so called class of translation-compact forces. Part of this thesis was accepted for publication in the journal \Differential and Integral Equations" under the title \Pullback dynamics of non-autonomous wave equations with acoustic boundary condition".
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-02-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.