• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2019.tde-03012019-100034
Documento
Autor
Nome completo
Mirianne Andressa Silva Santos
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2018
Orientador
Banca examinadora
Campos, José Eduardo Prado Pires de (Presidente)
Bedoya, Natalia Andrea Viana
Mattos, Denise de
Pergher, Pedro Luiz Queiroz
Título em português
O grupo de homotopia de tranças puras no disco é bi-ordenável
Palavras-chave em português
Grupo de tranças
homotopia
Isotopia
Ordenação
Resumo em português
Em Artin (1925), Artin introduziu o estudo do grupo de tranças, o qual está intimamente relacionado ao estudo de nós e enlaçamentos. Em seu outro artigo Theory of Braids Artin (1947), ele questionou se as noções de isotopia e homotopia de tranças são as mesmas ou diferentes. Tal questão foi respondida muito mais tarde em Goldsmith (1974), onde a autora apresenta um exemplo de trança que é homotópica à trança trivial mas não é equivalente à trança trivial, caracterizando, além disso, o grupo de classes de homotopia de tranças puras no disco como um certo quociente do grupo de tranças puras original. Uma área de pesquisa mais recente nesta teoria é o estudo da ordenação destes grupos de tranças. Em Habegger e Lin (1990) os autores mostram que o grupo de classes de homotopia de tranças puras no disco é nilpotente e livre de torção. Resulta que ele é bi-ordenado. Em Yurasovskaya (2008) a autora fornece uma ordem explícita e calculável para este grupo. Neste trabalho discutiremos e apresentaremos os principais resultados neste contexto.
Título em inglês
The homotopy group of braids over a disc is bi-orderable
Palavras-chave em inglês
Braid groups
homotopy
Isotopy
Ordenation
Resumo em inglês
In Artin (1925), Artin introduced the study of braid groups, which is closely related to the study of knots and links. In his other paper Theory of Braids Artin (1947), he asked if the notions of isotopy and homotopy of braids are different or the same. Such question was answered much later in Goldsmith (1974), where the author presents an example of braid that is homotopic to the trivial braid, but it is not equivalent to the trivial braid, characterizing, beyond that, the group of homotopy classes of braids as an certain quotient of the original braid group. One more recent research area on this theory is the study of ordenation of braid groups. In Habegger e Lin (1990) the authors show that the homotopy group classes of pure braids is nilpotent and torsion free. It follows that it is bi-orderable. In Yurasovskaya (2008) the author provides one explicit and evaluable order for this group. In this work, we will discuss and present the main results involved on this context.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-01-03
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.