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Sem se preocupar se alguém vai aprovar

Testemunha da devida história ser

Legitimar o próprio olhar

O viés alheio não é o que valida você

Quero absorver sem ninguém mais precisar ver

Puxa o ar do fundo, longo, profundo

Solta com barulho, joga fora pro mundo
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Para pra pensar se esse é o teu lugar

Aquele bom em que deveria estar

Presta atenção só no som do mar

Que te conecta com Jah Jah”

(Te Conecta de Priscilla Novaes Leone, a Pitty)





RESUMO

CAZZOLATO, M. T. Conquistando conhecimento a partir de imagens: aprimorando a
mineração de imagens com análise baseada em regiões e informações associadas. 2019.
138 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) –
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos –
SP, 2019.

A popularização de redes sociais e o uso generalizado de smartphones e equipamentos avançados
em hospitais têm gerado dados complexos e sequências de dados, tais como imagens de alta
qualidade, em grande quantidade. Fornecer ferramentas apropriadas para extrair conhecimento
útil de tais dados é um grande desafio. Enquanto diversas técnicas em potencial têm sido
propostas para analisar imagens, grande parte dessas técnicas consideram a imagem inteira
na análise. Assim, regiões que não são de interesse são consideradas na etapa de análise,
sem distinção apropriada e consequentemente prejudicando diversas tarefas. Esta pesquisa
de Doutorado baseou-se na tese de que, ao tirar vantagem de pequenas representações de
imagens, é possível melhorar os resultados de diferentes tarefas de análise. Para provar esta
tese, primeiramente segmentou-se imagens em regiões pequenas. Uma das abordagens usadas
para isso foi a extração de superpixel. Depois, foram aplicados algoritmos de classificação,
agrupamento, e análise temporal nos dados, de acordo com a aplicação. A tese foi avaliada
em três cenários de aplicação. No primeiro cenário, foram analisadas regiões de imagens de
situações de emergência, obtidas por meio de redes sociais e que apresentavam regiões de fumaça.
Os métodos propostos são capazes de segmentar regiões de fumaça e melhorar a classificação
global de imagens em até 23% em comparação ao estado da arte. No segundo cenário, foram
abordadas imagens do contexto médico, contendo doenças pulmonares intersticiais. As imagens
foram classificadas considerando a incerteza de cada região do pulmão em conter diferentes
anormalidades, representando os resultados obtidos por meio de uma visualização baseada em
mapas de calor. A abordagem proposta foi melhor que os competidores na tarefa de classificação
de regiões pulmonares, apresentando melhores resultados em até quatro de cinco anormalidades.
No terceiro cenário, foram tratadas sequências de imagens microscópicas, exibindo embriões se
desenvolvendo ao longo do tempo. Com o uso de informações das imagens baseadas em regiões,
foi possível rastrear e predizer trajetórias de células ao longo do tempo, e também construir o
vetor de movimento das mesmas. As abordagens propostas mostraram uma melhora de até 57%
em qualidade, e uma melhora de tempo no pipeline de rastreamento de até 81.9%. Esta tese de
Doutorado contribuiu para o estado da arte introduzindo métodos de análise de imagem baseados
em região para os três cenários de aplicação mencionados anteriormente.

Palavras-chave: Mineração de imagens, análise baseada em regiões, recuperação baseada em
conteúdo, rastreamento de objetos.





ABSTRACT

CAZZOLATO, M. T. Conquering knowledge from images: improving image mining with
region-based analysis and associated information. 2019. 138 p. Tese (Doutorado em Ciências
– Ciências de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, São Carlos – SP, 2019.

The popularization of social media, combined with the widespread use of smartphones and the
use of advanced equipment in hospitals and medical centers has generated sequences of complex
data, including images of high quality and in large quantity. Providing appropriate tools to extract
meaningful knowledge from such data is a big challenge. While many potential techniques
have been proposed to analyze images, most of the processing performed by image mining
techniques consider the entire image. Thus, regions that are not of interest are considered in the
analysis step, without proper distinction and consequently damaging most tasks. This doctorate
research focused on the thesis that by taking advantage of small representations of images we can
improve the overall results of different image analysis tasks. Then, we employed classification,
clustering, and temporal data analysis algorithms, according to the application. We evaluate this
thesis in three application scenarios. In the first scenario, we analyzed regions of images from
emergencies, gathered from social media and which depict smoke regions. We were able to
segment smoke regions and improve the classification of smoke images by up to 23%, compared
to global approaches. In the second scenario, we worked with images from the medical context,
containing Interstitial Lung Diseases (ILD). We classified the images considering the uncertainty
of each lung region to contain different abnormalities, representing the obtained results with
a heat map visualization. Our approach outperformed its competitors in the classification of
lung regions by up to four of five classes of abnormalities. In the third scenario, we dealt with
sequences of microscopic images depicting embryos being developed over time. Using region-
based information of images, we were able to track and predict cells over time and build their
motion vector. Our approaches showed an improvement of up to 57% in quality, and a speed-up
of the tracking pipeline by up to 81.9%. Therefore, this doctorate research contributed to the
state-of-the-art by introducing methods of region-based image analysis for the three application
scenarios mentioned above.

Keywords: Image mining, region-based analysis, content-based retrieval, object tracking.
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CHAPTER

1
INTRODUCTION

Online platforms generate huge amounts of data at a very fast pace. Extracting meaningful
knowledge from complex data such as images, sequences of images, videos, and time series has
become a huge challenge. Social media employs images since its inception in 2005. Thus, the
amount of images on social media is overwhelming, and the approximate number of images on
social media can be counted in the billions (ØRNAGER; LUND, 2018; COSTA et al., 2017).
This popularization of social media, combined with the increasing access and use of smartphones
and other mobile devices, collaborate with the generation and sharing of such data, all the
time. Also, specialized environments such as hospitals, clinics, and laboratories now have the
potential of generating complex data of high quality, in large quantity and with associated
information (GONÇALVES et al., 2017). This scenario brings out the need for processing the
available data effectively and efficiently. The appropriate analysis of the available information
can help authorities in emergency situations (CHINO et al., 2015; OLIVEIRA et al., 2016),
supporting education and medical decision-making (SANTOS et al., 2018; FERREIRA et al.,
2018), as well as speeding-up pipelines known to be time-consuming (STEGMAIER et al., 2014;
HE et al., 2017; ULMAN et al., 2017).

1.1 Motivation

A wide range of techniques have been proposed to perform analysis of images, and
many of them have great potential. Taking advantage of existing approaches to represent and
find patterns on images can be meaningful. However, most of the processing performed by
image mining techniques consider the entire image. This hurts most tasks since regions that
are not of interest are considered in the analysis step, without proper distinction (OLIVEIRA
et al., 2016; CHINO et al., 2015). Region-based analysis of images can improve the detection
and content-based retrieval results. This is performed by segmenting regions of interest from
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images before performing data mining tasks. Meanwhile, when dealing with sequences of images,
the processing pipeline should be fast and take advantage of the objects’ movement to infer
knowledge. Accordingly, the segmentation of such objects can also be useful to improve the
analysis.

This Ph.D. research aimed at answering the following question: “How can we improve

the image mining task of different application contexts relying on complex data and associated

information?” One of the main challenges regarding this research question is that image mining
can be complex, diverse and dependent on the application domain. It can be complex due to
the different forms of data representation. Image mining can be diverse regarding the different
tasks that are possible to perform, such as image classification/labeling, content-based retrieval,
object identification, noise removal, and image fusing. Also, such tasks can be different among
themselves only regarding the different application domains. For instance, object identification
may refer to detecting pedestrians in the urban context, or refer to a textured pattern that can
indicate cancer or a similar abnormality in the medical context.

1.2 Problem Statement

As discussed in the previous section, the main goal of this Ph.D. research is to improve
image mining by taking advantage of visual findings obtained by region-based approaches.
Accordingly, we propose methods to extract meaningful information from single and sequences
of images, considering problems in which the global mining approach is not accurate. Due to
the complexity and diversity of issues in the context of image mining, in this Ph.D. research we
propose the following thesis:

Thesis. The analysis of image regions, combined with additional information, leads to

more accurate mining results regarding the entire image and also helps the processing of

sequences of images, speeding-up costly pipelines and making it possible to infer knowledge

from objects’ movement.

This Ph.D. research focused on image mining methods, assisted by region-based analysis
and associated information. Particularly, we consider the aforementioned thesis by working with
data obtained from three context applications: (i) images from emergency scenarios, that were
gathered from social media and depict smoke regions; (ii) images from the medical context,
containing Interstitial Lung Diseases (ILD); and (iii) with sequences of microscopic images,
depicting embrios being developed over time and the associated information. Properly, we
support the previously mentioned thesis by proposing methods to solve the three following
research problems. Notice that each contribution concerns one application context.
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Research problem 1. Mining images from emergency scenarios:

Social media and crowdsourcing generate images at a fast pace. Particularly, in emergency
scenarios, public authorities aim to provide fast and accurate responses, while dealing with
intense flows of information in little time. The early detection of fire, smoke, and explosions
assist the rescue forces in preventing further risks to human life and financial losses. While the
global detection of fire in images has shown accurate results, detecting smoke in still images has
proven to be a challenging task. Overall, the major difficulties of this task refer to the absence of
movement and the fact that smoke does not present well-defined color patterns. For instance, the
smoke color can change as the temperature increases, according to the material being burned,
due to the inherent transparency, and its heavy dependence on weather conditions. Based on this
scenario, we formulated the following questions: (i) What patterns can be used to classify images

regarding the presence of smoke? (ii) Can we improve the segmentation of smoke images with a

region-based classification approach? (iii) Can the classification of smoke images be enhanced

using the segmentation outputs?

Research problem 2. Mining medical images with uncertainty:

The advent of capturing and storing technologies have made it possible for hospitals and medical
centers to generate large volumes of imaging exams increasingly. Content-Based Image Retrieval
(CBIR) applications assist physicians in analyzing such images, leaning on fast, accurate, and
reliable methods, mainly based on historical and already analyzed exams. In particular, when
detecting abnormalities in lung CT scans, different abnormalities can present very similar visual
patterns. Also, the detection approach must consider that a single CT slice/image of the lungs
may show normal and abnormal regions. Consequently, performing the labeling of the entire
images as a whole unity is neither accurate nor adequate. Relying on this scenario, we formulated
the following research questions: (i) How can we model the healthy pulmonary tissue pattern and

visualize, for each lung region, its likelihood of being abnormal? (ii) How can we model different

lung abnormalities, and then provide a proper visualization of the most probable findings of each

lung region?

Research problem 3. Analyzing moving objects in sequences of microscopic images:

A sequence of images depicts the development of a given embryo over time. It starts with a
single cell that splits over time, as the embryo is developing. The traditional pipeline to deal
with such images encompasses image acquisition by microscopes, transferring them to a local
computer and processing the images by segmentation algorithms. Then, tracking algorithms
construct the trajectory vector of each cell, over time. The problem here is that performing
the entire pipeline is time-consuming, as the volume of images is substantial and an embryo
can take hours to develop. Based on this scenario, we aimed to answer the following research
questions:(i) How can we efficiently track cells over time, relying on the output of segmentation
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algorithms, and obtain cells’ trajectory vectors? (ii) What are the alternative configurations that

allow using previous positions of cells to predict their future movement effectively, and obtain

reliable approximate trajectory vectors? (iii) Can we speed-up the tracking task with indexing

structures, and consequently improve the overall accuracy?

1.3 Contributions

The main contributions of this Ph.D. research are three-fold, each of which addressing
one of the research problems mentioned earlier.

Contribution 1. The SmokeBlock method:

We studied various configurations regarding the representation of images and the best classifiers
to use in the context of fire and smoke. As a result, we propose the SmokeBlock method.
SmokeBlock performs the segmentation of smoke regions from the images by dividing them
into groups of pixels containing similar visual patterns (called superpixels). Then, the method
classifies each region as smoke or not, composing as its first output a segmented image with
only smoke regions. In the sequence, SmokeBlock uses the segmented image to perform a global
classification of the images. The experimental analysis was carried using real data from Flickr,
and the obtained results were compared against state-of-the-art methods for feature extraction.
SmokeBlock achieved performance superior than its competitors, for the task of smoke detection.

The works (CAZZOLATO et al., 2016) and (CAZZOLATO et al., 2017) report all results
related to this contribution.

Contribution 2. The BREATH and dp-BREATH methods:

Considering that different parts of a single lung image may present both normal and abnormal
characteristics, we first propose the BREATH method. BREATH starts by segmenting lung
tissues using a superpixel-based approach. Following, it trains a statistical model to represent
normal tissues and, finally, BREATH generates a heat map showing abnormal regions that require
attention from the physicians.

Further, we proposed the dp-BREATH method to extend BREATH. dp-BREATH models
and classifies the highlighted lung regions, according to their probability of containing each of
the studied abnormalities. The method relies on a Gaussian Mixture Model to represent each
lung abnormality, assuming that the lung regions follow a normal distribution when grouped
separately. Consequently, dp-BREATH has shown to provide a high recognition of radiological
patterns, with the likelihood of a selected lung region to contain abnormalities.

The works (CAZZOLATO et al., 2017) and (CAZZOLATO et al., 2019) report BREATH,
dp-BREATH, and all related results regarding this contribution.
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Contribution 3. The CM-Predictor method:

CM-Predictor is a method which takes advantage of previous positions of cells to estimate
their motion. It extends the traditional pipeline of cell tracking. When estimation takes place,
the costly acquisition, data transfer, and image segmentation steps are omitted. CM-Predictor

speeds-up the tracking pipeline, monitors the prediction error and adapts the model whenever
needed. We also proposed baseline tracking algorithms (Direct-Tracker and Clever-Tracker) to
serve as a basis for comparison and validation. Experimental results show that CM-Predictor can
accurately estimate the motion vectors, maintaining the prediction quality of other algorithms,
and performing faster than them. Further, we evaluate how the methods can benefit from indexing
structures to speed-up the tracking task.

This contribution was reported in the work (CAZZOLATO; TRAINA; BÖHM, 2018).

1.4 Outline
This chapter summarized the motivation, the addressed problems, objectives, and main

contributions of this doctorate Ph.D. research. The remaining parts of this monograph are
organized as follows: Chapter 2 presents the relevant background, needed to follow the work.
Chapter 3 shows how we can take advantage of region-based classification of images to improve
content-based image retrieval. Chapter 4 presents how the study of regions of images can
improve the characterization of different patterns presented within. Chapter 5 presents how
we can improve the tracking of moving objects by studying their intrinsic temporal behavior.
Additionally, we explore scenarios where different configurations are allowed, and to which
extent they are positive and valid. Chapter 6 concludes this thesis, stating its main contributions,
the publications generated during the work, and points out different opportunities for future
work.
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CHAPTER

2
BACKGROUND

In this chapter, we present the relevant background related to complex data, knowledge
discovery, and moving objects.

2.1 Complex Data and Knowledge Discovery

Large amounts of multimedia information are generated every instant, due to the lowering
cost of acquisition devices, the easiness of data communication, to the advent of social media, as
well as the dissemination of mobile devices. The increasing quantity of data considered complex,
such as images, sequences of images, video, audio and time series, corroborates with the necessity
of methods and technologies that support the automatic manipulation and knowledge extraction
of these data. This manipulation must be efficient, with the lowest computational cost possible,
and be effective as it should present the meaningful semantics embedded in the data. Unlike
traditional data (such as numbers, small characters arrays, and dates), complex data do not
possess the order property. This makes impossible to use comparison operators, such as “<”,
“>”, “≤” e “≥” (BUENO et al., 2009; CHINO et al., 2015). In the same way, equality operators
(“=” and “ ̸=”) generally are not used, since we rarely want to verify if two complex elements
are equal.

Complex elements are represented by feature vectors, that are numeric signatures of
elements’ data content, generated by the so-called Feature Extraction Methods (FEMs). A
similarity measure compares a pair of complex elements and is often referred to as a Distance
Function (DF). Consequently, the following definitions of Metric Space (Definition 2.1) and
Metric distance function (Definition 2.2) become necessary as they provide the basis for complex
data comparison.
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Definition 2.1 (Metric Space). A metric space is an ordered pair < S,δ >, where S is the
elements’ domain, and δ : S×S→ R+ is a metric (SAMET, 2006).

Definition 2.2 (Metric). A metric δ computes the distance between pairs of elements < si,s j >

|si,s j ∈ S, and follows the properties of symmetry, non-negativity, triangular inequality, and the
identity of indiscernibles.

For all elements si,s j,sk ∈ S, δ must hold the following properties to be considered metric:

∙ Symmetry. δ (si,s j) = δ (s j,si): the distance is a symmetric function.

∙ Non-negativity. δ (si,s j)≥ 0: the distance is a non-negative number.

∙ Triangular inequality. δ (si,s j)≤ δ (si,sk)+δ (sk,s j): the distance between two objects
si e s j in space cannot be higher than the distance between them passing through a third
object sk.

∙ Identity of indiscernibles. δ (si,si) = 0: the distance of an object to itself is 0.

The definitions of metric space and metric distance functions are important to enable the
use of indexing structures for complex data, that are called Metric Access Methods (MAMs). We
detail MAMs in Section 2.1.4, when we refer to the content-based image retrieval.

Another important concept regarding complex data is the descriptor, described following
in Definition 2.3.

Definition 2.3 (Descriptor). A descriptor is composed of a pair < E ,δ >, where E is a FEM and
δ is a distance function.

Following we present the main concepts related to FEMs and distance functions, with examples
of existing methods grabbed from the literature.

2.1.1 Feature Extraction Methods

Feature Extraction Methods (FEMs) generate feature vectors to represent the content of
complex data elements. Definition 2.4 formally describes FEMs.

Definition 2.4 (Feature Extraction Method - FEM). Let S be the domain of complex data, and
V be the domain of feature vectors. A Feature Extraction Method is a non-bijective function
E : S→ V capable of representing a complex object sq ∈ S in V as vq.

Given a complex object sq ∈ S and a FEM E , a feature vector is an element generated
by E (sq) = vq, with vq ∈ V, such that vq represents a complex object sq in V.
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Regarding the different types of complex data, in this thesis we focus on the analysis of
images and sequences of images, that are aligned in time. Most existing FEMs generate feature
vectors as numeric results extracted from images. FEMs can generate different representations
such as shape, texture distribution, color distribution or intensities, and movement. Among the
most widespread FEMs in the literature, we have the Color Histogram (CH). CH serves as an
effective and efficient representation of the image content, is simple and fast to compute, and
enables the characterization of the color distribution in the image. Its representation can be local
or global (PARKER, 2010; GONZALEZ; WOODS, 2008; SHAPIRO; STOCKMAN, 2001).
Another important characteristic of CH is the robustness to the translation and rotation of the
visualization axis. It subtly changes with relation to scale, occlusion, and change in the viewing
angle. Figure 1 shows an example of an image and its corresponding RGB features. CH is built
by a quantization of the space, consisting of grouping similar colors in bins. The size (or range
of values) of these bins can be defined according to the application need. After defining the bins,
CH counts the frequency of each color intensity in the image. CH is constructed using a color
space, such as RGB, YCbCr, HSL and HSV (PARKER, 2010; ZHANG; LI; LI, 2009; HUANG
et al., 2018).

Figure 1 – An (a) input image and (b) its corresponding color histogram, represented in the RGB color
space and with the color channels separated.

R
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Source: Elaborated by the author.

The MPEG-7 standard was proposed by ISO/IEC JTC1 (MULTIMEDIA, 2002). It
defines expected low-level representations of images using color, texture, and shape features.
Such representations became widely used in the literature by implementations of FEMs (OJALA;
AITTOLA; MATINMIKKO, 2002; HYUN; KIM; OH, 2015; MUNADI et al., 2015), such as:

∙ Color: Color Layout (CL), Color Structure (CS), Scalable Color (SC), Color Temperature

(CT), Dominant Color (DC), Color Correlogram (CC) e Group-of-Frames (GF);

∙ Shape: Contour Shape (ContS), Shape Spectrum (SS) e Region Shape (RS);
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∙ Texture: Edge Histogram (EH), Texture Browsing (TB) e Homogeneous Texture (HT).

For instance, the Texture Browsing (TB) FEM extracts texture patterns by applying Gabor
filters in the image (LEE; CHEN, 2005), as illustrated in Figure 2(b). TB’s resulting feature
vector is composed of 12 features: two of texture regularity; six of directionality, defining the
most dominant texture orientation; and four of roughness, representing two dominant texture
scales.

Another example is the Color Layout (CL) FEM, which describes the color distribution
of the image considering the spatial location of pixels. The image is divided into squared sub-
regions, defined by a parameter, and then CL labels each region with its correspondent average
color (KASUTANI; YAMADA, 2001). Figure 2(c) illustrates the regions created by CL. After
this step, the average colors are transformed to the YCbCr color space, and then CL applies the
Cosine Discrete Transform in each channel of YCbCr. CL extracts the low-frequency coefficients
by performing a zig-zag image reading. Aiming to reduce the dimensionality, CL selects only
the most prominent frequencies of the resulting feature vector (KASUTANI; YAMADA, 2001).

Figure 2 – Representing an image using different FEMs: (a) The original image. (b) TB’s Gabor filter, with
the following setting: filter size f s = (21,21), standard deviation of the Gaussian filter σ = 8.0,
orientation of the normal to the parallel stripes θ = π/4, wavelength of the sunusoidal factor
λ = 10.0, spatial aspect ratio γ = 0.5, and phase offset ψ = 0. And (c) CL color quantization,
representing an image of size 5184×3456 pixels with a matrix of size 30×30 pixels.

(a) (b) (c)
Source: Elaborated by the author.

A digital camera typically captures the objects depicted in the images in an arbitrary
orientation. This results in a representation that is distorted by certain geometric transformations
(LIN; FANG, 2009). This is a recurrent problem regarding shape FEMs. In fact, Chaudhuri
(2013) points out that shape is a powerful tool to describe objects, differentiating them from each
other. The shape representation of an image usually looks for effective and perceptually relevant
features, based on both boundaries information as well as the inside information contents. Among
the many developed features in recent years are the shape signature, histograms of signatures,
invariant shapes, moments, curvatures, shape content, and spectral characteristic (CHAUDHURI,
2013).

Haralick (Hr) (HARALICK; SHANMUGAM; DINSTEIN, 1973) and Local Binary

Patterns (LBP) (OJALA; PIETIKAINEN; MAENPAA, 2002) are two examples of widely used
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FEMs for texture patterns. Hr assumes that the textural information from an image is in the overall
or “average” spatial relationship that gray tones in images have to one another. Accordingly, Hr

considers that a set of gray-tone spatial-dependence matrices adequately specifies the texture
information. Such matrices are computed for various angular relationships and distances between
neighboring resolution cell pairs on the image (HARALICK; SHANMUGAM; DINSTEIN,
1973). LBP is a theoretically and computationally simple approach, that is robust to grayscale
variations and rotation invariant. The algorithm recognizes uniform local binary patterns, in the
sense that uniform patterns provide a vast majority, sometimes over 90%, of the 3×3 texture
patterns in examined surface textures (OJALA; PIETIKAINEN; MAENPAA, 2002; OJALA;
AITTOLA; MATINMIKKO, 2002; FENG et al., 2017).

Besides color, texture, and shape visual features, a piece of very important information
related to sequences of images and videos is the movement. With sequential data, applications
can take advantage of the movement information by considering the spacial relation of the images
in time. We discuss further details about the analysis of sequences of images in Section 2.4,
when we talk about Moving Objects. Regarding the feature extraction task, one example of FEM

for sequential data is the Optical Flow (OF) algorithm (NEUMANN, 1984). OF represents the
movements’ state in the entire image/frame, regarding a specific instant in time (CHAUDHRY
et al., 2009). This representation enables the identification of the movement type of an object
with relation to the static background of an image/frame. According to Neumann (1984), OF is
an intermediary variation of the image difference in time. It assigns a velocity vector to each
pixel, to describe the pixels’ temporal displacement in the view plane. Although widely used,
OF presents a high computational complexity.

FEMs can be employed globally, considering the entire image, or locally, considering for
instance only specific regions of the image, objects or control points. In practice, different FEMs

can be combined to describe various characteristics and improve the content representation being
analyzed. Examples of works in this line of research are (CHAUDHRY et al., 2009; CHINO
et al., 2018; BEDO et al., 2015; NESSO-JR et al., 2018). After extracting the relevant feature
vectors with FEMs, it is necessary to establish a metric that allows the comparison of pairs of
such vectors. We discuss such metrics provided by proper distance functions, in the following
subsection.

2.1.2 Distance Functions

Distance Functions (DF) are (dis)similarity measures, used to measure the similarity (or
difference) between a pair of elements < si,s j >, that are represented in the same FEM, i.e. si

and s j are from the same domain V. Definition 2.5 formalizes this concept.

Definition 2.5 (Distance Function - DF). Let E be a FEM and si and s j be two complex objects.
A Distance Function measures the distance between si and s j, and returns a real value to
represent how much (dis)similar both objects are from each other: δ (si,s j)→ [0,1].
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As mentioned before, for a DF δ : S×S to be metric it must hold to the metric space
restrictions (symmetry, non-negativity, triangular inequality and identity of indiscernibles).
Different DFs can measure the distance between a pair of objects in distinct manners, depending
on the data domain and the application scenario. Well-known examples of DFs used in the
literature are the ones from the Minkowski family, which contemplates Manhattan (City-Block),
Euclidean, and Chebychev, among others (HAN; KAMBER; PEI, 2011; ZEZULA et al., 2006).
This family of distances is also known as Lp. Let va and vb be the feature vectors of dimension
d, corresponding to the complex objects sa and sb, respectively. The DFs from the Minkowski

family follow Equation 2.1 in individual cases, using the corresponding p value.

Lp =

√√√√ d

∑
i=1
|vai− vbi|p (2.1)

Figure 3 shows the search space for different values of p, in the bi-dimensional space.
Manhattan (L1) represents a lozenge and consists of the sum of the absolute differences between
the elements. Euclidean (L2) is widely used and is represented by a circle since all points have
the same distance to the query center. Finally, Chebychev (Linfinity or L∞), also known as the
maximum distance, is represented by a square. The respective formulas are shown in Table 1.

Figure 3 – Search space of the Minkowski family, in the bi-dimensional space: Manhattan (City-Block or
L1), Euclidean (L2) e Chebychev (Linfinity or L∞).
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Source: Elaborated by the author.

The Dynamic Time Warping (DTW) distance is another example of a well-known and
widely used distance. DTW searches for the optimal alignment between two sequences, that
are dependent in time, under certain restrictions, as illustrated by Figure 4. Intuitively, DTW

distorts the sequences in a non-linear way, in order to match each other (MÜLLER, 2007). DTW

compares two time-dependent sequences X and Y , where X = (x1;x2; ...;xn) is of size n ∈ N
and Y = (y1;y2; ...;ym) is of size m ∈ N. X and Y can be time series or sequences of features,
sampled in equidistant points in time. DTW compares both sequences by constructing an N×M

matrix of synchronization. DTW employs a local DF to compare the pair of sequences X and
Y (Euclidean, for instance). Thus, the (ith, jth) element of the matrix corresponds to the value
obtained by local DF. According to Müller (2007), DTW is not metric, as it is not normally
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Figure 4 – DTW searches for the optimal alignment between two sequences X and Y : (a) the comparison
of X and Y , that are misaligned in time; (b) matrix of synchronization with the optimal path
between the sequences; (c) the resulting alignment of the sequences.
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Source: Adapted from Keogh and Ratanamahatana (2004).

defined as positive, and it does not satisfy the triangular inequality, even in the case that the local
distance employed is metric.

Table 1 summarizes examples of DFs, the corresponding formula, and the information
about if the DF is metric. The Kullback-Leibler Divergence (KLD) and Jeffrey Divergence (JD)
are examples of non-metric DFs, useful for image classification and retrieval. KLD does not hold
the symmetry and triangular inequality properties. JD is a symmetric variation of KLD, but it
does not follow the triangular inequality property (BEDO et al., 2016).

Table 1 – Example of DFs, the respective formulas and the information about each distance being a metric.
Here, va and vb are two feature vectors of d dimensions.

Distance Function Formula Is Metric

Manhattan (City-Block) ∑
d
i=1 |vai− vbi| Yes

Euclidean
√

∑
d
i=1(vai− vbi)2 Yes

Chebychev limp→∞(∑
d
i=1 |vai− vbi|p)

1
p Yes

Canberra ∑
d
i=1
| vai−vbi |
|vai|+|vbi| Yes

Kullback-Leibler Divergence ∑
d
i=1 vai ln(vai

vbi
) No

Jeffrey Divergence ∑
d
i=1(vai− vbi) ln(vai

vbi
) No

Source: Elaborated by the author.
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2.1.3 Data Mining

The Knowledge Discovery in Databases (KDD) was proposed in (FAYYAD; PIATETSKY-
SHAPIRO; SMYTH, 1996) and is defined as the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in data. Additionally to this definition,
in (MAIMON; ROKACH, 2010) the authors describe KDD as an automatic exploratory analysis
and modeling of large data repositories. KDD is an iterative process, and can be divided into
seven main steps: data cleaning and integration (performed during pre-processing), data selection,
transformation, mining, patterns evaluation, and knowledge presentation (HAN; KAMBER; PEI,
2011).

Data Mining (DM) is the primary step of the KDD process. DM consists of the effective
application of algorithms in the data, aiming at discovering meaningful hidden patterns. In
(ZAKI; MEIRA JR., 2014) the authors state that DM comprises the core algorithms that enable
one to gain fundamental insights and knowledge from massive data. Additionally, it consists
of an interdisciplinary field, including concepts from areas such as database systems, statistics,
machine learning, and pattern recognition. DM algorithms perform based on diverse heuristics
and can be divided into tasks. These tasks differ from each other regarding the way they search
for and recognize existing patterns. DM can be divided into three tasks, namely classification,
clustering, and frequent patterns discovery (HAN; KAMBER; PEI, 2011). In this work, we focus
on classification and clustering algorithms, thus we discuss these two tasks with more details
next. For the sake of simplicity, we use the terms data objects, examples, and tuples as synonyms
in this work.

Classification Algorithms

Classification consists of a supervised learning process that aims to find a model (or
function) to describe and distinguish between classes of data (HAN; KAMBER; PEI, 2011).
This model is trained from a set of n labeled (or pre-classified) data objects. Classification can
also be seen as a function (or simply classifier) C , that maps an object s into a label `, such that
C (s) = ` (MELLO; PONTI, 2018). The constructed model can be further used to predict the
class of new objects, which the class label is unknown.

The choice of the appropriate classifier must consider the context (application) and
the available data (data type, distribution, if it has noisy and missing values, and others). The
classification task has many applications, such as meteorological predictions, shopping pattern
recognition, finances, and image classification. We are interested in the latter. Many classifiers
have shown to be fit for the image classification task in the literature. Example of recent works
are (BEDO et al., 2015; KALE et al., 2016; KARARGYRIS et al., 2016; CHINO et al., 2018).
Usually, they rely on color, texture, and other available features to perform classification. We
present well-known examples of classifiers next.
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Support Vector Machines (SVMs) were proposed in (VAPNIK, 1995) to classify both
linear and nonlinear data. According to Han, Kamber and Pei (2011), SVM transforms the
training data into a higher dimension using a nonlinear mapping. Once in the new dimension,
SVM searches for the linear optimal separating hyperplane found using support vectors and
margins. This hyperplane is also known as the “decision boundary”, which separates the classes.
With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes
can always be separated by a hyperplane. SVMs are known to be extremely slow but highly
accurate. It has the ability to model complex nonlinear decision boundaries while being much
less willing to overfitting than other classifiers. SVMs can also be used for numeric prediction.

Decision Trees (DTs) are popularly known due to their construction and representation
simplicity. DTs are self-explanatory and do not require a data mining expertise to understand
the resulting model, as it is intuitive and easy to take in. They are capable of representing
multidimensional data in a simple and fast way, generally presenting high accuracy. However, a
high accurate DT model depends on the training data available, and it can be difficult to find
the optimal tree model. A DT structure is composed of internal nodes (representing a test in an
attribute), branches (representing the outcomes of the test), and the leaves (holding the class
labels). DTs algorithms employ a node division heuristic to decide when and how to split the
internal nodes of the tree. The most known and employed division heuristics are the Gini Index
and Information Gain. Also, a DT relies on a stopping criteria to finish the construction of the
model (HAN; KAMBER; PEI, 2011; AGARWAL; SHARMA, 2011). Examples of classic DT

algorithms are C4.5 (QUINLAN, 1993) and CART (BREIMAN et al., 1984).

The classifiers as mentioned earlier are called eager learners since they have a training
phase to construct the classification model. The classifiers follow predetermined criteria, and
(sometimes) make suppositions regarding the data distribution. Subsequently, this model is
applied to a testing set, aimed at evaluating its effectiveness. Then, the model is used to classify
new instances of data. On the other hand, IBL classifiers (Instance-Based Learning) (AHA;
KIBLER; ALBERT, 1991) generalize the classification predictions through the available data,
since the training data is completely stored. That is the reason this category of classifiers is
named lazy learners. Most IBL classifiers use Euclidean distance, but other measures can be
used as well and may be more appropriated, according to the data distribution and context (HAN;
KAMBER; PEI, 2011).

A well-known IBL classifier is the k-NN (k-Nearest Neighbors). k-NN is a non-parametric
approach that makes no assumption regarding the data. The algorithm uses a distance function to
determine which of the elements of a dataset is the closest instance to a query element. Once the
closest element to the query is located (for k = 1), the corresponding label is used to classify the
query element. If k > 1, the majority class of the k-nearest elements is used to classify the query
element.

Figure 5 shows two examples of k-NN queries, (a) one with k = 3 and (b) other with
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k = 5. Notice that, for both queries, the same dataset is used, but different values of k. The
dashed circle has its center as the query center, and the squares and stars represent data elements
from both available classes. With k = 3, (a) the majority class is the square since two of the
three nearest elements are squares. With k = 5, (b), the majority class is the star. When a tie
happens (for example, with k = 4 both classes would have two nearest elements to the query),
k-NN chooses the class whose summation of distances to the nearest elements is smaller. If the
tie persists, an arbitrary class is chosen.

The classic k-NN approach assumes that all nearest elements of a given query have the
same importance (all of them have the same weigh). Modifications in this classifier include
weighting the neighbor elements according to their proximity to the query center.

Figure 5 – Example of k-NN queries. In (a) the majority class is the square, and in (b) the majority class
is the star.

(a) k = 3 (b) k = 5

Source: Elaborated by the author.

When referring to Ensemble approaches, several classifiers are trained together, and
a voting process combines their results. A widely known example of an algorithm from this
category is the Random Decision Forests (RF) (HO, 1995). RF combines tree predictors, in a
way that each tree depends on the values of a random array, built independently and with the
same distribution of the other trees in the forest (BREIMAN, 2001).

The Multi-Layer Perceptron (MLP) is an Artificial Neural Network classifier. MLP

maps the input data into a set of appropriate outputs. Its structure is composed of one input layer,
one output layer, and one of more layers between them.

Naïve Bayes (NB) is a Probabilistic classifier based on the Bayes theorem. Bayesian
classifiers can predict the probability of a given object to belong to a specific class (HAN;
KAMBER; PEI, 2011). Particularly, NB assumes that the effect of an attribute value in a given
class is independent of the other attributes. This property is the conditional independence of a
class, considered “naïve” because NB simplifies the corresponding calculations. Although very
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simple, NB has shown to be accurate, and even comparable to other classifiers such as decision
trees and a few neural networks (HAN; KAMBER; PEI, 2011). One of the advantages of NB is
that it does not require a training set to obtain high classification results (SAMI; EL-BENDARY;
HASSANIEN, 2012).

In this thesis we employed many of the aforementioned off-the-shelf classifiers. The
classifiers used in our work that were not mentioned in this section will be introduced together
with the proper results.

Clustering Algorithms

In the clustering task, algorithms perform unsupervised learning, and the class labels
are previously known. Clustering is the process of organizing data into similar groups. Objects
belonging to the same group have more similarity between them, and less similarity between
the objects belonging to the other groups (HAN; KAMBER; PEI, 2011; ZAKI; MEIRA JR.,
2014). Clustering algorithms can also be used as helping tools. For instance, they can be used to
obtain knowledge regarding the data distribution, to observe the characteristics of each group
for further analysis, and as a preprocessing tool to support other algorithms, such as classifiers.
Distance functions compute the (dis)similarity among the objects being clustered.

Clustering algorithms can be divided into categories, namely representative-based (or
partitioning-based) clustering, hierarchical, density-based, grid-based and model-based (ZAKI;
MEIRA JR., 2014; FAHAD et al., 2014). We briefly discuss each of these categories in the
following.

Partitioning-based methods find mutual-exclusive groups based on distance. They nor-
mally represent the center of each group using an element determined by the mean or medoid of
the elements within the group. The algorithms divide the data into partitions, each one represent-
ing a group. Each group is required to contain at least one element and to belong to exactly one
group. Examples of algorithms from this category are k-means, k-medoids, PAM (KAUFMAN;
ROUSSEEUW, 2005) and CLARANS (NG; HAN, 2002).

Hierarchy-based methods group the available data in a dendrogram, which consists of a
hierarchical representation with multiple levels. The intermediary nodes determine the proximity
among the elements, and leaf nodes store the data elements. The initial group of elements is
gradually divided into other groups as the hierarchy continues. Algorithms from this category
can employ a bottom-up or top-down approach. Bottom-up approaches initialize the groups
with one object and then join two or more groups recursively. Top-down approaches start with
all elements in one group and recursively divides them until a stopping criterion is satisfied
(normally, until k groups are found). Examples of hierarchical algorithms are BIRCH (ZHANG;
RAMAKRISHNAN; LIVNY, 1996) and CURE (GUHA; RASTOGI; SHIM, 1998).

Density-based methods find groups with arbitrary shapes and split the objects according
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to their density regions, connectivity, and boundary. Groups are dense regions (with many data
objects), separated by regions of low density, and present natural protection against the presence
of outliers. DBScan (SANDER et al., 1998) is an example of a density-based method.

Grid-based methods use a grid structure to divide the data space. The main advantage of
these methods is the fast processing, which is normally independent of the number of objects.
This occurs because the algorithm scans the dataset only once to compute the statistical values
for the grids. Then, the grouping is performed based on the collected information. An example
of grid-based algorithm is STING (WANG; YANG; MUNTZ, 1997).

Model-based methods optimize the adjust between the data and predefined mathematical
models. The algorithms of this category are based on the premise that the data is generated
by a mixture of underlying probability distributions. The number of groups is automatically
determined based on the statistics and considering the outliers. MCLUST (FRALEY; RAFTERY,
1999) is an example of a model-based algorithm.

In this thesis we employed clustering algorithms to look for regions of images depicting
similar visual patterns. Details about this are given in Chapter 4.

Evaluation measures

A mining algorithm needs to be evaluated to check how accurate and generalized it is
for the classification/clustering of unseen examples. A trained model is applied to a test set
of data (also labeled), and the results are evaluated. Many evaluation measures can be used
to check how accurate is the model. Table 2 summarizes some of the most known measures,
employed in this thesis. Here we refer as positive examples (P) the ones coming from the
class of interest, and as negative examples (N) otherwise. Many of these measures rely on
four terms: (i) true positives (T P) are positive examples correctly labeled as positive; (ii) true
negatives (T N) are negative examples correctly labeled as negative; (iii) false positives (FP)
are negative examples incorrectly labeled as positive; and false negatives (FN) are positive
examples incorrectly labeled as negative.

Accuracy (AC) is the set of examples correctly classified. Error rate (ER) refers to the
misclassification rate, and is corresponding to 1−AC. The true positive rate (TPR) is also known
as sensitivity and recall, and refers to the proportion of positive examples correctly classified. The
true negative rate (TNR) or specificity is the proportion of negative examples correctly classified.
F1 is the harmonic mean of precision and recall.

All evaluation measures used in this thesis and not introduced in this section are related
to the domain, and will be explained along the specific results, in Chapters 3, 4 and 5.
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Table 2 – Example of evaluation measures used to evaluate data mining algorithms.

Measure Acronym Formula
Accuracy AC T P+T N

P+N

Error rate ER FP+FN
P+N

Precision PR T P
T P+FP

True positive rate, sensitivity or recall TPR T P
P

True negative rate or specificity TNR T N
N

F-Measure F1 2×PR×TPR

Source: Adapted from Han, Kamber and Pei (2011).

2.1.4 Content-Based Image Retrieval

Content-Based Image Retrieval (CBIR) techniques allow users to query for images that
are similar to a given query center. CBIR techniques combine FEMs– that represent images as
multidimensional objects, with DFs– that compare such objects. In this context, similarity queries
are usually performed by two basic operators, k-NN queries and Range queries (TRAINA et

al., 2011). Figure 6 gives examples of (a) a k-NN query (k = 6) and a Range query (with radius
ξ ), and we formalize them as follows:

∙ k-NN query: Let k-NNq(vq,k) be the operator to represent a k-NN query, S be a set of
elements, vq be the feature vector of a query element sq ∈ S, and k be the number of
elements to be retrieved. The k-NN query retrieves the k most similar elements to sq, sorted
from the nearest (1st element) to the farthest (k-th element).

∙ Range query: Let Rq(vq,ξ ) be the operator to represent a Range query, S be a set of
elements, vq be the feature vector of a query element sq ∈ S, and ξ be the radius value.
The range query retrieves all elements within the distance ξ , sorted from the nearest to the
farthest element.

Classic similarity queries are usually performed by sequentially scanning all elements
of the dataset. This includes the comparison (by a DF) of all elements to the query element.
However, this approach is not indicated to big sets of data since it is time-consuming. Indexing
approaches optimize these queries, using appropriate structures to speed-up the search.

Metric Access Methods (MAMs) divide the search space and support content-based
queries. Examples of existing MAMs are M-Tree (CIACCIA; PATELLA; ZEZULA, 1997),
Slim-Tree (TRAINA-JR. et al., 2000) and Onion-Tree (CARÉLO et al., 2009). For instance,
Slim-Tree is a dynamic and balanced tree structure. It is constructed based on a bottom-up
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Figure 6 – Examples of (a) k-NN and (b) Range query operators.

(a) k-NN query (k = 6) (b) Range query (radius ξ )

Source: Elaborated by the author.

approach, starting at the leaves and going towards the root. Like M-Tree and similar structures,
Slim-Tree gather elements of a dataset in fixed-sized pages, which each page corresponds to
a node of the tree (TRAINA-JR. et al., 2000; SOUZA; CAZZOLATO; TRAINA, 2016). All
Slim-Tree elements are kept in the leaves and arranged hierarchically in the tree. The structure
uses representative elements as the centers of regions in the data space. Such regions have a
coverage radius to determine which elements are inside the given region. These elements are
associated with the node containing the representative element. Also, existing works focus on
the query optimization of MAMs (SOUZA; RAZENTE; BARIONI, 2014; FILHO et al., 2001;
TRAINA-JR. et al., 2007).

Speeding-up k-NN queries.

Brute-Force (BF) search algorithms are efficient for small datasets, but as the number
of samples increases, BF becomes very costly and unfeasible. Let n be the number of elements
in a dataset and d be the number of dimensions (data attributes). Only for datasets with n < 30
elements, log(n) is comparable to n, and the brute-force approach can overcome tree structures.

Diverse specialized structures have been proposed to speed-up the k-NN queries. Two
examples of such structures are the kd-Tree and Ball-Tree algorithms. In this work, we used
both algorithms to match points of moving objects along time, and we detail this in Chapter 5.
Following, we briefly describe these structures.

kd-Tree stands for the k-dimensional tree, which is a generalization of the two-dimensional
Quad-Trees and three-dimensional Oct-Trees (BENTLEY, 1975). It recursively partitions the
data space along the data axes. The kd-Tree structure construction is known to be very fast, since
no d-dimensional distance calculations are performed because the partitioning is made only
along the data axes. kd-Trees perform k-NN queries on O(log(n)) distance computations. Also,
kd-Trees have shown to perform very fast with d < 20, and it becomes inefficient as d grows.
Recent works include the adaptation of the kd-Tree construction method using a point-based
approach, in order to reduce the computational construction time of the structure (HUANG et
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al., 2018). kd-Trees also have been used to estimate real-time earthquake parameter estimation
(YIN; ANDREWS; HEATON, 2018).

Ball-Trees overcome the problem of with high dimensions of kd-Tree by partitioning the
data space in a series of nesting hyper-spheres (OMOHUNDRO, 1989). The structure consists
of a complete binary tree. A ball is a region bounded by a hyper-sphere in the n-dimensional
Euclidean space Rn. The construction of Ball-Trees is more costly than kd-Trees’ structures.
However, Ball-Tree has the advantage of being very efficient on highly structured data, even with
high values of d. Recent work proposes an approach to determine the communication radius of
an automatic light trap based on the balltree structure (PHUONG et al., 2016).

Figure 7 – Example a Ball-Tree structure. From (a) a set of balls in the plane, (b) the corresponding binary
tree is constructed, and (c) depicts the resulted balls in Ball-Tree. The colors indicate each level
of the tree.
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Source: Adapted from Omohundro (1989).

Dimensionality reduction

The high dimensionality of feature vectors obtained from sets of images is a recurrent
problem. High dimensional data can bring difficulties to algorithms for data analysis and mining,
except those who perform nonlinear classification (ZAKI; MEIRA JR., 2014). Thus, it is
important to check if the dimensionality can be reduced, while the essential data properties are
preserved. By selecting a set of attributes, the dimensionality reduction techniques remove all
attributes that are irrelevant, weakly relevant or redundant (HAN; KAMBER; PEI, 2011).

Codification techniques try to obtain a “compressed” representation of the original
data. Examples of such techniques are data compression (Wavelets transform and Principal

Component Analysis (PCA)), attribute selection (by removing irrelevant attributes) and attribute
construction (when a set of attributes is derived from the original dataset) (HAN; KAMBER;
PEI, 2011). For instance, PCA transforms or projects the original data into a smaller space. It
searches the r-dimensional base that best captures the data variance. The direction with more
variance is projected, and is referred to as the first principal component (ZAKI; MEIRA JR.,
2014). PCA’s orthogonal direction captures the second higher variance as the second principal
component, and so on. The direction that maximizes the variance is also the one that minimizes
the quadratic error.
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The Theory of Fractals can also be used to reduce data dimensionality. In (TRAINA-JR.
et al., 2010) the authors proposed the use of the theory of fractals to approximate the intrinsic
dimension of a dataset. Each dimension of a d-dimensional feature vector is represented as
an attribute, and the proposed technique selects the most important attributes (dimensions) to
describe the dataset. All attributes that do not change the fractal dimension are removed.

In this thesis we employed PCA to represent the information from images (their feature
vectors) in lower dimensionality. In this context, PCA was used as a support to a visualizing tool,
as well as a pre-processing technique for image segmentation and analysis, which we detail next.

2.2 Image Segmentation and Analysis

When dealing with entire images, many visual concepts can be depicted in the image
beside the object of interest. For instance, consider a case where we want to classify images
as <cat> (if there is a cat depicted in the image) or as <not cat>, otherwise. Figure 8 shows
examples of images. While obvious options such as (a) and (b) show a cat, and thus belong to
class <cat>, examples such as the (c) and (d) could easily be classified as <not cat>. However,
notice that there is a cat in image (d), but not in evidence (we can find it in front of the car).
In this case, the detection/classification is not trivial, even for human eyes. Accordingly, color-
based global classifiers could use the color information of the car, for instance, and discard
the possibility of the image to depict a cat. On the other hand, shape-based descriptors could
mislead the classifier to label image (c) as <cat>. Options (e) and (f) show the object of interest
segmented, what can help the classifier to label the image of interest.

In this thesis we are particularly interested in showing that, by observing specific regions
of images or sequences of images, we can improve the overall analysis of visual features. This
process includes the analysis of image regions, the composition of the image represented only
by relevant regions (which is a segmented image), and then the analysis of the resulting image.
Segmentation subdivides an image into its constituent regions or objects (PARKER, 2010).
Segmenting nontrivial images is a difficult task in image processing. The segmentation can be
crucial to image analysis, as it can determine the eventual success or failure of computerized
analysis procedures.

Segmentation algorithms can work based on discontinuity when the image is partitioned
based on abrupt changes and intensity, or based on similarity when the image is divided into
regions that are similar to a given criterion (GONZALEZ; WOODS, 2008). In this work, we
focused on the latter approach, segmentation based on similarity. When segmenting according
to the similarity, algorithms partition images into regions that are similar, according to a set of
predefined criteria. Examples of such an approach are thresholding, region growing, and region
splitting and merging.

Image segmentation can be carried in a vast range of techniques. In this work, we focus
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Figure 8 – When global information is not sufficient: at first sight, only images (a) and (b) would be
labeled as <cat>. However, image (d) also depicts a cat (in front of the car). Segmenting
objects of interest (e and f) can improve the overall detection of visual patterns.

Source: Elaborated by the author.

on the segmentation of images based on visually-similar regions of pixels, called superpixels,
that can be further analyzed considering the specific semantics of interest. We detail superpixels
next.

Superpixels

A superpixel algorithm groups pixels into perceptually meaningful atomic regions. Such
regions can be used to replace the image structure, based on the pixel grid. Superpixels capture
image redundancy and can be used to extract image features while reducing the complexity
of subsequent tasks regarding the image processing (ACHANTA et al., 2012). Additionally,
superpixel segmentation can be considered low or mid-level representations, that show to
be useful to tasks like semantic segmentation, or generation of objects in detection systems
(NEUBERT; PRÖTZEL, 2015). Existing superpixel algorithms can be categorized into graph-
based and gradient-based approaches (or methods) (ACHANTA et al., 2012; WANG et al.,
2017).

Table 3 shows examples of existing superpixels, with the original work, category, and
computational complexity. In the corresponding computational complexities presented, B is the
number of superpixels, P is the number of pixels, and a is a small constant. Figure 9 shows
examples of segmented images using the mentioned approaches.

The Simple Linear Iterative Clustering (SLIC) was proposed in (ACHANTA et al.,
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Table 3 – Comparison of superpixel algorithms from the literature.

Method Authors Category Complexity
SLIC (ACHANTA et al., 2012) Gradient-based O(B)

FH (FELZENSZWALB; HUTTENLOCHER, 2004) Graph-based O(P logP)
Watershed (VINCENT; SOILLE, 1991) Gradient-based O(P logP)
QuickShift (VEDALDI; SOATTO, 2008) Gradient-based O(aP2)

Source: Adapted from Wang et al. (2017).

Figure 9 – Example of images depicting superpixel boundaries, generated with (b) SLIC, (c) FH, (d)
Watershed and (e) QuickShift.

(a) Original Image (b) SLIC (c) FH (d) Watershed (e) QuickShift

Source: Elaborated by the author.

2012). It takes as parameters b and e, which are respectively the desired number of superpixels
and the compactness of the superpixels, and represents color images in the CIELAB color
space. Let B′ be the size of the superpixel, determined by nsuperpixels′ =

√
P/b, where P

is the number of pixels. SLIC consists of an adaptation of k-means for the superpixel regions
generation, limiting the search space for pixels within a 2B′×2B′ of distance to the center point.
This makes SLIC very fast while presenting accurate results regarding the segmentation. The
algorithm starts by sampling b initial cluster centers on a regular grid. Each pixel is assigned to a
cluster center, and an update step adjusts the cluster centers, according to the lowest gradient
position in a 3×3 neighborhood. After associating each pixel to the corresponding cluster, SLIC

adjusts the cluster centers to be the mean vector of all the pixels belonging to the cluster. SLIC

uses an error to repeat update steps until convergence is achieved. Also, a post-processing step
enforces connectivity by re-assigning disjoint pixels to nearby superpixels.

FH was proposed in (FELZENSZWALB; HUTTENLOCHER, 2004). It uses a graph-
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based representation to cluster pixels as nodes on a graph, in a way that each superpixel is
the minimum spanning tree of the constituent pixels. FH has shown to adhere well to image
boundaries, but produces superpixels with irregular sizes and shapes (ACHANTA et al., 2012).
However, it does not offer control regarding the number of superpixels and their compactness.

The Watershed technique was proposed in (VINCENT; SOILLE, 1991). It performs
a gradient ascent from local minima to produce watersheds, which are lines that separate
catchment basins. In (HU; ZOU; LI, 2015) the authors propose an efficient watershed-based
superpixel approach, called SCoW (Spatial-Constrained Watershed). The authors use an edge-
preserving scheme to align superpixel boundaries to image edges. Thus, they obtained a balance
between the homogeneity and the compactness. SCoW provides control regarding the number
of superpixels or their compactness, and the approach produced high-quality superpixels as
traditional superpixel algorithms.

Finally, QuickShift was proposed in (VEDALDI; SOATTO, 2008). It consists of a mode-
seeking segmentation method, that moves each point in the feature space to the nearest neighbor
that increases the Parzen density estimation (WANG et al., 2017). QuickShift requires a set
of non-intuitive parameters, that need to be tuned (ACHANTA et al., 2012). Also, it does not
provide the option to control the size or the number of superpixels and is relatively slow.

Other examples of superpixel algorithms are SEEDS, N-cut and MeanShift (WANG et

al., 2017). In this thesis we used SLIC superpixel algorithm as a tool to obtain color-coherent
regions of images, as we show in Chapters 3 and 4.

2.3 Modeling Patterns with Uncertainty

All concepts covered up to this section refer to the analysis and assignment of objects
according to specific labels. However, many real-world problems rely on uncertainty, and only
one label is not always sufficient to describe the content of an object. Accordingly, in this section
we discuss how a specific object can participate in multiple groups (clusters) in a probabilistic
manner. The probability theory is a key concept in the field of pattern recognition (BISHOP,
2007). It provides concepts to deal with uncertainty, and we describe some of the important
points in this section.

One can say that the goal of cluster analysis is to find hidden categories within the data.
Such categories can be inferred from the data, without the necessity of actual labels for the
objects. Then, we can assume that the inferred categories are a distribution over the data space.
Specifically, this distribution can be mathematically represented using a Probability Distribution
Function (PDF), also referred to as a distribution function (HAN; KAMBER; PEI, 2011).

In this context, the Normal Distribution (ND) – also known as Gaussian Distribution – is
one of the most important PDFs. This is especially because many physically observed variables
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follow an approximately ND. Accordingly, a sampling distribution of an arbitrary probability
distribution of the means follows a ND. The ND also plays an important role as the parametric
distribution of choice in clustering, density estimation, and classification (ZAKI; MEIRA JR.,
2014).

Following we review the basic concepts of NDs, univariate, and multivariate analysis.
Then, we briefly discuss how such concepts can be employed in the analysis of image regions,
which is within the scope of this thesis.

2.3.1 Normal Distribution: Basic Concepts

In this section we introduce basic statistical concepts regarding the ND. The following
concepts were described based on (ZAKI; MEIRA JR., 2014), (HAN; KAMBER; PEI, 2011),
(RENCHER; CHRISTENSEN, 2012) and (BISHOP, 2007). Given the following n×d matrix:

D =



X1 X2 · · · Xd

x11 x12 · · · x1d

x21 x22 · · · x2d
...

... . . . ...
xn1 xn2 · · · xnd


,

each row represents a data object xi in the d-dimensional space, such that xi =(xi1,xi2, · · · ,xid)
T ∈

Rd . This is called the row view of the matrix. Similarly, each column represents a data object X j in
the n-dimensional space, such that X j = (x1 j,x2 j, · · · ,xn j)

T ∈ Rn. This is called the column view

of the matrix. Finally, in the probabilistic view the d attributes are modeled as a vector random
variable, X = (X1,X2, · · · ,Xd)

T , and the points xi are independent and identically distributed as
X .

We denote the expectation value of a function f as E[ f ]. For instance, the average value
of a given function f (x) under a probability distribution p(x) is denoted by E[ f ], and is given by
(for a discrete distribution):

E[ f ] = ∑
x

p(x) f (x)

Following, the sample mean is given by Equation 2.2, the sample variance is given by
Equation 2.3, and the sample standard deviation is given by Equation 2.4.

µ̂ =
1
n

n

∑
i=1

xi (2.2) σ̂
2 =

1
n

n

∑
i=1

(xi− µ̂)2 (2.3) σ̂ =

√
1
n

n

∑
i=1

(xi− µ̂)2

(2.4)
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Given two random variables X1 and X2, the covariance Σ is given by Equation 2.5. Since
σ12 = σ21, Σ is a symmetric matrix.

Σ = E[(X−µ)(X−µ)T ] = E

[(
X1−µ1

X2−µ2

) (
X1−µ1 X2−µ2

)]
=

(
σ2

1 σ12

σ21 σ2
2

)
(2.5)

The multivariate mean vector is the mean of each attribute, given as Equation 2.6.

µ = E[X] =


E[X1]

E[X2]
...

E[Xd]

=


µ1

µ2
...

µd

 (2.6)

Accordingly, the multivariate covariance is given by the d×d symmetric covariance
matrix, which gives the covariance value for each pair of attributes as Equation 2.7. Here, the
diagonal element σ2

i specifies the attribute variance for Xi. Also, the off-diagonal elements
σi j = σ ji represent the covariance between the pair of objects Xi and X j.

Σ = E[(X−µ)(X−µ)T] =


σ2

1 σ12 · · · σ1d

σ21 σ2
2 · · · σ2d

· · · · · · · · · · · ·
σd1 σd2 · · · σ2

d

 (2.7)

Next, we describe the main concepts related to the univariate normal distribution.

Univariate Normal Distribution

Given the mean µ and the variance σ2, a random variable X follows a Univariate Normal
Distribution (UND) if its PDF of X satisfies Equation 2.8 as follows:

f (x|µ,σ2) =
1√

2πσ2
exp
{
− 1

2σ2 (x−µ)2
}
. (2.8)

Here, (x− µ)2 is the distance value of x from the distribution mean µ . Consequently, the
probability density decreases exponentially as a function of the distance from the mean. The
maximum value of the density occurs when x = µ , since f (µ) is inversely proportional to the σ

of the distribution. Following we define the multivariate normal distribution.

Multivariate Normal Distribution

Let X = (X1,X2, · · · ,Xd)
T be a d-dimensional vector random variable. X has a Multivari-

ate Normal Distribution (MND) if its joint multivariate PDF is given as Equation 2.9, where µ
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is the mean and Σ is the covariance matrix.

f (x|µ,Σ) = 1

(
√

2π
2
)
√
|Σ|

exp
{
−(x−µ)T Σ−1(x−µ)

2

}
(2.9)

Here, |Σ| is the determinant of the covariance matrix. Similarly to the univariate case, (x−
µ)T Σ−1(x− µ) measures the Mahalanobis distance of x to the mean µ of the distribution,
considering all the variance-covariance information between the attributes. The Mahalanobis

distance is a generalization of the Euclidean distance, since Euclidean ignores the covariance
information between attributes, whereas the Mahalanobis distance explicitly considers it.

2.3.2 Gaussian Mixture Models and the EM Algorithm

A Mixture Model (MM) assumes that a set of observed objects is a mixture of instances
that come from multiple probabilistic groups (clusters). In a MM, each observed object is
independently generated by two steps. The first chooses a probabilistic cluster according to the
probabilities of the clusters. The second step selects a sample according to the PDF of the chosen
cluster (HAN; KAMBER; PEI, 2011).

The k-means algorithm works in a greedy manner, minimizing the squared error of points
from their respective cluster means. Accordingly, it is said that k-means performs hard clustering

since each point is assigned to only one cluster. However, as mentioned at the beginning of
Section 2.3, the uncertainty is present in many real-world problems, and sometimes only one
label is not sufficient to describe the data content.

Let {K1, · · · ,Kk} specify the partitioning of n points into k clusters, in which each cluster
Ki|1≤ i≤ k is characterized by a MND fi(x), as given by Equation 2.9. In this case, the cluster
mean µi ∈Rd and the covariance matrix Σi ∈Rd×d are unknown parameters. Also, it is assumed
that the PDF of X is given as a Gaussian Mixture Model (GMM) over k cluster normals, as
Equation 2.10. The prior probabilities P(Ki) are the mixture parameters, and they must satisfy
the condition of Equation 2.11. Finally, GMM is characterized by the mean µi, the covariance
matrix Σi and the mixture probability P(Ki) for each of the k NDs. Equation 2.12 shows the
model parameters compactly.

f (x) =
k

∑
i=1

fi(x)P(Ki) =
k

∑
i=1

f (x|µi,Σi)P(Ki) (2.10)
k

∑
i=1

P(Ki) = 1 (2.11)

θ = {µ1,Σ1,P(K1), · · · ,µk,Σk,P(Kk)} (2.12)

Let P(D|θ) denote the likelihood of θ as the conditional probability of a given dataset
D and the model parameters θ . Since all n points x j are considered random samples of X , the
likelihood of θ is given by Equation 2.13. Here, the goal of the Maximum Likelihood Estimation
(MLE) is to choose the parameters θ that maximize the likelihood, as given by Equation 2.14.



2.3. Modeling Patterns with Uncertainty 57

P(D|θ) =
n

∏
j=1

f (x j) (2.13) θ
* = argmax

θ

{P(D|θ)} (2.14)

MLE maximizes the likelihood function since it turns the product over the points into a
summation of the maximum value of the likelihood and log-likelihood coincide (ZAKI; MEIRA
JR., 2014). Since this maximizing task is hard, the EM algorithm is used.

The Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm generalizes k-means by modeling the
data as a mixture of normal distributions (ZAKI; MEIRA JR., 2014). EM finds the mean and
covariance matrix cluster parameters by maximizing the likelihood of the data. Unlike k-means,
which makes hard assignments, EM is a soft clustering approach that returns the probability that
a point belongs to each existing cluster.

Regarding fuzzy and probabilistic model-based clustering, EM starts with an initial
set of parameters and iterates until the clustering converges (HAN; KAMBER; PEI, 2011).
This means that the resulting clusters cannot be improved, or the changes are smaller than a
threshold. Each EM iteration consists of two steps, namely the expectation and the maximization.
During the expectation, EM assigns objects to clusters according to the current parameters of
probabilistic clusters. Then, during the maximization, EM finds the new clustering or parameters
that maximize the expected likelihood in probabilistic model-based clustering (HAN; KAMBER;
PEI, 2011).

Modeling Complex Objects with GMM

The concepts regarding Normal Distributions presented in this section can be applied to
model complex data. As mentioned before, many real-world applications show a behavior similar
to the ND PDF. Accordingly, in this thesis we show that similar behavior can be observed when
modeling regions of images. When dealing with uncertainty, performing a hard clustering or
single-label assignment (for instance, by classification) is neither sufficient nor accurate since
a specific region of an image can depict more than one visual finding. Thus, a soft analysis is
recommended to consider the likelihood of image regions to contain each of the available labels.
For this purpose, feature vectors extracted from each image region are modeled using Gaussian
Mixture Models. We represent each image region as an object and compute its likelihood to
belong to each of the modeled groups. As a result, we have multiple labels that can be assigned
to a single object, with different probabilities.

Chapter 4 discuss the use of Gaussian Mixture Models for this context, with the applica-
tion of the concepts described in this section in images from the medical context.
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2.4 Moving Objects

Moving objects are basically geometries that change over time (GÜTING; SCHNEIDER,
2005). In this context, time is generally perceived as a one-dimensional space, considered from
the past to the future. As time can be modeled as a bounded or infinite information, we are
interested in bounded time models, since they assume some origin and an end of time.

Many applications can be represented as moving objects, such as hurricanes depicted by
satellites, pedestrian and vehicle trajectories prediction, and tracking of biological objects, such
as cells and particles. As stated in (LI, 2017), moving objects can be viewed in two forms. The
first form is as moving points, that describe objects for which only the time-dependent position is
of interest. The second form is as moving regions, which have both time-dependent position and
spatial extent taken into account.

The movement of objects and its concise representation, combined with uncertainty, have
been of interest to the database community in the past decade. In (TAO et al., 2004), the authors
focused on the problem of predicting the motion pattern. They observed that individual trajecto-
ries may vary significantly, but most motion types show self-similar behavior. Accordingly, they
argue that one can often predict the current location of individual trajectories by looking at the
ones in the recent past. They propose a framework that indexes object locations and processes
queries based on the estimated position of objects. In (ALMUHISEN; DURAND; QUAFAFOU,
2018) the authors characterize the behavior of moving objects obtained by GPS locations of
smartphones, cars, etc. They employed frequent pattern mining to mine correspondences between
hidden patterns and trajectories. For this purpose, they tagged city maps to visualize the behavior
of different spatio-temporal values.

Differently, in (SALTENIS et al., 2000) the authors modeled positions of moving objects
as functions of time. They argue that modeling the movement of objects both facilitates predic-
tions and solves the problem of frequent updates, which are required to approximate continuous
movement in a traditional setting.

In this thesis we borrowed these ideas to target microscopic images. We show in Chapter
5 that developing cells can be represented as a specific kind of moving objects, and we take
advantage of this useful representation to track and predict cells over time.

2.5 Final Considerations

In this chapter, we presented the main concepts related to this thesis. All concepts and
related works not presented herein will be introduced in the corresponding chapters, when the
application context is introduced. The existing techniques to represent and extract knowledge
from complex data give support to a wide range of applications.

This work focuses on the analysis of images and sequences of images. Our thesis is that
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by taking advantage of small representations of images we can improve the overall results
of different image analysis tasks. To prove this, we start by segmenting images into small
regions. One of the approaches used for this task was the superpixel extraction. Once we have the
representation of different regions of the images, in the following we performed classification,
clustering and retrieval tasks on them.

Regarding images, the classification and clustering tasks were performed using both
hard and soft analysis. For the hard analysis, Chapter 3 shows how we employed off-the-shelf
classifiers, such as Naïve Bayes, SVM, and RF, to segment images and consequently improve the
global classification of images using the segmentation outputs. For the soft analysis, Chapter 4
describes how we used Gaussian Mixture Models to classify and highlight regions of images
presenting uncertainty, related to their corresponding labels. Regarding sequences of images,
Chapter 5 shows how the concepts of moving objects, combined with segmentation and complex
data representation, can improve the task of tracking objects over time.

The literature covered in this chapter is quite broad regarding the subjects presented. It
was not our intent to exhaustively discuss all of these subjects. Rather, the goal was to cover
the required background and knowledge to understand the contributions of this Ph.D. research,
presented in the next chapters.
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CHAPTER

3
REGION-BASED IMAGE CLASSIFICATION

In this chapter, we approach the first research problem of this Ph.D. research, which
regards image mining from emergency scenarios, taking advantage of region-based approaches.
The corresponding contributions were published, and are available in the works (CAZZOLATO
et al., 2016) and (CAZZOLATO et al., 2017).

An intense flow of information is gathered in a short period in large-scale events such
as the Brazilian street carnival, the FIFA Football World Cup and the Olympic Games. When
emergency situations occur in such contexts, public authorities must be able to provide fast and
accurate responses to emergencies. Dealing with such an amount of information in real-time is a
challenging task. Computer systems have great potential to support the decision making process,
providing timely information and data analysis (HUANG; CHENG; CHIU, 2013). In this context,
the early detection of fire, smoke, and explosions can assist rescue forces in preventing further
risks to human life, thus reducing financial and patrimonial losses.

Generally, the available technology for fire and smoke detection are based on hardwired
solutions. They employ infrared or ultraviolet local sensors to determine the chemical presence
of fire and/or of smoke particles, also relying on temperature measures. However, such solutions
can be unsuitable to crowded urban areas or large open spaces, not only because of environment
difficulties, but also due to the high cost of installation, communication, and maintenance of
local sensors (CELIK; ÖZKARAMANH; DEMIREL, 2007).

3.1 Context Application

Cameras embedded in mobile devices can provide digital visual information that can
be an alternative to local fire/smoke sensors (CHEN et al., 2006). For this, social networks
can be used to gather images, videos, and textual information regarding the emergency event,
shared by people involved in the incident. This is the core of the RESCUER (Reliable and
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Smart Crowdsourcing Solution for Emergency and Crisis Management) project1, which aimed
at developing a system that uses crowdsourcing images, videos, and text sent by mobile devices
to support decision making during emergencies. Figure 10 gives an overview of RESCUER.

This chapter focuses on the problem of detecting smoke in still images, obtained from
emergency situations. The results presented herein were incorporated to the RESCUER system,
in the data analysis solution (Rescuer-DAS), aimed at identifying the pieces of information pre-
senting useful data regarding fire, smoke and/or explosion. Accordingly, we propose SmokeBlock

to detect smoke, relying on region-based image analysis.

Figure 10 – Overview of the RESCUER Project: users send images, videos, text, and location information
gathered from the emergency scenario. The RESCUER control center processes the available
data, feeding the workforces with processed information in real-time.

Source: Elaborated by the author.

3.2 Motivation and Problem Definition

One of the main challenges regarding smoke detection in still images is the absence
of movement. Existing techniques depend on a set of sequential images (video) to identify
fire and/or smoke (CELIK; ÖZKARAMANH; DEMIREL, 2007). Unlike fire detection, which
can be solved by global analysis using rule-based color models (CALDERARA; PICCININI;
CUCCHIARA, 2011), the smoke identification problem does not present well-defined color
patterns, since it changes as its temperature increases. Besides, the smoke color is heavily
dependent on weather conditions and the material being burnt. Video-based strategies present
good results for fire and smoke detection, but results of smoke identification in images are rather
modest (CELIK; ÖZKARAMANH; DEMIREL, 2007).

To overcome the challenges of smoke detection on still images, we employ a region-based
analysis through superpixel segmentation. As mentioned in Section 2.2, a superpixel region

1 The RESCUER Project: <www.rescuer-project.org>

www.rescuer-project.org


3.3. Related Work 63

of an image corresponds to a group of pixels presenting coherent patterns according to some
visual features. Superpixels capture redundancy and reduce the complexity of subsequent image
processing, having proved to be useful for depth estimation, image segmentation, skeletonization,
body model estimation, and object localization (ACHANTA et al., 2010). In this work, we use
color and texture visual features to represent the images and their regions.

We are interested in solving the following problem: given a set of images obtained from

social media or crowdsourcing, find the subset of images that depict smoke while minimizing

the rate of false positives. We refer to the images that depict smoke as positive examples while
images without visual traces of smoke are negative examples. The objective here is to find
positive examples so that humans or resource-intensive computer vision methods can focus on
the analysis of such images. Accordingly, our secondary goal is to minimize the number of false

positives, i.e., images that do not depict smoke but are classified as smoke.

3.3 Related Work

Previous approaches for smoke detection were designed for video data relying on motion
analysis, which is not suitable for accurate smoke detection in still images (CELIK; DEMIREL,
2009; TIAN et al., 2014). SmokeBlock improves the state-of-the-art by using a combination of
color and texture to reduce false positives. Also, the method relies on a small set of parameters
that do not depend on the user to tune.

To the best of our knowledge, the majority of reported techniques for smoke detection
is related to video analysis (BOHUSH; BROUKA, 2013; CALDERARA; PICCININI; CUC-
CHIARA, 2011; TIAN et al., 2014). Video analysis relies on a pipeline processing composed
of two stages, namely static and motion analysis. In the static analysis stage, each frame is
processed as a still image. Then, the techniques conduct the motion analysis stage over the
temporal features of the video (BOHUSH; BROUKA, 2013).

In (CELIK; ÖZKARAMANH; DEMIREL, 2007) the authors employed a two-rule color
model to classify the pixels as smoke, relying on the RGB color space. The proposal (CHEN et

al., 2006) follows the same rationale, as it employs a three-rule color model to classify each pixel
represented in the HSI color space. Both works (CELIK; ÖZKARAMANH; DEMIREL, 2007)
and (CHEN et al., 2006) construct models that are limited by the coarse correspondence between
the rule-based color models and the smoke characterization. This results in a large number of
false-positive frames. Therefore, in such approaches, Motion Analysis is required to produce
acceptable results (VARADARAJAN; MILLER; ZHOU, 2015), reducing the number of false
positives by employing frame difference and other motion strategies (TIAN et al., 2014).

To avoid the aforementioned limitations of rule-based color approaches – which are
adequate only for video analysis, we employ a superpixel local segmentation along with color
and texture features simultaneously. We detail our approach next.
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3.4 The SmokeBlock Algorithm

SmokeBlock detects smoke on still images without any information about time/motion.
The method’s pipeline encompasses the preprocessing step, with the superpixel and feature
extraction tasks, and the classification step, where the region-based smoke detection is performed,
along with the global smoke classification. Algorithm 1 presents SmokeBlock, and we describe
each of its steps next.

Algorithm 1: SmokeBlock
Input :Unlabeled image I

Superpixel classifier C Q

Image classifier C I

Output :Image label ` ∈ {smoke,not-smoke}
1 Iseg← I; . Initialize the segmented image

2 Q← SLIC(I,b,e); . b is the desired number of superpixels, e is the compactness

3 for qi ∈ Q do
4 if C Q(qi) ̸= smoke then
5 Iseg[qi]← /0; . Remove pixels from not-smoke regions

6 vcolor← Ecolor(Iseg); . Extract color from segmented image

7 vtexture← Etexture(Iseg); . Extract texture from segmented image

8 v← vcolor⊕ vtexture; . Concatenate color and texture

9 `← C I(v); . Classify segmented image with color and texture

10 return Iseg, `; . Return segmented image and predicted label

SmokeBlock: Preprocessing

Figure 11 depicts the pipeline of SmokeBlock. Given an input image I that is unlabeled,
(i) SmokeBlock starts by extracting the superpixels using SLIC algorithm. This results in a set Q

of B superpixels qi ∈ Q that potentially contain traces of smoke. Then, (ii) the method extracts
color and texture features from each superpixel region, resulting in a set of feature vectors.

By extracting features from superpixels instead of individual pixels, we reduce the
redundancy, since pixels with similar visual properties that are spatially close will be processed
together (as a single superpixel), thus improving performance. Also, the use of superpixels
allows us to group pixels and extract texture features, which is not possible for individual
pixels. SmokeBlock concatenates the color and texture feature vectors and forwards them to the
classification step, described next.

SmokeBlock: Classification

As depicted in Figure 11-iii, SmokeBlock performs a Region-Based Classification over
each superpixel region. For this, SmokeBlock employs a classifier that was previously trained over
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Figure 11 – The SmokeBlock method: given an input image, (i) SmokeBlock employs SLIC to extract
superpixels regions. For each superpixel region, (ii) SmokeBlock extracts color and texture
features, outputting the corresponding feature vectors. Then, (iii) each region is classified as
smoke or not smoke, and segmented image is outputed with only smoke regions. Finally, (iv)
SmokeBlock performs the global classification relying on the segmented image.

Source: Adapted from Cazzolato et al. (2016).

a set T of manually annotated superpixels, considering the set of labels L = {smoke,not-smoke}.
We report the image annotation task in Section 3.5.1. We trained a classifier CQ : T → ` that
decides whether a superpixel region depicts smoke or not, based on its feature vector. Accordingly,
SmokeBlock’s first output is a segmented image, composed of only regions classified as
smoke.

In the (iv) Global Smoke Detection step, SmokeBlock classifies the image as smoke or
not smoke. This can be useful in a scenario with a large set of images gathered from a social
media service, and we want to find images that are likely to contain smoke. A naive approach
would be to use SmokeBlock’s superpixel regions and classify an image as positive (suspicious)
if at least one superpixel was classified as depicting smoke. The drawback is that if a single
superpixel is wrongly classified, the entire image will also be wrongly classified as containing
smoke.

Accordingly, SmokeBlock extracts a new set of feature vectors, now regarding only the
regions of I that were segmented by the Region-Based Classification step. Then, the method
builds a final representation of the segmented image using the Principal Component Analysis
(PCA) dimensionality reduction method, over the feature vectors. The Classification Model (iv)
relies on a supervised classifier CI to label the segmented image. This approach is superior when
compared to global feature extraction (see experimental results in the next section. This occurs
because SmokeBlock only extracts features from regions of the image that already is a candidate
for having smoke.

SmokeBlock’s modularized scheme allows the addition of new feature extractors and
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classifiers. Moreover, the method can be integrated with existing fire detection methods, which
enables the development of a framework for fire and smoke detection. Notice that SmokeBlock

uses Haralick (Hr) and Color Layout (CL) FEMs, and a supervised classifier. These settings
were obtained experimentally, as we detail next.

3.5 Experimental Analysis

In this section, we detail the experiments performed to define the best settings of Smoke-

Block. The evaluation comprises the impact of color, texture, and shape extractors for smoke
segmentation. We compare the results to the rule-based color models of Celik and Chen. The
global classification is also evaluated, by comparing SmokeBlock’s precision and the number
of false positives against other global approaches. With this experimental analysis, we aim to
determine:

1. The most suitable low-level features for SmokeBlock: we evaluate the impact of color,
shape, and texture FEMs to represent the candidate regions for smoke detection. The best
settings are used in the remaining experiments;

2. SmokeBlock’s accuracy for smoke segmentation: we compare SmokeBlock against state-of-
the-art competitors, discussing improvements and limitations of our method for smoke
segmentation;

3. SmokeBlock’s performance for smoke detection: we evaluate the superpixel-based classifi-
cation of our method in comparison to global classification, regarding F-Measure (F1),
Precision (PR) and Recall (RE or TPR).

Environment Setup. All experiments were performed in an Intel Core i7-4770(3.40GHz), 16GB
RAM, Ubuntu 14.04 (64-bit) OS machine. SLIC parameter b – the desired number of superpixels
– was set to 100, according to empirical tests.

3.5.1 Material

We simulate RESCUER’s environment using the Flickr API2 to download images from
Flickr, under the Creative Commons license. All images were retrieved using textual queries
such as “smoke fire”, or “smoke forest”. Figure 12 shows examples of images from the created
dataset, which we named Flickr-Smoke.

Notice that even with queries related to smoke, some of the images did not contain visual
traces of smoke. Each image was manually annotated to build the ground-truth for evaluation.
The annotation was performed by seven subjects aging between 20 and 30 years, familiar with
2 The Flickr API: <www.flickr.com/services/api/>.

www.flickr.com/services/api/
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the issue, and non-color-blinded. In the first annotation round, two subjects labeled each image.
Next, images with divergent annotations were labeled by a third subject to untie the classification.
The average disagreement was 7.2%. The resulting dataset contains 832 images labeled as smoke

and 834 as not smoke.

Flickr-Smoke was built in the context of the RESCUER project, in collaboration with
colleges from the Databases and Images Group (GBdI). Now Flickr-Smoke is a subset of a bigger
dataset, named FiSmo. FiSmo contains images and videos gathered from emergency situations
and is available online. Additional information can be found in the work (CAZZOLATO et al.,
2017). FiSmo is available at <github.com/mtcazzolato/dsw2017>. SmokeBlock was coded in
C++, using OpenCV and Artemis libraries. The complete source code is available at <github.
com/mtcazzolato/smokeblock.git>.

Figure 12 – Examples of images from the Flickr-Smoke dataset.

Source: Adapted from Cazzolato et al. (2017).

3.5.2 Finding the Best Configuration for SmokeBlock

The first aspect we analyze is the content representation of the superpixels, which depends
on the employed FEM. Accordingly, we address the first question:

Q1. Which are the most suitable low-level visual features to detect smoke in still images?

We experimented with a set of ten widely employed FEMs regarding color, texture and shape.
Table 4 summarizes the FEMs and corresponding acronyms, that are available in the Artemis
image processing library3.

We evaluate the representativeness of each extractor with a subset of 1,202 manually
labeled superpixels from Flickr-Smoke. Half of them are from class smoke and the half are from
not smoke, and Figure 13 shows a few examples. We caried the evaluation of FEMs using the
Naïve-Bayes (NB) classifier. We computed the F-Measure obtained by each feature extractor
using ten-fold cross validation. Figure 14 shows the results regarding the F-Measure values

3 Artemis library: <gbdi.icmc.usp.br>

github.com/mtcazzolato/dsw2017
github.com/mtcazzolato/smokeblock.git
github.com/mtcazzolato/smokeblock.git
gbdi.icmc.usp.br
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Table 4 – FEMs tested for SmokeBlock.

Visual
Feature FEM Acronym Details

Color

Color Layout CL
16 dimensions, 8 from channel Y (lumi-
nance), 4 from channel Cr (red), and 4
from channel Cb (blue)

Color Structure CS 128 dimensions of quantized values
Color Temperature CT 3 dimensions, from XYZ color space
Scalable Color SC 256 dimensions, from HSV color space
Normalized Histogram NH 256 dimensions, in grayscale

Texture

Edge Histogram EH 150 dimensions, with 30 clusters

Haralick Hr

24 dimensions, with 4 angles of each fea-
ture: variance, entropy, uniformity, ho-
mogeinity, moment2thMatrix and reverse
variance

Local Binary Patterns LBP
177 dimensions, 8-neighbors pixel for
each channel, with 58 uniform texture
codes and 1 non-uniform

Texture Spectrum TS 8 dimensions

Shape Zernike Zr 38 dimensions, Zernike moments

Source: Elaborated by the author.

Figure 13 – Examples of superpixels manually labeled, used to train the machine learning classifiers
employed in our methodology.

Source: Adapted from Cazzolato et al. (2017).

and the dimensionality of each FEM. The best extractors (yellow region) are those with high
performance and low dimensionality (high compactness).

Low-level features with compact representation are those more suitable to deal with the
“dimensionality curse”. The results illustrated by Figure 14 provide the answer for question Q1.
Hence, based on this plot, we selected CL and Hr FEMs, which represent respectively color and
texture, and have a ballance between low dimensionality and high F-Measure.
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Figure 14 – Comparison of FEMs regarding performance (F-Measure) and dimensionality. The best FEMs
have high performance and low dimensionality, and are placed inside the green area.
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Source: Adapted from Cazzolato et al. (2016).

3.5.3 Smoke Segmentation

In this section, we describe a qualitative analysis performed to answer to the second
question:

Q2. Is SmokeBlock more suitable than existing approaches for smoke segmentation?

We compare our method with the related works of Çelik et al. (CELIK; DEMIREL, 2009) and
Chen et al. (CHEN et al., 2006).

We employed SmokeBlock with CL and Hr FEMs (selected in the previous step), and
with the Naïve Bayes classifier. NB was set with different skewed cost-ratio for FN:FP (referred
to as FpCost and FnCost) parameters. FpCost is the false positive cost and reduces the number
of false positives. Similarly, FnCost is the false negative cost and reduces the number of false
negatives. For a fair comparison, we also tuned the parameters of Celik and Chen methods.
Celik’s single global threshold parameter was set to 25. Chen’s alpha value was set to 18, and its
remaining parameters were set to their default values.

Figure 15 presents the differences between the strategies for two representative situations,
one depicting smoke and another one without traces of smoke. SmokeBlock presented the highest
accuracy for the detection of candidate smoke regions. Celik and Chen failed to identify most of
the smoke pixels, detecting smoke pixels where there weren’t any (false positives). SmokeBlock

correctly discarded those, reinforcing our hypothesis that the combination of local color and
texture improves smoke detection.

Figure 16 gives more evidence on the better results of SmokeBlock. The experiment
was performed for 7 random images from Flickr-Smoke. We show the number of false-positive
classifications of pixels, which the fewer the better, against the F-Measure, which higher values
are desired. Accordingly, the best results are those inside the yellow area. The best configuration
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Figure 15 – Yellow pixels were classified as not smoke. In the first example, (a) SmokeBlock provided
the most accurate smoke segmentation. In the second example, (a) SmokeBlock correctly
discarded regions without smoke. (c) Celik and (d) Chen misclassified a large number of
pixels.

Source: Adapted from Cazzolato et al. (2016).

of SmokeBlock was the one with FpCost = 1 and FnCost = 2. This configuration was used in
the smoke detection experiment, which we detail next.

Figure 16 – Smoke pixel classification with different configurations of SmokeBlock, Chen and Celik.
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Source: Elaborated by the author.

3.5.4 Smoke Detection

This section provides an analysis to answer the third and last question:

Q3. Can SmokeBlock overpass global-feature extractor methods in the task of spotting

smoke on images?
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To answer this question we perform a ten-fold cross-validation over Flickr-Smoke. We compare
SmokeBlock with features extracted from the entire images. We refer to these configurations as
Global CL, Global Hr, Global TS, and Global Zr, according to employed FEM. SmokeBlock

is different from these configurations because it only extracts visual features from regions that
have a high probability of having smoke, which refers to the segmented regions outputted by
SmokeBlock.

SmokeBlock’s Global Smoke Detection module (iv) was performed using three different
classifiers, namely Naive-Bayes (NB), k-NN, and Random Forests (RF). Table 5 shows the
comparison of SmokeBlock’s F-Measure to the the global approaches. We observed that the
characteristics of the classifier strongly influence performance. SmokeBlock beats all global con-
figurations, with higher F-Measure values than global extractions regardless of the classification
strategy. However, neither the color-only nor the texture-only methods were capable of detecting
smoke for a F-Measure higher than 0.64.

Table 5 – F-Measure comparison, considering different classifiers and FEMs. The highest values of each
row are highlighted in gray.

F-Measure

Classifier Global CL Global TS Global Zr Global Hr SmokeBlock

NB 0.59 0.46 0.51 0.50 0.64
k-NN 0.61 0.61 0.51 0.61 0.68

RF 0.60 0.61 0.51 0.62 0.71

Source: Adapted from Cazzolato et al. (2016).

Figure 17 compares the precision, recall, and F-measure using the RF classifier for the
entire Flickr-Smoke dataset. In absolute numbers, SmokeBlock was better than global strategies
of CL by 14%, TS by 12%, Zr by 23% and Hr by 12% with respect to F-Measure.

Figure 18(a) presents the precision, recall, and F-Measure obtained when classifying just
the smoke images of Flickr-Smoke. SmokeBlock presented the best overall performance by a
margin of 9% for precision. CL presented the second-highest value for precision, but its recall
was the second-lowest.

Figure 18(b) shows the false positive rate of the approaches, regarding the images from
Flickr-Smoke without smoke. SmokeBlock obtained the lowest value for the false-positive rate,
which is a desirable result. The precision achieved by the CL method (as shown in Figure 17)
can be justified by means of its highest false-positive rate for not smoke images, which is not
a desirable behavior. The same rationale can be employed for the Hr strategy. Therefore, both
strategies – CL and Hr– are unsuitable for smoke detection in the perspective of avoiding false
positives. Concluding, SmokeBlock reduced the false positive rate for not smoke images up to
7% by using previous segmented regions represented by color and texture.
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Figure 17 – Smoke or not smoke using the RF classifier: SmokeBlock achieved the highest precision,
recall, and F-Measure.

Source: Adapted from Cazzolato et al. (2016).

Figure 18 – Comparison of the techniques for smoke only and not smoke only subsets of Flickr-Smoke.

Source: Adapted from Cazzolato et al. (2016).

3.6 Lessons Learned

We have learned that color-based models are not feasible for the identification of different
smoke patterns. This lack of color pattern is specialy applicable when working with images from
urban scenarios. Changes on temperature, ilumination and the material being burned interfere on
the smoke color. Also, as smoke present similar visual patterns than other objects, it is crucial to
train the classification model with examples from the relevant similar objects that can appear in
the evaluated scenario. For instance, in the urban scenario, where SmokeBlock was employed,
patterns of mist, water and clouds, among others, should be used in the training phase of the
classification model, for proper distinction.
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3.7 Final Considerations
In this chapter, we dealt with the problem of smoke detection in images gathered from

social media. Our goal was to use region-based analysis of images to improve the global
classification. Regarding the application scenario, we have the following contributions: (i)

SmokeBlock: a flexible, scalable, and accurate method for smoke detection to be used as a
model for future developments in the field, (ii) Evaluation: we compared SmokeBlock with
its competitors, providing relevant discussion to support further works on smoke detection,
and (iii) Flickr-Smoke dataset: we built a human-annotated dataset of real images suitable as
ground-truth for similar problems concerning image classification. The SmokeBlock approach
and correspondent results were published, and are available in the works (CAZZOLATO et al.,
2016) and (CAZZOLATO et al., 2017).

Now regarding the objectives of this Ph.D. research, in this chapter we approached the

first research problem of mining images from emergency scenarios. The reported results indicate
that a region-based classification can, indeed, improve the overall results of classification,
regarding difficult image classification tasks. We focused on a hard classification approach,
assigning a single label to each image or region. However, in many real-world problems, we have
to deal with uncertainty. In the next chapter, we show how to address this problem by performing
a region-based analysis of images using soft classification/clustering approaches.
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4
PROBABILISTIC REGION-BASED IMAGE
CLASSIFICATION AND VISUALIZATION

In this chapter, we approach the second research problem of this Ph.D. research, aimed
at performing image mining of medical information considering the embedded uncertainty. The
corresponding contributions were published, and are available in the works (CAZZOLATO et

al., 2017) and (CAZZOLATO et al., 2019).

Hospitals and medical centers generate large volumes of imaging exams on a daily basis.
This brings a pressing demand for automated and precise methods and systems to perform image
classification and retrieval. Such tasks can be critical to support decision-making processes, as
reported in the works (AKGUL et al., 2011; LE et al., 2018). Content-Based Image Retrieval
(CBIR) applications assist physicians in the analysis of large amounts of images by providing
fast, accurate, and reliable diagnosis. CBIR systems often rely on historical and already ana-
lyzed exams (LI et al., 2018; ZHANG; METAXAS, 2016). Particularly, when dealing with
high-resolution tomographic images, one can accurately identify morphological alterations such
as emphysema, airway dilatation, and wall thickening, bronchiectasis, interstitial opacities con-
sistent with inflammation and/or fibrosis and others (KOENIGKAM-SANTOS; WEINHEIMER,
2017). The main goal of the research reported in this chapter is to assess the detection of lung
abnormalities in chest Computed Tomography (CT) scans, considering the uncertainty of the
problem.

4.1 Context Application

Lung diseases can be diagnosed through chest CT scans, usually based on the visual clues
present in the images. Such visual clues include changes in normal attenuation and the presence
of focal or diffuse opacities. Here, we analyze the set of patterns consolidation, emphysema,

thickening, honeycombing, and ground glass, additionally to the normal pattern. These patterns



76 Chapter 4. Probabilistic Region-Based Image Classification and Visualization

appear on the lung regions of CT scans, thus the images ideally should be segmented before the
analysis takes place. Figure 19(a) shows examples of these visual patterns and (b) the segmented
lung regions.

Figure 19 – Examples of relevant patterns from chest CT scans, and segmented lung regions from the
original CT scan.

Normal
( a ) Regions of Interest ( b ) Entire Lung CT Scan

Original

Thickening

Consolidation Segmented Regions

Honeycombing

Emphysema

Ground Glass

Source: Adapted from Cazzolato et al. (2017), Cazzolato et al. (2019).

The similarity between the visual patterns of each abnormality is one of the major
challenges related to the analysis of chest CT scans. For instance, interstitial thickening and
honeycombing abnormalities may present a similar texture. This occurs because interstitial
thickening may result in pulmonary opacities of varying morphology, such as reticulations with
traction bronchiectasis (lucent/cystic areas), that may resemble honeycombing (ELICKER et al.,
2008; HANSELL et al., 2008). On the other hand, consolidation, emphysema, and ground glass
generally present distinct texture patterns. Moreover, the detection approach must consider that a
single CT slice of the lungs may present normal and abnormal regions.

4.2 Motivation and Problem Definition
The tasks of pulmonary regions’ segmentation and the detection of abnormalities reported

in the literature suffer from many issues (NAKAGOMI et al., 2013; CANDEMIR et al., 2014;
ZHANG et al., 2013; KARARGYRIS et al., 2016; SANTOSH; ANTANI, 2018; WANG et al.,
2018). There is no consensus, however, regarding which are the most suitable features to be used
for lung tissue representation, or which is the best classifier to use. Additionally, only the lung
regions should be considered in the pattern recognition process. This requires a preprocessing
step to delimit and separate the pulmonary tissue regions. Radiologists and students can take
more advantage of applications that highlight relevant regions of the image. Such regions present
patterns that demand a more cautious analysis instead of fully automated diagnosing methods.
Accordingly, in this part of our research, we aimed at solving two problems:

1. How to model the healthy pulmonary tissue pattern and compose a heat map visualiza-
tion of lung regions, according to their likelihood of being abnormal?
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2. How to model each lung abnormality and provide a visualization of the most probable
one contained in a certain lung region, according to its likelihood of containing each
lung abnormality?

To address the first problem, we proposed the BREATH method (CAZZOLATO et al.,
2017). Then, we extended BREATH by proposing the dp-BREATH method (CAZZOLATO et al.,
2019) to also attend to the second problem. Accordingly, from now on, we refer to our method
as dp-BREATH, since it also includes the functionalities of BREATH. dp-BREATH segments
the lung regions of chest CT scans by dividing them into superpixels. All superpixel regions
identified as pulmonary tissue are classified by a supervised model, aimed at detecting the
presence or absence of abnormalities based on the analysis of previously known characteristics.
Since a lung may present regions with distinct patterns, such as healthy and honeycombing,
our approach performs a continuous classification of lung regions. This classification considers
a score value, that indicates the deviation of the region from an average normal tissue. Also,
dp-BREATH provides a visualization that helps the radiologist to focus on abnormal regions. The
same principle is applied to determine the most probable abnormality for a given lung region.
The main contributions of dp-BREATH are four-fold:

1. Automatically segment regions containing pulmonary tissue using superpixel;

2. Model the pattern of healthy pulmonary tissue, and determine the likelihood score of a
superpixel to contain abnormalities;

3. Provide a heat map representation of the abnormalities found in the image, highlighting
the score of each region;

4. Model the behavior of the five considered lung abnormalities, determining the probability
of a superpixel to contain each abnormality.

4.3 Related Work
The literature reports works approaching the issues of classifying pulmonary patterns

based on visual features for several years now. In (MALONE et al., 2004), the authors aimed to
recognize pulmonary patterns by applying a SVM classifier on a set of 18 textural features. These
features were extracted from image blocks, and the authors obtained high accuracy by combining
different block sizes through a Bayesian approach. Although the idea of classifying lung regions
separately is interesting, they used different-sized and squared block regions (16× 16, 8× 8,
4× 4). Thus, the segmentation of lungs using these blocks did not adhere adequately to the
textural and color visual patterns of the lungs. Besides, their proposal makes use of a training
sample of blocks that are already labeled. They used a sample of pre-classified images selected by
a specialist, which are highly representative of 6 patterns (normal, lung, fibrosis, emphysema, fat,
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muscle and bone), making it unfeasible to work with CT images without a subset of pre-classified
labels.

In (HUA et al., 2011), the authors proposed an alternative method to segment lung
regions from CT scans. They created a technique based on graph search, leveraged by a cost
function combining intensity with gradient, boundary smoothness, and rib information, being
capable of automatically segment lung CT images to detect Interstitial Lung Disease (ILD).
Unfortunately, they do not provide information regarding specific regions of the lung, since their
work is focused on the improvement of the lung segmentation regarding the remaining parts of
the CT images.

In (SORENSEN; SHAKER; BRUIJNE, 2010) the authors used Local Binary Patterns
(LBP) (OJALA; PIETIKAINEN; MAENPAA, 2002) features to perform instance-based classifi-
cation to detect different levels of emphysema. The authors argue that they used a texture FEM to
detect the interrelation between pixels, which provides richer information about patterns in lung
CT scans. They performed an experimental analysis with the k-NN classifier and a dataset of 168
manually annotated Regions of Interest (ROIs), and their approach presented high accuracy. As
output, their method provided a grayscale visualization of the posterior probability of each pixel
of the lungs to contain emphysema. This probability was computed according to four classes
(normal tissue, centrilobular emphysema, paraseptal emphysema, and panlobular emphysema).
The reported results are very promising, but the work focuses on only the severity of emphysema,
for three classes of patients (nonsmokers, healthy smokers and COPD smokers, where COPD
stands for Chronic Obstructive Pulmonary Disease).

Still regarding the ILD classification problem, the work (KALE et al., 2016) analyzes the
discriminatory performance of artificial neural networks and SVM classifiers. Such approaches
are based on wavelet features, which were extracted from high-resolution CT images in two
datasets, MedGIFT, and a private one. They studied how the classifier performance varies when
the training and testing stages are performed over each dataset. Then, they compared the results
by performing a test on a subset that merges samples from the two original datasets. It was shown
that the latter approach gives the best results for both classifiers. This finding can nourish the
development of other approaches since they are easily generalized for different datasets. One
drawback of their work is that the proposed approach focuses on classifying full images only.
Thus, images presenting different abnormalities and healthy tissue will only be classified as one
of the ILD classes considered (consolidation, emphysema, ground glass, and nodular), or as
normal.

In (ALMEIDA; RANGAYYAN; AZEVEDO-MARQUES, 2015) the authors carried a
statistical analysis relying on fractal and texture FEMs. They extracted features from squared
pre-labeled ROIs within six classes (normal, consolidation, interstitial thickening, honeycombing,
and ground glass). A Gaussian Mixture Model (GMM) was used to identify each class, and
achieved up to 65% correct classifications, for at least one class. The idea of fitting the lung
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abnormalities using GMM has shown to be interesting, but their work only focused on the
analysis of full images.

The works mentioned above focus on the automatic detection of diseases in lung scans.
They either employ segmentation techniques too inflexible when compared to a superpixel-based
approach or focus on automatic classification of whole images. This does not allow further
inquiry on specific image regions, what physicians may find relevant.

Finally, two commercial solutions analyze pulmonary tissues, namely CALIPER (RAGHU-
NATH et al., 2016) and IMBIO (IMBIO, 2019). CALIPER provides a visualization of pulmonary
regions, focusing on the detection of histologically proven emphysema. IMBIO is a tool focused
on the visualization of pulmonary abnormalities. The tool provides different functionalities
regarding lung density and texture analysis. IMBIO has a texture analysis to map pulmonary
regions as normal, ground glass, reticular, honeycomb or hyperlucen. As it is a proprietary
solution, we do not have details about its algorithms and implementation. This prevents us from
comparing IMBIO’s results with our approach.

In this chapter we propose dp-BREATH, which is composed of a superpixel-based
segmentation to discriminate pulmonary from non-pulmonary regions, together with a statistical
model that characterizes normal and abnormal regions based on texture and gray-level features
for ILD detection, also quantifying the region’s deviation from normality. We consider that
discriminating among specific disease patterns can be uncertain in many cases, and thus we
perform a continuous classification to assist physicians in clinical environments. We detail our
approach next.

4.4 The dp-BREATH Algorithm

dp-BREATH (Diseases Probabilistic BREATH) is an automatic detector of abnormalities
in pulmonary regions of chest CT scans. Figure 20 shows its pipeline. dp-BREATH receives as
input a lung CT scan, which is (a) segmented using a superpixel classification step to separate
only lung tissue regions. The method (b) characterizes healthy pulmonary tissues using the PCA

and a statistical modeling. The resulting model determines the likelihood of a superpixel to
contain an abnormality. Accordingly, the first output of dp-BREATH is a heat map representation
of the lung: abnormal regions are shown in lighter colors, and healthy regions are shown in darker
colors. A detailed diagnosis is given when selecting a superpixel region in the heat map. The,
(c) dp-BREATH uses Gaussian Mixture Model to compute the likelihood of the selected region
to be one of each of the following radiological patterns considered: consolidation, emphysema,
interstitial thickening, honeycombing or ground glass. Thus, the second output of dp-BREATH is
a graphic representation of the classification. This representation shows the probability of the
selected region to contain each radiological pattern.

dp-BREATH includes three main steps, which we detail in the next subsections:
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Figure 20 – The dp-BREATH method pipeline, from the input image, (a) segmentation, (b) region-based
classification on normal and abnormal, and (c) then the detailed analysis using GMM.
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a) Segmentation of lung regions using superpixels;

b) Abnormality detection by modeling the visual properties of healthy pulmonary tissues.
This step generates a heat map representation of the lung regions;

c) Characterization of pulmonary abnormalities using GMM and a continuous classification.
This provides the probability of each lung region to contain each disease.

4.4.1 Segmentation of Lung Regions from CT Images

dp-BREATH receives as input a CT scan taken from a patient. The image depicts both
pulmonary tissue and other structures. Figure 20(a) shows the segmentation of the lungs using
the superpixel algorithm. dp-BREATH employs SLIC to divide the image into such regions, that
are represented by a feature vector, obtained with the application of a FEM. The FEM used is
the Local Binary Pattern (LBP), since it allows comparing pulmonary tissue regions from CT
scans even with different settings for image contrast enhancement. The input for LBP is the
Minimum Boundary Rectangle (MBR) of the superpixel. We ignore the pixels from the MBR that
are not part of the superpixel. This is done by a binary mask that assigns the value 1 for pixels
belonging to the superpixel and 0 otherwise. After extracting the features, dp-BREATH classifies
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each superpixel using the set of labels L = {lung,body,other}. These labels represent the three
main patterns depicted in a lung CT scan. Accordingly, the first output of dp-BREATH is an
image composed of only superpixels classified as lung.

4.4.2 Characterization of Healthy and Abnormal Tissue

In this subsection, we aim to check the following assumption: “CT scans’ visual patterns
can be used to discriminate between healthy and abnormal pulmonary tissue”. To do so, we show
how dp-BREATH:

1. Characterizes the visual properties of healthy pulmonary tissues using a statistical model;

2. Spots the normal and abnormal regions delimited by superpixels;

3. Represents the likelihood of each pulmonary region to contain an abnormality using heat
maps.

Figure 20(b) shows that dp-BREATH starts characterizing the healthy pulmonary tissue
by projecting the superpixels’ features into a lower-dimensional feature space using the two
first components of PCA. The visual features used here are the same extracted in step (i), Lung
Segmentation.

Figure 21 shows a two-dimensional PCA projection of all superpixels. Each dot represents
a projected superpixel feature vector. Since we know that superpixels from images labeled as
normal present healthy visual features, we model a Multivariate Normal Distribution (MND) on
them (the black dots represents normal regions). Accordingly, dp-BREATH considers all points
inside the dark ellipse as healthy pulmonary tissue.

One can observe that the majority of the healthy superpixels form a single elliptical-
shaped cluster of points. Consequently, there is a concentration of superpixels from other classes
around the healthy cluster, since lungs presenting abnormalities also have regions with healthy
tissue. To train this model, we estimate the parameters of a Multivariate Normal Distribution
(MND) to describe the PCA-projected visual features only from healthy pulmonary tissue. Let v

be a PCA-projected feature vector, and f (v) be the Probability Distribution Function (PDF). The
PDF of the MND returns the likelihood that v describes a healthy tissue as defined in (BISHOP,
2007):

f (v) =
exp
(
−1

2(v−µ)T Σ
−1(v−µ)

)
2π|Σ|1/2 (4.1)

where µ is the mean and Σ the covariance matrix from the feature vectors, and |Σ| is the
determinant of Σ. To estimate µ and Σ we employ the Maximum Likelihood Estimation (MLE)
using only healthy superpixels.
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Figure 21 – PCA projection of all superpixel feature vectors, along with the representation of the statistical
model of the healthy tissue (black dots) as a dark ellipse.
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The fitted MND has shown to accurately describe the feature vectors’ distribution of
superpixels representing healthy regions of the images. The model is simple and accurate. It also
leads to an important cornerstone of dp-BREATH, as it provides a representation of how likely a
lung region is abnormal in comparison with the normal region model.

Representing lung abnormalities with heat maps

The PCA-projected MND provides an accurate description of the distribution of healthy
feature vectors. The PDF value f (v) provides an estimation of the likelihood that v was extracted
from a CT region depicting a healthy pulmonary tissue. Figure 20(b) depicts this step. Small
values of f (v) indicate that v was likely extracted from an abnormal region.

dp-BREATH computes f (v) for each superpixel, and then generates a heat map repre-
sentation of the lungs. The highest PDF value is painted with the darkest color (black), thus
representing most likely healthy tissues. The smallest PDF value is painted with a lighter color
(we use orange), and represents the superpixel extracted from CT regions most likely depicting
abnormality. dp-BREATH’s heat map can be presented alongside the original CT image, thus
assisting physicians in the diagnosis process. They highlight regions of the lung that should be
more carefully observed.

From the heat map representation, the physician can have a detailed description of the
superpixel regions regarding a radiological pattern, which concerns the next step of dp-BREATH,
described next.
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4.4.3 Detection of Radiological Patterns in the Lungs

Figure 20(c) shows a further assessment performed by dp-BREATH, which is the dis-
crimination of the five radiological patterns a given tissue region is more likely to indicate.
dp-BREATH approaches this question using the Gaussian Mixture Model (GMM) clustering,
which we detail herein.

The characterization of each disease starts with a preparation step, that removes the
superpixels classified as healthy from the dataset. The gray region of Figure 21 shows the
removed superpixels. This step removes the normal superpixels (black dots) and those with a
likelihood value f (v) higher than a specified threshold, that is, those with a high probability of
being healthy. The threshold value we employed covers 99% of the superpixels from normal
images (dark dots), and was chosen based on the perceived separability between the healthy
superpixels and the others, indicated by the ellipse boundary depicted in Figure 21.

Now, only the five classes of radiological patterns must be considered. GMM initialized
by considering the remaining superpixels and their corresponding classes, aiming at choosing
a suitable set of initial cluster centers. For each of the five classes of radiological patterns,
dp-BREATH computes a point based on the mean of the coordinates of the first and second
principal components, and the covariance matrix of the superpixels in this class. Figure 22 shows
the initial groups, obtained before applying GMM. Each ellipse corresponds to a cluster that is a
class representative. Here, each group consists of a single fitted Gaussian per class of abnormality.
Observe that, before further processing, all groups present major overlapping among them.

Figure 22 – The traditional approach: with a single Gaussian per class, the initial groups show major
regions of overlapping between radiological patterns.
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GMM iteratively fits a Gaussian Distribution for the five clusters, separately. As GMM
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is a soft clustering method, it fits the data using the iterative Expectation-Maximization (EM)
algorithm (MOON, 1996). By iterating over the groups, EM might converge to local optimum,
reducing the overall overlapping between the diseases. Figure 23 shows the PCA projection
of the dataset when the clustering converged, after 71 iterations. It shows a reasonable degree
of separability between the clusters for the classes consolidation, emphysema, and ground
glass. However, honeycombing and interstitial thickening remain mixed due to their intrinsic
visual and structural patterns. Thickening of the interstitial connective tissue network leads to
reticular opacities. These opacities can be divided into interlobular septal thickening, reticulation
associated with traction bronchiectasis (which can be accompanied by signs of pulmonary
fibrosis such as honeycombing), and honeycombing (ELICKER et al., 2008). Honeycombing
is a final stage for a set of radiological patterns, and it can also present interstitial thickening
patterns in CT scans.

Figure 23 – GMM statistical model visualization: PCA projection of superpixel feature vectors, where
classes consolidation, emphysema and ground glass allow a good separation, while honey-
combing and interstitial thickening are mixed.
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The clustering step finishes by employing the result set of Gaussian Distributions to
compute the scores for each superpixel. This score indicates how strong is the assignment of
each superpixel to each cluster of abnormalities. The score is computed as the likelihood f (v),
using µ and Σ of the corresponding cluster. The five scores are normalized and have a sum equal
to 1, resulting in the probability of each superpixel to belong to each class. This is the second
output of dp-BREATH.
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4.5 Experimental Analysis

In this section, we detail the experiments performed to validate the dp-BREATH method.

Environment Setup. The experiments were performed in an Intel Core i7-4770(3.40GHz),
16GB RAM machine, with Fedora 28 (64-bit) OS. SLIC parameter b – the desired number of
superpixels – was set to 100, according to empirical tests.

4.5.1 Material

We validate dp-BREATH with a dataset of chest CT scans, obtained from the Clinical
Hospital of the Ribeirão Preto Medical School, Brazil. The dataset is composed of 246 image
slices obtained from 108 exams, labeled with the following classes: 40 of normal pulmonary
tissue; 40 with consolidation radiological pattern; 44 with emphysema radiological pattern; 42
with interstitial thickening radiological pattern; 39 with honeycombing; and 41 with ground glass
radiological pattern. Each scan has 512×512 pixels, with a slice thickness of 1 millimeter.

The extracted features employed in this work are available for download in a git reposi-
tory1. We provide LBP and CH features extracted from the images and all ROIs, the LBP and
two-dimensional PCA feature vectors used in the projection of the superpixels (ref. to Figure 22).
We also provide the corresponding PDF probabilities of each superpixel for each abnormality
class. From now on, we will refer to this dataset as dpB-Dataset.

4.5.2 Segmentation of Lung Regions

We start by manually separating three samples of superpixels extracted from CT scans:
pulmonary tissue (1,742 superpixels), body (2,031 superpixels) and other (2,356 superpixels).
Body refers to the region surrounding the lungs (gray regions of the CTs). Then, we extracted
the feature vectors of each set using the CH and LBP FEMs. Table 6 shows the comparison of
the classification results using k-NN, Random Forest (RF), Multilayer Perceptron (MLP) and
Support Vector Machine (SVM), performing a ten-fold cross-validation. We observed that even
off-the-shelf classifiers were able to accurately differentiate the chest CT scans’ regions, with an
F-Measure of up to 0.99 using CH and up to 0.96 using LBP.

4.5.3 Detecting Abnormalities in Lung Tissues

dp-BREATH takes advantage of superpixels depicting healthy pulmonary tissue to check
how well it detects abnormalities. It is important to highlight that, although we have the class of
every image (e.g., normal or emphysema), we do not have the corresponding label for individual
superpixels. This occurs because superpixels from the same image can depict visual patterns
from different classes.

1 Material available at <github.com/mtcazzolato/dp-breath>

github.com/mtcazzolato/dp-breath
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Table 6 – Lung segmentation using dp-BREATH: the classifiers accurately differentiate different regions
of CT scans.

F-Measure
FEM Dimensions 1NN RF MLP SVM

CH

32 0.989 0.993 0.988 0.948
64 0.992 0.994 0.986 0.954

128 0.994 0.994 0.984 0.956
256 0.992 0.992 0.973 0.950

LBP 16 0.908 0.939 0.331 0.859
256 0.894 0.965 0.345 0.660

Source: Adapted from Cazzolato et al. (2019).

Accordingly, we used a representative dataset of regions of interest (ROIs) of pulmonary
tissue (COSTA; HUMPIRE-MAMANI; TRAINA, 2012) to validate our method. This dataset
has 3,258 ROIs of size 64×64 pixels, labeled by an expert using the five classes of radiological
patterns. We extracted LBP features from each ROI, and trained a k-NN classifier with k = 3
using the City-Block distance. The classifier was shown to be highly accurate, with an accuracy
of 97.8%±0.7% after performing ten-fold cross-validation on the ROI data. Accordingly, dp-

BREATH uses this classifier to label the superpixels as either positive (presenting abnormalities)
or negative (healthy tissue). The resulting labels were used as the ground truth for the experiments
described next.

We first evaluate how well dp-BREATH detects abnormal pulmonary tissues. Figure 24(a)
shows the precision vs. recall (sensitivity) curve when detecting superpixels with abnormalities.
The best performance corresponds to a curve close to the top. To classify a superpixel as healthy
or not, we used the likelihood score. The curve was built varying the decision threshold with
respect to the likelihood score. dp-BREATH obtained a precision higher than 86% for every value
of recall, presenting an average accuracy of 95%. The dashed vertical line represents the cut
point, and the points below the score value are considered abnormal. This cut point is represented
by the black ellipse of Figure 21.

We also analyze how well the first statistical model is able to describe healthy visual
patterns. Figure 24(b) shows a box-plot comparing the likelihood score returned by the dp-

BREATH’s statistical model for superpixels classified either as healthy (normal) or abnormal. The
assigned scores clearly separate the majority of superpixels. More specifically, the interquartile
range (indicated by the boxes) of healthy superpixels has upper scores with almost no overlap
with the interquartile range of the superpixels presenting abnormalities.
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Figure 24 – (a) The Precision vs. Recall curve, showing that dp-BREATH detects superpixels depicting
abnormalities with precision close to 1 for all values of recall. (b) The box-plot comparing
the distribution of likelihood scores returned by the statistical model, which shows that
dp-BREATH separates healthy and abnormal pulmonary tissues.
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Source: Adapted from Cazzolato et al. (2019).

4.5.4 Detecting Lung Radiological Patterns in Specific Regions

dp-BREATH computes the probability of each superpixel to contain each radiological
pattern by grouping regions through their labels. The method computes the average probability of
each superpixel from a class to spot each radiological pattern. Figure 25 presents the comparison
of dp-BREATH with the individual fitted (pure) Gaussian for each abnormality (see Figure 21)
and the Naïve Bayes (NB) classifier.

Figure 25(a) shows that dp-BREATH obtained the best results on classifying each region
as the class that it belongs to, except for honeycombing. Consolidation, emphysema, and
ground glass were the classes that presented the best separation in the clustering step, with
respectively 87%, 59% and 73% of probability. On the other hand, interstitial thickening and
honeycombing presented a mixture behavior, reflected in the honeycombing results, where 66%
of the superpixels were classified as are most probable to be from class thickening. We have
learned from the literature and the feedback of specialists that honeycombing and interstitial
thickening may present similar texture patterns, which can explain why several superpixels from
honeycombing were misclassified as interstitial thickening.

Regarding the individual Gaussian groups (Figure 21(b)), the classification of consol-
idation superpixels showed 82% of probability, emphysema 67%, interstitial thickening 23%,
honeycombing 54% and ground glass 73%. NB (Figure 21(c)) classified consolidation with
78% of probability, emphysema with 69%, interstitial thickening with 11%, honeycombing with
53% and ground glass with 58%. The three approaches misclassified the superpixels of either
thickening or honeycombing. dp-BREATH outperformed the individual Gaussian groups in three
of five abnormalities, and NB in four of five abnormalities.
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Figure 25 – Probability classification results: (a) dp-BREATH correctly classified the majority of lung
patterns from abnormal superpixels. The dashed horizontal lines in (b) and (c) represent the
results of dp-BREATH (a), easing comparison. We can observe that dp-BREATH was better
than its competitors.

Source: Adapted from Cazzolato et al. (2019).
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Figure 26 – Visualizing lung abnormalities: dp-BREATH outputs a heat map representing the probability
of each superpixel to contain an abnormality or being normal. Orange represent lung regions
with the highest probability of being abnormal, and the darker colors represent probably
healthy regions. Also, dp-BREATH computes the likelihood of a selected superpixel to contain
each radiological pattern.

Source: Adapted from Cazzolato et al. (2019).

4.5.5 Visualizing the Probability of Abnormalities with dp-BREATH

dp-BREATH composes a heat map representation of the image from the characterization
of healthy and abnormal tissues. Figure 26 shows two examples of outputs. The statistical model
used to classify lung regions computes the likelihood of each superpixel to be healthy tissue.
dp-BREATH uses lighter colors (towards orange) to represent regions likely to be abnormal, and
darker colors (towards black) to represent healthy regions.

The output heat map highlights regions presenting different texture patterns, potentially
guiding the physician to more carefully analyze the regions most likely to have abnormalities.
When the physician selects a lung region, dp-BREATH computes its distance to each class of
abnormalities. A pie chart shows the probability of the chosen superpixel for each abnormality.
This result can be used as a continuous classification, with the goal of interactively lead the
physician to a more detailed analysis.

4.6 Lession Learned

Dividing a lung CT scan into grid-based regions (as squares or rectangles) do not capture
the visual coherence of lung regions as superpixels do. Using an approach that considers the
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similarities of a group of pixels are most likely to generate regions with distinct patterns among
other regions. Also, the global classification of single CT lung scans is not reliable, once a single
image (usually) presents more than one pattern. Finally, the hard classification of a single region
may not be appropriate. The set of lung abnormalities considered in this work have classes that
are early stages of other abnormalities, such as “consolidation”.

4.7 Final Considerations
In this chapter, we presented the problem of classifying medical images considering

uncertainty. Our goal was to employ a region-based analysis of lung scans to improve the global
analysis of the different abnormalities depicted together. Regarding the application scenario,
we have the following contributions: (i) dp-BREATH: an accurate method that models the
healthy pulmonary tissue pattern and also each of the considered abnormalities. dp-BREATH

provides a visualization of the most probable visual patterns contained in a particular lung
region, according to its likelihood of containing each lung abnormality. (ii) Evaluation: we
compared dp-BREATH with existing classifiers, showing its high accuracy, and providing an
extensive discussion regarding the pathological lung patterns considered concerning the obtained
results. (iii) dpB-Dataset: we made the features used in our validation available online, aimed
at supporting the reproducibility of our findings. BREATH and dp-BREATH approaches and
corresponding results were published, and are available respectively in the works (CAZZOLATO
et al., 2017) and (CAZZOLATO et al., 2019).

Concerning the goals of this Ph.D. research, in this chapter we approached the second

research problem of mining images with uncertainty. The reported results show that region-based
approaches can deal with different visual patterns together, providing a complete analysis to the
specialist. On the contrary of Chapter 3, we show that performing soft classification/clustering
can benefit the analysis results, improving the overall accuracy of the methods.

BREATH and dp-BREATH focus on the analysis of regions from still images and the
related information, such as labels. However, when dealing with sequences of images, region-
based approaches can benefit from the temporal factor to provide a fast and approximated result,
also considering the associated additional information. We show this scenario in the next chapter.
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CHAPTER

5
TRACKING AND PREDICTING MOVING

OBJECTS IN SEQUENCES OF IMAGES

In this chapter, we approach the third research problem of this Ph.D. research, with the
goal of analyzing moving objects detected in regions of sequences of images. The corresponding
contributions were published, and are available in the work (CAZZOLATO; TRAINA; BÖHM,
2018).

The problem of tracking cells from sequences of images depicting developing embryos
is important regarding the study of the dynamics of biological processes (BALOMENOS et al.,
2017; ELFWING et al., 2004). This task must take place automatically, to enable scalability.
Figure 27 depicts the traditional pipeline for cell tracking. It encompasses steps of (i) image
acquisition, (ii) data transfer, (iii) image processing and then (iv) the actual tracking. The pipeline
is iterative (the thin arrow represents this) since it performs the four steps for each new image of
the sequence. All steps must be performed ideally in real-time. For the sake of simplicity, we
assume that all images from a sequence are equidistant in time.

Figure 27 – The traditional pipeline of cell tracking.

Source: Adapted from Cazzolato, Traina and Böhm (2018).
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5.1 Context Application
Conventionally, segmentation algorithms process sequences of microscopic images to

separate cells from the background. Figure 28 depicts the segmentation task, with the original
images and the output of segmented cells, obtained by a segmentation algorithm. Examples of
such approaches were presented in (SPINA et al., 2018) and (STEGMAIER et al., 2018). They
output cells’ positions, which consist of spatial coordinates. Limitations of image capturing and
segmentation may introduce artifacts in cell curvatures, making the outputted information not
very accurate, and consequently, the tracking task can be a difficult problem (BALOMENOS;
TSAKANIKAS; MANOLAKOS, 2015). Conventional tracking algorithms establish cell-to-cell
(or seed-to-cell) correspondences along the sequence of images, by matching cells according
to their locations. Figure 29 illustrates the construction of the trajectory vector to describe cell
motion, with a new seed point being matched. They usually combine the segmentation task
with the tracking task. When tracking cells, conventional trackers also build vectors of cell
trajectories. However, this takes place late in the data-processing chain, so the vectors are not
used for tracking.

Figure 28 – The segmentation algorithm separates cells from the background of images.

Source: Elaborated by the author.

We study whether and to which extent establishing an explicit representation of the
images early in the chain gives way to better cell tracking. By providing such an explicit
representation, one can use it to accurately and efficiently predict/estimate cell positions along
time. This solution has the advantage of avoiding the transmission of the full images to a local
computer and storing them before any analysis takes place. The study described in this chapter
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Figure 29 – Example of cell trajectory, and a seed-to-cell correspondence of an existing cell to a newly
detected seed point.

Source: Elaborated by the author.

was carried during an internship at the Karlsruhe Institute of Technology (KIT), Germany.
Accordingly, the aforementioned problem is, currently, the bottleneck of the entire embryo-
breeding workflow at KIT, and it takes hours for one embryo.

Moving objects and moving objects databases fields have been received attention from
the database research community over the years (ALMUHISEN; DURAND; QUAFAFOU, 2018;
SALTENIS et al., 2000; TAO et al., 2004). Traditionally, works from the literature have used
moving objects to represent traffic participants, such as cars, pedestrians, among others. In this
work, we aim at representing cells as moving objects, since we judge worthwhile to investigate
whether such ideas can help with the tracking of cells from embryos.

5.2 Motivation and Problem Definition

We propose a modification on the traditional pipeline of cell tracking, intercalating the
traditional steps with cell prediction. Figure 30 depicts the proposed pipeline. The boxes inside
the green area are from the traditional pipeline, which we omit in iterations when estimation
takes place. With this modification, different kinds of improvement should be possible, be it in
detection quality, be it in tracking speed. However, different metrics to assess the improvements
are necessary, and we discuss such measures as well. Also, there are alternative models of cell
motion, such as the number of points used for interpolation, and the distance threshold used for
matches. In this chapter, we establish the design space of our methods and evaluate the plausible
options systematically.

The proposed solutions must update the representation of the motions on the fly, as
new data arrives. When taking advantage of previous cell positions for prediction, the solution
must monitor the prediction error at each iteration. This allows the model to adapt itself when
necessary. In this context, extreme solutions like throwing away the entire previous model or
adapting the model only minimally do not appear to be promising. Thus, our proposal requires
reorganizing the interaction between the various components, such as image segmentation or
tracking, at the same time maintaining the solution light-weight. Very importantly, the proposed
solution must work orthogonally to existing tracking tools, meaning that they can be combinable



94 Chapter 5. Tracking and Predicting Moving Objects in Sequences of Images

Figure 30 – The proposed pipeline of cell tracking: with the cell motion prediction, steps from the
traditional pipeline (inside the green area) can be omitted in many iterations, speeding-up the
entire process.

Source: Adapted from Cazzolato, Traina and Böhm (2018).

with existing implementations of the other components of the pipeline. With this in mind, we
state that our goal here is not to “replace” existing techniques for image segmentation and
tracking. We want to use available implementations and focus on the establishment of vectors
describing cell motions. Lastly, modularity is a related, yet different requirement. Dealing with
the cells’ segmentation and tracking separately makes the pipeline more flexible by being able to
replace individual components.

In this part of our research, we aimed at answering the following research problems:

1. How can we efficiently track cells over time and establish their trajectory vectors, relying
on the output of segmentation algorithms?

2. What are the alternative configurations that allow the use of previous cells’ positions to
predict their future movement in an effective and reliable manner?

We address the aforementioned problems by proposing CM-Predictor, which takes
advantage of previous locations of cells to estimate their motion along time. The estimation
of cell motion can speed up the generation of the output. This estimation is performed using
Lagrange’s polynomials (ABDEL-AKHER; SELIM; ALY, 2015), after the acquisition of enough
cell points. We compare the estimated results with baseline tracking methods (Direct-Tracker

and Clever-Tracker), that we propose to serve as a basis for comparison.

5.3 Basic Concepts and Naming

In this section, we introduce the basic concepts and naming used in the context applica-
tion, regarding cell tracking and prediction.
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Sequences of microscopic images depict the development of an embryo, starting from a
single cell that splits over time. The images are equidistant, which means that they were obtained
after fixed intervals of time, depending on the quality and configuration of the acquisition
equipment. Each cell in the image has its spatial location referred to as a seed (or seed point) at
time t. A match between a new seed point and an already existing cell (detected from previous
images) is a seed-to-cell correspondence.

Accurately monitoring topological changes, e.g., splitting objects over time, relies on
the accuracy of cell detection, by a segmentation algorithm, at each time frame (LI et al., 2016).
Segmentation algorithms separate objects from the background, thus detecting and segmenting
cells. One example of such an algorithm is TWANG (STEGMAIER et al., 2014), which we
employed in this work as it is fast and accurate.

TWANG starts by detecting seed points in the images. The authors use a LoG (Laplacian
of Gaussian) blob detector with different scales to find spherical objects in the images. Then,
TWANG homogeneously distributes the seed points among different threads, independently
performing further calculations in parallel. For this task, the method crops a region around each
seed point, aiming to process as few pixels as possible. TWANG computes the Gaussian smoothed
left-right derivative image and a weighted dot product of the normalized gradient for each region.
The properties of the segmented regions are immediately extracted from the cropped images.
TWANG outputs segmented images, with the detected cells and metadata information, containing
the position of each cell in each image.

Given that a cell changes its position at each image, and considering a sequence of
images, a trajectory consists of a list of seed points. For instance, given a Cell c, detected in
images from time interval [2,n], its trajectory is given by T = (ŝ2, ..., ŝn), where ŝi is the seed of
a cell c at time ti with 2≤ i≤ n. We review the related work on cell tracking next.

5.4 Related Work

In this section, we tackle the problem of tracking microscopic objects.

The outputs generated by cell tracking approaches can be used by biologists to analyze
changes induced by the use of substances, such as contrast agents, observing the evolution in
cell motion and morphology (HE et al., 2017). The literature reports many works regarding
the tracking of cells. In (CHAKRABORTY; ROY-CHOWDHURY, 2015), the authors propose
representing cells of an embryo using a graph structure. Their method focuses on cells that are
in close contact with each other, i.e., share an edge or boundary. They build a graph structure
for the cells every time a new image is processed. Its overall accuracy is good, with up to 87%
and 97% for spatial tracking, considering two different image datasets. In the work (JIUQING;
XU; XIANHANG, 2017) the authors define six local events to describe linking patterns between
pairs of consecutive images, which are move, divide, appear, disappear, split, merge. Unlike our
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proposed pipeline, their proposal consists of a joint detection and tracking method. They predict
cell trajectories by solving a linear programming problem. The model parameters are learned
with a structured SVM.

The work (HILSENBECK et al., 2016) presents a review of existing tools. Among
the mentioned tools is the TLM-Tracker (KLEIN et al., 2012), which we use as a reference to
compare with our methods since it attempts to perform a fully automated cell tracking and is
available online. TLM-Tracker has several steps. It starts with the pre-processing of input images,
such as image filters. The segmentation algorithm also searches for seed-to-cell correspondences
in two consecutive images, using two different approaches: (i) based on the areas of cells, (ii)
based on the center points of cells. The first approach (i) gets the minimum bounding rectangle
(MBR) of each cell, from two consecutive images. Then it gets the distance between the cells
in time by computing the relative overlap of their MBRs. If there is no overlap, the second
approach (ii) computes the Euclidean distance between the center points of cells. TLM-Tracker

has a joint detection and tracking step to predict cell positions. This prediction is computed using
a fitted polynomial: the approaches restrain the search space for the segmentation algorithm,
to look for the probable match point of a certain cell in the next image. Although the tool was
originally proposed to work with elongated cells, the authors state that TLM-Tracker works well
with different kinds of cells (KLEIN et al., 2012). TLM-Tracker finishes its pipeline with the
visualization of the motion vector of the embryo.

The aforementioned tracking approaches work with cell points detected from sequences
of images, which consists of the traditional pipeline to obtain the motion vectors and can be time-
consuming and computationally expensive (due to image acquisition, transfer, and segmentation).
To overcome this issue, in this chapter, we propose CM-Predictor, a method that establishes
the motion vectors of cells, based on cell points from previous images. We target at useful
representations of cells in microscopic images, which we consider a specific kind of moving
object from now on.

5.5 The Traditional Pipeline: Tracking Cells

The segmentation algorithm reads input images and outputs the segmented image and
metadata, which contains the detected cells’ position represented as seed points. Tracking algo-
rithms match such seed points to their corresponding existing cells. We propose two algorithms
for the tracking task, namely Direct-Tracker and Clever-Tracker. Any segmentation algorithm
that outputs the cell positions in a given image can be used here. We employed the TWANG

algorithm, proposed in the paper of TWANG (STEGMAIER et al., 2014), since it consists of a
simple, fast and still accurate alternative.
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5.5.1 Data Structures for Trackers

The proposed tracking approaches use a distance-threshold th to decide when a match
between a pair of seed points occur. The pair of seed points in question are coordinates from
the cell detected from time t− 1, that have already been added to the description of cells of
the embryo, and the coordinates of a new seed point, detected at the current time point t. With
this threshold, the algorithms do not need to test all possible combinations of matching seeds,
speeding up this task. Table 7 shows the input parameters and output of the trackers.

Table 7 – Input parameters and output of the trackers.

Input
Parameter Description

Ŝt−1

A list with all seed points detected at time t−1. The seeds are sorted by the
order they were detected by the segmentation algorithm, and they have already
been inserted to the description of cells from an embryo.

Ŝt
A list with all seed points detected at time t, sorted in the same manner as the
previous item.

th The distance threshold value.

Output Description

embryo
An embryo, composed of moving cells, each one represented as a sequence of
seed points.

Source: Elaborated by the author.

5.5.2 Adding a Cell Match

Let us consider C as the set of cells seen so far in the sequence of images. Each seed
point in Ŝt−1 stands for a cell c ∈C. The proposed trackers use Function AddMatch to add a
new match of a cell, and we explain in the following. The tracker algorithms add the new seed
point ŝ2 ∈ Ŝ2 to a cell C, that contains the matching seed point ŝ1 ∈ Ŝ1 (Lines 1–3). Both seeds
from times t− 1 and t are removed from the lists Ŝt−1 and Ŝt , respectively (Lines 4–5). If an
existing cell has more than one new seed point as a match at time t, the trackers assume that the
cell has been split, and create a new cell for each match with a new seed. Direct-Tracker and
Clever-Tracker use the same data structures and the same method for adding another cell to the
embryo.

5.5.3 Cell Tracker Approaches

Here we introduce two cell tracker algorithms, Direct-Tracker and Clever-Tracker. The
approaches select the pair of seeds p̂(ŝt−1, ŝt), that is matched based on the corresponding
criterion:
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Function AddMatch(embryo, ŝ1, ŝ2, Ŝ1, Ŝ2)
1 Let C be the set of cells of embryo seen so far;
2 c← cell ∈C containing seed s1; . Get the cell with the seed being matched
3 c.addSeed(ŝ2); . Add new seed to the existing cell
4 Remove ŝ1 from Ŝ1;
5 Remove ŝ2 from Ŝ2;
6 return embryo; . Return embryo data with the new seed point

∙ Direct-Tracker works in a greedy fashion, matching the last seed point of the existing cell
to the first seed point within the distance threshold th;

∙ Clever-Tracker maps each new seed point to its nearest cell.

Direct-Tracker

Algorithm 2 presents Direct-Tracker. For each seed (ŝt) detected at the current time
t, Direct-Tracker searches for a matching seed at time t − 1 (ŝt−1) (lines 3–5). Notice that
ŝt−1 belongs to an existing cell. If the distance between ŝt and ŝt−1 is less than th, they are
considered a match (line 7). Direct-Tracker deems the first existing seed point (ŝt−1) within a th

of distance from (ŝt) a match. However, this does not ensure that ŝt−1 is the nearest seed point to
ŝt . Clever-Tracker in turn has this characteristic, as we detail next.

Algorithm 2: Direct-Tracker

Input : Ŝt−1: a list with all seeds from time t−1
Ŝt : a list with all seeds from time t
th: the distance threshold

Output : The embryo, with existing and new seed points.

1 begin
2 initialization;
3 foreach seed ŝt ∈ Ŝt do
4 matched_t←−1; . Set flag as not matched yet
5 foreach seed ŝt−1 ∈ Ŝt−1 do
6 δ ← ComputeDistance(ŝt , ŝt−1); . Compute distance between seed points
7 if (δ < th AND matched_t = −1) then
8 AddMatch(embryo, ŝt , ŝt−1, Ŝt , Ŝt−1);
9 matched_t← 1; . The current seed has been matched

10 Create new cells for remaining seeds and add them to embryo . For new seeds
with no matching cells

11 return embryo

Direct-Tracker’s results depend on the order of seeds. But as the segmentation algorithm
(TWANG) usually searches for cells following the order of pixels, the detected cells tend to
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maintain the same order when listed by the segmentation algorithm, with minor changes due to
new cells, resulted from cell splits.

Clever-Tracker

Clever-Tracker uses Function CheckNearestSeed to search the matching existing cell
to each new seed point, as shown in Algorithm 3. Let ŝq be a seed point from time t. Function
CheckNearestSeed checks if there is a seed ŝt−1 ∈ Ŝt−1, which δ (ŝq, ŝt−1)< mindist, i.e., if there
is a seed close to ŝq (lines 10–14). If the distance between two seed points is less than th, it is
considered a match.

Algorithm 3 presents Clever-Tracker. For each new seed at t (line 3), Clever-Tracker

searches for its closest seed (belonging to an existing cell) from time t−1 (line 5). Function
CheckNearestSeed (line 5) is responsible to search for the nearest seed, and the matches are
added by Function AddMatch (line 7).

Algorithm 3: Clever-Tracker

Input : Ŝt−1: a list with all seeds from time t−1
Ŝt : a list with all seeds from time t
th: the distance threshold

Output : The embryo, with existing and new seed points.

1 begin
2 initialization;
3 foreach seed ŝt ∈ Ŝt do
4 mindist←+∞; . Initialize minimum distance seen so far
5 (matched_t,mindist)← CheckNearestSeed(ŝt , Ŝt−1, th, mindist, −1)
6 if (matched_t >−1) then
7 AddMatch(embryo, st , ŝmatched_t , Ŝt , Ŝt−1);

8 Create new cells for remaining seeds and add them to embryo . For new seeds
with no matching cell

9 return embryo

10 Function CheckNearestSeed(ŝq, Ŝ, th, mindist, matched_t)
11 foreach seed ŝi ∈ Ŝ do
12 δ ← ComputeDistance(ŝq, ŝi);
13 if (δ < mindist AND δ < th) then
14 mindist← δ ; . Set the minimum distance seen so far
15 matched_t← i; . Set tge index of the closest seed

16 return matched_t, mindist;

Direct-Tracker and Clever-Tracker consist of simple tracking approaches, suited for the
traditional tracking pipeline. They will be used as a basis for our experimental analysis. In the
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next section, we describe the estimation of cell positions, based on previously detected seed
points.

5.6 The Proposed Pipeline: Establishing Cell Motion
In the last section, we showed tracking algorithms which detect seed points to construct

cell trajectories, following the traditional pipeline. We propose changing this pipeline to predict
future positions of cells, taking advantage of previously detected ones, to establish cell motion.
Accordingly, prediction takes place when we have enough cell points for motion estimation. We
propose the CM-Predictor (Cell Motion Predictor) algorithm, presented in Algorithm 4 and
detailed next.

5.6.1 Motion Estimation

CM-Predictor estimation of new seed points is performed using Lagrange’s polynomials
(ABDEL-AKHER; SELIM; ALY, 2015), see Equation 5.1. Pol(x) is the polynomial of degree
≤ n− 1, which passes through n data points. (x0,y0), ...,(x j,y j), ...,(xn−1,yn−1) are these n

points, where no two xi are equal, and 0≤ j ≤ n. Also, Pol j(x) is the polynomial at j.

Pol(x) =
n

∑
j=1

Pol j(x), (5.1)

where
Pol j(x) = y j · ∏

k∈{1,...,n}−{ j}

x− xk

x j− xk
.

Function InterpolatePoints is the pseudo-code for estimating the points of each cell,
relying on Equation 5.1.

Function InterpolatePoints(embryo)
1 foreach cell c in embryo do
2 Ŝ← c.getSeeds(); . Get seeds from current cell
3 for (i = 0 to Ŝ.size()−1) do
4 newSeed.x← Predict x using Eq. 5.1;
5 newSeed.y← Predict y using Eq. 5.1;
6 newSeed.z← Predict z using Eq. 5.1;
7 Add newSeed to the embryo; . newSeed is composed of x, y and z estimated

coordinates

8 return embryo;

If the predicted cell position outputted by Interpolate-Points is at least th of distance from
the last seed point of the cell, the prediction is deemed correct. Otherwise, this is considered an
interpolation error. The algorithms continue to interpolate as long as the percentage of wrongly
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predicted cells is less than maxError, where 0≤ maxError ≤ 1. When the error is higher than
maxError, CM-Predictor discards the oldest points used for interpolation, as we discuss later.

5.6.2 Parameters

Table 8 shows the input parameters and output of CM-Predictor. CM-Predictor uses
the current motion vector until the error exceeds a threshold. When the error is too much, the
oldest points of the current motion vector are discarded. Additionally, the window is renewed, as
new detected seed points are added to the window used for the interpolation. The window size w

is an exogenous parameter in this current study, and we will show its influence experimentally.

Table 8 – Input parameters and output of CM-Predictor.

Input
Parameter Description

Ŝt−1 A list with all seeds detected at time t−1.

Ŝt A list with all seeds detected at time t.

th A distance threshold.

w The window size.

pw Share of the window discarded after maxError is reached.

maxError Maximum error allowed when interpolating points.

Output Description

embryo
An embryo, composed of moving cells, each one represented as a sequence of
seed points.

Source: Elaborated by the author.

5.6.3 The Cell Motion Predictor

Algorithm 4 is the pseudocode of CM-Predictor. The tracking takes place until all images
from the sequence have been analyzed. While CM-Predictor has not processed w images (line 4),
a tracker approach matches the cells. Here, the approaches from Section 5.5 can be used by
calling Function PerformTracking (lines 5 and 6). The window is incremented (line 7), and
CM-Predictor checks if w images have been processed (lines 8 and 9). If so, the predictor uses
the last w seeds of each cell for the interpolation. Here, we consider active cells those that had
seed points added at the last iteration t−1. Accordingly, in iteration t CM-Predictor estimates
the next seed points of active cells by calling Interpolate-Points (line 11). This means that we
use the w last seeds added to the embryo to estimate the next points (lines 16–22).

CM-Predictor estimates new points using Equation 5.1, returning the embryo with actual
and predicted seed positions. We apply a product of the distance threshold c× th to bound the
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distance between the existing cell and its predicted new position. This is done to ensure that the
predicted point is closer to its original cell than th. If not, the prediction is considered a mistake,
and the number of errors is incremented.

After each iteration CM-Predictor checks if the number of errors is not acceptable, i.e.,
greater than maxError (line 12). If so, pw% of the oldest points in the window are removed and
the algorithm processes the next image (from time t +1) (line 13). Otherwise, CM-Predictor

continues to interpolate the seed points, now at time t +1. This process repeats until all images
from the sequence are processed (line 3).

Algorithm 4: CM-Predictor

Input : Ŝt−1: a list of seeds from time t−1
Ŝt : a list of seeds from time t
th: a distance threshold
w: the window size
pw: percentage of the window to be discarded
maxError: the maximum error allowed in the interpolation of points

Output : The embryo, with existing and new seed points

1 begin
2 initialization;
3 while (t < sizeOfSequence) do
4 if (window < w) then
5 foreach seed ŝtimestamp ∈ Ŝt do
6 embryo← PerformTracking(); . Track using detected seed points

7 window++; . Increment window
8 if (window = w) then
9 Initialize polynomial; . Use the last seed points of each active cell

10 else
11 embryo← Interpolate-Points(embryo); . Add estimated points to the

embryo
12 if (error > maxError) then
13 Remove pw% of the oldest points in the window and process next

image

14 t ++;

We study the effects of CM-Predictor’s parameters experimentally, as described in
Section 5.7.4.

5.7 Experimental Analysis

In this section, we detail the experiments performed to validate the CM-Predictor ap-
proach and the various methods.
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Environment Setup. The experiments were performed in an Intel Core i7-4770(3.40GHz),
16GB RAM machine, with Fedora 28 (64-bit) OS.

5.7.1 Evaluation Measures

We employ different measures to validate our methods. The total number of cells created
by the trackers, the tracking detection error, and the trajectory of cells are quality measures. The
average execution time assesses the performance of the algorithms. Table 9 summarizes the
measures, and we explain them as follows. As mentioned before, tracking methods matches new
seed points with existing ones and creates cells for seed points that were not matched. We use
total number of cells created by the tracker and added to the embryo as a measure, and it must
ideally be close to the number of cells reported by the ground truth (GT) and TWANG. Both
numbers are considered for evaluation because the GT reports the actual number of cells present
in the image, while TWANG outputs the cells which the trackers must work with.

Table 9 – Evaluation measures employed to the trackers and predictors.

Measure Description Better Values
TDR Tracking detection error High (close to 1)

TotCells Total number of cells Close to the ground truth

Cell trajectory
Trajectory of cells, according to their dis-
tance to the image centroid

Visually similar to the ground
truth

ExecTime
Average execution time to perform track-
ing or prediction tasks

Low values (faster)

Source: Elaborated by the author.

A tracking error occurs when the algorithm misses a seed-to-cell correspondence
or adds a non-existing one. There are two types of this error. The first one occurs when the
algorithm erroneously created a new cell, consequently adding a tracking error. The second
one occurs when the algorithm adds the new seed point to an existing cell when it should
have created a new cell instead. With the number of tracking errors we are able to compute
the Tracker Detection Rate (TDR) (BALOMENOS; TSAKANIKAS; MANOLAKOS, 2015).
TDR is defined by TDR = T P/n, where T P is the True Positive, and in this application refers to
the number of images with no tracking errors, and n is the number of images (or time stamps)
in the sequence. TDR allows to evaluate seed-to-cell correspondences, and values close to 1
represent optimal and desired results. The cell motion estimated by CM-Predictor is evaluated
by computing the distance of cell points to the image centroid. This allows us to observe how
cells were matched along time, and to compare the position of cells detected in the image to the
ones predicted by CM-Predictor. We also evaluate the performance of trackers by computing the
average execution times (ExecTime). This time is computed during the tracking and prediction
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steps only, as we do not consider the segmentation time of the approaches. More specifically,
ExecTime is measured by running each algorithm 1,000 times, and then we take the average.

5.7.2 Material

We perform our evaluation using benchmark datasets provided by the Cell Tracking
Challenge1 (ULMAN et al., 2017). Each of its datasets has its original images, ground truth
annotations (manually done) and segmented images. The annotations have the following format:

“id of cell”, “initial time” (which is the first time the cell has been detected in the sequence),
“final time” (which is the last time the cell has been detected), and “id of parent cell” (available
only if the cell resulted from the split of another one). Table 10 summarizes the datasets used in
each experiment we report in this section. We show the original name and the number of images
available, together with the images’ type, which can be 2D+ t or 3D+ t. Figure 31 contains
examples of such images, obtained from different timestamps, to exemplify the development of
the embryos.

Table 10 – Datasets used in each experiment.

Experiment Dataset Set Type # images
Exp1.1 Fluo-N3DH-SIM+ 01 3D+t 150
Exp1.2 Fluo-N3DH-SIM+ 02 3D+t 80
Exp2.1 Fluo-N2DH-GOWT1 01 2D+t 92
Exp2.2 Fluo-N2DH-GOWT1 02 2D+t 92

Source: Cazzolato, Traina and Böhm (2018).

5.7.3 Parameter Setup and Preprocessing Step to Detect Cells

The parameters used for the preprocessing step of the tracking/prediction pipeline are as
follows. Regarding the segmentation step, TWANG has the parameter values SpacingX = 0.3,
SpacingY = 0.3 and SpacingZ = 2 for all experiments, obtained experimentally. The other
parameters have their default values, as reported in (STEGMAIER et al., 2014). TLM-Tracker

provides a set of segmentation algorithms to detect cells from images. We used the Chan-Vese
algorithm for Exp2.1 and Watershed for Exp2.2, as they had yielded the best segmentation
results, obtained experimentally. TLM-Tracker does not support 3D+t images, so we have not
employed it in Experiments Exp1.1 and Exp1.2. We employed the Euclidean distance to match
the points with the Direct-Tracker, Clever-Tracker, and CM-Predictor approaches.

Following we report the results of the algorithms on detecting the cells from the used
datasets. We have applied TWANG and TLM-Tracker to the images (in the segmentation step)
1 The Cell Tracking Challenge: <codesolorzano.com/Challenges/CTC/Welcome.html>

codesolorzano.com/Challenges/CTC/Welcome.html
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Figure 31 – Examples of original images (from different timestamps) and the corresponding segmented
images.
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Source: Elaborated by the author.

to obtain the seed points that the trackers can then use subsequently. Detecting seed points
can be seen as a preprocessing step of our proposal, which extracts the cell information from
images at each timestamp. Although this is not the primary goal of our proposal, the detected
number of cells influences the tracking and prediction tasks, as it can deviate from the ground
truth information. Figure 32 compares the total number of cells detected with TWANG and
TLM-Tracker, in comparison to the ground truth. We observe that TLM-Tracker features more
divergence than TWANG compared to the ground truth. TLM-Tracker did not detect all cells in
the images from Exp2.1 and Exp2.2, mainly because the cells are faded, i.e., they are not easy to
recognize.

Once we have the positions of the cells and associated information, next we proceed to
the tracking and prediction steps.

5.7.4 Tracking and Predicting Trajectories of Cells

Firstly we define the best values for the distance threshold th parameter. Since this is
the only parameter required by Direct-Tracker and Clever-Tracker, we employ them to define the
best value to be used in each experiment. Figure 33 depicts the TDR results using Direct-Tracker

and Clever-Tracker. Each point of the plots represents the TDR result obtained after processing
all images of the sequence, using a specific distance-threshold value. Accordingly, the size of the
dots reports the number of cells created by the algorithms. Ideally, the size of the dots should
be the same (or similar) to the dark dots, which represent the ground truth (GT) number of
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Figure 32 – Total number of cells reported by the ground truth and detected by TWANG and TLM-Tracker,
during the preprocessing step. Notice that TLM-Tracker was only employed in Exp2.1 and
Exp2.2, since it does not support 3D+t images.

Source: Adapted from Cazzolato, Traina and Böhm (2018).

cells. In summary, we look for high TDR values and dot sizes close to the GT . We observe that
the number of cells is higher as th increases, thus diverging even more from the ground truth.
For small th values (≈ th < 10), TDR results also tend to be low, and the best values are those
between approximately 10 and 30. The th values used in the experiments are those represented
by the dashed vertical lines: th = 18 for Exp1.1, th = 22 for Exp1.2, th = 18 for Exp2.1 and
th = 15 for Exp2.2.

Figure 33 – Finding the best threshold th value to be used by the trackers.

Source: Adapted from Cazzolato, Traina and Böhm (2018).

Evaluating the impact of CM-Predictor’s parameters

Table 11 shows the combination of parameters generated for CM-Predictor. We show
that it resulted in 15×10×10×10 = 15,000 combinations, from now on called configurations.
Figure 34 presents the TDR results of all configurations. Again, the size of the dots corresponds
to the number of cells created, and the dark dots inform us of the number of cells reported by
the ground truth. The best results are at the top of the charts. Each point represents the result
obtained after the entire image sequence, using the specific configuration. CM-Predictor has
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Figure 34 – Estimating the best parameters of CM-Predictor, by generating different configurations of
parameters.
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Source: Adapted from Cazzolato, Traina and Böhm (2018).

obtained low TDR results when creating many more cells than expected, and high TDR results
when the number of cells created is smaller than the one of the ground truth. As our goal here
is to obtain high TDR values and a number of cells close to the ground truth, we only use a
subset of the configurations to evaluate the other parameters. Accordingly, we first select all
combinations with TDR > 0.7 for Exp1.1, TDR > 0.4 for Exp1.2, TDR > 0.85 for Exp2.1, and
TDR > 0.65 for Exp2.2.

Table 11 – Combination of parameters tested for CM-Predictor.

Parameter Range of values (min to max) Increment step
w 1 to 15 1.0

pw 0.1 to 1.0 0.1

maxError 0.1× th to 1.0× th 0.1

th 0.1× th to 1.0× th 0.1
Source: Elaborated by the author.

Figures 35, 36, 37 and 38 show the representative charts, with the outcomes of the
configurations selected in the previous step. The best results obtained in Exp1.1 used parameters
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w < 4, pw < 0.4, maxError between 0.4 and 0.8, and the distance threshold of 0.5× th. In
Exp1.2, the highest number of cells has been created with w = 2, the distance threshold 0.9× th,
pw < 0.6, and independently of the value of maxError. Notice that, in this configuration, the
whole window is discarded once CM-Predictor removes ⌈w× pw⌉ points from the window
when the error becomes too large. This occurred because, with high th values, points that are
not very close from each other in the space do not match, yielding more errors and forcing the
window to be updated. On the other hand, with only two points in the window CM-Predictor

generates poor estimates, resulting on a large distance between points and more cells being
created. The best results were achieved with w = 3, with high TDR results using 4≤ w≤ 7. In
both Exp2.1 and Exp2.2, w < 4 yield high TDR results with the number of cells close to the GT .
The distance threshold of th > 0.8 presented the highest concentration of points, meaning that
when CM-Predictor allows for a relatively higher distance between points to be a match, the
results are the best. In general, for all datasets, CM-Predictor presented its best behavior with
parameter values w = 3, pw = 0.3 and maxError = 0.9.

Figure 35 – Best configurations of parameters for CM-Predictor in Exp1.1.
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Source: Adapted from Cazzolato, Traina and Böhm (2018).

Comparing the Different Approaches

Here we compare the results of CM-Predictor with the ones of Direct-Tracker, Clever-

Tracker, and TLM-Tracker. CM-Predictor parameters employed in these experiments are:
maxError = 0.3, th× 0.4, pw = 0.3 and w = 4, with the same th values reported in Figure
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Figure 36 – Best configurations of parameters for CM-Predictor in Exp1.2.
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Figure 37 – Best configurations of parameters for CM-Predictor in Exp2.1.
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Figure 38 – Best configurations of parameters for CM-Predictor in Exp2.2.
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Source: Adapted from Cazzolato, Traina and Böhm (2018).

33. Table 12 lists the TDR results the total numbers of cells created. Our newly proposed methods
yield the best results for all experiments, compared to TLM-Tracker. As expected, Direct-Tracker

has created the highest number of cells in Exp1.1 and Exp1.2. This is because its matching has
not been correct, as it matches the first match candidate within th, and has led to low TDR values.
Additionally, the high number of false positives and false negatives in the cells detected by
TWANG (in the preprocessing step) has bogged down the matching precision of Direct-Tracker.
Clever-Tracker has yielded similar results.

During prediction iterations, CM-Predictor does not create new cells or delete existing
ones, and this is one reason why it has created fewer cells than the other ones. Accordingly,
when the number of cells from one image to the next one does not change much, TDR tends to
perform better, since it does not create false positives. This justifies why CM-Predictor’s overall
TDR results are better than the other algorithms.

Following we show the trajectories of cells outputted by each algorithm. Figure 39
explains how to compare cells trajectories visually. Notice that we are interested in showing the
differences between the actual points (detected by the segmentation algorithms in the images)
and the estimated ones. Figures 40, 41 and 42 show the trajectories of cells for Exp1.1, Exp2.1
and Exp2.2, respectively. Direct-Tracker and Clever-Tracker yield very similar results. This
is because they use the same cell points, provided by the segmentation algorithm TWANG.
CM-Predictor was able to predict cell points similar to the actual ones. Even though CM-
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Table 12 – Comparison of the tracking and prediction approaches.

Algorithm Exp1.1 Exp1.2 Exp2.1 Exp2.2

Direct-Tracker
TDR 0.45 0.05 0.82 0.46

TotCells 440 584 31 81

Clever-Tracker
TDR 0.73 0.24 0.62 0.68

TotCells 144 259 31 81

CM-Predictor TDR 0.58 0.19 0.82 0.46
TotCells 154 538 185 100

TLM-Tracker
TDR – – 0.0 0.29

TotCells – – 956 142

Source: Cazzolato, Traina and Böhm (2018).

Figure 39 – Cell trajectories with (a) actual and (b) estimated points.

Source: Cazzolato, Traina and Böhm (2018).

Predictor has predicted most of the points, the estimated motion vectors are similar to the ones
detected by TWANG. This shows that predicting cells positions based on recently observed
cell points is a good approach. Our competitor, TLM-Tracker, did not detect many cells in the
image segmentation, and consequently, its trajectories differ from the ones given by the other
algorithms. Observing the images, we can see that TLM-Tracker has created many more cells in
Exp2.1 and did not detect all cells in Exp2.2.

Overall, the configurations of CM-Predictor show results that are comparable with the
ones obtained by tracking algorithms. This shows the advantages of our proposal:

∙ The tracking detection rate (TDR) of CM-Predictor is close to the ones reported by the
tracking algorithms;

∙ The predicted trajectories provided by CM-Predictor are similar to the ones composed of
actual cell points.

All this means that we are able to improve the tracking pipeline by including predictions of cell
motions. We show the performance of CM-Predictor and the tracking approaches next.
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Figure 40 – Cell trajectories for experiments Exp1.1.
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Source: Cazzolato, Traina and Böhm (2018).

Figure 41 – Cell trajectories for experiment Exp2.1.
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5.7.5 Performance Analysis

Table 13 presents the average execution times (in seconds) of the proposed approaches.
For a fair comparison, we do not present the numbers for TLM-Tracker in the same table, since
it has been implemented in MATLAB, while the other algorithms are available in C++. TLM-
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Figure 42 – Cell trajectories for experiment Exp2.2.
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Source: Cazzolato, Traina and Böhm (2018).

Tracker has performed in 0.348 seconds (Exp2.1) and in 0.416 seconds (Exp2.2). Direct-Tracker

has shown to be the fastest tracking approach since it works greedily and matches the first cell by
simply checking if it is within the distance threshold. Clever-Tracker performs more comparisons
between new seeds and existing cells. CM-Predictor performs no comparisons between points in
iterations which prediction takes place, making it much faster than the two tracking approaches.
Finally, TLM-Tracker works according to the same principle as Direct-Tracker, but with the
additional cost of predicting the overlapping area of cells, if this option is selected to improve
the results of the tracking step.

5.7.6 Discussion

In the last subsections, we have systematically showed how to check desirable values
for the parameters required by CM-Predictor. The values of w, pw, maxError and th heavily
depend on the images being analyzed. Accordingly, we only need to choose the best parameter
values once, for a specific type of embryo. This is because the shape and spatial movement of
cells are similar between sequences of images. Consequently, once the optimal values are known,
one can also use them in subsequent analyses.
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Table 13 – Average execution time (in seconds) obtained by the algorithms during the tracking and
prediction tasks.

Average Execution Time (s)
Algorithm Exp1.1 Exp1.2 Exp2.1 Exp2.2

Direct-Tracker 0.12 0.16 0.42 0.06
Clever-Tracker 0.18 0.27 0.06 0.09
CM-Predictor 0.06 0.20 0.06 0.04

Source: Adapted from Cazzolato, Traina and Böhm (2018).

5.8 Track and Prediction Using Indexing Data Structures
In this section we aim at answering the following question:

∙ Can we speed-up the tracking task with indexing structures, consequently improving the
accuracy?

We address this problem by employing indexing structures over the seed points being
matched. Direct-Tracker, Clever-Tracker and CM-Predictor rely on a Brute-Force (BF) search
strategy to match seed points to existing cells. Although BF can be efficient for small sets of
data, as the number of samples increases BF becomes very costly and unfeaseble. Two examples
of existing structures to speed-up k-NN queries are kd-Tree and Ball-Tree, previously described
in Section 2.1.4.

We used kd-Tree and Ball-Tree structures to match new seed points to the already existing
cells. Figure 43 illustrates the tracking pipeline using the indexing structures. After reading the
cell information at each iteration, the algorithm uses the previously indexed seed points to match
the new seeds. Similarly, when employing the predictor approach, the algorithm uses the indexing
structures in iterations whenever the cell tracking takes place. Accordingly, we will refer to the
new versions of the tracking and prediction algorithms as kdt-Tracker and kdtCM-Predictor

(when using kd-Tree), and blt-Tracker and bltCM-Predictor (when using Ball-Tree).

Evaluating the Execution Time

Environment Setup. The algorithms tested in this section were implemented in Python 3.7.2,
and the experiments were performed on a Intel Core i7-4770(3.40GHz) 16GB RAM machine,
with Fedora 29 (64-bit) OS.

Figure 44 presents the execution time of the tracking approaches. Although there is the
extra cost of building the structure at each iteration of the pipeline (as new cells arrive), the lower
cost of cell matching compensates the execution time. For Exp1.1, the execution times of the
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Figure 43 – Working flow of tracking and prediction approaches using indexing structures.

Source: Elaborated by the author.

indexed versions of CM-Predictor were higher because, in this particular case, the algorithm
created more cells. With the indexing structures, we removed the threshold th parameter,
since we do not rely on it to consider a seed point a match or not. Accordingly, we were able to
successfully speed-up the tracking pipeline, obtaining by up to 81.9% of improvement regarding
the mean execution time of tracking approaches, and up to 47.3% of improvement regarding the
mean execution time of prediction approaches.

5.9 Lessons Learned

We have learned that Direct-Tracker directly depends on the order of seed points detected
by the cell segmentation algorithm. Accordingly, if the employed algorithm randomly outputs
the position of cells, Direct-Tracker will perform many wrong seed-to-cell correspondences.
This problem occurs because Direct-Tracker is greedy, as it matches any seed point within the
given threshold distance. Also, the chosen segmentation algorithm does not need to provide the
perfect shape of cells. However, the tracking and prediction approaches must have as input the
approximated location of as many cells as possible, detected by the segmentation algorithm.
For instance, if a seed point appears in one image at time t, disappears in the next point of time
t +1, and appears again at t +2, it will be considered two different cells: one from t, and one
from t +2. Such miss detections harm the overall tracking and prediction results. A workaround
employed in the literature is the removal of orphan cells, which consist of cell trajectories with a
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Figure 44 – Execution time of trackers using indexing structures.
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size of ≤ 3.

5.10 Final Considerations
In this chapter we have studied and implemented the tracking and prediction of cell

trajectories. This information is available from sequences of microscopic images depicting
developing embryos. Regarding the application scenario and after having proposed two tracking
algorithms (Direct-Tracker and Clever-Tracker), our core contribution is a new predictor algo-
rithm (CM-Predictor). We have focused on the prediction of cell positions based on previous
ones, and we were able to speed up the tracking, while maintaining high accuracy. CM-Predictor

was up to three times faster than Clever-Tracker and six times faster than Direct-Tracker when
tracking/predicting cells. Our experiments show that CM-Predictor performs well with both
2D+t and 3D+t. It has been able to accurately estimate the motion of cells of a developing
embryo over time. Regarding TDR results, CM-Predictor was up to 49% better than Direct-

Tracker (in Exp1.2), up 31% better than Clever-Tracker (in Exp2.1) and up to 66% better than
TLM-Tracker (in Exp2.2), using parameters w = 3, pw = 0.3 and maxError = 0.9. We conclude
that CM-Predictor is an enhancement for cell tracking, serving its purpose of improving and
speeding up the detection cells’ motion.

CM-Predictor, Direct-Tracker and Clever-Tracker approaches, together with all corre-
sponding results, were published in the work (CAZZOLATO; TRAINA; BÖHM, 2018). They
are direct results obtained during an internship period at the Karlsruhe Institute of Technology
(KIT), in Germany.

Concerning the objectives of this PhD research, in this chapter approached the third

research problem of analyzing moving objects in sequences of images. The reported results show
the advantages of using region-based approaches to track objects over time. We have shown
that we designed a solution that allow us to use previous positions of objects to effectively
estimate their future movement, consequently obtaining reliable approximate trajectory vectors.
CM-Predictor, Direct-Tracker and Clever-Tracker are able to effectively estimate and track
cells over time. Also, we showed that indexing structures are able to speed-up the tracking and
prediction tasks by up to 81.9% and 47.3%, respectively.
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CHAPTER

6
CONCLUSIONS

In this Ph.D. research, we focused on methods that take advantage of region-based
approaches to improve the mining and analysis of images and their additional information.
Specifically, we presented three main contributions, that we discuss next, together with the
research question and thesis of the Ph.D. research.

This chapter is organized as follows. Section 6.1 states the main contributions of this the-
sis. Section 6.2 lists the future work we envision. Section 6.3 summarizes the list of publications
resulted from this Ph.D. research and related works.

6.1 Contributions

As we stated in the Introduction chapter of this thesis, the main goal of this Ph.D.
research was to answer the following question: “How can we improve the image mining task of

different application contexts relying on complex data and associated information?”. This is a
challenging question since it involves three characteristics of the image mining task: it can be
complex, diverse, and dependent on the application domain. From this scenario, we obtained
three main contributions:

1. The SmokeBlock method, capable of detecting and segmenting image regions depicting
smoke. We show that considering a hard problem such as the classification of images as
containing smoke or not, by employing region-based approaches, we can obtain more
accurate results than global approaches.

2. BREATH and dp-BREATH methods, that also take advantage of region-based approaches,
but perform soft classification and clustering analysis, labeling and highlighting image
regions according to their probability of containing abnormalities.
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3. CM-Predictor, Direct-Tracker, and Clever-Tracker methods, that consider the region-based
analysis of images combined with time information. The methods can predict and track
cells over time, obtained from evolving embryos. We accurately improved the tracking
pipeline with alternative approaches for motion estimation. Also, we showed how indexing
structures can be used to improve matching tasks by speeding-up the process and to reduce
the number of required parameters from the trackers. Finally, we presented alternative
models for the prediction of the cells’ movement.

A general contribution of this Ph.D. research consists of a methodology to handle
visual patterns of images. Such methodology consists of dividing the image (or sequences of
images) into visually-similar small regions, and process each region (or sets of regions) according
to the semantics of the problem. For SmokeBlock, dp-BREATH, and the trackers and predictor,
this approach brought better results than the global approaches.

Regarding the thesis of this doctorate research:

Thesis. The analysis of image regions, combined with additional information, leads to more

accurate mining results regarding the entire image and can also help the processing of

sequences of images, speeding-up costly pipelines and making it possible to infer knowledge

from objects’ movement.

We are able to say that, in fact, region-based analysis of images can lead to improvements
regarding data mining and analysis tasks, considering the applications evaluated. The use of
available labels and time information also helps to infer knowledge from moving objects, obtained
from regions of images, making it possible to provide an efficient and reliable representation of
such objects.

Next, we point out future developments that can be done, based on the results of the
research achieved in this doctorate work.

6.2 Future Work
As future work, we envision the following developments:

∙ Extending SmokeBlock using Deep Learning approaches: Recent works from the literature
have reported highly accurate results regarding the classification of images, from different
contexts. For instance, the fire detection task for still images has been improved in the work
(SHARMA et al., 2017). Accordingly, different Deep Learning models can be trained to
also enhance the smoke detection task in still images.

∙ Extending BREATH and dp-BREATH models to other medical application scenarios:
The probabilistic approaches employed to map lung abnormalities according to their
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distribution can be extended to work with different types of images, such as skin ulcer
photos, MRIs and brain scans.

∙ Extending BREATH and dp-BREATH to consider the location of abnormalities: We have
learned from specialists that the location of lung visual patterns can also determine the
possible abnormalities presented in the area. Accordingly, a broader analysis, considering
the region of the lung that each superpixel belongs, can bring promising results to the
analysis.

∙ Combining segmentation algorithms to cell prediction and tracking approaches, such as
Direct-Tracker, Clever-Tracker, and CM-Predictor: By combining the segmentation and
prediction/tracking tasks, improvements can be achieved, not only in execution time but
also in the accuracy of the analysis.

∙ Provide an interactive visualization of trajectories of cells: Biologists can take advantage
of intuitive representations of the obtained/estimated trajectory vectors.

∙ Use different configurations of the tracking pipeline: By interpolating points of interme-
diary windows, the exactitude of the predicted points can be better than by extrapolating
future points. In this case, the algorithm would read two windows of points, with an
interval between them, which will be filled up by the interpolated points.

6.3 List of Publications

We describe as the main publications the ones directly resulted from this Ph.D. research.
Complementary publications are those resulted from contributions with the research group GBdI,
that also helped to achieve the results reported in this thesis and contributed to the formation of
the Ph.D. candidate. We list all publications next, together with the Qualis-CC Capes category
from when the work was published (when available), and the year of publication.

Main publications:

∙ Journal CMPB 2019 - Qualis-CC Capes A2 (CAZZOLATO et al., 2019): CAZZOLATO,
M. T.; SCABORA, L. C.; NESSO-JR., M. R.; MILANO-OLIVEIRA, L. F.; COSTA, A. F.;
KASTER, D. S.; KOENIGKAN-SANTOS, M.; AZEVEDO-MARQUES, P. M.; TRAINA-
Jr, C.; TRAINA, A. J. M.. dp-BREATH: Heat maps and probabilistic classification
assisting the analysis of abnormal lung regions. Journal of Computer Methods and
Programs in Biomedicine (CMPB), May, 2019. p. 27–34.

∙ CIKM 2018 - Qualis-CC Capes A1 (CAZZOLATO; TRAINA; BÖHM, 2018): CAZZO-
LATO, M. T.; TRAINA, A. J. M.; BOEHM, K.. Efficient and Reliable Estimation of
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Cell Positions. In: International Conference on Information and Knowledge Management,
Turin, Italy. October 22-26, 2018. p. 1043–1052.

∙ CBMS 2017 - Qualis-CC Capes B1 (CAZZOLATO et al., 2017): CAZZOLATO, M. T.;
SCABORA, L. C.; COSTA, A. F.; NESSO-JR., M. R.; MILANO-OLIVEIRA, L. F.;
KASTER, D. S.; TRAINA-Jr, C.; TRAINA, A. J. M.. BREATH: Heat Maps Assisting
the Detection of Abnormal Lung Regions in CT Scans. In: 2017 IEEE 30th Interna-
tional Symposium on Computer-Based Medical Systems (CBMS). Thessaloniki, Greece.
June 22-24, 2017. p. 248–253.

∙ SBBD-DSW 2017 (CAZZOLATO et al., 2017): CAZZOLATO, M. T.; AVALHAIS, L. P.
S.; CHINO, D. Y. T.; RAMOS, J. S.; SOUZA, J. A.; RODRIGUES-Jr, J. F.; TRAINA,
A. J. M.. FiSmo: A Compilation of Datasets from Emergency Situations for Fire and
Smoke Analysis. In: SBBD2017 - SBBD Proceedings of Satellite Events of the 32nd
Brazilian Symposium on Databases - DSW (Dataset Showcase Workshop). Uberlândia,
Brazil. October 2-5, 2017. p. 213–223.

∙ SAC 2016 - Qualis-CC Capes A1 (CAZZOLATO et al., 2016): CAZZOLATO, M. T.;
BEDO, M. V. N.; COSTA, A. F.; SOUZA, J. A.; TRAINA-Jr, C.; RODRIGUES-Jr, J. F.;
TRAINA, A. J. M.. Unveiling smoke in social images with the SmokeBlock approach.
In: 31st Annual ACM Symposium on Applied Computing. Pisa, Italy. April 4-8, 2016. p.
49–54.

Complementary contributions:

∙ SBBD 2019 (to appear): CAZZOLATO, M. T.; RODRIGUES, L. S.; SCABORA, L. C.;
ZABOT, G.; VASCONCELOS, G. Q.; CHINO, D. Y. T.; JORGE, A. E. S.; CORDEIRO,
R. L. F.; TRAINA-Jr, C.; TRAINA, J. M.. A DBMS-Based System for Content-Based
Retrieval and Analysis of Skin Ulcer Images in Medical Practice In: 34th Brazilian
Symposium on Databases (SBBD - to appear). Fortaleza, Brazil. 2019. p 1–12.

∙ SBBD-DSW 2019 (to appear): CAZZOLATO, M. T.; GIUNTINI, F. T.; RUIZ, L. P.;
KIRCHNER, L. F.; PASSARELLI, D. A.; REIS, M. J. D.; TRAINA-Jr., C.; UEYAMA,
J.; TRAINA, A. J. M.. Beyond Tears and Smiles with ReactSet: Records of Users’
Emotions in Facebook Posts. In: SBBD2019 - SBBD Proceedings of Satellite Events
of the 34th Brazilian Symposium on Databases - DSW (Dataset Showcase Workshop).
Fortaleza, Brazil. October 7-10, 2019. p. 1–11.

∙ SBBD-DSW 2019 (to appear): SCABORA, L.; SPADON, G.; RODRIGUES, L. S.; CAZ-
ZOLATO, M. T.; ARAUJO, M. V. S.; SOUSA, E. P. M.; TRAINA, A. J. M.; RODRIGUES-
Jr., J. F.; TRAINA-Jr., C.. G-FranC: A dataset of Criminal Activities mapped as a
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Complex Network in a Relational DBMS. In: SBBD2019 - SBBD Proceedings of Satel-
lite Events of the 34th Brazilian Symposium on Databases - DSW (Dataset Showcase
Workshop). Fortaleza, Brazil. October 7-10, 2019. p. 1–11.

∙ SIBGRAPI 2019 - Qualis-CC Capes B1 (to appear): RAMOS, J. S.; CAZZOLATO, M.
T.; FAICAL, B.; NOGUEIRA-BARBOSA, M. H.; TRAINA, A. J. M.. Fast and smart
segmentation of paraspinal muscles in magnetic resonance imaging with CleverSeg.
In: 32nd Conference on Graphics, Patterns and Images (SIBGRAP - to appear), 2019. p.
1-6.

∙ CBMS 2019 - Qualis-CC Capes B1 (ZABOT et al., 2019): ZABOT, G.; FAICAL, B.;
CAZZOLATO, M. T.; SCABORA, L. C.; TRAINA, A. J. M.; TRAINA-Jr, C.. UCORM:
Indexing Uncorrelated Metric Spaces for Concise Content-Based Retrieval of Medi-
cal Images. In: 32nd IEEE Internatinal Symposium on Computer-Based Medical Systems
(CBMS), 2019. p. 306-311.

∙ CBMS 2019 - Qualis-CC Capes B1 (RAMOS et al., 2019): RAMOS, J. S.; CAZZOLATO,
M. T.; FAICAL, B.; NOGUEIRA-BARBOSA, M. H.; TRAINA, A. J. M.. 3DBGrowth:
volumetric vertebrae segmentation and reconstruction in magnetic resonance imag-
ing. In: 32nd IEEE Internatinal Symposium on Computer-Based Medical Systems (CBMS),
2019. p. 435-440.

∙ Journal JBHI 2018 - Qualis-CC Capes A1 (OLIVEIRA et al., 2018): OLIVEIRA, P. H.;
SCABORA, L. C. ; CAZZOLATO, M. T.; OLIVEIRA, W. D.; PAIXAO, R. S.; TRAINA,
A. J. M.; TRAINA-Jr, C.. Employing Domain Indexes to Efficiently Query Medical
Data from Multiple Repositories. IEEE Journal of Biomedical and Health Informatics.
December, 2018. p. 1–9.

∙ CBMS 2018 - Qualis-CC Capes B1 (NESSO-JR et al., 2018): NESSO-JR, M. R.; CAZ-
ZOLATO, M. T.; SCABORA, L. C.; OLIVEIRA, P. H.; SPADON, G.; SOUZA, J. A.;
OLIVEIRA, WILLIAN; RODRIGUES-Jr., J. F.; TRAINA, A. J. M.; TRAINA-Jr, C..
RAFIKI: Retrieval-Based Application for Imaging and Knowledge Investigation. In:
31st IEEE Internatinal Symposium on Computer-Based Medical Systems (CBMS). Karl-
stad, Sweeden. June 18-21, 2018. p. 71–76.

∙ CBMS 2018 - Qualis-CC Capes B1 (CHINO et al., 2018): CHINO, D. Y. T.; SCABORA,
L. C.; CAZZOLATO, M. T.; JORGE, A. E. S.; TRAINA-Jr., C.; TRAINA, A. J. M..
ICARUS: Retrieving Skin Ulcer Images Through Bag-of-Signatures. In: 31st IEEE
Internatinal Symposium on Computer-Based Medical Systems (CBMS). Karlstad, Sweden.
June 18-21, 2018. p. 82–87.

∙ CBMS 2017 - Qualis-CC Capes B1 (OLIVEIRA et al., 2017a): OLIVEIRA, P. H.; SCAB-
ORA, L. C. ; CAZZOLATO, M. T.; OLIVEIRA, W. D.; TRAINA, A. J. M.; TRAINA-Jr,
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C.. Efficiently Indexing Multiple Repositories of Medical Image Databases. In: 2017
IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). Thes-
saloniki, Greece. June 22-24 2017. p. 286–291.

∙ SBBD-DSW 2017 (OLIVEIRA et al., 2017b): OLIVEIRA, P. H.; SCABORA, L. C.;
CAZZOLATO, M. T.; BEDO, M. V. N.; TRAINA, A. J. M. ; TRAINA-Jr., C.. MAM-
MOSET: An Enhanced Dataset of Mammograms. In: SBBD2017 - SBBD Proceedings
of Satellite Events of the 32nd Brazilian Symposium on Databases - DSW (Dataset Show-
case Workshop). Uberlândia, Brazil. October 2-5, 2017. p. 256–266.

∙ SISAP 2017 - Qualis-CC Capes B2 (LAVERDE et al., 2017): LAVERDE, N. A.; CAZ-
ZOLATO, M. T.; TRAINA, Agma J. M.; TRAINA-Jr., C.. Semantic Similarity Group
By Operators for Metric Data. In: 10th International Conference on Similarity Search
and Applications (SISAP). Munich, Germany. October 4-6, 2017. p. 247–261.

∙ ISM 2016 - Qualis-CC Capes B1 (Blanco et al., 2016): BLANCO, G.; BEDO, M. V.
N.; CAZZOLATO, M. T.; SANTOS, L. F. D.; JORGE, A. E. S.; TRAINA, A. J. M.;
AZEVEDO-MARQUES, P. M.; TRAINA JR, C.. A Label-Scaled Similarity Measure
for Content-Based Image Retrieval. In: IEEE International Symposium on Multimedia.
San Jose, USA. December, 11-13, 2016. p. 20–25.

∙ SAC 2016 - Qualis-CC Capes A1 (SOUZA; CAZZOLATO; TRAINA, 2016): SOUZA,
J. A.; CAZZOLATO, M. T. ; TRAINA, A. J. M.. ClusMAM: fast and effective unsu-
pervised clustering of large complex datasets using metric access methods. In: 31st
Annual ACM Symposium on Applied Computing. Pisa, Italy. April 4-8, 2016. p. 986–991.

∙ LNBIP 2015 (BEDO et al., 2016): BEDO, M. V. N.; OLIVEIRA, W. D.; CAZZOLATO,
M. T.; COSTA, A. F.; BLANCO, G.; RODRIGUES-Jr, J. F.; TRAINA, A. J. M.; TRAINA,
C.. Fire Detection from Social Media Images by Means of Instance-Based Learning.
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(Org.). Lecture Notes in Business Information Processing. 1ed.: Springer International
Publishing. 2015. p. 23–44.
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