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ABSTRACT

BARBOSA, M. A. L. A data structure for spanning tree optimization problems.
2019. 94 p. Tese (Doutorado em Ciências – Ciências de Computação e Matemática Com-
putacional) – Instituto de Ciências Matemáticas e de Computação, Universidade de São
Paulo, São Carlos – SP, 2019.

Spanning tree optimization problems are related to many practical applications. Several
of these problems are NP-Hard, which limits the utility of exact methods and can require
alternative approaches, like metaheuristics. A common issue for many metaheuristics is
the data structure used to represent and manipulate the solutions. A data structure with
efficient operations can expand the usefulness of a method by allowing larger instances
to be solved in a reasonable amount of time. We propose the 2LETT data structure and
uses it to represent spanning trees in two metaheuristics: mutation-based evolutionary
algorithms and local search algorithms. The main operation of 2LETT is the exchange
of one edge in the represented tree by another one, and it has O(

√
n) time, where n is the

number of vertices in the tree. We conducent qualitative and quantitative evaluations for
2LETT and other structures in the literature. For the main operation of edge exchange in
evolutionary algorithms, the computational experiments show that 2LETT has the best
performance for trees with more than 10,000 vertices. For local search algorithms, 2LETT
is the best option to deal with large trees with large diameters.

Keywords: Dynamic tree data structures, spanning trees, evolutionary algorithms, local
search algorithms.





RESUMO

BARBOSA, M. A. L. Uma estrutura de dados para problemas de otimização de
árvores geradoras. 2019. 94 p. Tese (Doutorado em Ciências – Ciências de Computação
e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computação, Uni-
versidade de São Paulo, São Carlos – SP, 2019.

Os problemas de otimização de árvores geradoras estão relacionados a muitas aplicações
práticas. Vários desses problemas são NP-difícies, o que limita a utilidade de métodos
exatos e pode exigir abordagens alternativas, como metaheurísticas. Um questão relevante
para muitas metaheurísticas é a estrutura de dados usada para representar e manipular
as soluções. Uma estrutura de dados com operações eficientes pode aumentar a utilidade
de um método, permitindo que instâncias maiores sejam resolvidas em um período de
tempo razoável. Propomos a estrutura de dados 2LETT e a usamos para representar
árvores geradoras em duas metaheurísticas: algoritmos evolutivos baseados em mutações
e algoritmos de busca local. A operação principal da 2LETT é a troca de uma aresta
na árvore representada por outra aresta. Esta operação tem tempo de O(

√
n), onde n é

o número de vértices na árvore. Conduzimos avaliações qualitativas e quantitativas para
2LETT e outras estruturas na literatura. Para a principal operação de troca de arestas
em algoritmos evolutivos, os experimentos computacionais mostram que a 2LETT possui
o melhor desempenho para árvores com mais de 10.000 vértices. Para algoritmos de busca
local, o 2LETT é a melhor opção para lidar com árvores grandes com grandes diâmetros.

Palavras-chave: Estrutura de dados de árvores dinâmicas, árvores geradoras, algoritmos
evolutivos, algoritmos de busca local.
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CHAPTER

1
INTRODUCTION

A spanning tree of an undirected graph G is an acyclic connected subgraph of
G whose edges span all vertices of G (BONDY; MURTY, 2011). A spanning tree op-
timization problem consists in finding a spanning tree of a given graph that respects
a set of restrictions and is optimal according to an objective function. These problems
are significant because they are related to many practical applications in areas such as
telecommunications (HU, 1974), transportation (GLOVER; KLINGMAN, 1975), and phy-
logenetics (FELSENSTEIN, 2003).

Although some spanning tree problems can be solved in polynomial time, as the
minimum spanning tree problem (PRIM, 1957; KRUSKAL, 1956), many are NP-Hard,
such as the degree-constrained minimum spanning tree problem (GAREY; JOHNSON,
1990), and the minimum spanning tree with conflict constrains problem (DARMANN;
PFERSCHY; SCHAUER, 2009). For the latter, some research using metaheuristics is
made, since exact algorithms are unable to solve large instances in reasonable time.

Each metaheuristic has its design issues, but a common concern for most of them
are the underlying data structures used to store and manipulate solutions to the problem.
An efficient data structure can make a method faster and also enable it to solve large
instances in a reasonable time. For example, Fredman et al. (1995) presents a comparison
of data structures for local search algorithms for the classical traveling salesman problem.
Their results show that the efficient data structures significantly outperformed the less
efficient one, and could solve instances ten times larger in a reasonable time. In this work,
we study efficient spanning trees data structures for two metaheuristics: mutation-based
evolutionary algorithms and local search algorithms.

An evolutionary algorithm keeps a population of individuals that change over
time (MICHALEWICZ, 1996; JONG, 2006). An individual encodes a problem solution,
and new individuals (offspring) are created from existing individuals (parents) through
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mutation and crossover operators. The mutation operator generates an offspring by a small
modification in a parent. By its turn, the crossover operator combines two or more parents
in order to generate at least one offspring. The offspring compete with existing individuals
to remain in the population as it continually changes until a criterion is reached. In the
end, the best individual in the population, according to a fitness (objective) function,
is returned as the problem solution. In mutation-based evolutionary algorithms, only
mutation operators are used. A common mutation for spanning trees is the exchange of
one of its edges by another one.

A local search algorithm starts from an initial solution and iteratively replaces it
according to a neighborhood structure and an acceptance criterion (PAPADIMITRIOU;
STEIGLITZ, 1998). A neighborhood of a solution T is the set of all solutions that are
somehow related to T . For example, the one-edge exchange neighborhood for a spanning
tree T is the set of all valid solutions that can be obtained from T by exchanging one of
its edges by another one. The acceptance criterion is used to determine when a neighbor
solution replaces the current one. In general, better solutions are always accepted.

Noticeably, the main issue in common with evolutionary and local search algo-
rithms is the edge exchange operation. We shall discuss how this can be a bottleneck for
both metaheuristics, and how important it is to improve it to obtain faster algorithms.
For evolutionary algorithms, another important aspect is to avoid copying parents when
generating offspring (DELBEM; LIMA; TELLES, 2012). Once an offspring is created, its
parent can coexist with it in the population, which prevents us from obtaining an offspring
by just modifying the parent. Most commonly is copying the parent before generating the
offspring, but copying it can be expensive, which would compromise the running time of
the algorithm.

The edge exchange operation can be implemented by predecessor arrays (BONDY;
MURTY, 2011), a tree data structure often used by graph algorithms, requiring time O(n)

where n is the number of vertices in the tree. A more sophisticated alternative is to use
a dynamic tree data structure, like the Euler tour tree which has operations in time
O(logn) (TARJAN; WERNECK, 2007). However, for evolutionary algorithms, it would
need to be adapted to work with a population of solutions, and as far as we know, this has
not been done yet. We discuss using dynamic trees in local search algorithms in Chapter 5.

Another data structure with sublinear edge exchange operation is NDDR (DEL-
BEM; LIMA; TELLES, 2012), which is a spanning forest data structure designed ad hoc
to be used in EA’s, and carefully planned to address the two previously mentioned issues.
The innovative aspect that helps NDDR to overcome those problems is the decomposition
of trees in substructures that can be shared between parent and offspring (this approach
is called structural sharing in persistent data structure literature (KAPLAN, 2004)). This
resulted in operators having average time O(

√
n), which is a great asymptotic improvement
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compared to linear time implementations, as predecessor arrays.

1.1 Contributions
We rely on both Euler tour trees and substructures decomposition to develop a

new data structure called 2LETT, which can perform edge exchange operations in time
O(

√
n) in worst-case. For evolutionary algorithms, it uses structural sharing as NDDR.

We organize this work in three phases as follows:

1. The design of 2LETT and its evaluation compared to NDDR and predecessor arrays
in evolutionary algorithms.

First, we consider direct spanning tree representations and their search operators.
Then we define two mutation operators based on edge exchange, as well as discuss
important aspects that should be addressed in order to implement them. We review
predecessor arrays and NDDR, and we describe the 2LETT structure. We evaluate
the structures qualitatively and experimentally.

Our main contribution here is the development of the 2LETT structure, which
presented the best performance for the mutation that exchanges any two valid edges
for graphs with more than 10,000 vertices. Another interesting contribution is the
realization that predecessor arrays, even having the worst asymptotic time, had
a remarkable performance, even comparable to efficient structures. They were the
best structure for random trees with less than 10,000 vertices.

2. Exploration of local search algorithm involving one-edge and two-edges exchange
neighborhood.

In this phase, we investigate how to efficiently implement local search algorithms for
the one-edge and two-edges exchange neighborhoods. We evaluate both approaches
for the minimum spanning tree with conflict constrains problem, concluding that
the local search using the two-edge exchange neighborhood can be implemented
efficiently and yield better results.

3. Adaptation of 2LETT for a local search algorithm.

Finally, in this phase we show how to adapt 2LETT to work without structural
sharing, making it faster for local search algorithms. We compare its performance
with predecessor arrays and link-cut trees, a dynamic tree data structure. We also
investigate the difference of using two-edges exchange versus a variable number
of edges exchange neighborhood in the degree-constrained minimum spanning tree
problem.
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1.2 Thesis outline
The thesis is organized as follows. In Chapter 2 we discuss the main concepts used

in the research. In Chapter 3 we present the 2LETT data structure and compare it with
NDDR and predecessor arrays in the context of evolutionary algorithms. In Chapter 4 we
investigate how to efficiently implement local search for one-edge and two-edges exchange
neighborhoods. In Chapter 5 we show how to adapt 2LETT to local search algorithms.
Finally, in Chapter 6 we present some conclusions and directions for future research.



23

CHAPTER

2
CONCEPTS REVIEW

In this chapter, we present the fundamental concepts used throughout the work.
We start in section 2.1 with graph definitions and notation. In section 2.2 we describe
some optimization spanning tree problems and then discuss evolutionary algorithms, a
metaheuristics commonly used to solve hard problems, in section 2.3. Finally, we present
persistent data structures in section 2.4, which are essential for the proposal of our struc-
ture in Chapter 3.

2.1 Graphs
A graph G is an ordered pair (V,E) where V is a finite set of vertices, and E is a

finite set of edges. Each edge e is a pair of vertices, called the extremes of e. If the order
of vertices is meaningful, the graph is called a directed graph (see Figure 1) or digraph,
otherwise the graph is an undirected graph (see examples in Figure 3). The edges (u,v)

and (v,u) represent the same edge in undirected graphs.

Figure 1 – A directed graph or digraph.

Source: Elaborated by the author.

We denote the size of V by n, and the size of E by m, i.e., |V |= n and |E|= m.

We say that an edge (u,v) is incident to the vertices u and v. Also, v is adjacent
to u, and vice versa. The degree of a vertex u, denoted by deg(u), is the number of edges
incident to it, and the neighborhood of u is the set of its adjacent vertices. Figure 2
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highlights the neighborhood of a vertex u in a graph G. Vertices v, w and x are adjacent
to u, therefore deg(u) = 3.

Figure 2 – Neighborhood of a vertex u.

u

v

x

w

Source: Elaborated by the author.

A path from a vertex x to a vertex y in a graph G = (V,E) is a sequence of vertices
⟨v0,v1,v2, . . . ,vk⟩ such that x = v0, y = vk and (vi−1,vi) ∈ E for i = 1,2, . . . ,k. The length of
a path is its number of edges. We say that the path contains the vertices v0,v1, . . . ,vk, and
the edges (v0,v1),(v1,v2), . . . ,(vk−1,vk). If there is a path p from u to u′, we say that u′ is
reached from u through p, or u

p⇝ u′ if the graph is directed.

A graph is complete if, for each pair of distinct vertices u and v, the vertex v is
adjacent to u. See examples of complete graphs for n = 3,4,5 in Figure 3.

For a graph G = (V,E), an independent set is a set S of vertices such that, for every
two vertices in S, there is no edge connecting the two. In other words, each edge in V has
at most one endpoint in S (see Figure 4).

In a directed graph, a path ⟨v0,v1, . . . ,vk⟩ makes a cycle if v0 = vk and the path
contains at least an edge. In an undirected graph, a path ⟨v0,v1, . . . ,vk⟩ makes a cycle if
k > 0, v0 = vk and all edges in the path are distinct. A graph without cycles is acyclic (see
an example in Figure 1).

A graph H = (V ′,E ′) is a subgraph of a graph G = (V,E) if V ′ ⊆V and E ′ ⊆ E. If
V ′ =V , the subgraph is called spanning (see Figure 5).

A connected component of an undirected graph G = (V,E) is a maximal subgraph

Figure 3 – Complete graphs for n = 3,4,5.

(a) n = 3 (b) n = 4 (c) n = 5

Source: Elaborated by the author.
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Figure 4 – Independent set for a graph: the white vertices make an independent set.

Source: Elaborated by the author.

Figure 5 – Subgraphs.

(a) A graph G (b) A subgraph of G (c) Spanning subgraph of G

Source: Elaborated by the author.

H = (V ′,E ′) of G such that, for each pair of vertices u,v ∈V ′, we have that v is reachable
from u in H. A graph is connected if it is only one connected component.

A forest is an acyclic undirected graph not necessarily connected. A tree is a
connected acyclic undirected graph (see Figure 5c). Therefore, each component of a forest
is a tree.

A spanning tree T = (VT ,ET ) of an undirected connected graph G = (V,E) is an
acyclic connected subgraph of G such that VT =V (see Figures 5a and 5c). When G has
weights on its edges, the weight of a spanning tree is the sum of the weights in its edges. A
minimum spanning tree (MST) of a graph G is a spanning tree with minimum weight. We
denote by T the complement of T in G, i.e., T = (VT ,E \ET ). Given two distinct vertices
u and v in V , we denote the unique path between u and v in T by uT v.

The depth of a vertex u in a tree T with root r is the length of the path uTr,
denoted by d(v). The height of a tree is the maximum depth of any of its vertices. The
diameter of a tree is the longest distance between any pair of vertices in it.

From the root r of a tree, for any edge (u,w) ∈ vTr, we say u is the predecessor or
parent of v, denoted by p(v), if u is closer to r than w. In this case, we also say w is a
child of u. The vertices that are reachable from a vertex u by repeatedly going from child
to parent are called ancestors. Similarly, the vertices reached by repeatedly going from
parent to child are known as descendants. A u-subtree is a subtree rooted in u containing
all the descendants of u in T . For example, for the tree in Figure 6, the vertex u is the
parent of w and w is child of u. Also, r, u and w are all ancestors of v, while x,y,u,w and
v are all descendants of r. The u-subtree has w and v as its descendants.

In the next section, we present some spanning tree optimization problems.
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Figure 6 – A tree rooted in r.
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Source: Elaborated by the author.

2.2 Spanning tree optimization problems
The minimum spanning tree problem (MSTP) is a classical optimization prob-

lem (PAPADIMITRIOU; STEIGLITZ, 1998). Given an undirected graph G = (V,E) and
a weight function w : E →R, the MSTP consists in finding a spanning tree with minimum
weight. In other words, we need to find an acyclic connected subgraph T = (V,ET ) with
minimum w(T ) = ∑e∈ET w(e).

While there are some polynomial algorithms to solve the MSTP, among which
the best known are Prim’s algorithm (PRIM, 1957) and Kruskal’s algorithm (KRUSKAL,
1956), many spanning tree problems are NP-Hard. Next, we discuss two such problems, as
well as a related benchmark problem. They are used in various experimental evaluations
through the next chapters.

Degree-constrained minimum spanning tree problem

The degree-constrained minimum spanning tree problem (DCMSTP) is similar to
MSTP, but has an additional restriction: given a value vd ≥ 2, for each vertex v of G, v

can have at most vd (NARULA; HO, 1980) neighbours in T . Despite the similarity with
MSTP, this restriction makes the problem to be NP-hard (GAREY; JOHNSON, 1990).
Note that when vd = 2 for all vertices of G, DCMSTP becomes similar to the classical
traveling salesman problem (TSP) (LAWLER, 1985), which is used in the evaluation in
Chapter 5.

Minimum spanning tree problem with conflict constraints

The minimum spanning tree problem with conflict constraints (MSTC) is also
similar to MSTP (DARMANN; PFERSCHY; SCHAUER, 2009). Given an undirected
graph G = (V,E), a cost function w : E → R+, and a set of conflicting edges C ⊂ E ×E,
the MSTC consists in finding a spanning tree T of G with a minimum cost ∑e∈E(T )w(e)
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so that T is conflict free, i.e., T contains no pair of edges in C. We use this problem in
the evaluation in Chapter 4.

One-tree max problem

The one-max tree problem is a benchmark problem defined by Rothlauf, Goldberg
and Heinzl (2002) and is used to evaluate spanning tree representations. The objective
is to find a given tree Tob j. A solution T is evaluated by the objective function

|ETob j∩ET |
n−1 ,

that is, the function value is proportional to the number of common edges between T and
Tob j. If T has no edges in common with Tob j, then the function value is 0, and if T = Tob j,
then the function value is 1. This problem is used in the evaluation in Chapter 3.

Next, we discuss evolutionary algorithms, a metaheuristic used to solve hard span-
ning tree problems.

2.3 Evolutionary algorithms

An evolutionary algorithm (EA) is a population-based metaheuristic, inspired in
nature’s principles, and largely used to solve optimization problems (GEN; CHENG, 1997;
MICHALEWICZ, 1996).

An EA maintains a population of promising individuals, where each individual
represents a possible solution for the problem. New individuals, called offspring, are cre-
ated from existent individuals, called parents, through search operators like mutation and
crossover. In mutation operation, an offspring is created from a small modification in a
parent. In crossover operation (also known as recombination), two or more parents are
combined to generate a new offspring. New individuals compete with existent individuals
to remain in the population of solutions (JONG, 2006).

Each individual is evaluated by a fitness function that indicates the quality of
the solution related to that individual for the problem. More promising individuals (with
better fitness) are selected more often to be used to generate new individuals and to
stay in the population. This intent to keep the characteristics of good solutions in the
population (MICHALEWICZ, 1996). The population is modified until a predetermined
criterion is satisfied. The best solution from the population is then returned as the answer
from the EA.

Next section, we discuss the process of selection and how it affects an EA behavior.
After that, we discuss some important aspects for a representation of individuals and their
search operators.



28 Chapter 2. Concepts review

2.3.1 Selection

Selection mechanisms are used to choose individuals to reproduce, as well as to
choose individuals to remain in the population. Two factors need to be balanced in a
selection process: selection pressure and diversity (GEN; CHENG, 1997).

Selection pressure is the tendency to select individuals with better fitness, guiding
an EA in the search for global optimum, while the diversity is essential to provide a good
exploration of the search space. Too much selection pressure decreases diversity and can
cause a premature convergence to a local optimum. On the other hand, too little selection
pressure makes convergence being too slow (GEN; CHENG, 1997).

Among the main selection strategies are the uniform, truncation, tournament, and
fitness proportionate (JONG, 2006). In uniform selection, all individuals have the same
probability of being chosen, regardless of their fitness value. This kind of selection is
commonly used together with the truncation selection. In truncation selection, the n

individuals with the best fitness value are chosen, where n is usually the population
size. When combining uniform and truncation selections, the former is used to choose
individuals for reproduction, and the latter is used to choose individuals to remain in the
population.

Tournament selection chooses the individual with the best fitness among k ran-
domly chosen individuals. When k = 1, it behaves exactly like the uniform selection.
Something interesting about the tournament selection is the possibility of adjusting the
selection pressure by modifying the value of k. The higher the value of k, the higher the
selection pressure. Usually, k takes values from 2 to 10.

In fitness proportionate selection, each individual has a probability of being chosen
that is proportional to its fitness. The proportionate selection was widely used in the first
evolutionary algorithms, but its use was mostly replaced by tournament selection.

2.3.2 Representations and search operators

Two of the most important decisions to make when designing an EA are choosing
a representation for solutions and defining its search operators (RAIDL; JULSTROM,
2003). Naturally, the operators strongly depend on the solutions representation.

A representation can be classified as direct or indirect (ROTHLAUF, 2006). In
direct representations, individuals directly represent the values of variables of a candidate
solution for the problem (decision space). In indirect representations, individuals are usu-
ally encoded as a string of values (genotype), and a mapping function is used to convert
to/from solutions in the decision space (phenotype).

Rothlauf (2006) analyzes some trade-offs in the design of direct and indirect repre-
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sentations. There are many general indirect representations and search operators defined
for them, so the design concern for indirect representations is to define a genotype to phe-
notype mapping function. On the other hand, there are no general search operators for
direct representations, since different problem domains require different representations.
As a consequence, the main concern to design them is the definition of specific search
operators. According to Rothlauf (2006), neither design issue is easier than the other.

Two important properties of search operators, independent of representation type,
is locality for mutation and heritability for crossover (CAMINITI; PETRESCHI, 2005;
ROTHLAUF, 2006). A mutation operator has high locality if the individual created by
mutation is similar to its parent. As for indirect representations, the similarity must be
related to the phenotype, since the fitness function evaluates the phenotype – not the
genotype –, even though the mutation operator is applied over the genotype.

For crossover operator, heritability means that new individuals generated by it are
a combination of the substructures of their parents, and so it adds few new substructures
to the population. Moreover, as well as for locality in indirect representations, the feature
must be evaluated over the phenotype, not over the genotype.

For evolutionary algorithms, we propose a structure designed for direct representa-
tions. We shall discuss our proposal and other direct representations in Chapter 3. Next,
we present a common indirect representation and its search operators, as well as two
employments of that for spanning trees.

Fixed size arrays

Fixed size arrays are a usual type of indirect representation. They can contain bi-
nary numbers, integers, or real numbers. Since they have already been extensively studied,
there are many mutation and crossover operators for them.

The single-point mutation establishes a probability for each position of the array
to be selected and then have its value modified (GEN; CHENG, 1997). For binary arrays,
this means to invert a value. For real or integer number arrays, values can be replaced
according to a distribution.

Some popular recombination operators for fixed size arrays are (JONG, 2006):

(i) Single-point crossover: it determines a random point on both parents, then the
right part of that point is swapped between the parents, resulting in two offspring
(Figure 7a);

(ii) Two-point crossover: it determines two points on the parents, and the part between
those points are swapped between the parents (Figure 7b);
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Figure 7 – Examples of recombination for fixed size arrays
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Source: Elaborated by the author.

(iii) k-point crossover: a generalization of the two-point crossover, the k-point crossover
determines k points, and the parts between them are swapped between the parents
in order to generate the offspring;

(iv) Uniform crossover: each position of the offspring can inherit the value of any of the
parents (Figure 7c).

Fixed size arrays are used by many indirect spanning tree representation. Some of
them, like Prüfer numbers (PRUFER, 1918) and Dandelion code (THOMPSON; PAUL-
DEN; SMITH, 2007), are based on the result of (CAYLEY, 1889), which shows that there
are 2n−2 labeled trees on n vertices. They encode an individual as an array of size n−2,
with values in the range [1,n], and defines a bijective function that maps each array to
a unique tree and vice-versa. One advantage of this scheme is that, on complete graphs,
only valid trees can be represented.

The encoding/decoding function for both Prüfer numbers and Dandelion code can
be implemented in linear time. However, they differ in the quality of their operation.
While Prüfer numbers present low locality and heritability, making an EA using them
to be similar to a random search (GOTTLIEB; JULSTROM; RAIDL, 2001), Dandelion
code presents high locality and heritability (THOMPSON; PAULDEN; SMITH, 2007),
making it more appropriated for EAs than Prüfer numbers.

Next, we discuss local search algorithms, another metaheuristic used to solve hard
spanning tree problems.



2.4. Persistent data structures 31

2.4 Persistent data structures
A persistent data structure is opposed to an ephemeral (non-persistent) one. In an

ephemeral data structure, the update operations change the internal state of the structure,
making it impossible to access again its previous state. In a persistent data structure, the
update operations create a new version of the structure, in order to allow queries and
changes to both versions, the previous and the current one (DRISCOLL et al., 1989;
OKASAKI, 1998).

The literature about persistent data structures can roughly be classified into three
categories (KAPLAN, 2004):

1. General transformations to convert ephemeral data structures into persistent ones.

2. Strategies to convert particular data structures, such as lists and trees, into persis-
tent data structures.

3. Design of algorithms using persistent data structures.

Now we discuss using persistent data structures in a computational geometry prob-
lem and two combinatorial optimization methods. Given a set S of n segments, represent-
ing a polygonal subdivision of the plane, the planar point location problem consists in
preprocessing the set S so that, given a sequence of points, the polygon containing each
point can be determined quickly on-line (DOBKIN; LIPTON, 1976).

One can solve this problem as follows: we divide the space by drawing a vertical
line to each extreme of each segment of S. We call the region between two consecutively
vertical lines of slab. Then we use two searches to identify the polygon containing a point
q. In the first search, we use the coordinate x of q to identify the vertical slab containing
q. In the second one, we use the coordinate y of q to identify the segment directly over q

in the slab (see Figure 8).

If the slabs and segments of each slab are stored in binary search trees, where
slabs are sorted from left to right, and the segments are sorted from bottom to top, the
execution time for each query is O(logn). The execution time for preprocessing depends
on the way that trees are constructed. If a separated binary search tree is constructed for
each slab, then the preprocessing time in the worst case is Ω(n2), since Ω(n) segments
can intersect Ω(n) slabs (SARNAK; TARJAN, 1986).

It is important to note that consecutive slabs are different in only some segments.
This difference can be either adding or removing some segments. To construct all slabs,
each one based on the previous one (except for the first), it is necessary 2n insertion
and removing operations. This scheme reduces the planar point location problem to an
efficient persistent sorted set structure.
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Figure 8 – Slab and segment search. First the slab containing q is found, and then the segment
directly over q.
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Source: Elaborated by the author.

Sarnak and Tarjan (1986) describe a simple implementation of a persistent binary
search tree that allows insertions and removals in amortized time O(logn), and it uses
only O(1) in amortized space. Through this implementation, we can get a structure to the
planar point location problem, with O(n) in space complexity, O(n logn) in preprocessing
time, and queries in time O(logn). This technique is general enough to be applied to many
other search problems in geometry (BOROUJERDI; MORET, 1995), which explains the
large number of works in the literature. On the other hand, in optimization, they are
yet uncommon, and we only found two works: (BATTITI, 2002) and (DELBEM; LIMA;
TELLES, 2012).

Battiti (2002) proposes using persistent data structures in history-sensitive heuris-
tic algorithms, which use information collected in previous phases of the algorithm in
order to guide future searches. For example, in a Tabu Search, we could keep a list of
some solutions previously found in order to prevent that they are again explored. In this
context, Battiti uses a persistent set structure to store a collection of solutions (from a
search space of binary strings of size L). Since a new solution is obtained from a cur-
rent solution by inserting or removing an element, i.e., by modifying a bit, the persistent
structure allows that a new solution uses only O(1) in space. Battiti’s method is opti-
mum regarding space complexity because it just requires O(L+ t) to store all solutions
generated in t iterations.

Delbem, Lima and Telles (2012) developed a structure called NDDR, which aims
speeding up the mutation operation in evolutionary algorithms for network-design prob-
lems. The result is that, although other equivalent structures need time O(n), the authors



2.4. Persistent data structures 33

achieved an average time of O(
√

n) by using structural sharing, a technique used by many
persistent structures. We discuss NDDR in details in Chapter 3, as well as present our
proposal and compare both.

Our structure, like NDDR, is based on structural sharing. Therefore, we now dis-
cuss structural sharing, as well as other general methods to turn a structure into persistent.

2.4.1 Marking data structures persistent

Throughout this section, we consider that each time a structure is updated, it is
labeled with a monotonically increasing time, which is used to access the structure version
in that time.

The fat node technique (DRISCOLL et al., 1989) associates the history of changes
to each node of the structure. The old values are never deleted, so nodes can become
arbitrary “fat”. The history of each node is organized through a balanced search tree,
where the structure version is used as the key. The additional cost for updating is O(logm),
where m is the number of stored versions, since all updates must be stored into the tree.
The additional space for modifying is O(1), which corresponds to the space to keep the
new data. The access to each node has a multiplicative factor of O(logm).

The path copying technique (DRISCOLL et al., 1989) makes a copy of a node before
updating it, and then propagates the modification recursively to all nodes that referred
the previous version of that modified node. The modification propagation stops when it
reaches the root since no nodes refer to it. Root versions are stored into an array indexed
by the structure version. Unchanged nodes are shared between the old and new version
of the structure, which is called structural sharing in recent works, as Puente (2017).

Access has an additional cost of O(logm), because it requires to find the correct
version of the root node. This cost is much smaller than the multiplicative factor of
O(logm) required by the fat node technique. The time for updating and the extra space
in the worst case is O(n), since one update may require copying the entire structure.
The path copying technique works well for balanced structures, for the number of nodes
involved in modification is small.

Driscoll et al. (1989) describe a strategy to combine both the fat node and the path
copying techniques, in order to acquire access in time O(1) and modification in time and
space O(1). Their approach requires that all nodes be referred by a maximum constant
number of vertices.

The most general technique to make an ephemeral data structure to become persis-
tent is by simulating the computer memory so that each writing operation in the memory
generates a version of the structure. Since the memory can be seen as an array, the
techniques to make arrays to become persistent are notably important.
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Dietz (1989) describes an efficient method to make an array persistent, whose idea
is visualizing an array of size n as a fat node with n fields. The list of pairs version-value of
each field is stored in a van Emde Boas tree (BOAS, 1975). This structure allows access to
an element of the array in time O(log logm), and modification in time O(log logm), using
space O(m), where m is the number of modifications.

Next, we describe a more recent and simple way to make an array persistent.

2.4.2 Persistent arrays

A persistent array gives two operations:

1. Get(v, i): it returns the element in the position i of the array v;

2. Assoc(v, i,x): it returns a new array v′ which is similar to v, but with x in the
position i.

In this section, we describe a strategy to implement persistent arrays based in a
trie, whose concept was conceived by Briandais (1959), and later named by Fredkin (1960).
A trie, whose name derived from the word retrieval, in information retrieval systems,
is a sorted tree, whose keys are strings of an alphabet. Each element of the alphabet
corresponds to a branch in each node so that the position of a node in the tree defines
which key is related to it. This way, the keys do not need to be stored in the tree. All
descendants of a node have a common prefix of the key. The root represents an empty
prefix.

If the keys are a sequence of bits (a string with only 0’s and 1’s), we have a
bitwise trie. Many researchers studied the bitwise tries. Recently, the interest has increased
because of Bagwell’s works (BAGWELL, 2000; BAGWELL, 2001; BAGWELL, 2003).

We now describe how the operations Get, and Assoc of a persistent array can
be implemented using bitwise tries. We assume that all keys have the same number of
bits and, consequently, all leaves are at the same level. The procedure Get(v, i) works
as a common querying procedure in trees. Each bit of i is used to reach a branch in a
node of the tree. The last bit of i indicates the position in the leaf which contains the
value related to i in v. The procedure Assoc(v, i,x) is implemented by copying the path,
i.e., the nodes of the path up to the leaf which contains the value related to i are copied,
and the value related to i is modified to x. The new root is returned as a result of the
procedure. The execution time of Get and Assoc is O(h), where h is the tree height.
Since the ramification factor of the tree is 2, and all leaves are in the same level, the tree
height is ⌈log2 n⌉, where n is the number of leaves (the array size). This way, the time of
execution of Get and Assoc is O(log2 n).
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Figure 9 – Example of Get(v,19) for a persistent array v with 2 branching bits. The key 19 is
divided into 3 strings of 2 bits. The two most significant bits are used as indices in
the root to determine the node of level 1. The next two bits are used as indices in
the node of level 1 to determine the leaf node. The last two bits are used as indices
in the leaf node to determine the value related to the key 19.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

00 01 10 11

00 01

00 01 10 11 00 01 10

01 00 1119 =

v

Source: Elaborated by the author.

In practice, it is common to divide the bits of the keys into groups, increasing the
ramification factor of the tree and decreasing its height. Moreover, this strategy improves
the use of processor cache, since the values inside the nodes are grouped, which gives an
advantage to references nearby.

When a key is divided into groups of b bits, each leaf has at most 2b branches.
We refer to the value b as branching bits. The operation of procedures Get and Assoc
when b > 1 is similar to that described previously, but instead of using a bit to choose
the branch in a node, we use b bits. In this case, we suppose that each key has (h+1)b
bits, where h is the tree height. Figures 9 and 10 show examples of Get e Assoc for a
bitwise trie with height h = 2 and b = 2 branching bits.

For a value b > 1, the execution time for Get is O(log2b n), and for Assoc is
O(2b log2b n) (the cost of copying log2b n nodes containing 2b elements). Although the
value of b is constant related to n, it can be significant in practical applications. A small
value for b increases the tree height, which increases the time of Get and, consequently,
disadvantages using cache, but also decreases the number of elements that should be
copied in Assoc. On the other hand, a large value for b decreases the tree height, which
decreases the time of Get and benefits using cache, but also increases the number of
elements that must be copied in Assoc.

A common value used in practical situations for the branching bits is 5. In this
case, each node would have at most 32 branches. If we consider an address space of 40
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Figure 10 – Example of Assoc(v,13,0) to a persistent array v with 2 branching bits. Each po-
sition i of the array was initialized with the value i. The path from the root up
to the leaf node to the key 13 is determined using the same idea of the procedure
Get. A copy of each node in the path is created (highlighted nodes) and the value
related to the key 13 in the copy of the leaf node is modified to 0. Notice that v and
Assoc(v,13,0) share the most of the nodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

12 0 14 15

v Assoc(v, 13, 0)

Source: Elaborated by the author.

bits (1 Terabyte), the maximum tree height with b = 5 would be log25 240 = 8. For this
reason, some researchers consider Get and Assoc as having constant time when b = 5
(PUENTE, 2017).
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CHAPTER

3
DATA STRUCTURES FOR

MUTATION-BASED EVOLUTIONARY
ALGORITHMS

This chapter is a slightly modified copy of the paper “Data Structures for Direct
Spanning Tree Representations in Mutation-based Evolutionary Algorithms”, submitted
to IEEE Transaction on Evolutionary Computation journal. The paper had the collabo-
ration of Letícia Rodrigues Bueno, Assistant Professor at Federal University of ABC.

Optimization methods for spanning tree problems may require efficient data struc-
tures. The Node Depth Degree Representation (NDDR) has achieved relevant results for
direct spanning tree representation together with evolutionary algorithms. Its two muta-
tion operators have average time O(

√
n), where n is the number of vertices of the graph,

while similar operators implemented by predecessor arrays, a typical tree data structure,
have time O(n). Dynamic trees are also relevant when investigating tree representations
since they have low time complexity, but there is no proper extension of them for evolu-
tionary algorithms. Using aspects of both a dynamic tree and NDDR (Euler tours and
structural sharing), we propose a data structure called 2LETT. The time of its mutation
operators is O(

√
n) in the worst case. Experiments with the mutation operators using

2LETT, predecessor arrays, and NDDR are carried out for graphs with up to 300,000
vertices. For the mutation operator that exchanges any two valid edges, the predecessor
array presents the better performance for random trees with less than 10,000 vertices;
while 2LETT has the best performance for trees with more than 10,000 vertices.
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3.1 Introduction

A spanning tree of an undirected connected graph G is an acyclic connected sub-
graph of G that includes all vertices of G. Network design problems (KORTE; VYGEN,
2008) are a broad class of optimization problems, many of them requiring to find span-
ning trees. The minimum spanning tree problem is a well-known network design problem.
Although it is solved in polynomial time by greedy algorithms (KRUSKAL, 1956; PRIM,
1957), simple variants of it are computationally hard as, for example, if we add constraints
on the vertex degree, on the diameter, or on the number of leafs (GAREY; JOHNSON,
1990). These problems are related to many applications in areas such as distribution net-
work reconfiguration, transportation, and phylogenetics, therefore there is great interest
in efficient methods to solve them.

Several real-world problems involve large-scale networks, but exact algorithms can
solve only small instances of NP-Hard problems. As a consequence, heuristic methods
as evolutionary algorithms (EAs) have been investigated to deal with larger instances of
network design problems.

Two important design aspects of EAs applied to large-scale networks are the rep-
resentation of the individuals and the search operators. The representation can be direct
or indirect. In the former, the individuals directly represent the values of variables of a
candidate solution for the problem (decision space). In the latter, the individuals are usu-
ally encoded as a string of values (genotype), and a mapping function is used to convert
to/from solutions in the decision space (phenotype).

Rothlauf (2006) analyzes some trade-offs in the design of direct and indirect repre-
sentations of EAs. There are many general indirect representations and associated search
operators, where the main concern in designing them is to define a genotype to pheno-
type mapping function. On the other hand, there are no general search operators for
direct representations, since different problem domains require different representations.
As a consequence, the main concern to design them is the definition of specific search
operators.

Li (2001) highlights that implementing direct representations is as important as
designing them. Once the search operators are defined, it still remains to choose, among
many options, a data structure to implement them, which can be challenging and have a
huge impact in the performance of an EA.

Consider two mutation operators, namely change-any and change-pred, which
are generalizations of mutation operators proposed in (DELBEM; LIMA; TELLES, 2012).
Both methods execute simple tasks in trees: change-any returns a tree from exchanging
an edge by another one that is not in the given tree, and change-pred returns a tree
from modifying the predecessor of a vertex in a given rooted tree.



3.1. Introduction 39

These operators can be implemented in time O(n), where n is the number of vertices
of the tree, using predecessor array, a common tree representation used by many graph
algorithms. However, in the data structure named “node-depth-degree representation”
(NDDR for short) proposed in (DELBEM; LIMA; TELLES, 2012), they can have average
time O(

√
n). One aspect of NDDR that enables the efficient implementation of these

operations are the decomposition of a tree in substructures, which can be shared by
parent and offspring trees, when mutation is applied.

The basic operations of change-any and change-pred can also be implemented
in sublinear time using dynamic tree data structures (TARJAN; WERNECK, 2007), how-
ever, as far we know, they were not yet adapted to efficiently work with a population of
trees, as required for EAs.

In this paper we focus on designing and comparing efficient data structures for
implementing change-any and change-pred operators. Inspired by a dynamic tree
data structure and by NDDR, we propose a new data structure, called 2LETT. In this
structure, we represent trees by Euler tours and store them in two-level arrays, which
results in change-pred and change-any having worst-case time O(

√
n). By using two-

level arrays, substructures are shared by parent and offspring trees when mutation is
applied, as NDDR does (DELBEM; LIMA; TELLES, 2012). Also, we show an implemen-
tation of predecessor arrays using two-level arrays instead of linear arrays, which allows
change-pred to have average time O(

√
n).

We compare the performance of three data structures: predecessor arrays, NDDR
and 2LETT for graphs with up to 300,000 vertices. The comparison points out that
2LETT is the most efficient for trees with more than 10,000 vertices, while predecessor
arrays are the most efficient for random trees with less than 10,000 vertices. We also show
that the running time of 2LETT, in contrast to the others, does not rely on tree diameter,
which makes it useful in handling trees with larger diameters.

The paper is organized as follows. Section 3.2 reviews the search operators for
direct spanning tree representations, formally defines change-any, and change-pred
and analyzes some important implementation aspects. Section 3.3 describes predecessor
arrays and a way to improve them by using two-level arrays. Section 3.4 briefly reviews
NDDR data structure and discuss its innovative aspects and limitations. Section 3.5
proposes the 2LETT data structure. Section 3.6 makes a qualitative evaluation of the
structures. Section 3.7 presents a comparison of computational results: i) the efficiency
of change-any and change-pred implemented for the three data structures and ii)
the performances of three implementations of an EA, one for each structure, solving the
one-max tree problem. Finally, Section 3.8 presents our conclusions.
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3.2 Search operators for direct representations

We start with some definitions. Let T = (VT ,ET ) be a spanning tree of a connected
graph G = (V,E), where V and VT are the vertex sets, and E and ET are the edge sets. An
edge is an unordered pair, which we denote by (u,v), where both u and v are in the same
vertex set. Also, consider r a special vertex of VT , called the root of T .

We denote by T the complement of T in G, i.e., T = (VT ,E \ET ). Given two distinct
vertices u,v ∈V , we denote the unique path between u and v in T by uT v. For any vertex
v ∈ V , the depth of v ∈ T , denoted by d(v), is the number of edges along the path vTr.
Consequently, d(r) = 0.

For any edge (u,w) in vTr, we say u is the predecessor or parent of w, denoted by
p(w), if u is closer to r than w. In this case, we also say w is a child of u. The vertices
that are reachable from a vertex u by repeatedly going from child to parent are called
ancestors of u. Similarly, the vertices reached from u by repeatedly going from parent to
child are known as descendants of u. A v-subtree is a subtree rooted in v and contains all
the descendants of v in T .

Although there are many indirect spanning tree representations (see the studies
in (RAIDL; JULSTROM, 2003; ROTHLAUF, 2006), and a comparison in (CARRANO
et al., 2007; SOAK; JEON, 2010)), there are only a few direct representations such as LI;
BOUCHEBABA’s one (LI; BOUCHEBABA, 1999; LI, 2001), Edge sets (RAIDL; JUL-
STROM, 2003), NetDir (ROTHLAUF, 2006), and NDDR (DELBEM; LIMA; TELLES,
2012).

Let us present and compare now the search operators defined for these direct
representations. The mutation operator is basically the same for all of them: for a tree
T , remove an edge from T and add an edge to T chosen from T in such a way that the
resulting structure is still a tree or, more explicitly, in a way that does not create cycles.
This operation is called edge exchange.

Li and Bouchebaba (1999) propose a version of edge exchange where a path or a
subtree is added to the tree, instead of a single edge, which can be seen as a sequence
of edge exchanges of some edges selected beforehand. Raidl and Julstrom (2003) propose
an heuristic version of edge exchange for Edge sets, in which edges with small weights
have preference to be added. NDDR (DELBEM; LIMA; TELLES, 2012), in its turn, has
defined a version of edge exchange that changes only the predecessor of a vertex.

Regarding the crossover operator, except for NDDR which does not use one, its
takes two trees (the parents) from the population and generates a new tree (an offspring)
combining the parents. The crossover of Li and Bouchebaba (1999) is basically a sequence
of edge exchanges that add some edges taken from another tree. On the other hand, the
crossover of Edge sets (RAIDL; JULSTROM, 2003) is more complex and defined by the
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following three steps:

(i) it adds all common edges with both parent trees to the new tree;

(ii) progressively it adds the remaining edges to the new tree, if they do not create
cycles;

(iii) if the new tree is not still connected and spanning, then it tries to add edges that
are not in any of the parent trees.

In addition, the authors propose a heuristic version which gives preference to edges
with small weights in the steps (ii) and (iii).

Rothlauf (2006) also defines for NetDir an elaborated crossover as follows:

(i) it divides arbitrarily the vertices of the graph in two sets V1 and V2;

(ii) it chooses arbitrarily a parent tree, and adds all of its edges with both vertices in
V1 to the new tree;

(iii) it adds all the edges with both vertices in V2 from other parent tree. Notice that
the result so far is a disconnected tree;

(iv) finally, it tries to randomly add edges from the parent trees until the new tree is
spanning and connected.

We now discuss the data structures used in the implementation of these search
operators. For Edge sets, Raidl and Julstrom (2003) note that the edges can be stored
into an array or a hash table, and highlight that the latter allows insertion, deletion, and
lookup of individual edges in constant time. They also suggest the representation of a
tree through an adjacent list in order to implement the mutation operator in linear time.
Rothlauf (2006) does not discuss any data structure aspect for NetDir, nevertheless, the
mutation operator can be implemented in the same way as for Edge sets. The crossover
operator of both NetDir and Edges sets can be implemented in linear time using the data
structure union-find, making union by rank and path compression (CORMEN et al., 2009,
p. 561 – 581).

Li and Bouchebaba (1999) use adjacent list to implement the main operations of
the search operators in time O(n2). Later, Li (LI, 2001) described how to reduce the time
complexity of the same main operations to linear time using a predecessor array.

Delbem, Lima and Telles (2012) designed a specific data structure for NDDR
data structure, which we will also refer to as NDDR. Their implementation of the search
operators has average time of O(

√
n), which is a significant asymptotic improvement over

linear time implementations.
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Notice that, even though the mutation operators of the representations are based
on edge exchanges, their authors use different data structures to implement them. Al-
though only Li and Bouchebaba (1999) performed a comparison between two of them, an
experimental comparison can enable us to understand better which data structure is more
recommended according to specific conditions. Notwithstanding a better asymptotic time
than others have, an algorithm can have a poorer practical performance for instances with
specific characteristics and sizes.

In order to present an experimental comparison, we start by defining the mutation
operators that we compare in the context of different data structures in Section 3.7.

3.2.1 change-any and change-pred

Given a rooted spanning tree T of a graph G, the mutation operator change-any
generates a new tree from T by removing one of its edges and adding an edge from T .
That is, it receives T as input and returns a triple (T ′,e, f ) where e ∈ ET is the edge to
insert, f ∈ ET is the edge to remove, and T ′ = (VT ,ET ′) is the resulting spanning tree,
where ET ′ = (ET \{ f}∪{e}). The mutation operator change-pred generates a new tree
from an existing one by changing the predecessor of a vertex, so it is a restricted version
of change-any. If change-pred is applied over an edge f = (v, p(v)), then there must
be an edge e = (v, p′(v)) ∈ ET ′ , where p′(v) is the predecessor of v in the new tree T ′, and
p(v) ̸= p′(v). These definitions are generic enough so that each data structure can use the
best approach to select the edges to insert and remove. Figure 11 shows an example of
change-any and change-pred.

Now we highlight two important aspects for the implementation of change-any
and change-pred and give an overview of some approaches to tackle them.

1. Preserving the parent tree: considering that the parent tree and/or its offspring
tree can both be in the population, the parent should not be changed. This rever-
berates in the mutation operators, since they are required to return new trees. The
most common way to generate the offspring trees and preserve the parent is to copy
it before applying the mutation operator. However, this has linear time so it can be
unacceptable when the copying operation dominates the mutation time.

The vast literature of persistent data structures can help on this. A data structure
is persistent if each operation generates a new version of the structure, allowing the
old and new versions to coexist (KAPLAN, 2004). There are general approaches to
make ephemeral (non-persistent) data structures to become persistent, and NDDR
uses one of them: structural sharing. The idea is to decompose a structure in sub-
structures in such a way that, when an operator is applied, most of the substructures
can be shared between the old and the new version of the structure.
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Figure 11 – change-any and change-pred examples. The predecessor of the vertex 3 is modi-
fied by change-pred, which replaces the edge (3,2) by (3,8). change-any replaces
the edge (3,2) by (9,5). Notice that while in change-pred always a single prede-
cessor is changed, many can be changed in change-any.
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Source: Elaborated by the author.

To the best of our knowledge, at the present time, NDDR is the only spanning tree
representation using structural sharing to reduce the mutation time.

2. Selecting edges to insert and remove, and ensuring a valid new tree: if an
edge (u,v) is chosen to be inserted before selecting an edge to remove, then the latter
must be selected from the path uT v. If the enumeration of the edges in the path is
necessary, then this approach has time of O(n), since the path may contain all the
edges of the tree. Nevertheless, this can be efficient for trees with small diameters.
Differently from change-any, change-pred can avoid the enumeration of edges
for graphs with general diameter since only (u, p(u)) or (v, p(v)) can be removed. On
the other hand, if the edge (u,v) is chosen to be removed before selecting an edge to
add, this one must reconnect tree T ′ = (VT ,ET \ (u,v)). If this is done by verifying
all edges in T , then the time is O(m), where m is the number of edges in the graph.
Therefore, an efficient approach should optimize this last step.

The same decomposition used by NDDR for structural sharing (that deals with the
first issue of preserving the parent) also enables an efficient solution for the second
issue of selecting edges to insert and remove and generate a valid new tree. NDDR
first selects the edge to add, for example (u,v), and then selects the edge to remove
by enumerating part of the edges along the path uT v. All these steps are bounded
by the mean size of the decomposed substructures, which is O(

√
n). See Section 3.4

for further discussions about this.
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An alternative approach to the one used by NDDR is the use of dynamic tree data
structures. A dynamic tree data structure maintains spanning trees that change over-
time through edges insertions and deletions, and answers connectivity queries (TAR-
JAN; WERNECK, 2007). Some dynamic tree data structures support these opera-
tions in time O(logn), though they are not designed to solve the parent copy issue.
Thus, in this case they need to be adapted.

Section 3.5 presents our proposal, which is based on a dynamic tree data structure
and structural sharing, and it has time O(

√
n) for the mutation operators in the worst

case.

3.3 Predecessor Array
When using a predecessor array, a tree T with root r is represented by associating

its vertices to their predecessors. In other words, we store the edges (v, p(v)) into an array
∀v ∈ VT , where v ̸= r. The Nil value is used to represent the absence of value for the
predecessor of r. If the vertices are arbitrarily numbered 1,2, . . .n, then the predecessors
can be stored into an array of size n, where each predecessor p(v) is stored in the index v

and accessed in constant time.

Although the predecessor array is a widely used tree representation in graph al-
gorithms in general, it is apparently not so popular for EAs, having only a few works
such as (RAIDL; DREXEL, 2000; LI, 2001) in direct spanning tree representation. More-
over, some works (PALMER; KERSHENBAUM, 1994; KRISHNAMOORTHY; ERNST;
SHARAIHA, 2001) conclude that it is not an adequate indirect representation because
traditional operators, such as one-point and two-point crossovers, can generate invalid
offspring.

Let A be a predecessor array representing a spanning tree T . The interface to
use A consist in three procedures: is-ancestor, set-pred, and make-root. For two
vertices u and v in VT , is-ancestor(A, u, v) returns true if u is ancestor of v, and false
otherwise, which is done by verifying if u is in the path vTr. set-pred(A, u, v) simply
sets the predecessor of u as v. make-root(A, u) makes u the root of T , which is done by
reversing the predecessors along the path uTr.

The time of is-ancestor and make-root is O(h), where h is the tree height. In
the worst case, when h = n, the time is O(n). However, since the expected height (and
diameter) of a random tree is O(

√
n) (RéNYI; SZEKERES, 1967; SZEKERES, 1983), the

average time is O(
√

n). Moreover, the time of set-pred is O(1).

Next we describe how change-pred and change-any can be implemented, and
we show how the use of structural sharing enables the average time of change-pred to



3.3. Predecessor Array 45

be O(
√

n).

3.3.1 Implementing change-any and change-pred

Once we select a random edge (u,v) from T to change-pred to add into T ,
the edge to be removed from the tree must either be (u, p(u)), or (v, p(v)), that is, the
predecessor of either u or v must be modified while preventing creation of cycles. If u is
an ancestor of v, then we change the predecessor of v by set-pred(T, v, u). Similarly,
if v is an ancestor of u, then we change the predecessor of u by set-pred(T, u, v). If u

is not an ancestor of v nor is v an ancestor of u, then we choose with same probability
between the two previous cases.

In change-any, we select a random edge (u,v) from T to add into T , and we
select an edge to remove from the path uT v. In order to simplify the enumeration of the
edges in vTu, we make u as the root of the tree using make-root(T, u). Afterward, we
find the path from v to u following the chain of predecessors starting in v up to u, and we
select a random edge (x, p(x)) from this path to be removed, where x ̸= u. Finally, we add
edge (u,v) by set-pred(T, u, v) and we remove edge (x, p(x)) by set-pred(T, x, Nil),
making x the new root of the tree.

One could argue that the time of change-pred and change-any is O(h), but
since they need to perform a copy of the input array to return a new tree, we get Ω(n).
Comparing with NDDR’s average time of O(

√
n), it may seem that predecessor arrays

are not a good choice but, as we shall see in Section 3.7, it is indeed competitive for
quite large random graphs. This comes from the fact that predecessor arrays are a simple
and compact data structure and its implementation has small constant factors. Besides,
predecessor arrays are a good baseline when comparing to more advanced data structures
such as NDDR and our proposed structure 2LETT.

3.3.2 Improving change-pred

We could improve the average time of change-pred by using structural sharing:
instead of storing the predecessors in a linear array, we store them in a two-level array. Let
A be an array with n elements and let s be the split factor, for 1 < s < n. Suppose, without
loss of generality, that n is a multiple of s. We split A in n

s subarrays with s consecutive
elements each, and store the pointers to the subarrays in a two-level array B. The first
level of B stores the pointer to the subarrays, and the second level stores the content of the
subarrays. This way, for each index i, the element A[i] is stored in B[⌈ i

s⌉][i−s(⌈ i
s⌉−1)]. We

call this scheme of storing predecessors in a two-level array as 2LPredecessor. Figure 12
shows how predecessors are stored in linear and two-level arrays.

Using structural sharing, the unchanged subarrays can be shared between the
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Figure 12 – Predecessors stored in linear and two-level arrays. The split factor for the two-level
array is 3. The predecessor of each vertex is stored in the corresponding position,
for example, the predecessor of 7 is store in the position 7 in the linear array and
in the position (3,1) in the two-level array.
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Figure 13 – Subarray sharing in change-pred of 2LPredecessor. The offspring is created by
changing the predecessor of the vertex 5 from 8 to 2. Only one new subarray was
created to accommodate the modification, while the other subarrays are shared
between the parent and the offspring.
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input and output tree of change-pred. To do so we adapt change-pred and set-pred.
Before executing change-pred, we create a copy of the first level of the predecessor two-
level array, which makes all subarrays to be shared between the input and output trees.
This operation has time of O(n

s ). As the subarrays are shared, every time a predecessor is
changed we need to create a copy of the subarray that stores that predecessor, and make
the modification in this copy. This makes the time of set-pred to be O(s) instead of O(1).
change-pred only call set-pred once, so the time of change-pred is O(n

s + s+ h),
where h is the cost of is-ancestor calls. If s = O(

√
n), then O(n

s + s+ h) = O(
√

n+ h).
Considering h = O(

√
n) for random trees, the average time of change-pred is O(

√
n).

Notice that the two-level arrays do not improve the average time of change-any, because
change-any uses make-root, which in turn makes many calls to set-pred. Figure 13
shows an example of the subarray sharing.

When implementing, we have chosen s as the smallest power of 2 greater than
√

n.
This allows us replacing the division in the index calculation of the two-level array with
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bit shifting operations, which is much faster.

3.4 NDDR

Node-depth-degree (NDDR) is a spanning forest representation and data structure
based on the concepts of paths and depth (DELBEM; LIMA; TELLES, 2012), and it is
an improvement of the NDE representation (DELBEM et al., 2004). Both representations
were successfully used in evolutionary algorithms applied to many problems (LIBRALAO
et al., 2005; LIMA; ROTHLAUF; DELBEM, 2008; MANSOUR et al., 2010; SANTOS;
DELBEM; BRETAS, 2008; DELBEM; LIMA; TELLES, 2012). NDDR was designed to
represent not only spanning trees, but also spanning forests, although a version of NDDR
suitable only for spanning trees with linear mutation time was recently proposed in (LIMA
et al., 2016). In fact, modeling a spanning tree as a spanning forest is the key to achieve
sublinear mutation time for spanning trees.

Now we describe how a forest is represented in NDDR and how the mutation
operators work. Next we explain the structure to represent spanning trees, and the imple-
mentation of change-any and change-pred for it. We also point some limitations of
the structure.

Given a spanning forest F from a graph G = (V,E), each tree T ∈ F is rooted at
an arbitrary vertex and represented independently by an array of triples: vertex, depth,
and degree (NDD). A NDD array has two properties: (i) the vertices in every subtree are
consecutive, and (ii) the root of every subtree precedes the subtree vertices. A NDD array
can be obtained by a depth-first search (CORMEN et al., 2009), which adds each vertex
and its properties to the end of an array the first time the vertex is visited. Forest F is
therefore represented by an array of pairs with each pair (pT ,degG(T )) corresponding to
a tree T of F , where pT is a pointer to the NDD array of T , and degG(T ) is the amount
of edges of G incident to vertices of T . Although we no longer refer to the depth and
degree values of the NDD array and to degG(T ), these values are important to ensure the
improved time of the search operators. Figure 14 shows an example of a forest from a
graph represented by NDDR.

3.4.1 Op1 and Op2

Two mutation operators are defined for NDDR, namely Op1 and Op2. Op1 re-
quires four operands: a tree Tf rom, a vertex u of Tf rom different from the root, a tree Tto,
and a vertex v of Tto. The trees Tf rom and Tto can be the same, only respecting that u is
not an ancestor of v in order to prevent cycles. Op1 extracts the u-subtree from Tf rom and
inserts it as a subtree of v in Tto. This operation replaces the edge (u, p(u)) by (u,v).
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Figure 14 – A forest of the complete graph with 9 vertices represented by NDDR. The forest
has three trees: T1, T2, T3. Each tree is stored into an NDD array, which is drawn as
a matrix with each column representing a triple vertex, depth, and degree.
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Similarly, Op2 requires the same operands as Op1 plus an vertex w that is different
from the root and is ancestor of u. The Op2 extracts the w-subtree of Tf rom, makes u as
its root, and inserts it as a subtree of v in Tto. This operation replaces the edge (w, p(w))

by (u,v). Notice that, when u = w, Op2 does the same as Op1. See (DELBEM; LIMA;
TELLES, 2012) for details regarding the creation of NDD arrays for the new trees.

The operands for Op1 are found in three steps:

(i) first, the tree Tf rom and the vertex u from Tf rom are randomly selected, respecting
that u is not the root of Tf rom and has at least an incident edge not in F ;

(ii) an edge (u,v) not in F is randomly selected;

(iii) finally, starting in v, the tree Tto is determined.

The operands for Op2 are determined likewise:

(i) first, the tree Tf rom and a vertex u from Tf rom are randomly selected, respecting that
u is not the root of Tf rom and has at least an incident edge not in F ;

(ii) an arbitrary vertex w, different from the root of Tf rom, is selected among the vertices
in the path from u to the root of Tf rom;

(iii) an edge (u,v) not in F is randomly selected, and from v, the tree Tto is determined.
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Figure 15 – Subtree sharing in NDDR. At most two trees are modified by mutations, while the
other trees can be shared by parent and offspring. Here, the offspring is created by
replacing (b,c) by (c,e).
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The time of Op1 and Op2 is composed by determining the operands and creating
the new forest. Delbem, Lima and Telles (2012) describe an implementation to determine
the operands in time O(t + |Tf rom|), where t is the number of trees in F . The only trees
changed by Op1 and Op2 are Tf rom and Tto, so the others can be shared by F and the
new forest (see Figure 15). Thus, the time to create the new forest is O(t + |Tf rom|+ |Tto|),
since it takes O(|Tf rom|+ |Tto|) to copy and modify Tf rom and Tto, and it takes O(t) to
copy the pointers to the shared trees. Therefore, the total time of Op1 and Op2 is
O(t + |Tf rom|+ |Tto|). If the n vertices of the graph are uniformly distributed in the t

subtrees, then O(t + |Tf rom|+ |Tto|) = O(t + 2n
t ), which has the minimum value of O(

√
n)

when t = ⌈
√

n⌉.

Although the requirement that the vertices of the graph should be uniformly dis-
tributed into the subtrees may seem too strong, Delbem, Lima and Telles (2012) show
that, if t = ⌈

√
n⌉, the average size of Tf rom +Tto is O(

√
n) after many applications of Op1

and Op2.On the other hand, this requires that the probability of selecting any pair of
subtrees as Tf rom and Tto should be the same, and NDDR selection method does not assure
that. We discuss this in the end of the section.

In order to represent general forests in NDDR, Delbem, Lima and Telles (2012)
show how to decompose any forest into a forest with O(

√
n) trees. We now describe this

process for forests with one tree.
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3.4.2 One-tree forests

Let T = (VT ,ET ) be a spanning tree of a graph G = (V,E). We decompose T in
⌈
√

n⌉+1 parts as follows:

(i) One connected subgraph of T with ⌈
√

n⌉ vertices:

T ∗ = (V ∗
T ,E

∗
T )

(ii) ⌈
√

n⌉ connected subgraphs (the subtrees) of (VT ,ET \E∗
T ):

T1 = (VT1,ET1)

T2 = (VT2,ET2)

. . .

T⌈√n⌉ = (VT⌈√n⌉,ET⌈√n⌉)

The tree T is represented by a pair (S,F), where S is a NDD array representing
T ∗, and F is a NDDR structure representing T1,T2, . . .T⌈√n⌉, with each vertex of T ∗ being
the root of one of the trees T1,T2, . . . ,T⌈√n⌉.

Both Op1 and Op2 are modified to work with this representation. The original
procedure Op1 (as well as Op2) is either applied to the forest F , choosing Tf rom and
Tto from {T1,T2, . . .T⌈√n⌉}, or to T ∗, choosing Tf rom = Tto = T ∗. This version for forests
with one tree keeps the same average time. Notice that this version of Op1 is exactly the
procedure change-pred, and this version of Op2 is the procedure change-any.

3.4.3 Limitations

Although these versions of Op1 and Op2 have the same average time as the
original ones, they have some intrinsic limitations. One of them is that some exchanges
of edges cannot be done, specifically the edges that connect vertices in T ∗ cannot be
exchanged with other edges, which in turn implies that the search may not find some trees.
Another limitation regards the decomposition in balanced trees, making it impracticable
for some trees such as, for example, a path. In this case, one or two subtrees would have
most of the vertices, which compromises the time of the search operators. We now describe
in details this issue and show some experimental results that highlight its implications.

Suppose now, without loss of generality, that G is a complete graph. After selecting
Tf rom and u, an edge (u,v) is chosen. There are edges from u to all vertices of G, and the
probability of choosing any edge is the same, so the subtrees with more vertices have
more chance of containing vertex v and, consequently, they are more likely to be selected
as Tto. This bias leads to a situation in which most of the vertices are in a single subtree.
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Figure 16 – Increase of sum of selected subtree sizes for Op2. Initially, Op2 is applied to a
random spanning tree of a complete graph with 100 vertices, and then applied
successively to the resulting tree. The abscissa is the mutation sequence number.
The ordinate is the sum of sizes of the subtrees Tf rom and Tto. Free NDDR converges
near to 2

√
100, while adjacent NDDR converges approximately to 120.
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Figure 17 – Sum of selected subtrees sizes in the first execution of Op2 for a random tree. The
abscissa refers to n, and the ordinate to the sum of sizes of Tf rom and Tto. The
growing rate of the subtree length of free NDDR is closer to 2

√
n than that of

adjacent NDDR.
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Figures 16 and 17 illustrate it by comparing the NDDR’s behaviour using its original
selection method (here named “adjacent”) with an unbiased strategy (that we called
“free”), described as follows: first select Tf rom and u, and then independently select Tto and
v (since G is complete, (u,v) has to be in G). As seen in the figures, the sum of sizes of
the selected subtrees by the adjacent strategy grow faster than O(

√
n).

Although the bias of adjacent selection strategy was highlighted by a sequence of
random operations, an objective function rewarding forests with balanced subtrees could
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Figure 18 – Euler tour of a tree. The tour starts and ends in vertex 1, the tree root. For simplicity,
each edge (u,v) is shown here as uv.
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overcome the bias, making the adjacent strategy viable.

3.5 2LETT
An Euler tour of a graph is a trail that visits every edge exactly once. To represent

a tree using an Euler tour, we consider edge (u,v) distinct of edge (v,u), so a tree is
represented by an Euler tour that starts and ends in the root, and visits all of its edges
(see an example in Figure 18). The representation of trees by Euler tours was first used
in parallel graph algorithms and, later, in the implementation of a dynamic tree data
structure (HENZINGER; KING, 1995; TARJAN, 1997).

A dynamic tree is an abstract data type that maintains a forest that changes
through insertions and deletions of edges. A dynamic tree supports many operations,
such as:

(i) link(F, u, v): given a forest F and two vertices u and v, it joins two trees containing
the vertices u and v by adding edge (u,v) to F , assuming u and v in distinct trees.

(ii) cut(F, u, v): it disconnects the tree containing the vertices u and v by removing
edge (u,v) from F , assuming (u,v) in F .

Dynamic trees can be implemented by predecessor arrays. In this case, for link,
v is made root of its tree and the predecessor of v is set to u. Regarding cut, if u is the
predecessor of v, then the predecessor of v is set to Nil, otherwise the predecessor of u

is set to Nil. The same observation made in Section 3.3 regarding the implementation
of change-any and change-pred is valid for link and cut as well: they have time
proportional to the height of the trees, which means that the time depends on the trees
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topology. Representing trees by Euler tours overcomes this issue since a tour is always
linear, regardless of tree topology.

This linearization also has an interesting property that helps implementing the
dynamic tree abstract data. For a given vertex v, the tour corresponding to v-subtree,
called v-subtour, is a contiguous sequence of edges along the tour. When v is not the tree
root, the v-subtour is delimited by the edges that connects v to its predecessor, namely
(p(v),v) and (v, p(v)). For example, the sequence ⟨39,93⟩ in Figure 18, between – but not
including – 23 and 32, corresponds to 3-subtree, and the empty sequence between 39 and
93 corresponds to the 9-subtree. This enables the implementation of link and cut by
Euler tours to be reduced to a constant number of concatenation and split operations in
tours.

Next, we describe a slightly modified version of the methods link and cut de-
scribed in (TARJAN, 1997). First, consider link(F, u, v). Let T1 and T2 be trees such
that u ∈VT1 and v ∈VT2 . Also, let A and B be the tours representing T1 and T2, respectively.
We split A into A1 and A2, and B into B1 and B2. The split of A is made just after the end
of the u-subtour, and the split of B is made just before the beginning of v-subtour. After-
ward, we construct a tour by concatenating A1, [(u,v)],B2,B1, [(v,u)],A2 (see Figure 19 for
an example). Notice that, concatenating B2 and B1 makes v the root of T2, which is then
inserted as u-subtree.

Regarding cut(F, u, v), let T be the tree containing u and v and A the tour repre-
senting it. We split A before and after of both (u,v) and (v,u) in A1, [(u,v)],A2, [(v,u)],A3.
The cut produces two trees represented by A2, and by A1 concatenated with A3 (see an
example in Figure 20).

Both link and cut can be implemented in constant time by storing the tours in
doubly linked lists. However, in this case, querying if two vertices are in the same tree
would take linear time. Thus, usually the tours are stored in splay trees (SLEATOR;
TARJAN, 1985; TARJAN, 1997), a kind of self-adjusting binary search trees. Each edge
of a tour becomes a node in a splay tree so that an in-order traversal corresponds to the
linear order of the edges in the tour. The amortized time of split and concatenation in
splay trees is O(logn), which gives the same time for link and cut, as well as for querying
if two vertices are in the same tree.

Although using splay trees to store Euler tours for EAs seems promising, it would
still need to copy parents before mutations. We could think about a combination with
structural sharing, however, splay trees are circular structures requiring pointers from each
node to its parents, and algorithms combining both turn to be too complex, increasing
the practical execution time. Therefore, we explore an alternative approach.
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Figure 19 – Example of link operation in an Euler tour of a tree. The vertices 1 and 2 are
connected to form a new tree.
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3.5.1 Euler tours in two-level arrays

A two-level structure simplifies storing the tours and using structural sharing in
concatenation and split operations. The structure is similar to the two-level array pre-
sented in Section 3.3.2, but instead of requiring all subarrays to have the same length,
their size can be in the range [⌈

√
n′⌉

2 ,2⌈
√

n′⌉], where n′ = 2(n− 1), and n is the number
of vertices in the represented forest. Also, if a two-level array has only one subarray, it
can have less than ⌈

√
n′⌉

2 elements. We first describe how a sequence of values is stored
in this structure, and how split and concatenation work. Subsequently, we describe an
enhancement in order to implement link and cut efficiently. We refer this enhanced
structure as 2LETT, which stands for 2-Level arrays Euler Tour Trees. A similar struc-
ture was already used to represent tours (vertex permutations) for the traveling salesman
problem (FREDMAN et al., 1995).

A sequence S= ⟨a1,a2, . . . ,an−1,an⟩ is stored in a two-level array A with |A|=O(
√

n)

subarrays, where each subarray A[i], for 1 ≤ i ≤ |A|, contains consecutive elements of S

such that the concatenation of A[1],A[2], . . . ,A[|A|] equals to S. That way, each element ak
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Figure 20 – Example of cut operation in an Euler tour of a tree. The edge (1,2) is removed
resulting in two trees.
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of S is stored in A[i][ j], where
i−1

∑
p=1

|A[p]|< k ≤
i

∑
p=1

|A[p]|, and j = i−
i−1

∑
a=1

|A[a]|.

We say that the linear index k corresponds to the two-level index (i, j) of A. Com-
puting the mapping from k to (i, j) for a specific value of k can be done in O(

√
n), by first

probing a value for i in the range [1, |A|], and then calculating j.

Before defining the split and concatenation procedures, we define the auxiliary
method concat-array. It takes the linear arrays X and Y as parameters, where |X | ≤
2⌈
√

n′⌉ and |Y | ≤ 2⌈
√

n′⌉, and produces one or two new linear arrays resulting from the
concatenation of X and Y . The length of the output array(s) should not exceed the maxi-
mum allowed value for subarrays in a two-level array. Therefore, if |X |+ |Y | ≤ 2⌈

√
n′⌉, we

return the array [X [1],X [2], . . . ,X [|X |],Y [1],Y [2], . . . ,Y [|Y |]]. Otherwise, we concatenate X

and Y to create a new array Z, and we split Z into Z1 and Z2 such that their size differs
in at most 1. The time of concat-array is O(

√
n).

The definition of concat(A,B), which concatenates the two-level arrays A and B

and produces a new two-level array C, is defined in three cases:

(i) If |A| = 1 and |A[1]| < ⌈
√

n′⌉
2 , then we call concat-array(A[1],B[1]). If it returns
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one array X , then
C = [X ,B[2],B[3], . . . ,B[|B|]].

Otherwise, concat-array returns two arrays X1 and X2, then

C = [X1,X2,B[2],B[3], . . . ,B[|B|]].

(ii) If |B|= 1 and |B[1]|< ⌈
√

n′⌉
2 , then we call concat-array(A[|A|],B[1]). If it returns

one array X , then
C = [A[1],A[2], . . . ,A[|A|−1],X ].

Otherwise, concat-array returns two arrays X1 and X2, then

C = [A[1],A[2], . . . ,A[|A|−1],X1,X2].

(iii) Otherwise,
C = [A[1],A[2], . . . ,A[|A|],B[1],B[2], . . . ,B[|B|]].

Since at most two new subarrays are created, namely X1 and X2, and all unchanged
subarrays are shared by A, B and C, the time of concat is O(

√
n).

The method split-before(A, i, j) splits a two-level array A into B and C before
A[i][ j], and has two cases:

(i) If j = 1, which means A[i][ j] is the first element of A[i], then

B = [A[1],A[2], . . . ,A[i−1]], and
C = [A[i],A[i+1], . . . ,A[|A|]].

(ii) Otherwise, we first split A[i] before A[i][ j] into X and Y , and then we construct B

and C as follows:

• If i = 1 then B = [X ]. Otherwise,

B = concat([A[1],A[2], . . .A[i−1]], [X ]).

• If i = |A| then C = [Y ]. Otherwise,

C = concat([Y ], [A[i+1],A[i+2], . . .A[|A|]).

Figure 21 shows an example of split-before. The two-level arrays A, B and
C have O(

√
n) subarrays. At most four subarrays (two in the end of B and two in the

beginning of C) are created and they have length O(
√

n). Since all the unchanged subarrays
are shared by A, B and C, split-before has time O(

√
n). The method split-after can

be implemented likewise with the same time.
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Figure 21 – Split of a two-level array. The two-level array A is split before the index (3,2). In
order to respect size bounds, X was concatenated with A[2] and then split, resulting
in B[2] and B[3]. The array Y was concatenated with A[4] resulting in C[1].
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3.5.2 Implementing link and cut

For the implementation of link and cut, we need to find the indices for splitting.
Specifically, we need to find the beginning and the end of a vertex subtour. Let A be
a 2LETT instance representing a spanning tree T , we set procedures start(A,v) and
end(A,v) to return the linear index of the beginning and the end of the v-subtour in A.

If v is the root of T , then the v-subtour is the full tour. Otherwise, the v-subtour
is delimited by (p(v),v) and (v, p(v)), and we need an efficient way to find these edges.
A linear search in each subarray A[i] would require O(n) time. Therefore, we enhance A

by storing a set S[i] with each subarray A[i] such that a vertex v is in S[i] if and only if
there is an edge with v in A[i]. We explain later how such a set can be implemented, but
now suppose that querying if a vertex is in a set S[i] takes constant time. Thereby, to
find the edge (p(v),v) we query which set S[i], for i in ⟨1,2, . . . , |A|⟩, contains the vertex
v, and then we perform a linear search in A[i] frontwards to find the index j for which
A[i][ j] = (p(v),v). We find (v, p(v)) in a similar way, but we search in the reverse order,
i.e., we search i in ⟨|A|, |A|−1, . . . ,1⟩ and A[i] backwards. Finding i takes |A|= O(

√
n), and

finding (p(v),v) or (v, p(v)) in A[i] also takes O(
√

n) = |A[i]|. Thus, start and end has
time O(

√
n).

Regarding link and cut, although they are supposed to deal with forests, each
2LETT instance represents a single tree. Therefore, we define them as follows: cut dis-
connects a given tree, and link connects two given trees.
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More specifically, given a 2LETT instance A representing a spanning tree T and two
vertices u and v of T , the method cut(A,u,v) returns two 2LETT instances representing
the two trees obtained by removing (u,v) from T . The occurrences of (u,v) and (v,u)

delimit either the u-subtour or the v-subtour. We verify the two possibilities, and make
the proper sequence of splits and concatenations. The implementation requires a constant
number of calls to start, end, concat, split-before and split-after, resulting in
cut having time O(

√
n).

Given two 2LETT instances A and B, representing two spanning trees T1 and T2,
and two vertices u and v where u is a vertex of T1 and v is a vertex of T2, the method
link(A,u,B,v) returns a new 2LETT instance representing the tree obtained by linking
T1 and T2 through the edge (u,v). We find the u-subtour and v-subtour using start and
end, and the corresponding split indexes. Subsequently, we make the proper sequence of
splits and concatenations. As cut, this requires a constant number of calls to procedures
with time O(

√
n), thus link has time O(

√
n).

It remains to describe how to implement the enhancement necessary for start
and end. Recall that we need to associate a vertex set to each subarray of a 2LETT
instance. We could use hash tables taking the vertices as keys, which would have linear
average time for insertion, deletion and querying, and would require linear space in the
worst case. Since the number of elements of each hash table would be O(

√
n), the use of

hash tables would not increase the asymptotic time and space for the 2LETT structure.
However, in our preliminary experiments, they had a poor practical performance.

Therefore, we used bit-arrays. We assume that the vertices are numbered 1,2, . . . ,n,
and, for each subarray A[i] of a 2LETT instance A, we associate a bit-array S[i] with length
n, where X [i][v] is set to true if A[i] contains an edge with vertex v, and false otherwise.
So querying if a vertex is in a subarray A[i] is O(1).

A new bit-array is needed when a new subarray is created. Although creating new
subarrays using splits and concatenations takes O(

√
n), creating a new bit-array takes

O(n), since it requires the initialization of O(n) bits. However, if it was already initialized, it
requires only time O(

√
n) to insert (or remove) the vertices of the corresponding subarray.

Thus, we allocate and initialize all bit-arrays beforehand and put them in a pool. Each
time a new bit-array is asked, we pick one from the pool in constant time. Similarly, each
time a bit-array is discarded (the corresponding subarray is not referenced anymore), we
set all its bits true to false in O(

√
n), and return it back to the pool in constant time.

Comparing to hash tables, bit-arrays increase the memory of each tree from O(n)

to O(n1.5), and the extra memory required by an offspring from O(
√

n) to O(n). Besides
that, the time to initialize a population of trees increases from O(p ·n) to O(p ·n1.5), where
p is the number of individuals in the population. Despite all this, bit-arrays make 2LETT
very efficient in practice.
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3.5.3 Implementing change-pred and change-any

Let A be a 2LETT instance for a spanning tree T . The implementation of change-
pred(A) is conceptually equivalent to the one for predecessor arrays. We first select an
edge (u,v) from T . If u is ancestor of v, we call cut(A,v, p(v)), which generates two
trees B and C, and then we call link(B,u,C,v). Similarly, if v is ancestor of u, we call
cut(T,u, p(u)), which generates two trees B and C, and then we call link(B,u,C,v). If
neither u is ancestor of v nor v is ancestor of u, we randomly choose one of the two
previous cases. In order to determine if a vertex u is an ancestor of a vertex v, we verify
if start(A,u)≤ start(A,v)≤ end(A,u), i.e., we verify if v is in the u-subtour. Thus, the
time of change-pred is O(

√
n).

Regarding change-any(A), although the 2LETT structure enables efficient inser-
tion and deletion of edges into/from the tree, it still remains defining how to select them
well. This is easily solved for change-pred, because once we choose an edge (u,v) to
insert, we only need to look for (u, p(u)) and (v, p(v)) as the only possible edges to remove.
On the other hand, for change-any, any edges in the path from u to v can be removed,
which implies in a path with O(n) edges. Consequently, we take an approach that is viable
in practice but has some bias: we try to select edges to add and remove stochastically,
and if this fails, we make the edge exchange by calling change-pred.

More specifically, we start by selecting an edge (u,v) from T , where v = p(u).
Afterwards, we try to find an edge (x,y), where x is part of the u-subtour and y is not (we
refer this as a subtour restriction). Subsequently, we call cut(A,u,v), which returns two
trees B and C, and then we call link(B,x,C,y) to reconnect them. If this is not possible,
we call change-pred(A). In order to select (x,y), we verify if the length of the u-subtour
is smaller than |A|

2 . If so we select x, otherwise we take y. Next we try k times to select
the edge (x,y) from the adjacent list of the previously selected vertex, and we verify if the
vertices respect the subtour restriction. Deciding which vertex, x or y, must be selected
first is essential, because choosing it from the smaller set increases the chance of the
another vertex to respect the subtour restriction. If we use a constant value for k, then
the time of change-any is O(

√
n). We have found that k = 5 provides a good trade off

between running time versus probability of finding an edge (x,y).

3.5.4 Limitations

2LETT has a bias in change-any, which has different implications in the results
depending on the type of problem being solved. It can be positive if the fallback to
change-pred leads to better solutions and faster convergence, or negative otherwise.
See Section 3.7.3 for further information regarding the one-tree max problem.
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3.6 Qualitative evaluation
Table 1 presents a summary about the structures. We can consider the Predecessor

as the baseline to compare the other structures. Although its design does not take into
account the issues discussed in Section 3.2.1, it is a compact and simple structure to
implement and has good practical performance. Moreover, it has linear time for both
operations and requires linear memory. And, finally, its mutation operations have no
restrictions, being able to perform any valid edge exchange.

Table 1 – Comparison of the Structures Regarding Complexity of Memory for an Initial Indi-
vidual and Creation of an Offspring; Complexity of Time, and; Restrictions for the
Operations.

Structure Memory Time Restrictions
Initial Offspring change-any change-pred change-any change-pred

Predecessor O(n) O(n) O(n) O(n) No No
2LPredecessor O(n) O(

√
n) — Average O(

√
n) — No

NDDR O(n) Average O(
√

n) Average O(
√

n) Average O(
√

n) Yes Yes
2LETT O(n1.5) O(n) O(

√
n) O(

√
n) Yes No

The 2LPredecessor is a modification of Predecessor that aims to avoid copying the
parent in change-pred. It not only reduces the running time, but also the extra memory
needed for each offspring: only one new subarray needs to be allocated. Its implementation
requires more work than Predecessor, but it is still simple.

NDDR has average time of O(
√

n) for the operations, which is related to the extra
memory required by an offspring: both time and memory are proportional to the size of
Tf rom and Tto. As discussed in Section 3.4.3, the operators have restrictions, which has
implications in the search. The implementation of NDDR is complex because, besides the
sharing of subtrees scheme, it requires saving the history of changes in order to find the
mutation operands.

Finally, the worst-case of 2LETT is O(
√

n), and its change-pred has no restric-
tions, as in Predecessor and 2LPredecessor. On the other hand, in order to achieve the
time that change-any has, we fall back to change-pred after some failed attempts
to find an edge to add (see Section 3.5.4). The initial memory for an individual is larger
than for Predecessor, but only O(

√
n) memory is accessed in the offspring creation. The

implementation of 2LETT is complex as well, therefore it is for the sake of comprehension
that we provide detailed information.

3.7 Experimental evaluation
This section presents some experimental results of change-any and change-

pred implemented for Predecessor, 2LPredecessor, NDDR, and 2LETT.
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NDDR usually requires global memory of O(n2) (DELBEM; LIMA; TELLES,
2012), for a global n×n matrix is used for finding mutation operands, even though only
one row in the matrix is used in each iteration (the one related to vertex p of Tf rom).
Therefore, when implementing the adjacent strategy, we could decrease the global mem-
ory to O(n) by using an 1×n matrix, thus reducing the overall use of the processor cache,
and improving the practical performance. On the other hand, the free strategy does not
require global memory. The implementation described in (DELBEM; LIMA; TELLES,
2012) depends on a unspecified constant value k, which we set as k = 1.

For the structures relying on structural sharing, we use reference counting to keep
track of the shared structures. We associate a reference counter to each structure, thus each
time a new pointer to the structure is created the counter is incremented, and each time
a pointer to a structure is deleted, the counter is decremented. When the counter reaches
zero, the structure memory is deallocated, except for the bit-arrays used by 2LETT, which
is returned to the pool.

We have observed in preliminary experiments that the structures performance
depends on how much data is stored on them. Increasing the memory of a structure
makes more pressure on processor cache, which decreases performance. For example, we
first used 64-bits integer to store each predecessor, but we changed to 32-bits integer and
got a performance improvement. Therefore, we used smaller types wherever possible.

We coded in Rust 1.31.1 and compiled with the command cargo build --release.
We have run the experiments in a Debian GNU/Linux 9.7 system with Intel Xeon X5670
2.93GHz processor and 32GB of RAM, using only one core for the experiments. The
source code are available under a free software license at <https://github.com/malbarbo/
ea-tree-repr>.

3.7.1 Random trees

We first evaluate how the running time of mutation operators for random trees
changes according to the number of vertices. To generate the random trees we used the
following random walk algorithm from (BRODER, 1989): a particle starts in a random
vertex and, at each iteration, the particle moves to another randomly chosen adjacent
vertex. When the particle visits a vertex for the first time, the edge that leads to the
vertex is added to the tree. The algorithm stops when all vertices are visited.

We executed this process 100 times: for each value of n ∈ {1,000,2,000, ...,50,000},
we generated a random tree of the complete graph in n vertices, and we applied iteratively
the mutation operator 10,000 times. In each iteration, the operator was applied over the
resulting tree from the previous iteration. Figure 22 shows the mean time of each operator
to run one time.

https://github.com/malbarbo/ea-tree-repr
https://github.com/malbarbo/ea-tree-repr
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We use free NDDR to avoid linear time. Recall that the time of NDDR, 2LETT,
and 2LPredecessor over random trees is O(

√
n). The plot lines are as expected, behaving

as a square function. On the other hand, the plot line for Predecessor shows slight bends
due to the increase of memory working set and the associated increase in cache misses.
Notice that Predecessor deals with O(n) memory cells to perform each mutation, because
it needs to copy the parent tree, while the other structures work with O(

√
n) memory

cells. We shall see in the next experiment that increasing n makes cache misses affect the
other structures as well.

The difference between the running time of change-any and change-pred is
small for Predecessor, and 2LETT, but more evident for NDDR. Also, Predecessor is
the most efficient data structure for change-any for trees with up to 10,000 vertices,
and for change-pred for trees with up to 6,000. For trees with more than 10,000
vertices, 2LETT is the most efficient for change-any, while for trees with more than
6,000 vertices, 2LPredecessor is the most efficient for change-pred. Remark that the
Predecessor is faster than NDDR for both methods for trees with up ≈ 40,000 vertices,
which suggests that the hidden terms in NDDR average time are larger than those in
Predecessor and 2LETT complexity times.

In order to evaluate the efficiency of the data structures for larger graphs, we
have run the same experiment for n ∈ {6,000,12,000, . . . ,300,000}. See Figure 23 for the
results. Notice that the linear execution of Predecessor is more evident, since the cache
effect has stabilized. On the other hand, the cache seems to affect more the running time
of NDDR and 2LETT for trees with number vertices from ≈ 50,000 to ≈ 125,000, making
the running time appears to be superlinear in this range. The running time of NDDR is
more affected, while the running time of 2LETT seems regular for trees with more than
≈ 125,000. The conclusion is that the Predecessor is still competitive with NDDR, even
for trees with 300,000 vertices. In addition, the performance of 2LETT and 2LPredecessor
comparing to the others have not changed. The following diagram summarizes the most
efficient structure for random trees according to the results from the experiments:

6,000 10,000 300,000

change-any

change-pred 2LPredecessor

2LETTPredecessor

Predecessor

For all these experiments, we used free NDDR, i.e., the free selection strategy for
NDDR. Now, we discuss the experiments with the adjacent selection strategy. To avoid
its bias, the experiments were run for the following class of graphs: for a given n, select a
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Figure 22 – Running time of change-any and change-pred over random trees of complete
graphs. The abscissa has the number of vertices of the tree. The ordinate shows the
running time in microseconds. For 2LETT, NDDRFree, and 2Predecessor the time
is O(

√
n), while for Predecessor the running is O(n).
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Figure 23 – Running time of change-any and change-pred over random trees from complete
graphs. The abscissa has the number of vertices of the tree. The ordinate shows the
running time in microseconds. Cache misses affect 2LETT, and especially NDDR.
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Figure 24 – Running time of change-any and change-pred for NDDR best-case inputs. The
abscissa has the number of vertices of the tree. The ordinate shows the running time
in microseconds. Overall, the results are similar to those for random trees.
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vertex r and create ⌈
√

n⌉ groups of vertices by randomly distributing all vertices to them,
except r. The difference in the number of vertices between any two groups must be at
most 1, making each group have O(

√
n) vertices. Subsequently, for each group, we create

edges connecting each pair of vertices inside the group. Finally, we choose one vertex from
each group to connect to r.

The experiments were executed as before but now, when NDDR is created, we
carefully placed all vertices that are in the same group in the same NDDR subtree. The
vertex r and its adjacent vertices are placed in T ∗. Since there are no edges between
vertices of two distinct groups, all mutation will affect only one subtree. Therefore, the
number of vertices in each subtree will remain the same, avoiding adjacent selection bias.
This effectively makes NDDR for one-tree forest works as it does for forests with O(

√
n)

disjoint trees, where each forest has O(
√

n) vertices, which is the best case for NDDR.

We used n ∈ {1,000,2,000, ...,50,000}, and the results (see Figure 24) are similar
to those from free strategy shown in Figure 22. This is expected, since NDDR makes
a balanced division of subtrees which provides to average case scenarios a resembling
performance to that obtained in best cases.

2LETT results in Figure 24 are similar as well to those in Figure 22, except for
a greater variance that creates a jagged plot line. On the other hand, Predecessor and
2LPredecessor have a better running time than before. Recall that general random trees
have mean diameter of O(

√
n), but the diameter of the random trees used in this last

experiment is smaller, specifically O( 4
√

n), which makes Predecessor and 2LPredecessor
run faster. Next, we provide a more in-depth discussion of the impact of diameter on the
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performance of structures.

3.7.2 Impact of tree diameter

In order to generate random trees with a specified diameter d < n, we modified
the random walk algorithm described earlier as follows: start the tree with a random path
with d edges, select a random vertex from the path and continue as in the random walk
algorithm, just avoiding to add edges that increase the tree diameter. In the end, the tree
should have diameter d.

We executed this process 100 times: for a complete graph in 5,000 vertices, we
generated 50 values for the diameter d, evenly distributed across the range [2,4,999].
For each value of d, we created a random tree with diameter d, and we executed the
mutation 10,000 times. Unlike the previous experiments, each mutation was performed in
the original tree, not in the tree resulting from the previous application of the mutation.
This way, every time the mutation was done in a tree with diameter d.

Figure 25 shows the mean time of each operator to run one time. As we can see,
the running time of NDDR and Predecessor increases according to the diameter, unless
for one exception for NDDR when d = 2, which has the highest running time. If d = 2
the tree has one central vertex connected to all other vertices and this is the worst case
for NDDR, because its division results in all subtrees, except one, containing only one
vertex, and one subtree containing all other vertices. Another extreme case for NDDR is
d = n−1, which results in all subtrees, except two, with one vertex and the other vertices
distributed between the two other subtrees.

The increase in the running time of NDDR and Predecessor seems to grow at the
same rate up to d ≈ 3,000, but is much faster for NDDR for larger values of d. Note
also that the execution time of the 2LETT is independent on the tree diameter. We can
conclude that, while the Predecessor is better for trees with up to 10,000 vertices and
random diameters, it begins to show its limitations for larger diameters, even for trees
with a smaller number of vertices, being overcame by 2LETT in these cases. Additionally,
2LETT performance advantage for larger diameter increases as the number of vertices
increases, so it comes out to be the best option.

3.7.3 Search space exploration

Now we evaluate the characteristics of the data structures when the operators
are used inside an EA. We consider a simple benchmark problem called One-max tree
(ROTHLAUF; GOLDBERG; HEINZL, 2002), and evaluate the differences in the search
performed by each implementation. The objective in the One-max tree problem is finding a
given tree Tob j, which can be determined randomly or by hand. The fitness of an individual
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Figure 25 – Impact of the tree diameter in the running time of change-any and change-pred.
The number of vertices is fixed in 5,000 and the diameter changes across the range
[2−4,999] (abscissa). The ordinate shows the running time in microseconds. Only
2LETT is unaffected by the diameter variation.

0 1,000 2,000 3,000 4,000 5,000

0

50

100

Diameter

T
im

e
(µ

s)

change-any

0 1,000 2,000 3,000 4,000 5,000

0

50

100

Diameter

change-pred

2LETT NDDRFree Predecessor 2LPredecessor

Source: Elaborated by the author.

T is defined as
|ETob j∩ET |

n−1 , that is, the fitness is proportional to the number of common edges
between T and Tob j. If T has no edges in common with Tob j, then the fitness is 0, and if
T = Tob j, then the fitness is 1.

The EA was set as follows. The population size was set for 10 randomly initialized
individuals. We arbitrarily select the parent and apply the mutation operator. If the
offspring was not in the population, the individual with the smaller fitness is replaced.
The execution stops after 5 ·105 iterations. The problem instance is a class of randomly
connected graphs with 5,000 vertices and 15,000 edges, and a tree arbitrarily constructed
from those graphs. We have run the algorithm 100 times and got the average fitness of
the best individual in the population at each iteration. See Figure 26 for the results.

Notice that the fitness for change-pred increases faster than for change-any
for the initial iterations, but it slows down after that. A better solution is found by
change-any in the end. Also, the progress of fitness in change-pred is the same for
Predecessor, 2LPredecessor, and 2LETT. This is expected, because they all implement
the same process. On the other hand, the progress of NDDR is smaller, which is also
expected because, once T ∗ is defined its vertices cannot change anymore, implying in a
search space that cannot be completely explored and some trees that cannot be found. In
fact, when we allow EA’s to run until finding the tree, only the one using NDDR was not
able to find it, running indefinitely.

Regarding change-any, the implementation for 2LETT falls back to change-
pred when it is not able to find two edges to exchange, which makes change-any
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Figure 26 – Evolution of the best individual’s fitness for an EA to the one-max tree problem. The
abscissa has the iteration number. The ordinate shows the fitness. change-pred
presents the best results for initial iterations and change-any for final iterations.
NDDR search is the restricted one.
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strictly better at initial iterations and strictly worse in final iterations than change-any
of Predecessor.

3.8 Final remarks

In this chapter we saw that data structures are a key aspect in the implementation
of search operations for direct spanning tree representations in EAs. Based on the most
common search operator in the literature, namely edge exchange, we defined the mutation
operators change-any and change-pred and identified two important implementation
issues for them: preserving the parent tree, and selecting the edges to exchange in such
a way as to ensure a valid offspring. We proposed the 2LETT data structure to imple-
ment those operators and performed a qualitative and experimental evaluation of 2LETT,
NDDR, and predecessor arrays.

Regarding the structure Predecessor, even having the worst asymptotic time when
compared to other structures, its simplicity makes it very efficient in practice. The exper-
iments show that it is the most efficient structure for random trees with up to 10,000
vertices and remains competitive with NDDR for trees with up to 300,000 vertices. Be-
sides that, 2LPredecessor, the version using structural sharing, has the best running time
for change-pred for random trees with more than 6,000 vertices.

The structure 2LETT overcomes the other structures regarding asymptotic time:
only O(

√
n) in the worst-case scenario. Furthermore, the practical efficiency is also the



68 Chapter 3. Data structures for mutation-based evolutionary algorithms

best for general graphs, being the only structure whose running time is independent of
tree diameter. Although change-any may fall back to call change-pred, that happens
unusually and does not affect its effectiveness.

About NDDR, the experiments show that its practical running time is inferior to
the other structures, even considering the best-case scenario. Despite this, NDDR may still
be the best approach for particular situations not addressed in our experiments. Therefore,
we point some possible limitations that require attention when implementing it: 1) inputs
for which the trees have either diameter 2 or close to the maximum diameter; 2) a possible
bias in the procedure to select operands for mutation operators, and; 3) restriction on the
search performed by operators for one-tree forests.

Overall, the results suggest that, when tackling a difficult spanning tree problem, it
is a good option to start with Predecessor, for its simplicity and efficiency for random trees.
If the initial experiments indicate that change-pred is more promising than change-
any, then changing to 2LPredecessor can increase the algorithm efficiency, and it is a
simple extension to do. If the input trees are larger and/or have larger diameters, then
2LETT is more rewarding, although it is also more complicated to implement.

In Chapter 5 we explore the use of 2LETT in a local search algorithm which oper-
ates in a single solution in each iteration, removing the need for structural sharing from
the 2LETT structure. However, before exploring this local search algorithm, which uses
a neighborhood defined by a variable number of edge exchange, we discuss in Chapter 4
two simpler neighborhoods based on one-edge and two-edge exchanges and show efficient
implementations that do not require advanced data structures.
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CHAPTER

4
ONE-EDGE AND TWO-EDGES EXCHANGE

NEIGHBORHOODS

This chapter is based on the paper presented at the Brazilian Symposium on
Operations Research 2017 (BARBOSA; DELBEM, 2017), which is part of this doctorate’s
research.

The minimum spanning tree problem and its variants are well studied in the lit-
erature and have many practical applications, especially in the design of networks. We
study a variant that considers edge conflict constraints by forbidding the existence of
some pairs of edges in the tree, which makes the problem NP-Hard. There are already
many complexity results and exact algorithms for the problem, but only a preliminary
study about heuristic algorithms. We present an iterated local search algorithm and a new
neighborhood structure for the problem. For a set of standard instances, the iterated local
search using the new neighborhood found all the known optimal solutions, and improved
the result for three instances, thus outperforming other heuristic algorithms.

4.1 Introduction
The minimum spanning tree problem (MSTP) is widely known in the combinatorial

optimization area. Several practical problems, especially those related to the design of
networks, can be modeled as variants of MSTP. Many of them are NP-Hard such as
the quadratic minimum spanning tree problem (ASSAD; XU, 1992) and the capacitated
minimum spanning tree problem (VOSS, 2009).

We study a variant of MSTP called the minimum spanning tree problem with
conflict constraints (MSTC). Given a graph G = (V,E), a cost function w : E → R+, and
a set C ⊂ E ×E of conflicting edges pair, the MSTC consists in finding a spanning tree T

of G with a minimum cost ∑e∈E(T )w(e) so that T is conflict free, i.e., T contains no pair
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of edges in C.

A concept often used to define the MSTC is the conflict graph. In a conflict graph
Ĝ = (E,C), its vertices correspond to the edges of G, and its edges correspond to the
conflicts in C. This way the edges of a conflict free spanning tree of G correspond to an
independent set in Ĝ.

Darmann, Pferschy and Schauer (2009) first introduced the MSTC and presented
results about the complexity, showing that it is NP-hard even if the conflict graph is a
union of paths of size 2. Other complexity results are later presented by Darmann et al.
(2011).

Zhang, Kabadi and Punnen (2011) show that the problem can be solved in poly-
nomial time if the conflict graph is a collection of disjoint cliques. They also show exact
algorithms, feasibility tests and a preliminary study about heuristics for the problem. The
heuristics proposed were: local search (LS), tabu search (TS) and tabu thresholding (TT),
all off them based on the one-edge exchange neighborhood (discussed in section 4.2).

Samer and Urrutia (2015) proposed two new formulations and a branch and cut
approach to solving the problem. One formulation is based in subtour elimination con-
straints (SECs) and another in odd-cycle inequalities. The formulation based in SECs
found new certificates of feasibility and optimality, as well as dual bounds stronger than
those in (ZHANG; KABADI; PUNNEN, 2011).

Bittencourt, Campêlo and Dias (2016) presented a strategy using vertex labeling
to remove cycles. Their initial experiments resulted in a good computational performance
and found that three open instances were unfeasible (SAMER; URRUTIA, 2013; SAMER;
URRUTIA, 2015).

Although newer models have been more robust, they still miss the optimal solutions
for some feasible instances of benchmark sets. Moreover, the gap between lower and upper
bounds for some instances is large. One possibility to try decreasing these gaps is through
heuristic algorithms. To the best of our knowledge, the work of Zhang, Kabadi and Punnen
(2011) seems to be the only using heuristics approach. However, preliminary results show
large gaps for instances with known optimal solutions, and also no gap reduction for the
other instances.

We propose an iterated local search algorithm and a neighborhood structure for
MSTC. In experiments using a benchmark set, our approach found all known optimal
values as well as decreased the gap for three instances with an unknown optimal solution.

We organized this chapter as follows: in section 4.2 we present two neighborhood
structures and describe our algorithm. In section 4.3 we discuss the results of our compu-
tational experiments and in section 4.4 we present the final remarks.
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4.2 Edge exchange neighborhoods
A neighborhood structure usually used in spanning tree problems is the one-edge

exchange neighborhood (ZHANG; KABADI; PUNNEN, 2011). For a given tree T , it con-
sists of all valid trees that can be obtained from T by replacing one of its edges. The
replacing process can be seen in two ways:

(i) An edge e is removed from T , which creates two connected components. Then an
edge f ̸= e connecting both components is added to T , and;

(ii) An edge f is added to T , which creates a cycle. Then an edge e ̸= f is removed from
this cycle.

Notice that both strategies preserve the property of the solution being a tree, i.e., a
connected subgraph without cycles. Now we give a formal definition for this neighborhood.

Let T ⊂ E be the set of edges of a spanning tree of a graph G= (V,E). Also, let T =

E \T be the set of edges of E which are not in T . We define the one-edge exchange neigh-
borhood as N1(T ) = {(T \{e})∪{ f} : e ∈ E, f ∈ T and (T \{e})∪{ f} contains no cycles}.
N1 is called as 2-exchange by Zhang, Kabadi and Punnen (2011).

We can extend this concept to a neighborhood based in the exchange of two
edges: N2(T ) = {(T \ {e1,e2})∪{ f1, f2} : {e1,e2} ∈

(T
2

)
,{ f1, f2} ∈

(T
2

)
and (T \ {e1,e2})∪

{ f1, f2} contains no cycles}. N2 is not so much used in the literature (see uses in (RIBEIRO;
SOUZA, 2002; BUI; DENG; ZRNCIC, 2012)), possibly because of its size. While the size
of N1 is O(nm), the size of N2 is O(n2m2). Despite this, we implement a local search using
N2 that is efficient in practice.

In order to define a search in N1 and N2 for MTSC, we need to deal with unfeasible
solutions. We use the strategy of penalizing conflicts in the objective function proposed
by Zhang, Kabadi and Punnen (2011). The objective function is defined as: ob j(T ) =

w(T )+αc(T ), where w(T ) is the sum of costs of all edges in T , α is a large constant value,
and c(T ) = |{(e, f ) : {e, f} ∈C and {e, f} ∈ T}| is the number of violated restrictions (from
restrictions set C).

The procedures one-exchange and two-exchanges (see Algorithm 1) describe
searching the neighborhoods N1 and N2, respectively. Next, we describe how they can be
efficiently implemented.

4.2.1 Local search implementation

For each edge e we define an attribute e.cost with the cost of adding e to the
current incumbent solution. The sets T and T are represented by arrays, and their indices
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Algorithm 1 – Searching the neighborhoods N1 and N2.

one-exchange(T , T )
1 for each edge e ∈ T do
2 T ′ = T \{e}
3 if ∃ f ∈ T such that T ′∪{f} is a tree and ob j(T ′∪{f})< ob j(T )

then
4 T = (T \{e})∪{f}
5 T = (T \{f})∪{e}
6 return improved
7 return not-improved

two-exchanges(T , T )
1 for each pair of edges (e1,e2) ∈

(T
2

)
do

2 T ′ = T \{e1,e2}
3 if ∃ (f1, f2) ∈

(T
2

)
such that T ′∪{f1, f2} is a tree and ob j(T ′∪{f1, f2})< ob j(T )

then
4 T = (T \{e1,e2})∪{f1, f2}
5 T = (T \{f1, f2})∪{e1,e2}
6 return improved
7 return not-improved

are used to access the edges, providing exchanges in time O(1) (lines 4 and 5 in one-
exchange and two-exchanges). The attribution in line 2 is conceptual and has no
need to be performed. Line 3 in both procedures is implemented as a loop testing each
edge or pair of edges.

The objective function evaluation can be done through the incremental strategy
proposed by Zhang, Kabadi and Punnen (2011), computing only the cost of modifications
in the incumbent solution. For this purpose, we define an attribute e.conf for each edge
e in order to store the number of conflicting edges with e in T , i.e., e.conf = |{ f : f ∈
T and {e, f} ∈ C}|. Given the value of ob j(T ), and the edges e ∈ T and f ∈ T , the
objective function of T ′ = (T \{e})∪{ f} can be calculated in O(1) by ob j(T ′) = w(T )+

f .cost− e.cost+αC(T ′), where

C(T ′) =

c(T )+ f .conf − e.conf −1, if {e, f} ∈C

c(T )+ f .conf − e.conf , otherwise.

In this case T ′ ∈ N1(T ). The incremental evaluation is done likewise for N2(T ) .
When an edge f is removed from a tree (resp., added into a tree), the values e.conf are
decreased (resp., increased) for each edge e such that { f ,e} ∈ C. Since the number of
conflicts of an edge is O(m), the execution time for this operation is O(m).
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In order to verify if an exchange of edges generates a valid tree (line 3 in the
procedures) in time O(1), we run a depth-first search (DFS) in T before line 1. For each
edge e ∈ T , we define two attributes: the start time e.desc, and the end time e.term, which
represents the time stamps as described by Cormen et al. (2009). We say a vertex v is a
descendant of a vertex u in DFS tree if u.desc ≤ v.desc and v.term ≤ u.term. The execution
time of DFS for trees is O(n).

We discuss now the exchange of an edge (the strategy is similar for two edges). Let
u and v be the extremes of an edge e such that u has been visited before v during DFS,
i.e., u.desc < v.desc. In subgraph T ′ = T \ {e}, the descendants of v in DFS tree form a
connected component and the other vertices form another. Given the extremes x and y of
an edge f such that x.desc < y.desc, we can verify in time O(1) if f connects those two
connected components of T ′: if y is descendant of v in DFS tree (y is inside a connected
component), and x is not descendant of v in DFS tree (x is inside the other component),
then f connects the two connected components of T ′.

Since line 3 can be done in O(1), the execution time of DFS is O(n), and updating
con f takes time O(m), the total execution time of one-exchange is n+m+nm = O(nm)

and, of two-exchanges is n+m+n2m2 = O(n2m2).

In two-exchanges, the loop in line 3 is the biggest cost with time O(m2). In order
to improve the procedure, we use a strategy to decrease the number of pairs of edges that
need to be verified. We can notice that the subgraph T ′ = T \{e1,e2} (line 2) has three
connected components. Denote them by A, B, and C. Before line 3, we classify all edges of
T according to their extremes as follows: if the extremes of an edge e are in two connected
components A and B, then we add e to a set GAB. The other cases are likewise: if extremes
are in A and C, we add the edge to a set GAC, and if they are in B and C, we add the edge
to a set GBC. The edges with extremes in the same connected component are not added
to any set. This way, there is no need to test all pairs of

(T
2

)
, because we only have to test

the pairs which connect the A, B and C components: GAB ×GAC ∪GAB ×GBC ∪GAC ×GBC.
Even though this strategy does not affect the asymptotic complexity of two-exchanges,
it is indeed very efficient in our experiments.

We use these two local search in an iterated local search algorithm that we describe
next.

4.2.2 Iterated local search

The main idea of an iterated local search is to perform a local search iteratively
and take advantage of the solutions found in previous iterations (LOURENÇO; MARTIN;
STÜTZLE, 2010). The algorithm keeps an incumbent solution T and the best current
solution Tb. At each iteration, a local search is performed from T and, if the result is better
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than Tb, it replaces Tb. Before the next iteration, T “suffers” a perturbation in order to
leave the local minimum. This perturbation must be balanced, not too strong; otherwise,
the new search neighborhood could not be related to the previous one, thus discarding
the characteristics obtained in previous searches. On the other hand, the perturbation
should not be too weak; otherwise, the algorithm will remain at the same local minimum.

An ILS using one-exchange or two-exchanges to solve MSTC is described in
Algorithm 2. In the next section, we present the results from the experimental evaluation
of that algorithm.

Algorithm 2 – Iterated local search

ILS(E, T, P, Iters)
1 Tb = T
2 T = E \T
3 repeat Iters times

▷ Local Search
4 execute exchange(T,T) while the returned value is improved
5 if ob j(T)< ob j(Tb) then
6 Tb = T

▷ Perturbation
7 Arbitrarily select a subset A ⊂ T with size P

and a subset B ⊂ T such that (T \A)∪B is a tree
8 T = (T \A)∪B
9 T = (T \B)∪A

10 return Tb

4.3 Experimental evaluation

We present in this section the results of a computational evaluation of the iterated
local search (Algorithm 2) applied to neighborhoods N1 and N2, which we denote by B1

and B2, respectively. We use the benchmark instances proposed by Zhang, Kabadi and
Punnen (2011). The instances are divided in types 1 and 2, and each one is defined by a
graph G = (V,E) and a conflict set C, identified by a label |V |-|E|-|C|. Type 2 instances
were generated to be feasible and have known optimal solutions. Type 1 instances have
difficult cases: among 85 instances, 35 were determined to be unfeasible, 11 are feasible,
and up to now, the remaining instances have unknown feasibility. Among the 11 feasible
instances, 9 of them have known optimal solutions.

The algorithms were implemented in Rust version 1.16 with the command cargo
build --release for compilation. Experiments were carried using only one core on a



4.3. Experimental evaluation 75

Table 2 – Performance to find feasible solutions for type 1 instances.

B1 B2

|V | |E| |C| Obj T (s) Obj T (s)

50 200 199 1200 0,000 1192 0,000
50 200 398 1215 0,000 1230 0,000
50 200 597 1379 0,000 1409 0,000
50 200 995 1676 0,000 1805 0,010

100 300 448 4842 0,010 4934 0,030
100 300 897 6095 0,050 6362 0,060
100 500 1247 5848 0,020 6159 0,045
100 500 2495 8083 0,020 8758 0,040
100 500 3741 9221 0,040 10354 0,060
200 600 1797 14674 2,255 15449 1,310
200 800 3196 27478 0,150 28800 0,245

Source: Research data.

Debian GNU/Linux 8.7 system with Intel Core i5-3320M 2.6Mhz processor and 8GB of
RAM.

Each algorithm was executed 30 times. We show the results with the median run
time in seconds and the median value of the objective function. We also present box plots
to help visualizing the distribution of the objective function value of solutions.

Each execution starts with a solution generated by Kruskal’s minimum spanning
tree algorithm (KRUSKAL, 1956), for which we use random weights for the edges in order
to get different initial solutions. We use the number of edges of the instance to set the
number of iterations of ILS, i.e., Iters = |E|. The perturbation consisted of replacing three
edges in the incumbent solution.

4.3.1 Feasible solutions

Since finding feasible solutions, namely spanning trees without conflicting edges,
for MSTC is NP-hard, it is interesting to evaluate the ability of algorithms to find feasible
solutions quickly.

We set both algorithms to finish as soon as a feasible solution was found; otherwise,
they executed up to a maximum number of iterations.

The results for type 1 feasible instances are presented in Table 2 and Figure 27. In
Table 2 notice that B1 and B2 find feasible solutions quickly but, in general, B1 is faster
and find better solutions than B2. Only for the case 200-600-1797, the algorithm B1 did
not find feasible solutions in all its executions (it missed 7). This makes its execution time
larger than the one of B2, since it executed up to the maximum number of iterations in
those cases. Only for the case 50-200-199, the median solution found by B1 was worst
than the one found by B2.
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Figure 27 – Gaps for feasible solutions for type 1 instances.
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Figure 27 shows the value distribution of objective function for the solutions found
in 30 executions of B1 and B2. At the ordinate, we have the gap to the optimal solution for
instances of 50 and 100 vertices, and the gap to the best known solution for the others (see
Table 4). The gap of a solution s to a solution b is given by 100 · (ob j(b)−ob j(s))/ob j(b).
Notice that the gap between solution values for graphs with the same number of vertices
and edges decreases as the number of constraints increases. It happens because the increase
of restrictions decreases the number of feasible solutions, which also decreases the mean
value of the objective function (we suppose a uniform decrease in the distribution of the
values of the objective function).

Results for type 2 instances are presented in Table 3. Since they are similar to
those for type 1 instances, we omit a diagram. Notice that the execution time of B2

increases more than the one of B1 as the size of instances increases. This is expected
because neighborhood N2 is larger than N1 (as discussed in subsection 4.2.2).

4.3.2 Quality of the solutions

Next, we evaluate the ability of algorithms B1 and B2 to find good solutions. Results
are presented in Table 4 and Figure 28. In Table 4, we present not only the median of
objective function values, but also the best value found in the 30 executions for B1 and B2
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Table 3 – Performance to find feasible solutions for type 2 instances.

B1 B2

|V | |E| |C| Obj T (s) Obj T (s)

50 200 3903 1722 0,010 1844 0,020
50 200 4877 2150 0,010 2205 0,020
50 200 5864 2378 0,010 2434 0,030

100 300 8609 7507 0,030 7534 0,090
100 300 10686 8030 0,060 8040 0,160
100 300 12761 8169 0,040 8182 0,170
100 500 24740 12731 0,100 12890 0,340
100 500 30886 11392 0,115 11542 0,470
100 500 36827 11564 0,090 11686 0,565
200 400 13660 17758 0,100 17897 0,340
200 400 17088 18713 0,140 18784 0,375
200 400 20469 19189 0,130 19274 0,530
200 600 34504 20827 0,315 20895 1,535
200 600 42930 18128 0,340 18162 1,685
200 600 50984 20864 0,405 20954 2,615
200 800 62625 39911 0,520 40049 3,340
200 800 78387 38170 0,595 38352 4,505
200 800 93978 38819 0,620 39100 4,485
300 600 31001 43721 0,380 43721 9,990
300 600 38216 44280 0,455 44394 1,325
300 600 45310 43206 0,465 43347 2,320
300 800 59600 43125 0,785 43247 4,420
300 800 74500 42377 0,930 42436 5,230
300 800 89300 44164 1,085 44270 5,225
300 1000 96590 71675 1,210 71734 7,995
300 1000 120500 76345 1,415 76345 14,125
300 1000 144090 78880 1,610 78880 20,535

Source: Research data.

(column named “Best”). Column “Model / Obj” presents the value of optimal solutions
obtained by an exact method. Since an optimal solution is not known yet for the three
last instances, we show the best-known bounds.

As before, the execution time of B2 is larger than the one of B1. But, for this
experiment, B2 overcame B1 regarding the quality of solutions. Considering the median
of the executions, algorithm B1 found optimal solutions for two instances, and B2 found
them for five instances. Considering the best value among executions, algorithm B1 found
optimal solutions for four instances, and B2 found them for all instances with known
optimal values. For other instances with unknown optimal values, B2 could overcome the
best-known solutions not only regarding the median but also in respect to the best value,
this way decreasing the gap for the lower bound. For instance 100-500-3741, the gap
decreased from 28,99% to 13,09%, for instance 200-600-1797 it decreased from 6,33% to
3,99%, and for instance 200-800-3196, it decreased from 5,07% to 3,43%.

Notice that B2 is consistent in finding good solutions (see Figure 28). For instances
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Table 4 – Quality of solutions for type 1 instances.

Model B1 B2

|V | |E| |C| Obj Obj Best T (s) Obj Best T (s)

50 200 199 708 708 708 0,090 708 708 0,470
50 200 398 770 770 770 0,100 770 770 0,460
50 200 597 917 946 917 0,110 918 917 0,450
50 200 995 1324 1364 1324 0,120 1324 1324 0,460

100 300 448 4041 4118 4058 0,380 4041 4041 3,230
100 300 897 5658 5704 5662 0,410 5663 5658 2,425
100 500 1247 4275 4364 4284 1,205 4275 4275 8,590
100 500 2495 5997 6347 6125 1,410 6024 5997 8,200
100 500 3741 [6538 - 9207] 7675 7582 1,510 7538 7523 7,225
200 600 1797 [13264 - 14161] 14418 13959 3,315 13915 13815 29,465
300 800 3196 [20744 - 21852] 22453 22193 6,950 21536 21480 62,480

Source: Research data. The values for “Model / Obj” column are from Bittencourt, Campêlo
and Dias (2016) and Samer and Urrutia (2015).

Figure 28 – Gaps for type 1 instances.
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Table 5 – Comparison of heuristics for type 1 instances.

LS TT TS B1 B2

|V | |E| |C| Obj T (s) Obj T (s) Obj T (s) Obj T (s) Obj T (s)

50 200 199 708 0,031 735 0,434 711 0,513 708 0,090 708 0,470
50 200 398 797 0,053 789 0,519 785 0,497 770 0,100 770 0,460
50 200 597 - 0,088 1044 0,522 1086 0,428 946 0,110 917 0,450
50 200 995 1424 0,125 1721 0,397 1629 0,506 1364 0,120 1324 0,460

100 300 448 4102 0,392 4316 2,831 4207 2,772 4118 0,380 4041 3,230
100 300 897 - 0,769 - 2,381 - 2,625 5704 0,410 5663 2,425
100 500 1247 4293 0,941 4913 5,797 4539 7,756 4364 1,205 4275 8,590
100 500 2495 6603 1,275 7959 6,206 6812 7,484 6347 1,410 6024 8,200
100 500 3741 - 1,728 10066 5,681 8787 6,544 7675 1,510 7538 7,225
200 600 1797 - 6,431 - 37,282 - 31,744 14418 3,315 13915 29,465
300 800 3196 - 10,463 - 49,369 - 46,082 22453 6,950 21536 62,480

Source: Research data. The values for “LS”, “TT” and “TS” column are from Zhang, Kabadi
and Punnen (2011).

50-200-199 and 50-200-398, B2 found the optimal solution in all executions. Except for
instances 50-200-995, 100-500-3741, and 200-800-3196, all solutions have a gap smaller
than 2%.

Next section, we discuss results for type 2 instances, and we compare our approach
with other heuristics.

4.3.3 Comparison with other heuristics

In this section we compare B1 and B2 with heuristic algorithms LS, TT and TS,
proposed by Zhang, Kabadi and Punnen (2011) (described in section 4.1). We highlight
that the authors described results from the heuristics as preliminary. Their experiments
were executed in a Dell computer with processor Intel Pentium 4 3.4 GHz and a worksta-
tion Dell with processor Intel Xeon 2.0 GHz.

Results for type 1 instances are shown in Table 5. Zhang, Kabadi and Punnen
(2011) does not provide information about the number of executions for each algorithm,
neither if execution times and objective function values are the best found or the median
(or average) of many executions. For B1 and B2, the values are the median of execution
time and the median of objective function values. Notice that values in columns “Obj”
and “T (s)” for B1 and B2 in Table 5 are the same in Table 4, and they are repeated to
ease the comparison. A value “-” in column “Obj” for LS, TT and TS mean the algorithm
found no feasible solution.

Notice that heuristics LS, TT and TS found no feasible solutions for some instances.
For cases 100-300-448 and 100-500-1247, algorithm LS found better solutions than B1, for
case 50-200-199, algorithms LS and B1 found solutions with the same value, and for the
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remaining cases, B1 overcomes LS. Algorithm B1 overcomes TT and TS in all cases, and
B2 overcomes LS, TT, and TS in all cases.

In order to make a comparison of execution times, we need to adjust the times, since
experiments were executed in different computers. By using websites CpuBenchmark 1

and UserBenchmark 2, we establish a limit of 5 times for the performance (superior) of
the computer in which we executed our tests in relation to those used by Zhang, Kabadi
and Punnen (2011). Adjusted execution times for LS, TT and TS (originally reported
time divided by 5) are presented in columns “T (s)”. Considering this new information,
B1 and LS present the best times and are competitive with each other. B2 presents times
more elevated, but it is competitive with TT and TS.

Results for type 2 instances are presented in Table 6. Column “Optimal” contains
values of the optimal solutions for each instance. All heuristics found optimal solutions
for all instances (B1 and B2 found optimal solutions in all executions). These results are
similar to those obtained for type 1 instances, highlighting B1 with total execution time
68% better than LS, i.e., the second fastest heuristic.

4.4 Final remarks
We proposed an iterated local search and a neighborhood for the minimum span-

ning tree problem with conflict constraints. Also, we presented neighborhood N1 described
in (ZHANG; KABADI; PUNNEN, 2011), which is based on the exchange of an edge. Our
proposed neighborhood N2 differs by doing the exchange of two edges. We described effi-
cient local search implementations in both neighborhoods.

Additionally, we presented the results of computational experiments for a set of
benchmark sets. The iterated local search can identify feasible solutions quickly either
in neighborhood N1 or in N2. The algorithm which uses neighborhood N2 found optimal
solutions for all instances for which the optimal value is already known, and it improved
the best-known value for three other instances. These results overcome those obtained by
other heuristics.

1 <https://www.cpubenchmark.net/compare.php?cmp[]=1315&cmp[]=1077&cmp[]=817>
(comparison of “Single Thread Rating” values)

2 <http://cpu.userbenchmark.com/Compare/Intel-Pentium-D-340GHz-vs-Intel-Core-i5-3320M/
m5820vsm402> (comparison of “Average User Bench” values)

https://www.cpubenchmark.net/compare.php?cmp[]=1315&cmp[]=1077&cmp[]=817
http://cpu.userbenchmark.com/Compare/Intel-Pentium-D-340GHz-vs-Intel-Core-i5-3320M/m5820vsm402
http://cpu.userbenchmark.com/Compare/Intel-Pentium-D-340GHz-vs-Intel-Core-i5-3320M/m5820vsm402
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Table 6 – Comparison of heuristics for type 2 instances.

Time (s)

|V | |E| |C| Optimal LS TT TS B1 B2

50 200 3903 1636 0,266 0,444 0,578 0,200 0,510
50 200 4877 2043 0,331 0,491 0,847 0,230 0,510
50 200 5864 2338 0,500 0,419 0,684 0,200 0,490

100 300 8609 7434 0,953 3,125 3,516 0,660 2,390
100 300 10686 7968 1,066 2,378 3,272 0,620 2,400
100 300 12761 8166 1,081 3,328 3,453 0,770 2,510
100 500 24740 12652 6,009 6,647 8,450 2,550 7,960
100 500 30886 11232 7,491 6,513 7,344 2,965 9,310
100 500 36827 11481 9,938 4,960 6,641 2,570 8,155
200 400 13660 17728 0,863 12,441 13,260 2,155 10,840
200 400 17088 18617 0,966 11,013 16,922 2,310 10,935
200 400 20469 19140 2,169 9,884 11,669 1,970 11,550
200 600 34504 20716 13,063 25,632 36,132 7,040 33,050
200 600 42930 18025 12,163 22,900 42,117 7,210 31,290
200 600 50984 20864 14,606 26,541 53,729 6,795 33,095
200 800 62625 39895 55,135 43,810 51,391 12,970 59,930
200 800 78387 37671 59,366 47,335 46,657 18,045 67,170
200 800 93978 38798 56,188 39,410 46,176 11,495 65,745
300 600 31001 43721 8,002 40,106 49,069 5,225 49,945
300 600 38216 44267 4,253 49,394 67,401 9,125 50,960
300 600 45310 43071 2,553 31,135 43,360 8,110 54,320
300 800 59600 43125 33,144 88,516 93,951 13,620 105,210
300 800 74500 42292 28,803 59,757 83,932 17,360 110,600
300 800 89300 44114 9,200 81,076 107,364 20,595 113,275
300 1000 96590 71562 140,117 106,301 131,958 28,630 177,240
300 1000 120500 76345 145,935 114,238 125,920 21,105 191,390
300 1000 144090 78880 125,441 123,320 142,421 26,210 205,030

Source: Research data. The values for “LS”, “TT” and “TS” column are adapted from Zhang,
Kabadi and Punnen (2011).
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CHAPTER

5
DATA STRUCTURES FOR VARIABLE LOCAL

SEARCH

In this chapter, we explore the use of 2LETT in local search algorithms. We first
discuss in section 5.1 the relation of the edge exchange operations in evolutionary algo-
rithms as described in Chapter 3 and local search algorithms. Then, in section 5.2 we
analyze the performance of predecessor arrays and 2LETT when used in local search
algorithms. Finally, we present our final remarks in section 5.3.

5.1 Edge exchange

In Chapter 3, we showed that efficient edge exchange mutation operators requires
advanced data structures. On the other had, similar operations in the local search algo-
rithm discussed in Chapter 4 are implemented using simple data structures. We discuss
in this section why this is the case.

Consider an individual in an EA. Let us trace back the sequence of edge exchanges
that lead to this individual from the initial solution and observe how each one was done.
We can see that each edge exchange was randomly chosen, without comparing any possible
alternative. Therefor, the main computation time to produce an individual is related to
find and do one edge exchange.

For local search, the process is different. Each edge exchange is chosen by compar-
ing many options. This scheme allows some computation time to be amortized between
all available edge exchange options. Indeed, this is what is done in one-edge and two-edges
exchange in Chapter 4, where a pre-processing with O(n) time allows each possible edge
exchange to be considered in O(1) time. However, this strategy can be unfeasible if there
are few candidate edge exchanges, and so the pre-processing would not be amortized.
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This last observation brings the question of which kind of neighborhood would
require efficient data structures because a pre-processing scheme would not work. We
take N1 and N2 and generalizes it to Nk(T ) = {T ′ : T and T ′ differs in at most k edges}. A
neighborhood like Nk has been explored in many problems, including in TSP, where the
best algorithms (LAWLER, 1985) use it. The first issue with Nk it is size. In the TSP
literature, the exploration of Nk is made viable restricting the search. We propose a similar
restriction that requires efficient data structures.

Given a spanning tree T of a graph G = (V,E), we restrict the search on Nk to
trees than can be obtained from T by a sequence of exchanges (e1, f1),(e2, f2), . . . ,(ek, fk),
were the edges e1,e2, . . . ,ek are add to T and the edges f1, f2, · · · , fk are removed from T

and e1 and f1 has a vertex in common, f1 and e2 has a vertex in common and so on.

5.2 Data structures performance
We now consider how predecessor arrays and 2LETT perform in searching the

Nk neighborhood. The cost to do an edge exchange is O(
√

n) in the average case for
predecessor array and O(

√
n) in the worst case for 2LETT.

Although 2LETT without structural sharing is more efficient its asymptotic time
did not change. On the other hand, the time for predecessor array decreased from O(n)

in the worst case (the array needs to be copied in EA) to O(
√

n) in the average case.
Predecessor array was already the best option for random trees with less than 10,000
vertices. In local search algorithms, we expect it to continue to the best option for random
trees for even more vertices.

We also expected that 2LETT to continue to be the best option for trees with
large diameter (the worst case for predecessor arrays), but only for very large trees.

5.3 Final remarks
We have proposed the Nk neighborhood and discussed how the predecessor array

and 2LETT would perform in searching it. The predecessor array has an advantage in
random trees while 2LETT in large trees with large diameters.



85

CHAPTER

6
CONCLUSIONS

In this thesis, we addressed the problem of designing an efficient data structure for
evolutionary and local search algorithms applied to optimization spanning tree problems.
Based on the concepts of Euler tours and structural sharing we proposed the 2LETT data
structure. We evaluated qualitatively and quantitative the 2LETT and other structures
from literature.

In Chapter 3, we analyzed various direct spanning tree representations for evolu-
tionary algorithms and identified the most common mutation operator: the edge exchange.
Based on it we defined the two mutation operators change-any and change-pred. We
evaluated the implementation of these operators using predecessor arrays, NDDR and
2LETT. Predecessor arrays are the most efficient structure for change-any for random
trees with less than 10,000. When dealing with a hard spanning tree problems, it is a
good idea to start with predecessor for its simplicity and efficiency. Our proposal of using
structural sharing to improve predecessor arrays for change-pred, the 2LPredecessor,
has the best performance for this operation for random trees with more than 6,000 vertices.
Finally, 2LETT has the best time for the mutation operators, O(

√
n) in the worst-case.

Besides, it is the only structure that the running time is independent of the diameter of
the tree and has the best performance for change-any for trees with more than 10,000
vertices. For NDDR we identified three aspects that must be carefully analyzed before
using it: 1) trees that cannot be split into equally sized subtrees; 2) a possible bias in
the procedure to select operands for mutation operators, and; 3) restriction on the search
performed by the operators for one-tree forests.

In Chapter 4 we considered the one-edge and the two-edges exchange neighborhood
and its implementation. We showed how to implement a search in each neighborhood
in such a way that each neighbor is checked in O(1) time, without using an advanced
data structure. Besides, our implementation of the search for two-edges exchange uses a
strategy that avoids testing some exchanges that are unfeasible, improving its practical
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performance. We used an ILS with each neighborhood to solve the minimum spanning
tree problem with conflict constraints. The version using two-edges exchange found all
known optimum solutions for a benchmark set and improved the best-known solutions for
the other cases with unknown optimum.

In Chapter 5 we investigate a local search algorithm in a neighborhood defined
by a variable number of edge exchanges. We showed that, unlike the one-edge and two-
edges exchanges neighborhood, the exploration of the variable number of edge exchanges
neighborhood requires efficient data structures. For its simplicity, the predecessor arrays
still have the best performance for random trees, while 2LETT is only adequate for large
trees with large diameters.

6.1 Directions for future research
We list in this section some topics that can be further investigated.

Recall that the practical performance of the studies structures is sensitive to imple-
mentations details. Specifically for evolutionary algorithms, one aspect that can be better
explored is the use of a pool of memory for all structures, not only for the vertex set.

Another direction for future research is the application of the local search algorithm
using the variable number of edge exchanges to other problems. Using predecessor array
can be very efficient for problems that have trees solutions with small diameters, like
the minimum spanning tree with diameter constraint. On the other hand, 2LETT can
be efficient for the opposite, problems with trees solutions with large diameters, like the
minimum number of branch vertices problem and the Hamiltonian cycle problem.
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