
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

A framework for experimental studies on the integration of
software testing into programming education

Lilian Passos Scatalon
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Lilian Passos Scatalon

A framework for experimental studies on the integration of
software testing into programming education

Thesis submitted to the Institute of Mathematics
and Computer Sciences – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. EXAMINATION
BOARD PRESENTATION COPY

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Dr. Ellen Francine Barbosa

USP – São Carlos
February 2019

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

S287f
Scatalon, Lilian Passos
 A framework for experimental studies on the
integration of software testing into programming
education / Lilian Passos Scatalon; orientadora
Ellen Francine Barbosa. -- São Carlos, 2019.
 200 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Matemática) -- Instituto de Ciências Matemáticas e
de Computação, Universidade de São Paulo, 2019.

 1. Programming education. 2. Software testing.
3. Experimental studies. 4. Experimental framework.
I. Barbosa, Ellen Francine, orient. II. Título.

Lilian Passos Scatalon

Um framework para estudos experimentais sobre a
integração de teste de software no ensino de programação

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutora em Ciências – Ciências de Computação
e Matemática Computacional. EXEMPLAR DE
DEFESA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientadora: Dr. Ellen Francine Barbosa

USP – São Carlos
Fevereiro de 2019

“After reflecting on the first experiments conducted, one is often jarred at the end of an

investigation by (and even a little ashamed of) how pathetic they were. The wrong variables may

have originally been examined or important variables may have been investigated, though far

outside the right region. It is like watching a film about a swimmer, who now somersaults from

the springboard, when he was only a small boy learning how to swim. It would be ridiculous to

start by doing somersaults and neurotic to say "if I cannot somersault from the springboard now,

I prefer not to learn how to swim". Researchers must learn from the swimmer, who was ready to

put his foot in the water and not afraid of getting wet.”

Natalia Juristo and Ana M. Moreno

Basics of Software Engineering Experimentation

page 48

RESUMO

SCATALON, L. P. Um framework para estudos experimentais sobre a integração de teste
de software no ensino de programação. 2019. 200 p. Tese (Doutorado em Ciências – Ciências
de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2019.

Disciplinas introdutórias de programação compõem o núcleo de diversos cursos de graduação,
visto que se trata de uma habilidade crucial para profissionais em muitas áreas de ciências
exatas. Buscando lidar com as dificuldades de aprendizagem dos alunos nessas disciplinas, os
professores podem adotar diferentes abordagens de ensino, uma vez que há muitas variantes no
ensino de programação (como linguagens e paradigmas de programação, práticas de desenvol-
vimento, plataformas, ferramentas de apoio, etc). Em particular, a abordagem de ensino que
consiste em integrar teste de software nesse contexto tem se destacado na área, pois pode levar os
alunos a pensarem de modo mais crítico enquanto resolvem atividades práticas de programação.
Mesmo assim, essa abordagem de ensino também pode apresentar desafios significativos, como a
resistência dos alunos para conduzir práticas de teste. Nesse sentido, estudos experimentais têm
o papel de fornecer evidência acerca de resultados em termos de aprendizagem, considerando
diferentes abordagens de ensino e contextos. Porém, estudos na área de ensino de programação
muitas vezes apresentam falta de fundamentação teórica, ou seja, não são construídos a partir de
teorias, modelos e frameworks estabelecidos na área. Isso significa que os aspectos (ou variáveis)
utilizados para investigar as abordagens de ensino não são adequadamente caracterizados nos
estudos, o que leva a dificuldades em interpretar os resultados obtidos e construir conhecimento
na área. Como consequência, os professores são impedidos de ter evidências confiáveis para
fazer escolhas informadas nas abordagens de ensino utilizadas em sala de aula. Considerando
esse cenário, este trabalho de doutorado propõe o uso de modelos de domínio para apoiar pesqui-
sadores ao definir e projetar experimentos no ensino de programação. Mais especificamente, o
domínio da abordagem de integração de teste de software foi explorado neste trabalho, com a
criação de um framework para estudos experimentais sobre a integração de teste de software no
ensino de programação. O framework provê uma estrutura básica de estudos experimentais nesse
domínio, sendo composto por modelos de variáveis relacionadas a essa abordagem de ensino.
Neste trabalho também foram conduzidos experimentos de acordo com a estrutura do framework.
A meta deste trabalho é apoiar pesquisadores e professores ao definir e planejar estudos no
cenário educacional, em especial os focados em avaliar a integração de teste de software em
disciplinas de programação.

Palavras-chave: Ensino de programação, Teste de software, Estudos experimentais, Framework
experimental.

ABSTRACT

SCATALON, L. P. A framework for experimental studies on the integration of software
testing into programming education. 2019. 200 p. Tese (Doutorado em Ciências – Ciências
de Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e de Computa-
ção, Universidade de São Paulo, São Carlos – SP, 2019.

Introductory programming courses compose the core of several undergraduate degree programs,
since programming is a crucial technical skill for professionals in many STEM areas. Aiming to
address students’ learning difficulties in these courses, instructors can adopt different teaching
approaches, since there are several varying aspects in programming education (e.g. programming
languages and paradigms, development practices, platforms, supporting tools etc). In particular,
the teaching approach that consists of integrating software testing into this context has been
prominent in the area, since it may lead students to think more critically while working on
programming assignments. Even so, this teaching approach can also present significant chal-
lenges, such as the students’ reluctance to conduct testing practices. In this sense, experimental
studies have the role to provide evidence about learning outcomes, considering different teaching
approaches and contexts. However, studies in the area of programming education often present
a lack of theoretical basis, i.e. are not built upon established theories, models and frameworks.
In other words, the varying aspects (or variables) used to investigate teaching approaches are
not properly characterized in the studies, what leads to difficulties to interpret the obtained
results and build knowledge in the area. As a consequence, instructors are prevented from
having reliable evidence to make informed choices of teaching approaches used in the classroom.
Considering this scenario, we propose in this PhD thesis the use of domain-specific models to
support researchers in scoping and designing experiments on programming education. More
specifically, we explored the domain of the software testing integration teaching approach, by
creating a framework for experimental studies on the integration of software testing into pro-
gramming education. The framework provides a basic structure of experimental studies in this
domain, composed by models of variables related to this teaching approach. We also conducted
experiments on the same domain and demonstrated their instantiation into the framework. We
intend to support researchers and instructors in the scoping and planning of experimental studies
in the educational scenario, specially those aimed at evaluating the integration of software testing
into programming courses.

Keywords: Programming education, Software testing, Experimental studies, Experimental
framework.

LIST OF FIGURES

Figure 1 – Distribution of students scores for problem P1 in the study conducted by
McCracken et al. (2001) . 32

Figure 2 – Experimental process of Wohlin et al. (2012) 43

Figure 3 – Experimental process of Juristo and Moreno (2001) 43

Figure 4 – Scoping phase – experimental process (WOHLIN et al., 2012) 44

Figure 5 – Planning phase – experimental process (WOHLIN et al., 2012) 45

Figure 6 – Input and output variables in an experiment 46

Figure 7 – Influencias externas de um projeto de software (JURISTO; MORENO, 2001) 47

Figure 8 – Influencias internas de um projeto de software (JURISTO; MORENO, 2001) 47

Figure 9 – Goal Question Metric model (BASILI; CALDIERA; ROMBACH, 1994) . . 49

Figure 10 – Diferentes projetos experimentais (JURISTO; MORENO, 2001) 49

Figure 11 – Operation phase – experimental process (WOHLIN et al., 2012) 52

Figure 12 – Analysis phase – experimental process (WOHLIN et al., 2012) 53

Figure 13 – Criteria to choose between parametric or non-parametric tests (JURISTO;
MORENO, 2001) . 54

Figure 14 – Packaging phase – experimental process (WOHLIN et al., 2012) 54

Figure 15 – Domain-specific experiment elements defined in the scoping and planning
phases . 56

Figure 16 – Possible values for software processes (BASILI; SHULL; LANUBILE, 1999) 57

Figure 17 – Possible values for describing the effectiveness of software processes (BASILI;
SHULL; LANUBILE, 1999) . 57

Figure 18 – Possible values for describing software documents (BASILI; SHULL; LANU-
BILE, 1999) . 57

Figure 19 – Framework for research on pair programming of Gallis, Arisholm and Dyba
(2003) . 60

Figure 20 – Respondents’ major . 68

Figure 21 – Courses that addressed Software Testing in respondents major 68

Figure 22 – Respondents’ current position in industry 69

Figure 23 – Respondents’ years of experience in industry 69

Figure 24 – Programming languages used in respondents’ projects 70

Figure 25 – Tools used in respondents’ projects . 72

Figure 26 – Results . 79

Figure 27 – Map of research on software testing in introductory programming courses . 80

Figure 28 – Programming processes used in the empirical studies 104
Figure 29 – Testing tasks performed by students in the empirical studies 105
Figure 30 – Supporting tools used in the empirical studies 105
Figure 31 – Individual results for student-written test cases (ST) 114
Figure 32 – Individual results for instructor-provided test cases (IT) 114
Figure 33 – Study design . 121
Figure 34 – STeP-EF variables . 127
Figure 35 – Experiment described in (SCATALON et al., 2017a) 136
Figure 36 – Experiment described in Section 6.2 . 137

LIST OF TABLES

Table 1 – Body of knowledge in Computer Science – versions CS2001 and CS2013
(ACM/IEEE-CS, 2001; ACM/IEEE-CS, 2013) 26

Table 2 – Programming Fundamentals area in CS2001 and Software Development Fun-

damentals in CS2013 . 27

Table 3 – Contents of Software Development Fundamentals area in CS2013 (ACM/IEEE-
CS, 2013) . 27

Table 4 – Results of the study conducted by McCracken et al. (2001) 31

Table 5 – Results of the survey conducted by Lahtinen, Ala-Mutka and Jarvinen (2005) 33

Table 6 – Results of the study conducted by Utting et al. (2013a) – skill assessment . . 34

Table 7 – Results of the study conducted by Utting et al. (2013a) – concept assessment 34

Table 8 – Goal definition values (WOHLIN et al., 2012) 45

Table 9 – Examples of factors and respective values in Software Engineering – adapted
from Juristo and Moreno (2001) . 48

Table 10 – Examples of response variables in Software Engineering – adapted from
Juristo and Moreno (2001) . 48

Table 11 – Validity types . 51

Table 12 – Threats to validity (WOHLIN et al., 2012)) 52

Table 13 – Measures of descriptive statistics by scale type (WOHLIN et al., 2012) . . . 53

Table 14 – Overview of parametric and non-parametric tests for different designs (WOHLIN
et al., 2012) . 54

Table 15 – Instantiable goal from the organizational framework of Basili, Shull and
Lanubile (1999) . 56

Table 16 – An overview of existing empirical studies on pair programming (GALLIS;
ARISHOLM; DYBA, 2003) . 59

Table 17 – XP Evaluation Framework (WILLIAMS et al., 2004) 61

Table 18 – Knowledge gaps on software testing . 71

Table 19 – Distribution of publication venues . 79

Table 20 – Independent variables . 86

Table 21 – Dependent variables – program . 88

Table 22 – Dependent variables – tests . 91

Table 23 – Dependent variables – student/class . 94

Table 24 – Dependent variables – assignment . 95

Table 25 – Context variables – student . 101

Table 26 – Context variables – assignment . 101
Table 27 – Context variables – course . 102
Table 28 – Context variables – other practices . 103
Table 29 – Distribution for student level (n=11) . 110
Table 30 – Distribution for introductory programming courses (n=11) 110
Table 31 – Student testing habits in programming assignments 111
Table 32 – Use/knowledge of testing criteria . 111
Table 33 – Study hypotheses . 112
Table 34 – Experimental design . 113
Table 35 – Mean and standard deviation for correctness 114
Table 36 – Mean for correctness separated by groups 115
Table 37 – Survey responses (n=11) . 115
Table 38 – Selected papers mapped to topic “curriculum” 191
Table 39 – Selected papers mapped to topic “teaching methods” 192
Table 40 – Selected papers mapped to topic “course materials” 193
Table 41 – Selected papers mapped to topic “programming assignments” 193
Table 42 – Selected papers mapped to topic “programming process” 194
Table 43 – Selected papers mapped to topic “tools” . 195
Table 44 – Selected papers mapped to topic “program/test quality” 199
Table 45 – Selected papers mapped to topic “concept understanding” 199
Table 46 – Selected papers mapped to topic “perceptions and behaviors” 200

CONTENTS

1 INTRODUCTION . 19
1.1 Context . 19
1.2 Motivation . 21
1.3 Objetives . 22
1.4 Methods . 23
1.5 Thesis structure . 23

2 PROGRAMMING EDUCATION . 25
2.1 Curriculum . 25
2.2 Courses . 28
2.3 Learning outcomes . 30
2.4 Teaching approaches . 35
2.4.1 Software testing . 35
2.4.2 Pair programming . 36
2.4.3 Visualization . 36
2.4.4 Media computation . 37
2.4.5 Robots . 37
2.5 Final remarks . 38

3 EXPERIMENTATION IN SOFTWARE ENGINEERING 39
3.1 Empirical studies . 40
3.2 Controlled experiments: basic concepts 41
3.3 Experimental process . 42
3.3.1 Scoping . 44
3.3.2 Planning . 44
3.3.3 Operation . 51
3.3.4 Analysis and interpretation . 53
3.3.5 Presentation and package . 54
3.4 Experimental frameworks . 55
3.4.1 Framework on software reading techniques 56
3.4.2 Framework on pair programming . 57
3.4.3 Framework on eXtreme Programming practices 60
3.5 Final remarks . 60

4 SURVEY ON TESTING EDUCATION 63
4.1 Related work . 63
4.2 Survey design . 64
4.3 Threats to validity . 66
4.4 Results . 67
4.4.1 Educational profile . 67
4.4.2 Professional profile . 68
4.4.3 Knowledge gaps on software testing 69
4.4.4 Supporting tools . 71
4.4.5 Respondents’ experiences . 71
4.5 Final remarks . 73

5 SOFTWARE TESTING IN PROGRAMMING COURSES: A SYS-
TEMATIC MAPPING . 75

5.1 Research method . 76
5.1.1 Research questions . 76
5.1.2 Search strategy . 77
5.1.3 Selection criteria . 77
5.1.4 Classification scheme . 78
5.1.5 Data extraction . 78
5.2 Results . 78
5.2.1 RQ1: Investigated topics . 80
5.2.1.1 Curriculum . 81
5.2.1.2 Teaching methods . 81
5.2.1.3 Course materials . 81
5.2.1.4 Programming assignments . 81
5.2.1.5 Programming process . 82
5.2.1.6 Tools . 82
5.2.1.7 Program/test quality . 84
5.2.1.8 Concept understanding . 84
5.2.1.9 Students’ perceptions and behaviors . 84
5.2.2 RQ2: Benefits and drawbacks . 85
5.2.3 RQ3: Experimental design . 86
5.2.3.1 RQ3.1: Independent variables . 86
5.2.3.2 RQ3.2: Dependent variables . 87
5.2.3.3 RQ3.3: Context variables . 100
5.2.4 RQ4: Teaching practices . 103
5.2.4.1 RQ4.1: Testing concepts in programming course materials 103
5.2.4.2 RQ4.2: Testing practices in programming course assignments 104
5.2.4.3 RQ4.3: Supporting tools . 105

5.3 Discussion . 106
5.4 Final remarks . 106

6 EXPERIMENTS ABOUT THE TEST DESIGN TASK 109
6.1 Experiment on students performing the test design task 109
6.1.1 Goal . 110
6.1.2 Subjects . 110
6.1.3 Experimental Objects . 111
6.1.4 Hypotheses . 112
6.1.5 Variables . 112
6.1.6 Experimental Design . 113
6.1.7 Results . 113
6.1.8 Survey . 115
6.1.9 Discussion . 116
6.2 Experiment on students’ test design skills 117
6.3 Final remarks . 121

7 EXPERIMENTAL FRAMEWORK FOR THE INTEGRATION OF
SOFTWARE TESTING INTO PROGRAMMING EDUCATION . . 123

7.1 Experimental framework building method 124
7.2 STeP-EF goal model . 125
7.3 STeP-EF variables model . 126
7.3.1 Independent variables . 128
7.3.1.1 Course materials . 128
7.3.1.2 Programming assignments . 129
7.3.1.3 Supporting tools . 129
7.3.2 Dependent variables . 130
7.3.2.1 Program . 130
7.3.2.2 Tests . 131
7.3.2.3 Assignment . 132
7.3.2.4 Student . 133
7.3.3 Context variables . 133
7.3.3.1 Student . 133
7.3.3.2 Programming assignments . 133
7.3.3.3 Course . 134
7.3.3.4 Other practices . 135
7.4 Instantiation of experiments into the framework 135

8 CONCLUSIONS . 139
8.1 Contributions . 140

8.2 Limitations . 140
8.3 Future work . 141
8.4 Publications . 142

BIBLIOGRAPHY . 143

APPENDIX A SURVEY QUESTIONNAIRE 187

APPENDIX B MAPPING RESULTS 191
B.1 Curriculum . 191
B.2 Teaching methods . 192
B.3 Course materials . 193
B.4 Programming assignments . 193
B.5 Programming process . 194
B.6 Tools . 195
B.7 Program/test quality . 199
B.8 Concept understanding . 199
B.9 Perceptions/behaviors . 199

19

CHAPTER

1
INTRODUCTION

1.1 Context

Programming is a crucial technical skill for software-related professionals (LETH-
BRIDGE, 2000; LETHBRIDGE et al., 2007; SURAKKA, 2007; RADERMACHER; WALIA,
2013). Besides that, programming has been moving towards becoming a basic skill that people
should have for their everyday lives, similarly to reading and writing (VEE, 2013; ELOY et al.,
2017; GUZDIAL, 2018).

In this sense, there are initiatives to teach programming since the beginning of basic
education to children and teenagers, mainly attempting to promote computational thinking skills
(GUZDIAL, 2008; RESNICK et al., 2009; BARR; STEPHENSON, 2011; GROVER; PEA,
2013; LYE; KOH, 2014). There are also lifelong learning initiatives to teach programming
like the Hour of Code1, involving millions of people of all ages worldwide (WILSON, 2015).
Therefore, there are many different contexts in which the teaching of programming takes place.

Even when focusing on programming courses in higher education, there are still different
audiences, such as computing majors and non majors (FORTE; GUZDIAL, 2005). Besides, there
are many other sources of variations in the teaching of programming (ACM/IEEE-CS, 2013):
the programming paradigm and language adopted to teach programming concepts, the tools
used to support the teaching/learning activities, development practices that can be integrated into
programming assignments (such as testing and version control) and so on.

Hence, there is the need to check how students respond in each context to the different
ways to teach programming. Researchers have been conducting studies with this purpose, which
places research on programming education in a prominent position within the scope of Computer
Science Education Research (VALENTINE, 2004; SHEARD et al., 2009; LUXTON-REILLY et

al., 2018).

1 <https://hourofcode.com>

https://hourofcode.com

20 Chapter 1. Introduction

In particular, there are several studies showing that CS1 students’ performance is below
expected, both in terms of programming performance and programming concepts understanding
(MCCRACKEN et al., 2001; LISTER et al., 2004; MCCARTNEY et al., 2013; UTTING et al.,
2013a; TEW; GUZDIAL, 2011). Also, failure and dropout rates in programming courses may
reach worrying levels (BEAUBOUEF; MASON, 2005; BENNEDSEN; CASPERSEN, 2007;
WATSON; LI, 2014; ZINGARO, 2015; PETERSEN et al., 2016).

In summary, there are many different ways to teach programming and students tend
to present learning difficulties in these courses. Therefore, these variations in the teaching of
programming should be investigated to find out what configuration works best for each classroom
context. In this sense, the role of experimental studies (and empirical studies in general) on
programming education is to provide evidence about students’ learning outcomes.

Also, empirical studies are the means to generate and test hypotheses about teaching and
learning programming, helping to check if the current understanding about the area is correct
(FINCHER; PETRE, 2004; GUZDIAL, 2013). The empirical paradigm has been adopted with
this purpose by several areas that involve human-based activities, such as Medicine, Software
Engineering and Education (BUDGEN et al., 2009).

Among the empirical methods, experiments have the purpose to test hypotheses and
help establishing cause-effect relationships between variables of the area. For example, Salleh,
Mendes and Grundy (2014) investigated the effect of students’ personality traits on their perfor-
mance while using pair programming. Guzdial (2013) has investigated the influence of media
computation on learning effectiveness, gender diversity, retention and plagiarism in introductory
courses. Findings of such kind of studies help to understand when and how students learn
programming better.

In particular, the integration of software testing is an approach that stands out in pro-
gramming education (JONES, 2001; BARBOSA et al., 2003; EDWARDS, 2004; JANZEN;
SAIEDIAN, 2008; WHALLEY; PHILPOTT, 2011). As with any teaching approach, there are
benefits and drawbacks associated with the integration of testing into this context. Therefore,
there is the need to investigate how to raise the benefits and minimize the drawbacks in different
classroom contexts. The integration of software testing (and any other teaching approach) is
not a “silver bullet” to problems in programming education, but informed choices have better
chances to improve students’ learning outcomes (VIHAVAINEN; AIRAKSINEN; WATSON,
2014).

The findings of empirical studies can help educators with such informed choices. The
conducted studies advance the body of knowledge about programming education, by exploring
how students’ learning take place in real contexts. In other words, it helps curriculum designers
and instructors to deliver programming courses as effective as possible in terms of students’
learning and motivation.

1.2. Motivation 21

1.2 Motivation

There are many reviews of existing studies in this area, either exclusively in the teaching
of programming (VALENTINE, 2004; SHEARD et al., 2009) or in the wider scope of Computer
Science Education Research (RANDOLPH, 2007; MALMI et al., 2010; AL-ZUBIDY et al.,
2016), which also includes studies about programming education. The results of all these reviews
indicate that, in general, existing studies present a lack of research rigor (FINCHER; PETRE,
2004; PEARS; MALMI, 2009; ROBINS, 2015; LISHINSKI et al., 2016).

Two subproblems related to lack of research rigor also draw attention in the literature: (i)
the high percentage of existing empirical studies that are only experience reports (VALENTINE,
2004; RANDOLPH, 2007; PEARS; MALMI, 2009) and (ii) the fact that studies often presents
a lack of theoretical basis (BEN-ARI et al., 2004; BERGLUND; DANIELS; PEARS, 2006;
SHEARD et al., 2009; MALMI et al., 2010; KOULOURI; LAURIA; MACREDIE, 2014;
MALMI et al., 2014).

Valentine (2004) calls experience reports as “Marco Polo” studies (“I went there, and I
saw this”). Randolph (2007) describe them as studies providing anecdotal evidence. This kind of
empirical study consists in a case report, not planned (“this is what happens in my classroom”
(FINCHER; PETRE, 2004)). The problem is that the obtained conclusions are subjective, limited
to researcher’s impressions about the intervention applied in the classroom.

Leaning towards more rigorous empiricism, study types like survey, case study and
experiment involve careful planning about how data will be collected and analyzed. Generally
speaking, planning includes properly scoping and designing the study. In particular, considering
experiments, the researcher needs to build and test a model, which is formed by causes and
effects of the phenomenon of interest. Such model is designed by the researcher using variables
that represent theoretical constructs/concepts in the area.

About study theoretical basis, Malmi et al. (2014) specifies that it consists in the ap-
plication of established theories, models or frameworks to design the study and discuss the
obtained results. Some examples are learning theories (construtivism, cognitive load theory, etc),
curricular frameworks (e.g. different versions of ACM/IEEE curriculum), Bloom’s taxonomy,
domain models, among others.

Hence, the theorerical basis is related to how the study "builds on previous theoretical
research or established practice by applying or extending some theory, model or framework"
(MALMI et al., 2014). When there is a lack of theoretical basis, "this may lead to a situation
where knowledge in the field accumulates only in small isolated areas, which may be referenced
as related work but which are not used as a foundation for new research" (MALMI et al., 2014).

Considering again the lack of research rigor in general, a consequence would be the
difficulties to "relate the collected data to an underlying theory. The net result is that results are
hard to interpret, and studies cannot be compared" (EASTERBROOK et al., 2008). In contrast,

22 Chapter 1. Introduction

"research that is theoretically sound permits generalization of results, it invites comparison
between methods and results, and at the same time it makes the limits of the research visible"
(SHEARD et al., 2009).

This consequence becomes explicit when studies with the similar goals provide appar-
ently contradictory results, such as the studies of McCracken et al. (2001), McCartney et al.

(2013) and Utting et al. (2013a), which are discussed in Section 2.3. The reason for getting such
different results, despite the similar goals and context, was the way in which each study was
designed.

In this sense, we believe domain-specific mechanisms to help researchers to scope and
design experiments can deal with these problems. A good example is the model of variables on
pair programming established by Gallis, Arisholm and Dyba (2003). It was developed in the
Software Engineering area, but it was also applied in the area of Computer Science Education
(SALLEH; MENDES; GRUNDY, 2014).

Indeed, Malmi et al. (2014) and Lishinski et al. (2016) observe that most models, theories
and frameworks used in CSEd Research come from other disciplines. Nelson and Ko (2018)
also highlight that the community of researchers in CSEd have limited resources regarding
domain-specific theories.

1.3 Objetives

As discussed in the previous sections, the teaching of programming involve several
elements, such as staff, programming paradigm and languages, platforms, supporting tools,
development practices and so on. These elements can be combined in many ways resulting in
several different teaching approaches. Hence, experimental studies in programming education
have a very important role, since they check our understanding about how students have been
responding to the different teaching approaches in different contexts.

However, existing studies in the area present a lack of research rigor, often consisting of
experience reports with anecdotal evidence and/or presenting a lack of theoretical basis. Both
problems are related to a poor study design, specially considering the selection of variables
to be investigated and the proper control of the remaining envolved variables throughout the
conduction of the study.

In this scenario, we aim to investigate and define domain-specific models to support
researchers in scoping and designing experiments on the teaching of programming. Hence, the
objectives of this PhD work are the following:

∙ Definition of an explicit framework that represents the underlying structure of experiments
from a given domain within the scope of programming education.

1.4. Methods 23

∙ Conduction of experiments in such domain, in order to explore the proposed framework
and also refine it.

We chose the domain of the integration of software testing into programming education
to achieve our objectives. Ultimately, the goals are to provide supporting resources to researchers
that intend to conduct experiments in this domain and also contribute to the area with the design
and findings of the conducted experiments.

1.4 Methods
Computer Science Education research has traditionally borrowed methods from other dis-

ciplines (ALMSTRUM et al., 2005; MALMI et al., 2010; FINCHER; TENENBERG; ROBINS,
2011; LISHINSKI et al., 2016). In this sense, we chose to borrow methods and guidelines from
the Software Engineering area to undertake the objectives of this PhD work. Although the areas
of Education and Software Engineering present their own specificities, they also present a high
similarity in their experimental methodology, since they involve both technological and social
aspects (BUDGEN et al., 2009).

Therefore, in order to define the experimental framework, we used the same strategy of
frameworks defined in the Software Engineering area (BASILI; SHULL; LANUBILE, 1999;
GALLIS; ARISHOLM; DYBA, 2003; WILLIAMS et al., 2004; MORRISON, 2015): we lever-
aged the structures used in existing studies of the domain of interest. To this end, we used methods
and guidelines, also from SE, to conduct a systematic mapping and review (KITCHENHAM;
CHARTERS, 2007; BRERETON et al., 2007; PETERSEN et al., 2008; ZHANG; BABAR;
TELL, 2011; WOHLIN, 2014). In order to conduct the proposed experiments, we also applied the
experimental process outlined by Wohlin et al. (2012) for Software Engineering, using several
guidelines provided by Juristo and Moreno (2001) to make decisions concerning each activity of
the process.

1.5 Thesis structure
In this chapter we provided a characterization of this PhD thesis. We presented the

research context where the PhD work is inserted, the motivation to undertake it in terms of
research gaps in the literature, the objectives we intend to achieve with this work and a description
of research methods used as a means to do so. The remaining of this PhD thesis is organized as
follows:

∙ In Chapter 2 we provide an overview of programming education, which is the context of
this PhD thesis. We discuss the teaching of programming in terms of curricular guidelines,
implementation of courses, students’ learning outcomes and teaching approaches. In

24 Chapter 1. Introduction

particular, the integration of software testing, which is one of the presented teaching
approaches, is the domain we chose to explore in our proposed experimental framework.

∙ In Chapter 3 we present concepts from experimentation in Software Engineering that
we used as research method to build the proposed research framework and conduct the
proposed experiments. To this end, we discuss the process to conduct experiments and
existing experimental frameworks in the literature.

∙ In Chapter 4 we describe a survey that we conducted with graduates from computing
undergraduation programs in Brazil, aiming to identify knowledge gaps in software testing
caused by how computing curricula have been implemented in the universities. We also
discuss how the identified knowledge gaps can be addressed by integrating software testing
into programming courses.

∙ In Chapter 5 we present the results of a systematic mapping that we conducted on the
literature about the integration of software testing into programming courses. We identified
how instructors have configured the teaching practices in this domain and, moreover,
the design of experimental studies that researchers have been conducting to investigate
such practices. In this sense, the mapping results provided us input to build the proposed
experimental framework.

∙ In Chapter 6 we present the results of the experiments that we conducted during this PhD
work. The design and lessons learned with the conduction of these experiments also served
as a source of information to build the experimental framework.

∙ In Chapter 7 we provide an overview of our experimental framework for experimental stud-
ies on the integration of software testing. We also discuss aspects of the framework creation
and show how the experiments conducted by us can be instantiated in the framework.

∙ Finally, in Chapter 8, we revisit the work conducted in this PhD thesis and highlight
its contributions and limitations. We also provide directions of future work and a list of
publications that result from this PhD work.

25

CHAPTER

2
PROGRAMMING EDUCATION

Introductory programming courses compose many undergraduate programs since pro-
gramming skills are required in many STEM areas. In particular, they are the core of the Computer
Science curriculum (ACM/IEEE-CS, 2013). Therefore, the teaching of programming is exten-
sively investigated in the context of computing education (MCCRACKEN et al., 2001; ROBINS;
ROUNTREE; ROUNTREE, 2003; LISTER et al., 2004; PEARS et al., 2007; SHEARD et al.,
2009; LISTER, 2011; UTTING et al., 2013a; LUXTON-REILLY, 2016; LUXTON-REILLY et

al., 2018).

This chapter presents the overview of some aspects of introductory programming in
higher education. Using ACM/IEEE curricular guidelines as a base (ACM/IEEE-CS, 2001;
ACM/IEEE-CS, 2013), we discuss the recommended content of programming fundamentals in
Section 2.1 and the design of programming courses in Section 2.2. In Section 2.3 we discuss
several empirical studies with novice programmers, which provide a notion of how students have
been responding to programming education in terms of learning outcomes. In Section 2.4 we
discuss some teaching approaches that can be used in programming courses, aiming to provide
students a learning environment as effective as possible.

2.1 Curriculum

ACM (Association for Computing Machinery) and IEEE-CS (Computer Society of

the Institute for Electrical and Electronic Engineers) have developed curricular guidelines
to undergraduate computing programs, such as Computer Engineering, Computer Science,
Information Systems and Software Engineering1. These guidelines include the identification of
a body of knowledge for Computer Science curricula, hierarchically organized by knowledge
areas, units and topics.

1 <http://www.acm.org/education/curricula-recommendations>

http://www.acm.org/education/curricula-recommendations

26 Chapter 2. Programming education

Table 1 lists the knowledge areas for the curricular guidelines versions in 2001 and 2013
(ACM/IEEE-CS, 2001; ACM/IEEE-CS, 2013). It is possible to notice the changes between the
two versions. The body of knowledge was restructured, even for areas that kept the same name,
in order to accompany changes of the area and to better organize the contents which compose
the body of knowledge.

Table 1 – Body of knowledge in Computer Science – versions CS2001 and CS2013 (ACM/IEEE-CS,
2001; ACM/IEEE-CS, 2013)

CS2001 CS2013
Discrete Structures Discrete Structures
Programming Fundamentals Software Development Fundamentals
Algorithms and Complexity Algorithms and Complexity
Architecture and Organization Architecture and Organization
Operating Systems Operating Systems
Net-Centric Computing Networking and Communication
Programming Languages Programming Languages
Human-Computer Interaction Human-Computer Interaction
Graphics and Visual Computing Graphics and Visualization
Intelligent Systems Intelligent Systems
Information Management Information Management
Social and Professional Issues Social Issues and Professional Practice
Software Engineering Software Engineering
Computational Science and Numerical Methods Computational Science

Information Assurance and Security
Platform-based Development
Parallel and Distributed Computing
Systems Fundamentals

The Programming Fundamentals area in CS2001 covers the content of introductory
programming courses, which are the focus of this PhD project. It is composed by basic program-
ming concepts and an introduction to algorithms and data structures. This area was reformulated
and renamed to Software Development Fundamentals in CS2013. Table 2 shows the topics
that compose both. The content is similar, with some adjustments. For example, the Recursion

knowledge unit in CS2001 became a topic of the Fundamental Programming Concepts unit in
CS2013.

Table 3 shows in details the contents of the Software Development Fundamentals knowl-
edge area in CS2013. The most significant difference is the inclusion of Software Engineering
basic concepts and practices, in the development methods unit. Hence, there is a subtle change
in the focus of this knowledge area, putting programming in the broader scope of the software
development process.

The topics from the development methods unit explicitly indicates skills that help students
to succeed in programming: identify and find defects in their own code (defensive programming,
testing and debugging), restructure the own code to enhance modularization (simple refactoring),
the use of programming environments etc.

2.1. Curriculum 27

Table 2 – Programming Fundamentals area in CS2001 and Software Development Fundamentals in
CS2013

Units in Units in
Programming Fundamentals Software Development Fundamentals
(area in CS2001) (corresponding area in CS2013)
Fundamental programming constructs Fundamental Programming Concepts
Algorithms and problem-solving Algorithms and Design
Fundamental data structures Fundamental Data Structures
Recursion –
Event-driven programming –
– Development Methods

Table 3 – Contents of Software Development Fundamentals area in CS2013 (ACM/IEEE-CS, 2013)

Units Topics
Algorithms and Design The concept and properties of algorithms

The role of algorithms in the problem-solving process
Problem-solving strategies (iterative and recursive mathematical functions , itera-
tive and recursive traversal of data structures, divide-and-conquer strategies)
Fundamental design concepts and principles (abstraction , program decomposi-
tion, encapsulation and information hiding, separation of behavior and implemen-
tation)

Fundamental Program- Basic syntax and semantics of a higher-level language
ming Concepts Variables and primitive data types (e.g., numbers, characters, booleans)

Expressions and assignments
Simple I/O including file I/O
Conditional and iterative control structures
Functions and parameter passing
The concept of recursion

Fundamental Data Struc- Arrays

tures Records/structs (heterogeneous aggregates)
Strings and string processing
Abstract data types and their implementation
(stacks, queues, priority queues, sets, maps)
References and aliasing
Linked lists
Strategies for choosing the appropriate data structure

Development Methods Program comprehension
Program correctness (types of errors (syntax, logic, run-time), the concept of a
specification, defensive programming, code reviews, testing fundamentals and
test-case generation, the role and the use of contracts, including pre- and post-
conditions, unit testing)
Simple refactoring
Modern programming environments (code search, programming using library
components and their API)
Debugging strategies
Documentation and program style

28 Chapter 2. Programming education

The content of Programming Fundamentals or Software Development Fundamentals is
closely related to introductory computing courses. Even so, it does not mean the introductory
sequence must address exactly what is in this area from the body of knowledge. Depending on
the emphasis chosen by the instructor to design these courses, the addressed topics may vary.
For example, if the instructor choose to use a functional language, she/he can add the coverage
of topics on the functional paradigm from the area Programming Languages.

2.2 Courses
The sequence of introductory programming courses provides students the needed ground-

ing for advanced computing courses. It may have a variable number of courses, with at least the
courses known as CS1 and CS2 (ACM/IEEE-CS, 2001). The following examples of introductory
sequences may address the same topics with a different sequence design (ACM/IEEE-CS, 2001):

CS101 Programming Fundamentals
CS102 Object-Oriented Paradigm
CS103 Data Structures and Algorithms

CS111 Introduction to Programming
CS112 Data Abstraction

The terms CS1 and CS2 are widely used in the literature, but there is not a consensus
of their meaning (HERTZ, 2010). Nevertheless, it is common to consider the introduction to
programming concepts course as CS1 and the data structures course as CS2.

There are also disagreements about the division and the sequence of topics that should
be covered by these courses (BRUCE, 2005; SCHULTE; BENNEDSEN, 2006). The CS2001
curricular guidelines indicate some models to design the introductory course sequence, which
also represent the existing variety of approaches in this sense (ACM/IEEE-CS, 2001):

∙ Imperative-first: Topics related to the procedural/imperative paradigm are covered early
in this model. It is possible to follow this model with an imperative language, such as
C, or even to use an object-oriented one, as Java. In the latter, the imperative aspects of
the language are emphasized first and the object-oriented concepts are delayed to another
course.

∙ Objects-first: This model is characterized by addressing OOP concepts first, which requires
the use of an OOP language, such as C++ or Java. Since the first class students learn notions
of objects and inheritance. One disadvantage of this approach is that OOP languages are
generally more complex, both in terms of syntax and involved concepts. Even so, it is
widely adopted due to the increasing importance of OOP in academia and industry.

2.2. Courses 29

∙ Functional-first: This model implies the adoption of a functional language, such as
Scheme (FELLEISEN et al., 2004), during introductory courses. These languages present
a simple syntax and allow to express recursion in a more natural way. However, functional
languages do not have wide adoption in industry and this can make students less receptive
to adopt them.

∙ Breadth-first: The idea of this model is to provide to students, at first, an overview of
Computer Science areas (Algorithms, Programming Languages, Computer Architecture,
Software Engineering, Databases, Operating Systems, Artificial Intelligence, etc) and
only after dive into the the teaching of programming. This approach allows students to
understand the discipline as a whole first, providing them a better notion to decide whether
they want to study it in depth later.

∙ Algorithms-first: This model implies the introduction of programming concepts using
pseudocode. By delaying the use of a programming language, instructors avoid learning
difficulties related to the language syntax. However, this approach can be frustrating to
students in the sense that they are not able to see the concrete results of their programs.

∙ Hardware-first: All previous models involve teaching programming with a high level
language. In this way, students do not get a clear notion about how their programs execute
in the computer. The model hardware-first has the goal to reduce the “mystery” about how
programs are really executed by the machine. This model involves a bottom-up approach
with hardware fundamentals (digital circuits, registers, arithmetic units, von Neumann
architecture, etc). After learning about the “backstage” of program execution, students
learn to program with a high level language. Given its emphasis on hardware, the model
may be more adequate to a Computer Engineering curriculum.

The CS2013 curricular guidelines reiterate the existing diversity in these courses, but,
instead of indicating models that could be “instantiated” to design the introductory sequence,
the document identifies in a more general way the points that may vary when designing the
introductory courses (ACM/IEEE-CS, 2013):

∙ Context: The introductory courses differ greatly among institutions. An important aspect
to consider is whether students are computing majors or not, since their needs as well as
their motivation to learn programming may vary.

∙ Programming focus: The ultimate goal of introductory courses is that students learn basic
computing concepts, such as abstraction and decomposition. In general, these concepts are
taught by means of a programming language and the construction of programs. However,
these general concepts can be taught without being tied to learning a programming language
syntax.

30 Chapter 2. Programming education

∙ Paradigm and programming language: The programming paradigm choice is a decisive
factor in the design of a introductory course, since it can influence greatly on the teaching
sequence of concepts. Also, this choice can determine the whole underlying model of the
introductory sequence (imperative-first, objects-first and functional-first). Naturally, the
choice of programming language is also related to the chosen paradigm. There are other
important factors, such as industry adoption (e.g. C, C++ and Java) or the simplicity of the
syntax (Python) (DAVIES; POLACK-WAHL; ANEWALT, 2011).

∙ Software development practices: Considering the larger context of the software devel-
opment process, programming is just one of its composing activities. In this sense, it is
possible to include development practices that support programming, such as unit test-
ing, refactoring and version control. The inclusion of such practices can help students in
programming assignments and improve their notion of the development process.

∙ Parallel processing: The shift in computer hardware to multi-core processors has been
influencing changes in Computer Science Education. There are initiatives to introduce
notions of concurrency even in introductory courses (BRUCE; DANYLUK; MURTAGH,
2010; GROSS, 2011). Still, it is more common that this subject is postponed to more
advanced courses, given its difficulty.

∙ Platform: The diversity of platforms adopted during introductory courses has grown
beyond traditional computers. For instance, there are initiatives to teach programming
using mobile devices and robots (MARKHAM; KING, 2010; COWDEN et al., 2012;
EDWARDS; ALLEVATO, 2013). The use of these alternative platforms can increase
students’ motivation, and, depending on the needs of the target audience, it can be very
helpful. On the other hand, it is important to analyze if the programming concepts learned
by means of such platforms are sufficient to establish the foundation for other advanced
computing courses.

In short, there are a lot of choices to design introductory courses, which involve several
tradeoffs that should be considered by instructors (ACM/IEEE-CS, 2013; HERTZ; FORD, 2013).
There are still open questions about what topics should be covered in these courses and how they
should be taught (KOULOURI; LAURIA; MACREDIE, 2014). The ultimate goal is to improve
students’ learning outcomes.

2.3 Learning outcomes

Several studies have investigated the learning outcomes of the teaching of programming
in higher education. As pointed out by Guzdial (2011), the study conducted by Soloway et al.
is one of the first initiatives to investigate the programming performance of students in a CS1

2.3. Learning outcomes 31

course (SOLOWAY; BONAR; EHRLICH, 1983). The results were disappointing: only 14% of
the students were able to develop correct programs to solve the rainfall problem2.

With similar goals, McCracken et al. (2001) performed a study with students from
four institutions from different countries (N=217). They asked students to implement three
types of calculators: postfix (P1), infix without precedence (P2), and infix with parentheses
(P3). Students’ programs were evaluated according to the following criteria: execution (does

the program compile and execute without error?), verification (does the program handle the

inputs correctly?), validation (is it the correct type of calculator?) and style (does the style of the

program conform to local standards, including naming conventions and indentation?).

Table 4 shows results of students’ performance for each programming assignment (P1,
P2 and P3). Considering all participants together, the average was 22.9 out of 110 (or 20.81%),
with a standard deviation of 25.2. Again, results indicated a low programming performance of
students, similar to Soloway’s study, and now in a much broader and representative context.

Table 4 – Results of the study conducted by McCracken et al. (2001)

Average (SD)
P1 (N=117) 21.0 (24.2)
P2 (N=77) 24.1 (27.7)
P3 (N=23) 31.0 (20.9)

Figure 1 shows a histogram of student scores for the problem P1. It is possible to
notice a bi-modal distribution. Most students performed poorly, which corresponds to the data
concentration to the left, and there is a subtle second peak to the right, what indicates a set of
students with better performance. This characteristic of bimodality in students’ grades has been
investigated in the literature (ROBINS, 2010; AHADI; LISTER, 2013).

Lister (2011) mentions that McCracken’s findings were a relief for instructors worldwide,
because they used to think that problems in their institutions were unusual, specially considering
the high failure and drop out rates in the introductory sequence (BEAUBOUEF; MASON, 2005;
KINNUNEN; MALMI, 2006; WATSON; LI, 2014; PETERSEN et al., 2016). Then, researchers
have focused on investigating why programming is such a difficult subject for students (ROBINS;
ROUNTREE; ROUNTREE, 2003).

In this sense, Lahtinen, Ala-Mutka and Jarvinen (2005) conducted a survey to explore
such difficulties, both from student and instructor points of view. They asked respondents to
assess programming concepts and other related issues from very easy to learn (1) to very difficult

(5). Also, there were questions about teaching approaches, with options from learning never in

that kind of situations (1) to learning always (5), and teaching materials, from practically useless

(1) to very useful (5).

2 “Write a program that will read in integers and output their average. Stop reading when the value
99999 is input.” (SOLOWAY; BONAR; EHRLICH, 1983)

32 Chapter 2. Programming education

0

5

10

15

20

25

30

35

40

1 8 16 24 32 40 48 56 64 72 80 88 96

Notas

N
ú

m
er

o
 d

e
a

lu
n

os

Figure 1 – Distribution of students scores for problem P1 in the study conducted by McCracken et al.
(2001)

Table 5 presents a summary of their results. For each questionnaire item, there is the
average of responses from students and teachers that participated. The issues considered as
being most hard are designing a program to solve a certain task, dividing functionality into

procedures and finding bugs from my own program, which are related to strategies of designing
and debugging the program. These issues are in line with the observations of Robins et al.: the
grasp of programming strategies may be more decisive to turn students into effective programmers
than programming knowledge (ROBINS; ROUNTREE; ROUNTREE, 2003).

Regarding programming concepts, recursion, pointers/references and error handling are
among the ones considered as most difficult. Concerning teaching approaches and materials, it
is interesting to observe that questionnaire items referring to practice activities got high grades
(towards being very useful/learning always).

There are other follow-up studies to the McCracken group study. McCartney et al. (2013)
conducted a replication in one institution (N=40) with some changes in the study design. They
used a simplified assignment, asking students to implement only the infix calculator (instead of
the three types of calculator). They also provided scaffolding code as a starting point for students
and allowed them to access other resources such as online documentation. Results were much
better: student programming performance had an average of 62%.

Utting et al. (2013a) also replicated the McCracken group study, in a multi-institutional
context (N=345), with several cohorts (R1, R2, P, T, Q, S and U). They assessed students’ pro-
gramming skill and knowledge, with some study design adjustments as well. The programming
assignment was the clock problem, which involves implementing operations with time values
(tick, addition, subtration). When compared to the calculators problem, the clock problem is
“more in line with object-oriented environments and less algorithmically complex” (UTTING et

al., 2013a). Similarly to McCartney et al. (2013), they provided scaffolding code to students (a
skeleton of the Time class) and, for some groups of students, a test harness (for the Time class).

2.3. Learning outcomes 33

Table 5 – Results of the survey conducted by Lahtinen, Ala-Mutka and Jarvinen (2005)

Question Students Teachers
COURSE CONTENTS
What kind of issues you feel difficult in learning programming?
Using program development environment 2,43 2,61
Gaining access to computers/networks 2,11 1,97
Understanding programming structures 2,92 3,27
Learning the programming language syntax 2,75 2,70
Designing a program to solve a certain task 3,12 3,97
Dividing functionality into procedures 3,10 4,06
Finding bugs from my own program 3,28 3,91
Which programming concepts have been difficult for you to learn?
Variables (lifetime, scope) 2,10 2,41
Selection structures 1,98 2,38
Loop structures 2,09 2,79
Recursion 3,22 4,06
Arrays 2,79 3,24
Pointers, references 3,59 4,44
Parameters 2,60 3,47
Structured data types 2,90 3,45
Abstract data types 3,02 4,06
Input/output handling 2,96 3,75
Error handling 3,33 4,13
Using language libraries 3,04 3,88
LEARNING AND TEACHING PROGRAMMING
When do you feel that you learn issues about programming?
In lectures 3,01 3,21
In exercise sessions in small groups 3,44 3,84
In practical sessions 3,77 4,35
While studying alone 3,79 3,42
While working alone on programming coursework 3,98 4,00
What kind of materials have helped/would help you in learning
programming?
Programming course book 3,35 3,30
Lecture notes/copies of transparencies 3,39 3,47
Exercise questions and answers 3,33 3,62
Example programs 4,19 4,24
Still pictures of programming structures 3,15 3,70
Interactive visualizations 3,33 4,07

34 Chapter 2. Programming education

Table 6 shows students’ performance for the clock problem. Considering the results
combined, the average score is 2.72 methods working out of 4 (or 68%). The difference between
groups with and without test harness revealed interesting findings. Students that implemented
the Time class using the test harness had a significant better performance, with an average of
3.26 methods working out of 4 (81.5%). Meanwhile, students without the test harness had an
average of only 0.83 methods working (20.75%).

Table 6 – Results of the study conducted by Utting et al. (2013a) – skill assessment

group test harness? N # methods working
(average)

R1 yes 149 3.04
R2 yes 57 3.86
P yes 26 3.27
T yes 38 3.21
Q no 15 0.80
S no 40 0.93
U no 20 0.65

combined yes 270 3.26
combined no 75 0.83
combined all 345 2.72

Using the test harness clearly had a positive effect in students’ programming performance.
The authors believe that this is due to the scaffolding effect. The tests work as a kind of guidance
to what student should implement and test results provide instant and continuous feedback about
the implemented program.

Regarding the concept assessment, they used the Foundational CS1 Assessment Instru-

ment (FCS1), which is composed by multiple choice questions about CS1 concepts (TEW;
GUZDIAL, 2011). Table 7 shows students’ achieved scores in the FCS1. When combining all the
groups, students had an average of 11.35 out of 25, with a standard deviation of 4.711 (42.02%).
The correlation between scores in skill and concept assessment was positive (r=0,653).

Table 7 – Results of the study conducted by Utting et al. (2013a) – concept assessment

group N % σ median
R1 15 41.73 3.97 11
R2 16 62.27 4.56 17
P 25 60.59 4.23 15
T 57 44.51 4.08 12
Q 17 27.89 3.47 7
S 49 38.17 3.38 10
U 38 28.49 2.68 8

Taking into account the studies conducted by McCracken et al. (2001), McCartney et al.

(2013) and Utting et al. (2013a), it is possible to notice the same goals and apparently divergent

2.4. Teaching approaches 35

results. Nevertheless, as pointed out by Hertz and Ford (2013), “just comparing how well students
perform may not be accurate as it ignores the many confounding factors that could also have
made a difference”. Indeed, the changes in these three studies design, such as use of a less
complex programming assignment and providing skeleton code and test harness, are definitely
confounding factors which had influence in results.

In short, students presented a significantly better programming performance when instruc-
tors designed the programming assignments differently. With a similar reasoning, Luxton-Reilly
(2016) raised the following issue. Programming may not be an inherently difficult subject to
learn as researchers have believed. Instead, the design of introductory courses as it is may have
been establishing unrealistic expectations for novice programmers.

2.4 Teaching approaches

Different approaches can be integrated into the teaching of programming, either to
change or to add some aspect in the traditional way (TEW; MCCRACKEN; GUZDIAL, 2005;
PEARS et al., 2007; VIHAVAINEN; AIRAKSINEN; WATSON, 2014; KOULOURI; LAURIA;
MACREDIE, 2014). The decision of including a given approach can be influenced by several
factors, such as students’ background, institutional context, industry demand and even the
instructor background (ACM/IEEE-CS, 2013). Again, the ultimate goal is to improve students’
learning outcomes. "Whilst there is no silver bullet, no teaching approach works significantly
better than others, a conscious change almost always results in an improvement in pass rates over
the existing situation" (VIHAVAINEN; AIRAKSINEN; WATSON, 2014).

In this section, we provide an overview of some teaching approaches which are recurrent
in the literature about programming education. Besides the ones discussed here, there are
other approaches not restricted to the programming subject, but also often applied in this
context: cooperative learning (BECK; CHIZHIK; MCELROY, 2005), active learning (MOURA;
HATTUM-JANSSEN, 2011), peer instruction (ZINGARO; PORTER, 2014), flipped classroom
(HORTON et al., 2014), POGIL activities (HU; SHEPHERD, 2013), among others.

2.4.1 Software testing

Traditionally, students’ programming skills are strengthened throughout computing
courses. They are always practicing in assignments how to develop programs to solve given
problems. However, they usually do not practice to the same extent how to validate their solutions.
Edwards (2004) highlights some problems related to this issue:

∙ Students often think that, if the code compiles successfully or executes correctly once or
twice, it does not have more errors.

36 Chapter 2. Programming education

∙ Instructors often provide feedback after the assignment deadline, which will hardly con-
tribute to students realizing their mistakes during the process of writing the code.

∙ Typical programming assignments focus on developing students’ code writing skills. Other
important skills may be overlooked, such as code analysis and comprehension. These
kinds of skills would help students to identify and correct errors in their code.

The use of testing practices in programming assignments can help dealing with these
problems and benefit students in many ways (BARRIOCANAL et al., 2002; BARBOSA et al.,
2003; BARBOSA et al., 2008; JANZEN; SAIEDIAN, 2008; DESAI; JANZEN; CLEMENTS,
2009; SPACCO et al., 2013). The most easily observable benefit is the improvement in the
quality of students’ programs.

Software testing is a topic usually addressed only in advanced computing courses
(CHRISTENSEN, 2003; COWLING, 2012). When introducing testing practices earlier in
introductory courses, students have more opportunities to learn the pragmatics of testing in
programming assignments. Besides, it binds in a more robust way programming and testing
activities, improving students’ development habits (SPACCO et al., 2013).

2.4.2 Pair programming

Pair programming is a development practice that consists in two programmers developing
a program side by side in the same computer (MCDOWELL et al., 2002; NAGAPPAN et al.,
2003; HANKS et al., 2011). Each component of the pair has a well-defined role. One person is
the driver, who controls the mouse and keyboard and is responsible for typing. The other is the
observer, who actively examines the work done by the driver, looking for errors, thinking about
alternatives, searching for resources and considering strategic implications of what has been
done (WILLIAMS et al., 2000). After working some time in this arrangement, the components
switch roles.

This technique can bring several opportune effects to the teaching of programming
(MCDOWELL et al., 2003), such as the improvement of the developed program and a reduction
of the time spent to complete an assignment. In addition, students’ problem solving ability
working in pairs may be better than solo, since the knowledge baggage of the components can
be complementary. Pair formation is an important issue when applying the approach in the
classroom. In order to obtain the approach benefits, compatibility factors of the students should
be considered (SALLEH; MENDES; GRUNDY, 2011).

2.4.3 Visualization

Visualizations are used as educational resources in several areas. The most traditional way
to use visualization is to complement course materials and books with figures. Visualization tools

2.4. Teaching approaches 37

apply this same basic idea to dinamically present concepts to students (SORVA; KARAVIRTA;
MALMI, 2013).

Visualizations are specially useful in the teaching of programming, since the concepts
are inherently abstract (NAPS et al., 2002). Besides, programs and algorithms have a dynamic
behavior which is difficult to understand by novices (PEARS et al., 2007). Topics considered as
the most difficult (as references, pointers and recursion) are not directly visible in the source code.
Therefore, visual representations can make programming concepts more concrete to students.

Some barries to the use of visualizations in the classroom are: difficulties to find quality
resources in the desired topics, difficulties in adapting them to a given context, and lack of
knowledge about the best way to integrate them into the course activities (SHAFFER et al., 2010;
SHAFFER et al., 2011). Ideally, visualizations should be used in an active way by students. If
they interact with and answer questions about visualizations, the approach can be more effective
in terms of learning outcomes, including an increase in students’ motivation (NAPS et al., 2002;
EBEL; BEN-ARI, 2006).

2.4.4 Media computation

Programming is a challenging task to non-CS major students, whose focus is not directly
related to computing (FORTE; GUZDIAL, 2005). These students may see programming courses
as being excessively technical and without a strong relation to real applications (GUZDIAL,
2003). In general, only advanced computing courses reveal the relevance of basic concepts and
skills learned in introductory courses. Then non-majors may not have the opportunity to apply
programming concepts in a significant context.

Faced with this problem, Guzdial proposed the approach called Media Computation,
which changes the focus of computing from calculation to communication (GUZDIAL, 2003).
The idea is to teach students through the development of programs to manipulate media, such as
sound, images, videos and text.

This approach involves adapting course materials to include media computation activities,
as the application of image filters, concatenation of sounds, searching Web pages, etc. These
kinds of activities are closer to the everyday lives of the students, besides giving an opportunity
to use their criativity. In this way, programming can be seen as a communication skill, which is
appreciated by students (FORTE; GUZDIAL, 2005).

2.4.5 Robots

Robots can be used as a supporting tool to the teaching of programming. Aiming to
increase students’ motivation and computing courses retention, the idea is that students write
programs to control a robot, while learning programming concepts (MAJOR; KYRIACOU;

38 Chapter 2. Programming education

BRERETON, 2011). Among the different kinds of robots, Lego Mindstorms3 is the most popular
(MCGILL, 2012). Students build a phisical robot with Lego blocks and them program the device
that control it. Other example is Karel the Robot (BECKER, 2001), which is an environment
with a virtual robot programmed by the student.

Since robots have a fun appeal, students’ intrinsic motivation and creativity are stimulated
(MCGILL, 2012). Summet et al. (2009) argued for the effectiveness of personal robots, i.e. each
student having her/his own robot. However, personal robots involve a high cost, leading to use
only robots available in a laboratory. This limitation can have a negative impact on students’
performance, since they would only be able to work on assignments during classes (FAGIN;
MERKLE, 2003).

2.5 Final remarks
This chapter presented an overview about the teaching of introductory programming

in higher education focusing on recommended content (curriculum), course design, students’
learning outcomes and teaching approaches. It is possible to notice the enormous variety of ways
to teach programming. Even the recommended topics can vary a lot according to some design
choices like paradigm and programming language, as discussed in Section 2.2.

In Section 2.3, the three studies conducted by McCracken et al. (2001), McCartney et

al. (2013) and Utting et al. (2013a) have the same goal of assessing students’ programming
performance in a CS1 course context, but present apparently contradictory results. Yet, looking
carefully at the differences among study designs, they present several confounding factors. These
factors are related to differences in how the programming assignments were conducted in each
study: the problem complexity, with or without scaffolding (skeleton code and test harness),
allowed/denied access to other resources, etc). These are variables that could have a systematic
effect on students’ outcomes.

Another point that is worth mentioning is how software testing stands out in the pro-
gramming education literature. Testing fundamentals, test case generation and unit testing are
recommended programming topics (Section 2.1). Unit testing can be integrated into program-
ming courses as a supporting development practice (Section 2.2), which is the same as adopting
software testing practices as a teaching approach in these courses (Section 2.4). Finally, results
of a multi-institutional study show that testing can improve students’ programming performance
(study conducted by Utting et al. (2013a) in Section 2.3).

3 <http://www.lego.com/mindstorms>

http://www.lego.com/mindstorms

39

CHAPTER

3
EXPERIMENTATION IN SOFTWARE

ENGINEERING

The knowledge produced with experimentation is about the variables involved in a
phenomenon. The starting point of an experiment is an educated guess an previous experience
about a cause-effect relationship between concepts/constructs of the area. This educated guess
is formalized in a hypothesis, which is defined in terms of what phenomenon variables should
be examined and tested during the experiment. In this way, the role of experimentation is to
correspond ideas to reality (JURISTO; MORENO, 2001).

In the Software Engineering area, researchers formulate hypotheses about the develop-
ment process. Then, they conduct experiments, collecting and analyzing data to verify if the
hypotheses are valid. The knowledge about a technology is built from the conduction of several
experiments about it (BASILI; SHULL; LANUBILE, 1999). So, in general, experimentation in
Software Engineering has the role to evaluate and compare technologies used throughout the
development process, always considering the great influence of people that apply them on the
observed results.

This chapter presents basic concepts about experimentation in Software Engineering. In
Section 3.1 we provide an overview of empirical methods employed in Software Engineering
research. In Section 3.2 we focus in one of the methods, controlled experiments, and present
which are the basic experiment concepts. In Section 3.3 we show the experimental process, i.e.
the steps needed to conduct an experiment. Finally, in Section 3.4 we present domain-specific
frameworks, which help researchers to properly design an experiment or even to combine results
from existing experiments in a given domain.

40 Chapter 3. Experimentation in Software Engineering

3.1 Empirical studies

Empirical studies investigate phenomena around us by means of observation. In Software
Engineering the phenomena of interest are related to software development. In general, research
in this area involves characterize and evaluate the technologies used during software development,
i.e. methods, techniques and tools (SJOBERG; DYBA; JORGENSEN, 2007). Some examples
of phenomena investigated in the area are: the use of perspective-based reading techniques
in requirements inpection (BASILI et al., 1996), the use of object-oriented technologies in
software projects (DELIGIANNIS et al., 2002), the use of testing techniques in the inspection
activity (JURISTO; MORENO; VEGAS, 2004), the adoption of agile methods during software
development (DYBA; DINGSOYR, 2008), among others.

In this perspective, empirical studies in Software Engineering have been conducted, con-
tributing to build theories in the area and aiming to help in decision-making, since practitioners
need to understand and choose adequate technologies to support the development of their projects
(SHULL; SINGER; SJOBERG, 2007). The subject of such studies are software practitioners
(or students representing them), because the effect of a technology in Software Engineering
can only be comprehensily investigated when considering its application by people (BASILI;
ZELKOWITZ, 2007a).

There are several methods to conduct empirical studies, such as controlled experiment,
case study, survey, ethnographies and action research (EASTERBROOK et al., 2008). De-
spite that, the steps to acquire knowledge through an empirical study are basically the same
(SJOBERG; DYBA; JORGENSEN, 2007): specify a research question, design the study, collect
data/evidences, analyze and interpret data. Numerical data implies in the use of quantitative
methods (statistical analysis) and data in the format of text, images or sounds involves the use
of qualitative methods. Kitchenham et al. (2002) provide important guidelines to conduct all
kinds of empirical studies in Software Engineering.

Each empirical method have a set of principles to guide how empirical data should be
collected and analyzed. The choice of an empirical method involves several factors, such as
the alignment of the method with the research question of interest, available resources, the way
researchers want to analyze their data, among others (EASTERBROOK et al., 2008). Three
empirical methods stand out in Software Engineering (WOHLIN et al., 2000): survey, case study
and experiment.

Surveys are used to characterize people’s opinions about a phenomenon. A sample of
the population of interest complete a questionnaire (or take an interview). The collected data is
the participants’ responses, which area analyzed to draw conclusions about the population. In
Software Engineering, a survey can be used, for example, to investigate developers’ opinions
about a technique or tool that has been used for some time.

In a case study the phenomenon of interest is monitored while is happens naturally in

3.2. Controlled experiments: basic concepts 41

its context (RUNESON; HOST, 2009). This kind of study can help in the comprehension of
how and why the phenomenon happens. Besides, a case study can generate hypotheses to be
investigated in future studies. Case studies can be applied to evaluate a technology while it is
still in use in a software project. The results are harder to generalize since the researcher has
a lack of control in this situation. However, for the same reason, a positive aspect is the high
degree of realism.

Controlled experiments require manipulation and control over the investigated phe-
nomenon occurrence. The researcher builds a model of the phenomenon, isolating its influencing
factors. Next, she/he establishes which factors should be kept constant and which should vary in
order to produce a change in results. The phenomenon occurrence is simulated according to the
researcher model.

Experiments usually are executed in a laboratory environment in order to achieve the
necessary control. A common experiment design involves the comparison of two situations
(for example, using a tecnology and not using it). Then, participants are randomly assigned to
groups and generate data to be analyzed. When participant assignment to groups is not ramdon,
but the study keep the other characteristics of a controlled experiment, the study is called as
quasi-experiment.

3.2 Controlled experiments: basic concepts

Experiments are distinguished from other empirical studies mainly because the researcher
interaction in the study involves a direct interference in the investigated phenomenon. Thus,
the observations are a result of such interference. In order to design this “reality manipulation”,
some basic concepts are involved (JURISTO; MORENO, 2001):

∙ Experimental units/objects: The objects are used by the subjects to apply the intervention.
Depending on the goal, the experimental unit can be the software project as a whole or any
intermediate product obtained during the process. For example, if testing techniques are
being compared, the experimental units are the code to which the techniques are applied.

∙ Experimental subjects/participants: Subjects are the people who apply the investigated
technologies to the experimental units. Still in the testing techniques example, the subjects
are the testers, i.e. people applying the testing techniques.

∙ Response/dependent variables: The response variable represents the result investigated
in the experiment. It should be quantitative, i.e. collected data should be mapped to
numerical values. It is usually a characteristic of the project, development phase, product
or resource, which is measured to verify the effect of the factors.

42 Chapter 3. Experimentation in Software Engineering

∙ Parameters: It is any software project characteristic that should be kept constant through-
out the experiment. For example: same experience level of the testers, same complexity of
the programs under test, etc.

∙ Provoked variations/factors/independent variables: Factors are the project characteris-
tics which are intentionally varied during an experiment and that have an effect in results.
Each factor can have several possible alternatives. The experiment aims to examine the
influence of these alternatives into the values of the response variables. In the example, the
factor is the testing technique used.

∙ Alternatives/levels/treatments: Alternatives are the possible values of a factor. In the
example, alternatives can be the functional and structural techniques.

∙ Interactions: If the effect of a factor depends on the value of another, it means that the
factors interact. Interactions require a specific type of experimental design: the factorial
design.

∙ Undesired variations/blocking variables: It is not always possible to keep constant all
characteristics that are not of interest. These undesired variations are known as blocking
variables. The block design accommodates this kind of variation and provides a correct
way to evaluate its influences.

∙ Replications: Replication is the repetition of an experiment. The purpose is to verify
previous observed results (GOMEZ; JURISTO; VEGAS, 2010). If a replication in another
context provides results which are consistent with the original experiment, the confidence
in the hypothesis increases. A replication does not have to be identical to the original
experiment, even because it is impossible to find identical objects and subject and put
them through the same conditions. Therefore, variations are expected and it is important to
know how to characterize them (SHULL et al., 2008).

∙ Experimental error: Even if an experiment was repeated with approximately the same
conditions, obtained results will never be completely identical. These result variations are
called experimental error.

3.3 Experimental process

An experiment involves a sequence of steps to plan and execute it. The purpose of an
experimental process is to describe such steps, serving as a checklist (what) with guidelines (how)
of experimental activities that a researcher need to perform in order to conduct an experiment
(WOHLIN et al., 2012). Both Wohlin et al. (2012) and Juristo and Moreno (2001) present
descriptions of the experimental process, as outlined in figures 2 and 3.

3.3. Experimental process 436.2 Process 77

Experiment process
Experiment

scoping

Experiment

report

Experiment

idea

Experiment

planning
Experiment

operation
Analysis &

interpretation
Presentation

& package

Fig. 6.4 Overview of the experiment process

other types of studies than experiments, but it has to be tailored to the specific

type of study being conducted, for example, a survey using e-mail or a case study

of a large software project. The process is as it is presented, however, suited for

both randomized experiments and quasi-experiments. The latter are often used in

software engineering when random samples of, for example, subjects (participants)

are infeasible.

The starting point for an experiment is insight, and the idea that an experiment

would be a possible way of evaluating whatever we are interested in. In other

words, we have to realize that an experiment is appropriate for the question we

are going to investigate. This is by no means always obvious, in particular since

empirical studies are not frequently used within computer science and software

engineering [170, 181]. Some argumentation regarding why computer scientist

should experiment more is provided by Tichy [169]. If we assume that we have

realized, that an experiment is appropriate then it is important to plan the experiment

carefully to avoid unnecessary mistakes, see Sect. 2.9.

The experiment process can be divided into the following main activities. Scop-

ing is the first step, where we scope the experiment in terms of problem, objective

and goals. Planning comes next, where the design of the experiment is determined,

the instrumentation is considered and the threats to the experiment are evaluated.

Operation of the experiment follows from the design. In the operational activity,

measurements are collected which then are analyzed and evaluated in analysis and

interpretation. Finally, the results are presented and packaged in presentation

and package. The activities are illustrated in Fig. 6.4 and further elaborated below,

Figure 2 – Experimental process of Wohlin et al. (2012)

Definição de
Objetivos

Projeto Execução Análise

Hipótese
para Teste

Projeto
Experimental

Resultados
Experimentais

Hipótese
Testada

Figure 3 – Experimental process of Juristo and Moreno (2001)

Both processes are structured in a similar way. The main difference is that Wohlin et al.

(2012) also consider the phase of Presentation and Packaging, which refers to the experiment
documentation. Although they do not include a separate phase to discuss this issue, Juristo and
Moreno (2001) also present documentation guidelines, emphasizing what elements an experiment
report should have.

In this section we describe the experimental process according to the structure of Wohlin
et al. (2012), using many concepts and guidelines provided by Juristo and Moreno (2001). In this
way, the positive aspects of both works are considered. In the scoping phase the experiment goal
is defined. In the planning phase, the hypotheses and the experimental design are formulated.
Then, experiment is actually executed in the operation phase. Presentation and packaging
refers to the preparation of the experiment report.

44 Chapter 3. Experimentation in Software Engineering

3.3.1 Scoping

The researcher places the experiment in the research area during the scoping phase. As
Figure 4 shows, this phase involves expressing the researcher initial idea in terms of a goal, using
concepts of the area.86 7 Scoping

Experiment scoping

Scope

experiment

Goal
nition

Experiment

idea

Fig. 7.1 Scoping phase overview

Table 7.1 Experiment context classification

Objects

One More than one

Subjects One Single object study Multi-object variation study

per object More than one Multi-test within object study Blocked subject-object study

experiment. Quality focus may be effectiveness, cost, reliability etc. The perspective

tells the viewpoint from which the experiment results are interpreted. Examples of

perspectives are developer, project manager, customer and researcher. The context is

the ‘environment’ in which the experiment is run. The context briefly defines which

personnel is involved in the experiment (subjects) and which software artifacts

(objects1) are used in the experiment. Subjects can be characterized by experience,

team size, workload etc. Objects can be characterized by size, complexity, priority,

application domain etc.

The experiment context can be classified in terms of the number of subjects and

objects involved in the study [10], see Table 7.1.

Single object studies are conducted on a single subject and a single object. Multi-

object variation studies are conducted on a single subject across a set of objects.

Multi-test within object studies examines a single object across a set of subjects.

Blocked subject-object studies examine a set of subjects and a set of objects. All

these experiment types can be run either as an experiment or a quasi-experiment.

In a quasi-experiment there is a lack of randomization of either subjects or objects.

The single-object study is a quasi-experiment if the single subject and object are

not selected by random, but it is an experiment if the subject and object are chosen

by random. The difference between experiments and quasi-experiments is discussed

further by Robson [144].

Examples of the different experiment types are given by the series of experiments

conducted at NASA-SEL [10], aimed at evaluation of Cleanroom principles and

techniques. Cleanroom is a collection of engineering methods and techniques

assembled with the objective to produce high-quality software. A brief introduction

to Cleanroom is provided by Linger [112]. The experiment series consists of four

distinct steps. First, a reading versus unit test experiment was conducted in a blocked

1Note that the “objects” here are generally different from the “objects of study” defined above.

Figure 4 – Scoping phase – experimental process (WOHLIN et al., 2012)

The experiment goal can be instantiated from the goal template of the GQM model
(BASILI; CALDIERA; ROMBACH, 1994):

Analyze <Object(s) of study>

for the purpose of <Purpose>

with respect to their <Quality focus>

from the point of view of the <Perspective>

in the context of <Context>

The values from Table 8 can be used as a starting point to define each template element:

∙ The object of study is the investigated entity.

∙ The purpose reveals the investigation nature.

∙ The quality focus is the effect of the object of study that will be investigated in the study.

∙ The perspective indicates the point of view from which the experiment is designed, i.e.
for whom the experiment results will be useful.

∙ The context is characterized by the participants (subjects) and software artifacts (objects).

3.3.2 Planning

During the planning phase the experiment goal is refined towards defining an action
plan for the researcher. Two elements should be defined in this phase: the hypothesis and the
experimental design. The activities of this phase are depicted in Figure 5 and described in the
next subsections.

3.3. Experimental process 45

Object of study Purpose Quality focus Perspective Context
Product Characterize Effectiveness Developer Subjects
Process Monitor Cost Modifier Objects
Model Evaluate Reliability Maintainer
Metric Predict Maintainability Project manager
Theory Control Portability Corporate manager

Change Customer
User
Researcher

Table 8 – Goal definition values (WOHLIN et al., 2012)
90 8 Planning

Experiment planning

Context

selection

Goal
nition

Hypothesis

formulation
Variables

selection
Selection

of subjects
Choice of

design type
Instrumen-

tation
Validity

evaluation

Experiment

design

Fig. 8.1 Planning phase overview

seldom address real problems, but problems more of toy size due to constraints in

cost and time. This trade-off involves a balance between making studies valid to

a specific context or valid to the general software engineering domain, see further

Sect. 8.7. Given this trade-off, experiments with students as subjects are discussed

in literature, for example, by Höst et al. [77].

Hence, the context of the experiment can be characterized according to four

dimensions:

• Off-line vs. on-line

• Student vs. professional

• Toy vs. real problems

• Specific vs. general

A common situation in an experiment is that something existing is compared

to something new, for example an existing inspection method is compared to a

new one [18, 136, 139]. There are two problems related to this type of studies.

Firstly, what is the existing method? It has been applied for some period of

time, but it is rarely well documented and there is no consistent application of

the method. Secondly, learning a new method may influence how the old one is

applied.

This and other issues related to that we are concerned with people have to be

taken into account when planning for an experiment in order to make the results

valid.

Figure 5 – Planning phase – experimental process (WOHLIN et al., 2012)

Context selection

The experiment context is refined during this activity. The context refers to the environ-
ment where the experiment will be executed, which is characterized by experimental subjects
and objects. Ideally, the execution should happen in conditions similar to a real software project,
involving real software problems and practitioners of the area (SJOBERG et al., 2003). However,
given the associated high cost, experiments in Software Engineering are usually conducted in an
academic context, with undergraduate and graduate students as subjects (CARVER et al., 2003;
CARVER et al., 2010; DEKHANE; PRICE, 2014).

Hypothesis formulation

Hypothesis formulation involves expressing it in terms of a cause-effect relationship,
which should be testable, i.e. mapped to variables that can be measured. Strictly speaking, an

46 Chapter 3. Experimentation in Software Engineering

experiment cannot prove that a hypothesis is true, but only fail to prove it is false1. For that
reason, two kinds of hypothesis are formulated in an experiment:

∙ A null hypothesis (H0), which denies the researcher’s guess. If accepted, it means that the
collected data does not indicate the expected pattern of relationship between alternatives
and results.

∙ An alternative hypothesis (Ha ou H1), which consists in the researcher’s guess. It can be
considered if the null hypothesis has been rejected.

Variable selection

The variables in an experiment represent the cause-effect relationship expressed in the
hypothesis. As depicted in Figure 6, the cause variables are the input variables, because they
represent the influences of the phenomenon under investigation. Similarly, the output variables

represent the effect expressed in the hypothesis. In other words, they represent the effect of the
input variables. Variable selection consists in determining which will be the influences and the
effects examined during the experiment.

Fenômeno
Variáveis de entrada Variáveis de saída…

…
 (Fatores, parâmetros,

variáveis de bloco)
(Variáveis de resposta)

Figure 6 – Input and output variables in an experiment

The researcher have to consider the influences to which a software project (or the project
part under investigation) is subject in order to identify the input variables. A software project
depends on many factors (involved people, conducted activities, methods used etc). Given the
difficulty to analyze several factors in a single experiment, some factors of interest are selected,
aiming to isolate their effects from the remaining factors. Figures 7 and 8 show internal and
external influences of a software project, which can be considered as candidates to the input
variables selection.

The factors are the influences of interest which are manipulated during the experiment.
The parameters are the influences not of interest, which should be configured with constant
values throughout the experiment execution. In case that is not possible to keep them constant,
they should be considered as blocking variables.

The manipulation consists in assigning factors predetermined values during the execution,
i.e. their alternatives/treatments/levels. Experiments with just one factor and two alternatives

1 This represents the falsifiability scientific principle: if a hypothesis is falsifiable, it should be possible
to prove that it is false.

3.3. Experimental process 47

Projeto de Software (1)
Projeto de Software (2)

Projeto de Software (n)

Organização de
Desenvolvimento

Usuários

Necessidades do Usuário
(Problema)

@$#
%&*!

Restrições
do Cliente

Fontes de
Informação

Projeto de Software (3)

Figure 7 – Influencias externas de um projeto de software (JURISTO; MORENO, 2001)

Passo i

Métodos (i)

Entrada (i)

Ferramentas
& Equipe (i)

Saída (i)

Passo i+1

Métodos (i+1)

Entrada (i+1)

Ferramentas
& Equipe (i+1)

Saída (i+1)

Figure 8 – Influencias internas de um projeto de software (JURISTO; MORENO, 2001)

are fairly common. For example, the factor can be tool support in a given development activity
and the alternatives with and without the tool. Table 9 shows examples of factor and respective
values taht can be used as alternatives in experiments. These examples in particular re related to
internal influences depicted in Figure 8. But external influences could be used as factors as well.

The response variables hold values of experiment results. They consist in characteristics
of the development process, methods or tools, the personnel, or the intermediate products
obtained throughout the process. Table 10 shows examples of response variables for each of
these elements.

In addition to selecting which are the response variables of the experiment, it is also
necessary to determine how these variables should be measured. The Goal Question Metric
(GQM) model (BASILI; CALDIERA; ROMBACH, 1994) can be used to help the identification

48 Chapter 3. Experimentation in Software Engineering

Table 9 – Examples of factors and respective values in Software Engineering – adapted from Juristo and
Moreno (2001)

Variables (factors) Values
METHODS AND TOOLS
Method Name of the methods used in a given activity
Tool Name of the tools used in a given activity
PERSONNEL
Size Number of people
Structuredness Number per position
Assignment Tasks to be performed by members
Level of communication High, medium, low
Level integration High, medium, low
Level of excellence Average, high
Background experience in domain None, some, very experienced
Background experience in application type None, some, very experienced
Knowledge of SE None, some, very knowledgeable
Experience in the software process None, some, very experienced
Practical experience in SE None, some, very experienced
Experience in tools/methods None, some, very experienced
Experience in position None, some, very experienced
PRODUCT (activities input/output)

Document legibility None, little, a lot
Size Large, medium, small
Software architecture Object-oriented organization, multi-layer organiza-

tion, repositories, etc
Type of module Model calculations, user I/O, control, error process-

ing, help messages processing, moving data around,
comments, data declaration

Table 10 – Examples of response variables in Software Engineering – adapted from Juristo and Moreno
(2001)

Development process Schedule deviation, budget deviation, process
compliance

Methods Efficiency, usability, adaptability
Resources Productivity
Products Reliability, portability, usability of the final prod-

uct, maintainability, design correctness, level of
code coverage

of response variables of the experiment. As depicted in Figure 9, the model links variables
measured during the experiment with its goals. Hence, the model supports the researcher since
goal definition (with the goal template discussed in Section 3.3.1), which are then directed
towards the definition of research questions and, finally, the identification of metrics that allow
to answer the questions.

3.3. Experimental process 49

Métrica

Questão

Meta 1 Meta 2

Questão Questão

Métrica Métrica Métrica

Questão Questão

Métrica Métrica

Figure 9 – Goal Question Metric model (BASILI; CALDIERA; ROMBACH, 1994)

Subject selection

Subject selection involves a sampling of the population of interest. The selected sample
influences in the generalization of results and, therefore, subject selection should be representative
of the population of interest. In this sense, sampling techniques (random sampling, if possible)
should be considered and the size sample should be big enough to deal with population variability
and increase the power of the statistical test.

Experimental design

In the experimental design “real world adjustment” to the experiment, i.e. the researcher
designs the model of the phenomenon that should executed during the experiment: the arrange-
ment of variables, subjects and objects. In Figure 10 some commonly used exerimental designs
are outlined, which can be chosen according to the configuration of the experiment variables.
These examples provide the basic structure of an experimental design, to which the assignments
of subjects and objects can be done later.

1 fator de interesse

(2 ou n alternativas)

todos os outros parâmetros
podem ser fixados

há variações indesejadas

• experimento de um fator
• comparação pareada

projeto com blocos

k fatores de interesse

(2 ou n alternativas)

há variações indesejadas

há apenas variações desejadas
• projeto fatorial
• projeto aninhado
• projeto fatorial fracionado

projeto fatorial com blocos

Figure 10 – Diferentes projetos experimentais (JURISTO; MORENO, 2001)

The role of the experimental design structure is to determine how should be the combina-
tion of factor alternatives. For example, if there are two factors A and B with alternatives A1,

50 Chapter 3. Experimentation in Software Engineering

A2, B1 and B2, in a factorial design the alternatives are combined in the following way: A1B1,
A1B2, A2B1, A2B2.

However, to complete the experimental design of the example, it is still necessary
to assign these four combinations in a ramdon way to objects and subjects. The assignment
of values to the experimental design structure should be done in a ramdon way, because a
systematic assignment (or the reason behind it) could create sources of undesired variations in
the experiment.

Instrumentation

During instrumentation all experiment materials/instruments are prepared. This activity
provides means to execute and monitor the experiment. The instruments of an experiment are:
the objects, subject guidelines and data collection forms.

The objects chosen in the context selection activity are now adjusted to the tasks that
subjects will complete. For example, if the experiment investigates the perspective-based reading
technique, the requirement document should have seeded defects, once the subjects are expected
to find defects in this kind of document using the reading technique.

Subject guidelines are instructions about the tasks, with explanations about how the
investigated technology should be used/applied. It may be a process description or a checklist
given to the subjects during execution, for example. It is necessary to analyze the need to perform
a training with the subjects before performing the actual tasks.

Data collection forms are means to carry out measurements of the response variables.
Data collection may be through interviews or subjects themselves recording data generated
during the tasks. Anyway, forms should be designed in such a way that it does not impose
additional difficulties to whom is registering the data.

Validity evaluation

The validity evaluation is performed before experiment execution, aiming to identify
validity problems and adjust the experimental design accordingly. The purpose is to design the
experiment for obtaining valid results.

There are four types of validity in an experiment: construction, internal, conclusion
and external. Evaluating each one of these types implies in evaluating different stages of the
experiment conduction, as outlined in Table 11. Each validity type reflects one of the stages
needed to transform the researcher’s initial idea into an experiment and then into generalized
conclusions back to theory.

The purpose of this activity is to identify threats to validity of the results in each of these
stages. Table 12 presents a set of possible threats to validity, which can be used as a checklist by

3.3. Experimental process 51

Table 11 – Validity types

Experiment stage Validity kind
Transform cause and effect constructs from theory into observable
experiment variables

construct validity

Determine what variables will be examined (which will be ma-
nipulated and which will be kept constant) and what will be their
observed effects

internal validity

A statistical test is applied to the measured effects of the alterna-
tives

conclusion validity

The conclusions obtained from the experiment sample are general-
ized to the population of interest

external validity

the researcher (further details can be found in Wohlin et al. (2012)). In general, for each type of
validity the researcher should verify the work done:

∙ Evaluating the construct validity implies in checking whether the theory is well mapped
into the model used by the experiment, i.e. the alternatives should represent well the cause
construct and the results should represent well the effect construct.

∙ Internal validity refers to the causal relation between variables selected for the experiment.
The threats to this type of validity are the confounding factors, which are unknown factors
influencing results, but not identified or controlled by the researcher.

∙ Conclusion validity is related to the conclusions obtained through the statistical analysis
of results. Threats of this type involves choice of the statistical test, sample size, performed
measures etc.

∙ External validity refers to the generalization of conclusions to the population of interest,
which is a more general context than the one imposed by experiment execution conditions.
Threats of this kind are related to the choice of subjects and objects.

3.3.3 Operation

During the operation phase the experimental design is put into practice, i.e. the experiment
is actually executed. Figure 11 outlines the activities of this phase, which takes the experimental
design as input and generates the collected data as output.

The preparation activity refers to the last settings that enable the experiment execution.
The material kit is prepared, including training materials, objects, guidelines, consent forms, col-
lection forms etc. A pilot study is an interesting way to validate these materials (MENDONCA
et al., 2006).

Next, in the execution activity subjects perform the tasks, applying the alternatives and
generating experimental data. The duration of this activity varies a lot: it could be a short session

52 Chapter 3. Experimentation in Software Engineering

Table 12 – Threats to validity (WOHLIN et al., 2012))

Conclusion validity Internal vadility
Low statistical power History
Violated assumption of statistical tests Maturation
Fishing and the error rate Testing
Reliability of measures Instrumentation
Reliability of treatment implementation Statistical regression
Random irrelevancies in experimental setting Selection
Random heterogeneity of subjects Mortality

Ambiguity about direction of causal influence
Interactions with selection
Diffusion of imitation of treatments
Compensatory equalization of treatments
Compensatory rivalry
Resentful demoralization

Construct validity External validity
Inadequate preoperational explication of constructs Interaction of selection and treatment
Mono-operation bias Interaction of setting and treatment
Mono-method bias Interaction of history and treatment
Confounding constructs and levels of constructs
Interaction of different treatments
Interaction of testing and treatment
Restricted generalizability across constructs
Hypothesis guessing
Evaluation apprehension
Experimenter expectancies118 9 Operation

Experiment operation

Preparation
Experiment

design

Execution
Data

validation
Experiment

data

Fig. 9.1 Three steps in experiment operation

select and inform participants, and the second is to prepare material such as forms

and tools.

9.1.1 Commit Participants

Before an experiment can be started, people who are willing to act as subjects have

to be found. It is essential that the people are motivated and willing to participate

throughout the whole experiment.

In many cases it is important to find people who work with tasks in the

experiment that are similar to their ordinary work tasks. For example, if an

experiment involves writing C-code with different kinds of tools, it would probably

make sense to involve persons who are used to write C-code, and not to involve

Java-programmers. If people are chosen that are not a representative set of the

people that we want to be able to make statements about, this will be a threat to

the external validity of the experiment, see Chap. 8. The selection of subjects, in

terms of sampling technique, is discussed in Sect. 8.4.

When the right people are found and it is necessary to convince these people to

participate in the experiment. Several ethical aspects have to be considered when

people are participating as subjects.

Obtain consent. The participants have to agree to the research objectives. If the

participants do not know the intention of the work or the work does not comply

with what they thought they should do when they agreed to participate, there is a

risk that they will not perform the experiment according to the objectives and their

personal ability. This could result in that the data becomes invalid. It is important to

describe how the result of the experiment will be used and published. It should be

made clear to the participants that they are free to withdraw from the experiment.

Sometimes a trade-off must be made between this aspect and the design with respect

to validity. If the participants are affected by the experiment as such, this will affect

the validity of the experiment.

Sensitive results. If the results obtained in the experiment are sensitive for the

participants, it is important to assure the participants that the results of their personal

performance in the experiment will be kept confidential. It is sometimes hard

Figure 11 – Operation phase – experimental process (WOHLIN et al., 2012)

or over a project that takes months. The important principle here is to control the execution
(as far as possible), in order to assure the desired manipulation for the experiment and avoid
undesired variations.

Finally, researcher performs data validation, aiming to verify whether data was gen-
erated and collected correctly. This activity involves check if participants in fact understood
what they were supposed to do or if there was a misunderstanding, which could invalidate the
collected data. This verification could be done by showing subjects the data and asking if they
agree with the obtained results.

3.3. Experimental process 53

3.3.4 Analysis and interpretation

The analysis phase has the role to deal with data collected from the sample (part) and
to make the inference about the population (whole). Therefore, this activity is directly linked
to Statistics, which is the area that supports the process of answering questions and making
decisions through data analysis. The analysis activities are outlined in Figure 12.124 10 Analysis and Interpretation

Analysis and interpretation

Descriptive

statistics

Experiment

data
Data set

reduction
Hypothesis

testing
Conclusions

Fig. 10.1 Three steps in quantitative interpretation

Table 10.1 Some relevant statistics for each scale

Scale type Measure of

central

tendency

Dispersion Dependency

Nominal Mode Frequency

Ordinal Median,

percentile

Interval of variation Spearman corr. coeff.

Kendall corr. coeff.

Interval Mean, variance,

and range

Standard deviation Pearson corr. coeff.

Ratio Geometric mean Coefficient of variation

10.1.1 Measures of Central Tendency

Measures of central tendency, such as mean, median, and mode, indicate a ‘middle’

of a data set. This ‘midpoint’ is often called average and may be interpreted as an

estimation of the expectation of the stochastic variable from which the data points

in the data set are sampled.

When describing the measures of central tendency, we assume that we have n

data points x1 : : : xn, sampled from some stochastic variable. The (arithmetic) mean,

denoted Nx, is calculated as:

Nx D
1

n

nX

iD1

xi

The mean value is meaningful for the interval and ratio scales. For example, we

may compute the mean for the data set .1; 1; 2; 4/ resulting in Nx D 2:0.

The median, denoted Qx, represents the middle value of a data set, following that

the number of samples that are higher than the median is the same as the number

of samples that are lower than the median. The median is calculated by sorting the

samples in ascending (or descending) order and picking the middle sample. This is

well defined if n is odd. If n is even, the median may be defined as the arithmetic

mean of the two middle values. The latter operation requires that the scale is at least

interval. If the scale is ordinal, one of the two middle values may be selected by

random choice, or the median may be represented as a pair of values.

Figure 12 – Analysis phase – experimental process (WOHLIN et al., 2012)

In the first activity, the researcher represents the data with descriptive statistics using
some measures, such the ones listed in Table 13, and graphically using plots, e.g. histograms, pie
charts, box plots. Note that the measures depend on the variable scale type. This data overview
allows to detect outliers, i.e. data points that differ greatly from others. The researcher should
analyze the reasons behind outliers to perform the data set reduction if necessary, i.e. to decide
whether they should be deleted or not.

Table 13 – Measures of descriptive statistics by scale type (WOHLIN et al., 2012)

Measure of
Scale type central tendency dispersion dependency
nominal mode frequency
ordinal median, interval of variation correlation coefficient

percentile (Spearman, Kendall)
interval mean, variance standard deviation correlation coefficient

and range (Pearson)
ratio geometric mean coefficient of variation

The last activity is the hypothesis testing. The hypothesis is tested with the sample
results. If they diverge considerably from expected relationship pattern, hypothesis can be
rejected, or at least not accepted in the face of the obtained evidence. As indicated by Figure 13
and Tabela 14, the choice of statistical test depends on the type of experimental design, result
measurements scale and data distribution.

If the null hypothesis was rejected, it is possible to consider the alternative hypotheses
with the obtained data, if results are considered valid, considering the experiment validity evalu-
ation. The results generalizationshould be done to environments similar to the one configured in
the experiment.

54 Chapter 3. Experimentation in Software Engineering

Restrições do
modelo satisfeitas

Escala nominal
ou ordinal

Métodos
não-paramétricos

Métodos
paramétricos

sim não

não sim

Figure 13 – Criteria to choose between parametric or non-parametric tests (JURISTO; MORENO, 2001)

Table 14 – Overview of parametric and non-parametric tests for different designs (WOHLIN et al., 2012)

Design Parametric Non-parametric
One factor, one treatment Chi-2,

Binomial test
One factor, two treatments, t-test, Mann-Whitney
completely randomized design F-test Chi-2
One factor, two treatments, Paired t-test Wilcoxon,
paired comparison Sign test
One factor, more than two treatments ANOVA Kruskal-Wallis

Chi-2
More than one factor ANOVA

3.3.5 Presentation and package

The presentation phase refers to the documentation of the experimental design, adopted
procedures, results and obtained conclusions. As indicated in Figure 14, the output is the
experiment report. this phase is related to important principles of good scientific practices, such
as transparency and reproducibility.11.1 Experiment Report Structure 155

Experiment presentation

and package

Write reportExperiment
Experiment

report

Fig. 11.1 Overview of presentation and package

it comes to what should be improved within a company. This has been found in

previous studies in marketing, but is this true for software improvement as well?

Objective: This paper evaluates how different roles in a software development

organization view different issues in software process improvement and if such

differences could be used in order to provide more tailor-made process improve-

ments within an organization and uses this as a working hypothesis. Method:

A quantitative questionnaire containing five different weighted questions related

to software process improvement was developed. Eighty-four employees from all

levels of a Swedish telecommunication company were then approached, of which 63

responded. Results: The different roles disagreed in three of the questions while they

agreed in two of the questions. The disagreement was related to issues about impor-

tance of improvement, urgency of problems, and threat against successful process

management, while the questions where the roles agreed focused on communication

of the processes (documentation and teaching). Conclusion: It is concluded that

it is important to be aware and take into account the different needs of different

roles. This will make it possible to provide improvements tailored to specific roles

which will probably help to overcome resistance to process improvements. It is also

important to look into other areas and companies (for example, marketing) where it

could be beneficial when conducting process improvements.

Motivation. The motivation or introduction set the scope and defines the objective

of the research, hence it primarily reports the outcome of the scoping phase (see

Chap. 7). Information about the intent of the work can also be included to clarify

and capture the readers’ interest. This provides the reader with an understanding of

why the research has been carried out and why there is a need for it. The context in

which the experiment is conducted should be briefly presented here.

Related work. Related work is important to provide a picture of how the current

experiment is related to work conducted previously. Every experiment report does

not need a complete systematic literature review (see Chap. 4), although being

systematic in searching for literature is mostly beneficial. In particular, in the case

of replication studies, all previous studies should be reported.

Experimental design. Here, the outcome of the planning phase is reported, see

Chap. 8. The hypotheses, which are derived from the problem statement, are

described in detail. The experimental design is presented, including the design

Figure 14 – Packaging phase – experimental process (WOHLIN et al., 2012)

Vegas et al. (2006) identify two ways to disseminate information about an experiment:

3.4. Experimental frameworks 55

(i) experiment documentation and (ii) communication (or interaction) among researchers. The
documentation is related to this phase. According to Solari and Vegas (2006), experiment
documentation can be done by means of a research paper or a laboratory package (also known as
experimental package or replication package). Jedlitschka, Ciolkowski and Pfahl (2008) provide
guidelines on experiment reporting.

3.4 Experimental frameworks

Software development involves different social, technological and organizational/institu-
tional aspects (BASILI; ZELKOWITZ, 2007b). Thus, an isolated experiment investigates only
a limited configuration of such aspects, i.e. a small part the composes the whole of a research
domain. Therefore, researchers should be able to combine studies in a given domain in order to
create an evidentiary base (WILLIAMS; LAYMAN; ABRAHAMSSON, 2005).

However, "mismatches between empirical studies are the key type of problems that
hinder the combined use of independently developed studies" (SHULL et al., 2005). In order to
deal with these mismatches, a common framework can serve as a frame of reference, by making
explicit the different models used in each study. Also, a framework can provide "a focus for
future studies, i.e., to help determine the important attributes of the models used in an experiment
and which should be held constant and which should be varied in future studies" (BASILI;
SHULL; LANUBILE, 1999).

We identified several proposals of frameworks in the SE literature, aiming to incorporate
domain models. Authors use different names to refer to this kind of frameworks: organizational

framework (BASILI; SHULL; LANUBILE, 1999), research framework (GALLIS; ARISHOLM;
DYBA, 2003) and evaluation framework (WILLIAMS et al., 2004; WILLIAMS; LAYMAN;
ABRAHAMSSON, 2005; MORRISON, 2015). An ontology of the research domain can also be
used with the same purpose (KITCHENHAM et al., 1999).

In general, experimental frameworks provide the basic structuring of experiments in a
given domain. Each experimental activity indicates what the researcher have to do, e.g scope
experiment, context selection, hypothesis formulation, variables selection and so on. However,
in order to complete them, the researcher have to define several domain-specific elements and
generate the "structure" of the experiment.

Figure 15 present the domain-specific elements that should be defined in the experiment
scoping and planning phases. Note that they revolve around the experiment variables. The colors
in the figure suggest their relations: factors are characteristics of the object of study, response
variables are the quality focus, and the context is characterized by the experimental subjects and
objects. Also, a hypothesis is a testable statement, containing an educated guess of the researcher
about the relationship between factors and response variables.

56 Chapter 3. Experimentation in Software Engineering

Goal

Context

Perspective

Quality focus

Purpose

Object of study

Hypotheses

Definition Phase

Experimental design

Factors

Response variables

Experimental subjects

Experimental objects

Planning Phase

Figure 15 – Domain-specific experiment elements defined in the scoping and planning phases

Therefore, the variable selection is crucial in the experimental process. A poor selection
of variables in an experiment, like overlooking factors of a phenomenon (WOHLIN et al., 2012),
can hinder the researcher in the effort of relating collected data back to the concepts in theory
(EASTERBROOK et al., 2008).

3.4.1 Framework on software reading techniques

Basili, Shull and Lanubile (1999) presented a framework for software reading techniques
experiments. The authors considered a set of experiments conducted by themselves on different
reading techniques (defect-based reading, perspective-based reading, use-based reading and
scope-based reading). It is a general structure designed to accommodate this set of related studies,
also known as family of studies.

Their framework consist of the experiment goal given in Table 15. The goal is generic
enough to instantiate studies for the different kinds of reading techniques. In order to describe an
experiment according to this structure, the generic values (process, effectiveness and document)
should be exchanged for specific values, which are given by the models in figures 16, 17 and 18.

Analyze processes <object of study>
with the purpose to evaluate <purpose>
with respect to effectiveness in a product <quality focus>
from the point of view of the researcher <perspective>
in the context of <a set of context variables> <context>

Table 15 – Instantiable goal from the organizational framework of Basili, Shull and Lanubile (1999)

3.4. Experimental frameworks 57

Figure 16 – Possible values for software processes (BASILI; SHULL; LANUBILE, 1999)

Figure 17 – Possible values for describing the effectiveness of software processes (BASILI; SHULL;
LANUBILE, 1999)

Figure 18 – Possible values for describing software documents (BASILI; SHULL; LANUBILE, 1999)

For example, given an experiment to investigate the perspective-based reading technique
(BASILI et al., 1996), its goal could be described as a framework instance: analyze reading

techniques to evaluate the ability to detect defects on natural language requirements documents

(BASILI; SHULL; LANUBILE, 1999). The values of this instance are highlighted in figures 16,
17 and 18.

3.4.2 Framework on pair programming

Gallis, Arisholm and Dyba (2003) presented a framework for pair programming studies.
The authors considered the set of studies listed on Table 16, besides their own studies being
conducted at the time. They created a structure of variables that can be selected in an experiment

58 Chapter 3. Experimentation in Software Engineering

on pair programming, as depicted in Figure 19.

The authors advocate that studies on this domain had apparently contradictory results
due to choices in experimental design. For example, the studies that investigate quality as a
dependent variable use different metrics: readability and functionality, number of passed test
cases, and number of lines of code and number of resubmissions due to defects in code. When
variables are operationalized differently like that, it is difficult to compare results.

3.4.
E

xperim
entalfram

ew
orks

59

Table 16 – An overview of existing empirical studies on pair programming (GALLIS; ARISHOLM; DYBA, 2003)

Author(s) Type of study Subjects N Task Duration Independent variable(s) Main dependent variables (met-
rics)

(NOSEK, 1998) Experiment Prof. 15 Unknown appli-
cation domain
(database script)

45 minutes Individuals (5) versus
pairs (5)

Quality (readability and func-
tionality), Programmers morale
(qualitative assessment)

(WILLIAMS et al., 2000;
WILLIAMS, 2000)

Experiment Stud. 41 Four pro-
gramming
assignments

Six weeks PSP (13) versus CSP (14
pairs)

Time to complete the assign-
ments (number of hours from
start to finish), Cost (number
of programmer hours), Quality
(number of passed test cases)

(NAWROCKI; WOJ-
CIECHOWSKI, 2001)

Experiment Stud. 21 Four programs
proposed by W.
Humphrey

N/A PSP (6), XP with PP (5
pairs) e XP with individ-
ual progr. (5)

Time (number of hours from start
to finish – elapsed time), Qual-
ity (number of lines of code and
number of resubmissions due to
defects in code)

(MCDOWELL et al.,
2002)

Experiment Stud. 313 Course assign-
ments

Two aca-
demic
semesters

Individual (141) versus
pair programming (86
pairs)

Quality – score on program-
ming assignment (functionality
and readability), Learning effect
(score on final exam)

(MULLER; TICHY,
2001)

Case study Stud. 12 Software tasks 11 weeks Evaluation of XP (includ-
ing PP) to gather experi-
ence with the process

Information and knowledge
transfer (qualitative assessment),
Morale (qualitative assessment)

(GALLIS; ARISHOLM;
DYBA, 2002)

Case study Prof. 4 Project coding
tasks

Project
estimate: 5
months

Partner programming (1
pair) versus PP (1 pair)

Information and knowledge
transfer (qualitative assessment),
Programmers morale (qualitative
assessment)

60 Chapter 3. Experimentation in Software Engineering

Figure 19 – Framework for research on pair programming of Gallis, Arisholm and Dyba (2003)

3.4.3 Framework on eXtreme Programming practices

Williams et al. (2004) defined an evaluation framework for eXtremme Programming
(XP) practices. Their framework consists of the three models in Table 17: context factors,
practice adherence metrics and outcome measures. Basically, these models list metyrics and
project characteristics related to XP practices. The framework is focused on industrial case
study research, i.e. practitioners using the framework to collect data from ongoing projects or to
annotate projects that have been completed.

Similarly, Morrison (2015) proposes the establishment of an evaluation framework for
software development security practices. Like the framework on XP practices, his framework
should also be composed by project context factors, practice adherence metrics and outcome
measures.

3.5 Final remarks

This chapter provided an overview about experimentation, according to the specificities
of the Software Engineering area. We discussed some methodology-related concepts, such as
the experimental process (JURISTO; MORENO, 2001; WOHLIN et al., 2012) and domain-
specific experimental frameworks (BASILI; SHULL; LANUBILE, 1999; GALLIS; ARISHOLM;
DYBA, 2003; WILLIAMS et al., 2004; WILLIAMS; LAYMAN; ABRAHAMSSON, 2005;
MORRISON, 2015).

3.5. Final remarks 61

Table 17 – XP Evaluation Framework (WILLIAMS et al., 2004)

Context factors Adherence metrics

Sociological factors Planning adherence metrics
Team size Release length
Team education level Iteration length
Experience level of team Requirements added or removed
Domain expertise Stand up meetings
Language expertise Short releases
Experience Proj Mgr Onsite customer
Specialist Available Planning game
Personnel Turnover
Morale factors Testing adherence metrics

Test coverage
Project-specific factors Test run frequency
New & changed user stories Test class to story ratio
Domain Test LOC / source LOC
Staff months Test-first design
Elapsed months Automated unit tests
Nature of project Custom acc tests
Constraints
New & changed classes Coding adherence metrics
Total classes Pairing frequency
New & changed methods Inspection frequency
Total methods Solo frequency
New or changed KLOEC Pair programming
Component KLOEC Refactoring
System KLOEC Simple design

Collective ownership
Ergonomic factors Continuous integration
Physical layout Coding standards
Distraction level of office space Sustainable pace
Customer communication Metaphor

Technology factors Outcome measures
Software development methodology
Project management Response to customer change
Defect prevention & removal practices Internally-visible quality
Language Externally-visible quality
Reusable materials Productivity

User stories / staff-month
Geographic factors KLOEC / staff-month
Customer cardinality and location Putnam product parameter
Supplier cardinality and location Customer Satisfaction

Morale (via survey)

62 Chapter 3. Experimentation in Software Engineering

The experimental framework is the basic structure of an experiment in a given domain.
The framework of Basili, Shull and Lanubile (1999) consists of an instantiable goal and models
of the values that can be used to instantiate it. The framework of Gallis, Arisholm and Dyba
(2003) presents the structure of variables to be selected in an experiment. Finally, Williams et

al. (2004) present a framework composed by context factors, adherence metrics and outcome
measures.

Although the three frameworks seem to present different structures, they are all modeling
the same kind of information about each domain. First, they all model input variables of the
domain (which could be selected as independent variables/factors in a given experiment): the
process model (Figure 16) in the reading techniques framework (BASILI; SHULL; LANUBILE,
1999), the model of independent variable in the pair programming framework (GALLIS; AR-
ISHOLM; DYBA, 2003) and adherence metrics (Table 17) in the XP framework (WILLIAMS et

al., 2004). In the same way, it possible to note that the three frameworks model context factors
and outcome variables from each domain. Therefore, this structure of variables is the chosen
"format" for the experimental framework established in this PhD thesis.

63

CHAPTER

4
SURVEY ON TESTING EDUCATION

The domain we chose to explore in ths PhD thesis is related both to programming
and testing education. Hence, we conducted a study to explore testing education, aiming to
investigate what testing topics need to be reinforced in computing curricula from different
institutions, specially by means of practical programming activities.

Software testing is among the computing areas in which graduates present more knowl-
edge deficiencies, especially when considering industry needs (CARVER; KRAFT, 2011; RA-
DERMACHER; WALIA, 2013). According to Radermacher and Walia (2013), previous studies
in the literature do not provide specific information about which testing topics raise knowl-
edge deficiencies. In this scenario, we investigated in details what are the curriculum-based
knowledge gaps in software testing, by surveying graduates from computing programs in Brazil
(SCATALON et al., 2018).

This chapter presents how the survey was conducted and the obtained results. In Section
4.1, we discuss similar surveys with graduates/practioners about testing practices. In Section 4.2,
we discuss the survey design. In Section 4.3 we point out some threats to validity raised by our
choices in the survey design. Finally, results are presented and discussed in Section 4.4.

4.1 Related work

There are several studies comparing what is covered by computing education and what
are software industry needs. This kind of investigation is relevant because there is a high demand
for qualified software professionals. Attempting to align computing education with industry
practices is a good way to address this demand.

Moreno et al. (MORENO et al., 2012) conducted a comparison between curricular
guidelines and job profiles. They identified the relationships between recommended computing
competences and relevant skills to software professionals. Their results indicate that even

64 Chapter 4. Survey on testing education

curriculum guidelines do not cover all the core knowledge needed by professionals to perform
their jobs in industry. This means that, when implemented in specific colleges or universities,
these curriculum guidelines would cause knowledge deficiencies in graduates.

Similarly, Radermacher and Walia (RADERMACHER; WALIA, 2013) conducted a
systematic literature review looking for knowledge deficiencies reported by previous studies.
A knowledge deficiency is defined by them as any knowledge or skill that industry expects an
entry-level practitioner to have and she/he lacks it. The same definition applies for academia and
graduate students. The authors discussed these deficiencies in the level of Computer Science
areas, such as programming, design and testing. Our study investigates in detail one of the areas
mentioned by their study: software testing.

In terms of method, Lethbridge (LETHBRIDGE, 2000) conducted a study which is
more similar to the one described in this chapter. The author conducted a survey with software
professionals from several countries to assess the importance of computing topics (data structures,
software design and patterns etc) to their career. Testing, verification, and quality assurance

was among the topics considered more important to respondents. Also, it was among the topics
that are more learned in the job, as opposed to learned in formal education. Kitchenham et al.
(KITCHENHAM et al., 2005) performed a similar survey in the context of UK universities.

Additionally, there are several surveys about software testing practices, but focusing
only in industry. They vary in scope, ranging from multiple aspects of testing practices (NG
et al., 2004; GAROUSI; ZHI, 2013) to a single type of test (RUNESON, 2006; ENGSTRöM;
RUNESON, 2010) and target practitioners from different nationalities, like Australia in (NG
et al., 2004) and Canada in (GAROUSI; ZHI, 2013). In general, they were all aiming to get a
snapshot of current testing practices in industry.

Our survey explored testing practices adopted by practitioners in industry, but we also
explored the software testing education delivered to them in undergraduate courses. The idea
is to investigate whether the topics addressed in software testing education have been applied
by the respondents in their jobs. It was directed to Brazilian practitioners and the questionnaire
covered multiple aspects of software testing.

4.2 Survey design

We followed the guidelines of Kitchenham and Pfleeger to design and execute our
survey (KITCHENHAM; PFLEEGER, 2008). The goal was to investigate the following research
question:

What are the knowledge gaps in testing topics faced by graduates with respect to industry

needs?

4.2. Survey design 65

In order to answer it, we needed data from two different contexts: software testing
education and testing practices in industry. Therefore, our strategy was to collect data about these
two contexts from practitioners that are graduates from computing undergraduate programs.

We recruited respondents by sending emails with a link to a web-based questionnaire.
We took advantage of mailing lists for graduates from several Brazilian universities and also the
Brazilian Computer Society mailing list.

The questionnaire was composed by two sections (see Appendix A). In the first section we
were seeking to find out about respondents’ educational and professional background. Regarding
education, we collected respondents’ major and asked which computing courses they took that
addressed software testing. About the professional profile, we collected their current position
in the company, years of experience in software development and the programming languages
generally used in their projects.

The second section had the purpose to evaluate the knowledge gaps in software testing.
To this end, we collected data about respondents’ undergraduate education and industry practice
in testing. Then, we compared their responses for these two contexts to obtain the gaps. Still, we
considered two kinds of knowledge gaps: in concepts (gapC) and in practice activities (gapP).
Therefore, questions from the second section presented software testing topics to respondents
and asked them to check the following options for each one:

∙ Industry: if they have applied the testing topic in their job.

∙ Concepts in education (EducationC): if during their major they have learned about the
theory of the testing topic.

∙ Practice activities in education (EducationP): if during their major they have completed
hands-on activities (such as programming/testing assignments) that gave them the opportu-
nity to put the testing topic into practice.

We took the topics from the textbook on software testing of Delamaro et al. (DELA-
MARO; MALDONADO; JINO, 2016), which provides a set of testing topics that are usually
addressed in computing courses. We also considered the questionnaire used in Garousi and Zhi’s
survey (GAROUSI; ZHI, 2013), which helped to organize the topics by characteristics of the
testing activity (types of systems under test, testing levels, test types, testing approach in the
development process and test case generation techniques).

In particular, we included a question asking respondents to mention which testing
tools/frameworks they have used in their company. Additionally, at the end of the questionnaire,
there was an optional question where respondents could add comments about their experience
with software testing education and testing practices in industry.

66 Chapter 4. Survey on testing education

Regarding how we calculated the knowledge gap for each testing topic, firstly we assigned
values for the options Industry, EducationC and EducationP. When a respondent had checked
the option, the assigned value was one, and zero otherwise. In this way, following the same
definition of knowledge gap from Lethbridge et al. (LETHBRIDGE, 2000), we were able to
define equations to calculate the knowledge gaps for concepts and practice activities in education,
respectively:

gapC = EducationC - Industry
gapP = EducationP - Industry

By applying these equations, we got both kinds of knowledge gaps (in concepts and
practice activities) for each respondent in each testing topic. Considering the results individually
like this, the possible resulting values are the following:

∙ gap = 0, when there is no knowledge gap. Either the testing topic was addressed in
education and used in industry, or it was not addressed nor used.

∙ gap = -1, when there is a knowledge gap, which is a knowledge deficiency that a graduate
faced while doing her/his job. She/he had to apply the testing topic at industry, but has not
learned (or practiced) it during the major.

∙ gap = 1, when there is also a knowledge gap, but it can be considered as a “knowledge
abundance”, since it was addressed in education, but it was not applied in industry by the
graduate.

Under the same reasoning, the overall knowledge gap for a given testing topic t was
calculated by the average of gaps in that topic for all respondents:

gapt =
∑

N
s=1 gaptsi

N

where gaptsi is the knowledge gap in topic t for the respondent si and N is the total number of
respondents (90). Then, by applying this equation, we got the values of the average knowledge
gaps within the interval −1 < gapt < 1.

4.3 Threats to validity

The choices for survey design and conduction involve threats to validity, as it happens
with any empirical study. The first one concerns generalization of results. Our sample of re-
spondents are from Brazilian practitioners and results are limited to represent the educational
and industry context from Brazil. Therefore, knowledge gaps calculated in our study are also

4.4. Results 67

limited to this context. Nevertheless, it can be a good indicative of points to be adjusted in testing
education when seeking to meet industry needs.

Other threat concerns the accuracy of responses. Respondents had to remember about
the studied/applied testing topics to answer the questionnaire. They had to inform about events
that could have happened many years before. In this sense, knowledge gaps can be influenced by
compromised memory, since they may have forgotten about details from undergraduate courses.

Also, the nature of the Software Engineering area itself can have an influence on results,
since it presents a quickly changing landscape. In this way, a knowledge gap could simply
indicate an outdated technology. This situation can apply specially for recent graduates.

Lastly, we considered knowledge gaps from the industry viewpoint. However, meeting
industry expectations is not the only purpose of computing education, which should provide a
good theoretical foundation that will always be used indirectly by graduates to learn about new
technologies. Furthermore, computing education should develop other kinds of students’ abilities
besides the technical ones, such as communication, teamwork and ethics (RADERMACHER;
WALIA, 2013).

4.4 Results

In this section we present the survey results. We received 90 responses from graduates in
total.

4.4.1 Educational profile

Aiming to get an overview of the educational context from where we are assessing
the knowledge gaps, respondents were asked to provide their academic major (see Figure
20). Computer Science is the major from over half (63.33%) of the respondents, followed by
Information Systems (16.67%) and Computer Engineering (8.89%). Some respondents (11.11%)
mentioned other majors, such as Data Processing, Electrical Engineering, and Software Analysis
and Development.

Next, in order to understand specifically the context of software testing education, they
were asked to inform which courses they took that addressed software testing (see Figure 21).
Different computing courses can address this subject, so this was a question allowing multiple
answers.

One interesting way to analyze these results is by noticing how much of software testing
is addressed in entry-level and upper-level courses. Only 20% (18) of the respondents learned
about software testing early in the curriculum, during introductory programming courses. In
contrast, 82% (74) learned about testing in the Software Engineering course. Moreover, for 50%
(45) of the respondents it was the only course that addressed software testing.

68 Chapter 4. Survey on testing education

Computer Science
63.33% (57)

Information Systems
16.67% (15)

Computer Engineering
8.89% (8)

Other
11.11% (10)

Figure 20 – Respondents’ major

0 10 20 30 40 50 60 70 80 90

Introductory Programming

Software Engineering

Software Testing

Other elective courses

Extracurricular short course

None

of respondents

Figure 21 – Courses that addressed Software Testing in respondents major

Fewer respondents (17% – 15) took a course dedicated to this subject or other elective
courses (3% – 3). Some of them (13% – 12) took short courses not included in the curriculum
that addressed testing. For 6% (5) of the respondents this subject was not even addressed during
the major.

4.4.2 Professional profile

Figure 22 shows respondents’ current positions. Many of them are software developers
(40 respondents). A smaller group work specifically with software quality assurance (QA), as
testers (15) or as QA analyst/lead (14). Some of the respondents work in other roles, such as
project manager (9), product owner (8) and scrum master (2).

The distribution of work experience in years is given in Figure 23. Most of them (82%
– 72) had up to ten years of work experience. The average was 7.32 years, with a standard
deviation of 5.91 years and a median of 7 years. There was a significant variability in respondents’

4.4. Results 69

0 5 10 15 20 25 30 35 40

Other

Project Manager

Product Owner

Scrum Master

QA Analyst/Lead

Tester

Developer

of respondents

Figure 22 – Respondents’ current position in industry

experience and this can contribute positively to the study, since professionals in different moments
of their career can bring complementary contributions to the results.

0

5

10

15

20

25

ye
ar

s
of

 e
xp

er
ie

nc
e

respondents

Figure 23 – Respondents’ years of experience in industry

We also collected the programming languages used in the projects that respondents are
involved, which are showed in Figure 24. Most respondents (71% – 64) mentioned working with
Java, followed by other languages like JavaScript, Python and C++. The choice of programming
language is important to the software testing activity, since each one has different kinds of
existing supporting tools.

4.4.3 Knowledge gaps on software testing

Table 18 presents the knowledge gaps for testing topics, considering the average among
all respondents. Similarly to individual gaps, when the value is negative, it means there is
a knowledge deficiency in that topic, either in terms of concepts (gapC) or practice activities
(gapP). When the value is positive (highlighted in bold), it means there is a knowledge abundance
in that topic.

It is possible to note that all gaps related to practice activities (gapP) are negative,
indicating that there is a lack of practice in software testing education. The values of knowledge

70 Chapter 4. Survey on testing education

0

10

20

30

40

50

60

70

80

90

of

 re
sp

on
de

nt
s

Figure 24 – Programming languages used in respondents’ projects

gaps in concepts (gapC) allow to assess if the coverage of testing topics is adequate. A negative
value suggests that the corresponding testing topic is being underemphasized. Similarly, a positive
value indicates an overemphasized testing topic.

Most testing topics present knowledge deficiencies (negative gaps/values). But focusing
on the higher absolute values, we highlight a significant knowledge deficiency in the topic of Web
applications (for both concepts and practice), for practice in all testing levels (unit, integration,
system and regression testing) and practice of using client requirements/user stories as a test case
generation technique.

On the other hand, knowledge abundance occurs only for concepts in the following
testing topics: test of aspect oriented software and most test case generation techniques (cause-
effect graph, finite state machine, control flow graph, data flow analysis and mutation analysis).
Therefore, the results suggest that these particular topics have not been used much in practice, at
least in the respondents’ companies.

Additionally, the positive knowledge gaps in test techniques may be due to the fact that
some of them work better with a mature set of requirements, which is often not true in software
development. In the same direction, it is possible to note a higher demand for functional testing
(category partitioning and boundary value analysis) and writing test cases from requirements/user
stories.

It is interesting to point out that many respondents indicated behavior-driven development
(BDD) as an approach to undertake testing during the development process (NORTH, 2006). We
do not have the knowledge gap for this particular testing topic, since it was not included in the
textbook contents.

Even so, it is probably a topic that should be more addressed in software testing education,
specially considering its relation with other topics that presented significant negative gaps
(functionality testing and the use of client requirements/user stories to generate test cases). Many
BDD-related tools were also mentioned by respondents (Section ??).

4.4. Results 71

Table 18 – Knowledge gaps on software testing

Testing topic gapC gapP

Types of systems under test
Web applications -0.53 -0.67
Mobile applications -0.36 -0.46
Object oriented software -0.16 -0.50
Aspect oriented software 0.07 -0.08
Concurrent programs -0.02 -0.20
Testing levels
Unit testing -0.18 -0.56
Integration testing -0.44 -0.82
System testing -0.40 -0.71
Regression testing -0.40 -0.66
Test types
Functionality testing -0.37 -0.69
Performance testing -0.48 -0.69
GUI testing -0.30 -0.51
Usability testing -0.09 -0.36
Security testing -0.16 -0.41
User acceptance testing -0.24 -0.51
Testing approach in the development process
Test-driven (first) development (TDD) -0.19 -0.42
Test-last development -0.26 -0.44
Test case generation techniques
Client requirements/user stories -0.27 -0.58
Category partitioning -0.07 -0.32
Boundary value analysis -0.13 -0.37
Cause-effect graph 0.17 -0.13
Finite state machine 0.29 -0.02
Control flow graph 0.19 -0.04
Data flow analysis 0.18 -0.18
Mutation analysis 0.20 -0.06

4.4.4 Supporting tools

Since there was a high number of different tools (83 in total), results are given in Figure 25
sorted by categories. There was a prominence of Web application testing tools (such as Selenium
and JMeter) and XUnit frameworks (such as JUnit and unittest), mentioned by, respectively,
47.8% (43) and 42.2% (38) of respondents.

4.4.5 Respondents’ experiences

The last survey question took free-text answers about respondents’ experiences with
testing practices in industry and the software testing education delivered to them during the

72 Chapter 4. Survey on testing education

0% 10% 20% 30% 40% 50%

Web application testing tools

Mobile application testing tools

XUnit frameworks

Mocking libraries

Behavior-driven development tools

Project management tools

Other tools and frameworks

Figure 25 – Tools used in respondents’ projects

major. There was a response rate of 27% (24) in this question. We identified four main points in
their responses:

1. Lack of testing practice activities in computing courses. Many practitioners reported
learning in undergraduate courses about the importance of why we should test software
and the basics of testing concepts. They recognized that a sound knowledge in testing
fundamentals indeed help in becoming a good tester.

However, they complained about software testing education being too much theoretical,
with a lack of practical scenarios to show students how the concepts should be applied and
how software testing would have an impact in the medium and long term.

As a result, students graduate with little actual testing skills, or depending on how the cur-
riculum is designed, none whatsoever. Some responses are given next, in a free translation
to English:

“During my major, the subject of software testing was not addressed in a detailed way. It

was restricted to only high-level concepts in the software engineering course. Almost all

the learning I had about testing took place in industry”

“I faced difficulties in adapting myself to industry needs, since it usually required experience

with BDD or TDD, but I had never done any testing in practice”

“When I started working as a QA analyst, I remember I had the feeling: ‘I never saw any of

this during my major, except learning the existence of these types of tests’ ”

“It would be very useful if students were encouraged to submit their assignments with tests,

at least in upper-level courses”

2. Distance between software testing education and real-world practices. Some respon-
dents reported a good coverage of testing concepts in the major and some did not. This
variation may be due to differences on how computing curricula are designed in different
universities. But, similarly to what was advocated by Lethbridge et al. (LETHBRIDGE

4.5. Final remarks 73

et al., 2007), there was an agreement that testing education is distant from real-world
practices:

“Unfortunately the testing activities explored in academia still are distant to most of what is

applicable in industry”

“Undergraduate courses gave me a good notion of industry practices, but they evolved

quickly”

“I seldom applied in my job what I learned from my major, because it is distant of industry

reality in general”

“The concepts I learned during my major were good, but I think there was a lack of applying

them in real situations.”

3. Software testing culture in industry. It is interesting to notice the variation in the soft-
ware testing culture from each company. While some respondents reported learning about
testing in industry, thereby implying a good testing culture in their company, some of them
explicitly tell about a poor testing culture:

“Many companies and development teams do not value at all the testing activity. Only

technically strong teams seem to encourage it.”

“In my experience, software testing was more present in the major than in the company

where I work, which only cares about system testing.”

4. Factors that lead to design ineffective test suites. Respondents pointed out how other
development phases, such as analysis and design, are crucial to software testing. Addition-
ally, they mentioned the importance to develop a tester mindset, which is only possible
through practice:

“Testing requires a lot of practice in order to be really effective and not highly coupled with

the application design. There is also a high deficiency in relation to software design, which

should ease the testing in the first place”

“Requirements analysis is critical to create effective test cases and this depends on the

experience of the test analyst. Test techniques help, but without a mature set of requirements,

even with a good application of testing techniques and criteria, the constructed tests will

be poor”

“I took a course that addressed well unit testing. But regarding functional testing and what

concerns developing a tester mindset, it was a very superficial approach.”

4.5 Final remarks
In this chapter we presented an investigation about graduates’ knowledge gaps in soft-

ware testing, considering industry needs. We conducted a survey with software professionals,

74 Chapter 4. Survey on testing education

collecting data about the testing education delivered to them and about testing practices they
have applied in industry.

We considered knowledge gaps in two aspects: in concepts and in practice activities.
This distinction allowed us to assess knowledge gaps in terms of how the teaching of theory
and practice in software testing has been addressed in computing undergraduate programs.
Additionally, the knowledge gaps were represented by values that range from -1 to 1. This raises
two kinds of knowledge gaps: knowledge deficiency (negative gap) and knowledge abundance
(positive gap). They can indicate, respectively, when topics are being underemphasized and
overemphasized.

Ideally, all gaps should be close to zero in order to reflect a good software testing
education according to industry needs. However, there are clear limitations about time and
resources that do not allow to address every topic of a given subject in depth. Even so, considering
that results show positive and negative gaps, there is room to counterbalance them.

In general, results indicated a deficiency for all testing topics in practice activities. In
particular, there were also negative gaps in topics such as test of web applications, functionality
testing and test case generation from client requirements/user stories. On the other hand, there
were some positive gaps on topics like test on aspect oriented software and some test case
generation techniques (cause-effect graph, finite state machine, control flow graph, data flow
analysis and mutation analysis). Therefore, these topics could be considered in order to make
adjustments in software testing education, when seeking to reduce graduates’ knowledge gaps.

We also collected comments on respondents’ experience with software testing education
and industry testing practices. In summary, from the educational point of view, they reported a
lack of testing practice activities in computing courses (as results about knowledge gaps have also
suggested) and a distance of testing education from real-world practices. This distance was also
reported in the broader context of Software Engineering by Lethbridge et al. (LETHBRIDGE et

al., 2007).

From the industry point of view, they reported about testing culture in the companies,
which not always encourage practitioners to test software, and they pointed out some factors
that can lead to ineffective test suites, such as changing requirements, bad software design and
the lack of a tester mindset. Therefore, these factors should also be considered when trying to
improve software testing education.

In particular, the strategy to address software testing earlier in the curriculum might help
to deal with the negative knowledge gaps, which were present for all testing topics. Introductory
courses provide an adequate context to encourage the use of testing practices, since students
are constantly working on programming assignments (BARBOSA et al., 2008; WHALLEY;
PHILPOTT, 2011).

75

CHAPTER

5
SOFTWARE TESTING IN PROGRAMMING

COURSES: A SYSTEMATIC MAPPING

Because industrial software practitioners interact with testing, whether or not they
hold a ’testing’ job, they need to acquire testing skills (GAROUSI; ZHI, 2013). Even so, we
are graduating students from computing programs who have deficiencies in software testing
skills (CARVER; KRAFT, 2011; RADERMACHER; WALIA, 2013).

A way to deal with this issue is to address software testing earlier in the computing
curriculum, beginning in introductory programming courses (EDWARDS, 2003b). The idea is
to provide students the opportunity to develop their testing skills incrementally throughout the
curriculum (JONES, 2001). Moreover, knowledge of testing can help students improve their
programming skills (EDWARDS, 2004; JANZEN; SAIEDIAN, 2008; WHALLEY; PHILPOTT,
2011).

However, the integration of software testing in this context is not straightforward, since
there are many different ways to design the introductory programming sequence, as discussed
in Chapter 2. Therefore, we conducted a systematic mapping of the literature to investigate the
integration of testing into this diverse context and provide an overview of the research performed
in the area (SCATALON et al., 2019). Moreover, the mapping study is the means to leverage
the different structures of existing studies in this domain in order to establish the proposed
experimental framework.

This chapter describes the conducted systematic mapping and the obtained results.
Section 5.1 describes our research questions and the protocol we followed to conduct the
systematic mapping. Section 5.2 presents the selected studies and provides answers to the
proposed research questions. Section 5.3 discusses the obtained results and, finally, Section ??
presents conclusions, threats to validity and provides directions to future work.

76 Chapter 5. Software testing in programming courses: A systematic mapping

5.1 Research method

We followed the guidelines of Petersen et al. (PETERSEN et al., 2008) to define the
research protocol and to conduct the study. Briefly, we performed the following steps:

∙ definition of review scope (Section 5.1.1);

∙ search and selection of relevant papers (sections 5.1.2 and 5.1.3);

∙ definition of a classification scheme, composed by the categories for the mapping (Section
5.1.4), and

∙ data extraction from selected papers and mapping to the defined categories (Section 5.1.5).

5.1.1 Research questions

To scope the study, we defined the following research questions:

RQ1: Which topics have researchers investigated about software testing in introductory pro-
gramming courses?

RQ2: What are the benefits and drawbacks about the integration of software testing into intro-
ductory programming courses?

RQ3: How researchers have designed experimental studies on the integration of software testing
in programming courses?

RQ3.1: What independent variables (factors) were selected?

RQ3.2: What dependent variables (results) and metrics were used?

RQ3.3: What context variables were considered? (The independent and dependent vari-
ables are related to the software testing educational approach and the context variables
are related to the programming course context)

RQ4: How software testing has been integrated into introductory programming courses?

RQ4.1: How instructors have been teaching testing concepts in programming courses?

RQ4.2: How testing practices have been applied in practical assignments?

RQ4.3: Which kind of tools have been used to support the integration of software testing
into this context?

5.1. Research method 77

5.1.2 Search strategy

We conducted the search for relevant papers in two steps: (i) an automatic search in
databases, which provided a list of relevant papers and (ii) a backward snowballing from this
preliminary list to identify additional relevant papers (WOHLIN, 2014).

We performed the automatic search in five databases: ACM Digital Library1, IEEEX-
plore2, ScienceDirect3, Scopus4, Springer Link5. We selected these databases because they are
among the most used ones by previous systematic reviews (ZHANG; BABAR; TELL, 2011).

We constructed the search string following the approach by Zhang et al. (ZHANG;
BABAR; TELL, 2011). We piloted a previous version of this protocol and formed a reference
list composed of 158 papers. Since there was a high variability in the expressions authors use
to refer to the teaching of programming and software testing in this context, we performed a
frequency analysis of individual words from the titles, abstracts, and keywords of our reference
list. We chose the most frequent ones that were able to retrieve all papers from the reference list
and arranged them along three aspects: programming, testing and educational context.

The results of that process produced the following search string that we executed in the
search engines:

(programming OR program) AND
(testing OR test) AND
(student OR course OR learning OR teaching)

5.1.3 Selection criteria

The included papers discuss or investigate software testing in the context of teaching
programming fundamentals in higher education, according to the scope defined by the research
questions.

Once we had all papers returned from the automatic search, we excluded duplicate papers
and papers not written in English. Also, we excluded papers whose context was outside higher
education or that only addressed advanced computing courses.

Finally, following a similar approach to Radermacher and Walia (RADERMACHER;
WALIA, 2013), we only selected papers since 2000, because papers published earlier than that
would not represent current educational practices.

1 <http://dl.acm.org>
2 <http://ieeexplore.ieee.org>
3 <http://sciencedirect.com>
4 <http://scopus.com>
5 <http://link.springer.com>

http://dl.acm.org
http://ieeexplore.ieee.org
http://sciencedirect.com
http://scopus.com
http://link.springer.com

78 Chapter 5. Software testing in programming courses: A systematic mapping

5.1.4 Classification scheme

The classification scheme refers to the categories to which we mapped the selected
papers. We defined categories for two facets: investigated topic and evaluation method.

The structure of investigated topics provides an overview of the area, helping to answer
RQ2. We defined the categories by following the approach of keywording, as suggested by
Petersen et al. (PETERSEN et al., 2008). Briefly, we looked for concepts that represented the
contribution of each paper. Then, we combined these identified concepts in order to form the
categories. The idea was to identify categories which would accommodate all selected studies.

For evaluation method, we adopted the categories used by Al-Zubidy et al. (AL-
ZUBIDY et al., 2016) in their review of Computer Science Education studies, since our mapping
is within the scope of theirs. Namely, literature review (a review of existing studies in a given
topic), exploratory study (involves observation and model building), descriptive/persuasive
study (an overview of the current situation in a given topic), survey (subjects are surveyed about
some intervention), qualitative study (involves the analysis of qualitative data), experimental
(includes experiments, quasi-experiments and case studies), experience report (not a planned
study, a report about the experience of applying an intervention) and not applicable (a proposal,
but without an evaluation).

5.1.5 Data extraction

We extracted the following elements from each selected paper: year; publication venue
(journal/conference); evaluation method; investigated topic; and benefits and drawbacks of
software testing in introductory programming courses. The PhD student did the reading and
extraction of these elements for the selected papers.

5.2 Results

Figure 26 shows the results of the search for relevant papers. The automatic search
returned 9091 studies in total, from which we selected 229 relevant studies by applying the
selection criteria. Next, we applied backward snowballing and obtained 64 additional relevant
studies, arriving at a total of 293 selected papers.

As Table 19 shows, the selected papers appear in a wide variety of conferences and
journals. We listed the more frequent ones. Most studies were published in venues about CS
Education (SIGCSE, ITiCSE, ACE, ICER, Koli Calling, SIGCSE Bulletin, Computer Science Ed-
ucation), followed by venues that address Software Engineering Education (ICSE and CSEE&T),
education in computing-related curricula (FIE, Journal of Computing Sciences in Colleges, ACM
TOCE), and, finally, venues with a more general focus in technology in education (L@S and
Computers & Education).

5.2. Results 79

Returned
studies

ACM DL 2633

IEEE
Xplore

2775

Springer
Link

1549

Science
Direct

675

Scopus 1459

9091

Selected
studies from

search

229

Selection
criteria

Search

All selected
studies

293
(+64)

Snowballing

Figure 26 – Results

The following subsections provide an analysis of the identified papers. A full list of the
papers along with the corresponding study number can be found in Appendix B.

Table 19 – Distribution of publication venues

Venue Name Venue Type #
SIGCSE conference 49
ITiCSE conference 37
Journal of Computing Sciences in Colleges journal 34
FIE conference 23
OOPSLA/SPLASH conference 13
ICSE conference 10
CSEE&T conference 9
ACE conference 9
SIGCSE Bulletin journal 9
ICER conference 6
Koli Calling conference 5
L@S conference 4
Computer Science Education journal 3
Software: Practice and Experience journal 3
ACM JERIC/TOCE journal 2
Computers & Education journal 2
other 75
total 293

80 Chapter 5. Software testing in programming courses: A systematic mapping

5.2.1 RQ1: Investigated topics

We identified nine investigated topics in the selected papers. Figure 27 shows the map of
selected papers to the categories of topic and evaluation method. The topic curriculum includes
papers about the integration of testing in the computing curriculum as a whole or in individual
programming courses.

Teaching methods

Curriculum

Course materials

Programming assignments

Programming process

Tools

Program/test quality

Perceptions/behaviors

Concept understanding

Research topic Evaluation method

13

4

6

14

12

1 6 3

1 16 148

2 1

12 722

1 6

11

102 35

1 1

1 11

10

371 5343

Figure 27 – Map of research on software testing in introductory programming courses

Teaching methods include methods to teach programming with the integration of soft-
ware testing. We identified general elements that compose a teaching method in this scenario. We
also considered these elements as topics in our study: course materials (materials about testing
for the context of introductory courses), programming assignments (guidelines to conduct
programming assignments that include testing practices), programming process (programming
processes for novices), and tools (supporting tools). When a selected paper addressed more than
one of these elements, we mapped it to the topic teaching methods. Otherwise, it was mapped to
the topic of the corresponding element.

The remaining topics concern the learning outcomes of the integration of testing in
programming courses: program/test quality (assessment of students’ submitted code), per-
ceptions/ behaviors (students’ attitudes towards software testing) and concept understanding
(assessment of students’ knowledge of programming and testing concepts). Next we provide an
overview of the selected papers according to the investigated topics.

5.2. Results 81

5.2.1.1 Curriculum

The papers mapped to the topic curriculum recommend testing concepts and practices
should be distributed throughout the computing curriculum (S3, S5, S11, S12, S13). Moreover,
the idea is to address testing earlier, beginning in introductory programming courses, by integrat-
ing testing practices into programming assignments (S1). Some papers address the design of a
specific programming course with the integration of testing, such as S2, S4, S6 and S8.

5.2.1.2 Teaching methods

The papers mapped to this topic propose or investigate methods to teach programming
with the integration of software testing, i.e. the different ways to teach these two subjects together
in this context. Janzen and Saiedian (S35, S36) proposed Test-Driven Learning (TDL), which is
a method to teach programming by introducing new concepts through unit tests. The authors
provide several guidelines on how to apply it in the classroom. Edwards (S33, S17, S34) proposed
the combination of TDD and the use of an automated assessment tool (Web-CAT) to leverage
constant feedback as students submit their programs and test suites.

5.2.1.3 Course materials

There are only three selected papers investigating course materials about software testing
that can be used in the context of introductory courses. Agarwal et al. (S68) and Barbosa et al.
(S70) presented educational modules of software testing. They linked the materials according to
the instructional sequence in which novice programmers should learn testing concepts. Desai et
al. (S69) demonstrated how to adjust existing materials from a programming course to integrate
software testing. They also report about their experience to apply the materials in the classroom.

5.2.1.4 Programming assignments

Papers about this topic discuss guidelines to design, conduct, and assess programming
assignments that include testing practices. Some selected papers present descriptions of particular
assignments (e.g. nifty assignments or programming projects) and include information about the
appropriate context to apply them (S75, S78, S79, S80).

The design of assignments involving testing includes some additional important aspects
to consider. First, there is the need to decide whether students should write test cases or work with
instructor’s tests (S77). Second, the problem specification should be clear enough so students are
able to write tests (S74, S76).

Finally, testing is an inherent part of assessing students’ programs, by providing a metric
of correctness (S84). It can ease the grading process, especially when using an automated
assessment tool. Tools can provide adequate results and feedback for formative assessment (such

82 Chapter 5. Software testing in programming courses: A systematic mapping

as homeworks and lab sessions) but might be less feasible for summative assessment (tests and
exams), according to S72.

5.2.1.5 Programming process

Several proposals aim to teach students a systematic approach to develop programs,
which can be seen as a lightweight version of a software development process. Given the scope of
the systematic mapping, all processes addressed in the selected papers involve software testing,
binding it somehow with programming.

The programming process can be easily overlooked in introductory courses, especially
when students learn programming mostly by seeing examples of ready-made solutions. Instead,
they should also learn how to stepwise create a solution for a given problem and to reflect about
their own development process (S110).

Several studies investigate the use of TDD (test-driven development) by novice program-
mers (e.g. S92, S94, S96, S98, S99, S102, S103). There are other proposals of programming
process, specifically designed for the educational context, which are also heavily influenced by
TDD. Some examples are TBC (Testing Before Coding), POPT (Problem-Oriented Programming

and Testing) and STREAM (Stubs, Tests, Representations, Evaluation, Attributes and Methods)
from S87, S97 and S89, respectively.

Usually these processes address the testing activity from a high-level point of view,
without giving details about how students should test their programs. In another perspective, two
studies investigated the testing activity for novice programmers at a lower-level, focusing on test
design and the use of testing criteria (S98 and S101).

5.2.1.6 Tools

The papers mapped to this topic present several kinds of tools, which automate different
aspects of applying testing practices. We sort them into three groups:

∙ Supporting mechanisms to write and execute test cases:

– Testing frameworks/libraries: besides the xUnit testing frameworks, there are
testing libraries developed specifically to ease the learning curve for students (e.g.
S201, S153, S226, S178).

– IDEs’ testing facilities: there are IDEs that offer mechanisms to help students test
their programs, like BlueJ (S204).

∙ Automated assessment systems: automating the assessment process by means of soft-
ware testing is fairly straightforward, since test cases are represented by code that can be
executed along with submitted programs. In this sense, automated assessment permeates
most tools used in this context. We sort them into the following categories:

5.2. Results 83

– Submission and testing systems: These systems usually are responsible for compil-
ing the submitted program, executing tests and providing feedback to students. In
some cases these tools also grades students’ submitted code according to test results
in a (semi-)automatic manner. In general, these systems are web-based (S254, S215,
S138, S177) or plug-ins to other widely used systems such as IDEs (S208) or LMSs
(S145).

– Online judges: These tools present a catalog of problems to students, who should
submit the corresponding programming solutions to be assessed by means of testing.
Some of these systems are used in programming competitions (S133, S176).

– Games: Some tools can be characterized as games, which aim to motivate students
through fun and competition. They introduce software testing in different ways, such
as implicit testing to solve programming “quests” (S223), or hints in the format
of unit tests, which help students to guess a “secret implementation” in code duels
(S142).

– Tutor systems: Some tools combine course materials and interactive exercises or
assignments, providing automatic orientation while students learn programming and
testing. Usually this kind of tools is composed by materials (presented as slides or
hypertext) and an automated assessment tool to test students’ programs (S118, S121,
S123, S167).

∙ Automated assessment utilities: Some papers focus on functionalities that compose or
complement automated assessment systems. We provide an overview of these proposals,
sorting them into the different aspects they address:

– Test automation: There are several proposals that aim to make the execution of tests
and students’ programs as seamless as possible. One important aspect in this scenario
is interface conformance between program and test suite (S258, S164, S241), seeking
to assure that both are compiled together properly. Additionally, some precautions
should be taken during execution, like running students’ code in a sandbox to assure
safety and having mechanisms to cope with infinite loops (S194, S174).

– Feedback: Metrics of program and test quality can be used to suggest a grade and to
provide feedback to students. Besides that, students need help with failed test cases
and improving their test suites. Some tools provide this type of additional support to
students, like mechanisms to detect inadequate memory management (S154) and the
generation of execution traces (S131). Feedback can also help to influence students’
testing behavior, with the adaptive release of hints as students achieve certain testing
goals (S173, S179).

84 Chapter 5. Software testing in programming courses: A systematic mapping

5.2.1.7 Program/test quality

Papers mapped to this topic address students’ performance in programming assignments,
assessed by means of their submitted code (program and/or tests). The program usually is
assessed in terms of correctness, which in turn is calculated by the success rate of a given test
suite. Besides correctness, there are also metrics that involve a static analysis of the source code
structure, by analyzing modifications made by students between successive submissions (S270,
S273).

When students are supposed to write tests in the assignments, the issue of assessing the
quality of their test suites is raised. The most common metric is code coverage, which generates
feedback that is easy for students to understand. However, code coverage can overestimate test
quality, since it is possible to achieve 100% coverage even when a test suite is not thorough, e.g.
when the tests do not check for missing features in the program. In this sense, other strategies
like mutation analysis and all-pairs testing can provide more accurate metrics (S264, S266),
though both are more computationally expensive.

5.2.1.8 Concept understanding

There are only two selected studies that address this topic (S277, S278). Both aim to
investigate assessments of programming concepts, which include software testing concepts.
Sanders et al. (S277) presented the Canterbury QuestionBank6, a repository of 654 multiple
choice questions about programming fundamentals, 3% of which about testing. Luxton-Reilly et
al. (S278) present a comprehensive review of concepts that should be assessed in introductory
programming courses. Testing appears under the category of programming process, along with
other topics like debugging and design.

5.2.1.9 Students’ perceptions and behaviors

Papers mapped to this topic investigate students’ attitudes towards software testing. Stu-
dents’ perceptions indicate their opinions about the testing approaches, such as TDD acceptance
(S280). Students’ behaviors refer to what they actually do during programming assignments, in
contrast with what they were instructed to do (S289, S291, S292, S293).

We can observe trends in student behavior when analyzing submissions of the whole class
(S284, S282), such as “happy-path” testing in S286. There are also studies analyzing multiple
subsequent submissions for a given assignment, i.e. “snapshots” of students’ programs and test
suites. Process adherence (e.g. whether students are adopting test-first or not) and mechanisms
to influence students’ behavior can be investigated using this strategy (S280, S287, S281).

6 <web-cat.org/questionbank>

web-cat.org/questionbank

5.2. Results 85

5.2.2 RQ2: Benefits and drawbacks

To answer RQ2, we identified benefits and drawbacks of integrating software testing
into programming courses, as pointed out by the selected papers. We identified the following
benefits:

∙ Improvement in students’ programming performance: there are studies reporting im-
provements in students’ performance, mainly in terms of program quality (S33, S101,
S276, S272). There are also findings indicating improvements in the resulting program
design (in S94, for TDD specifically). The papers argue the reason behind these improve-
ments is that testing practices help developing students’ comprehension and analysis skills
(S34).

∙ Feedback: test results can provide students useful information about their programming
and testing performance before the assignment deadline (S21, S34, S92, S119, S210). This
issue of providing feedback to students is recurrent in the motivation for using automated
assessment tools (S112 to S261). Automated feedback may decrease the amount of help
students need from the instructor (S150). Moreover, since testing drives students to self-
validate their work, it can help them make progress when they are stuck or recognize when
they need help from the instructor (S62).

∙ Objective assessment: testing results provide an objective and consistent way to assign
grades to the assignments (S192). This benefit of testing is also frequently discussed
in the selected papers about supporting tools (S112 to S261). Besides helping in the
grading process, the assessment through testing also helps students to better understand
the correctness requirements of assignments (S62).

∙ Better understanding of the programming process: when software testing is introduced,
students learn a simplified version of the development process (S89). Considering that they
have to work on many programming assignments throughout the introductory sequence,
students have an opportunity to learn the mechanics of the activities of programming and
testing together (S104).

Conversely, we identified the following drawbacks:

∙ Additional workload of course staff: instructors and teaching assistants may have addi-
tional work to adjust course materials to include testing concepts, prepare reference test
suites for assignments, and assess students’ test suites (S33, S17, S62, S72).

∙ Students’ testing performance: studies report the lack of proper testing by students.
Students mostly check common program behavior, leaving out corner cases that would be
crucial to reveal the presence of defects (S286). In order to be properly understood and

86 Chapter 5. Software testing in programming courses: A systematic mapping

applied, many testing ideas require previous knowledge and skill in programming, which
students are also still acquiring in programming courses. In particular, the main difficulty
may be related to students writing their own test cases (S38, S62).

∙ Students’ reluctance to conduct testing: students may present a negative attitude towards
software testing, even though they recognize the importance of the testing activity (S61).
When the testing practice is voluntary, they may not develop test cases for their programs
(S32).

∙ Programming courses are already packed: the integration of software testing brings the
need to cover additional topics in courses that may be already full. In other words, it is the
integration of additional content with the same amount of lecture hours (S123, S17, S34).

5.2.3 RQ3: Experimental design

To answer RQ3, we performed the data extraction of the papers mapped to survey,
qualitative and experimental. All these kinds of studies involve a planned design by the researcher
to collect data. So the idea is to identify the variables used in or suggested by the studies that
have been conducted in this domain.

5.2.3.1 RQ3.1: Independent variables

Table 20 lists the identified independent variables and the respective levels/treatments. It
is possible to notice several blank entries for the independent variables. The reason is that, for
the corresponding studies, the manipulation of input variables was not clear in the paper. Many
papers consist of case studies in which the authors describe the teaching method and collect data
of its application in the classroom, without discussing variable selection. For some cases it was
possible to identify levels/treatments from the analysis section of the paper, since results were
divided into two groups, which could represent treatments.

Table 20 – Independent variables

Study Variable Levels/treatments
Edwards (2003a), Edwards (2004) with/without TDD+Web-CAT
Janzen and Saiedian (2006b) TDL / non-TDL
Janzen and Saiedian (2008) development approach test-first / test-last
Oliveira et al. (2015) using a pascal compiler / using pascal mutants
Li and Morreale (2016) Project A / Project B
Lemos et al. (2015), Lemos et al.
(2017)

testing knowledge with / without

Gómez, Vegas and Juristo (2016) knowledge acquired in CS pro-
grams

1st-yr undergraduate (8%), 4th-yr undergradu-
ate (56%), 5th-yr undergraduate (79%), 1st-yr
graduate (100%)

(continued in the next page)

5.2. Results 87

Independent variables (continued)
Study Variable Levels/treatments
Pieterse and Liebenberg (2017) assessment method automatic / manual
Brito et al. (2012) Students who received test case sets / students

who received only the program specifications
Edwards (2003d) with/without TDD+Web-CAT
Erdogmus, Morisio and Torchiano
(2005)

group affiliation test-first / test-last

Janzen and Saiedian (2006a) test-first programming / test-last programming
Neto et al. (2013) POPT vs Blind Testing approach (non-POPT)
Camara and Silva (2016) TDD / TDD with testing criteria
Parodi et al. (2016) coding technique Test Driven Development, Test Last, and ad hoc

programming
Scatalon et al. (2017b) test design task instructor-provided test cases (IT) / student-

written test cases (ST)
Gómez, Vegas and Juristo (2016) Sw. Testing Method black-box; white-box
Janzen and Saiedian (2007) approach test-first (TDD) approach / test-last

approach
Odekirk-Hash and Zachary (2001) No tutor / tutor without hints / tutor with hints
Daly and Horgan (2004) traditional method / roboprof, male / female
Thornton et al. (2008) GUI vs. testing text-based assignments
Dvornik et al. (2011) using WebIDE / control group using traditional

static labs
Wang et al. (2011) with / without AutoLEP
Buffardi and Edwards (2013b) with / without adaptive feedback system
Janzen, Clements and Hilton (2013) WebIDE / traditional labs
Jezek, Malohlava and Pop (2013) old system / new system
Vujosevic-Janicic et al. (2013) LAV / manual inspection
Allevato and Edwards (2014) used Dereferee / did not use Dereferee
Buffardi and Edwards (2014b) feedback with no hints / same number of hints /

additional hints
Blaheta (2015) CppUnit / Unci
Reynolds et al. (2015) with BugFixer / without BugFixer
Braught and Midkiff (2016) Original BlueJ / Modified BlueJ
Smith et al. (2017) students trained / untrained
Buffardi and Edwards (2014a) treatments of the adaptive feedback system (CS,

DH, DS, RH, RS)

5.2.3.2 RQ3.2: Dependent variables

We also identified the variables that held experimental results in the selected empirical
studies. We sorted them according to the entity being measured: program variables are listed
in Table 21, tests variables in Table 22, student/class variables in Table 23 and assignment
variables in Table 24.

This “classification” of entities is similar to the ones used by Juristo and Moreno (2001)
(products, processes and resources) and by Munson (2002) (product, process, people and envi-

ronment). In this way, program and tests are product entities, student/class is a people/resources
entity and assignment is a process entity. The environment entity is equivalent to our context
variables discussed in the next section.

Hence, when the identified variable was measuring a characteristic of students’ programs,

88 Chapter 5. Software testing in programming courses: A systematic mapping

we classified it as a program variable. The same reasoning applies to students’ tests and test

variables. Still, when the variable was related to the students themselves, like measuring concept
understanding, exam and quizz grades and their attitudes towards a given teaching method, it
was classified as a student/class variable. Finally, variables related to the processes of students
working on assignments and instructors assessing it are classified as assignment variables.

Table 21 – Dependent variables – program

Study Variable/metric Description
Morisio, Torchiano and Argentieri
(2004)

size LOC: total lines of code, only counts non-blank
and non-comment lines inside method bodies

Morisio, Torchiano and Argentieri
(2004)

size NOC: Number of classes

Morisio, Torchiano and Argentieri
(2004)

size NOM: Number of methods

Morisio, Torchiano and Argentieri
(2004)

size AMC: Average methods per class

Morisio, Torchiano and Argentieri
(2004)

size diffLOC: Number of changed/added lines of
code

Lemos et al. (2015) size
Lemos et al. (2017) size
Janzen and Saiedian (2006a) LOC
Cardell-Oliver et al. (2010) LOC
Denny et al. (2011) LOC
Brito et al. (2012) LOC
Buffardi and Edwards (2012a) NCLOC Amount of student-written solution code, in

terms of the number of non-comment, non-
blank lines of code

Vujosevic-Janicic et al. (2013) number of lines
Braught and Midkiff (2016) Normalized NCLOC The number of Non-Comment, non-blank Lines

Of Code (NCLOC) in the submitted student so-
lution normalized to the mean solution NCLOC
of all first submissions to the assignment.

Janzen and Saiedian (2006a) LOC/method
Janzen and Saiedian (2006a) LOC/feature
Janzen and Saiedian (2006a) internal quality Nested Block Depth
Janzen and Saiedian (2006a) internal quality Coupling Between Objects
Janzen and Saiedian (2006a) internal quality Cyclomatic Complexity
Janzen and Saiedian (2006a) internal quality Number of Parameters
Janzen and Saiedian (2006a) internal quality Information Flow
Cardell-Oliver et al. (2010) # classes
Whalley and Kasto (2014) number of operators
Whalley and Kasto (2014) number of unique operators
Whalley and Kasto (2014) number of commands
Whalley and Kasto (2014) average nested block depth
Whalley and Kasto (2014) readability metric
Whalley and Kasto (2014) regular expression metric
Denny et al. (2011) practiced topics Assignment, Arithmetic, API use, Relationals,

Logicals, Conditionals, Loops, Arrays
(continued in the next page)

5.2. Results 89

Dependent variables – program(continued)
Study Variable/metric Description
Vujosevic-Janicic et al. (2013) Similarity of CFGs To evaluate structural properties of programs,

we take the approach of comparing students’
programs to solutions provided by the teacher

Cardell-Oliver et al. (2010) # code style warnings Code Layout (Missing whitespace, Bracket on
wrong line, Line is longer than 80 characters,
Construct must use brackets), Documentation
(Missing a Javadoc comment, Expected Javadoc
tag, Unused Javadoc tag), Java Conventions (In-
stance variables must be private, Java identi-
fier must match pattern, Import warnings, More
than 7 parameters), Programming Error (Condi-
tional logic can be removed)

Denny et al. (2011) cyclomatic complexity
Whalley and Kasto (2014) cyclomatic complexity
Lemos et al. (2015) complexity
Lemos et al. (2017) complexity
Cardell-Oliver et al. (2010) LOC/class
Erdogmus, Morisio and Torchiano
(2005)

QLTY The quality of a story is given by the percentage
of assert statements passing from the associated
acceptance test suite. The quality of each story
is then weighted by a proxy for the story’s dif-
ficulty based on the total number of assert state-
ments in the associated acceptance test suite. Fi-
nally, a weighted average is computed for each
subject over all delivered stories, giving rise to
the measure QLTY. By construction, the range
of this variable is 0.5 (50 percent) to 1 (100 per-
cent).

Brito et al. (2012) program quality a score, ranging from 0 to 10, considering the
correctness of the program in relation to test
case set

Edwards (2003a) code correctness the code correctness score measures how "cor-
rect" the student’s code is. To empower students
in their own testing capabilities, this score is
based solely on how many of the student’s own
tests the submitted code can pass. No separate
test data is provided by the instructor or teach-
ing assistant. The reasoning behind this deci-
sion is that, if the student’s test data is both valid
(according to the instructor’s reference imple-
mentation) and complete (also according to the
reference), then it must do a good job of exer-
cising the features of the student program

(continued in the next page)

90 Chapter 5. Software testing in programming courses: A systematic mapping

Dependent variables – program(continued)
Study Variable/metric Description
Edwards (2003d) code correctness
Edwards (2004) code correctness
Buffardi and Edwards (2012a) Final correctness Correctness of solution code on student’s fi-

nal submission for a project, as determined by
instructor-written tests

Jezek, Malohlava and Pop (2013) correctness
Buffardi and Edwards (2013a) Correctness
Souza, Isotani and Barbosa (2015) Program correctness Assesses whether there are defects in the stu-

dent’s program which are revealed by the in-
structor’s test cases. It is equivalent to the cover-
age of non failured test cases for the PSt – TInst
execution.

Lemos et al. (2015) correctness
Lemos et al. (2017) correctness
Scatalon et al. (2017b) correctness pass rate of student solution code
Cardell-Oliver et al. (2010) tests passed (P)
Edwards et al. (2012) program performance Fraction of test cases passed by a program in

all-pairs testing
Neto et al. (2013) # PT The number of test cases (defined by the profes-

sor) that passed against the program submitted
by the student

Fidge, Hogan and Lister (2013) Code functionality The students’ classes were compiled together
with our own ’ideal’ unit test suite. (As ex-
plained below, this often exposed students’ fail-
ures to match the specified API.) Our unit tests
were then executed to determine how well the
students had implemented the required function-
ality in their program code. The proportion of
tests passed was used to calculate a ’code func-
tionality’ mark and a report was generated auto-
matically for feedback to the students.

Utting et al. (2013b) success by method
Utting et al. (2013b) # unit tests passed
Edwards and Shams (2014a) pass rates pass rates of student programs when tested with

the master test suite
Braught and Midkiff (2016) % Reference Tests Passed The percentage of instructor generated unit tests

that were passed by the student’s solution.
Sauvé, Neto and Cirne (2006) compliance rate percentage of user stories delivered with all ac-

ceptance tests passing
Utting et al. (2013b) # of methods working
Edwards (2003a) test case failures from master

suite
Edwards (2004) test case failures from master

suite
Wang et al. (2011) Syntactic and structural defects

rate
Wang et al. (2011) Functional error rate
Morisio, Torchiano and Argentieri
(2004)

defect Defect in a program as evidences by failure of
an acceptance test

Edwards and Shams (2014a) failure rates program failure rates for test cases in the master
test suite

(continued in the next page)

5.2. Results 91

Dependent variables – program(continued)
Study Variable/metric Description
Edwards and Shams (2014b) failure rate
Parodi et al. (2016) Technical Debt total number of defects identified by Findbugs /

Sonar
Edwards (2003a) defect density To get defect density information, a selection of

18 programs were selected, 9 from each group.
These programs had all comments and blank
lines stripped from them. They were then de-
bugged by hand, making the minimal changes
necessary to achieve a 100% pass rate on the
comprehensive test suite. The total number of
lines added, changed, or removed, normalized
by the program length, was then used as the de-
fects per KSLOC measure for that program. A
linear regression was performed to look for a
relationship between the defects/KSLOC num-
bers and the raw number of test cases failed
from the comprehensive test suite in this sample
population. This produced a correlation signifi-
cant at the 0.05 level, which was then used to
estimate the defects/KSLOC for the remaining
programs in the two student groups.

Edwards (2003d) defect density
Edwards (2004) defect density
Morisio, Torchiano and Argentieri
(2004)

defect density Defect/size (size as LOC)

Souza, Isotani and Barbosa (2015) Program adequacy Assesses whether there are unnecessary ele-
ments (i.e., statements, conditions, etc.) in the
student’s program. It is equivalent to the aver-
age of the covered statements and conditions for
the PSt – TInst execution.

Table 22 – Dependent variables – tests

Study Variable/metric Description
Janzen and Saiedian (2006a) Code Size Test LOC
Braught and Midkiff (2016) Normalized Test NCLOC The NCLOC in the submitted student unit tests

normalized to the mean test NCLOC of all first
submissions to the assignment

Buffardi and Edwards (2012a) Final Test NCLOC Amount of student-written test code, in terms of
the number of non-comment, non-blank lines of
code

Janzen and Saiedian (2008) # asserts
Camara and Silva (2016) # test cases
Krusche and Seitz (2018) # Test cases
Janzen and Saiedian (2006a) Test density Assertions/SLOC
Shams (2013a), Shams and Ed-
wards (2013)

test quality test coverage

Shams (2013a), Shams and Ed-
wards (2013)

test quality mutation score

Shams (2013a) test quality all-pairs testing score
Blaheta (2015) Test suite quality No handin; doesn’t compile; no real test; light

tests; all one fn; good tests
(continued in the next page)

92 Chapter 5. Software testing in programming courses: A systematic mapping

Dependent variables – tests (continued)
Study Variable/metric Description
Cardell-Oliver et al. (2010) test quality P*C (tests passed * code coverage)
Edwards (2003a), Edwards (2004),
Edwards (2003d)

code coverage branch coverage

Lee, Marepalli and Yang (2017) Statement Coverage
Lee, Marepalli and Yang (2017) Branch Coverage
Janzen and Saiedian (2006a) Test Coverage lines and branches
Camara and Silva (2016) statement and branch coverage
Cardell-Oliver et al. (2010) code coverage (C)
Braught and Midkiff (2016) Statement Coverage The percentage of student solution lines in the

submission that were executed at least once by
the student’s unit tests

Aaltonen, Ihantola and Seppala
(2010)

test coverage

Edwards and Shams (2014a) coverage scores composite coverage scores achieved by student-
written test suites

Edwards and Shams (2014a) Code coverage measures
Spacco and Pugh (2006) Code coverage
Spacco and Pugh (2006) Unique and Redundant Coverage Unique and redundant coverage by failing test

cases
Buffardi and Edwards (2012a) Average test coverage Percent of statements covered by tests at time

of each submission to Web-CAT, averaged for
each student on each project

Buffardi and Edwards (2013a) Coverage
Fidge, Hogan and Lister (2013) Test coverage For each of our own unit tests we developed

a corresponding ’broken’ program which ex-
hibited the flaw being tested for. To assess the
students’ unit test suite against these programs,
their tests were first applied to our own ’ideal’
solution program to provide a benchmark for
the number of tests passed on a correct solu-
tion. Then the students’ unit tests were applied
to each of our broken programs. If fewer tests
were passed than the benchmark our marking
script interpreted this to mean that the students’
unit tests had detected the bug in the program.
(This process is not infallible since it can’t tell
which of the students’ tests failed. Nevertheless,
we have found over several semesters that it
gives a good, broad assessment of the quality of
the students’ unit test suites.) The proportion of
bugs found was used to calculate a ’test cover-
age’ mark and a feedback report was generated
automatically.

(continued in the next page)

5.2. Results 93

Dependent variables – tests (continued)
Study Variable/metric Description
Edwards and Shams (2014b) branch coverage scores
Buffardi and Edwards (2012a) Final coverage Percent of statements covered by tests on stu-

dent’s final submission for a project
Aaltonen, Ihantola and Seppala
(2010)

mutation score

Edwards and Shams (2014a) mutant kill ratios
Edwards et al. (2012) pass rates for test cases pass rate for a test case in all-pairs testing
Edwards and Shams (2014a) all-pairs score
Edwards (2003a), Edwards (2004),
Edwards (2003d)

test validity the test validity score measures how many of
the student’s tests are accurate–consistent with
the problem assignment. This score is measured
by running those tests against a reference imple-
mentation provided by the instructor to confirm
that the student’s expected output is correct for
each test case

Edwards (2003a), Edwards (2004),
Edwards (2003d)

test completeness the test completeness score measures how thor-
oughly the student’s tests cover the problem.
One method to assess this aspect of perfor-
mance is to use the reference implementation
provided by the instructor as a surrogate repre-
sentation of the problem. By instrumenting this
reference implementation to measure the code
coverage achieved by the student tests, a score
can be measured. In our initial prototype, this
strategy was used and branch coverage (basis
path coverage) served as the test completeness
score. Other measures are also possible.

Souza, Maldonado and Barbosa
(2011), Souza et al. (2014)

Test Coverage PROGTEST compiles the student’s program
and test cases and calculates, by using JUNIT
and JABUTI SERVICE , the coverage for the
following combinations: (i) student’s program
against the student’s test set (PSti – TSti); (ii)
instructor’s program against the student’s test
set (PInst – TSti); and (iii) student’s program
against the instructor’s test set (PSti – TInst)

Souza, Isotani and Barbosa (2015) Tests correctness Assesses whether there are problems in the stu-
dent’s test cases by using the oracle program. It
is equivalent to the coverage of non failured test
cases for the PInst – TSt execution.

Politz, Krishnamurthi and Fisler
(2014), Politz et al. (2016)

correctness

Politz, Krishnamurthi and Fisler
(2014), Politz et al. (2016)

thoroughness

Souza, Isotani and Barbosa (2015) Testing completeness Assesses whether there are elements of the
student’s program (i.e., statements, conditions,
etc.) which were not tested. It is equivalent to
the average of the covered statements and con-
ditions for the PSt – TSt execution.

(continued in the next page)

94 Chapter 5. Software testing in programming courses: A systematic mapping

Dependent variables – tests (continued)
Study Variable/metric Description
Braught and Midkiff (2016) % Student Tests Correct The percentage of the student’s submitted unit

tests that were correct (i.e. passed when run
with an instructor reference solution).

Edwards and Shams (2014b), Ed-
wards and Shams (2014a)

bug revealing capability Estimated Number of Detected Bugs

Shams and Edwards (2015) defect-revealing capability
Gómez, Vegas and Juristo (2016) Revealed Faults Number of faults revealed or not revealed by the

test cases generated by students
Gómez, Vegas and Juristo (2016) Unrevealed Faults Number of faults revealed or not revealed by the

test cases generated by students
Tang et al. (2016) test case complexity score Complexity is defined as C[t] = Q C[ti], where

C[ti] is the complexity of the ith argument and
C[ti] is the product of the average complexity of
each nested component. Component complexity
is the length for sequences and value for primi-
tives.

Table 23 – Dependent variables – student/class

Study Variable/metric Description
Janzen and Saiedian (2008) grades
Rubin (2013) Grades
Daly and Horgan (2004) grade in programming exam
Reynolds et al. (2015) Grades
Souza, Isotani and Barbosa (2015) grades
Rajala et al. (2016) scores
Smith et al. (2017) scores
Spacco et al. (2013) scores
Utting et al. (2013b) student scores
Dvornik et al. (2011) lab scores
Dvornik et al. (2011) midterm questions
Jezek, Malohlava and Pop (2013) Grades
Janzen and Saiedian (2006b) scores in exam and quiz
Agarwal, Edwards and Perez-
Quinones (2006)

pre post-test scores

Odekirk-Hash and Zachary (2001) post-test and the pretest scores
Oliveira et al. (2015) Groups’ Performance
Isomottonen and Lappalainen
(2012)

students’ performance

Rubio-Sanchez et al. (2014) Dropout rates we consider both students that do not hand in
any assignments for credit nor take exams (early
dropouts), and the ones that having submitted at
least one homework during the semester do not
take the final exam (late dropouts)

Jezek, Malohlava and Pop (2013) Course success rate Students successfully finishing the course
Jezek, Malohlava and Pop (2013) number of students interested in

the course
Teusner, Hille and Hagedorn (2017) stopped out students
Barriocanal et al. (2002) satisfaction via survey
Buffardi and Edwards (2014a) behaviors/opinions Test Early; Test Late; Small Increments; Large

Portions; Test First; Test After
(continued in the next page)

5.2. Results 95

Dependent variables – student/class (continued)
Study Variable/metric Description
Janzen and Saiedian (2008) programmer opinions/percep-

tions
Buffardi and Edwards (2013b) student attitudes and perceptions

of TDD
Janzen and Saiedian (2008) programmer perceptions Choice; BestApproach; ThoroughTesting; Cor-

rect; Simpler; FewerDefects
Politz et al. (2014) helpfulness of code and test re-

views
Janzen and Saiedian (2007) programmer opinion Choice; BestApproach; ThoroughTesting; Cor-

rect; Simpler; FewerDefects

Table 24 – Dependent variables – assignment

Study Variable/metric Description
Morisio, Torchiano and Argentieri
(2004)

effort Time spent by student to develop program for
exam

Janzen and Saiedian (2006a) Effort in minutes (Productivity) Dev Effort, Dev Effort/LOC, Dev Effort/Fea-
ture

Thornton et al. (2008) effort we examined the programs submitted by stu-
dents to count the number of statements written,
and then looked at the proportion of statements
devoted to test cases, relative to the entire solu-
tion submitted by each student

Daly and Horgan (2004) SOLVETIME gives the week that the full set of exercises was
completed by each student, relative to the earli-
est time a set was completed. The first set, com-
pleted in week seven, was given a value of 1;
the last set, completed in week 12, was scored
6. Students who did not complete were labeled
7.

Janzen and Saiedian (2008) amount of time students reported
they spent on the projects

Buffardi and Edwards (2013a) Time Remaining The amount of time between when a submission
was made and the assignment deadline. Nega-
tive values represent submissions made after the
deadline.

Buffardi and Edwards (2013a) Time Elapsed The amount of time between the students’ first
submission for that assignment and the current
submission in question.

Buffardi and Edwards (2013a) Relative Worktime The amount of time elapsed, expressed as a per-
centage of the total duration over all of the stu-
dent’s submissions for an assignment. Zero- and
one-values represent the first and final submis-
sions by that individual, respectively. This met-
ric disregards the relationship between submis-
sion time and the assignment deadline. Instead,
it represents the progression of time within the
workflow of development.

(continued in the next page)

96 Chapter 5. Software testing in programming courses: A systematic mapping

Dependent variables – assignment (continued)
Study Variable/metric Description
Neto et al. (2013) Time Time spent between (i) the student receiving an

ill defined specification and (ii) the student sub-
mitting a program to the Bling testing system

Spacco et al. (2013) estimated hours writing code
Oliveira et al. (2015) time each student had specified a starting time and an

ending time for their experiment
Li and Morreale (2016) Planning time; Coding time; Test-

ing time; Revision time
Rajala et al. (2016) time
Lemos et al. (2015), Lemos et al.
(2017)

time

Matthies, Treffer and Uflacker
(2017)

Time-Per-Task Analysis An indicator of both the general difficulty of a
task as well as how much effort was required by
participants is the time taken to solve tasks

Morisio, Torchiano and Argentieri
(2004)

productivity Size/effort (size as LOC)

Erdogmus, Morisio and Torchiano
(2005)

PROD Productivity is defined as output per unit effort.
The number of stories is well-suited for mea-
suring output: For our purpose, it is a superior
measure of real output than program size (e.g.,
lines of code) in that it constitutes a more direct
proxy for the amount of functionality delivered.
It is still an objective measure since we can com-
pute it automatically based on black-box accep-
tance tests. If a story passed at least 50 percent
of the assert statements from the associated ac-
ceptance test suite, then the story was consid-
ered to be delivered. The number of stories de-
livered was normalized by total programming
effort to obtain the productivity measure PROD

Janzen and Saiedian (2008) productivity LOC; time
Erdogmus, Morisio and Torchiano
(2005)

TESTS The variable TESTS measures the number of
programmer tests written by a subject, again,
per unit of programming effort. A program-
mer test refers to a single JUnit test method.
Through visual inspection of the subjects’ test
code, we filtered out ineffective tests, such as
empty test methods, duplicated test methods,
and useless test methods that passed trivially.
Because subjects were free to work as many
hours as they wanted, the variation in total pro-
gramming effort was large (ranging from a few
hours to as many as 25 hours). Hence, it was
necessary to normalize the number of tests by
the total effort expended.

(continued in the next page)

5.2. Results 97

Dependent variables – assignment (continued)
Study Variable/metric Description
Janzen and Saiedian (2008) #asserts/LOC
Janzen and Saiedian (2008) #asserts/module
Sauvé, Neto and Cirne (2006) average tests per user story
Thornton et al. (2008) proportion of each student’s sub-

mission that was devoted to test
cases over time, from the stu-
dent’s very first submission until
their final solution

Buffardi and Edwards (2013a) Test:Solution Relative NCLOC
NCLOC: Non-comment lines of
code, separated into lines that are
part of the student’s solution and
lines that are part of the student’s
software tests.

Braught and Midkiff (2016) TSSS (Test Statement Per Solu-
tion Statement)

The ratio of Test NCLOC to Solution NCLOC

Buffardi and Edwards (2012b) adherence to TDD Test Statements per Solution Statement (TSSS):
the number of programming statements in
student-written test classes relative to the num-
ber of statements in their solution classes, Test
Methods per Solution Method (TMSM): the
number of student-written test methods relative
to the number of methods in their solution

Buffardi and Edwards (2012a) student behavior and affect with
regards to adhering to TDD

Test Statements per Solution Statement (TSSS),
Test Methods per Solution Method (TMSM)

Buffardi and Edwards (2013b) adherence to incremental unit
testing

two metrics for evaluating testing quality
and quantity over time: average coverage
and average test-methods-per-solution-method
(TMSM)

Thornton et al. (2008) automated grading results student programs were executed against a set of
instructor-provided reference tests

Pieterse and Liebenberg (2017) marks Mark distribution per assessment method
Edwards (2003a), Edwards (2004) recorded grades "Recorded grades" represents the average final

assignment score recorded in the instructor’s
grade book. Half of each score came from the
automated assessment and half from an inde-
pendent review of the student’s source code by
a graduate teaching assistant.

Edwards (2003a), Edwards (2004) TA assessment "TA assessment" reflects the average amount of
credit received for the TA portion of the stu-
dent’s grade

Edwards (2003a), Edwards (2004) Curator assessment
Edwards (2003a), Edwards (2004),
Edwards (2003d)

Web-CAT SCORE To combine these three measures into one score,
a simple formula is used. All three measures are
taken on a 0%-100% scale, and the three compo-
nents are simply multiplied together. As a result,
the score in each dimension becomes a "cap"
for the overall score–it is not possible for a stu-
dent to do poorly in one dimension but do well
overall. Also, the effect of the multiplication is
that a student cannot accept so-so scores across
the board. Instead, near-perfect performance in
at least two dimensions should become the ex-
pected norm for students.

(continued in the next page)

98 Chapter 5. Software testing in programming courses: A systematic mapping

Dependent variables – assignment (continued)
Study Variable/metric Description
Janzen and Saiedian (2008) project evaluations
Daly and Horgan (2004) ROBOSCORE ROBOSCORE gives the overall score achieved

in the RoboProf exercises. It is expressed as a
percentage.

Souza, Maldonado and Barbosa
(2011), Souza et al. (2014)

Suggested Grade

Wang et al. (2011) grade
Edwards (2003a) # on time/late submissions
Edwards (2003a) time of first submission (hours before due)
Edwards (2003a) time from first submission until

assignment due
Politz, Krishnamurthi and Fisler
(2014)

Event Time (as Hours Before
Due Date)

Event Type: submit tests, receive review, read
review

Thornton et al. (2008) time spent on assignment difference between the
times of a student’s first and last submission

Spacco et al. (2013) days before deadline of first pro-
gramming snapshot

Neto et al. (2013) # SV Number of submitted versions per student
Sridhara et al. (2016) Code Snapshots
Souza, Kolling and Barbosa (2017) # samples
Spacco et al. (2013) # snapshots
Spacco et al. (2013) # compilable snapshots
Spacco et al. (2013) Number of snapshots distributed

over hours of the day
Sridhara et al. (2016) Snapshots with Fuzz Test Errors
Nishimura, Kawasaki and Tomi-
naga (2011)

submissions

Denny et al. (2011) number of submissions
Souza, Isotani and Barbosa (2015) # submissions
Rajala et al. (2016) # submissions
Matthies, Treffer and Uflacker
(2017)

of completed tasks

Krusche and Seitz (2018) # Submitting students
Isomottonen and Lappalainen
(2012)

students who have returned
weekly exercises

Spacco et al. (2013) # projects
Spacco et al. (2013) # students
Spacco et al. (2013) # students with a submission
Sridhara et al. (2016) Students Completing Project
Daly and Horgan (2004) AVATTEMPT AVATTEMPT measures the average number of

repeated attempts per exercise for each student;
students can correct and submit programs as of-
ten as they wish. After resubmission RoboProf
updates the score.

Krusche and Seitz (2018) Submissions per student
Jezek, Malohlava and Pop (2013) # submits needed to successfully

finish the assignment
Krusche and Seitz (2018) # Overall submissions
Sridhara et al. (2016) Students Attempting Project
Sridhara et al. (2016) Students Attempting Target

Question
(continued in the next page)

5.2. Results 99

Dependent variables – assignment (continued)
Study Variable/metric Description
Rubio-Sanchez et al. (2014) # erroneous exercises
Denny et al. (2011) number of failing submissions
Denny et al. (2011) number of non-compiling sub-

missions
Edwards, Shams and Estep (2014) # submissions per student with

non-termination problems
Tang et al. (2016) # incorrect programs on expert

test set
Vujosevic-Janicic et al. (2013) Programs with bugs
Allevato, Edwards and Perez-
Quinones (2009)

causes of abnormal termination
(test case failure)

categories: use of NULL pointer; use of unini-
tialized pointer, use of deleted pointer, use of
out of bounds pointer, other

Allevato and Edwards (2014) memory-related errors in stu-
dents’ submissions

Each category describes the misuse of a partic-
ular type of pointer, usually by dereferencing
(uninitialized pointers, dangling pointers, null
pointers)

Pieterse and Liebenberg (2017) programs that don’t compile
Sridhara et al. (2016) Incorrect Attempts at Target

Question
Spacco et al. (2005) # not implemented
Spacco et al. (2005) # exception thrown
Spacco et al. (2005) # assertion failed
Daly and Horgan (2004) NPLAGIAR NPLAGIAR measures the number of program-

ming exercises that were plagiarized by each
student.

Spacco et al. (2013) # release tokens used in a work
session

Students can upload their code to the server,
spend a release token, and see the number of
release tests passed and failed, as well as addi-
tional feedback about the first two release tests
which failed. Furthermore, students only have 3
release tokens, and each token takes 24 hours to
regenerate.

Spacco et al. (2013) effect of release tokens on the
score

positive, neutral, negative

Buffardi and Edwards (2015) # hints earned/unearned re-
vealed/obscured

Barriocanal et al. (2002) # students that developed test
cases in their assignments

Isomottonen and Lappalainen
(2012)

students who had written tests

Buffardi and Edwards (2014b) TYPE OF CHANGE (minor,
moderate, major)

types of change to test code Adding new
test methods constituted major changes, adding
only new test NCLOC signified moderate
changes, and any changes that did not require
changing the number of test NCLOC were mi-
nor changes. We recorded changes (∆) in non-
comment lines of code (NCLOC) for the solu-
tion and the tests independently. Likewise, we
measured the change in test coverage as well as
changes in the number of assertions in the stu-
dents’ test code

(continued in the next page)

100 Chapter 5. Software testing in programming courses: A systematic mapping

Dependent variables – assignment (continued)
Study Variable/metric Description
Buffardi and Edwards (2014a) ∆ coverage how coverage on the final submission compares

to that of the first submission
Buffardi and Edwards (2014a) ∆ test NCLOC increases or decreases in the amount of test code

from the first to last submission within an as-
signment

Souza, Kolling and Barbosa (2017) # diffs we counted and analyzed the number of diffs be-
tween the incorrect source codes and the fixed
source codes of each sample. To do so, we
considered the textual differences of the source
codes. Each line of source code added, removed
or changed was counted as one diff.

Souza, Kolling and Barbosa (2017) # Statements Fixes
Souza, Kolling and Barbosa (2017) # Expressions Fixes
Baumstark Jr. and Orsega (2016) LOC changed across all revisions
Baumstark Jr. and Orsega (2016) # changed classes and methods
Edwards and Li (2016) progress indicators 1. Adding New Solution Method(s); 2. Re-

moving Static Analysis Errors; 3. Reducing
Cyclomatic Complexity; 4. Reducing Average
Method Size; 5. Increasing Comments Density;
6. Increasing Solution Classes; 7. Increasing
Correctness; 8. Adding New Test Method(s);
10. Increasing Number of Tests per Method; 11.
Increasing Statement Coverage; 12. Increasing
Method Coverage; 13. Increasing Conditional
Coverage; 14. Increasing Assertion Density; 15.
Increasing Test Classes

Odekirk-Hash and Zachary (2001) TA help time
Edwards, Shams and Estep (2014) Test Case Execution Time
Krusche and Seitz (2018) Assessment time
Yi et al. (2017) Repair Rate (#Fixed)/(#Programs)
Madeja and Poruban (2017) Execution speed of tests
Edwards, Shams and Estep (2014) # test cases triggering infinite

looping behavior in student sub-
missions

Edwards, Shams and Estep (2014) # test cases completed before first
non-termination (Timeout)

Souza, Isotani and Barbosa (2015) Debugging completeness Assesses whether there are defects in the stu-
dent’s program which are revealed by the stu-
dent’s test cases, but they were not debugged
and fixed. It is equivalent to the coverage of non
failured test cases for the PSt – TSt execution.

Baumstark Jr. and Orsega (2016) unit test distance (in revisions) number of revisions between when a method is
first created and when it first appears to have a
written test.

5.2.3.3 RQ3.3: Context variables

The context variables are the ones not directly related to the software testing integration
approach, but yet could have an influence on it. They are the variables of the programming
education context where the empirical study takes place. Again, we classified the identified
variables into different groups: student variables in Table 25, assignment variables in Table 26,
course variables in Table 27, and other practices variables in Table 28.

5.2. Results 101

Table 25 – Context variables – student

Study Variable Description
Hilton and Janzen (2012) previous programming experi-

ence
Rubin (2013) students’ familiarity and experi-

ence with programming in any
language

Rubin (2013) learning style VARK learning style questionnaire, which is a
proven tool used to assess each student’s learn-
ing preferences

Camara and Silva (2016) previous experience on program-
ming, TDD and software testing

Parodi et al. (2016) completed courses
Dvornik et al. (2011) prior programming experience
Brito et al. (2012) experience/no experience in pro-

gramming
Janzen and Saiedian (2007) TDD exposure time
Scatalon et al. (2017b) prior testing habits
Brito et al. (2012) public/private school
Denny et al. (2011) gender
Brito et al. (2012) male/female
Buffardi and Edwards (2013b) student motivation We considered the possibility these correlations

demonstrated an effect of student motivation in-
stead of TDD adherence.

Table 26 – Context variables – assignment

Study Variable Description
Neto et al. (2013) level of complexity of the target

program
We believe that the more complex the problem
is the higher may be the benefits of POPT

Janzen and Saiedian (2007) project size
Buffardi and Edwards (2013a) scale and complexity of assign-

ments
assignments vary in scale and complexity be-
tween courses and semesters

Whalley and Kasto (2014) difficulty
Janzen and Saiedian (2007) kind of programming project small or semester-long etc
Teusner, Hille and Hagedorn (2017) perceived difficulty of a task depends on previous knowledge, supplied hints,

the required time for solving and the number
of failed attempts the participant made. Further-
more, the detail and accuracy of the problem de-
scription, the restrictiveness of the applied test
cases and the preparation provided specifically
for a given exercise also influence the perceived
difficulty of a task

Matthies, Treffer and Uflacker
(2017)

duration of exercise

Spacco and Pugh (2006) skeleton code/scaffolding
Teusner, Hille and Hagedorn (2017) additional help
Teusner, Hille and Hagedorn (2017) offered templates and hints
Shams (2013a) design freedom However, we found that when students have

larger design freedom in assignments, signifi-
cant number of their tests examine components
related to their personal design decisions.

(continued in the next page)

102 Chapter 5. Software testing in programming courses: A systematic mapping

Context variables – assignment (continued)
Study Variable Description
Shams and Edwards (2013) design freedom This quality assessment strategy is at odds with

open-ended assignments, or assignments with
large amounts of design freedom. In those cases,
student tests are so diverse that significant num-
bers cannot be applied to a common reference
solution, resulting in an artificially depressed
quality measure. Is this acceptable? 2013shams-
a “a common specification” Achieving accurate
quality measurement relies on students writing
tests to “a common specification” as much as
possible, instead of to their own personal design.
Will this lead to over-constrained assignments
that preclude students from creating their own
designs?

Fidge, Hogan and Lister (2013) API specification
Buffardi and Edwards (2014a) student’s personal design All student tests were run against an instructor-

provided reference solution to weed out tests
that were invalid or only applicable to the stu-
dent’s personal design

Teusner, Hille and Hagedorn (2017) suitability of an exercise depends on the specific (sub-)topics dealt with
and on the (perceived) difficulty, composed of:
the difficulty of the actual steps to solve the ex-
ercise, the prior knowledge of the participant
2017Teusner expressiveness of the exercise de-
scription

Janzen and Saiedian (2007) programmer collaboration
Missiroli, Russo and Ciancarini
(2017)

"collaboration" We only had pair teams, instead of both pairs
and solo programmers

Fidge, Hogan and Lister (2013) GUI The GUI code in the two pair-programming as-
signments was not accompanied by unit tests
and was marked manually.

Table 27 – Context variables – course

Study Variable Description
Missiroli, Russo and Ciancarini
(2017)

institution Three schools were involved instead of a single
one

Whalley and Kasto (2014) paradigm/curriculum model Some of the metrics used in this study may not
be generalizable to all teaching contexts or in-
deed to all novice programming tasks. Courses
that adopt an objects first pedagogy may have
writing tasks for which other object orientated
metrics might be applicable such as cohesion
and coupling metrics. For a back to basics, algo-
rithm focused, java course that does not utilise
micro worlds but instead uses a typical IDE met-
rics such as number of commands may not be
relevant.

(continued in the next page)

5.2. Results 103

Dependent variables – course (continued)
Study Variable Description
Gómez, Vegas and Juristo (2016) Academic year
Gómez, Vegas and Juristo (2016) CS program

Table 28 – Context variables – other practices

Study Variable Description
Isomottonen and Lappalainen
(2012)

game development

Rubin (2013) Live Coding
Rubin (2013) problem-based learning
Rubin (2013) collaborative learning
Rubin (2013) active learning
Politz, Krishnamurthi and Fisler
(2014), Politz et al. (2016)

peer review

Lee, Marepalli and Yang (2017) Coding Dojo Coding Dojo is a dynamic and collaborative ac-
tivity where people can practice programming,
especially techniques related to agile methods

Krusche and Seitz (2018) version control By using VCS and teaching its application, we
achieve the same outcome [snapshots of stu-
dents’ programs]. Students commit multiple it-
erations of their solution, resulting in a commit
history that can be evaluated

Baumstark Jr. and Orsega (2016) use of version control
Fidge, Hogan and Lister (2013) Pair-programming Assignments

5.2.4 RQ4: Teaching practices

In order to get an overview of how the integration of software testing has been done in
programming courses, we extracted information about the teaching practices in all empirical
studies, including experience reports (survey, qualitative, experimental and experience reports).

5.2.4.1 RQ4.1: Testing concepts in programming course materials

Very few papers address how testing concepts are taught in programming courses. Only
22.56% (44) of the empirical studies mention some kind of instruction in testing concepts. In
general, the authors provide a brief description about the testing instruction, like suggested in the
following text snippets from the papers: "students are taught testing best practices", "the lecture
introduced automated unit testing", "instructor led introduction to the running and reading of
test units", "the role of unit testing is introduced early" and so on. This kind of description does
not allow to identify what testing concepts were presented to students. In contrast, the study of
Elbaum et al. (2007) is a good example of paper that provides a thorough description of testing
concepts.

It is interesting to notice that even fewer empirical studies mention the teaching of
techniques/criteria to students: 6.15% (12). So, it is not clear how students learn to select test
input/output values and design cases in the remaining studies. This issue is particularly important
in approaches that students are supposed to write their own test cases.

104 Chapter 5. Software testing in programming courses: A systematic mapping

5.2.4.2 RQ4.2: Testing practices in programming course assignments

We also investigated how testing practices have been integrated into programming
assignments. In this direction, we identified how testing can be merged in each aspect of an
assignment: description, steps, deliverables and grading.

In the assignment description testing can be a part of the problem specification, as
acceptance tests, aiming to test students’ programs at the system level and helping them to validate
their solutions (MORISIO; TORCHIANO; ARGENTIERI, 2004; ERDOGMUS; MORISIO;
TORCHIANO, 2005; SAUVÉ; NETO; CIRNE, 2006; SAUVE; NETO, 2008; MISSIROLI;
RUSSO; CIANCARINI, 2017). Also, the tests supplied by the instructor can serve as a test
harness or scaffolding, in the lower level of unit tests (ISOMOTTONEN; LAPPALAINEN, 2012;
UTTING et al., 2013b; PAUL, 2016).

Regarding the assignment steps, the instructor can provide guidelines to students about
the programming process to adopt while working on the assignments. 20% (39) of the empirical
studies mention that students were instructed to use a programming process. Figure 28 shows
the distribution of adopted programming processes in such studies.

24

1

7

2

1
2

1 1
POPT
2.6%
“code-a-little, test-a-little”
5.1%
TBC
5.1%

test-first programming
17.9%

XP practices
2.6%

TDD
61.5%

Figure 28 – Programming processes used in the empirical studies

All these processes guide students on how to bind the activities of programming and
testing. In particular, the identified processes do not provide details on how the testing activity
should be conducted. Because of that, we investigated how the testing activity has been conducted
by students, in terms of the testing tasks listed by Ammann and Offutt (2016): test design, test
automation, test execution and result evaluation.

Considering the context of students working on assignments, we marked the testing task
for a given study when students were responsible for that task while completing their assignments.
In this way, test design was marked when students were responsible for choosing input/output
values and designing their own test cases, test automation was marked when students were

5.2. Results 105

supposed to code test cases, test execution when students executed the test cases against their
programs, and result evaluation when students evaluated test results getting feedback about
their programs. Figure 29 shows the distribution of each testing task conducted by students in
the empirical studies.

0.00%

25.00%

50.00%

75.00%

100.00%

design automation execution evaluation

Figure 29 – Testing tasks performed by students in the empirical studies

5.2.4.3 RQ4.3: Supporting tools

74.87% (146) of the empirical studies mention the use of a supporting tool related to the
integration of testing. We identified the adopted tools according to the categories we established
in Section 5.2.1.6. Figure 30 shows the distribution of tools categories.It is important to note that
some studies adopted more than one category of tool.

C
ou

nt

0

20

40

60

80

tut
or

sy
ste

ms

su
bm

iss
ion

 an
d t

es
tin

g

tes
tin

g

on
lin

e j
ud

ge
s

ID
E's

tes
tin

g f
ac

ilit
ies

oth
er

ga
mes

Figure 30 – Supporting tools used in the empirical studies

106 Chapter 5. Software testing in programming courses: A systematic mapping

5.3 Discussion

The map of papers in Figure 27 allows us to analyze the distribution of research in
the area. In terms of investigated topics, over half of papers are about tools, 51.19% (150).
Conversely, the topics course materials (1.02% – 3) and concept understanding (0.68% – 2)
cover only a small amount of research performed in the area.

These less investigated topics can indicate areas in need of more research, which could
be directed to minimize the identified drawbacks in Section 5.2.2. For example, if more course
materials were available, it could help to minimize the additional workload of course staff. Also,
these materials could help identify ways to integrate testing without disrupting programming
courses. Similarly, more research in teaching novice’s programming process and in fostering
concept understanding (especially basic testing concepts) could help to improve students’ testing
performance and their reluctance to perform software testing.

As to evaluation methods, selected papers that present empirical studies (survey, qual-

itative and experimental) comprise 44.7% (131) of the studies. Conversely, papers classified
as not applicable or experience report comprise 50.51% (148), slightly above half of selected
papers. The problem with the latter kind of studies is the lack of empirical evidence. Papers in
not applicable present only proposals with no evaluation. Experience reports are not planned
studies, so the conclusions rely on the researcher’s perceptions.

Still considering the distribution of research in the area, the investigation of TDD is
noteworthy throughout the selected papers, because 27% (89) mention it. For the topic curriculum,
Edwards (S1) argues that TDD should be used in all programming assignments of the computing
curriculum, from the CS1 course. Adams (S2) advocates that it should start in the CS2 course
instead. In teaching methods, Edwards (S33, S17, S34, S21) proposed and investigated the use of
TDD combined with an automated assessment tool in the classroom. In course materials, Desai
et al. (S69) showed how TDD can be integrated into existing course materials, considering the
same amount of lecture hours and without reducing the coverage of programming topics. Marrero
and Settle (S71) discussed assignments with TDD in the context of two different programming
courses. Spacco and Pugh (S279), Janzen and Saiedian (S280), and Buffardi and Edwards
(S281, S285) studied mechanisms to motivate students to apply TDD. Besides these papers that
investigate TDD specifically, it is possible to see the TDD’s influence on the definition of other
proposals (e.g. S87, S97, S89).

5.4 Final remarks

In this chapter we provide an overview of the research performed about the integration
of software testing into introductory programming courses. We conducted a systematic mapping
study, which resulted in 293 selected papers. We classified papers according to investigated topic

5.4. Final remarks 107

and evaluation method.

Still, we discussed benefits and drawbacks of the approach to the teaching of program-
ming. We also identified teaching practices that has been used in the classroom to integrate
software testing, both in terms of testing concepts taught in programming courses materials and
testing practices adopted in programming assignments.

There is a wide variety of ways to integrate testing into introductory courses, as can be
observed in the selected papers. We identified a structure of topics (Section ??) which outlines a
teaching method of both subjects (course materials, programming assignments, programming
process and tools) and the corresponding students’ learning outcomes (program/test quality,
perceptions/behaviors and concept understanding).

Moreover, we identified the variables used by researchers in empirical studies that involve
planned data collection (experimental, qualitative and survey studies). These identified variables
helped to establish the proposed experimental framework, discussed in the next chapter.

Similarly, the identified benefits and drawbacks in Section ?? motivate further research,
aiming to raise the benefits and minimize the drawbacks. Also, as discussed in Section ??, the
distribution of research over the identified topics shows a high concentration of papers about
supporting tools (above half of the selected papers). This may indicate researchers the need to
consider other topics in the area as well.

In terms of evaluation method, our results show a high number of studies (slightly above
half of the papers) that are either experience reports or proposals with no evaluation (classified
as “not applicable”). This result means a significant amount of studies lack a planned evaluation.
This practice is concerning, since there is the need to transition from this kind of study to
generating theory through empirical studies, by generating and iterating on hypotheses in CS
Education research (GUZDIAL, 2013).

109

CHAPTER

6
EXPERIMENTS ABOUT THE TEST DESIGN

TASK

An analysis of students’ test suites in (EDWARDS; SHAMS, 2014b) revealed that they
were writing test cases to cover only common behavior rather than actually seeking to uncover
errors on the solution code. The authors called this behavior as “happy path testing”. These
results show that, if students are supposed to write test cases, they should be instructed in how to
write and improve a set of test cases, aiming to appropriately test a given program.

Although most studies adopt an approach with student-written test cases, it is rare to
observe instruction on how to select values for test cases, with testing techniques and criteria.
There are a few exceptions, like the studies in (FREZZA, 2002; BARBOSA et al., 2003;
WICK; STEVENSON; WAGNER, 2005; COLLOFELLO; VEHATHIRI, 2005; AGARWAL;
EDWARDS; PEREZ-QUINONES, 2006; ELBAUM et al., 2007; THURNER; BOTTCHER,
2015), where students were instructed on fundamental testing concepts.

This chapter presents the experiments conducted during this PhD work. Section 6.1
describes an experiment that compared students conducting testing with their own test cases
and with instructor test cases, thus investigating the effect of students conducting the test design
task on their programming performance. Section 6.2 describe other experiment we conducted
investigating students’ test design skills. In particular, we investigate how their testing skills
progress with different modules of testing concepts completed.

6.1 Experiment on students performing the test design
task

The following subsections provide details about the experiment we conducted and the
obtained results, which are published in (SCATALON et al., 2017a). We followed guidelines

110 Chapter 6. Experiments about the test design task

from Juristo and Moreno (JURISTO; MORENO, 2001) and Wohlin et al. (WOHLIN et al., 2012)
to plan and execute the study.

6.1.1 Goal

The integration of software testing in computing courses should be done in a way that
adds value to the programming assignments. Students should be able to benefit from the testing
practice, what can lead them to perform it more willingly.

In this scenario, we intend to investigate the integration of testing practices into program-
ming assignments. We focused on one of the aspects of the testing activity, the test design task,
and its effect on student programming performance.

If students are being able to improve their code from the feedback provided by testing
results, they probably will feel the need to do so and the integration of software testing will not
disrupt the normal course flow to teach the main subject, i.e. the programming concepts.

6.1.2 Subjects

We applied a subject characterization questionnaire in the beginning of the short course.
In total, 21 students attended, all Computer Science majors, distributed as indicated by Table 29.
11 students provided consent on the collected data.

Table 29 – Distribution for student level (n=11)

Student level #
Freshman 45.45% (5)

Sophomore 9.09% (1)
Junior 9.09% (1)
Senior 36.36% (4)

Since we focused on the application of software testing for programming assignments,
we also characterized the students regarding the introductory courses they had already completed
or were still attending (see Table 30).

Table 30 – Distribution for introductory programming courses (n=11)

Course #
Introductory Programming I 100% (11)
Introductory Programming II 100.00% (11)

Data Structures I 54.55% (6)
Data Structures II 54.55% (6)

Object Oriented Programming 45.45% (5)

Introductory Programming I and II are first-year courses that involve the teaching of
fundamental programming constructs, with an imperative-first approach using the C language.

6.1. Experiment on students performing the test design task 111

Data Structures I and II are second-year courses about data structures (also in C) and the
corresponding algorithms to operate them. Finally, Object Oriented Programming is a second-
year course in which students learn about object-oriented concepts using the Java language.

Regarding their prior testing habits, according to Table 31, they usually perform testing
while working on their programming assignments. However, as Table 31 shows, most students
do not use or do not know what a testing criterion is. This is an interesting outcome, considering
that testing practices are not addressed during regular programming courses in this setting. Also,
it shows that even though students test their code, they are doing it without proper instruction in
this subject.

Table 31 – Student testing habits in programming assignments

Question: Do you test the programs you write?
Answer #
I do not know what it means to test a program 0% (0)
There is no need to 0% (0)
Yes, only if there is enough time 0% (0)
Yes, I always test at least a little 90.9% (10)
Yes, I always try to test a lot before delivering the program 9.1% (1)

Table 32 – Use/knowledge of testing criteria

Question: Do you use any testing criteria to test your programs?
Answer #
Yes 45.45% (5)
No 27.27% (3)
I do not know what test criteria is 27.27% (3)

6.1.3 Experimental Objects

The experimental objects were the programming assignments from the final project pro-
posed to students at the end of the short course. The project was composed by three assignments,
which consisted in implementing alarm clock features (based on the assignments from (UTTING
et al., 2013a)).

In order to solve them, students had to represent time, as composed of hours and minutes
(in a simplified way) and perform basic operations with time calculation.

∙ Assignment 1. Tick operation: advance the current time in one minute.

∙ Assignment 2. Alarm clock set features:

– (A) Wake-up time: set the alarm with the desired wake-up time and show the user
the remaining sleep time. Involves the implementation of the sum of two times.

112 Chapter 6. Experiments about the test design task

– (B) Remaining sleep time: set the alarm with the desired remaining sleep time and
show user the resulting wake-up time. Involves the implementation of the subtraction
of two times.

Assignment 1 was carried out as a training, with the instructor’s assistance. In this way,
students were able to become familiar with the testing practice and this problem context. After,
they completed assignments 2A and 2B by themselves.

6.1.4 Hypotheses

We intend to compare different testing approaches during programming assignments,
according to the hypotheses listed on Table 33.

In the first approach students are not responsible for the test design task, they receive
ready-made instructor tests (IT). In the second one students need to perform the test design,
besides the other testing tasks (test execution and evaluation). So, the test cases are written by
the own students (student tests – ST).

The effect of these two testing approaches were observed in students’ programming
performance. In turn, programming performance was considered in terms of correctness of the
program delivered by students to solve the assignment.

Table 33 – Study hypotheses

Hypotheses type Formalized hypotheses
Null hypothesis H0: correctnessIT = correctnessST

Alternative hypotheses H1: correctnessIT > correctnessST
H2: correctnessIT < correctnessST

6.1.5 Variables

During the experiment, students were supposed to apply two different testing approaches
to complete programming assignments. In order to configure these testing approaches, some
aspects were kept constant for both, while the test design task was the aspect that varied.

Starting from the constant aspects, both assignments involved automated unit testing
using the assert macro in C. Also, students were always responsible for the execution and
evaluation tasks of the testing activity. Regarding supporting tools, students were free to use the
IDE they were familiar with to write the solution code, the test cases (when applicable) and to
execute test cases.

The experiment had one independent variable, the test design task. This variable had the
two following treatments:

6.1. Experiment on students performing the test design task 113

∙ instructor-provided test cases (IT), when students receive ready-made test cases and are
not responsible for test design, but only for test execution and evaluation; and

∙ student-written test cases (ST), when students are also actively involved with the test
design task and have to write their own test cases.

Since we were aiming to evaluate students’ programming performance, the dependent
variable was the correctness of the solution code submitted for the programming assignment.
We measured correctness as the pass rate of student solution code.

This metric was calculated dividing the number of test cases for which the unit passed by
the total number of test cases for that unit. We used a set of reference test cases, which was the
same we delivered to students in the assignments that they were not responsible for test design.

6.1.6 Experimental Design

Considering the selection of one independent variable with two treatments, we chose the
paired comparison design (WOHLIN et al., 2012). However, to avoid the learning effect over
results, we used two different experimental objects for each subject.

Subjects were divided into two groups randomly. Table 34 shows the experimental design
and how subjects were assigned to experimental objects (assignments 2A and 2B) and treatments
(IT and ST).

Table 34 – Experimental design

Instructor-provided Student-written
Test Cases (IT) Test Cases (ST)

Assignment 2A Group 1 Group 2
Assignment 2B Group 2 Group 1

6.1.7 Results

We analyzed students’ programs in order to calculate the correctness of each one. We
used the CUnit1 testing framework in order to execute and evaluate test results.

Individual correctness values for both testing approaches are given in figures 31 and 32.
It is interesting to note that some students kept their programming performance somewhat at the
same level for both approaches. Most of them (S1, S3, S6, S8, S9, S11) achieved good results
for both.

Other aspect from the individual results that draws attention is that many subjects (S2,
S4, S7, S10) achieved better results with student-written test cases. Only subject S5 had a
considerably lower result with student-written test cases.
1 cunit.sourceforge.net

114 Chapter 6. Experiments about the test design task

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

subjects subjects

co
rr
ec

tn
e
ss

co
rr
ec

tn
e
ss

Figure 31 – Individual results for student-written test cases (ST)

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

subjects subjects

co
rr
ec

tn
e
ss

co
rr
ec

tn
e
ss

Figure 32 – Individual results for instructor-provided test cases (IT)

These results are summarized in Table 35, using the means and standard deviations for
each approach. Table 36 shows results separately for each group. Comparing the means, students
that wrote their own test cases (ST approach) achieved better correctness scores.

Table 35 – Mean and standard deviation for correctness

Instructor-provided Student-written
Test Cases Test Cases

Mean 81.63% 91.24%
Std Dev. 25.99% 14.94%

However, these results cannot support that there is indeed a difference between the testing
approaches. We applied the Wilcoxon signed-rank test, but there was not enough evidence to

6.1. Experiment on students performing the test design task 115

Table 36 – Mean for correctness separated by groups

Instructor-provided Student-written
Test Cases Test Cases

Group 1 76.55% 89.70%
Group 2 85.86% 92.53%

reject the null hypothesis at α = 0.05 significance level. This outcome is very likely related to
the small size sample.

6.1.8 Survey

As the last activity of the short course we applied a feedback questionnaire about students’
experience in completing the assignments with the aid of software testing. Students’ responses
(Table 37) allowed us to gather some insights about their perceptions and behavior for the
proposed activities.

Table 37 – Survey responses (n=11)

Q1. Did the test cases help you implement the solution code?
Yes, for both assignments 81.8% (9)
Yes, just for the assignment with instructor test cases 0% (0)
Yes, just for the assignment that I wrote the test cases 18.2% (2)
No, for both assignments 0% (0)
Q2. While you wrote the test cases, did you apply the testing criteria?
Yes 90.9% (10)
No 9.1% (1)
Q3. When did you execute the test cases?
Only after I have completed the solution code 45.5% (5)
During implementation, even with incomplete versions 54.5% (6)
of the solution code
I did not execute the test cases 0% (0)
Q4. Did you face difficulties while writing test cases by yourself?
Yes 27.2% (3)
No 72.7% (8)
Q5. Do you intend to apply software testing in programming
assignments from future computing courses?
Yes 100% (11)
No 0% (0)

All students agree that testing practices indeed help to work on programming assignments
(Q1). Most of them (81.8%) think it helped for both testing approaches and a small portion of
them (18.2%) think it helped only when they wrote the test cases themselves.

The responses also provided an overview of the actual student behavior while working
on the programming assignments. 90,9% stated that applied the testing criteria while writing
test cases (Q2). Additionally, 72,7% stated that did not face difficulties while doing so (Q4).

116 Chapter 6. Experiments about the test design task

These numbers suggest that most students were able to understand and to apply testing criteria,
including freshmen.

One of the questions (Q3) assessed students’ tendency to adopt test-first or test-last
approaches. Students were quite divided in this matter, with almost half of them for each
approach.

We did not impose a specific order to perform programming and testing activities, but
we did demonstrated examples and exercises from the course material in a test-first manner and
this might have influenced students’ behavior.

The last question (Q5) assessed whether students intend to incorporate testing practices as
part of their strategy to complete programming assignments in the future. All of them answered
positively.

In the beginning of the short course they had indicated that already performed testing in
their programming assignments, but most of them were not used to apply or did not know what a
testing criterion was.

6.1.9 Discussion

In this investigation we were able to analyze both students’ performance and perceptions
of testing practices in programming assignments. Experiment results suggest that making students
responsible for writing their own test cases benefit their programming performance.

Although results were not statistically significant, it is interesting to note that students’
perceptions matched with experiment results. All students agree that elaborating test cases
indeed helped the programming activity (Q1 in Table 37). Most of them think that working with
instructor test cases also helps solving programming assignments (81.8%).

This positive effect on programming performance can be due to the fact that test design
helps students better understand the problem to be solved in the assignment (FIDGE; HOGAN;
LISTER, 2013). In order to select input values for test cases, they need to carefully analyze the
problem domain, what forces them to think more critically about the assignment.

Regarding students’ actual behavior to complete the assignments (in contrast with what
they were asked to do), all students executed test cases while solving the assignment (Q3 in
Table 37). Besides, almost all of them applied the testing criteria when they were supposed to
write their own test cases (Q2 in Table 37).

Other interesting finding is that most of the subjects performed well with both test design
approaches and some of them were able to improve their performance significantly by designing
testing cases (figures 32 and 31).

These two kinds of effect could simply be related to the characteristics of the own
subjects, which can have different aptitudes. However, the test design task could be considered

6.2. Experiment on students’ test design skills 117

as a possibility to help turn ineffective novice programmers into effective ones (EDWARDS et

al., 2009; CARTER et al., 2010).

Most of the subjects were freshman or sophomore (54,54% – Table 29), and most of
them were able to apply the testing criteria without major difficulties (72.7% – Table 37). This
result suggests that the material about testing criteria had a difficulty level that most of them
were able to follow. However, there were attending students from all levels, and there is the need
to evaluate this issue with a more homogeneous sample.

In general, results show that students recognized the importance of designing test cases
and that they can do it without major difficulties, even in the first-year level. This was an
interesting result considering that software testing is not an easy subject, especially for freshman
students. However, since we used a simple approach to represent test cases and to select input
values, students were able to learn and apply it.

6.2 Experiment on students’ test design skills
We conducted an experiment during the PhD student visit at the University of Alabama,

which was an opportunity to collect data from a different institutional context. It was an inter-
esting experience because of the UA institutional policies for conducting studies with human
participants. Before any kind of interaction with the potential participants can happen, a study pro-
tocol must be reviewed and approved by the UA Institutional Review Board (IRB)2. We got the
IRB protocol approved for this study on November 28th (protocol ID 17-08-462). Additionally,
we intend to publish results of this experiment in:

∙ Scatalon, L.P.; Carver, J.; Garcia, R.E. and Barbosa, E.F. Investigating students’ software
testing skills and misconceptions. In 51st ACM Technical Symposium on Computing

Science Education. SIGCSE’20. USA.

Study Goals

Students face many difficulties to write test suites. According to Carver and Kraft’s
results, even senior CS students cannot thoroughly test a simple program without the help of
testing tools (CARVER; KRAFT, 2011). Specially during introductory programming courses,
it is possible to observe some unhelpful student behaviors, such as happy path testing (writing
test suites that cover only common behavior, leaving out important parts of the program being
tested) (EDWARDS; SHAMS, 2014b) and trial-and-error testing (creating unnecessarily long
test suites) (CARVER; KRAFT, 2011).

These problems indicate that students have poor test design skills, since they are not
able to choose test cases that would effectively test their programs. A well-designed test suite
2 <http://osp.ua.edu/site/irb.html>

http://osp.ua.edu/site/irb.html

118 Chapter 6. Experiments about the test design task

would cover appropriately the input space avoiding redundancy at the same time (AMMANN;
OFFUTT, 2016).

When students do not design test cases systematically, they need to rely on the feedback
given by testing tools, such as test coverage, to adjust their test suite. The information about
test coverage may be useful to improve the current test suite, but it does not improve the tester
mindset of the student and her/his test design skills.

Coverage tools provide what program elements have not been covered, which can
motivate students to perform trial-and-error testing until they find test cases that cover them. On
the other hand, testing techniques and criteria would help students to perform systematic testing,
knowing how to write a proper test suite and understanding why it is so.

In this scenario, we aim to investigate the development of students’ test design skills as
they learn fundamental testing concepts, such as coverage criteria. Also, we intend to explore
why students’ test suites are incomplete in terms of testing concepts. In this way, it is possible to
point out which concepts they have difficulties with.

Therefore, this study focuses on the following research questions:

∙ RQ1: Are students able to improve their test design skills as they learn software testing
concepts?

∙ RQ2: Can students better use feedback on test coverage to improve their test suites as they
learn software testing concepts?

∙ RQ3: What misconceptions about software testing can be observed in students’ test suites?

Hypotheses

The research questions RQ1 and RQ2 gave rise to two hypotheses we intend to investi-
gate:

∙ H1: Students will be able to progressively improve their test design skills as they learn
fundamental testing concepts.

∙ H2: Students will improve their test suites more systematically after learning fundamental
testing concepts.

Context

We conducted the study in a Software Testing course (CS 416/516) at the University of
Alabama. Course topics included techniques and tools for software testing and quality assurance.
The textbook used was “Introduction to Software Testing” (2nd edition) by Ammann and Offutt
(AMMANN; OFFUTT, 2016). We chose this course because it covers basic software testing

6.2. Experiment on students’ test design skills 119

concepts, and we would be able to keep track of the evolution of students’ test design skills as
they learn different coverage criteria.

Artifacts

Students tested four short Java programs (˜ 50 SLOC each) during the study:

∙ Vending Machine (P1): a simplified representation of a vending machine, from (ORSO
et al., 2001).

∙ Identifier (P2): a program that determines if a given identifier is valid or not, from
(VINCENZI et al., 2010).

∙ Five Bit Encoding (P3): a simple string compression algorithm using a 5-bit encoding
system, from (BANDARA, 2011).

∙ Insulin Pump System (P4): the dose controller of an insulin pump system, from (SOM-
MERVILLE, 2010).

Variables

In order to capture the effect of learning software testing concepts in different stages,
the independent variable was course modules. We focused in the modules of the basic concepts
and of two coverage criteria. The variable had four cumulative levels: foundations, input space

partitioning, graph coverage and other modules.

The outcome that we were interested in is students’ test design skills. According to
Ammann and Offutt, test design involves choosing test cases that compose a test suite, in such
a way that they cover appropriately the input space avoiding redundancy at the same time
(AMMANN; OFFUTT, 2016). Therefore, we intended to check if these characteristics were
reflected in their test suites.

In this sense, the dependent variables of the study were test coverage and test redundancy,
both measured by running students’ test suites against the programs they were supposed to test.
Test coverage is a common way to assess students’ test cases. However, test redundancy is less
explored, despite being an important part of test design.

In this study, test coverage was measured by statement coverage, branch coverage and
condition coverage. Test redundancy is the rate of test cases that cover the same program
elements (statements, branches and conditions), being measured by:

redundancy =
#redundant test cases
#submitted test cases

120 Chapter 6. Experiments about the test design task

Procedure

We collected data from students’ submissions for homework assignments. After each
course module, students were supposed to complete a homework, with the purpose of practicing
a different coverage criterion.

For all homework assignments, students were asked to write “the smallest, yet most
complete” JUnit test suite for a given program. Additionally, we asked them to provide a brief
explanation of why each test case was added in the test suite.

Students were supposed to apply different coverage criteria to test the programs:

∙ Homework 1: ad hoc testing on P1, with no specific criterion.

∙ Homework 2: testing on P2, with input space partitioning.

∙ Homework 3: testing on P3, with graph coverage.

∙ Homework 4: testing on P4, with both input space partitioning and graph coverage.

The study design is outlined in Figure 33. It was composed by two steps, similarly to the
study of Carver and Kraft (CARVER; KRAFT, 2011): (1) creation of JUnit test suite (for all
assignments) and (2) update of test suite based on the received feedback about test coverage (for
assignments homework 1 and homework 4).

For the purposes of assessment, all assignments were graded based on how well students
followed the instructions and whether they made a real attempt at completing the assignment.
Even so, students got feedback after each assignment about the test coverage they achieved and,
when was the case, of their coverage criteria application.

After the course ended, the PhD student collected the homework submissions of consent-
ing students and performed data anonymization. Currently, we are performing the data analysis,
which involves using the tool CodeCover3 to calculate students’ test coverage and redundancy.
Additionally, we are working on a qualitative analysis of the reasons that students indicated for
each test case.

We will write a paper with the experiment findings and also intend to submit it soon:

∙ Scatalon, L.P.; Carver, J.; Garcia, R.E. and Barbosa, E.F. Investigating students’ software
testing skills and misconceptions. In SIGCSE Technical Symposium (SIGCSE 2020).

3 <http://codecover.org>

http://codecover.org

6.3. Final remarks 121

test suite

improved
test suite

feedback

test suite

improved
test suite

feedback

Module of
Foundations

Module of
Input Space Partitioning

test suite test suite

Module of
Graph coverage

Homework1 Homework2 Homework3 Homework4

feedback feedback

Other modules

No criterion Input Space Partitioning Graph Coverage Input Space Partitioning
Graph Coverage

1 1 1 1

2 2

Figure 33 – Study design

6.3 Final remarks
In this chapter we discussed two experiments conducted during this PhD work. The first

one investigated the test design task during the process of working on programming assignments.
In studies similar to our investigation, the testing activity is usually seen from a holistic point
of view. Conversely, in our study we decomposed the testing activity into individual tasks and
investigated specifically the effect of the test design task.

We conducted an experiment and a survey with students that participated in a short
course we offered about this subject. Results suggest that students’ programming performance
can be enhanced when they write their own test cases. Moreover, students’ perceptions matched
experiment results. Students recognized the relevance of software testing as a supporting practice
when completing the proposed assignments.

However, in order to enable students to write and improve their test suite, they need to be
instructed on testing concepts. They need to learn how to select input values that will fully and
effectively test their program. This issue motivated us to instruct students on two testing criteria,
equivalence partitioning and boundary value analysis. In this way, they were able to choose
input values systematically, instead of adopting a trial-and-error approach (CARVER; KRAFT,
2011).

This experience showed the importance of instructing students on how to select appropri-
ate input values and then elaborate test cases. They need background knowledge to perform test
design if they are going to be responsible for it.

123

CHAPTER

7
EXPERIMENTAL FRAMEWORK FOR THE
INTEGRATION OF SOFTWARE TESTING

INTO PROGRAMMING EDUCATION

The teaching of programming in higher education is a context with a lot of variability.
There are different institutional contexts and target audiences across STEM disciplines. Also,
programming concepts can be taught using different programming paradigms, languages, plat-
forms and practices. Hence, there are many different approaches to teach programming. In this
scenario, empirical studies help to understand how and when a given approach would yield better
learning outcomes for students from different contexts.

However, empiricism in programming education (and in Computer Science education, in
general) suffers from a lack of research rigor (FINCHER; PETRE, 2004; PEARS; MALMI, 2009;
ROBINS, 2015; LISHINSKI et al., 2016), mainly in terms of the high number of experience re-
ports and a lack of theoretical basis to design studies and discuss the obtained results (FINCHER;
PETRE, 2004; VALENTINE, 2004; RANDOLPH, 2007; SHEARD et al., 2009; MALMI et al.,
2010; MALMI et al., 2014; AL-ZUBIDY et al., 2016). In this sense, domain-specific models to
scope and design experiments can help to deal with these problems. In particular, an experimental
framework provides a structure that supports researchers to design future studies and also to
frame existing studies in order to make the research limits clear, in terms of domain concepts.

In this chapter we discuss the creation of the proposed Experimental Framework for
the integration of Software Testing into Programming education (STeP-EF). We chose the
integration of software testing as the teaching approach to be explored in our framework due to its
prominence in the literature and specially because of its importance for computing undergraduate
programs. In Section 7.1 we explain our method to build the experimental framework. The
following sections present the three models that compose STeP-EF: the goal model in Section 7.2
and the variable model in Section 7.3. Additionally, we demonstrate how the experiments

124Chapter 7. Experimental framework for the integration of software testing into programming education

described in Chapter 6 fit in the proposed framework.

7.1 Experimental framework building method

In order to build the proposed experimental framework, we considered the methods used
by researchers that have established this kind of framework in the literature (see Section 3.4).
It is possible to notice the same sources of information used by researchers to compose the
frameworks: (i) existing studies in the literature of the research domain and (ii) studies conducted
by the researchers themselves.

So, we followed the same approach: (i) we conducted a systematic mapping of the
literature in order to obtain the elements to compose the framework (see Chapter 5) and (ii) we
conducted experiments within the scope of the domain of interest, which is the integration of
software testing into programming education (see Chapter 6).

The systematic mapping data extraction provided fragmented elements, which we as-
sembled in the result analysis, already aiming to build the proposed framework. Basically, we
clustered similar elements (i.e. the variables extracted from the empirical studies) and organized
them according to a common structure, using the concepts of the Software Testing area as a
reference.

For example, we noticed that in some studies students were responsible for writing
their own test cases, and in others they received ready-made test cases. This situation led us
characterize it in terms of the testing tasks that compose the testing activity, according to Ammann
and Offutt (2016): test design, test automation, test execution and results evaluation. Then, it
is possible to describe more clearly how the testing practice is configured in the classroom, in
terms of testing concepts. When students receive instructor test cases, they conduct the tasks of
test execution and results evaluation. Otherwise, they are responsible for all four testing tasks.
Note that this description helps to better understand what the adopted testing practice is and what
is not.

The experimental framework, entitled STeP-EF (Experimental Framework for the inte-
gration of Software Testing into Programming education), is composed by three models:

∙ STeP-EF goal model: an instantiable goal, similar to the framework on software reading
techniques of Basili, Shull and Lanubile (1999).

∙ STeP-EF variables model: a model of independent, dependent and context variables,
similar to the framework on pair programming of Gallis, Arisholm and Dyba (2003). The
model of dependent variables also include a model of metrics, similar to the framework on
XP practices of Williams et al. (2004).

7.2. STeP-EF goal model 125

7.2 STeP-EF goal model
This model consists in an instantiable goal, which is supposed to help the researcher

during the scoping phase of the experimental process. We used the goal template from the GQM
model and completed it with general values, in order to allow the instantiation of specific goals
for experiments in the domain of the integration of software testing into programming education.

There are five parameters in the GQM goal template (see Section 3.3.1): object of study,
purpose, focus, point of view and context.

Analyze <Object(s) of study>

for the purpose of <Purpose>

with respect to their <Focus>

from the point of view of the <Perspective>

in the context of <Context>

According to Basili, Shull and Lanubile (1999), the purpose depends on the researcher’s
intent in conducting the study, which could be to characterize, monitor, evaluate, predict, control

or change some characteristic in the object of study. The point of view is the perspective from
which the data is analyzed, which could be the perspective of the researcher or the instructor,
for example.

The remaining parameters (object of study, focus and context) are the domain-specific
elements that compose the goal. These parameters are part of the experimental framework and,
therefore, are going to be characterized by its domain-specific models.

The object of study in this particular domain is the teaching method used to integrate
software testing into programming education. Teaching methods are the different ways to teach
programming with the integration of software testing. They can be characterized by how testing

concepts are integrated into course materials and how testing practices are integrated into
programming assignments. Also, supporting tools can be used with the purpose to teach
testing concepts in this context or to automate some aspect of testing practices in programming
assignments.

In other words, the teaching method can be characterized by how testing is incorporated
into the materials and assignments of the programming course and by the supporting tools used
to ease any aspect of this incorporation. For example, a teaching method which is more clearly
delineated in the literature is Test-Driven Learning (TDL) by Janzen and Saiedian (2006a),
Janzen and Saiedian (2008). The integration of testing into programming courses as proposed in
TDL could be structured as:

∙ Course materials: TDL proposes that code examples including unit tests should be used
during lectures.

126Chapter 7. Experimental framework for the integration of software testing into programming education

∙ Programming assignments: TDL encourages the use of test-first programming (TDD)
as the process to develop assignments’ solutions, but it can also be implemented using
test-last programming.

∙ Tools: The authors use a tutor system called Web-IDE and also indicate using a xUnit
testing framework if students have enough maturity, otherwise they recommend the assert
command, given its simplicity.

The focus is the effect of the object of study which is of interest in the study, i.e. the
focus of the investigation. The ultimate focus of a study on programming education is to evaluate
students’ learning outcomes. In this sense, besides using grades to do so, the outcomes of a
teaching method can be observed through students’ programs and tests, their performance and
behavior while completing assignments, and also their attitudes towards the teaching method.

The context is a description of the study environment. In this domain, it is the pro-
gramming education context where the study is conducted. It is characterized by the students
participating in the study and the respective programming course where it takes place.

Considering these general values, the goal model can be represented as:

Analyze teaching method to integrate software testing

for the purpose to <purpose>

with respect to learning outcomes
from the point of view of the <perspective>

in the context of <programming education context>

The model of variables (discussed in the next section) should help to model these general
values (i.e. teaching methods, learning outcomes and programming education context) in terms
of their characteristics, which can be selected as variables in a study.

7.3 STeP-EF variables model
The model depicted in Figure 34 consists in a catalog of variables from the domain of the

integration of software testing into programming education. The idea is to support the researcher
in the planning phase of the experimental process, more specifically in the variable selection
activity.

This model helps to refine the domain-specific elements established in the experiment
goal. Linking both models, independent variables represent characteristics of the object of study,
dependent variables compose the focus of the investigation (they are the results chosen to be
observed among the many possibilities of results to observe) and context variables are used to
describe the experimental context.

7.3.
STeP

-E
F

variables
m

odel
127

Figure 34 – STeP-EF variables

128Chapter 7. Experimental framework for the integration of software testing into programming education

7.3.1 Independent variables

The model of independent variables (on the left side of Figure 34) contains a characteri-
zation of possible input variables in the domain. Therefore, it can serve as a basis for selecting
independent variables that should be manipulated during the study, parameters that should be
kept constant and, if it is the case, blocking variables.

The activity of variable selection can be greatly facilitated by having an overview of
input variables available, mainly because all the characteristics of the teaching method should be
taken into account, even when not selected as independent variable, the remaining input variables
should be kept constant, so the researcher must be aware of them. Otherwise, unknown variables
can cause undesired and unaccounted for systematic effects, also known as confounding factors.

As pointed out by our systematic mapping results (in Chapter 5), very few selected
studies explicitly indicate an independent variable or discuss the variable selection rationale.
Nevertheless, most studies provided a characterization of the underlying teaching method used
to integrate software testing. Hence, we discuss such characteristics extracted from studies in the
next subsections.

7.3.1.1 Course materials

The integration of software testing into a programming course also involves the teaching
of testing concepts in this context. In other words, it is the theoretical part of such integration.
In this sense, there is the need to understand how testing and programming concepts should be
combined together in the course materials, i.e. which programming concepts are prerequisites
to learn which testing concepts and practices. Barbosa et al. (2008) and Agarwal, Edwards and
Perez-Quinones (2006) proposed models in this direction.

However, considering the results of the systematic mapping, there are no empirical
studies providing evidence regarding this aspect of combining programming and testing concepts.
There are only studies investigating the effect on students’ programming performance with and
without knowledge of testing concepts, i.e. before and after learning testing concepts (LEMOS
et al., 2015; LEMOS et al., 2017) and with different levels of computing knowledge, i.e. during
different courses across the computing program (GóMEZ; VEGAS; JURISTO, 2016).

Focusing on another aspect, Desai, Janzen and Clements (2009) investigated the adapta-
tion of existing programming course materials to accommodate testing practices. They evaluated
the effects in terms of staff and student work loads.

Still, considering studies whose focus was not the testing concepts, for some of them
researchers also describe the teaching of testing concepts to students. However, as indicated by
the systematic mapping results, it is often not clear what and how testing concepts were taught.

7.3. STeP-EF variables model 129

7.3.1.2 Programming assignments

The integration of testing practices into programming assignments is the most explored
aspect in this domain. The idea is to investigate how the activities of programming and testing
can be combined in this context, considering the background of novice programmers. In this
sense, a programming process can be used to provide guidance to students on how they should
conducted both activities.

Experiments that focus on the programming process (or development approach) usually
compare different approaches for the adopted process in the classroom. For example, some
studies compare test-first programming (TDD) with test-last programming (and even ad hoc
programming) (ERDOGMUS; MORISIO; TORCHIANO, 2005; JANZEN; SAIEDIAN, 2006a;
JANZEN; SAIEDIAN, 2007; PARODI et al., 2016). Other possible configuration is to compare
a given programming process with another control approach, such as the “traditional” approach
used in previous offerings of the course before the introduction of the investigated process or ad
hoc programming (NETO et al., 2013; PARODI et al., 2016).

There are also studies that focus on different configurations of the testing activity. In
particular, there are two studies on the test design task. The first compares TDD and TDD with
testing criteria (CAMARA; SILVA, 2016), which can be characterized as comparing ad hoc
student test design and test design using testing criteria. The second is a study conducted by
us during this PhD work, comparing the test activity conducted with instructor-provided test
cases and student-written test cases (SCATALON et al., 2017b), i.e. students conducting the test
design task versus not conducting it.

7.3.1.3 Supporting tools

Tools can be used to provide support both to the integration of testing concepts into course
materials and the integration of testing practices into programming assignments. Considering the
the categories of tools that we identified in the systematic mapping, tutor systems can be used to
teach testing concepts and testing frameworks/libraries, IDEs’ testing facilities, submission and

testing systems, online judges and games can be used to automate different aspects of the testing
practice adopted in the classroom.

Still considering the systematic mapping results, most papers related to tools in this
context were just proposals without an evaluation (mapped to the category "Not Applicable")
and many were experience reports or case studies, what means that many studies involving tools
do not present a manipulation of independent variables. Even for studies that do present an
indication of variable manipulation, the papers do not mention explicitly what is the independent
variable under investigation. Nonetheless, we considered different groups of results as treatments
investigated in the experiments.

In this sense, some treatments/levels configurations are repeated across papers which

130Chapter 7. Experimental framework for the integration of software testing into programming education

investigated tools in this context by means of experiments. The most common configuration
is the comparison with tool / without tool (DALY; HORGAN, 2004; THORNTON et al.,
2008; DVORNIK et al., 2011; WANG et al., 2011; BUFFARDI; EDWARDS, 2013b; JANZEN;
CLEMENTS; HILTON, 2013; VUJOSEVIC-JANICIC et al., 2013; ALLEVATO; EDWARDS,
2014; REYNOLDS et al., 2015). The treatment without tool usually means the "traditional"
approach without the use of the investigated tool to conduct some teaching activity. This treatment
may hold values, for example, of previous offerings of the course in which the investigated tool
was not used yet.

The second configuration is when the study compares different versions of the same
tool (version 1 / version 2 / ... / version n) (JEZEK; MALOHLAVA; POP, 2013; BUFFARDI;
EDWARDS, 2014b; BUFFARDI; EDWARDS, 2014a; BRAUGHT; MIDKIFF, 2016). The
different versions may include different functionalities, what means different kinds of support
for the same teaching activity. Finally, there is also the possibility of comparing the investigated
tool with another tool usually employed for the same activity (with tool / with similar tool)
(BLAHETA, 2015).

7.3.2 Dependent variables

The model of dependent variables (on the right side of Figure 34) contains possible
output variables in the domain. The dependent variable represent the effect of the teaching
method, i.e. the results of its application in the classroom. The primary effect to be observed
is students’ learning. However, this effect is not directly measurable, so other variables are
employed to represent it.

In this sense, we organized the variables gathered in the systematic mapping and sorted
them by entity being measured. Hence, these entities are the source of measures used to gauge
students’ learning on programming and testing in this context. We identified four entities
(program, tests, assignment and students), which are described in the following subsections.

7.3.2.1 Program

Students’ submitted programs can provide measures to evaluate their programming skills,
which indicates whether they are able to apply programming concepts to implement a solution.

∙ Size: the size of students’ programs is commonly measured in terms of lines of code (LOC)
or other variants such as non-comment lines of code (NCLOC). This metric is often used
to other indirect metrics such as students’ productivity while completing the programming
assignment.

∙ Density: the code density put the program size into perspective with its structure. Possible
metrics include LOC/method, LOC/class, LOC/feature.

7.3. STeP-EF variables model 131

∙ Structure: the structure provides indication of the internal quality of students’ programs
(JANZEN; SAIEDIAN, 2006a). Structural metrics include number of classes, number of
parameters, coupling between objects, among others that can be obtained through tools
such as Metrics1 and CCCC2. Other important structural metric commonly used is the
cyclomatic complexity.

∙ Style: style metrics are related to the readability of the program. In this sense, a static
analysis tool, such as Checkstyle3 can indicate whether students’ programs are adhering to
coding standards (naming conventions, code layout, documentation etc).

∙ Correctness: correctness is supposed to indicate how correct the student program is,
according to the problem specification. In this sense, correctness is measured by means of
the pass/fail rates of a test suite that represent the expected program behavior. This test
suite can be composed of instructor test cases or the set of test cases developed from all
students in a given class (which comprises the approach of all-pairs testing).

7.3.2.2 Tests

When students are supposed to submit test cases to complete assignments, their tests can
also provide metrics, which indicate their testing skills.

∙ Size: Similarly to program size, it is also measured by LOC or NLOC, but usually called
test LOC. Other metrics include number of asserts and number of test cases.

∙ Code coverage: Code coverage is the most common metric of test quality. It expresses the
percentage of code elements that are exercised (covered) by the test suite. Different code
elements can be considered, which raises different coverage metrics, such as line cover-
age, statement coverage, branch coverage, condition coverage, among others (SHAMS;
EDWARDS, 2015). The idea is that the test suite should exercise as many code elements
as possible in order to reveal the presence of defects. The main drawback in using code
coverage for assessing students’ tests is that they can achieve 100% coverage in some
situations that do not necessarily mean they have a good test suite. Their test suite may not
be checking for missing features in their submitted programs, for example. This is a cause
for concern, specially considering that students tests might be mainly covering mainstream
behavior (EDWARDS; SHAMS, 2014b)

∙ Mutation score: Mutation analysis includes the generation of several defective programs,
the so-called “mutants”, and the execution of the test suite against all of them. The mutation
score is the rate of mutants "killed" by the student test suite, i.e. mutants that presented a
test result different from the original program for a given test case.

1 <http://metrics.sourceforge.net/>
2 <http://cccc.sourceforge.net/>
3 <http://checkstyle.sourceforge.net/>

http://metrics.sourceforge.net/
http://cccc.sourceforge.net/
http://checkstyle.sourceforge.net/

132Chapter 7. Experimental framework for the integration of software testing into programming education

∙ All-pairs testing score: All-pairs testing involves executing each submitted program
against all submitted test suites and vice versa. Edwards and Shams (2014a) propose the
calculation of the all-pairs testing score as the percentage of students’ programs in the
class that failed at least one test case in the test suite being evaluated.

∙ Redundancy: Test redundancy is the rate of test cases that cover the same program
elements (e.g. statements, branches and conditions), being measured by: redundancy =

#redundant test cases/#submitted test cases

7.3.2.3 Assignment

The variables on the assignment are related to the students’ process to develop program
and tests and to the assignment assessment.

∙ Effort/time: Effort in a development team is measured in terms of the amount of people
involved in a given activity and the time they took to complete it (person-hours). However,
in the studies from this context, effort is usually measured for each individual student, in
terms of the time they took to complete the assignment.

∙ Productivity: Productivity is measured by the amount of code produced divided by the
effort required to produce it, i.e. size/effort.

∙ Submissions/snapshots: When a submission system is used and multiple submissions are
allowed, there is a possibility to follow students progression throughout the process of
completing the assignment. Each submission becomes a snapshot of students’ work (or the
system itself collects code snapshots automatically). In this way, it is possible to collect a
sequence of metrics of students’ work, and produce other process-related metrics.

– ∆ LOC: The difference in the amount of lines of code between two submissions. It
can be calculated from two successive submissions or between the first and last one,
for example (BUFFARDI; EDWARDS, 2014a).

– ∆ Coverage: The difference in the the results of code coverage between two sub-
missions of students’ tests for a given programming assignment (BUFFARDI; ED-
WARDS, 2014a).

– Adherence to testing: It is possible to evaluate whether students are indeed testing
their own programs, by calculating the ratio of the size of their tests (e.g. test
LOC) and the size of their programs (e.g. program LOC) (BUFFARDI; EDWARDS,
2012b; BUFFARDI; EDWARDS, 2013a; BRAUGHT; MIDKIFF, 2016; BUFFARDI;
EDWARDS, 2013b).

– Diffs/fixes: Diffs are edits performed by students in the source code, computed
from two successive snapshots. These diffs can be analyzed to find out which code

7.3. STeP-EF variables model 133

elements students changed, either considering low-level changes, such as statement
and expression fixes (SOUZA; KOLLING; BARBOSA, 2017), or computing student
progress indicators, such as adding new method, removing static analysis errors,
reducing cyclomatic complexity etc (EDWARDS; LI, 2016).

7.3.2.4 Student

The variables centered on the student are the ones inherently related to students, aiming
to evaluate concept understanding and attitudes towards the teaching methods.

∙ Grades: Investigating students’ knowledge/concept understanding of a given subject
usually involves analyzing their obtained grades in a quiz, test or exam. The overall
grades in the corresponding course are often used too. The results validity is increased if
researchers use a validated assessment instrument, such as Utting et al. (2013b).

∙ Perceptions/Behaviors: Students’ perceptions indicate their opinions about the testing
approaches. Students’ behaviors refer to what they actually do during programming
assignments, in contrast with what they were instructed to do. Both are usually investigated
through surveys, by asking students about their opinions and what they actually did during
assignments (JANZEN; SAIEDIAN, 2007).

7.3.3 Context variables

The model of context variables (in the center of Figure 34) lists variables from the context
of programming education. These variables are not about the testing practices or concepts per
se, but may affect the results of a teaching method involving the integration of software testing.
We discuss these variables in the next subsections, sorted by what aspect of the context they
represent (student, programming assignments, course, other practices).

7.3.3.1 Student

Some variables are related to the students’ background, especially to gauge students’
current programming skills and knowledge (JANZEN; SAIEDIAN, 2007; GóMEZ; VEGAS;
JURISTO, 2016). Students present a different level of programming skills in each programming
course. Therefore, there is the need to assess whether students’ programming skills are adequate
to conduct the testing practice in question or to learn the involved testing concepts. In this sense,
the adopted testing practices can present different levels of difficulty to match the students’
programmming background (JONES, 2001).

7.3.3.2 Programming assignments

There are some characteristics of programming assignments that are not directly related
to the testing practice adopted, but could influence its aplication.

134Chapter 7. Experimental framework for the integration of software testing into programming education

∙ Complexity: Programming assignments can present different levels of complexity across
computing courses. Even when considering the same course, the complexity varies from
simple programming assignments to more elaborate programming projects, for example.
When the programming problem is too simple, students may not perceive the benefits
of conducting the testing practice (JANZEN; SAIEDIAN, 2007; NETO et al., 2013;
BUFFARDI; EDWARDS, 2013a).

∙ Scaffolding: Instructors can provide additional resources to students along with the as-
signment description, such as a skeleton/template code to help them start working on their
solution (SPACCO; PUGH, 2006; UTTING et al., 2013b; TEUSNER; HILLE; HAGE-
DORN, 2017). This issue is directly related to the program design freedom that students
will have in their solutions, since a skeleton code probably includes the methods’ signature
(or functions’ prototypes). The program design freedom affects the testing practice in the
sense that, if instructors’ tests are used by students, their programs should have a fixed
design in order to compile properly with the tests (SHAMS, 2013a; SHAMS; EDWARDS,
2013; FIDGE; HOGAN; LISTER, 2013; BUFFARDI; EDWARDS, 2014a).

∙ GUI: When the programming assignment involves a graphical interface, students should
also consider the testing of graphical elements in their programs. However, they may face
difficulties to properly test GUI-based assignments (THORNTON et al., 2008; FIDGE;
HOGAN; LISTER, 2013).

∙ Assessment method: The assessment method, whether automatic or manual (PIETERSE;
LIEBENBERG, 2017), and the assessment criteria can influence the teaching method as
well. Automatic assessment provides a natural context to students conduct software testing,
at least the test results evaluation. Other issue is whether students tests are going to be
graded in the programming assignment.

7.3.3.3 Course

The introductory sequence is composed by several programming courses and each one
provides a different context to the integration of software testing. In particular, programming
concepts addressed vary and students have different previous programming experience in each
course.

∙ Major: The introductory courses differ greatly among institutions. An important aspect to
consider is whether students are computing majors or not, since their needs as well as their
motivation to learn programming may vary.

∙ Programming paradigm and language: The programming paradigm choice is a decisive
factor in the design of a introductory course, since it can influence greatly on the sequence
that concepts are taught. Also, this choice can determine the whole underlying model of

7.4. Instantiation of experiments into the framework 135

the introductory sequence (imperative-first, objects-first and functional-first (ACM/IEEE-
CS, 2001)). Naturally, the choice of programming language is also related to the chosen
paradigm. There are other important factors, such as language popularity, industry adoption
(such as C, C++ and Java) or the simplicity of the syntax (like Python) (DAVIES; POLACK-
WAHL; ANEWALT, 2011).

∙ Platform: The diversity of platforms adopted during introductory courses has grown
beyond traditional computers. For instance, there are initiatives to teach programming
using mobile devices and robots (MARKHAM; KING, 2010; COWDEN et al., 2012;
EDWARDS; ALLEVATO, 2013). The use of these alternative platforms can increase
students’ motivation, and, depending on the needs of the target audience, it can be very
helpful. On the other hand, it is important to analyze if the programming concepts learned
by means of such platforms are sufficient to establish the foundation for other advanced
computing courses.

7.3.3.4 Other practices

Other practices may be used in combination with the integration of software testing,
which have their own variables having an effect on the teaching of programming. Therefore,
their interaction should be considered as well.

∙ Pair programming: Pair programming is not restricted to programming, other activities
such as testing can also be paired (FIDGE; HOGAN; LISTER, 2013).

∙ Peer review: Instructors can arrange for students to review each others’ programs and
tests. "Reading others’ tests might improve a student’s abilities as a tester" (POLITZ;
KRISHNAMURTHI; FISLER, 2014; POLITZ et al., 2016).

∙ Version control: Version control tools are widely used in industry, so it is a good practice
to introduce them earlier to novice programmers (BAUMSTARK JR.; ORSEGA, 2016;
KRUSCHE; SEITZ, 2018).

∙ Live coding: Live coding consists in the instructor writing code "live" from scratch during
lectures (GASPAR; LANGEVIN, 2007a; GASPAR; LANGEVIN, 2007b; RUBIN, 2013).

7.4 Instantiation of experiments into the framework
In this section we instantiate the experiments conducted during the PhD project into

the experimental framework. The idea is to show how the conducted experiments fit in the
framework, emphasizing the selected variables in the experimental design. We followed an
approach similar to Shull et al (SHULL et al., 2005), in the sense of organizing information of
the experimental design from different experiments using the same structure.

136Chapter 7. Experimental framework for the integration of software testing into programming education

So, considering the structure of Figure 34, the instantiation consists in showing what
independent and dependent variables were selected and the respective treatments and metrics
used in the experiment. Also, it consists in characterizing the experimental context, by indicating
which values the context variables hold. Among the possible independent variables, generally
one is selected as a factor in the experiment, which is the case of both experiments discussed in
this section. The remaining independent variables should hold constant values, called parameters,
in order to avoid producing undesired systematic effects.

The first experiment is the one described in Scatalon et al. (2017a) and in Section 6.1. As
highlighted in blue in Figure 35, the selected independent variable is related to the programming
process, namely the test design task, with two treatments: instructor-provided test cases and
student-written test cases. The effect was investigated in terms of program correctness, measured
by the pass rate of a reference test suite.

Figure 35 – Experiment described in (SCATALON et al., 2017a)

Still considering independent variables (or input variables), but now focusing on the
parameters, the course material we used had an introduction to functional testing criteria
(equivalence partitioning and boundary value analysis) and automated unit testing in C (with the
assert command). The programming assignments were about clock features, such as add and
subtract time values, and we did not use any specific tool to support the testing practice, students
executed their tests in the IDEs with which they were already familiar.

About the experimental context, students were Computer Science majors, taking courses

of Data Structures I, Data Structures II and Object Oriented Programming. In addition, the
experiment activities involved the imperative programming paradigm with the C programming

language.

7.4. Instantiation of experiments into the framework 137

The second experiment was described in Section 6.2. Similarly, the aspects that represent
the selected variables are highlighted in blue in Figure 36. The selected independent variable
was the completed modules in the course material on testing concepts, with four cumulative
levels as treatments: foundations, input space partitioning, graph coverage and other modules.
The effect was investigated in terms of code coverage and test redundancy.

Figure 36 – Experiment described in Section 6.2

The programming assignments were from different domains, yet with similar complexity,
namely vending machine (P1), identifier (P2), five bit encoding (P3) and insulin pump system
(P4). About the programming and testing process, we did not recommend any specific process to
students. As supporting tool, students used JUnit to write and execute test cases.

Regarding the experimental context, students were also Computer Science majors taking
the course CS416 Testing and Quality Assurance. We used the Java programming language, and
hence the object oriented programming paradigm.

139

CHAPTER

8
CONCLUSIONS

The variety of ways to address programming education in the classroom stands out in
many aspects: there are different target audiences (computing majors and non-majors, for exam-
ple), different ways to implement the introductory sequence curriculum, different programming
languages and paradigms, different platforms (desktop/laptop, mobile) and different teaching
approaches. In this scenario, experimental studies help to uncover these variables related to the
teaching of programming and investigate their relationships with students’ learning outcomes. In
other words, empirical studies provide evidence about when and how students learn programming
better.

However, empirical studies in programming education (and Computer Science Education
in general) often present a lack of research rigor (FINCHER; PETRE, 2004; PEARS; MALMI,
2009; ROBINS, 2015; LISHINSKI et al., 2016). In particular, many empirical studies in this area
consist of experience reports (VALENTINE, 2004; RANDOLPH, 2007), which do not involve a
planned data collection and the researcher (often the course instructor) provides a report of how
students responded to a given approach in the classroom. In this kind of studies, the variables of
the teaching of programming are not carefully identified and isolated, so researcher’s claims have
no guarantee (i.e. anecdotal evidence), since it is based only on opinions, instead of properly
identifying causes and effects related to the teaching approaches employed in the classroom.

Besides, studies in this context also suffer from a lack of theoretical basis (BEN-ARI
et al., 2004; BERGLUND; DANIELS; PEARS, 2006; SHEARD et al., 2009; MALMI et al.,
2010; KOULOURI; LAURIA; MACREDIE, 2014; MALMI et al., 2014). The variables selected
in a study are actually theoretical concepts/constructs in a given area. Therefore, researchers
ideally should investigate in their studies concepts from a established theoretical basis (and also
contribute to evolve such theoretical basis). When studies are not properly planned, they are not
contributing to the theoretical basis of the area.

Considering these problems, we proposed in this PhD thesis the establishment of domain-

140 Chapter 8. Conclusions

specific mechanisms to help researchers to scope and design experimental studies on program-
ming education. We chose the domain of the integration of software testing into introductory
programming courses to explore as our domain of interest (JONES, 2001; BARBOSA et al.,
2003; EDWARDS, 2004; JANZEN; SAIEDIAN, 2008; WHALLEY; PHILPOTT, 2011). To this
end, we created a framework for experimental studies on the integration of software testing into
programming education, which is discussed throughout this thesis.

8.1 Contributions
We highlight the following contributions of this PhD work:

∙ Identification of knowledge gaps caused by software testing education: we conducted
a survey to identify the knowledge gaps in software testing topics presented by graduates
from Brazilian computing undergraduate programs (with respect to industry needs). To
this end, we compared the software testing education delivered to them and the testing
practices they have applied in industry. The results indicate which testing topics have been
underemphasized and overemphasized throughout computing courses and, moreover, a
lack of practice activities for all testing topics.

∙ Overview of research and teaching practices on software testing in programming
courses: We conducted a systematic mapping of the literature on software testing in
programming courses. We selected 293 relevant papers, which allowed us to characterize
how instructors/researchers have been integrating software testing in programming courses
and how they have been designing experimental studies in this domain. Additionally, the
map emphasizes topics with research gaps in this domain.

∙ Conduction of experiments about students’ test design: We executed two experiments
in this domain, which contribute with their results and also their design, since both present
variables were not yet investigated in existing studies.

∙ Establishment of a framework for experimental studies on the integration of soft-
ware testing into programming education: an explicit framework that represents the
underlying structure of experiments from a given domain within the scope of programming
education

8.2 Limitations
Our choices to conduct this PhD work raise the following limitations:

∙ Domain of programming education: We addressed a limited domain of programming
education in our framework. Other practices and approaches integrated into programming

8.3. Future work 141

courses (e.g. pair programming, visualization, peer review etc) may also have associated
variables to programming education.

∙ Variables of the experimental framework: The variables included in the experimental
framework are not an exhaustive theoretical model of this domain. We rather aimed to
achieving a representative model, i.e. which are able to accommodate existing studies and
support the designing of future ones.

∙ Conducted experiments: Our conducted experiments both involved a heterogeneous
population (i.e. students taking different courses), which can introduce confounding
factors.

∙ Framework instantiation: We only instantiated retroactively our own experiments into
the framework. There is the need to investigate the use of the framework to support the
designing of new studies, specially by other researchers not involved with the framework
establishment.

8.3 Future work

We indicate the following directions for future work:

∙ Conduction of more experiments: The experimental framework can help to design new
studies and also to replicate existing ones. The replication of experimental studies is crucial
to advance the body of knowledge in a domain. A given hypotheses should be explored in
several studies in order to increase the confidence its acceptance. The framework can also
help in defining the variations in the replication design.

∙ Evolution of the framework: Since it is not an exhaustive model, the framework can
evolve using new sources of information, such as future studies in the same domain, studies
investigating other teaching approaches in programming education, or even studies focused
in industry testing practices, specially the ones adopted by developers (e.g. TDD).

∙ Address research gaps identified in the systematic mapping: Considering the distribu-
tion of papers of papers in the map, it is possible to note some research gaps, such as on
the topic of course materials. In particular, considering the deficiencies in testing education
pointed out by respondents on the survey, having more materials of testing leveled to
novice programmers could help to address this issue and reduce knowledge gaps.

∙ Meta-analysis of existing studies: In order to conduct meta-analysis of a set of exper-
iments, their results should be integrated. The framework can support this integration
around the same variables and metrics.

142 Chapter 8. Conclusions

8.4 Publications
The publications that resulted from this PhD work so far are the following:

∙ Scatalon, L.P.; Barbosa, E.F. and Garcia, R.E. Challenges to integrate software test-
ing into introductory programming courses. In 47th Annual Frontiers in Education

Conference (FIE 2017), Indianapolis, Indiana, USA, 2017.

∙ Scatalon, L.P.; Prates, J.M.; Souza, D.M.; Barbosa, E.F. and Garcia, R.E. Towards the
role of test design in programming assignments. In 30th IEEE Conference on Software

Engineering Education and Training (CSEE&T 2017), Savannah, Georgia, USA, 2017.

∙ Scatalon, L.P.; Fioravanti, M.L.; Prates, J.M.; Garcia, R.E and Barbosa, E.F. A survey
on graduates’ curriculum-based knowledge gaps in software testing. In 48th Annual

Frontiers in Education Conference (FIE 2018), San Jose, California, USA.

∙ Scatalon, L.P.; Carver, J.C.; Garcia, R.E and Barbosa, E.F. Software testing in intro-
ductory programming courses: A systematic mapping study. In 50th ACM Technical

Symposium on Computing Science Education (SIGCSE’19), Minneapolis, Minnesota,
USA.

143

BIBLIOGRAPHY

AALTONEN, K.; IHANTOLA, P.; SEPPALA, O. Mutation Analysis vs. Code Coverage in
Automated Assessment of Students’ Testing Skills. In: Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages and Appli-
cations Companion. New York, NY, USA: ACM, 2010. (OOPSLA ’10), p. 153–160. ISBN
978-1-4503-0240-1. Available: <http://doi.acm.org/10.1145/1869542.1869567>. Citations on
pages 92, 93, and 199.

ACM/IEEE-CS. Computing Curricula 2001. 2001. Joint Task Force on Computing Curricula,
available at <www.acm.org/education/curric_vols/cc2001.pdf>. Citations on pages 13, 25, 26,
28, and 135.

. Computer Science Curricula 2013. 2013. Joint Task Force on Computing Curricula,
available at <www.acm.org/education/CS2013-final-report.pdf>. Citations on pages 13, 19, 25,
26, 27, 29, 30, and 35.

ADAMS, J. Test-driven Data Structures: Revitalizing CS2. In: Proceedings of the 40th ACM
Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2009.
(SIGCSE ’09), p. 143–147. ISBN 978-1-60558-183-5. Available: <http://doi.acm.org/10.1145/
1508865.1508920>. Citation on page 191.

AGARWAL, R.; EDWARDS, S. H.; PEREZ-QUINONES, M. A. Designing an adaptive learning
module to teach software testing. In: Proceedings of the 37th SIGCSE technical symposium
on Computer science education. New York, NY, USA: ACM, 2006. (SIGCSE ’06), p. 259–263.
ISBN 1-59593-259-3. Available: <http://doi.acm.org/10.1145/1121341.1121420>. Citations on
pages 94, 109, 128, and 193.

AHADI, A.; LISTER, R. Geek genes, prior knowledge, stumbling points and learning edge
momentum: Parts of the one elephant? In: Proceedings of the Ninth Annual International
ACM Conference on International Computing Education Research (ICER ’13). New York,
NY, USA: ACM, 2013. p. 123–128. ISBN 978-1-4503-2243-0. Citation on page 31.

AKOUR, M. Towards Harnessing Testing Tools into Programming Courses Curricula: Case Study
of Jordan. In: 2014 International Conference on Computational Science and Computational
Intelligence. [S.l.: s.n.], 2014. v. 2, p. 197–200. Citation on page 198.

AL-ZUBIDY, A.; CARVER, J. C.; HECKMAN, S.; SHERRIFF, M. A (updated) review of
empiricism at the sigcse technical symposium. In: Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE’16). New York, NY, USA: ACM,
2016. p. 120–125. ISBN 978-1-4503-3685-7. Available: <http://doi.acm.org/10.1145/2839509.
2844601>. Citations on pages 21, 78, and 123.

ALA-MUTKA, K. M. A survey of automated assessment approaches for programming as-
signments. Computer Science Education, Routledge, v. 15, n. 2, p. 83–102, 2005. Available:
<https://doi.org/10.1080/08993400500150747>. Citation on page 197.

http://doi.acm.org/10.1145/1869542.1869567
www.acm.org/education/curric_vols/cc2001.pdf
www.acm.org/education/CS2013-final-report.pdf
http://doi.acm.org/10.1145/1508865.1508920
http://doi.acm.org/10.1145/1508865.1508920
http://doi.acm.org/10.1145/1121341.1121420
http://doi.acm.org/10.1145/2839509.2844601
http://doi.acm.org/10.1145/2839509.2844601
https://doi.org/10.1080/08993400500150747

144 Bibliography

ALKADI, I.; ALKADI, G. To C++ or to Java, that is the question! Featuring a test plan and
an automated testing assistant for object oriented testing. In: Proceedings, IEEE Aerospace
Conference. [S.l.: s.n.], 2002. v. 7, p. 3679–3688. Citation on page 193.

ALLEN, E.; CARTWRIGHT, R.; REIS, C. Production Programming in the Classroom. In:
Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2003. (SIGCSE ’03), p. 89–93. ISBN 1-58113-648-X. Available:
<http://doi.acm.org/10.1145/611892.611940>. Citation on page 194.

ALLEN, E.; CARTWRIGHT, R.; STOLER, B. DrJava: A Lightweight Pedagogic Environment
for Java. In: Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science
Education. New York, NY, USA: ACM, 2002. (SIGCSE ’02), p. 137–141. ISBN 1-58113-473-8.
Available: <http://doi.acm.org/10.1145/563340.563395>. Citation on page 197.

ALLEVATO, A.; EDWARDS, S. Dereferee: Instrumenting C++ pointers with meaningful runtime
diagnostics. Software - Practice and Experience, v. 44, n. 8, p. 973–997, 2014. ISSN 00380644.
Citations on pages 87, 99, 130, and 196.

ALLEVATO, A.; EDWARDS, S. H. RoboLIFT: Engaging CS2 Students with Testable, Automat-
ically Evaluated Android Applications. In: Proceedings of the 43rd ACM Technical Sympo-
sium on Computer Science Education. New York, NY, USA: ACM, 2012. (SIGCSE ’12), p.
547–552. ISBN 978-1-4503-1098-7. Available: <http://doi.acm.org/10.1145/2157136.2157293>.
Citation on page 196.

ALLEVATO, A.; EDWARDS, S. H.; PEREZ-QUINONES, M. A. Dereferee: Exploring Pointer
Mismanagement in Student Code. In: Proceedings of the 40th ACM Technical Symposium on
Computer Science Education. New York, NY, USA: ACM, 2009. (SIGCSE ’09), p. 173–177.
ISBN 978-1-60558-183-5. Available: <http://doi.acm.org/10.1145/1508865.1508928>. Cita-
tions on pages 99 and 196.

ALLEVATO, A.; THORNTON, M.; EDWARDS, S. H.; PEREZ-QUINONES, M. A. Mining
data from an automated grading and testing system by adding rich reporting capabilities. In:
Educational Data Mining (EDM 2008). [S.l.: s.n.], 2008. Citation on page 197.

ALLISON, C. D. The Simplest Unit Test Tool That Could Possibly Work. J. Comput. Sci. Coll.,
v. 23, n. 1, p. 183–189, Oct. 2007. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?
id=1289280.1289318>. Citation on page 193.

ALLOWATT, A.; EDWARDS, S. H. Ide support for test-driven development and automated
grading in both java and c++. In: Proceedings of the 2005 OOPSLA Workshop on Eclipse
Technology eXchange. New York, NY, USA: ACM, 2005. (eclipse ’05), p. 100–104. ISBN
1-59593-342-5. Available: <http://doi.acm.org/10.1145/1117696.1117717>. Citation on page
197.

ALMSTRUM, V. L.; HAZZAN, O.; GUZDIAL, M.; PETRE, M. Challenges to computer
science education research. In: Proceedings of the 36th SIGCSE Technical Symposium on
Computer Science Education. New York, NY, USA: ACM, 2005. (SIGCSE ’05), p. 191–192.
ISBN 1-58113-997-7. Available: <http://doi.acm.org/10.1145/1047344.1047415>. Citation on
page 23.

AMELUNG, M.; FORBRIG, P.; RöSNER, D. Towards generic and flexible web services for e-
assessment. In: Proceedings of the 13th Annual Conference on Innovation and Technology

http://doi.acm.org/10.1145/611892.611940
http://doi.acm.org/10.1145/563340.563395
http://doi.acm.org/10.1145/2157136.2157293
http://doi.acm.org/10.1145/1508865.1508928
http://dl.acm.org/citation.cfm?id=1289280.1289318
http://dl.acm.org/citation.cfm?id=1289280.1289318
http://doi.acm.org/10.1145/1117696.1117717
http://doi.acm.org/10.1145/1047344.1047415

Bibliography 145

in Computer Science Education. New York, NY, USA: ACM, 2008. (ITiCSE ’08), p. 219–224.
ISBN 978-1-60558-078-4. Available: <http://doi.acm.org/10.1145/1384271.1384330>. Citation
on page 195.

AMMANN, P.; OFFUTT, J. Introduction to Software Testing. 2. ed. New York, NY, USA:
Cambridge University Press, 2016. ISBN 9781107172012. Citations on pages 104, 118, 119,
and 124.

ANDRIANOFF, S. K.; LEVINE, D. B.; GEWAND, S. D.; HEISSENBERGER, G. A. A Testing-
based Framework for Programming Contests. In: Proceedings of the 2003 OOPSLA Workshop
on Eclipse Technology eXchange. New York, NY, USA: ACM, 2003. (eclipse ’03), p. 94–98.
Available: <http://doi.acm.org/10.1145/965660.965680>. Citation on page 197.

BALDWIN, J.; CRUPI, E.; ESTRELLADO, T. Webwork for programming fundamentals.
SIGCSE Bull., ACM, New York, NY, USA, v. 38, n. 3, p. 361–361, Jun. 2006. ISSN 0097-8418.
Available: <http://doi.acm.org/10.1145/1140123.1140272>. Citation on page 195.

BANDARA, R. A Simple String Compression Algorithm. 2011. Available at <https://www.
codeproject.com/Articles/223610/A-Simple-String-Compression-Algorithm>. Citation on page
119.

BARBOSA, E. F.; MALDONADO, J. C.; LEBLANC, R.; GUZDIAL, M. Introducing testing
practices into objects and design course. In: Proceedings 16th Conference on Software Engi-
neering Education and Training, 2003. (CSEE&T 2003). [S.l.: s.n.], 2003. p. 279–286. ISSN
1093-0175. Citations on pages 20, 36, 109, 140, and 193.

BARBOSA, E. F.; SILVA, M. A. G.; CORTE, C. K. D.; MALDONADO, J. C. Integrated
teaching of programming foundations and software testing. In: 2008 38th Annual Frontiers in
Education Conference. [S.l.: s.n.], 2008. p. S1H–5–S1H–10. Citations on pages 36, 74, 128,
and 193.

BARR, V.; STEPHENSON, C. Bringing computational thinking to k-12: What is involved
and what is the role of the computer science education community? ACM Inroads, ACM,
New York, NY, USA, v. 2, n. 1, p. 48–54, Feb. 2011. ISSN 2153-2184. Available: <http:
//doi.acm.org/10.1145/1929887.1929905>. Citation on page 19.

BARRIOCANAL, E. G.; URBAN, M.-A. S.; CUEVAS, I. A.; PEREZ, P. D. An Experience in
Integrating Automated Unit Testing Practices in an Introductory Programming Course. SIGCSE
Bull., v. 34, n. 4, p. 125–128, Dec. 2002. ISSN 0097-8418. Available: <http://doi.acm.org/10.
1145/820127.820183>. Citations on pages 36, 94, 99, and 192.

BASILI, V. R.; CALDIERA, G.; ROMBACH, H. D. Goal question metric paradigm. In: Ency-
clopedia of Software Engineering. [S.l.]: John Wiley & Sons, 1994. p. 528–532. Citations on
pages 11, 44, 47, and 49.

BASILI, V. R.; GREEN, S.; LAITENBERGER, O.; LANUBILE, F.; SHULL, F.; SORUMGARD,
S.; ZELKOWITZ, M. V. The empirical investigation of perspective-based reading. Empirical
Software Engineering, Kluwer Academic Publishers, v. 1, n. 2, p. 133–164, 1996. ISSN 1382-
3256. Citations on pages 40 and 57.

BASILI, V. R.; SHULL, F.; LANUBILE, F. Building knowledge through families of experiments.
IEEE Transactions on Software Engineering, v. 25, n. 4, p. 456–473, 1999. Citations on
pages 11, 13, 23, 39, 55, 56, 57, 60, 62, 124, and 125.

http://doi.acm.org/10.1145/1384271.1384330
http://doi.acm.org/10.1145/965660.965680
http://doi.acm.org/10.1145/1140123.1140272
https://www.codeproject.com/Articles/223610/A-Simple-String-Compression-Algorithm
https://www.codeproject.com/Articles/223610/A-Simple-String-Compression-Algorithm
http://doi.acm.org/10.1145/1929887.1929905
http://doi.acm.org/10.1145/1929887.1929905
http://doi.acm.org/10.1145/820127.820183
http://doi.acm.org/10.1145/820127.820183

146 Bibliography

BASILI, V. R.; ZELKOWITZ, M. V. Empirical studies to build a science of computer science.
Communications of the ACM, ACM, New York, NY, USA, v. 50, n. 11, p. 33–37, 2007.
Citation on page 40.

. Empirical studies to build a science of computer science. Commun. ACM, ACM, New
York, NY, USA, v. 50, n. 11, p. 33–37, Nov. 2007. ISSN 0001-0782. Available: <http://doi.acm.
org/10.1145/1297797.1297819>. Citation on page 55.

BASU, S.; WU, A.; HOU, B.; DENERO, J. Problems before solutions: Automated problem
clarification at scale. In: Proceedings of the Second (2015) ACM Conference on Learning
Scale. New York, NY, USA: ACM, 2015. (L@S ’15), p. 205–213. ISBN 978-1-4503-3411-2.
Available: <http://doi.acm.org/10.1145/2724660.2724679>. Citation on page 193.

BAUMSTARK JR., L.; ORSEGA, M. Quantifying Introductory CS Students’ Iterative Software
Process by Mining Version Control System Repositories. J. Comput. Sci. Coll., v. 31, n. 6, p.
97–104, Jun. 2016. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=2904446.
2904470>. Citations on pages 100, 103, 135, and 200.

BEAUBOUEF, T.; MASON, J. Why the high attrition rate for computer science students: Some
thoughts and observations. SIGCSE Bulletin, ACM, New York, NY, USA, v. 37, n. 2, p. 103–
106, Jun. 2005. ISSN 0097-8418. Citations on pages 20 and 31.

BEAUBOUEF, T.; ZHANG, W. Learning to Program Through Use of Code Verification. J.
Comput. Sci. Coll., v. 27, n. 5, p. 78–84, May 2012. ISSN 1937-4771. Available: <http://dl.acm.
org/citation.cfm?id=2168874.2168895>. Citation on page 193.

BECK, L. L.; CHIZHIK, A. W.; MCELROY, A. C. Cooperative learning techniques in cs1:
Design and experimental evaluation. In: Proceedings of the 36th SIGCSE Technical Sympo-
sium on Computer Science Education (SIGCSE ’05). New York, NY, USA: ACM, 2005. p.
470–474. ISBN 1-58113-997-7. Citation on page 35.

BECKER, B. W. Teaching cs1 with karel the robot in java. In: Proceedings of the Thirty-second
SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’01). New York,
NY, USA: ACM, 2001. p. 50–54. ISBN 1-58113-329-4. Citation on page 38.

BELL, J.; SHETH, S.; KAISER, G. Secret Ninja Testing with HALO Software Engineering.
In: Proceedings of the 4th International Workshop on Social Software Engineering. New
York, NY, USA: ACM, 2011. (SSE ’11), p. 43–47. ISBN 978-1-4503-0850-2. Available: <http:
//doi.acm.org/10.1145/2024645.2024657>. Citation on page 198.

BEN-ARI, M.; BERGLUND, A.; BOOTH, S.; HOLMBOE, C. What do we mean by theoretically
sound research in computer science education? In: Proceedings of the 9th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education. New York,
NY, USA: ACM, 2004. (ITiCSE ’04), p. 230–231. ISBN 1-58113-836-9. Available: <http:
//doi.acm.org/10.1145/1007996.1008059>. Citations on pages 21 and 139.

BENNEDSEN, J.; CASPERSEN, M. E. Revealing the Programming Process. In: Proceedings
of the 36th SIGCSE Technical Symposium on Computer Science Education. New York,
NY, USA: ACM, 2005. (SIGCSE ’05), p. 186–190. ISBN 1-58113-997-7. Available: <http:
//doi.acm.org/10.1145/1047344.1047413>. Citation on page 195.

. Failure rates in introductory programming. SIGCSE Bulletin, ACM, New York, NY,
USA, v. 39, n. 2, p. 32–36, Jun. 2007. ISSN 0097-8418. Citation on page 20.

http://doi.acm.org/10.1145/1297797.1297819
http://doi.acm.org/10.1145/1297797.1297819
http://doi.acm.org/10.1145/2724660.2724679
http://dl.acm.org/citation.cfm?id=2904446.2904470
http://dl.acm.org/citation.cfm?id=2904446.2904470
http://dl.acm.org/citation.cfm?id=2168874.2168895
http://dl.acm.org/citation.cfm?id=2168874.2168895
http://doi.acm.org/10.1145/2024645.2024657
http://doi.acm.org/10.1145/2024645.2024657
http://doi.acm.org/10.1145/1007996.1008059
http://doi.acm.org/10.1145/1007996.1008059
http://doi.acm.org/10.1145/1047344.1047413
http://doi.acm.org/10.1145/1047344.1047413

Bibliography 147

BERGLUND, A.; DANIELS, M.; PEARS, A. Qualitative research projects in computing edu-
cation research: An overview. In: Proceedings of the 8th Australasian Conference on Com-
puting Education (ACE ’06). Darlinghurst, Australia, Australia: Australian Computer Society,
Inc., 2006. p. 25–33. ISBN 1-920682-34-1. Citations on pages 21 and 139.

BIRCH, G.; FISCHER, B.; POPPLETON, M. Using Fast Model-Based Fault Localisation to
Aid Students in Self-Guided Program Repair and to Improve Assessment. In: Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer Science Educa-
tion. New York, NY, USA: ACM, 2016. (ITiCSE ’16), p. 168–173. ISBN 978-1-4503-4231-5.
Available: <http://doi.acm.org/10.1145/2899415.2899433>. Citation on page 197.

BISHOP, J.; HORSPOOL, R. N.; XIE, T.; TILLMANN, N.; HALLEUX, J. de. Code Hunt: Expe-
rience with Coding Contests at Scale. In: Proceedings of the 37th International Conference
on Software Engineering - Volume 2. Piscataway, NJ, USA: IEEE Press, 2015. (ICSE ’15), p.
398–407. Available: <http://dl.acm.org/citation.cfm?id=2819009.2819072>. Citation on page
196.

BLAHETA, D. Unci: A C++-based Unit-testing Framework for Intro Students. In: Proceedings
of the 46th ACM Technical Symposium on Computer Science Education. New York, NY,
USA: ACM, 2015. (SIGCSE ’15), p. 475–480. ISBN 978-1-4503-2966-8. Available: <http:
//doi.acm.org/10.1145/2676723.2677228>. Citations on pages 87, 91, 130, and 196.

BRADSHAW, M. K. Ante Up: A Framework to Strengthen Student-Based Testing of Assign-
ments. In: Proceedings of the 46th ACM Technical Symposium on Computer Science Edu-
cation. New York, NY, USA: ACM, 2015. (SIGCSE ’15), p. 488–493. ISBN 978-1-4503-2966-8.
Available: <http://doi.acm.org/10.1145/2676723.2677247>. Citation on page 196.

BRANNOCK, E.; NAPIER, N. Real-world Testing: Using FOSS for Software Development
Courses. In: Proceedings of the 13th Annual Conference on Information Technology Edu-
cation. New York, NY, USA: ACM, 2012. (SIGITE ’12), p. 87–88. ISBN 978-1-4503-1464-0.
Available: <http://doi.acm.org/10.1145/2380552.2380578>. Citation on page 193.

BRAUGHT, G.; MIDKIFF, J. Tool Design and Student Testing Behavior in an Introductory Java
Course. In: Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. New York, NY, USA: ACM, 2016. (SIGCSE ’16), p. 449–454. ISBN 978-1-4503-
3685-7. Available: <http://doi.acm.org/10.1145/2839509.2844641>. Citations on pages 87, 88,
90, 91, 92, 94, 97, 130, 132, and 197.

BRERETON, P.; KITCHENHAM, B. A.; BUDGEN, D.; TURNER, M.; KHALIL, M. Lessons
from applying the systematic literature review process within the software engineering domain.
Journal of Systems and Software, Elsevier Science Inc., New York, NY, USA, v. 80, n. 4, p.
571–583, Apr. 2007. ISSN 0164-1212. Citation on page 23.

BRIAN, S. A.; THOMAS, R. N.; HOGAN, J. M.; FIDGE, C. Planting Bugs: A System for
Testing Students’ Unit Tests. In: Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education. New York, NY, USA: ACM, 2015. (ITiCSE
’15), p. 45–50. ISBN 978-1-4503-3440-2. Available: <http://doi.acm.org/10.1145/2729094.
2742631>. Citation on page 198.

BRIGGS, T.; GIRARD, C. D. Tools and Techniques for Test-driven Learning in CS1. J. Comput.
Sci. Coll., v. 22, n. 3, p. 37–43, Jan. 2007. ISSN 1937-4771. Available: <http://dl.acm.org/citation.
cfm?id=1181849.1181854>. Citation on page 193.

http://doi.acm.org/10.1145/2899415.2899433
http://dl.acm.org/citation.cfm?id=2819009.2819072
http://doi.acm.org/10.1145/2676723.2677228
http://doi.acm.org/10.1145/2676723.2677228
http://doi.acm.org/10.1145/2676723.2677247
http://doi.acm.org/10.1145/2380552.2380578
http://doi.acm.org/10.1145/2839509.2844641
http://doi.acm.org/10.1145/2729094.2742631
http://doi.acm.org/10.1145/2729094.2742631
http://dl.acm.org/citation.cfm?id=1181849.1181854
http://dl.acm.org/citation.cfm?id=1181849.1181854

148 Bibliography

BRITO, M. A. S.; ROSSI, J. L.; SOUZA, S. R. S. de; BRAGA, R. T. V. An Experience on
Applying Software Testing for Teaching Introductory Programming Courses. CLEI Electronic
Journal, scielouy, v. 15, p. 5 – 5, 04 2012. ISSN 0717-5000. Available: <http://www.scielo.edu.
uy/scielo.php?script=sci_arttext&pid=S0717-50002012000100005&nrm=iso>. Citations on
pages 87, 88, 89, 101, and 199.

BROWN, C.; PASTEL, R.; SIEVER, B.; EARNEST, J. JUG: A JUnit Generation, Time Com-
plexity Analysis and Reporting Tool to Streamline Grading. In: Proceedings of the 17th ACM
Annual Conference on Innovation and Technology in Computer Science Education. New
York, NY, USA: ACM, 2012. (ITiCSE ’12), p. 99–104. ISBN 978-1-4503-1246-2. Available:
<http://doi.acm.org/10.1145/2325296.2325323>. Citation on page 198.

BRUCE, K. B. Controversy on how to teach cs 1: A discussion on the sigcse-members mailing
list. SIGCSE Bulletin, ACM, New York, NY, USA, v. 37, n. 2, p. 111–117, Jun. 2005. ISSN
0097-8418. Citation on page 28.

BRUCE, K. B.; DANYLUK, A.; MURTAGH, T. Introducing concurrency in cs 1. In: Proceed-
ings of the 41st ACM Technical Symposium on Computer Science Education (SIGCSE
’10). New York, NY, USA: ACM, 2010. p. 224–228. ISBN 978-1-4503-0006-3. Citation on
page 30.

BRYCE, R. Bug Wars: A Competitive Exercise to Find Bugs in Code. J. Comput. Sci. Coll.,
v. 27, n. 2, p. 43–50, Dec. 2011. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=
2038836.2038842>. Citation on page 194.

BUDGEN, D.; BAILEY, J.; TURNER, M.; KITCHENHAM, B.; BRERETON, P.; CHARTERS,
S. Cross-domain investigation of empirical practices. IET Software, v. 3, n. 5, p. 410–421, 2009.
Citations on pages 20 and 23.

BUFFARDI, K.; EDWARDS, S. H. Exploring Influences on Student Adherence to Test-driven
Development. In: Proceedings of the 17th ACM Annual Conference on Innovation and
Technology in Computer Science Education. New York, NY, USA: ACM, 2012. (ITiCSE
’12), p. 105–110. ISBN 978-1-4503-1246-2. Available: <http://doi.acm.org/10.1145/2325296.
2325324>. Citations on pages 88, 90, 91, 92, 93, 97, and 200.

. Impacts of teaching test-driven development to novice programmers. International Jour-
nal of Information and Computer Science, v. 1, n. 6, p. 135–143, 2012. ISSN 2161-6450.
Available: <http://www.seipub.org/ijics/paperInfo.aspx?ID=1847>. Citations on pages 97, 132,
and 194.

. Effective and Ineffective Software Testing Behaviors by Novice Programmers. In: Pro-
ceedings of the Ninth Annual International ACM Conference on International Computing
Education Research. New York, NY, USA: ACM, 2013. (ICER ’13), p. 83–90. ISBN 978-1-
4503-2243-0. Available: <http://doi.acm.org/10.1145/2493394.2493406>. Citations on pages
90, 92, 95, 97, 101, 132, 134, and 200.

. Impacts of Adaptive Feedback on Teaching Test-driven Development. In: Proceeding
of the 44th ACM Technical Symposium on Computer Science Education. New York, NY,
USA: ACM, 2013. (SIGCSE ’13), p. 293–298. ISBN 978-1-4503-1868-6. Available: <http:
//doi.acm.org/10.1145/2445196.2445287>. Citations on pages 87, 95, 97, 101, 130, 132,
and 196.

http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S0717-50002012000100005&nrm=iso
http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S0717-50002012000100005&nrm=iso
http://doi.acm.org/10.1145/2325296.2325323
http://dl.acm.org/citation.cfm?id=2038836.2038842
http://dl.acm.org/citation.cfm?id=2038836.2038842
http://doi.acm.org/10.1145/2325296.2325324
http://doi.acm.org/10.1145/2325296.2325324
http://www.seipub.org/ijics/paperInfo.aspx?ID=1847
http://doi.acm.org/10.1145/2493394.2493406
http://doi.acm.org/10.1145/2445196.2445287
http://doi.acm.org/10.1145/2445196.2445287

Bibliography 149

. A Formative Study of Influences on Student Testing Behaviors. In: Proceedings of the
45th ACM Technical Symposium on Computer Science Education. New York, NY, USA:
ACM, 2014. (SIGCSE ’14), p. 597–602. ISBN 978-1-4503-2605-6. Available: <http://doi.acm.
org/10.1145/2538862.2538982>. Citations on pages 87, 94, 100, 102, 130, 132, 134, and 200.

. Responses to Adaptive Feedback for Software Testing. In: Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education. New York,
NY, USA: ACM, 2014. (ITiCSE ’14), p. 165–170. ISBN 978-1-4503-2833-3. Available: <http:
//doi.acm.org/10.1145/2591708.2591756>. Citations on pages 87, 99, 130, and 196.

. Reconsidering Automated Feedback: A Test-Driven Approach. In: Proceedings of the
46th ACM Technical Symposium on Computer Science Education. New York, NY, USA:
ACM, 2015. (SIGCSE ’15), p. 416–420. ISBN 978-1-4503-2966-8. Available: <http://doi.acm.
org/10.1145/2676723.2677313>. Citations on pages 99 and 196.

CAMARA, B. H. P.; SILVA, M. A. G. A Strategy to Combine Test-Driven Development and
Test Criteria to Improve Learning of Programming Skills. In: Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. New York, NY, USA: ACM, 2016.
(SIGCSE ’16), p. 443–448. ISBN 978-1-4503-3685-7. Available: <http://doi.acm.org/10.1145/
2839509.2844633>. Citations on pages 87, 91, 92, 101, 129, and 194.

CARBONE, A.; HURST, J.; MITCHELL, I.; GUNSTONE, D. Principles for designing program-
ming exercises to minimise poor learning behaviours in students. In: Proceedings of the Aus-
tralasian Conference on Computing Education. New York, NY, USA: ACM, 2000. (ACSE
’00), p. 26–33. ISBN 1-58113-271-9. Available: <http://doi.acm.org/10.1145/359369.359374>.
Citation on page 194.

CARDELL-OLIVER, R.; ZHANG, L.; BARADY, R.; LIM, Y. H.; NAVEED, A.; WOODINGS,
T. Automated Feedback for Quality Assurance in Software Engineering Education. In: 2010
21st Australian Software Engineering Conference. [S.l.: s.n.], 2010. p. 157–164. Citations
on pages 88, 89, 90, 92, and 196.

CARLSON, B. An Agile classroom experience: Teaching TDD and refactoring. In: Proceedings
- Agile 2008 Conference. [S.l.: s.n.], 2008. p. 465–469. ISBN 978-0-7695-3321-6. Citation on
page 192.

CARTER, J.; WHITE, S.; FRASER, K.; KURKOVSKY, S.; MCCREESH, C.; WIECK, M. Iticse
2010 working group report: Motivating our top students. In: Proceedings of the 2010 ITiCSE
Working Group Reports (ITiCSE-WGR ’10). New York, NY, USA: ACM, 2010. p. 29–47.
ISBN 978-1-4503-0677-5. Citation on page 117.

CARVER, J.; JACCHERI, L.; MORASCA, S.; SHULL, F. Issues in using students in empirical
studies in software engineering education. In: Software Metrics Symposium. [S.l.: s.n.], 2003.
p. 239–249. ISSN 1530-1435. Citation on page 45.

CARVER, J. C.; JACCHERI, L.; MORASCA, S.; SHULL, F. A checklist for integrating student
empirical studies with research and teaching goals. Empirical Software Engineering, Springer
US, v. 15, n. 1, p. 35–59, 2010. ISSN 1382-3256. Citation on page 45.

CARVER, J. C.; KRAFT, N. A. Evaluating the testing ability of senior-level computer science
students. In: 24th IEEE-CS Conference on Software Engineering Education and Training
(CSEE&T). [S.l.: s.n.], 2011. p. 169–178. Citations on pages 63, 75, 117, 120, and 121.

http://doi.acm.org/10.1145/2538862.2538982
http://doi.acm.org/10.1145/2538862.2538982
http://doi.acm.org/10.1145/2591708.2591756
http://doi.acm.org/10.1145/2591708.2591756
http://doi.acm.org/10.1145/2676723.2677313
http://doi.acm.org/10.1145/2676723.2677313
http://doi.acm.org/10.1145/2839509.2844633
http://doi.acm.org/10.1145/2839509.2844633
http://doi.acm.org/10.1145/359369.359374

150 Bibliography

CASPERSEN, M. E.; KOLLING, M. A Novice’s Process of Object-oriented Programming.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications. New York, NY, USA: ACM, 2006. (OOPSLA ’06), p.
892–900. ISBN 1-59593-491-X. Available: <http://doi.acm.org/10.1145/1176617.1176741>.
Citation on page 195.

. STREAM: A First Programming Process. Trans. Comput. Educ., v. 9, n. 1, p. 4:1–
4:29, Mar. 2009. ISSN 1946-6226. Available: <http://doi.acm.org/10.1145/1513593.1513597>.
Citation on page 194.

CHEANG, B.; KURNIA, A.; LIM, A.; OON, W.-C. On automated grading of programming
assignments in an academic institution. Comput. Educ., Elsevier Science Ltd., Oxford, UK,
UK, v. 41, n. 2, p. 121–131, Sep. 2003. ISSN 0360-1315. Available: <http://dx.doi.org/10.1016/
S0360-1315(03)00030-7>. Citation on page 195.

CHEN, W. K.; HALL, B. R. Applying Software Engineering in CS1. In: Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science Education. New
York, NY, USA: ACM, 2013. (ITiCSE ’13), p. 297–302. ISBN 978-1-4503-2078-8. Available:
<http://doi.acm.org/10.1145/2462476.2462480>. Citation on page 193.

CHOY, M.; NAZIR, U.; POON, C. K.; YU, Y. T. Experiences in using an automated system for
improving students’ learning of computer programming. In: LAU, R. W. H.; LI, Q.; CHEUNG,
R.; LIU, W. (Ed.). Advances in Web-Based Learning – ICWL 2005. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005. p. 267–272. ISBN 978-3-540-31716-6. Available: <https:
//doi.org/10.1007/11528043_26>. Citation on page 195.

CHRISTENSEN, H. B. Systematic Testing Should Not Be a Topic in the Computer Science
Curriculum! In: Proceedings of the 8th Annual Conference on Innovation and Technology
in Computer Science Education. New York, NY, USA: ACM, 2003. (ITiCSE ’03), p. 7–10.
ISBN 1-58113-672-2. Available: <http://doi.acm.org/10.1145/961511.961517>. Citations on
pages 36 and 191.

CLARKE, P. J.; ALLEN, A. A.; KING, T. M.; JONES, E. L.; NATESAN, P. Using a Web-
based Repository to Integrate Testing Tools into Programming Courses. In: Proceedings of the
ACM International Conference Companion on Object Oriented Programming Systems
Languages and Applications Companion. New York, NY, USA: ACM, 2010. (OOPSLA
’10), p. 193–200. ISBN 978-1-4503-0240-1. Available: <http://doi.acm.org/10.1145/1869542.
1869573>. Citation on page 196.

CLEGG, B. S.; ROJAS, J. M.; FRASER, G. Teaching software testing concepts using a mutation
testing game. In: Proceedings of the 39th International Conference on Software Engineer-
ing: Software Engineering and Education Track. Piscataway, NJ, USA: IEEE Press, 2017.
(ICSE-SEET ’17), p. 33–36. ISBN 978-1-5386-2671-9. Available: <https://doi.org/10.1109/
ICSE-SEET.2017.1>. Citation on page 198.

CLEMENTS, J.; JANZEN, D. Overcoming Obstacles to Test-Driven Learning on Day One.
In: 2010 Third International Conference on Software Testing, Verification, and Validation
Workshops. [S.l.: s.n.], 2010. p. 448–453. Citation on page 197.

COLLOFELLO, J.; VEHATHIRI, K. An environment for training computer science students
on software testing. In: Proceedings Frontiers in Education 35th Annual Conference. [S.l.:
s.n.], 2005. p. T3E–6. ISSN 0190-5848. Citations on pages 109 and 195.

http://doi.acm.org/10.1145/1176617.1176741
http://doi.acm.org/10.1145/1513593.1513597
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
http://dx.doi.org/10.1016/S0360-1315(03)00030-7
http://doi.acm.org/10.1145/2462476.2462480
https://doi.org/10.1007/11528043_26
https://doi.org/10.1007/11528043_26
http://doi.acm.org/10.1145/961511.961517
http://doi.acm.org/10.1145/1869542.1869573
http://doi.acm.org/10.1145/1869542.1869573
https://doi.org/10.1109/ICSE-SEET.2017.1
https://doi.org/10.1109/ICSE-SEET.2017.1

Bibliography 151

COMBEFIS, S.; PAQUES, A. Pythia Reloaded: An Intelligent Unit Testing-based Code Grader
for Education. In: Proceedings of the 1st International Workshop on Code Hunt Workshop
on Educational Software Engineering. New York, NY, USA: ACM, 2015. (CHESE 2015),
p. 5–8. ISBN 978-1-4503-3711-3. Available: <http://doi.acm.org/10.1145/2792404.2792407>.
Citation on page 198.

COWDEN, D.; O’NEILL, A.; OPAVSKY, E.; USTEK, D.; WALKER, H. M. A c-based in-
troductory course using robots. In: Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education (SIGCSE ’12). New York, NY, USA: ACM, 2012. p. 27–32.
ISBN 978-1-4503-1098-7. Citations on pages 30 and 135.

COWLING, T. Stages in teaching software testing. In: 2012 34th International Conference on
Software Engineering (ICSE). [S.l.: s.n.], 2012. p. 1185–1194. Citations on pages 36 and 191.

DALY, C.; HORGAN, J. M. An automated learning system for java programming. IEEE
Transactions on Education, v. 47, n. 1, p. 10–17, Feb 2004. ISSN 0018-9359. Citations on
pages 87, 94, 95, 98, 99, 130, and 196.

DANUTAMA, K.; LIEM, I. Scalable Autograder and LMS Integration. Procedia Technology,
v. 11, p. 388 – 395, 2013. ISSN 2212-0173. Available: <http://www.sciencedirect.com/science/
article/pii/S2212017313003617>. Citation on page 198.

DAVIES, S.; POLACK-WAHL, J. A.; ANEWALT, K. A snapshot of current practices in teaching
the introductory programming sequence. In: Proceedings of the 42Nd ACM Technical Sym-
posium on Computer Science Education (SIGCSE ’11). New York, NY, USA: ACM, 2011.
p. 625–630. ISBN 978-1-4503-0500-6. Citations on pages 30 and 135.

DEKHANE, S.; PRICE, R. Course-embedded research in software development courses. In: 45th
ACM Technical Symposium on Computer Science Education (SIGCSE ’14). New York, NY,
USA: ACM, 2014. p. 45–48. ISBN 978-1-4503-2605-6. Citation on page 45.

DELAMARO, M. E.; MALDONADO, J. C.; JINO, M. Introducao ao teste de software (In-
troduction to software testing). 2nd edition. ed. [S.l.]: Elsevier, 2016. Citation on page 65.

DELIGIANNIS, I. S.; SHEPPERD, M.; WEBSTER, S.; ROUMELIOTIS, M. A review of
experimental investigations into object-oriented technology. Empirical Software Engineering,
Kluwer Academic Publishers, v. 7, n. 3, p. 193–231, 2002. ISSN 1382-3256. Citation on page
40.

DENNY, P.; LUXTON-REILLY, A.; TEMPERO, E.; HENDRICKX, J. CodeWrite: Supporting
Student-driven Practice of Java. In: Proceedings of the 42Nd ACM Technical Symposium
on Computer Science Education. New York, NY, USA: ACM, 2011. (SIGCSE ’11), p. 471–
476. ISBN 978-1-4503-0500-6. Available: <http://doi.acm.org/10.1145/1953163.1953299>.
Citations on pages 88, 89, 98, 99, 101, and 196.

DESAI, C.; JANZEN, D.; SAVAGE, K. A survey of evidence for test-driven development in
academia. SIGCSE Bull., ACM, New York, NY, USA, v. 40, n. 2, p. 97–101, Jun. 2008. ISSN
0097-8418. Available: <http://doi.acm.org/10.1145/1383602.1383644>. Citation on page 194.

DESAI, C.; JANZEN, D. S.; CLEMENTS, J. Implications of Integrating Test-driven Develop-
ment into CS1/CS2 Curricula. In: Proceedings of the 40th ACM Technical Symposium on
Computer Science Education. New York, NY, USA: ACM, 2009. (SIGCSE ’09), p. 148–152.

http://doi.acm.org/10.1145/2792404.2792407
http://www.sciencedirect.com/science/article/pii/S2212017313003617
http://www.sciencedirect.com/science/article/pii/S2212017313003617
http://doi.acm.org/10.1145/1953163.1953299
http://doi.acm.org/10.1145/1383602.1383644

152 Bibliography

ISBN 978-1-60558-183-5. Available: <http://doi.acm.org/10.1145/1508865.1508921>. Cita-
tions on pages 36, 128, and 193.

DEWEY, K.; CONRAD, P.; CRAIG, M.; MOROZOVA, E. Evaluating test suite effectiveness
and assessing student code via constraint logic programming. In: Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education. New
York, NY, USA: ACM, 2017. (ITiCSE ’17), p. 317–322. ISBN 978-1-4503-4704-4. Available:
<http://doi.acm.org/10.1145/3059009.3059051>. Citation on page 198.

DORIN, P. M. Laboratory Redux. SIGCSE Bull., v. 39, n. 2, p. 84–87, Jun. 2007. ISSN 0097-
8418. Available: <http://doi.acm.org/10.1145/1272848.1272891>. Citation on page 191.

DOUCE, C.; LIVINGSTONE, D.; ORWELL, J. Automatic Test-based Assessment of Program-
ming: A Review. J. Educ. Resour. Comput., v. 5, n. 3, Sep. 2005. ISSN 1531-4278. Available:
<http://doi.acm.org/10.1145/1163405.1163409>. Citation on page 197.

DVORNIK, T.; JANZEN, D. S.; CLEMENTS, J.; DEKHTYAR, O. Supporting introductory
test-driven labs with WebIDE. In: 2011 24th IEEE-CS Conference on Software Engineering
Education and Training (CSEE T). [S.l.: s.n.], 2011. p. 51–60. Citations on pages 87, 94,
101, 130, and 196.

DYBA, T.; DINGSOYR, T. Empirical studies of agile software development: A systematic review.
Information and Software Technology, v. 50, n. 9–10, p. 833–859, 2008. ISSN 0950-5849.
Citation on page 40.

EARLE, C. B.; FREDLUND, L.-\.; HUGHES, J. Automatic Grading of Programming Exercises
Using Property-Based Testing. In: Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. New York, NY, USA: ACM, 2016. (ITiCSE
’16), p. 47–52. ISBN 978-1-4503-4231-5. Available: <http://doi.acm.org/10.1145/2899415.
2899443>. Citation on page 197.

EASTERBROOK, S.; SINGER, J.; STOREY, M.-A.; DAMIAN, D. Selecting empirical methods
for software engineering research. In: SHULL, F.; SINGER, J.; SJOBERG, D. I. (Ed.). Guide to
Advanced Empirical Software Engineering. [S.l.]: Springer London, 2008. p. 285–311. ISBN
978-1-84800-043-8. Citations on pages 21, 40, and 56.

EBEL, G.; BEN-ARI, M. Affective effects of program visualization. In: Proceedings of the
Second International Workshop on Computing Education Research (ICER ’06). New York,
NY, USA: ACM, 2006. p. 1–5. ISBN 1-59593-494-4. Citation on page 37.

EDWARDS, S.; LI, Z. Towards Progress Indicators for Measuring Student Programming Effort
During Solution Development. In: Proceedings of the 16th Koli Calling International Confer-
ence on Computing Education Research. New York, NY, USA: ACM, 2016. (Koli Calling ’16),
p. 31–40. ISBN 978-1-4503-4770-9. Available: <http://doi.acm.org/10.1145/2999541.2999561>.
Citations on pages 100, 133, and 199.

EDWARDS, S. H. Improving Student Performance by Evaluating How Well Students Test Their
Own Programs. J. Educ. Resour. Comput., v. 3, n. 3, Sep. 2003. ISSN 1531-4278. Available:
<http://doi.acm.org/10.1145/1029994.1029995>. Citations on pages 86, 89, 90, 91, 92, 93, 97,
98, and 192.

http://doi.acm.org/10.1145/1508865.1508921
http://doi.acm.org/10.1145/3059009.3059051
http://doi.acm.org/10.1145/1272848.1272891
http://doi.acm.org/10.1145/1163405.1163409
http://doi.acm.org/10.1145/2899415.2899443
http://doi.acm.org/10.1145/2899415.2899443
http://doi.acm.org/10.1145/2999541.2999561
http://doi.acm.org/10.1145/1029994.1029995

Bibliography 153

. Rethinking Computer Science Education from a Test-first Perspective. In: Companion of
the 18th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications. New York, NY, USA: ACM, 2003. (OOPSLA ’03), p. 148–155.
ISBN 1-58113-751-6. Available: <http://doi.acm.org/10.1145/949344.949390>. Citations on
pages 75 and 191.

. Teaching Software Testing: Automatic Grading Meets Test-first Coding. In: Companion of
the 18th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications. New York, NY, USA: ACM, 2003. (OOPSLA ’03), p. 318–319.
ISBN 1-58113-751-6. Available: <http://doi.acm.org/10.1145/949344.949431>. Citation on
page 192.

. Using test-driven development in the classroom: Providing students with automatic,
concrete feedback on performance. In: International Conference on Education and In-
formation Systems: Technologies and Applications (EISTA?03). [s.n.], 2003. Available:
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.3615>. Citations on pages 87,
90, 91, 92, 93, 97, and 194.

. Using Software Testing to Move Students from Trial-and-error to Reflection-in-action. In:
Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2004. (SIGCSE ’04), p. 26–30. ISBN 1-58113-798-2. Available:
<http://doi.acm.org/10.1145/971300.971312>. Citations on pages 20, 35, 75, 86, 90, 91, 92, 93,
97, 140, and 192.

. Work-in-progress: Program Grading and Feedback Generation with Web-CAT. In: Pro-
ceedings of the First ACM Conference on Learning @ Scale Conference. New York,
NY, USA: ACM, 2014. (L@S ’14), p. 215–216. ISBN 978-1-4503-2669-8. Available: <http:
//doi.acm.org/10.1145/2556325.2567888>. Citation on page 196.

EDWARDS, S. H.; ALLEVATO, A. Sofia: The simple open framework for inventive android
applications. In: Proceedings of the 18th ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE ’13). New York, NY, USA: ACM, 2013. p. 321–321.
ISBN 978-1-4503-2078-8. Citations on pages 30 and 135.

EDWARDS, S. H.; BöRSTLER, J.; CASSEL, L. N.; HALL, M. S.; HOLLINGSWORTH, J.
Developing a common format for sharing programming assignments. SIGCSE Bull., ACM,
New York, NY, USA, v. 40, n. 4, p. 167–182, Nov. 2008. ISSN 0097-8418. Available: <http:
//doi.acm.org/10.1145/1473195.1473240>. Citation on page 194.

EDWARDS, S. H.; PEREZ-QUINONES, M. A. Experiences Using Test-driven Development
with an Automated Grader. J. Comput. Sci. Coll., v. 22, n. 3, p. 44–50, Jan. 2007. ISSN
1937-4771. Available: <http://dl.acm.org/citation.cfm?id=1181849.1181855>. Citation on page
192.

. Web-CAT: Automatically Grading Programming Assignments. In: Proceedings of the
13th Annual Conference on Innovation and Technology in Computer Science Education.
New York, NY, USA: ACM, 2008. (ITiCSE ’08), p. 328–328. ISBN 978-1-60558-078-4. Avail-
able: <http://doi.acm.org/10.1145/1384271.1384371>. Citation on page 197.

EDWARDS, S. H.; SHAMS, Z. Comparing Test Quality Measures for Assessing Student-
written Tests. In: Companion Proceedings of the 36th International Conference on Software
Engineering. New York, NY, USA: ACM, 2014. (ICSE Companion 2014), p. 354–363. ISBN

http://doi.acm.org/10.1145/949344.949390
http://doi.acm.org/10.1145/949344.949431
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.3615
http://doi.acm.org/10.1145/971300.971312
http://doi.acm.org/10.1145/2556325.2567888
http://doi.acm.org/10.1145/2556325.2567888
http://doi.acm.org/10.1145/1473195.1473240
http://doi.acm.org/10.1145/1473195.1473240
http://dl.acm.org/citation.cfm?id=1181849.1181855
http://doi.acm.org/10.1145/1384271.1384371

154 Bibliography

978-1-4503-2768-8. Available: <http://doi.acm.org/10.1145/2591062.2591164>. Citations on
pages 90, 92, 93, 94, 132, and 199.

. Do Student Programmers All Tend to Write the Same Software Tests? In: Proceedings of
the 2014 Conference on Innovation & Technology in Computer Science Education. New
York, NY, USA: ACM, 2014. (ITiCSE ’14), p. 171–176. ISBN 978-1-4503-2833-3. Available:
<http://doi.acm.org/10.1145/2591708.2591757>. Citations on pages 91, 93, 94, 109, 117, 131,
and 200.

EDWARDS, S. H.; SHAMS, Z.; COGSWELL, M.; SENKBEIL, R. C. Running Students’
Software Tests Against Each Others’ Code: New Life for an Old "Gimmick". In: Proceedings
of the 43rd ACM Technical Symposium on Computer Science Education. New York, NY,
USA: ACM, 2012. (SIGCSE ’12), p. 221–226. ISBN 978-1-4503-1098-7. Available: <http:
//doi.acm.org/10.1145/2157136.2157202>. Citations on pages 90, 93, and 196.

EDWARDS, S. H.; SHAMS, Z.; ESTEP, C. Adaptively Identifying Non-terminating Code when
Testing Student Programs. In: Proceedings of the 45th ACM Technical Symposium on Com-
puter Science Education. New York, NY, USA: ACM, 2014. (SIGCSE ’14), p. 15–20. ISBN
978-1-4503-2605-6. Available: <http://doi.acm.org/10.1145/2538862.2538926>. Citations on
pages 99, 100, and 196.

EDWARDS, S. H.; SNYDER, J.; nONES, M. A. P.-Q.; ALLEVATO, A.; KIM, D.; TRETOLA, B.
Comparing effective and ineffective behaviors of student programmers. In: Proceedings of the
Fifth International Workshop on Computing Education Research Workshop (ICER ’09).
New York, NY, USA: ACM, 2009. p. 3–14. ISBN 978-1-60558-615-1. Citation on page 117.

ELBAUM, S.; PERSON, S.; DOKULIL, J.; JORDE, M. Bug hunt: Making early software testing
lessons engaging and affordable. In: Proceedings - International Conference on Software
Engineering. [S.l.: s.n.], 2007. p. 687–697. ISBN 0-7695-2828-7 978-0-7695-2828-1. Citations
on pages 103, 109, and 195.

ELOY, A. A. d. S.; MARTINS, A. R. Q.; PAZINATO, A. M.; LUKJANENKO, M. d. F. S. P.;
LOPES, R. d. D. Programming literacy: Computational thinking in brazilian public schools.
In: Proceedings of the 2017 Conference on Interaction Design and Children. New York,
NY, USA: ACM, 2017. (IDC ’17), p. 439–444. ISBN 978-1-4503-4921-5. Available: <http:
//doi.acm.org/10.1145/3078072.3084306>. Citation on page 19.

ENGSTRöM, E.; RUNESON, P. A qualitative survey of regression testing practices. In: Proceed-
ings of the 11th International Conference on Product-Focused Software Process Improve-
ment (PROFES’10). Berlin, Heidelberg: Springer-Verlag, 2010. p. 3–16. ISBN 3-642-13791-1,
978-3-642-13791-4. Citation on page 64.

ENSTROM, E.; KREITZ, G.; NIEMELA, F.; SODERMAN, P.; KANN, V. Five years with
kattis: Using an automated assessment system in teaching. In: 2011 Frontiers in Education
Conference (FIE). [S.l.: s.n.], 2011. p. T3J–1–T3J–6. Citation on page 196.

ERDOGMUS, H.; MORISIO, M.; TORCHIANO, M. On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering, v. 31, n. 3, p. 226–
237, March 2005. ISSN 0098-5589. Citations on pages 87, 89, 96, 104, 129, and 194.

ETTEBERG, H. T.; AALBERG, T. JExercise: A Specification-based and Test-driven Exercise
Support Plugin for Eclipse. In: Proceedings of the 2006 OOPSLA Workshop on Eclipse

http://doi.acm.org/10.1145/2591062.2591164
http://doi.acm.org/10.1145/2591708.2591757
http://doi.acm.org/10.1145/2157136.2157202
http://doi.acm.org/10.1145/2157136.2157202
http://doi.acm.org/10.1145/2538862.2538926
http://doi.acm.org/10.1145/3078072.3084306
http://doi.acm.org/10.1145/3078072.3084306

Bibliography 155

Technology eXchange. New York, NY, USA: ACM, 2006. (eclipse ’06), p. 70–74. ISBN 1-
59593-621-1. Available: <http://doi.acm.org/10.1145/1188835.1188850>. Citation on page
195.

FAGIN, B.; MERKLE, L. Measuring the effectiveness of robots in teaching computer science. In:
Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’03). New York, NY, USA: ACM, 2003. p. 307–311. ISBN 1-58113-648-X. Citation
on page 38.

FELLEISEN, M.; FINDLER, R. B.; FLATT, M.; KRISHNAMURTHI, S. The teachscheme!
project: Computing and programming for every student. Computer Science Education, v. 14,
n. 1, p. 55–77, 2004. Citation on page 29.

FENG, M. Y.; MCALLISTER, A. A tool for automated gui program grading. In: Proceedings.
Frontiers in Education. 36th Annual Conference. [S.l.: s.n.], 2006. p. 7–12. ISSN 0190-5848.
Citation on page 197.

FIDGE, C.; HOGAN, J.; LISTER, R. What vs. How: Comparing Students’ Testing and Coding
Skills. In: Proceedings of the Fifteenth Australasian Computing Education Conference
- Volume 136. Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2013.
(ACE ’13), p. 97–106. ISBN 978-1-921770-21-0. Available: <http://dl.acm.org/citation.cfm?id=
2667199.2667210>. Citations on pages 90, 92, 102, 103, 116, 134, 135, and 200.

FINCHER, S.; PETRE, M. Computer Science Education Research. [S.l.]: Routledge, 2004.
ISBN 9026519699. Citations on pages 20, 21, 123, and 139.

FINCHER, S.; TENENBERG, J.; ROBINS, A. Research design: Necessary bricolage. In: Pro-
ceedings of the Seventh International Workshop on Computing Education Research. New
York, NY, USA: ACM, 2011. (ICER ’11), p. 27–32. ISBN 978-1-4503-0829-8. Available:
<http://doi.acm.org/10.1145/2016911.2016919>. Citation on page 23.

FISCHER, G.; GUDENBERG, J. W. von. Improving the Quality of Programming Education by
Online Assessment. In: Proceedings of the 4th International Symposium on Principles and
Practice of Programming in Java. New York, NY, USA: ACM, 2006. (PPPJ ’06), p. 208–211.
ISBN 3-939352-05-5. Available: <http://doi.acm.org/10.1145/1168054.1168085>. Citation on
page 195.

FORTE, A.; GUZDIAL, M. Motivation and non-majors in computer science: identifying discrete
audiences for introductory courses. IEEE Transactions on Education, v. 48, n. 2, p. 248–253,
May 2005. ISSN 0018-9359. Citations on pages 19 and 37.

FREZZA, S. Integrating testing and design methods for undergraduates: teaching software testing
in the context of software design. In: 32nd Annual Frontiers in Education. [S.l.: s.n.], 2002.
v. 3, p. S1G–1–S1G–4 vol.3. ISSN 0190-5848. Citations on pages 109 and 191.

FU, X.; PELTSVERGER, B.; QIAN, K.; TAO, L.; LIU, J. APOGEE: Automated Project Grading
and Instant Feedback System for Web Based Computing. In: Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2008.
(SIGCSE ’08), p. 77–81. ISBN 978-1-59593-799-5. Available: <http://doi.acm.org/10.1145/
1352135.1352163>. Citation on page 197.

http://doi.acm.org/10.1145/1188835.1188850
http://dl.acm.org/citation.cfm?id=2667199.2667210
http://dl.acm.org/citation.cfm?id=2667199.2667210
http://doi.acm.org/10.1145/2016911.2016919
http://doi.acm.org/10.1145/1168054.1168085
http://doi.acm.org/10.1145/1352135.1352163
http://doi.acm.org/10.1145/1352135.1352163

156 Bibliography

FUNABIKI, N.; KUSAKA, R.; ISHIHARA, N.; KAO, W. C. A Proposal of Test Code Generation
Tool for Java Programming Learning Assistant System. In: 2017 IEEE 31st International
Conference on Advanced Information Networking and Applications (AINA). [S.l.: s.n.],
2017. p. 51–56. Citation on page 198.

FUNABIKI, N.; NAKAMURA, T.; KAO, W.-C. A proposal of Javadoc hint function for Java Pro-
gramming Learning Assistant System. In: 2014 IEEE 3rd Global Conference on Consumer
Electronics (GCCE). [S.l.: s.n.], 2014. p. 304–308. Citation on page 198.

GALLIS, H.; ARISHOLM, E.; DYBA, T. A transition from partner programming to pair pro-
gramming – an industrial case study. In: Pair Programming Work Shop in 17th Annual
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). [S.l.: s.n.], 2002. Citation on page 59.

. An initial framework for research on pair programming. In: International Symposium
on Empirical Software Engineering (ISESE 2003). [S.l.: s.n.], 2003. p. 132–142. Citations
on pages 11, 13, 22, 23, 55, 57, 59, 60, 62, and 124.

GAO, J.; PANG, B.; LUMETTA, S. S. Automated Feedback Framework for Introductory
Programming Courses. In: Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education. New York, NY, USA: ACM, 2016. (ITiCSE ’16),
p. 53–58. ISBN 978-1-4503-4231-5. Available: <http://doi.acm.org/10.1145/2899415.2899440>.
Citation on page 196.

GAROUSI, V.; ZHI, J. A survey of software testing practices in Canada. Journal of Systems
and Software, Elsevier Science Inc., New York, NY, USA, v. 86, n. 5, p. 1354–1376, May 2013.
ISSN 0164-1212. Citations on pages 64, 65, and 75.

GASPAR, A.; LANGEVIN, S. Active learning in introductory program-
ming courses through student-led live coding and test-driven pair program-
ming. In: EISTA 2007, Education and Information Systems, Technolo-
gies and Applications. [s.n.], 2007. Available: <https://www.semanticscholar.
org/paper/Active-learning-in-introductory-programming-course-Gaspar-Langevin/
8d6a1c7d90d5bdf50d1a23b25dac6550785e6392>. Citations on pages 135 and 193.

. Restoring "Coding with Intention" in Introductory Programming Courses. In: Proceedings
of the 8th ACM SIGITE Conference on Information Technology Education. New York,
NY, USA: ACM, 2007. (SIGITE ’07), p. 91–98. ISBN 978-1-59593-920-3. Available: <http:
//doi.acm.org/10.1145/1324302.1324323>. Citations on pages 135 and 193.

GASPAR, A.; LANGEVIN, S.; BOYER, N.; TINDELL, R. A Preliminary Review of Undergrad-
uate Programming Students’ Perspectives on Writing Tests, Working with Others, and Using
Peer Testing. In: Proceedings of the 14th Annual ACM SIGITE Conference on Information
Technology Education. New York, NY, USA: ACM, 2013. (SIGITE ’13), p. 109–114. ISBN
978-1-4503-2239-3. Available: <http://doi.acm.org/10.1145/2512276.2512301>. Citation on
page 193.

GESTWICKI, P. Design and evaluation of an undergraduate course on software development
practices. In: Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. New York, NY, USA: ACM, 2018. (SIGCSE ’18), p. 221–226. ISBN 978-1-4503-
5103-4. Available: <http://doi.acm.org/10.1145/3159450.3159542>. Citation on page 191.

http://doi.acm.org/10.1145/2899415.2899440
https://www.semanticscholar.org/paper/Active-learning-in-introductory-programming-course-Gaspar-Langevin/8d6a1c7d90d5bdf50d1a23b25dac6550785e6392
https://www.semanticscholar.org/paper/Active-learning-in-introductory-programming-course-Gaspar-Langevin/8d6a1c7d90d5bdf50d1a23b25dac6550785e6392
https://www.semanticscholar.org/paper/Active-learning-in-introductory-programming-course-Gaspar-Langevin/8d6a1c7d90d5bdf50d1a23b25dac6550785e6392
http://doi.acm.org/10.1145/1324302.1324323
http://doi.acm.org/10.1145/1324302.1324323
http://doi.acm.org/10.1145/2512276.2512301
http://doi.acm.org/10.1145/3159450.3159542

Bibliography 157

GHAFARIAN, A. Incorporating a Semester-long Project into the CS 2 Course. J. Comput. Sci.
Coll., v. 17, n. 2, p. 183–190, Dec. 2001. ISSN 1937-4771. Available: <http://dl.acm.org/citation.
cfm?id=775339.775373>. Citation on page 194.

GIRARD, C. D.; WELLINGTON, C. Work in progress: A test-first approach to teaching cs1. In:
Proceedings. Frontiers in Education. 36th Annual Conference. [S.l.: s.n.], 2006. p. 19–20.
ISSN 0190-5848. Citation on page 193.

GOLDWASSER, M. H. A Gimmick to Integrate Software Testing Throughout the Curriculum. In:
Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2002. (SIGCSE ’02), p. 271–275. ISBN 1-58113-473-8. Available:
<http://doi.acm.org/10.1145/563340.563446>. Citation on page 192.

GOMEZ, O. S.; JURISTO, N.; VEGAS, S. Replications types in experimental disciplines.
In: Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM ’10). New York, NY, USA: ACM, 2010. p. 3:1–3:10.
ISBN 978-1-4503-0039-1. Citation on page 42.

GóMEZ, O. S.; VEGAS, S.; JURISTO, N. Impact of cs programs on the quality of test cases
generation: An empirical study. In: Proceedings of the 38th International Conference on
Software Engineering Companion. New York, NY, USA: ACM, 2016. (ICSE ’16), p. 374–
383. ISBN 978-1-4503-4205-6. Available: <http://doi.acm.org/10.1145/2889160.2889190>.
Citations on pages 86, 87, 94, 103, 128, 133, and 199.

GONZALEZ-GUERRA, L. H.; LEAL-FLORES, A. J. Tutoring model to guide students in
programming courses to create complete and correct solutions. In: 2014 9th International
Conference on Computer Science Education. [S.l.: s.n.], 2014. p. 75–80. Citation on page
192.

GOTEL, O.; SCHARFF, C.; WILDENBERG, A. Extending and Contributing to an Open
Source Web-based System for the Assessment of Programming Problems. In: Proceedings
of the 5th International Symposium on Principles and Practice of Programming in Java.
New York, NY, USA: ACM, 2007. (PPPJ ’07), p. 3–12. ISBN 978-1-59593-672-1. Available:
<http://doi.acm.org/10.1145/1294325.1294327>. Citation on page 195.

. Teaching Software Quality Assurance by Encouraging Student Contributions to an Open
Source Web-based System for the Assessment of Programming Assignments. SIGCSE Bull.,
v. 40, n. 3, p. 214–218, Jun. 2008. ISSN 0097-8418. Available: <http://doi.acm.org/10.1145/
1597849.1384329>. Citation on page 192.

GROSS, T. R. Breadth in depth: A 1st year introduction to parallel programming. In: Proceedings
of the 42Nd ACM Technical Symposium on Computer Science Education (SIGCSE ’11).
New York, NY, USA: ACM, 2011. p. 435–440. ISBN 978-1-4503-0500-6. Citation on page 30.

GROVER, S.; PEA, R. Computational thinking in k-12: A review of the state of the field.
Educational Researcher, v. 42, n. 1, p. 38–43, 2013. Available: <https://doi.org/10.3102/
0013189X12463051>. Citation on page 19.

GUSTAFSON, D.; DWYER, M. Work in progress : the adversarial testing system. In: 30th
Annual Frontiers in Education Conference. Building on A Century of Progress in Engi-
neering Education. Conference Proceedings (IEEE Cat. No.00CH37135). [S.l.: s.n.], 2000.
v. 1, p. T1C/19–T1C/20 vol.1. Citation on page 197.

http://dl.acm.org/citation.cfm?id=775339.775373
http://dl.acm.org/citation.cfm?id=775339.775373
http://doi.acm.org/10.1145/563340.563446
http://doi.acm.org/10.1145/2889160.2889190
http://doi.acm.org/10.1145/1294325.1294327
http://doi.acm.org/10.1145/1597849.1384329
http://doi.acm.org/10.1145/1597849.1384329
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051

158 Bibliography

GUZDIAL, M. A media computation course for non-majors. In: Proceedings of the 8th Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE ’03).
New York, NY, USA: ACM, 2003. p. 104–108. ISBN 1-58113-672-2. Citation on page 37.

. Education: Paving the way for computational thinking. Commun. ACM, ACM, New
York, NY, USA, v. 51, n. 8, p. 25–27, Aug. 2008. ISSN 0001-0782. Available: <http://doi.acm.
org/10.1145/1378704.1378713>. Citation on page 19.

. From science to engineering. Commun. ACM, ACM, New York, NY, USA, v. 54, n. 2, p.
37–39, Feb. 2011. ISSN 0001-0782. Available: <http://doi.acm.org/10.1145/1897816.1897831>.
Citation on page 30.

. Exploring hypotheses about media computation. In: Proceedings of the Ninth Annual
International ACM Conference on International Computing Education Research (ICER
’13). New York, NY, USA: ACM, 2013. p. 19–26. ISBN 978-1-4503-2243-0. Citations on pages
20 and 107.

. What do I mean by Computing Education Research? The Social Sci-
ence Perspective. 2018. Available at <https://computinged.wordpress.com/2018/11/05/
what-do-i-mean-by-computing-education-research-the-social-science-perspective/>. Citation
on page 19.

HANKS, B.; FITZGERALD, S.; MCCAULEY, R.; MURPHY, L.; ZANDER, C. Pair program-
ming in education: a literature review. Computer Science Education, v. 21, n. 2, p. 135–173,
2011. Citation on page 36.

HARRIS, J. A.; ADAMS, E. S.; HARRIS, N. L. Making program grading easier: But not totally
automatic. J. Comput. Sci. Coll., Consortium for Computing Sciences in Colleges, USA, v. 20,
n. 1, p. 248–261, Oct. 2004. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=
1040231.1040264>. Citation on page 198.

HELIOTIS, J.; ZANIBBI, R. Moving Away from Programming and Towards Computer Science
in the CS First Year. J. Comput. Sci. Coll., v. 26, n. 3, p. 115–125, Jan. 2011. ISSN 1937-4771.
Available: <http://dl.acm.org/citation.cfm?id=1859159.1859183>. Citation on page 191.

HELMICK, M. T. Interface-based Programming Assignments and Automatic Grading of Java
Programs. In: Proceedings of the 12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. New York, NY, USA: ACM, 2007. (ITiCSE ’07),
p. 63–67. ISBN 978-1-59593-610-3. Available: <http://doi.acm.org/10.1145/1268784.1268805>.
Citation on page 197.

HERNAN-LOSADA, I.; PAREJA-FLORES, C.; VELAZQUEZ-ITURBIDE, J. A. Testing-Based
Automatic Grading: A Proposal from Bloom’s Taxonomy. In: 2008 Eighth IEEE International
Conference on Advanced Learning Technologies. [S.l.: s.n.], 2008. p. 847–849. Citation on
page 193.

HEROUT, P.; BRADA, P. Uml-test application for automated validation of students’ uml class
diagram. In: 2016 IEEE 29th International Conference on Software Engineering Education
and Training (CSEET). [S.l.: s.n.], 2016. p. 222–226. Citation on page 196.

HERTZ, M. What do "cs1" and "cs2" mean?: Investigating differences in the early courses.
In: Proceedings of the 41st ACM Technical Symposium on Computer Science Education

http://doi.acm.org/10.1145/1378704.1378713
http://doi.acm.org/10.1145/1378704.1378713
http://doi.acm.org/10.1145/1897816.1897831
https://computinged.wordpress.com/2018/11/05/what-do-i-mean-by-computing-education-research-the-social-science-perspective/
https://computinged.wordpress.com/2018/11/05/what-do-i-mean-by-computing-education-research-the-social-science-perspective/
http://dl.acm.org/citation.cfm?id=1040231.1040264
http://dl.acm.org/citation.cfm?id=1040231.1040264
http://dl.acm.org/citation.cfm?id=1859159.1859183
http://doi.acm.org/10.1145/1268784.1268805

Bibliography 159

(SIGCSE ’10). New York, NY, USA: ACM, 2010. p. 199–203. ISBN 978-1-4503-0006-3.
Citation on page 28.

HERTZ, M.; FORD, S. M. Investigating factors of student learning in introductory courses. In:
Proceeding of the 44th ACM Technical Symposium on Computer Science Education. New
York, NY, USA: ACM, 2013. (SIGCSE ’13), p. 195–200. ISBN 978-1-4503-1868-6. Available:
<http://doi.acm.org/10.1145/2445196.2445254>. Citations on pages 30 and 35.

HIGGINS, C.; SYMEONIDIS, P.; TSINTSIFAS, A. The marking system for coursemaster. In:
Proceedings of the 7th Annual Conference on Innovation and Technology in Computer
Science Education. New York, NY, USA: ACM, 2002. (ITiCSE ’02), p. 46–50. ISBN 1-58113-
499-1. Available: <http://doi.acm.org/10.1145/544414.544431>. Citation on page 197.

HIGGINS, C. A.; GRAY, G.; SYMEONIDIS, P.; TSINTSIFAS, A. Automated assessment
and experiences of teaching programming. J. Educ. Resour. Comput., ACM, New York, NY,
USA, v. 5, n. 3, Sep. 2005. ISSN 1531-4278. Available: <http://doi.acm.org/10.1145/1163405.
1163410>. Citation on page 195.

HILTON, M.; JANZEN, D. S. On Teaching Arrays with Test-driven Learning in WebIDE.
In: Proceedings of the 17th ACM Annual Conference on Innovation and Technology in
Computer Science Education. New York, NY, USA: ACM, 2012. (ITiCSE ’12), p. 93–98. ISBN
978-1-4503-1246-2. Available: <http://doi.acm.org/10.1145/2325296.2325322>. Citations on
pages 101 and 192.

HORTON, D.; CRAIG, M.; CAMPBELL, J.; GRIES, P.; ZINGARO, D. Comparing outcomes
in inverted and traditional cs1. In: Proceedings of the 2014 Conference on Innovation &
Technology in Computer Science Education (ITiCSE ’14). New York, NY, USA: ACM,
2014. p. 261–266. ISBN 978-1-4503-2833-3. Citation on page 35.

HORVATH, R. Software testing in introductory programming courses. In: 2012 IEEE 10th In-
ternational Conference on Emerging eLearning Technologies and Applications (ICETA).
[S.l.: s.n.], 2012. p. 133–134. Citation on page 193.

HU, H. H.; SHEPHERD, T. D. Using pogil to help students learn to program. Trans. Comput.
Educ., ACM, New York, NY, USA, v. 13, n. 3, p. 13:1–13:23, Aug. 2013. ISSN 1946-6226.
Available: <http://doi.acm.org/10.1145/2499947.2499950>. Citation on page 35.

HULL, M. J.; POWELL, D.; KLEIN, E. Infandango: Automated Grading for Student Program-
ming. In: Proceedings of the 16th Annual Joint Conference on Innovation and Technology
in Computer Science Education. New York, NY, USA: ACM, 2011. (ITiCSE ’11), p. 330–330.
ISBN 978-1-4503-0697-3. Available: <http://doi.acm.org/10.1145/1999747.1999841>. Citation
on page 198.

HUNDLEY, J. Imprinting Community College Computer Science Education with Software
Engineering Principles: Work in Progress. In: Proceedings of the 48th Annual Southeast
Regional Conference. New York, NY, USA: ACM, 2010. (ACM SE ’10), p. 54:1–54:4. ISBN
978-1-4503-0064-3. Available: <http://doi.acm.org/10.1145/1900008.1900082>. Citation on
page 195.

IHANTOLA, P. Creating and visualizing test data from programming exercises. Informatics in
Education, 2007. Citation on page 197.

http://doi.acm.org/10.1145/2445196.2445254
http://doi.acm.org/10.1145/544414.544431
http://doi.acm.org/10.1145/1163405.1163410
http://doi.acm.org/10.1145/1163405.1163410
http://doi.acm.org/10.1145/2325296.2325322
http://doi.acm.org/10.1145/2499947.2499950
http://doi.acm.org/10.1145/1999747.1999841
http://doi.acm.org/10.1145/1900008.1900082

160 Bibliography

IHANTOLA, P.; AHONIEMI, T.; KARAVIRTA, V.; SEPPäLä, O. Review of recent systems for
automatic assessment of programming assignments. In: Proceedings of the 10th Koli Calling
International Conference on Computing Education Research. New York, NY, USA: ACM,
2010. (Koli Calling ’10), p. 86–93. ISBN 978-1-4503-0520-4. Available: <http://doi.acm.org/10.
1145/1930464.1930480>. Citation on page 197.

ISHIHARA, N.; FUNABIKI, N. A Proposal of Statement Fill-in-Blank Problem in Java Pro-
gramming Learning Assistant System. In: 2015 IIAI 4th International Congress on Advanced
Applied Informatics. [S.l.: s.n.], 2015. p. 247–252. Citation on page 196.

ISOMOTTONEN, V.; LAPPALAINEN, V. Csi with games and an emphasis on tdd and unit
testing: Piling a trend upon a trend. ACM Inroads, ACM, New York, NY, USA, v. 3, n. 3, p.
62–68, Sep. 2012. ISSN 2153-2184. Available: <http://doi.acm.org/10.1145/2339055.2339073>.
Citations on pages 94, 98, 99, 103, 104, and 192.

ISONG, J. Developing an automated program checkers. In: Proceedings of the Twelfth Annual
CCSC South Central Conference on The Journal of Computing in Small Colleges. USA:
Consortium for Computing Sciences in Colleges, 2001. p. 218–224. Available: <http://dl.acm.
org/citation.cfm?id=374678.374787>. Citation on page 194.

IZE, C.; POPE, C.; WEERASINGHE, A. On the ability to reason about program behaviour:
a think-aloud study. In: Proceedings of the 2017 ACM Conference on Innovation and Tech-
nology in Computer Science Education. New York, NY, USA: ACM, 2017. (ITiCSE ’17), p.
305–310. Citation on page 200.

JACKSON, D. A semi-automated approach to online assessment. In: Proceedings of the 5th
Annual SIGCSE/SIGCUE ITiCSEconference on Innovation and Technology in Computer
Science Education. New York, NY, USA: ACM, 2000. (ITiCSE ’00), p. 164–167. ISBN 1-
58113-207-7. Available: <http://doi.acm.org/10.1145/343048.343160>. Citation on page 197.

JANZEN, D.; SAIEDIAN, H. Test-driven Learning in Early Programming Courses. In: Pro-
ceedings of the 39th SIGCSE Technical Symposium on Computer Science Education. New
York, NY, USA: ACM, 2008. (SIGCSE ’08), p. 532–536. ISBN 978-1-59593-799-5. Available:
<http://doi.acm.org/10.1145/1352135.1352315>. Citations on pages 20, 36, 75, 86, 91, 94, 95,
96, 97, 98, 125, 140, and 192.

JANZEN, D. S.; CLEMENTS, J.; HILTON, M. An Evaluation of Interactive Test-driven Labs
with WebIDE in CS0. In: Proceedings of the 2013 International Conference on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2013. (ICSE ’13), p. 1090–1098. ISBN 978-1-
4673-3076-3. Available: <http://dl.acm.org/citation.cfm?id=2486788.2486938>. Citations on
pages 87, 130, and 196.

JANZEN, D. S.; SAIEDIAN, H. On the Influence of Test-Driven Development on Software
Design. In: 19th Conference on Software Engineering Education Training (CSEET’06).
[S.l.: s.n.], 2006. p. 141–148. Citations on pages 87, 88, 91, 92, 95, 125, 129, 131, and 194.

. Test-driven Learning: Intrinsic Integration of Testing into the CS/SE Curriculum. In:
Proceedings of the 37th SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2006. (SIGCSE ’06), p. 254–258. ISBN 1-59593-259-3. Available:
<http://doi.acm.org/10.1145/1121341.1121419>. Citations on pages 86, 94, and 192.

http://doi.acm.org/10.1145/1930464.1930480
http://doi.acm.org/10.1145/1930464.1930480
http://doi.acm.org/10.1145/2339055.2339073
http://dl.acm.org/citation.cfm?id=374678.374787
http://dl.acm.org/citation.cfm?id=374678.374787
http://doi.acm.org/10.1145/343048.343160
http://doi.acm.org/10.1145/1352135.1352315
http://dl.acm.org/citation.cfm?id=2486788.2486938
http://doi.acm.org/10.1145/1121341.1121419

Bibliography 161

. A Leveled Examination of Test-Driven Development Acceptance. In: Proceedings of
the 29th International Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2007. (ICSE ’07), p. 719–722. ISBN 0-7695-2828-7. Available: <http:
//dx.doi.org/10.1109/ICSE.2007.8>. Citations on pages 87, 95, 101, 102, 129, 133, 134,
and 200.

JEDLITSCHKA, A.; CIOLKOWSKI, M.; PFAHL, D. Guide to advanced empirical software
engineering. In: . London: Springer-Verlag, 2008. chap. Reporting Experiments in Software
Engineering, p. 201–228. Citation on page 55.

JEZEK, P.; MALOHLAVA, M.; POP, T. Automated evaluation of regular lab assignments:
A bittersweet experience? In: 2013 26th International Conference on Software Engineering
Education and Training (CSEE&T). [S.l.: s.n.], 2013. p. 249–258. ISSN 1093-0175. Citations
on pages 87, 90, 94, 98, 130, and 196.

JOHNSON, C. SpecCheck: Automated Generation of Tests for Interface Conformance. In:
Proceedings of the 17th ACM Annual Conference on Innovation and Technology in Com-
puter Science Education. New York, NY, USA: ACM, 2012. (ITiCSE ’12), p. 186–191. ISBN
978-1-4503-1246-2. Available: <http://doi.acm.org/10.1145/2325296.2325343>. Citation on
page 198.

JOHNSON, D. E. Itch: Individual testing of computer homework for scratch assignments. In:
Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
New York, NY, USA: ACM, 2016. (SIGCSE ’16), p. 223–227. ISBN 978-1-4503-3685-7.
Available: <http://doi.acm.org/10.1145/2839509.2844600>. Citation on page 198.

JONES, C. G. Test-driven Development Goes to School. J. Comput. Sci. Coll., v. 20, n. 1, p.
220–231, Oct. 2004. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=1040231.
1040261>. Citation on page 194.

JONES, E. An experiential approach to incorporating software testing into the computer science
curriculum. In: 31st Annual Frontiers in Education Conference. [S.l.: s.n.], 2001. v. 2, p.
F3D–7–F3D–11 vol.2. ISSN 0190-5848. Citation on page 191.

JONES, E. L. Grading Student Programs - a Software Testing Approach. In: Proceedings
of the Fourteenth Annual Consortium on Small Colleges Southeastern Conference. USA:
Consortium for Computing Sciences in Colleges, 2000. (CCSC ’00), p. 185–192. Available:
<http://dl.acm.org/citation.cfm?id=369340.369354>. Citation on page 194.

. Software testing in the computer science curriculum – a holistic approach. In: Proceedings
of the Australasian Conference on Computing Education. New York, NY, USA: ACM, 2000.
(ACSE ’00), p. 153–157. ISBN 1-58113-271-9. Available: <http://doi.acm.org/10.1145/359369.
359392>. Citation on page 191.

. The sprae framework for teaching software testing in the undergraduate curriculum.
In: Proceedings ADMI 2000. [s.n.], 2000. Available: <https://pdfs.semanticscholar.org/f68a/
ff6f5ef73f08e533b50da917751f340fef78.pdf>. Citation on page 192.

. Integrating Testing into the Curriculum – Arsenic in Small Doses. In: Proceedings of
the Thirty-second SIGCSE Technical Symposium on Computer Science Education. New
York, NY, USA: ACM, 2001. (SIGCSE ’01), p. 337–341. ISBN 1-58113-329-4. Available:
<http://doi.acm.org/10.1145/364447.364617>. Citations on pages 20, 75, 133, 140, and 191.

http://dx.doi.org/10.1109/ICSE.2007.8
http://dx.doi.org/10.1109/ICSE.2007.8
http://doi.acm.org/10.1145/2325296.2325343
http://doi.acm.org/10.1145/2839509.2844600
http://dl.acm.org/citation.cfm?id=1040231.1040261
http://dl.acm.org/citation.cfm?id=1040231.1040261
http://dl.acm.org/citation.cfm?id=369340.369354
http://doi.acm.org/10.1145/359369.359392
http://doi.acm.org/10.1145/359369.359392
https://pdfs.semanticscholar.org/f68a/ff6f5ef73f08e533b50da917751f340fef78.pdf
https://pdfs.semanticscholar.org/f68a/ff6f5ef73f08e533b50da917751f340fef78.pdf
http://doi.acm.org/10.1145/364447.364617

162 Bibliography

JONES, E. L.; ALLEN, C. S. Repositories for CS Courses: An Evolutionary Tale. In: Proceed-
ings of the 8th Annual Conference on Innovation and Technology in Computer Science
Education. New York, NY, USA: ACM, 2003. (ITiCSE ’03), p. 119–123. ISBN 1-58113-672-2.
Available: <http://doi.acm.org/10.1145/961511.961546>. Citation on page 197.

JOSHI, G.; DESAI, P. Building Software Testing Skills in Undergraduate Students Using
Spiral Model Approach. In: 2016 IEEE Eighth International Conference on Technology for
Education (T4E). [S.l.: s.n.], 2016. p. 244–245. Citation on page 192.

JOY, M.; GRIFFITHS, N.; BOYATT, R. The boss online submission and assessment system. J.
Educ. Resour. Comput., ACM, New York, NY, USA, v. 5, n. 3, Sep. 2005. ISSN 1531-4278.
Available: <http://doi.acm.org/10.1145/1163405.1163407>. Citation on page 198.

JUEDES, D. W. Web-based grading: further experiences and student attitudes. In: Proceedings
Frontiers in Education 35th Annual Conference. [S.l.: s.n.], 2005. p. F4E–18. Citation on
page 198.

JURISTO, N.; MORENO, A. M. Basics of Software Engineering Experimentation. 1st. ed.
[S.l.]: Springer Publishing Company, Incorporated, 2001. ISBN 1441950117, 9781441950116.
Citations on pages 11, 13, 23, 39, 41, 42, 43, 47, 48, 49, 54, 60, 87, and 110.

JURISTO, N.; MORENO, A. M.; VEGAS, S. Reviewing 25 years of testing technique experi-
ments. Empirical Software Engineering, Kluwer Academic Publishers, Hingham, MA, USA,
v. 9, n. 1-2, p. 7–44, Mar. 2004. ISSN 1382-3256. Citation on page 40.

KARAVIRTA, V.; IHANTOLA, P. Serverless Automatic Assessment of Javascript Exercises. In:
Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Com-
puter Science Education. New York, NY, USA: ACM, 2010. (ITiCSE ’10), p. 303–303. ISBN
978-1-60558-820-9. Available: <http://doi.acm.org/10.1145/1822090.1822179>. Citation on
page 198.

KART, M. Test First Programming, Design by Contract, and Intriguing Coursework: Ingredients
for Increasing Student Engagement. J. Comput. Sci. Coll., v. 28, n. 4, p. 35–41, Apr. 2013.
ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=2458539.2458545>. Citation
on page 192.

KAUSHAL, R.; SINGH, A. Automated evaluation of programming assignments. In: 2012
IEEE International Conference on Engineering Education: Innovative Practices and Fu-
ture Trends (AICERA). [S.l.: s.n.], 2012. p. 1–5. Citation on page 196.

KEEFE, K.; SHEARD, J.; DICK, M. Adopting xp practices for teaching object oriented pro-
gramming. In: Proceedings of the 8th Australasian Conference on Computing Education -
Volume 52. Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2006. (ACE
’06), p. 91–100. ISBN 1-920682-34-1. Available: <http://dl.acm.org/citation.cfm?id=1151869.
1151882>. Citation on page 195.

KINNUNEN, P.; MALMI, L. Why students drop out cs1 course? In: Proceedings of the Second
International Workshop on Computing Education Research (ICER ’06). New York, NY,
USA: ACM, 2006. p. 97–108. ISBN 1-59593-494-4. Citation on page 31.

KITCHENHAM, B.; BUDGEN, D.; BRERETON, P.; WOODALL, P. An investigation of
software engineering curricula. Journal of Systems and Software, v. 74, n. 3, p. 325 – 335,
2005. Citation on page 64.

http://doi.acm.org/10.1145/961511.961546
http://doi.acm.org/10.1145/1163405.1163407
http://doi.acm.org/10.1145/1822090.1822179
http://dl.acm.org/citation.cfm?id=2458539.2458545
http://dl.acm.org/citation.cfm?id=1151869.1151882
http://dl.acm.org/citation.cfm?id=1151869.1151882

Bibliography 163

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature Re-
views in Software Engineering. [S.l.], 2007. Citation on page 23.

KITCHENHAM, B. A.; PFLEEGER, S. L. Personal opinion surveys. In: . Guide to Ad-
vanced Empirical Software Engineering. London: Springer London, 2008. p. 63–92. Citation
on page 64.

KITCHENHAM, B. A.; PFLEEGER, S. L.; PICKARD, L. M.; JONES, P. W.; HOAGLIN, D. C.;
EMAM, K. E.; ROSENBERG, J. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, IEEE Press, Piscataway, NJ, USA,
v. 28, n. 8, p. 721–734, 2002. Citation on page 40.

KITCHENHAM, B. A.; TRAVASSOS, G. H.; MAYRHAUSER, A. von; NIESSINK, F.;
SCHNEIDEWIND, N. F.; SINGER, J.; TAKADA, S.; VEHVILAINEN, R.; YANG, H. To-
wards an ontology of software maintenance. Journal of Software Maintenance, John Wiley &
Sons, Inc., New York, NY, USA, v. 11, n. 6, p. 365–389, Nov. 1999. ISSN 1040-550X. Avail-
able: <http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.
CO;2-W>. Citation on page 55.

KOLIKANT, Y. B.-D. Students’ Alternative Standards for Correctness. In: Proceedings of the
First International Workshop on Computing Education Research. New York, NY, USA:
ACM, 2005. (ICER ’05), p. 37–43. ISBN 1-59593-043-4. Available: <http://doi.acm.org/10.
1145/1089786.1089790>. Citation on page 200.

KOLIKANT, Y. B.-D.; MUSSAI, M. ?so my program doesn?t run!? definition, origins, and prac-
tical expressions of students? (mis)conceptions of correctness. Computer Science Education,
Routledge, v. 18, n. 2, p. 135–151, 2008. Citation on page 200.

KOLLING, M.; QUIG, B.; PATTERSON, A.; ROSENBERG, J. The bluej system and its
pedagogy. Computer Science Education, Routledge, v. 13, n. 4, p. 249–268, 2003. Available:
<http://www.tandfonline.com/doi/abs/10.1076/csed.13.4.249.17496>. Citation on page 192.

KOULOURI, T.; LAURIA, S.; MACREDIE, R. D. Teaching introductory programming: A
quantitative evaluation of different approaches. ACM Transactions on Computing Education
(TOCE), ACM, New York, NY, USA, v. 14, n. 4, p. 26:1–26:28, Dec. 2014. ISSN 1946-6226.
Citations on pages 21, 30, 35, and 139.

KRUSCHE, S.; SEITZ, A. Artemis: An automatic assessment management system for interactive
learning. In: Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. New York, NY, USA: ACM, 2018. (SIGCSE ’18), p. 284–289. ISBN 978-1-4503-
5103-4. Available: <http://doi.acm.org/10.1145/3159450.3159602>. Citations on pages 91, 98,
100, 103, 135, and 197.

KUSSMAUL, C. L. Scaffolding for Multiple Assignment Projects in CS1 and CS2. In: Compan-
ion to the 23rd ACM SIGPLAN Conference on Object-oriented Programming Systems
Languages and Applications. New York, NY, USA: ACM, 2008. (OOPSLA Companion ’08), p.
873–876. ISBN 978-1-60558-220-7. Available: <http://doi.acm.org/10.1145/1449814.1449890>.
Citation on page 194.

KYRILOV, A.; NOELLE, D. C. Do Students Need Detailed Feedback on Programming Exercises
and Can Automated Assessment Systems Provide It? J. Comput. Sci. Coll., v. 31, n. 4, p.
115–121, Apr. 2016. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=2904127.
2904147>. Citation on page 196.

http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1096-908X(199911/12)11:6<365::AID-SMR200>3.0.CO;2-W
http://doi.acm.org/10.1145/1089786.1089790
http://doi.acm.org/10.1145/1089786.1089790
http://www.tandfonline.com/doi/abs/10.1076/csed.13.4.249.17496
http://doi.acm.org/10.1145/3159450.3159602
http://doi.acm.org/10.1145/1449814.1449890
http://dl.acm.org/citation.cfm?id=2904127.2904147
http://dl.acm.org/citation.cfm?id=2904127.2904147

164 Bibliography

LAHTINEN, E.; ALA-MUTKA, K.; JARVINEN, H.-M. A study of the difficulties of novice
programmers. In: Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’05). New York, NY, USA: ACM, 2005.
p. 14–18. ISBN 1-59593-024-8. Citations on pages 13, 31, and 33.

LAKANEN, A.-J.; LAPPALAINEN, V.; ISOMöTTöNEN, V. Revisiting rainfall to explore exam
questions and performance on cs1. In: Proceedings of the 15th Koli Calling Conference on
Computing Education Research. New York, NY, USA: ACM, 2015. (Koli Calling ’15), p.
40–49. ISBN 978-1-4503-4020-5. Available: <http://doi.acm.org/10.1145/2828959.2828970>.
Citation on page 194.

LAPPALAINEN, V.; ITKONEN, J.; ISOMOTTONEN, V.; KOLLANUS, S. ComTest: A Tool
to Impart TDD and Unit Testing to Introductory Level Programming. In: Proceedings of the
Fifteenth Annual Conference on Innovation and Technology in Computer Science Educa-
tion. New York, NY, USA: ACM, 2010. (ITiCSE ’10), p. 63–67. ISBN 978-1-60558-820-9.
Available: <http://doi.acm.org/10.1145/1822090.1822110>. Citation on page 195.

LEAL, J. P.; SILVA, F. Mooshak: a web-based multi-site programming contest system. Software:
Practice and Experience, Wiley Online Library, v. 33, n. 6, p. 567–581, 5 2003. ISSN 1097-
024X. Available: <http:https://doi.org/10.1002/spe.522>. Citation on page 195.

. A new learning paradigm: Competition supported by technology. In: . [S.l.]: Sello
Editorial, 2010. chap. Using Mooshak as a competitive learning tool, p. 91–106. Citation on
page 198.

LEE, Y.; MAREPALLI, D. B.; YANG, J. Teaching test-drive development using dojo. J. Comput.
Sci. Coll., Consortium for Computing Sciences in Colleges, USA, v. 32, n. 4, p. 106–112,
Apr. 2017. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=3055338.3079049>.
Citations on pages 92, 103, and 192.

LEMOS, O. A. L.; FERRARI, F. C.; SILVEIRA, F. F.; GARCIA, A. Experience report: Can
software testing education lead to more reliable code? In: 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE). [S.l.: s.n.], 2015. p. 359–369.
Citations on pages 86, 88, 89, 90, 96, 128, and 199.

LEMOS, O. A. L.; SILVEIRA, F. F.; FERRARI, F. C.; GARCIA, A. The impact of Software
Testing education on code reliability: An empirical assessment. Journal of Systems and Soft-
ware, p. –, 2017. ISSN 0164-1212. Available: <http://www.sciencedirect.com/science/article/
pii/S0164121217300419>. Citations on pages 86, 88, 89, 90, 96, 128, and 199.

LESKA, C. Testing across the curriculum: Square one! J. Comput. Sci. Coll., Consortium for
Computing Sciences in Colleges, USA, v. 19, n. 5, p. 163–169, May 2004. ISSN 1937-4771.
Available: <http://dl.acm.org/citation.cfm?id=1060081.1060103>. Citation on page 191.

LESKA, C.; RABUNG, J. Refactoring the CS1 Course. J. Comput. Sci. Coll., v. 20, n. 3, p. 6–18,
Feb. 2005. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=1040196.1040199>.
Citation on page 192.

LETHBRIDGE, T. C. What knowledge is important to a software professional? Computer,
IEEE Computer Society Press, Los Alamitos, CA, USA, v. 33, n. 5, p. 44–50, 2000. ISSN
0018-9162. Citations on pages 19, 64, and 66.

http://doi.acm.org/10.1145/2828959.2828970
http://doi.acm.org/10.1145/1822090.1822110
http:https://doi.org/10.1002/spe.522
http://dl.acm.org/citation.cfm?id=3055338.3079049
http://www.sciencedirect.com/science/article/pii/S0164121217300419
http://www.sciencedirect.com/science/article/pii/S0164121217300419
http://dl.acm.org/citation.cfm?id=1060081.1060103
http://dl.acm.org/citation.cfm?id=1040196.1040199

Bibliography 165

LETHBRIDGE, T. C.; DIAZ-HERRERA, J.; LEBLANC, R. J. J.; THOMPSON, J. B. Improving
software practice through education: Challenges and future trends. In: Future of Software
Engineering (FOSE ’07). [S.l.: s.n.], 2007. p. 12–28. Citations on pages 19, 73, and 74.

LI, J. J.; MORREALE, P. Enhancing CS1 Curriculum with Testing Concepts: A Case Study.
J. Comput. Sci. Coll., v. 31, n. 3, p. 36–43, Jan. 2016. ISSN 1937-4771. Available: <http:
//dl.acm.org/citation.cfm?id=2835377.2835384>. Citations on pages 86, 96, and 192.

LIPPE, T. v. d.; SMITH, T.; PELSMAEKER, D.; VISSER, E. A scalable infrastructure for
teaching concepts of programming languages in scala with weblab: An experience report.
In: Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala. New York, NY,
USA: ACM, 2016. (SCALA 2016), p. 65–74. ISBN 978-1-4503-4648-1. Available: <http:
//doi.acm.org/10.1145/2998392.2998402>. Citation on page 198.

LISHINSKI, A.; GOOD, J.; SANDS, P.; YADAV, A. Methodological rigor and theoretical
foundations of cs education research. In: Proceedings of the 2016 ACM Conference on Inter-
national Computing Education Research. New York, NY, USA: ACM, 2016. (ICER ’16), p.
161–169. ISBN 978-1-4503-4449-4. Available: <http://doi.acm.org/10.1145/2960310.2960328>.
Citations on pages 21, 22, 23, 123, and 139.

LISTER, R. Ten years after the mccracken working group. ACM Inroads, ACM, New York,
NY, USA, v. 2, n. 4, p. 18–19, Dec. 2011. ISSN 2153-2184. Available: <http://doi.acm.org/10.
1145/2038876.2038882>. Citations on pages 25 and 31.

LISTER, R.; ADAMS, E. S.; FITZGERALD, S.; FONE, W.; HAMER, J.; LINDHOLM, M.;
MCCARTNEY, R.; MOSTROM, J. E.; SANDERS, K.; SEPPALA, O.; SIMON, B.; THOMAS, L.
A multi-national study of reading and tracing skills in novice programmers. In: Working Group
Reports from ITiCSE on Innovation and Technology in Computer Science Education. New
York, NY, USA: ACM, 2004. (ITiCSE-WGR ’04), p. 119–150. Available: <http://doi.acm.org/
10.1145/1044550.1041673>. Citations on pages 20 and 25.

LLANA, L.; MARTIN-MARTIN, E.; PAREJA-FLORES, C. FLOP, a Free Laboratory of Pro-
gramming. In: Proceedings of the 12th Koli Calling International Conference on Comput-
ing Education Research. New York, NY, USA: ACM, 2012. (Koli Calling ’12), p. 93–99. ISBN
978-1-4503-1795-5. Available: <http://doi.acm.org/10.1145/2401796.2401807>. Citation on
page 198.

LUXTON-REILLY, A. Learning to program is easy. In: Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education. New York,
NY, USA: ACM, 2016. (ITiCSE ’16), p. 284–289. ISBN 978-1-4503-4231-5. Available:
<http://doi.acm.org/10.1145/2899415.2899432>. Citations on pages 25 and 35.

LUXTON-REILLY, A.; BECKER, B. A.; CAO, Y.; MCDERMOTT, R.; MIROLO, C.; MüH-
LING, A.; PETERSEN, A.; SANDERS, K.; SIMON; WHALLEY, J. Developing assessments to
determine mastery of programming fundamentals. In: Proceedings of the 2017 ITiCSE Con-
ference on Working Group Reports. New York, NY, USA: ACM, 2017. (ITiCSE-WGR ’17),
p. 47–69. ISBN 978-1-4503-5627-5. Available: <http://doi.acm.org/10.1145/3174781.3174784>.
Citation on page 199.

LUXTON-REILLY, A.; DENNY, P.; KIRK, D.; TEMPERO, E.; YU, S.-Y. On the differences be-
tween correct student solutions. In: Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education. New York, NY, USA: ACM, 2013. (ITiCSE

http://dl.acm.org/citation.cfm?id=2835377.2835384
http://dl.acm.org/citation.cfm?id=2835377.2835384
http://doi.acm.org/10.1145/2998392.2998402
http://doi.acm.org/10.1145/2998392.2998402
http://doi.acm.org/10.1145/2960310.2960328
http://doi.acm.org/10.1145/2038876.2038882
http://doi.acm.org/10.1145/2038876.2038882
http://doi.acm.org/10.1145/1044550.1041673
http://doi.acm.org/10.1145/1044550.1041673
http://doi.acm.org/10.1145/2401796.2401807
http://doi.acm.org/10.1145/2899415.2899432
http://doi.acm.org/10.1145/3174781.3174784

166 Bibliography

’13), p. 177–182. ISBN 978-1-4503-2078-8. Available: <http://doi.acm.org/10.1145/2462476.
2462505>. Citation on page 199.

LUXTON-REILLY, A.; SIMON; ALBLUWI, I.; BECKER, B. A.; GIANNAKOS, M.; KU-
MAR, A. N.; OTT, L.; PATERSON, J.; SCOTT, M. J.; SHEARD, J.; SZABO, C. A review of
introductory programming research 2003–2017. In: Proceedings of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education. New York,
NY, USA: ACM, 2018. (ITiCSE 2018), p. 342–343. ISBN 978-1-4503-5707-4. Available:
<http://doi.acm.org/10.1145/3197091.3205841>. Citations on pages 19 and 25.

LYE, S. Y.; KOH, J. H. L. Review on teaching and learning of computational thinking
through programming: What is next for k-12? Computers in Human Behavior, v. 41, p.
51 – 61, 2014. ISSN 0747-5632. Available: <http://www.sciencedirect.com/science/article/
pii/S0747563214004634>. Citation on page 19.

MADEJA, M.; PORUBAN, J. Automatic assessment of assignments for android application pro-
gramming courses. In: 2017 IEEE 14th International Scientific Conference on Informatics.
[S.l.: s.n.], 2017. p. 232–237. Citations on pages 100 and 197.

MAJOR, L.; KYRIACOU, T.; BRERETON, O. Systematic literature review: Teaching novices
programming using robots. In: 15th Annual Conference on Evaluation Assessment in Soft-
ware Engineering (EASE 2011). [S.l.: s.n.], 2011. p. 21–30. Citation on page 38.

MALMI, L.; SHEARD, J.; SIMON; BEDNARIK, R.; HELMINEN, J.; KORHONEN, A.;
MYLLER, N.; SORVA, J.; TAHERKHANI, A. Characterizing research in computing education:
A preliminary analysis of the literature. In: Proceedings of the Sixth International Work-
shop on Computing Education Research. New York, NY, USA: ACM, 2010. (ICER ’10), p.
3–12. ISBN 978-1-4503-0257-9. Available: <http://doi.acm.org/10.1145/1839594.1839597>.
Citations on pages 21, 23, 123, and 139.

MALMI, L.; SHEARD, J.; SIMON; BEDNARIK, R.; HELMINEN, J.; KINNUNEN, P.; KO-
RHONEN, A.; MYLLER, N.; SORVA, J.; TAHERKHANI, A. Theoretical underpinnings of
computing education research: What is the evidence? In: Proceedings of the Tenth Annual
Conference on International Computing Education Research. New York, NY, USA: ACM,
2014. (ICER ’14), p. 27–34. ISBN 978-1-4503-2755-8. Available: <http://doi.acm.org/10.1145/
2632320.2632358>. Citations on pages 21, 22, 123, and 139.

MARCOS-ABED, J. Learning Computer Programming: A Study of the Effectiveness of a
COAC#. In: Proceedings of the 2014 Conference on Innovation & Technology in Computer
Science Education. New York, NY, USA: ACM, 2014. (ITiCSE ’14), p. 333–333. ISBN 978-
1-4503-2833-3. Available: <http://doi.acm.org/10.1145/2591708.2602652>. Citation on page
198.

. Using a COAC# for CS1. In: Proceedings of the Western Canadian Conference on
Computing Education. New York, NY, USA: ACM, 2014. (WCCCE ’14), p. 10:1–10:3. ISBN
978-1-4503-2899-9. Available: <http://doi.acm.org/10.1145/2597959.2597971>. Citation on
page 196.

MARKHAM, S. A.; KING, K. N. Using personal robots in cs1: Experiences, outcomes, and
attitudinal influences. In: Proceedings of the Fifteenth Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE ’10). New York, NY, USA: ACM,
2010. p. 204–208. ISBN 978-1-60558-820-9. Citations on pages 30 and 135.

http://doi.acm.org/10.1145/2462476.2462505
http://doi.acm.org/10.1145/2462476.2462505
http://doi.acm.org/10.1145/3197091.3205841
http://www.sciencedirect.com/science/article/pii/S0747563214004634
http://www.sciencedirect.com/science/article/pii/S0747563214004634
http://doi.acm.org/10.1145/1839594.1839597
http://doi.acm.org/10.1145/2632320.2632358
http://doi.acm.org/10.1145/2632320.2632358
http://doi.acm.org/10.1145/2591708.2602652
http://doi.acm.org/10.1145/2597959.2597971

Bibliography 167

MARRERO, W.; SETTLE, A. Testing First: Emphasizing Testing in Early Programming Courses.
In: Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education. New York, NY, USA: ACM, 2005. (ITiCSE ’05), p. 4–8. ISBN
1-59593-024-8. Available: <http://doi.acm.org/10.1145/1067445.1067451>. Citation on page
193.

MATTHIES, C.; TREFFER, A.; UFLACKER, M. Prof. ci: Employing continuous integration
services and github workflows to teach test-driven development. In: 2017 IEEE Frontiers in
Education Conference (FIE). [S.l.: s.n.], 2017. p. 1–8. Citations on pages 96, 98, 101, and 192.

MCCARTNEY, R.; BOUSTEDT, J.; ECKERDAL, A.; SANDERS, K.; ZANDER, C. Can
first-year students program yet?: A study revisited. In: Proceedings of the Ninth Annual
International ACM Conference on International Computing Education Research. New
York, NY, USA: ACM, 2013. (ICER ’13), p. 91–98. ISBN 978-1-4503-2243-0. Available:
<http://doi.acm.org/10.1145/2493394.2493412>. Citations on pages 20, 22, 32, 34, and 38.

MCCRACKEN, M.; ALMSTRUM, V.; DIAZ, D.; GUZDIAL, M.; HAGAN, D.; KOLIKANT, Y.
B.-D.; LAXER, C.; THOMAS, L.; UTTING, I.; WILUSZ, T. A multi-national, multi-institutional
study of assessment of programming skills of first-year cs students. SIGCSE Bull., ACM,
New York, NY, USA, v. 33, n. 4, p. 125–180, Dec. 2001. ISSN 0097-8418. Available: <http:
//doi.acm.org/10.1145/572139.572181>. Citations on pages 11, 13, 20, 22, 25, 31, 32, 34,
and 38.

MCDOWELL, C.; WERNER, L.; BULLOCK, H.; FERNALD, J. The effects of pair-
programming on performance in an introductory programming course. In: 33rd SIGCSE Tech-
nical Symposium on Computer Science Education (SIGCSE ’02). New York, NY, USA:
ACM, 2002. p. 38–42. ISBN 1-58113-473-8. Citations on pages 36 and 59.

MCDOWELL, C.; WERNER, L.; BULLOCK, H. E.; FERNALD, J. The impact of pair program-
ming on student performance, perception and persistence. In: 25th International Conference
on Software Engineering (ICSE ’03). Washington, DC, USA: IEEE Computer Society, 2003.
p. 602–607. ISBN 0-7695-1877-X. Citation on page 36.

MCGILL, M. M. Learning to program with personal robots: Influences on student motivation.
ACM Transactions on Computing Education, ACM, New York, NY, USA, v. 12, n. 1, p.
4:1–4:32, Mar. 2012. ISSN 1946-6226. Citation on page 38.

MENDONCA, A.; GUERRERO, D.; COSTA, E. An approach for problem specification and
its application in an Introductory Programming Course. In: 2009 39th IEEE Frontiers in
Education Conference. [S.l.: s.n.], 2009. p. 1–6. Citation on page 194.

MENDONCA, A.; OLIVEIRA, C. d.; GUERRERO, D.; COSTA, E. Difficulties in solving
ill-defined problems: A case study with introductory computer programming students. In: 2009
39th IEEE Frontiers in Education Conference. [S.l.: s.n.], 2009. p. 1–6. Citation on page
200.

MENDONCA, M.; CRUZES, D.; DIAS, J.; OLIVEIRA, M. C. F. de. Using observational pilot
studies to test and improve lab packages. In: Proceedings of the 2006 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering (ISESE ’06). New York, NY, USA:
ACM, 2006. p. 48–57. ISBN 1-59593-218-6. Citation on page 51.

http://doi.acm.org/10.1145/1067445.1067451
http://doi.acm.org/10.1145/2493394.2493412
http://doi.acm.org/10.1145/572139.572181
http://doi.acm.org/10.1145/572139.572181

168 Bibliography

MIDDLETON, D. Developing Students’ Testing Skills: Distinguishing Functions. J. Comput.
Sci. Coll., v. 28, n. 5, p. 73–74, May 2013. ISSN 1937-4771. Available: <http://dl.acm.org/
citation.cfm?id=2458569.2458583>. Citation on page 194.

. Developing Students’ Testing Skills: Covering Space: Nifty Assignment. J. Comput. Sci.
Coll., v. 30, n. 5, p. 29–31, May 2015. ISSN 1937-4771. Available: <http://dl.acm.org/citation.
cfm?id=2752981.2752988>. Citation on page 194.

MILLER, K. W. Test Driven Development on the Cheap: Text Files and Explicit Scaffolding.
J. Comput. Sci. Coll., v. 20, n. 2, p. 181–189, Dec. 2004. ISSN 1937-4771. Available: <http:
//dl.acm.org/citation.cfm?id=1040151.1040172>. Citation on page 192.

MISSIROLI, M.; RUSSO, D.; CIANCARINI, P. Teaching test-first programming: Assessment
and solutions. In: 2017 IEEE 41st Annual Computer Software and Applications Conference
(COMPSAC). [S.l.: s.n.], 2017. v. 1, p. 420–425. ISSN 0730-3157. Citations on pages 102,
104, and 194.

MORENO, A. M.; SANCHEZ-SEGURA, M.-I.; MEDINA-DOMINGUEZ, F.; CARVAJAL,
L. Balancing software engineering education and industrial needs. Journal of Systems and
Software, v. 85, n. 7, p. 1607 – 1620, 2012. Software Ecosystems. Citation on page 63.

MORISIO, M.; TORCHIANO, M.; ARGENTIERI, G. Assessing quantitatively a programming
course. In: 10th International Symposium on Software Metrics, 2004. Proceedings. [S.l.:
s.n.], 2004. p. 326–336. Citations on pages 88, 90, 91, 95, 96, 104, and 199.

MORRIS, D. S. Automatic grading of student’s programming assignments: an interactive process
and suite of programs. In: 33rd Annual Frontiers in Education, 2003. FIE 2003. [S.l.: s.n.],
2003. v. 3, p. S3F–1–6 vol.3. ISSN 0190-5848. Citation on page 197.

MORRISON, P. A security practices evaluation framework. In: Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 2. Piscataway, NJ, USA: IEEE Press,
2015. (ICSE ’15), p. 935–938. Available: <http://dl.acm.org/citation.cfm?id=2819009.2819218>.
Citations on pages 23, 55, and 60.

MOURA, I. C.; HATTUM-JANSSEN, N. van. Teaching a cs introductory course: An active
approach. Computers & Education, Elsevier Science Ltd., Oxford, UK, UK, v. 56, n. 2, p.
475–483, Feb. 2011. ISSN 0360-1315. Citation on page 35.

MULLER, M. M.; TICHY, W. F. Case study: extreme programming in a university envi-
ronment. In: Proceedings of the 23rd International Conference on Software Engineering
(ICSE 2001). [S.l.: s.n.], 2001. p. 537–544. Citation on page 59.

MUNSON, J. C. Software Engineering Measurement. Boca Raton, FL, USA: CRC Press, Inc.,
2002. ISBN 0849315034. Citation on page 87.

MURPHY, L.; LEWANDOWSKI, G.; MCCAULEY, R.; SIMON, B.; THOMAS, L.; ZANDER,
C. Debugging: The good, the bad, and the quirky – a qualitative analysis of novices’ strategies. In:
Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2008. (SIGCSE ’08), p. 163–167. ISBN 978-1-59593-799-5.
Available: <http://doi.acm.org/10.1145/1352135.1352191>. Citation on page 195.

http://dl.acm.org/citation.cfm?id=2458569.2458583
http://dl.acm.org/citation.cfm?id=2458569.2458583
http://dl.acm.org/citation.cfm?id=2752981.2752988
http://dl.acm.org/citation.cfm?id=2752981.2752988
http://dl.acm.org/citation.cfm?id=1040151.1040172
http://dl.acm.org/citation.cfm?id=1040151.1040172
http://dl.acm.org/citation.cfm?id=2819009.2819218
http://doi.acm.org/10.1145/1352135.1352191

Bibliography 169

MURPHY, M. C.; YILDIRIM, B. Work in progress - testing right from the start. In: 2007 37th
Annual Frontiers In Education Conference - Global Engineering: Knowledge Without
Borders, Opportunities Without Passports. [S.l.: s.n.], 2007. p. F1H–25–F1H–26. Citation
on page 197.

NAGAPPAN, N.; WILLIAMS, L.; FERZLI, M.; WIEBE, E.; YANG, K.; MILLER, C.; BALIK,
S. Improving the cs1 experience with pair programming. SIGCSE Bulletin, ACM, New York,
NY, USA, v. 35, n. 1, p. 359–362, Jan. 2003. ISSN 0097-8418. Citation on page 36.

NAPS, T. L.; ROSSLING, G.; ALMSTRUM, V.; DANN, W.; FLEISCHER, R.; HUNDHAUSEN,
C.; KORHONEN, A.; MALMI, L.; MCNALLY, M.; RODGER, S.; VELAZQUEZ-ITURBIDE,
J. A. Exploring the role of visualization and engagement in computer science education. In:
Working Group Reports from ITiCSE on Innovation and Technology in Computer Science
Education (ITiCSE-WGR ’02). New York, NY, USA: ACM, 2002. p. 131–152. Citation on
page 37.

NAWROCKI, J.; WOJCIECHOWSKI, A. Experimental evaluation of pair programming. In:
proc. European Software Control and Metrics (Escom). [S.l.: s.n.], 2001. Citation on page
59.

NELSON, G. L.; KO, A. J. On use of theory in computing education research. In: Proceedings
of the 14th International Workshop on Computing Education Research. New York, NY,
USA: ACM, 2018. (ICER ’18), p. 1–10. ISBN 978-1-4503-0257-9. Available: <https://doi.org/
10.1145/3230977.3230992>. Citation on page 22.

NETO, V. L.; COELHO, R.; LEITE, L.; GUERRERO, D. S.; MENDONCA, A. P. POPT: A
Problem-oriented Programming and Testing Approach for Novice Students. In: Proceedings
of the 2013 International Conference on Software Engineering. Piscataway, NJ, USA: IEEE
Press, 2013. (ICSE ’13), p. 1099–1108. ISBN 978-1-4673-3076-3. Available: <http://dl.acm.org/
citation.cfm?id=2486788.2486939>. Citations on pages 87, 90, 96, 98, 101, 129, 134, and 194.

NG, S. P.; MURNANE, T.; REED, K.; GRANT, D.; CHEN, T. Y. A preliminary survey on
software testing practices in Australia. In: Proceedings of the 2004 Australian Software Engi-
neering Conference. Washington, DC, USA: IEEE Computer Society, 2004. (ASWEC ’04), p.
116–. ISBN 0-7695-2089-8. Citation on page 64.

NINO, J. Introducing API Design Principles in CS2. J. Comput. Sci. Coll., v. 24, n. 4, p.
109–116, Apr. 2009. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=1516546.
1516566>. Citation on page 194.

NISHIMURA, T.; KAWASAKI, S.; TOMINAGA, H. Monitoring system of student situation in
introductory C programming exercise with a contest style. In: 2011 International Conference
on Information Technology Based Higher Education and Training. [S.l.: s.n.], 2011. p. 1–6.
Citations on pages 98 and 196.

NORDQUIST, P. Providing Accurate and Timely Feedback by Automatically Grading Student
Programming Labs. J. Comput. Sci. Coll., v. 23, n. 2, p. 16–23, Dec. 2007. ISSN 1937-4771.
Available: <http://dl.acm.org/citation.cfm?id=1292428.1292432>. Citation on page 198.

NORTH, D. Introducing BDD. 2006. Available at https://dannorth.net/introducing-bdd. Cita-
tion on page 70.

https://doi.org/10.1145/3230977.3230992
https://doi.org/10.1145/3230977.3230992
http://dl.acm.org/citation.cfm?id=2486788.2486939
http://dl.acm.org/citation.cfm?id=2486788.2486939
http://dl.acm.org/citation.cfm?id=1516546.1516566
http://dl.acm.org/citation.cfm?id=1516546.1516566
http://dl.acm.org/citation.cfm?id=1292428.1292432

170 Bibliography

NOSEK, J. T. The case for collaborative programming. Communications of the ACM, ACM,
New York, NY, USA, v. 41, n. 3, p. 105–108, Mar. 1998. ISSN 0001-0782. Citation on page 59.

O’BRIEN, C.; GOLDMAN, M.; MILLER, R. C. Java Tutor: Bootstrapping with Python to Learn
Java. In: Proceedings of the First ACM Conference on Learning Scale Conference. New
York, NY, USA: ACM, 2014. (L@S ’14), p. 185–186. ISBN 978-1-4503-2669-8. Available:
<http://doi.acm.org/10.1145/2556325.2567873>. Citation on page 198.

ODEKIRK-HASH, E.; ZACHARY, J. L. Automated feedback on programs means students need
less help from teachers. In: Proceedings of the Thirty-second SIGCSE Technical Symposium
on Computer Science Education. New York, NY, USA: ACM, 2001. (SIGCSE ’01), p. 55–59.
ISBN 1-58113-329-4. Available: <http://doi.acm.org/10.1145/364447.364537>. Citations on
pages 87, 94, 100, and 196.

OLAN, M. Unit testing: Test early, test often. J. Comput. Sci. Coll., v. 19, n. 2, p. 319–328,
Dec. 2003. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=948785.948830>.
Citation on page 192.

OLIVEIRA, R. A. P.; OLIVEIRA, L. B. R.; CAFEO, B. B. P.; DURELLI, V. H. S. Evaluation
and assessment of effects on exploring mutation testing in programming courses. In: 2015 IEEE
Frontiers in Education Conference (FIE). [S.l.: s.n.], 2015. p. 1–9. Citations on pages 86, 94,
96, and 192.

ORSO, A.; HARROLD, M. J.; ROSENBLUM, D.; ROTHERMEL, G.; SOFFA, M. L.; DO, H.
Using component metacontent to support the regression testing of component-based software. In:
Proceedings IEEE International Conference on Software Maintenance. [S.l.: s.n.], 2001. p.
716–725. ISSN 1063-6773. Citation on page 119.

PAPE, S.; FLAKE, J.; BECKMANN, A.; JURJENS, J. STAGE: A Software Tool for Automatic
Grading of Testing Exercises: Case Study Paper. In: Proceedings of the 38th International
Conference on Software Engineering Companion. New York, NY, USA: ACM, 2016. (ICSE
’16), p. 491–500. ISBN 978-1-4503-4205-6. Available: <http://doi.acm.org/10.1145/2889160.
2889203>. Citation on page 199.

PARODI, E.; MATALONGA, S.; MACCHI, D.; SOLARI, M. Comparing technical debt in
student exercises using test driven development, test last and ad hoc programming. In: 2016
XLII Latin American Computing Conference (CLEI). [S.l.: s.n.], 2016. p. 1–10. Citations
on pages 87, 91, 101, 129, and 194.

PARRISH, A.; CORDES, D.; DIXON, B.; MCGREGOR, J. Class Development and Testing
in the Small. In: Proceedings of the 38th Annual on Southeast Regional Conference. New
York, NY, USA: ACM, 2000. (ACM-SE 38), p. 139–145. ISBN 1-58113-250-6. Available:
<http://doi.acm.org/10.1145/1127716.1127750>. Citation on page 195.

PATTERSON, A.; KöLLING, M.; ROSENBERG, J. Introducing unit testing with bluej. In:
Proceedings of the 8th Annual Conference on Innovation and Technology in Computer
Science Education. New York, NY, USA: ACM, 2003. (ITiCSE ’03), p. 11–15. ISBN 1-58113-
672-2. Available: <http://doi.acm.org/10.1145/961511.961518>. Citation on page 197.

PAUL, J. Test-driven Approach in Programming Pedagogy. J. Comput. Sci. Coll., v. 32, n. 2,
p. 53–60, Dec. 2016. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=3015063.
3015072>. Citations on pages 104 and 194.

http://doi.acm.org/10.1145/2556325.2567873
http://doi.acm.org/10.1145/364447.364537
http://dl.acm.org/citation.cfm?id=948785.948830
http://doi.acm.org/10.1145/2889160.2889203
http://doi.acm.org/10.1145/2889160.2889203
http://doi.acm.org/10.1145/1127716.1127750
http://doi.acm.org/10.1145/961511.961518
http://dl.acm.org/citation.cfm?id=3015063.3015072
http://dl.acm.org/citation.cfm?id=3015063.3015072

Bibliography 171

PEARCE, J. L.; NAKAZAWA, M.; HEGGEN, S. Improving Problem Decomposition Ability in
CS1 Through Explicit Guided Inquiry-based Instruction. J. Comput. Sci. Coll., v. 31, n. 2, p.
135–144, Dec. 2015. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=2831432.
2831453>. Citation on page 195.

PEARS, A.; MALMI, L. Values and objectives in computing education research. Trans. Comput.
Educ., ACM, New York, NY, USA, v. 9, n. 3, p. 15:1–15:6, Sep. 2009. ISSN 1946-6226.
Available: <http://doi.acm.org/10.1145/1594399.1594400>. Citations on pages 21, 123, and 139.

PEARS, A.; SEIDMAN, S.; MALMI, L.; MANNILA, L.; ADAMS, E.; BENNEDSEN, J.; DE-
VLIN, M.; PATERSON, J. A survey of literature on the teaching of introductory programming. In:
Working Group Reports on ITiCSE on Innovation and Technology in Computer Science
Education (ITiCSE-WGR ’07). New York, NY, USA: ACM, 2007. p. 204–223. Available:
<http://doi.acm.org/10.1145/1345443.1345441>. Citations on pages 25, 35, and 37.

PETERSEN, A.; CRAIG, M.; CAMPBELL, J.; TAFLIOVICH, A. Revisiting why students
drop cs1. In: Proceedings of the 16th Koli Calling International Conference on Computing
Education Research. New York, NY, USA: ACM, 2016. (Koli Calling ’16), p. 71–80. ISBN
978-1-4503-4770-9. Available: <http://doi.acm.org/10.1145/2999541.2999552>. Citations on
pages 20 and 31.

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping studies in
software engineering. In: Proceedings of the 12th International Conference on Evaluation
and Assessment in Software Engineering (EASE’08). Swinton, UK, UK: British Computer
Society, 2008. p. 68–77. Citations on pages 23, 76, and 78.

PETIT, J.; GIMENEZ, O.; ROURA, S. Jutge.Org: An Educational Programming Judge. In:
Proceedings of the 43rd ACM Technical Symposium on Computer Science Education. New
York, NY, USA: ACM, 2012. (SIGCSE ’12), p. 445–450. ISBN 978-1-4503-1098-7. Available:
<http://doi.acm.org/10.1145/2157136.2157267>. Citation on page 195.

PHAM, R.; KIESLING, S.; LISKIN, O.; SINGER, L.; SCHNEIDER, K. Enablers, inhibitors,
and perceptions of testing in novice software teams. In: Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software Engineering. [S.l.]: Association for Computing
Machinery, 2014. v. 16-21-November-2014, p. 30–40. ISBN 978-1-4503-3056-5. Citation on
page 200.

PIETERSE, V. Automated assessment of programming assignments. In: Proceedings of the
3rd Computer Science Education Research Conference on Computer Science Education
Research. Open Univ., Heerlen, The Netherlands, The Netherlands: Open Universiteit, Heerlen,
2013. (CSERC ’13), p. 4:45–4:56. Available: <http://dl.acm.org/citation.cfm?id=2541917.
2541921>. Citation on page 196.

PIETERSE, V.; LIEBENBERG, J. Automatic vs manual assessment of programming tasks. In:
Proceedings of the 17th Koli Calling International Conference on Computing Education
Research. New York, NY, USA: ACM, 2017. (Koli Calling ’17), p. 193–194. ISBN 978-1-4503-
5301-4. Available: <http://doi.acm.org/10.1145/3141880.3141912>. Citations on pages 87, 97,
99, 134, and 193.

PIETRIKOVA, E.; JUHAR, J.; STASTNA, J. Towards automated assessment in game-creative
programming courses. In: 2015 13th International Conference on Emerging eLearning Tech-
nologies and Applications (ICETA). [S.l.: s.n.], 2015. p. 1–6. Citation on page 198.

http://dl.acm.org/citation.cfm?id=2831432.2831453
http://dl.acm.org/citation.cfm?id=2831432.2831453
http://doi.acm.org/10.1145/1594399.1594400
http://doi.acm.org/10.1145/1345443.1345441
http://doi.acm.org/10.1145/2999541.2999552
http://doi.acm.org/10.1145/2157136.2157267
http://dl.acm.org/citation.cfm?id=2541917.2541921
http://dl.acm.org/citation.cfm?id=2541917.2541921
http://doi.acm.org/10.1145/3141880.3141912

172 Bibliography

POLITZ, J. G.; COLLARD, J. M.; GUHA, A.; FISLER, K.; KRISHNAMURTHI, S. The Sweep:
Essential Examples for In-Flow Peer Review. In: Proceedings of the 47th ACM Technical
Symposium on Computing Science Education. New York, NY, USA: ACM, 2016. (SIGCSE
’16), p. 243–248. ISBN 978-1-4503-3685-7. Available: <http://doi.acm.org/10.1145/2839509.
2844626>. Citations on pages 93, 103, 135, and 192.

POLITZ, J. G.; KRISHNAMURTHI, S.; FISLER, K. In-flow peer-review of tests in test-first
programming. In: Proceedings of the Tenth Annual Conference on International Comput-
ing Education Research. New York, NY, USA: ACM, 2014. (ICER ’14), p. 11–18. ISBN
978-1-4503-2755-8. Citations on pages 93, 98, 103, 135, and 192.

POLITZ, J. G.; PATTERSON, D.; KRISHNAMURTHI, S.; FISLER, K. Captainteach: Multi-
stage, in-flow peer review for programming assignments. In: Proceedings of the 2014 Confer-
ence on Innovation & Technology in Computer Science Education. New York, NY, USA:
ACM, 2014. (ITiCSE ’14), p. 267–272. ISBN 978-1-4503-2833-3. Citations on pages 95
and 196.

POZENEL, M.; FURST, L.; MAHNIC, V. Introduction of the automated assessment of homework
assignments in a university-level programming course. In: 2015 38th International Conven-
tion on Information and Communication Technology, Electronics and Microelectronics
(MIPRO). [S.l.: s.n.], 2015. p. 761–766. Citation on page 198.

PRIBELA, I.; PRACNER, D.; BUDIMAC, Z.; GRBAC, T. Tool for testing bad student programs.
In: Z., G. T. B. (Ed.). CEUR Workshop Proceedings. CEUR-WS, 2014. v. 1266, p. 67–74.
ISBN 978-86-7031-374-3. Available: <https://www.scopus.com/inward/record.uri?eid=2-s2.
0-84909952186&partnerID=40&md5=102efb7a2488a140f9900c76fb587c09>. Citation on
page 198.

PROULX, V. Introductory Computing: The Design Discipline. In: KALA, I.; MITTERMEIR,
R. T. (Ed.). Informatics in Schools. Contributing to 21st Century Education. Springer Berlin
Heidelberg, 2011, (Lecture Notes in Computer Science, v. 7013). p. 177–188. ISBN 978-3-642-
24721-7. Available: <http://dx.doi.org/10.1007/978-3-642-24722-4_16>. Citation on page
193.

PROULX, V. K. Test-driven Design for Introductory OO Programming. In: Proceedings of the
40th ACM Technical Symposium on Computer Science Education. New York, NY, USA:
ACM, 2009. (SIGCSE ’09), p. 138–142. ISBN 978-1-60558-183-5. Available: <http://doi.acm.
org/10.1145/1508865.1508919>. Citation on page 192.

PROULX, V. K.; JOSSEY, W. Unit Test Support for Java via Reflection and Annotations. In: Pro-
ceedings of the 7th International Conference on Principles and Practice of Programming
in Java. New York, NY, USA: ACM, 2009. (PPPJ ’09), p. 49–56. ISBN 978-1-60558-598-7.
Available: <http://doi.acm.org/10.1145/1596655.1596663>. Citation on page 195.

. Unit Testing in Java. In: Proceedings of the 14th Annual ACM SIGCSE Conference
on Innovation and Technology in Computer Science Education. New York, NY, USA: ACM,
2009. (ITiCSE ’09), p. 349–349. ISBN 978-1-60558-381-5. Available: <http://doi.acm.org/10.
1145/1562877.1562990>. Citation on page 197.

PROULX, V. K.; RASALA, R. Java io and testing made simple. SIGCSE Bull., ACM, New
York, NY, USA, v. 36, n. 1, p. 161–165, Mar. 2004. ISSN 0097-8418. Available: <http://doi.acm.
org/10.1145/1028174.971358>. Citation on page 197.

http://doi.acm.org/10.1145/2839509.2844626
http://doi.acm.org/10.1145/2839509.2844626
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84909952186&partnerID=40&md5=102efb7a2488a140f9900c76fb587c09
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84909952186&partnerID=40&md5=102efb7a2488a140f9900c76fb587c09
http://dx.doi.org/10.1007/978-3-642-24722-4_16
http://doi.acm.org/10.1145/1508865.1508919
http://doi.acm.org/10.1145/1508865.1508919
http://doi.acm.org/10.1145/1596655.1596663
http://doi.acm.org/10.1145/1562877.1562990
http://doi.acm.org/10.1145/1562877.1562990
http://doi.acm.org/10.1145/1028174.971358
http://doi.acm.org/10.1145/1028174.971358

Bibliography 173

RADERMACHER, A.; WALIA, G. Gaps between industry expectations and the abilities of
graduates. In: Proceeding of the 44th ACM Technical Symposium on Computer Science
Education (SIGCSE ’13). New York, NY, USA: ACM, 2013. p. 525–530. ISBN 978-1-4503-
1868-6. Citations on pages 19, 63, 64, 67, 75, and 77.

RAHMAN, S. M. Applying the TBC method in introductory programming courses. In: 2007 37th
Annual Frontiers In Education Conference - Global Engineering: Knowledge Without
Borders, Opportunities Without Passports. [S.l.: s.n.], 2007. p. T1E–20–T1E–21. Citation
on page 194.

RAHMAN, S. M.; JUELL, P. L. Applying Software Development Lifecycles in Teaching
Introductory Programming Courses. In: 19th Conference on Software Engineering Education
Training (CSEET’06). [S.l.: s.n.], 2006. p. 17–24. Citation on page 194.

RAJAGURU, D.; RAJESWARI, A.; BHUVANESHWARI, V.; VAGHEESAN, K. E-assessment
of programming assignments in web service. In: IEEE-International Conference On Ad-
vances In Engineering, Science And Management (ICAESM -2012). [S.l.: s.n.], 2012. p.
484–489. Citation on page 195.

RAJALA, T.; KAILA, E.; LINDEN, R.; KURVINEN, E.; LOKKILA, E.; LAAKSO, M.-J.;
SALAKOSKI, T. Automatically Assessed Electronic Exams in Programming Courses. In:
Proceedings of the Australasian Computer Science Week Multiconference. New York,
NY, USA: ACM, 2016. (ACSW ’16), p. 11:1–11:8. ISBN 978-1-4503-4042-7. Available:
<http://doi.acm.org/10.1145/2843043.2843062>. Citations on pages 94, 96, 98, and 197.

RANDOLPH, J. J. Findings from "a methodological review of the computer science education
research: 2000–2005". SIGCSE Bull., ACM, New York, NY, USA, v. 39, n. 4, p. 130–130, Dec.
2007. ISSN 0097-8418. Available: <http://doi.acm.org/10.1145/1345375.1345434>. Citations
on pages 21, 123, and 139.

RESNICK, M.; MALONEY, J.; MONROY-HERNANDEZ, A.; RUSK, N.; EASTMOND, E.;
BRENNAN, K.; MILLNER, A.; ROSENBAUM, E.; SILVER, J.; SILVERMAN, B.; KAFAI,
Y. Scratch: Programming for all. Commun. ACM, ACM, New York, NY, USA, v. 52, n. 11, p.
60–67, Nov. 2009. ISSN 0001-0782. Available: <http://doi.acm.org/10.1145/1592761.1592779>.
Citation on page 19.

REYNOLDS, L.; MAYO, Q.; ADAMO, D.; BRYCE, R. Improving Conceptual Understanding of
Code with Bug Fixer. J. Comput. Sci. Coll., v. 31, n. 2, p. 87–94, Dec. 2015. ISSN 1937-4771.
Available: <http://dl.acm.org/citation.cfm?id=2831432.2831445>. Citations on pages 87, 94,
130, and 197.

RICKEN, M.; CARTWRIGHT, R. Test-first Java Concurrency for the Classroom. In: Pro-
ceedings of the 41st ACM Technical Symposium on Computer Science Education. New
York, NY, USA: ACM, 2010. (SIGCSE ’10), p. 219–223. ISBN 978-1-4503-0006-3. Available:
<http://doi.acm.org/10.1145/1734263.1734340>. Citation on page 198.

RING, B. A.; GIORDAN, J.; RANSBOTTOM, J. S. Problem Solving Through Programming:
Motivating the Non-programmer. J. Comput. Sci. Coll., v. 23, n. 3, p. 61–67, Jan. 2008. ISSN
1937-4771. Available: <http://dl.acm.org/citation.cfm?id=1295109.1295126>. Citation on page
192.

http://doi.acm.org/10.1145/2843043.2843062
http://doi.acm.org/10.1145/1345375.1345434
http://doi.acm.org/10.1145/1592761.1592779
http://dl.acm.org/citation.cfm?id=2831432.2831445
http://doi.acm.org/10.1145/1734263.1734340
http://dl.acm.org/citation.cfm?id=1295109.1295126

174 Bibliography

ROBERTS, G. H. B.; VERBYLA, J. L. M. An Online Programming Assessment Tool. In:
Proceedings of the Fifth Australasian Conference on Computing Education - Volume 20.
Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2003. (ACE ’03), p. 69–75.
ISBN 0-909925-98-4. Available: <http://dl.acm.org/citation.cfm?id=858403.858412>. Citation
on page 195.

ROBINS, A. Learning edge momentum: new account of outcomes in cs1. Computer Science
Education, Taylor & Francis, v. 20, n. 1, p. 37–71, 2010. Citation on page 31.

. The ongoing challenges of computer science education research. Computer Science Ed-
ucation, Routledge, v. 25, n. 2, p. 115–119, 2015. Available: <https://doi.org/10.1080/08993408.
2015.1034350>. Citations on pages 21, 123, and 139.

ROBINS, A.; ROUNTREE, J.; ROUNTREE, N. Learning and teaching programming: A review
and discussion. Computer Science Education, p. 137–172, 2003. Citations on pages 25, 31,
and 32.

RODRIGUES, P. L. R.; FRANZ, L. P.; CHEIRAN, J. F. P.; SILVA, J. P. S. da; BORDIN, A. S.
Coding dojo as a transforming practice in collaborative learning of programming: An experience
report. In: Proceedings of the 31st Brazilian Symposium on Software Engineering. New
York, NY, USA: ACM, 2017. (SBES’17), p. 348–357. ISBN 978-1-4503-5326-7. Available:
<http://doi.acm.org/10.1145/3131151.3131180>. Citation on page 193.

ROMLI, R.; SULAIMAN, S.; ZAMLI, K. Z. Automatic programming assessment and test data
generation a review on its approaches. In: 2010 International Symposium on Information
Technology. [S.l.: s.n.], 2010. v. 3, p. 1186–1192. Citation on page 197.

ROMLI, R.; SULAIMAN, S.; ZAMLI, K. Z. Current practices of programming assessment at
higher learning institutions. Communications in Computer and Information Science, v. 179
CCIS, n. PART 1, p. 471–485, 2011. ISSN 18650929. Citation on page 194.

ROSIENE, J. A.; ROSIENE, C. P. Testing in the ’small’. J. Comput. Sci. Coll., v. 19, n. 2, p.
314–318, Dec. 2003. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=948785.
948829>. Citation on page 192.

ROSSLING, G.; HARTTE, S. WebTasks: Online Programming Exercises Made Easy. In: Pro-
ceedings of the 13th Annual Conference on Innovation and Technology in Computer Sci-
ence Education. New York, NY, USA: ACM, 2008. (ITiCSE ’08), p. 363–363. ISBN 978-1-
60558-078-4. Available: <http://doi.acm.org/10.1145/1384271.1384405>. Citation on page
197.

RUBIN, M. J. The Effectiveness of Live-coding to Teach Introductory Programming. In: Pro-
ceeding of the 44th ACM Technical Symposium on Computer Science Education. New
York, NY, USA: ACM, 2013. (SIGCSE ’13), p. 651–656. ISBN 978-1-4503-1868-6. Available:
<http://doi.acm.org/10.1145/2445196.2445388>. Citations on pages 94, 101, 103, 135, and 192.

RUBIO-SANCHEZ, M.; KINNUNEN, P.; PAREJA-FLORES, C.; VELAZQUEZ-ITURBIDE,
A. Student perception and usage of an automated programming assessment tool. Computers
in Human Behavior, v. 31, p. 453 – 460, 2014. ISSN 0747-5632. Available: <http://www.
sciencedirect.com/science/article/pii/S0747563213001040>. Citations on pages 94, 99, and 196.

http://dl.acm.org/citation.cfm?id=858403.858412
https://doi.org/10.1080/08993408.2015.1034350
https://doi.org/10.1080/08993408.2015.1034350
http://doi.acm.org/10.1145/3131151.3131180
http://dl.acm.org/citation.cfm?id=948785.948829
http://dl.acm.org/citation.cfm?id=948785.948829
http://doi.acm.org/10.1145/1384271.1384405
http://doi.acm.org/10.1145/2445196.2445388
http://www.sciencedirect.com/science/article/pii/S0747563213001040
http://www.sciencedirect.com/science/article/pii/S0747563213001040

Bibliography 175

RUNESON, P. A survey of unit testing practices. IEEE Software, IEEE Computer Society
Press, Los Alamitos, CA, USA, v. 23, n. 4, p. 22–29, Jul. 2006. ISSN 0740-7459. Citation on
page 64.

RUNESON, P.; HOST, M. Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering, Springer US, v. 14, n. 2, p. 131–164,
2009. ISSN 1382-3256. Citation on page 41.

SAIKKONEN, R.; MALMI, L.; KORHONEN, A. Fully automatic assessment of programming
exercises. In: Proceedings of the 6th Annual Conference on Innovation and Technology in
Computer Science Education. New York, NY, USA: ACM, 2001. (ITiCSE ’01), p. 133–136.
ISBN 1-58113-330-8. Available: <http://doi.acm.org/10.1145/377435.377666>. Citation on
page 198.

SALLEH, N.; MENDES, E.; GRUNDY, J. Empirical studies of pair programming for cs/se
teaching in higher education: A systematic literature review. IEEE Transactions on Software
Engineering, v. 37, n. 4, p. 509–525, July 2011. ISSN 0098-5589. Citation on page 36.

. Investigating the effects of personality traits on pair programming in a higher education
setting through a family of experiments. Empirical Softw. Engg., Kluwer Academic Publishers,
Hingham, MA, USA, v. 19, n. 3, p. 714–752, Jun. 2014. ISSN 1382-3256. Available: <http:
//dx.doi.org/10.1007/s10664-012-9238-4>. Citations on pages 20 and 22.

SANDERS, K.; AHMADZADEH, M.; CLEAR, T.; EDWARDS, S. H.; GOLDWEBER, M.;
JOHNSON, C.; LISTER, R.; MCCARTNEY, R.; PATITSAS, E.; SPACCO, J. The canter-
bury questionbank: Building a repository of multiple-choice cs1 and cs2 questions. In: Pro-
ceedings of the ITiCSE Working Group Reports Conference on Innovation and Tech-
nology in Computer Science Education-working Group Reports. New York, NY, USA:
ACM, 2013. (ITiCSE -WGR ’13), p. 33–52. ISBN 978-1-4503-2665-0. Available: <http:
//doi.acm.org/10.1145/2543882.2543885>. Citation on page 199.

SANT, J. A. "mailing it in": Email-centric automated assessment. In: Proceedings of the 14th
Annual ACM SIGCSE Conference on Innovation and Technology in Computer Science
Education. New York, NY, USA: ACM, 2009. (ITiCSE ’09), p. 308–312. ISBN 978-1-60558-
381-5. Available: <http://doi.acm.org/10.1145/1562877.1562971>. Citation on page 195.

SAUVE, J. P.; NETO, O. L. A. Teaching Software Development with ATDD and Easyaccept. In:
Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2008. (SIGCSE ’08), p. 542–546. ISBN 978-1-59593-799-5.
Available: <http://doi.acm.org/10.1145/1352135.1352317>. Citations on pages 104 and 192.

SAUVÉ, J. P.; NETO, O. L. A.; CIRNE, W. Easyaccept: A tool to easily create, run and
drive development with automated acceptance tests. In: Proceedings of the 2006 International
Workshop on Automation of Software Test. New York, NY, USA: ACM, 2006. (AST ’06),
p. 111–117. ISBN 1-59593-408-1. Available: <http://doi.acm.org/10.1145/1138929.1138951>.
Citations on pages 90, 97, 104, and 196.

SCATALON, L. P.; BARBOSA, E. F.; GARCIA, R. E. Challenges to integrate software testing
into introductory programming courses. In: 2017 IEEE Frontiers in Education Conference
(FIE). [S.l.: s.n.], 2017. p. 1–9. Citation on page 191.

http://doi.acm.org/10.1145/377435.377666
http://dx.doi.org/10.1007/s10664-012-9238-4
http://dx.doi.org/10.1007/s10664-012-9238-4
http://doi.acm.org/10.1145/2543882.2543885
http://doi.acm.org/10.1145/2543882.2543885
http://doi.acm.org/10.1145/1562877.1562971
http://doi.acm.org/10.1145/1352135.1352317
http://doi.acm.org/10.1145/1138929.1138951

176 Bibliography

SCATALON, L. P.; CARVER, J. C.; GARCIA, R. E.; BARBOSA, E. F. Software testing in intro-
ductory programming courses: A systematic mapping study (accepted for publication). In: 50th
ACM Technical Symposium on Computing Science Education (SIGCSE’19). Minneapolis,
Minnesota, USA: [s.n.], 2019. Citation on page 75.

SCATALON, L. P.; FIORAVANTI, M. L.; PRATES, J. M.; GARCIA, R. E.; BARBOSA, E. F.
A survey on graduates’ curriculum-based knowledge gaps in software testing. In: 48th An-
nual Frontiers in Education Conference (FIE 2018). San Jose, California, EUA: [s.n.], 2018.
Citation on page 63.

SCATALON, L. P.; PRATES, J. M.; SOUZA, D. M. de; BARBOSA, E. F.; GARCIA, R. E.
Towards the role of test design in programming assignments. In: 30th IEEE Conference on
Software Engineering Education and Training (CSEE&T 2017). Savannah, Georgia, EUA:
[s.n.], 2017. Citations on pages 12, 109, and 136.

. Towards the role of test design in programming assignments. In: 2017 IEEE 30th Con-
ference on Software Engineering Education and Training (CSEE&T). [S.l.: s.n.], 2017. p.
170–179. Citations on pages 87, 90, 101, 129, and 194.

SCHAUB, S. Teaching CS1 with Web Applications and Test-driven Development. SIGCSE
Bull., v. 41, n. 2, p. 113–117, Jun. 2009. ISSN 0097-8418. Available: <http://doi.acm.org/10.
1145/1595453.1595487>. Citation on page 193.

SCHULTE, C.; BENNEDSEN, J. What do teachers teach in introductory programming? In:
Proceedings of the Second International Workshop on Computing Education Research
(ICER ’06). New York, NY, USA: ACM, 2006. p. 17–28. ISBN 1-59593-494-4. Citation on
page 28.

SHAFFER, C. A.; AKBAR, M.; ALON, A. J. D.; STEWART, M.; EDWARDS, S. H. Getting
algorithm visualizations into the classroom. In: Proceedings of the 42Nd ACM Technical
Symposium on Computer Science Education (SIGCSE ’11). New York, NY, USA: ACM,
2011. p. 129–134. ISBN 978-1-4503-0500-6. Citation on page 37.

SHAFFER, C. A.; COOPER, M. L.; ALON, A. J. D.; AKBAR, M.; STEWART, M.; PONCE,
S.; EDWARDS, S. H. Algorithm visualization: The state of the field. ACM Transactions on
Computing Education, ACM, New York, NY, USA, v. 10, n. 3, p. 9:1–9:22, Aug. 2010. ISSN
1946-6226. Citation on page 37.

SHAFFER, S. C. Ludwig: An online programming tutoring and assessment system. SIGCSE
Bull., ACM, New York, NY, USA, v. 37, n. 2, p. 56–60, Jun. 2005. ISSN 0097-8418. Available:
<http://doi.acm.org/10.1145/1083431.1083464>. Citation on page 198.

SHAMS, Z. Automated Assessment of Students’ Testing Skills for Improving Correctness of
Their Code. In: Proceedings of the 2013 Companion Publication for Conference on Systems,
Programming, & Applications: Software for Humanity. New York, NY, USA: ACM, 2013.
(SPLASH ’13), p. 37–40. ISBN 978-1-4503-1995-9. Available: <http://doi.acm.org/10.1145/
2508075.2508078>. Citations on pages 91, 101, 134, and 196.

. Automatically Assessing the Quality of Student-written Tests. In: Proceedings of the
Ninth Annual International ACM Conference on International Computing Education Re-
search. New York, NY, USA: ACM, 2013. (ICER ’13), p. 189–190. ISBN 978-1-4503-2243-0.
Available: <http://doi.acm.org/10.1145/2493394.2493428>. Citation on page 199.

http://doi.acm.org/10.1145/1595453.1595487
http://doi.acm.org/10.1145/1595453.1595487
http://doi.acm.org/10.1145/1083431.1083464
http://doi.acm.org/10.1145/2508075.2508078
http://doi.acm.org/10.1145/2508075.2508078
http://doi.acm.org/10.1145/2493394.2493428

Bibliography 177

SHAMS, Z.; EDWARDS, S. H. Toward Practical Mutation Analysis for Evaluating the Quality
of Student-written Software Tests. In: Proceedings of the Ninth Annual International ACM
Conference on International Computing Education Research. New York, NY, USA: ACM,
2013. (ICER ’13), p. 53–58. ISBN 978-1-4503-2243-0. Available: <http://doi.acm.org/10.1145/
2493394.2493402>. Citations on pages 91, 102, 134, and 196.

. Checked Coverage and Object Branch Coverage: New Alternatives for Assessing Student-
Written Tests. In: Proceedings of the 46th ACM Technical Symposium on Computer Science
Education. New York, NY, USA: ACM, 2015. (SIGCSE ’15), p. 534–539. ISBN 978-1-4503-
2966-8. Available: <http://doi.acm.org/10.1145/2676723.2677300>. Citations on pages 94, 131,
and 199.

SHEARD, J.; SIMON, S.; HAMILTON, M.; LONNBERG, J. Analysis of research into the
teaching and learning of programming. In: Proceedings of the Fifth International Workshop
on Computing Education Research Workshop (ICER ’09). New York, NY, USA: ACM,
2009. p. 93–104. ISBN 978-1-60558-615-1. Citations on pages 19, 21, 22, 25, 123, and 139.

SHETH, S.; BELL, J.; KAISER, G. Halo (highly addictive, socially optimized)
software engineering. In: 1st International Workshop on Games and Software
Engineering (GAS’11). [s.n.], 2011. Available: <https://pdfs.semanticscholar.org/2aa5/
56e8dce6b5d1aa91279da52840f7587559b1.pdf>. Citation on page 198.

SHULL, F.; CRUZES, D.; BASILI, V.; MENDONCA, M. Simulating families of studies to
build confidence in defect hypotheses. Information and Software Technology, Butterworth-
Heinemann, Newton, MA, USA, v. 47, n. 15, p. 1019–1032, Dec. 2005. ISSN 0950-5849.
Citations on pages 55 and 135.

SHULL, F.; SINGER, J.; SJOBERG, D. I. Guide to Advanced Empirical Software Engineer-
ing. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007. ISBN 184800043X. Citation
on page 40.

SHULL, F. J.; CARVER, J. C.; VEGAS, S.; JURISTO, N. The role of replications in empirical
software engineering. Empirical Software Engineering, Kluwer Academic Publishers, v. 13,
n. 2, p. 211–218, 2008. Citation on page 42.

SIOSON, A. Experiences on the use of an automatic C++ solution grader system. In: IISA 2013 -
4th International Conference on Information, Intelligence, Systems and Applications. [S.l.:
s.n.], 2013. p. 18–21. ISBN 978-1-4799-0771-7. Citation on page 196.

SJOBERG, D.; ANDA, B.; ARISHOLM, E.; DYBA, T.; JORGENSEN, M.; KARAHASANOVI,
A.; VOKA, M. Challenges and recommendations when increasing the realism of controlled
software engineering experiments. In: CONRADI, R.; WANG, A. (Ed.). Empirical Methods
and Studies in Software Engineering. [S.l.]: Springer Berlin Heidelberg, 2003, (Lecture Notes
in Computer Science, v. 2765). p. 24–38. ISBN 978-3-540-40672-3. Citation on page 45.

SJOBERG, D. I. K.; DYBA, T.; JORGENSEN, M. The future of empirical methods in software
engineering research. In: Future of Software Engineering (FOSE ’07). Washington, DC, USA:
IEEE Computer Society, 2007. p. 358–378. ISBN 0-7695-2829-5. Citation on page 40.

SMITH, J.; TESSLER, J.; KRAMER, E.; LIN, C. Using Peer Review to Teach Software
Testing. In: Proceedings of the Ninth Annual International Conference on International
Computing Education Research. New York, NY, USA: ACM, 2012. (ICER ’12), p. 93–98.

http://doi.acm.org/10.1145/2493394.2493402
http://doi.acm.org/10.1145/2493394.2493402
http://doi.acm.org/10.1145/2676723.2677300
https://pdfs.semanticscholar.org/2aa5/56e8dce6b5d1aa91279da52840f7587559b1.pdf
https://pdfs.semanticscholar.org/2aa5/56e8dce6b5d1aa91279da52840f7587559b1.pdf

178 Bibliography

ISBN 978-1-4503-1604-0. Available: <http://doi.acm.org/10.1145/2361276.2361295>. Citation
on page 193.

SMITH, R.; TANG, T.; WARREN, J.; RIXNER, S. An automated system for interactively
learning software testing. In: Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education. New York, NY, USA: ACM, 2017. (ITiCSE
’17), p. 98–103. ISBN 978-1-4503-4704-4. Available: <http://doi.acm.org/10.1145/3059009.
3059022>. Citations on pages 87, 94, and 197.

SMITH, S.; STOECKLIN, S. What We Can Learn from Extreme Programming. J. Comput. Sci.
Coll., v. 17, n. 2, p. 144–151, Dec. 2001. ISSN 1937-4771. Available: <http://dl.acm.org/citation.
cfm?id=775339.775368>. Citation on page 194.

SNYDER, J.; EDWARDS, S. H.; PEREZ-QUINONES, M. A. LIFT: Taking GUI Unit Testing
to New Heights. In: Proceedings of the 42Nd ACM Technical Symposium on Computer
Science Education. New York, NY, USA: ACM, 2011. (SIGCSE ’11), p. 643–648. ISBN 978-
1-4503-0500-6. Available: <http://doi.acm.org/10.1145/1953163.1953343>. Citation on page
198.

SNYDER, R. M. Teacher Specification and Student Implementation of a Unit Testing Method-
ology in an Introductory Programming Course. J. Comput. Sci. Coll., v. 19, n. 3, p. 22–32,
Jan. 2004. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=948835.948837>.
Citation on page 193.

SOLARI, M.; VEGAS, S. Classifying and analysing replication packages for software engineer-
ing experimentation. In: 7th International Conference on Product Focused Software Process
Improvement (PROFES 2006)-Workshop Series in Empirical Software Engineering (WS-
ESE). [S.l.: s.n.], 2006. Citation on page 55.

SOLOWAY, E.; BONAR, J.; EHRLICH, K. Cognitive strategies and looping constructs: An
empirical study. Commun. ACM, ACM, New York, NY, USA, v. 26, n. 11, p. 853–860, Nov.
1983. ISSN 0001-0782. Available: <http://doi.acm.org/10.1145/182.358436>. Citation on page
31.

SOMMERVILLE, I. An embedded control system for a personal insulin pump.
2010. Available at <http://iansommerville.com/software-engineering-book/case-studies/
a-personal-insulin-pump/>. Citation on page 119.

SORVA, J.; KARAVIRTA, V.; MALMI, L. A review of generic program visualization systems for
introductory programming education. ACM Transactions on Computing Education, ACM,
New York, NY, USA, v. 13, n. 4, p. 15:1–15:64, Nov. 2013. ISSN 1946-6226. Citation on page
37.

SOUZA, D. M. d.; MALDONADO, J. C.; BARBOSA, E. F. ProgTest: An environment for the
submission and evaluation of programming assignments based on testing activities. In: 2011
24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T).
[S.l.: s.n.], 2011. p. 1–10. Citations on pages 93, 98, and 196.

SOUZA, D. M. d.; OLIVEIRA, B. H.; MALDONADO, J. C.; SOUZA, S. R. S.; BARBOSA,
E. F. Towards the use of an automatic assessment system in the teaching of software testing. In:
2014 IEEE Frontiers in Education Conference (FIE) Proceedings. [S.l.: s.n.], 2014. p. 1–8.
Citations on pages 93, 98, and 196.

http://doi.acm.org/10.1145/2361276.2361295
http://doi.acm.org/10.1145/3059009.3059022
http://doi.acm.org/10.1145/3059009.3059022
http://dl.acm.org/citation.cfm?id=775339.775368
http://dl.acm.org/citation.cfm?id=775339.775368
http://doi.acm.org/10.1145/1953163.1953343
http://dl.acm.org/citation.cfm?id=948835.948837
http://doi.acm.org/10.1145/182.358436
http://iansommerville.com/software-engineering-book/case-studies/a-personal-insulin-pump/
http://iansommerville.com/software-engineering-book/case-studies/a-personal-insulin-pump/

Bibliography 179

SOUZA, D. M. de; ISOTANI, S.; BARBOSA, E. F. Teaching novice programmers using progtest.
International Journal of Knowledge and Learning, 2015. Available: <http://www.producao.
usp.br/bitstream/handle/BDPI/51271/2744279.pdf?sequence=1&isAllowed=y>. Citations on
pages 90, 91, 93, 94, 98, 100, and 197.

SOUZA, D. M. de; KOLLING, M.; BARBOSA, E. F. Most common fixes students use to
improve the correctness of their programs. In: 2017 IEEE Frontiers in Education Conference
(FIE). [S.l.: s.n.], 2017. p. 1–9. Citations on pages 98, 100, 133, and 199.

SPACCO, J.; FOSSATI, D.; STAMPER, J.; RIVERS, K. Towards Improving Programming
Habits to Create Better Computer Science Course Outcomes. In: Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science Education. New
York, NY, USA: ACM, 2013. (ITiCSE ’13), p. 243–248. ISBN 978-1-4503-2078-8. Available:
<http://doi.acm.org/10.1145/2462476.2465594>. Citations on pages 36, 94, 96, 98, 99, and 200.

SPACCO, J.; HOVEMEYER, D.; PUGH, W. An Eclipse-based Course Project Snapshot and
Submission System. In: Proceedings of the 2004 OOPSLA Workshop on Eclipse Technology
eXchange. New York, NY, USA: ACM, 2004. (eclipse ’04), p. 52–56. Available: <http://doi.
acm.org/10.1145/1066129.1066140>. Citation on page 197.

SPACCO, J.; HOVEMEYER, D.; PUGH, W.; EMAD, F.; HOLLINGSWORTH, J. K.; PADUA-
PEREZ, N. Experiences with Marmoset: Designing and Using an Advanced Submission and
Testing System for Programming Courses. In: Proceedings of the 11th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education. New York,
NY, USA: ACM, 2006. (ITICSE ’06), p. 13–17. ISBN 1-59593-055-8. Available: <http:
//doi.acm.org/10.1145/1140124.1140131>. Citation on page 198.

SPACCO, J.; PUGH, W. Helping Students Appreciate Test-driven Development (TDD). In:
Companion to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications. New York, NY, USA: ACM, 2006. (OOPSLA ’06), p.
907–913. ISBN 1-59593-491-X. Available: <http://doi.acm.org/10.1145/1176617.1176743>.
Citations on pages 92, 101, 134, and 200.

SPACCO, J.; PUGH, W.; AYEWAH, N.; HOVEMEYER, D. The Marmoset Project: An Auto-
mated Snapshot, Submission, and Testing System. In: Companion to the 21st ACM SIGPLAN
Symposium on Object-oriented Programming Systems, Languages, and Applications. New
York, NY, USA: ACM, 2006. (OOPSLA ’06), p. 669–670. ISBN 1-59593-491-X. Available:
<http://doi.acm.org/10.1145/1176617.1176665>. Citation on page 197.

SPACCO, J.; STRECKER, J.; HOVEMEYER, D.; PUGH, W. Software Repository Mining with
Marmoset: An Automated Programming Project Snapshot and Testing System. In: Proceedings
of the 2005 International Workshop on Mining Software Repositories. New York, NY, USA:
ACM, 2005. (MSR ’05), p. 1–5. ISBN 1-59593-123-6. Available: <http://doi.acm.org/10.1145/
1082983.1083149>. Citations on pages 99 and 196.

SRIDHARA, S.; HOU, B.; LU, J.; DENERO, J. Fuzz Testing Projects in Massive Courses. In:
Proceedings of the Third (2016) ACM Conference on Learning Scale. New York, NY, USA:
ACM, 2016. (L@S ’16), p. 361–367. ISBN 978-1-4503-3726-7. Available: <http://doi.acm.org/
10.1145/2876034.2876050>. Citations on pages 98, 99, and 197.

STEINBERG, D. H. The effect of unit tests on entry points, coupling and cohesion in an
introductory java programming course. In: Proceedings of XP Universe Conference. [s.n.],

http://www.producao.usp.br/bitstream/handle/BDPI/51271/2744279.pdf?sequence=1&isAllowed=y
http://www.producao.usp.br/bitstream/handle/BDPI/51271/2744279.pdf?sequence=1&isAllowed=y
http://doi.acm.org/10.1145/2462476.2465594
http://doi.acm.org/10.1145/1066129.1066140
http://doi.acm.org/10.1145/1066129.1066140
http://doi.acm.org/10.1145/1140124.1140131
http://doi.acm.org/10.1145/1140124.1140131
http://doi.acm.org/10.1145/1176617.1176743
http://doi.acm.org/10.1145/1176617.1176665
http://doi.acm.org/10.1145/1082983.1083149
http://doi.acm.org/10.1145/1082983.1083149
http://doi.acm.org/10.1145/2876034.2876050
http://doi.acm.org/10.1145/2876034.2876050

180 Bibliography

2001. Available: <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.5827>. Citation
on page 199.

STRIEWE, M.; GOEDICKE, M. Using run time traces in automated programming tutoring.
In: Proceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education. New York, NY, USA: ACM, 2011. (ITiCSE ’11), p. 303–307.
ISBN 978-1-4503-0697-3. Available: <http://doi.acm.org/10.1145/1999747.1999832>. Citation
on page 195.

SULEMAN, H. Automatic Marking with Sakai. In: Proceedings of the 2008 Annual Research
Conference of the South African Institute of Computer Scientists and Information Tech-
nologists on IT Research in Developing Countries: Riding the Wave of Technology. New
York, NY, USA: ACM, 2008. (SAICSIT ’08), p. 229–236. ISBN 978-1-60558-286-3. Available:
<http://doi.acm.org/10.1145/1456659.1456686>. Citation on page 198.

SUMMET, J.; KUMAR, D.; O’HARA, K.; WALKER, D.; NI, L.; BLANK, D.; BALCH, T.
Personalizing cs1 with robots. In: Proceedings of the 40th ACM Technical Symposium on
Computer Science Education (SIGCSE ’09). New York, NY, USA: ACM, 2009. p. 433–437.
ISBN 978-1-60558-183-5. Citation on page 38.

SUN, Y.; JONES, E. L. Specification-driven Automated Testing of GUI-based Java Programs.
In: Proceedings of the 42Nd Annual Southeast Regional Conference. New York, NY, USA:
ACM, 2004. (ACM-SE 42), p. 140–145. ISBN 1-58113-870-9. Available: <http://doi.acm.org/
10.1145/986537.986570>. Citation on page 197.

SURAKKA, S. What subjects and skills are important for software developers? Communica-
tions of the ACM, ACM, New York, NY, USA, v. 50, n. 1, p. 73–78, 2007. ISSN 0001-0782.
Citation on page 19.

TANG, T.; SMITH, R.; RIXNER, S.; WARREN, J. Data-Driven Test Case Generation for
Automated Programming Assessment. In: Proceedings of the 2016 ACM Conference on Inno-
vation and Technology in Computer Science Education. New York, NY, USA: ACM, 2016.
(ITiCSE ’16), p. 260–265. ISBN 978-1-4503-4231-5. Available: <http://doi.acm.org/10.1145/
2899415.2899423>. Citations on pages 94, 99, and 197.

TEUSNER, R.; HILLE, T.; HAGEDORN, C. Aspects on finding the optimal practical program-
ming exercise for moocs. In: 2017 IEEE Frontiers in Education Conference (FIE). [S.l.: s.n.],
2017. p. 1–8. Citations on pages 94, 101, 102, 134, and 194.

TEW, A. E.; GUZDIAL, M. The fcs1: A language independent assessment of cs1 knowledge.
In: Proceedings of the 42Nd ACM Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2011. (SIGCSE ’11), p. 111–116. ISBN 978-1-4503-0500-6.
Available: <http://doi.acm.org/10.1145/1953163.1953200>. Citations on pages 20 and 34.

TEW, A. E.; MCCRACKEN, W. M.; GUZDIAL, M. Impact of alternative introductory courses
on programming concept understanding. In: Proceedings of the First International Workshop
on Computing Education Research (ICER ’05). New York, NY, USA: [s.n.], 2005. p. 25–35.
ISBN 1-59593-043-4. Citation on page 35.

THOMPSON, E.; HUNT, L.; KINSHUK, K. Exploring Learner Conceptions of Programming.
In: Proceedings of the 8th Australasian Conference on Computing Education - Volume 52.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.5827
http://doi.acm.org/10.1145/1999747.1999832
http://doi.acm.org/10.1145/1456659.1456686
http://doi.acm.org/10.1145/986537.986570
http://doi.acm.org/10.1145/986537.986570
http://doi.acm.org/10.1145/2899415.2899423
http://doi.acm.org/10.1145/2899415.2899423
http://doi.acm.org/10.1145/1953163.1953200

Bibliography 181

Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2006. (ACE ’06), p. 205–
211. ISBN 1-920682-34-1. Available: <http://dl.acm.org/citation.cfm?id=1151869.1151896>.
Citation on page 200.

THORNTON, M.; EDWARDS, S. H.; TAN, R. P.; PEREZ-QUINONES, M. A. Supporting
Student-written Tests of Gui Programs. In: Proceedings of the 39th SIGCSE Technical Sym-
posium on Computer Science Education. New York, NY, USA: ACM, 2008. (SIGCSE ’08), p.
537–541. ISBN 978-1-59593-799-5. Available: <http://doi.acm.org/10.1145/1352135.1352316>.
Citations on pages 87, 95, 97, 98, 130, 134, and 196.

THURNER, V.; BOTTCHER, A. An objects first, tests second approach for software engineering
education. In: 2015 IEEE Frontiers in Education Conference (FIE). [S.l.: s.n.], 2015. p. 1–5.
Citations on pages 109 and 192.

TIANTIAN, W.; XIAOHONG, S.; PEIJUN, M.; YUYING, W.; KUANQUAN, W. AutoLEP:
An Automated Learning and Examination System for Programming and its Application in
Programming Course. In: 2009 First International Workshop on Education Technology and
Computer Science. [S.l.: s.n.], 2009. v. 1, p. 43–46. Citation on page 195.

TILLMANN, N.; HALLEUX, J. d.; XIE, T.; BISHOP, J. Pex4fun: A web-based environment
for educational gaming via automated test generation. In: 2013 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). [S.l.: s.n.], 2013. p. 730–733.
Citation on page 198.

TILLMANN, N.; HALLEUX, J. de; XIE, T.; BISHOP, J. Constructing Coding Duels in Pex4fun
and Code Hunt. In: Proceedings of the 2014 International Symposium on Software Testing
and Analysis. New York, NY, USA: ACM, 2014. (ISSTA 2014), p. 445–448. ISBN 978-1-
4503-2645-2. Available: <http://doi.acm.org/10.1145/2610384.2628054>. Citation on page
196.

TREMBLAY, G.; GUERIN, F.; PONS, A.; SALAH, A. Oto, a generic and extensible tool for
marking programming assignments. Software: Practice and Experience, John Wiley & Sons,
Ltd., v. 38, n. 3, p. 307–333, 2008. ISSN 1097-024X. Available: <http://dx.doi.org/10.1002/spe.
839>. Citation on page 195.

TREMBLAY, G.; LAFOREST, L.; SALAH, A. Extending a Marking Tool with Simple Support
for Testing. In: Proceedings of the 12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education. New York, NY, USA: ACM, 2007. (ITiCSE
’07), p. 313–313. ISBN 978-1-59593-610-3. Available: <http://doi.acm.org/10.1145/1268784.
1268879>. Citation on page 197.

TREMBLAY, G.; LESSARD, P. A marking language for the oto assignment marking tool.
In: Proceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education. New York, NY, USA: ACM, 2011. (ITiCSE ’11), p. 148–152.
ISBN 978-1-4503-0697-3. Available: <http://doi.acm.org/10.1145/1999747.1999791>. Citation
on page 195.

TURNER, S. A. Looking Glass: A C++ Library for Testing Student Programs Through Reflection.
In: Proceedings of the 46th ACM Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2015. (SIGCSE ’15), p. 528–533. ISBN 978-1-4503-2966-8.
Available: <http://doi.acm.org/10.1145/2676723.2677281>. Citation on page 198.

http://dl.acm.org/citation.cfm?id=1151869.1151896
http://doi.acm.org/10.1145/1352135.1352316
http://doi.acm.org/10.1145/2610384.2628054
http://dx.doi.org/10.1002/spe.839
http://dx.doi.org/10.1002/spe.839
http://doi.acm.org/10.1145/1268784.1268879
http://doi.acm.org/10.1145/1268784.1268879
http://doi.acm.org/10.1145/1999747.1999791
http://doi.acm.org/10.1145/2676723.2677281

182 Bibliography

UREEL, L. C.; WALLACE, C. WebTA: Automated iterative critique of student programming
assignments. In: 2015 IEEE Frontiers in Education Conference (FIE). [S.l.: s.n.], 2015. p. 1–
9. Citation on page 196.

UTTING, I.; TEW, A. E.; MCCRACKEN, M.; THOMAS, L.; BOUVIER, D.; FRYE, R.;
PATERSON, J.; CASPERSEN, M.; KOLIKANT, Y. B.-D.; SORVA, J.; WILUSZ, T. A fresh look
at novice programmers’ performance and their teachers’ expectations. In: Proceedings of the
ITiCSE Working Group Reports Conference on Innovation and Technology in Computer
Science Education-working Group Reports. New York, NY, USA: ACM, 2013. (ITiCSE -
WGR ’13), p. 15–32. ISBN 978-1-4503-2665-0. Available: <http://doi.acm.org/10.1145/2543882.
2543884>. Citations on pages 13, 20, 22, 25, 32, 34, 38, and 111.

. A Fresh Look at Novice Programmers’ Performance and Their Teachers’ Expectations.
In: Proceedings of the ITiCSE Working Group Reports Conference on Innovation and
Technology in Computer Science Education-working Group Reports. New York, NY, USA:
ACM, 2013. (ITiCSE -WGR ’13), p. 15–32. ISBN 978-1-4503-2665-0. Available: <http://doi.
acm.org/10.1145/2543882.2543884>. Citations on pages 90, 94, 104, 133, 134, and 199.

VALENTINE, D. W. Cs educational research: A meta-analysis of sigcse technical sympo-
sium proceedings. In: Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education. New York, NY, USA: ACM, 2004. (SIGCSE ’04), p. 255–259. ISBN 1-
58113-798-2. Available: <http://doi.acm.org/10.1145/971300.971391>. Citations on pages 19,
21, 123, and 139.

VALLE, P. H. D.; TODA, A. M.; BARBOSA, E. F.; MALDONADO, J. C. Educational games: A
contribution to software testing education. In: 2017 IEEE Frontiers in Education Conference
(FIE). [S.l.: s.n.], 2017. p. 1–8. Citation on page 199.

VANDEGRIFT, T.; CARUSO, T.; HILL, N.; SIMON, B. Experience Report: Getting Novice
Programmers to THINK About Improving Their Software Development Process. In: Pro-
ceedings of the 42Nd ACM Technical Symposium on Computer Science Education. New
York, NY, USA: ACM, 2011. (SIGCSE ’11), p. 493–498. ISBN 978-1-4503-0500-6. Available:
<http://doi.acm.org/10.1145/1953163.1953307>. Citation on page 195.

VEE, A. Understanding computer programming as a literacy. Literacy in Composition Studies,
v. 1, n. 2, 2013. Citation on page 19.

VEGAS, S.; JURISTO, N.; MORENO, A.; SOLARI, M.; LETELIER, P. Analysis of the influence
of communication between researchers on experiment replication. In: Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Software Engineering. New York, NY,
USA: ACM, 2006. p. 28–37. ISBN 1-59593-218-6. Citation on page 54.

VENABLES, A.; HAYWOOD, L. Programming students need instant feedback! In: Proceedings
of the Fifth Australasian Conference on Computing Education - Volume 20. Darlinghurst,
Australia, Australia: Australian Computer Society, Inc., 2003. (ACE ’03), p. 267–272. ISBN
0-909925-98-4. Available: <http://dl.acm.org/citation.cfm?id=858403.858436>. Citation on
page 195.

VIHAVAINEN, A.; AIRAKSINEN, J.; WATSON, C. A systematic review of approaches for
teaching introductory programming and their influence on success. In: Proceedings of the
Tenth Annual Conference on International Computing Education Research (ICER ’14).
New York, NY, USA: ACM, 2014. p. 19–26. ISBN 978-1-4503-2755-8. Citations on pages 20
and 35.

http://doi.acm.org/10.1145/2543882.2543884
http://doi.acm.org/10.1145/2543882.2543884
http://doi.acm.org/10.1145/2543882.2543884
http://doi.acm.org/10.1145/2543882.2543884
http://doi.acm.org/10.1145/971300.971391
http://doi.acm.org/10.1145/1953163.1953307
http://dl.acm.org/citation.cfm?id=858403.858436

Bibliography 183

VIHAVAINEN, A.; VIKBERG, T.; LUUKKAINEN, M.; PARTEL, M. Scaffolding Students’
Learning Using Test My Code. In: Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education. New York, NY, USA: ACM, 2013. (ITiCSE
’13), p. 117–122. ISBN 978-1-4503-2078-8. Available: <http://doi.acm.org/10.1145/2462476.
2462501>. Citation on page 196.

VINCENZI, A.; DELAMARO, M.; HOHN, E.; MALDONADO, J. C. Testing techniques in
software engineering. In: . [S.l.]: Springer, 2010. chap. Functional, Control and Data Flow,
and Mutation Testing: Theory and Practice. Citation on page 119.

VUJOSEVIC-JANICIC, M.; NIKOLIC, M.; TOSIC, D.; KUNCAK, V. Software verification
and graph similarity for automated evaluation of students’ assignments. Information and
Software Technology, v. 55, n. 6, p. 1004 – 1016, 2013. ISSN 0950-5849. Available: <http:
//www.sciencedirect.com/science/article/pii/S0950584912002406>. Citations on pages 87, 88,
89, 99, 130, and 196.

WANG, T.; SU, X.; MA, P.; WANG, Y.; WANG, K. Ability-training-oriented automated as-
sessment in introductory programming course. Computers & Education, v. 56, n. 1, p. 220 –
226, 2011. ISSN 0360-1315. Serious Games. Available: <http://www.sciencedirect.com/science/
article/pii/S0360131510002241>. Citations on pages 87, 90, 98, 130, and 196.

WATSON, C.; LI, F. W. Failure rates in introductory programming revisited. In: Proceed-
ings of the 2014 Conference on Innovation & Technology in Computer Science Education
(ITiCSE ’14). New York, NY, USA: ACM, 2014. p. 39–44. ISBN 978-1-4503-2833-3. Citations
on pages 20 and 31.

WELLINGTON, C. A.; BRIGGS, T. H.; GIRARD, C. D. Experiences Using Automated 4ests
and 4est Driven Development in Computer 9cience I. In: Agile 2007 (AGILE 2007). [S.l.: s.n.],
2007. p. 106–112. Citation on page 192.

WHALLEY, J.; KASTO, N. How difficult are novice code writing tasks?: A software metrics
approach. In: Proceedings of the Sixteenth Australasian Computing Education Conference
- Volume 148. Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2014.
(ACE ’14), p. 105–112. ISBN 978-1-921770-31-9. Available: <http://dl.acm.org/citation.cfm?
id=2667490.2667503>. Citations on pages 88, 89, 101, 102, and 199.

WHALLEY, J. L.; PHILPOTT, A. A Unit Testing Approach to Building Novice Programmers’
Skills and Confidence. In: Proceedings of the Thirteenth Australasian Computing Education
Conference - Volume 114. Darlinghurst, Australia, Australia: Australian Computer Society,
Inc., 2011. (ACE ’11), p. 113–118. ISBN 978-1-920682-94-1. Available: <http://dl.acm.org/
citation.cfm?id=2459936.2459950>. Citations on pages 20, 74, 75, 140, and 193.

WICK, M.; STEVENSON, D.; WAGNER, P. Using Testing and JUnit Across the Curriculum. In:
Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education.
New York, NY, USA: ACM, 2005. (SIGCSE ’05), p. 236–240. ISBN 1-58113-997-7. Available:
<http://doi.acm.org/10.1145/1047344.1047427>. Citations on pages 109 and 191.

WILCOX, C. Testing Strategies for the Automated Grading of Student Programs. In: Pro-
ceedings of the 47th ACM Technical Symposium on Computing Science Education. New
York, NY, USA: ACM, 2016. (SIGCSE ’16), p. 437–442. ISBN 978-1-4503-3685-7. Available:
<http://doi.acm.org/10.1145/2839509.2844616>. Citation on page 198.

http://doi.acm.org/10.1145/2462476.2462501
http://doi.acm.org/10.1145/2462476.2462501
http://www.sciencedirect.com/science/article/pii/S0950584912002406
http://www.sciencedirect.com/science/article/pii/S0950584912002406
http://www.sciencedirect.com/science/article/pii/S0360131510002241
http://www.sciencedirect.com/science/article/pii/S0360131510002241
http://dl.acm.org/citation.cfm?id=2667490.2667503
http://dl.acm.org/citation.cfm?id=2667490.2667503
http://dl.acm.org/citation.cfm?id=2459936.2459950
http://dl.acm.org/citation.cfm?id=2459936.2459950
http://doi.acm.org/10.1145/1047344.1047427
http://doi.acm.org/10.1145/2839509.2844616

184 Bibliography

WILLIAMS, L.; KESSLER, R. R.; CUNNINGHAM, W.; JEFFRIES, R. Strengthening the case
for pair programming. IEEE Software, IEEE Computer Society Press, Los Alamitos, CA, USA,
v. 17, n. 4, p. 19–25, Jul. 2000. ISSN 0740-7459. Citations on pages 36 and 59.

WILLIAMS, L.; KREBS, W.; LAYMAN, L.; ANTON, A.; ABRAHAMSSON, P. Toward a
framework for evaluating extreme programming. In: Assessment in Software Engineering
(EASE). [S.l.: s.n.], 2004. Citations on pages 13, 23, 55, 60, 61, 62, and 124.

WILLIAMS, L.; LAYMAN, L.; ABRAHAMSSON, P. On establishing the essential components
of a technology-dependent framework: A strawman framework for industrial case study-based
research. In: Proceedings of the 2005 Workshop on Realising Evidence-based Software
Engineering. New York, NY, USA: ACM, 2005. (REBSE ’05), p. 1–5. ISBN 1-59593-121-X.
Available: <http://doi.acm.org/10.1145/1082983.1083179>. Citations on pages 55 and 60.

WILLIAMS, L. A. The Collaborative Software Process. Phd Thesis (PhD Thesis) — Univer-
sity of Utah, 2000. Citation on page 59.

WILSON, C. Hour of code—a record year for computer science. ACM Inroads, ACM, New
York, NY, USA, v. 6, n. 1, p. 22–22, Feb. 2015. ISSN 2153-2184. Available: <http://doi.acm.org/
10.1145/2723168>. Citation on page 19.

WOHLIN, C. Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering. New York, NY, USA: ACM, 2014. (EASE’14), p.
38:1–38:10. ISBN 978-1-4503-2476-2. Citations on pages 23 and 77.

WOHLIN, C.; RUNESON, P.; HOST, M.; OHLSSON, M.; REGNELL, B.; WESSLEN, A.
Experimentation in Software Engineering: An introduction. 1. ed. Boston, USA: Kluwer
Academic Publishers, 2000. Citation on page 40.

. Experimentation in Software Engineering. 2. ed. [S.l.]: Springer Publishing Company,
Incorporated, 2012. ISBN 3642290434, 9783642290435. Citations on pages 11, 13, 23, 42, 43,
44, 45, 51, 52, 53, 54, 56, 60, 110, and 113.

XIE, T.; BISHOP, J.; HORSPOOL, R. N.; TILLMANN, N.; HALLEUX, J. d. Crowdsourcing
Code and Process via Code Hunt. In: 2015 IEEE/ACM 2nd International Workshop on
CrowdSourcing in Software Engineering. [S.l.: s.n.], 2015. p. 15–16. Citation on page 198.

YI, J.; AHMED, U. Z.; KARKARE, A.; TAN, S. H.; ROYCHOUDHURY, A. A feasibility study
of using automated program repair for introductory programming assignments. In: Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. New York, NY,
USA: ACM, 2017. (ESEC/FSE 2017), p. 740–751. ISBN 978-1-4503-5105-8. Available: <http:
//doi.acm.org/10.1145/3106237.3106262>. Citations on pages 100 and 197.

ZANDEN, B. V.; ANDERSON, D.; TAYLOR, C.; DAVIS, W.; BERRY, M. W. Codeassessor: An
Interactive, Web-based Tool for Introductory Programming. J. Comput. Sci. Coll., v. 28, n. 2,
p. 73–80, Dec. 2012. ISSN 1937-4771. Available: <http://dl.acm.org/citation.cfm?id=2382887.
2382900>. Citation on page 195.

ZELLER, A. Making Students Read and Review Code. In: Proceedings of the 5th Annual
SIGCSE/SIGCUE ITiCSE Conference on Innovation and Technology in Computer Sci-
ence Education. New York, NY, USA: ACM, 2000. (ITiCSE ’00), p. 89–92. ISBN 1-58113-
207-7. Available: <http://doi.acm.org/10.1145/343048.343090>. Citation on page 195.

http://doi.acm.org/10.1145/1082983.1083179
http://doi.acm.org/10.1145/2723168
http://doi.acm.org/10.1145/2723168
http://doi.acm.org/10.1145/3106237.3106262
http://doi.acm.org/10.1145/3106237.3106262
http://dl.acm.org/citation.cfm?id=2382887.2382900
http://dl.acm.org/citation.cfm?id=2382887.2382900
http://doi.acm.org/10.1145/343048.343090

Bibliography 185

ZHANG, H.; BABAR, M. A.; TELL, P. Identifying relevant studies in software engineering.
Information and Software Technology, v. 53, n. 6, p. 625 – 637, 2011. ISSN 0950-5849.
Special Section: Best papers from the APSEC. Citations on pages 23 and 77.

ZHU, G.; CHEN, Y. Knowledge-based links for automatic interaction with programming online
judges. Journal of Software, v. 8, n. 5, p. 1209–1218, 2013. ISSN 1796217X. Citation on page
198.

ZIMMERMAN, D. M.; KINIRY, J. R.; FAIRMICHAEL, F. Toward instant gradeification.
In: 2011 24th IEEE-CS Conference on Software Engineering Education and Training
(CSEE&T). [S.l.: s.n.], 2011. p. 406–410. Citation on page 198.

ZINGARO, D. Examining interest and grades in computer science 1: A study of pedagogy and
achievement goals. Trans. Comput. Educ., ACM, New York, NY, USA, v. 15, n. 3, p. 14:1–
14:18, Jul. 2015. ISSN 1946-6226. Available: <http://doi.acm.org/10.1145/2802752>. Citation
on page 20.

ZINGARO, D.; CHERENKOVA, Y.; KARPOVA, O.; PETERSEN, A. Facilitating Code-writing
in PI Classes. In: Proceeding of the 44th ACM Technical Symposium on Computer Science
Education. New York, NY, USA: ACM, 2013. (SIGCSE ’13), p. 585–590. ISBN 978-1-4503-
1868-6. Available: <http://doi.acm.org/10.1145/2445196.2445369>. Citation on page 198.

ZINGARO, D.; PORTER, L. Peer instruction in computing: The value of instructor intervention.
Computers & Education, Elsevier Science Ltd., Oxford, UK, UK, v. 71, p. 87–96, Feb. 2014.
ISSN 0360-1315. Citation on page 35.

http://doi.acm.org/10.1145/2802752
http://doi.acm.org/10.1145/2445196.2445369

187

APPENDIX

A
SURVEY QUESTIONNAIRE

1. What is your current position in the company?

2. How many years of work experience do you have in software development?

3. What is your university degree in?

� computer science

� computer engineering

� information systems

� software engineering

� other:

4. What computing courses addressed software testing in your major?

� introductory programming courses

� software engineering course

� software testing course

� extracurricular short course

� other:

5. Which programming languages are generally used in your projects?

� Java

� C

� C++

188 APPENDIX A. Survey questionnaire

� Python

� C#

� PHP

� JavaScript

� Ruby

� Perl

� Swift

� other:

The remainder of the questionnaire addresses elements that characterize the testing activity.
In questions 6 to 10, for each element, please analyze the testing approaches listed in each
line and check the following columns:

∙ Applied in industry, if you have applied the testing approach in your job.

∙ Concept addressed in major, if you have learned about the theory of this testing
approach during your major.

∙ Practice activities in major, if you have completed hands-on activities (such as
programming/testing assignments) that gave you the opportunity to put the testing
approach into practice.

6. Types of systems under test

Applied in Concepts addressed Practice activities
industry in major in major

Web applications � � �
Mobile applications � � �
Object oriented software � � �
Aspect oriented software � � �
Concurrent programs � � �

Other types of systems under test:

7. Testing levels

Applied in Concepts addressed Practice activities
industry in major in major

Unit testing � � �
Integration testing � � �
System testing � � �
Regression testing � � �

Other testing levels:

189

Applied in Concepts addressed Practice activities
industry in major in major

Functionality testing � � �
Performance testing � � �
GUI testing � � �
Usability testing � � �
Security testing � � �
User acceptance testing � � �

8. Test types

Other test types:

9. Testing approach in the development process

Applied in Concepts addressed Practice activities
industry in major in major

Test-driven (first)
development (TDD) � � �
Test-last
development � � �

Other testing approaches:

10. Test case generation techniques

Applied in Concepts addressed Practice activities
industry in major in major

Client requirements/
user stories � � �
Category partitioning � � �
Boundary value analysis � � �
Cause-effect graph � � �
Finite state machine � � �
Control flow graph � � �
Data flow analysis � � �
Mutation analysis � � �

Other test techniques:

11. Which testing tools/frameworks do you use in your company?

12. If you wish, please comment other aspects about your experience with learning software
testing in your major and industry testing practices.

191

APPENDIX

B
MAPPING RESULTS

The following sections list all selected papers in the systematic mapping. Each section
contains the papers mapped to an identified topic. For each selected paper, we indicate the study
ID (in the format S#), the publication year, the publication venue and the evaluation method used
in the study.

B.1 Curriculum

The topic curriculum includes the papers listed in Table ??, which discuss the integration
of testing in the computing curriculum as a whole or in individual programming courses.

Table 38 – Selected papers mapped to topic “curriculum”

study ID reference year venue name evaluation method
S1 Edwards (2003b) 2003 OOPSLA descriptive
S2 Adams (2009) 2009 SIGCSE descriptive
S3 Cowling (2012) 2012 ICSE descriptive
S4 Frezza (2002) 2002 FIE experience report
S5 Christensen (2003) 2003 ITiCSE experience report
S6 Leska (2004) 2004 Journal of Computing in Small Col-

leges
experience report

S7 Wick, Stevenson and Wagner
(2005)

2005 SIGCSE experience report

S8 Dorin (2007) 2007 SIGCSE Bulletin experience report
S9 Gestwicki (2018) 2018 SIGCSE experience report
S10 Scatalon, Barbosa and Garcia

(2017)
2017 FIE literature review

S11 Jones (2000b) 2000 Australasian Conference on Computing
Education

not applicable

S12 Jones (2001) 2001 SIGCSE not applicable
S13 Jones (2001) 2001 FIE not applicable
S14 Heliotis and Zanibbi (2011) 2011 Journal of Computing in Small Col-

leges
survey

192 APPENDIX B. Mapping results

B.2 Teaching methods
The topic teaching methods includes the papers listed in Table 39, which investigate

methods to teach programming with the integration of software testing.

Table 39 – Selected papers mapped to topic “teaching methods”

study ID reference year venue name evaluation method
S15 Olan (2003) 2003 Journal of Computing in Small Colleges descriptive
S16 Goldwasser (2002) 2002 SIGCSE experience report
S17 Edwards (2003c) 2003 OOPSLA experience report
S18 Kolling et al. (2003) 2003 Computer Science Education experience report
S19 Miller (2004) 2004 Journal of Computing in Small Colleges experience report
S20 Leska and Rabung (2005) 2005 Journal of Computing in Small Colleges experience report
S21 Edwards and Perez-Quinones

(2007)
2007 Journal of Computing in Small Colleges experience report

S22 Wellington, Briggs and Girard
(2007)

2007 Agile experience report

S23 Carlson (2008) 2008 Agile experience report
S24 Gotel, Scharff and Wildenberg

(2008)
2008 SIGCSE Bulletin experience report

S25 Ring, Giordan and Ransbottom
(2008)

2008 Journal of Computing in Small Colleges experience report

S26 Sauve and Neto (2008) 2008 SIGCSE experience report
S27 Proulx (2009) 2009 SIGCSE experience report
S28 Kart (2013) 2013 Journal of Computing in Small Colleges experience report
S29 Gonzalez-Guerra and Leal-Flores

(2014)
2014 ICCSE experience report

S30 Thurner and Bottcher (2015) 2015 FIE experience report
S31 Joshi and Desai (2016) 2016 T4E experience report
S32 Barriocanal et al. (2002) 2002 SIGCSE Bulletin experimental
S33 Edwards (2003a) 2003 Journal on Educational Resources in

Computing
experimental

S34 Edwards (2004) 2004 SIGCSE experimental
S35 Janzen and Saiedian (2006b) 2006 SIGCSE experimental
S36 Janzen and Saiedian (2008) 2008 SIGCSE experimental
S37 Hilton and Janzen (2012) 2012 ITiCSE experimental
S38 Isomottonen and Lappalainen

(2012)
2012 ACM Inroads experimental

S39 Rubin (2013) 2013 SIGCSE experimental
S40 Politz, Krishnamurthi and Fisler

(2014)
2014 ICER experimental

S41 Oliveira et al. (2015) 2015 FIE experimental
S42 Li and Morreale (2016) 2016 Journal of Computing in Small Colleges experimental
S43 Politz et al. (2016) 2016 SIGCSE experimental
S44 Lee, Marepalli and Yang (2017) 2017 Journal of Computing in Small Colleges experimental
S45 Matthies, Treffer and Uflacker

(2017)
2017 FIE experimental

S46 Jones (2000c) 2000 ADMI not applicable
S47 Rosiene and Rosiene (2003) 2003 Journal of Computing in Small Colleges not applicable

(continued in the next page)

B.3. Course materials 193

Selected papers mapped to topic “teaching methods”(continued)
study ID reference year venue name evaluation method
S48 Snyder (2004) 2004 Journal of Computing in Small Colleges not applicable
S49 Girard and Wellington (2006) 2006 FIE not applicable
S50 Allison (2007) 2007 Journal of Computing in Small Colleges not applicable
S51 Briggs and Girard (2007) 2007 Journal of Computing in Small Colleges not applicable
S52 Gaspar and Langevin (2007b) 2007 SIGITE not applicable
S53 Gaspar and Langevin (2007a) 2007 EISTA not applicable
S54 Hernan-Losada, Pareja-Flores and

Velazquez-Iturbide (2008)
2008 ICALT not applicable

S55 Schaub (2009) 2009 SIGCSE Bulletin not applicable
S56 Proulx (2011) 2011 book not applicable
S57 Beaubouef and Zhang (2012) 2012 Journal of Computing in Small Colleges not applicable
S58 Brannock and Napier (2012) 2012 Conference on Information Technology

Education
not applicable

S59 Horvath (2012) 2012 ICETA not applicable
S60 Alkadi and Alkadi (2002) 2002 IEEE Aerospace Conference survey
S61 Barbosa et al. (2003) 2003 CSEE&T survey
S62 Whalley and Philpott (2011) 2011 Australasian Computing Education

Conference
survey

S63 Smith et al. (2012) 2012 ICER survey
S64 Chen and Hall (2013) 2013 ITiCSE survey
S65 Gaspar et al. (2013) 2013 SIGITE survey
S66 Basu et al. (2015) 2015 Learning Scale Conference survey
S67 Rodrigues et al. (2017) 2017 SBES survey

B.3 Course materials
The topic course materials includes the papers listed in Table ??, which investigate how

to incorporate testing concepts into course materials of introductory courses.

Table 40 – Selected papers mapped to topic “course materials”

study ID reference year venue name evaluation method
S68 Agarwal, Edwards and Perez-

Quinones (2006)
2006 SIGCSE experimental

S69 Desai, Janzen and Clements (2009) 2009 SIGCSE experimental
S70 Barbosa et al. (2008) 2008 FIE not applicable

B.4 Programming assignments
The topic programming assignments includes the papers listed in Table 41, which discuss

guidelines to conduct programming assignments that include testing practices.

Table 41 – Selected papers mapped to topic “programming assignments”

study ID reference year venue name evaluation method
S71 Marrero and Settle (2005) 2005 SIGCSE experience report
S72 Pieterse and Liebenberg (2017) 2017 Koli Calling experimental

(continued in the next page)

194 APPENDIX B. Mapping results

Selected papers mapped to topic “programming assignments”(continued)
study ID reference year venue name evaluation method
S73 Teusner, Hille and Hagedorn (2017) 2017 FIE experimental
S74 Jones (2000a) 2000 ADMI not applicable
S75 Ghafarian (2001) 2001 Journal of Computing Sciences in Col-

leges
not applicable

S76 Isong (2001) 2001 Journal of Computing in Small Colleges not applicable
S77 Edwards et al. (2008) 2008 SIGCSE Bulletin not applicable
S78 Kussmaul (2008) 2008 OOPSLA not applicable
S79 Middleton (2013) 2013 Journal of Computing in Small Colleges not applicable
S80 Middleton (2015) 2015 Journal of Computing in Small Colleges not applicable
S81 Carbone et al. (2000) 2000 Australasian Conference on Computing

Education
qualitative

S82 Lakanen, Lappalainen and Isomöt-
tönen (2015)

2015 Koli Calling qualitative

S83 Bryce (2011) 2011 Journal of Computing in Small Colleges survey
S84 Romli, Sulaiman and Zamli (2011) 2011 Communications in Computer and In-

formation Science
survey

B.5 Programming process
The topic programming process includes the papers listed in Table 42, which discuss

programming processes for novices, binding the activities of programming and testing.

Table 42 – Selected papers mapped to topic “programming process”

study ID reference year venue name evaluation method
S85 Smith and Stoecklin (2001) 2001 Journal of Computing in Small Colleges descriptive
S86 Allen, Cartwright and Reis (2003) 2003 SIGCSE experience report
S87 Rahman and Juell (2006) 2006 CSEE&T experience report
S88 Rahman (2007) 2007 FIE experience report
S89 Caspersen and Kolling (2009) 2009 ACM TOCE experience report
S90 Nino (2009) 2009 Journal of Computing in Small Colleges experience report
S91 Paul (2016) 2016 Journal of Computing in Small Colleges experience report
S92 Edwards (2003d) 2003 EISTA experimental
S93 Erdogmus, Morisio and Torchiano

(2005)
2005 IEEE Transactions on Software Engi-

neering
experimental

S94 Janzen and Saiedian (2006a) 2006 CSEE&T experimental
S95 Mendonca, Guerrero and Costa

(2009)
2009 FIE experimental

S96 Buffardi and Edwards (2012b) 2012 International Journal of Information
and Computer Science

experimental

S97 Neto et al. (2013) 2013 ICSE experimental
S98 Camara and Silva (2016) 2016 SIGCSE experimental
S99 Parodi et al. (2016) 2016 CLEI experimental
S100 Missiroli, Russo and Ciancarini

(2017)
2017 COMPSAC experimental

S101 Scatalon et al. (2017b) 2017 CSEE&T experimental
S102 Jones (2004) 2004 Journal of Computing in Small Colleges literature review
S103 Desai, Janzen and Savage (2008) 2008 SIGCSE Bulletin literature review

(continued in the next page)

B.6. Tools 195

Selected papers mapped to topic “programming process”(continued)
study ID reference year venue name evaluation method
S104 Parrish et al. (2000) 2000 Southeast Regional Conference not applicable
S105 Caspersen and Kolling (2006) 2006 OOPSLA not applicable
S106 Hundley (2010) 2010 Southeast Regional Conference not applicable
S107 Bennedsen and Caspersen (2005) 2005 SIGCSE qualitative
S108 Keefe, Sheard and Dick (2006) 2006 Australasian Conference on Computing

Education
qualitative

S109 Murphy et al. (2008) 2008 SIGCSE qualitative
S110 VanDeGrift et al. (2011) 2011 SIGCSE qualitative
S111 Pearce, Nakazawa and Heggen

(2015)
2015 Journal of Computing in Small Colleges qualitative

B.6 Tools
The topic tools includes the papers listed in Table 43, which investigate supporting tools

for the integration of testing into programming courses.

Table 43 – Selected papers mapped to topic “tools”

study ID reference year venue name evaluation method
S112 Zeller (2000) 2000 ITiCSE experience report
S113 Cheang et al. (2003) 2003 Computers&Education experience report
S114 Leal and Silva (2003) 2003 Software: Practice and Experience experience report
S115 Roberts and Verbyla (2003) 2003 Australasian Conference on Computing

Education
experience report

S116 Venables and Haywood (2003) 2003 Australasian Conference on Computing
Education

experience report

S117 Choy et al. (2005) 2005 Advances in Web-Based Learning experience report
S118 Collofello and Vehathiri (2005) 2005 FIE experience report
S119 Higgins et al. (2005) 2005 Journal of Computing in Small Colleges experience report
S120 Baldwin, Crupi and Estrellado

(2006)
2006 SIGCSE Bulletin experience report

S121 Fischer and Gudenberg (2006) 2006 PPPJ experience report
S122 etteberg and Aalberg (2006) 2006 OOPSLA experience report
S123 Elbaum et al. (2007) 2007 ICSE experience report
S124 Gotel, Scharff and Wildenberg

(2007)
2007 PPPJ experience report

S125 Amelung, Forbrig and Rösner
(2008)

2008 ITiCSE experience report

S126 Tremblay et al. (2008) 2008 Software: Practice and Experience experience report
S127 Proulx and Jossey (2009a) 2009 PPPJ experience report
S128 Sant (2009) 2009 SIGCSE experience report
S129 Tiantian et al. (2009) 2009 ETCS experience report
S130 Lappalainen et al. (2010) 2010 ITiCSE experience report
S131 Striewe and Goedicke (2011) 2011 ITiCSE experience report
S132 Tremblay and Lessard (2011) 2011 ITiCSE experience report
S133 Petit, Gimenez and Roura (2012) 2012 SIGCSE experience report
S134 Rajaguru et al. (2012) 2012 ICAESM experience report
S135 Zanden et al. (2012) 2012 Journal of Computing in Small Colleges experience report

(continued in the next page)

196 APPENDIX B. Mapping results

Selected papers mapped to topic “tools”(continued)
study ID reference year venue name evaluation method
S136 Pieterse (2013) 2013 CSERC experience report
S137 Sioson (2013) 2013 IISA experience report
S138 Vihavainen et al. (2013) 2013 ITiCSE experience report
S139 Edwards (2014) 2014 Learning Scale Conference experience report
S140 Marcos-Abed (2014b) 2014 Western Canadian Conference on Com-

puting Education
experience report

S141 Tillmann et al. (2014) 2014 ISSTA experience report
S142 Bishop et al. (2015) 2015 ICSE experience report
S143 Bradshaw (2015) 2015 SIGCSE experience report
S144 Ishihara and Funabiki (2015) 2015 IIAI experience report
S145 Ureel and Wallace (2015) 2015 FIE experience report
S146 Gao, Pang and Lumetta (2016) 2016 ITiCSE experience report
S147 Herout and Brada (2016) 2016 CSEE&T experience report
S148 Kyrilov and Noelle (2016) 2016 Journal of Computing in Small Colleges experience report
S149 Spacco et al. (2005) 2005 International Workshop on Mining Soft-

ware Repositories
experimental

S150 Odekirk-Hash and Zachary (2001) 2001 SIGCSE experimental
S151 Daly and Horgan (2004) 2003 IEEE Transactions on Education experimental
S152 Sauvé, Neto and Cirne (2006) 2006 International Workshop on Automation

of Software Test
experimental

S153 Thornton et al. (2008) 2008 SIGCSE experimental
S154 Allevato, Edwards and Perez-

Quinones (2009)
2009 SIGCSE experimental

S155 Cardell-Oliver et al. (2010) 2010 Australian Software Engineering Con-
ference

experimental

S156 Clarke et al. (2010) 2010 OOPSLA experimental
S157 Denny et al. (2011) 2011 SIGCSE experimental
S158 Dvornik et al. (2011) 2011 CSEE&T experimental
S159 Enstrom et al. (2011) 2011 FIE experimental
S160 Nishimura, Kawasaki and Tomi-

naga (2011)
2011 ITHET experimental

S161 Souza, Maldonado and Barbosa
(2011)

2011 CSEE&T experimental

S162 Wang et al. (2011) 2011 Computers & Education experimental
S163 Allevato and Edwards (2012) 2012 SIGCSE experimental
S164 Edwards et al. (2012) 2012 SIGCSE experimental
S165 Kaushal and Singh (2012) 2012 AICERA experimental
S166 Buffardi and Edwards (2013b) 2013 SIGCSE experimental
S167 Janzen, Clements and Hilton (2013) 2013 ICSE experimental
S168 Jezek, Malohlava and Pop (2013) 2013 CSEE&T experimental
S169 Shams (2013a) 2013 SPLASH experimental
S170 Shams and Edwards (2013) 2013 ICER experimental
S171 Vujosevic-Janicic et al. (2013) 2013 Information and Software Technology experimental
S172 Allevato and Edwards (2014) 2014 Software - Practice and Experience experimental
S173 Buffardi and Edwards (2014b) 2014 ITiCSE experimental
S174 Edwards, Shams and Estep (2014) 2014 SIGCSE experimental
S175 Politz et al. (2014) 2014 ITiCSE experimental
S176 Rubio-Sanchez et al. (2014) 2014 Computers in Human Behavior experimental
S177 Souza et al. (2014) 2014 FIE experimental
S178 Blaheta (2015) 2015 SIGCSE experimental
S179 Buffardi and Edwards (2015) 2015 SIGCSE experimental

(continued in the next page)

B.6. Tools 197

Selected papers mapped to topic “tools”(continued)
study ID reference year venue name evaluation method
S180 Reynolds et al. (2015) 2015 Journal of Computing in Small Colleges experimental
S181 Souza, Isotani and Barbosa (2015) 2015 International Journal of Knowledge and

Learning
experimental

S182 Earle, Fredlund and Hughes (2016) 2016 ITiCSE experimental
S183 Birch, Fischer and Poppleton

(2016)
2016 ITiCSE experimental

S184 Braught and Midkiff (2016) 2016 SIGCSE experimental
S185 Rajala et al. (2016) 2016 Australasian Computer Science Week

Multiconference
experimental

S186 Sridhara et al. (2016) 2016 Learning Scale Conference experimental
S187 Tang et al. (2016) 2016 ITiCSE experimental
S188 Smith et al. (2017) 2017 ITiCSE experimental
S189 Madeja and Poruban (2017) 2017 International Scientific Conference on

Informatics
experimental

S190 Yi et al. (2017) 2017 Joint Meeting on Foundations of Soft-
ware Engineering

experimental

S191 Krusche and Seitz (2018) 2018 SIGCSE experimental
S192 Ala-Mutka (2005) 2005 Computer Science Education literature review
S193 Douce, Livingstone and Orwell

(2005)
2005 Journal of Computing in Small Colleges literature review

S194 Ihantola et al. (2010) 2010 Koli Calling literature review
S195 Romli, Sulaiman and Zamli (2010) 2010 International Symposium on Informa-

tion Technology
literature review

S196 Allevato et al. (2008) 2008 Educational Data Mining not applicable
S197 Gustafson and Dwyer (2000) 2000 FIE not applicable
S198 Jackson (2000) 2000 ITiCSE not applicable
S199 Allen, Cartwright and Stoler (2002) 2002 SIGCSE not applicable
S200 Higgins, Symeonidis and Tsintsifas

(2002)
2002 ITiCSE not applicable

S201 Andrianoff et al. (2003) 2003 OOPSLA not applicable
S202 Jones and Allen (2003) 2003 ITiCSE not applicable
S203 Morris (2003) 2003 FIE not applicable
S204 Patterson, Kölling and Rosenberg

(2003)
2003 ITiCSE not applicable

S205 Proulx and Rasala (2004) 2004 SIGCSE Bulletin not applicable
S206 Spacco, Hovemeyer and Pugh

(2004)
2004 OOPSLA not applicable

S207 Sun and Jones (2004) 2004 Southeast Regional Conference not applicable
S208 Allowatt and Edwards (2005) 2005 OOPSLA not applicable
S209 Feng and McAllister (2006) 2006 FIE not applicable
S210 Spacco et al. (2006) 2006 OOPSLA not applicable
S211 Helmick (2007) 2007 SIGCSE not applicable
S212 Ihantola (2007) 2007 Informatics in Education not applicable
S213 Murphy and Yildirim (2007) 2007 FIE not applicable
S214 Tremblay, Laforest and Salah

(2007)
2007 SIGCSE not applicable

S215 Edwards and Perez-Quinones
(2008)

2008 ITiCSE not applicable

S216 Fu et al. (2008) 2008 SIGCSE not applicable
S217 Rossling and Hartte (2008) 2008 ITiCSE not applicable
S218 Proulx and Jossey (2009b) 2009 SIGCSE not applicable
S219 Clements and Janzen (2010) 2010 ICST not applicable

(continued in the next page)

198 APPENDIX B. Mapping results

Selected papers mapped to topic “tools”(continued)
study ID reference year venue name evaluation method
S220 Karavirta and Ihantola (2010) 2010 ITiCSE not applicable
S221 Leal and Silva (2010) 2010 book not applicable
S222 Ricken and Cartwright (2010) 2010 SIGCSE not applicable
S223 Bell, Sheth and Kaiser (2011) 2011 Int. Workshop on Social Software Engi-

neering
not applicable

S224 Hull, Powell and Klein (2011) 2011 ITiCSE not applicable
S225 Sheth, Bell and Kaiser (2011) 2011 Int. Workshop on Games and Software

Engineering
not applicable

S226 Snyder, Edwards and Perez-
Quinones (2011)

2011 SIGCSE not applicable

S227 Zimmerman, Kiniry and Fair-
michael (2011)

2011 CSEE&T not applicable

S228 Llana, Martin-Martin and Pareja-
Flores (2012)

2012 Koli Calling not applicable

S229 Danutama and Liem (2013) 2013 Procedia Technology not applicable
S230 Tillmann et al. (2013) 2013 ASE not applicable
S231 Zhu and Chen (2013) 2013 Journal of Software not applicable
S232 Zingaro et al. (2013) 2013 SIGCSE not applicable
S233 Akour (2014) 2014 CSCI not applicable
S234 Marcos-Abed (2014a) 2014 ITiCSE not applicable
S235 O’Brien, Goldman and Miller

(2014)
2014 Learning Scale Conference not applicable

S236 Pribela et al. (2014) 2014 CEUR not applicable
S237 Brian et al. (2015) 2015 ITiCSE not applicable
S238 Combefis and Paques (2015) 2015 Workshop on Educational Software En-

gineering
not applicable

S239 Pietrikova, Juhar and Stastna
(2015)

2015 ICETA not applicable

S240 Pozenel, Furst and Mahnic (2015) 2015 MIPRO not applicable
S241 Turner (2015) 2015 SIGCSE not applicable
S242 Xie et al. (2015) 2015 Int. Workshop on CrowdSourcing in

Software Engineering
not applicable

S243 Johnson (2016) 2016 SIGCSE not applicable
S244 Lippe et al. (2016) 2016 SIGPLAN Symposium on Scala not applicable
S245 Wilcox (2016) 2016 SIGCSE not applicable
S246 Funabiki et al. (2017) 2017 AINA not applicable
S247 Clegg, Rojas and Fraser (2017) 2017 ICSE not applicable
S248 Dewey et al. (2017) 2017 ITiCSE not applicable
S249 Joy, Griffiths and Boyatt (2005) 2005 Journal of Computing in Small Colleges qualitative
S250 Saikkonen, Malmi and Korhonen

(2001)
2001 ITiCSE survey

S251 Harris, Adams and Harris (2004) 2004 Journal of Computing in Small Colleges survey
S252 Juedes (2005) 2005 FIE survey
S253 Shaffer (2005) 2005 SIGCSE Bulletin survey
S254 Spacco et al. (2006) 2006 SIGCSE survey
S255 Nordquist (2007) 2007 Journal of Computing in Small Colleges survey
S256 Suleman (2008) 2008 SAICSIT survey
S257 Brown et al. (2012) 2012 ITiCSE survey
S258 Johnson (2012) 2012 ITiCSE survey
S259 Funabiki, Nakamura and Kao

(2014)
2014 GCCE survey

(continued in the next page)

B.7. Program/test quality 199

Selected papers mapped to topic “tools”(continued)
study ID reference year venue name evaluation method
S260 Pape et al. (2016) 2016 ICSE survey
S261 Valle et al. (2017) 2017 FIE survey

B.7 Program/test quality
The topic program/test quality includes the papers listed in Table 44, which investigate

assessment of students’ submitted code (program or tests).

Table 44 – Selected papers mapped to topic “program/test quality”

study ID reference year venue name evaluation method
S262 Steinberg (2001) 2001 XP Universe Conference descriptive
S263 Morisio, Torchiano and Argentieri

(2004)
2004 International Symposium on Software

Metrics
experimental

S264 Aaltonen, Ihantola and Seppala
(2010)

2010 OOPSLA experimental

S265 Brito et al. (2012) 2012 CLEI Electronic Journal experimental
S266 Utting et al. (2013b) 2013 ITiCSE experimental
S267 Edwards and Shams (2014a) 2014 ICSE experimental
S268 Whalley and Kasto (2014) 2014 Australasian Computing Education

Conference
experimental

S269 Lemos et al. (2015) 2015 Int. Symposium on Software Reliability
Engineering

experimental

S270 Shams and Edwards (2015) 2015 SIGCSE experimental
S271 Edwards and Li (2016) 2016 Koli Calling experimental
S272 Gómez, Vegas and Juristo (2016) 2016 ICSE experimental
S273 Lemos et al. (2017) 2017 Journal of Systems and Software experimental
S274 Souza, Kolling and Barbosa (2017) 2017 FIE experimental
S275 Shams (2013b) 2013 ICER not applicable
S276 Luxton-Reilly et al. (2013) 2013 ITiCSE qualitative

B.8 Concept understanding
The topic concept understanding includes the papers listed in Table ??, which investigate

the assessment of students’ knowledge of programming and testing concepts.

Table 45 – Selected papers mapped to topic “concept understanding”

study ID reference year venue name evaluation method
S277 Sanders et al. (2013) 2013 ITiCSE experimental
S278 Luxton-Reilly et al. (2017) 2017 ITiCSE exploratory

B.9 Perceptions/behaviors
The topic perceptions/behaviors includes the papers listed in Table ??, which investigate

students’ attitudes towards software testing.

200 APPENDIX B. Mapping results

Table 46 – Selected papers mapped to topic “perceptions and behaviors”

study ID reference year venue name evaluation method
S279 Spacco and Pugh (2006) 2006 OOPSLA experimental
S280 Janzen and Saiedian (2007) 2007 ICSE experimental
S281 Buffardi and Edwards (2012a) 2012 ITiCSE experimental
S282 Buffardi and Edwards (2013a) 2013 ICER experimental
S283 Fidge, Hogan and Lister (2013) 2013 Australasian Computing Education

Conference
experimental

S284 Spacco et al. (2013) 2013 ITiCSE experimental
S285 Buffardi and Edwards (2014a) 2014 SIGCSE experimental
S286 Edwards and Shams (2014b) 2014 ITiCSE experimental
S287 Baumstark Jr. and Orsega (2016) 2016 Journal of Computing in Small Col-

leges
experimental

S288 Kolikant (2005) 2005 ICER qualitative
S289 Thompson, Hunt and Kinshuk

(2006)
2006 Australasian Conference on Computing

Education
qualitative

S290 Kolikant and Mussai (2008) 2008 Computer Science Education qualitative
S291 Mendonca et al. (2009) 2009 FIE qualitative
S292 Pham et al. (2014) 2014 Symposium on the Foundations of Soft-

ware Engineering
qualitative

S293 Ize, Pope and Weerasinghe (2017) 2017 ITiCSE qualitative

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Context
	Motivation
	Objetives
	Methods
	Thesis structure

	Programming education
	Curriculum
	Courses
	Learning outcomes
	Teaching approaches
	Software testing
	Pair programming
	Visualization
	Media computation
	Robots

	Final remarks

	Experimentation in Software Engineering
	Empirical studies
	Controlled experiments: basic concepts
	Experimental process
	Scoping
	Planning
	Operation
	Analysis and interpretation
	Presentation and package

	Experimental frameworks
	Framework on software reading techniques
	Framework on pair programming
	Framework on eXtreme Programming practices

	Final remarks

	Survey on testing education
	Related work
	Survey design
	Threats to validity
	Results
	Educational profile
	Professional profile
	Knowledge gaps on software testing
	Supporting tools
	Respondents' experiences

	Final remarks

	Software testing in programming courses: A systematic mapping
	Research method
	Research questions
	Search strategy
	Selection criteria
	Classification scheme
	Data extraction

	Results
	RQ1: Investigated topics
	Curriculum
	Teaching methods
	Course materials
	Programming assignments
	Programming process
	Tools
	Program/test quality
	Concept understanding
	Students' perceptions and behaviors

	RQ2: Benefits and drawbacks
	RQ3: Experimental design
	RQ3.1: Independent variables
	RQ3.2: Dependent variables
	RQ3.3: Context variables

	RQ4: Teaching practices
	RQ4.1: Testing concepts in programming course materials
	RQ4.2: Testing practices in programming course assignments
	RQ4.3: Supporting tools

	Discussion
	Final remarks

	Experiments about the test design task
	Experiment on students performing the test design task
	Goal
	Subjects
	Experimental Objects
	Hypotheses
	Variables
	Experimental Design
	Results
	Survey
	Discussion

	Experiment on students' test design skills
	Final remarks

	Experimental framework for the integration of software testing into programming education
	Experimental framework building method
	STeP-EF goal model
	STeP-EF variables model
	Independent variables
	Course materials
	Programming assignments
	Supporting tools

	Dependent variables
	Program
	Tests
	Assignment
	Student

	Context variables
	Student
	Programming assignments
	Course
	Other practices

	Instantiation of experiments into the framework

	Conclusions
	Contributions
	Limitations
	Future work
	Publications

	Bibliography
	Survey questionnaire
	Mapping results
	Curriculum
	Teaching methods
	Course materials
	Programming assignments
	Programming process
	Tools
	Program/test quality
	Concept understanding
	Perceptions/behaviors

