• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2016.tde-28042016-090039
Document
Author
Full name
Rachel Virgínia Xavier Aires
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2000
Supervisor
Committee
Aluisio, Sandra Maria (President)
Finger, Marcelo
Nunes, Maria das Graças Volpe
Title in Portuguese
Implementação, Adaptação, Combinação e Avaliação de Etiquetadores para o Português do Brasil
Keywords in Portuguese
Não disponível
Abstract in Portuguese
A etiquetagem morfossintática é uma tarefa básica, bem conhecida e bastante explorada em diversas aplicações de Processamento de Línguas Naturais (PLN), como análise sintática e extração e recuperação de informações. Os etiquetadores para a língua inglesa atingiram um estado da arte entre 96-99% de precisão geral. Diferentemente do inglês, para o português do Brasil não foram ainda exploradas todas as técnicas para a etiquetagem, nem se atingiu a precisão dos melhores etiquetadores para a língua inglesa. Com estas motivações, quatro etiquetadores disponíveis na WWW foram treinados Unigrama (TreeTagger), Trigrama (TreeTagger), baseado em transformações (TBL) e baseado em máxima entropia (MXPOST) , e um etiquetador simbólico foi desenvolvido (PoSiTagger). Todos os etiquetadores adaptados foram treinados com um corpus com cerca de 100.000 palavras formado por textos didáticos, jornalísticos e literários, e etiquetado com o Nilc tagset. A maior precisão geral obtida foi a do MXPOST 89,66%. Foram também implementados quatorze métodos para a combinação dos etiquetadores, dos quais sete superaram a precisão do MXPOST. A maior precisão obtida com os métodos de combinação foi 90,91%. A precisão geral sofreu a influência do tamanho do corpus manualmente etiquetado disponível para treinamento, do conjunto de etiquetas e dos tipos de texto utilizados.
Title in English
Implementation, adaptation, combination and evaluation of Brazilian portuguese taggers
Keywords in English
Not available
Abstract in English
POS tagging is a very basic and well known natural language processing task used in several applications such as parsing and information retrieval. lhe taggers for English achieved a state of the art accuracy of 96-99%. Unlike the case of English, only some approaches to tagging were explored for Brazilian Portuguese and the tagging systems available are still unsatisfactory from the point of view of results based on the state-of-the-art accuracy for English. Four taggers have been trained with the NILC tagset on a mixed 100,000-word corpus of Brazilian Portuguese, namely Unigram (Treetagger), N-gram (Treetagger), transformation-based (TBL) and Maximum-Entropy tagging (MXPOST), and a symbolic tagger, named PoSiTagger, was designed. MXPOST displayed the best accuracy (89.66%). Fourteen methods of combination were used, seven of which IS to an improvement over the MXPOST accuracy. lhe best result from the combination strategy was 90,91%. lhe low accuracy is attributed to the reduced sue of the training corpus, the tagset used and the mixed corpus employed.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-04-28
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.