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RESUMO

OE, B. M. S. Inferência estatística em redes complexas. 2016. 79 p. Master dissertation (Mas-
ter student Program in Computer Science and Computational Mathematics) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2016.

Vários fenômenos naturais e artificiais compostos de partes interconectadas vem sendo estudados
pela teoria de redes complexas. Tal representação permite o estudo de processos dinâmicos
que ocorrem em redes complexas, tais como propagação de epidemias e rumores. A evolução
destes processos é influenciada pela organização das conexões da rede. O tamanho das redes
do mundo real torna a análise da rede inteira computacionalmente proibitiva. Portanto, torna-se
necessário representá-la com medidas topológicas ou amostrá-la para reduzir seu tamanho. Além
disso, muitas redes são amostras de redes maiores cuja estrutura é difícil de ser capturada e
deve ser inferida de amostras. Neste trabalho, ambos os problemas são estudados: a influência
da estrutura da rede em processos de propagação e os efeitos da amostragem na estrutura da
rede. Os resultados obtidos sugerem que é possível predizer o tamanho da epidemia ou do rumor
com base em um modelo de regressão beta com dispersão variável, usando medidas topológicas
como regressores. A medida mais influente em ambas as dinâmicas é a informação de busca
média, que quantifica a facilidade com que se navega em uma rede. Também é mostrado que a
estrutura de uma rede amostrada difere da original e que o tipo de mudança depende do método
de amostragem utilizado. Por fim, quatro métodos de amostragem foram aplicados para estudar
o comportamento do limiar epidêmico de uma rede quando amostrada com diferentes taxas de
amostragem. Os resultados sugerem que a amostragem por busca em largura é a mais adequada
para estimar o limiar epidêmico entre os métodos comparados.

Palavras-chave: Redes complexas, Processos de propagação, Análise de regressão, Amostra-
gem.





ABSTRACT

OE, B. M. S. Statistical inference in complex networks. 2016. 79 p. Master dissertation (Mas-
ter student Program in Computer Science and Computational Mathematics) – Instituto de
Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2016.

The complex network theory has been extensively used to understand various natural and artificial
phenomena made of interconnected parts. This representation enables the study of dynamical
processes running on complex systems, such as epidemics and rumor spreading. The evolution
of these dynamical processes is influenced by the organization of the network. The size of
some real world networks makes it prohibitive to analyse the whole network computationally.
Thus it is necessary to represent it by a set of topological measures or to reduce its size by
means of sampling. In addition, most networks are samples of a larger networks whose structure
may not be captured and thus, need to be inferred from samples. In this work, we study both
problems: the influence of the structure of the network in spreading processes and the effects of
sampling in the structure of the network. Our results suggest that it is possible to predict the final
fraction of infected individuals and the final fraction of individuals that came across a rumor
by modeling them with a beta regression model and using topological measures as regressors.
The most influential measure in both cases is the average search information, that quantifies
the ease or difficulty to navigate through a network. We have also shown that the structure of
a sampled network differs from the original network and that the type of change depends on
the sampling method. Finally, we apply four sampling methods to study the behaviour of the
epidemic threshold of a network when sampled with different sampling rates and found out that
the breadth-first search sampling is most appropriate method to estimate the epidemic threshold
among the studied ones.

Keywords: Complex networks, Spreading processes, Regression analysis, Sampling.
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CHAPTER

1
INTRODUCTION

1.1 Overview

Various systems that at first seem unrelated, such as the society, the Internet, protein
chains and food webs, have something in common: they are all examples of complex systems.
A complex system is characterized by having a large number of agents that interact with
each other and with the environment and display organization without any external influence,
making complex behaviours to emerge from simple rules (MITCHELL, 2009; AMARAL;
OTTINO, 2004). They are often described by the rule: “The whole is more than the sum of its
parts” (AMARAL; OTTINO, 2004).

Complex systems are naturally represented as networks, that are formed by a set of
nodes (or vertices) connected by edges (or links) (AMARAL; OTTINO, 2004). The birth of
network theory is universally attributed to Euler (AMARAL; OTTINO, 2004), when he provided
the solution to the Königsberg bridge puzzle (EULER, 1741). The Königsberg bridge puzzle
inquires whether it is possible to plan a walk through the town of Königsberg in such a way that
every bridge will be crossed exactly once. In his solution, Euler represented the problem as a
graph, with regions as nodes and bridges as edges. This approach has been used plentifully since
then. For example, in the early 20th century, the graph representation was used to analyze social
relationships and the international commerce (ALBERT; BARABÁSI, 2002; NEWMAN, 2010).

However, network theory as known today, was introduced in the end of the 1990s, when
the topology of the Internet and the World Wide Web were mapped (BARABÁSI; ALBERT,
1999; FALOUTSOS; FALOUTSOS; FALOUTSOS, 1999). It was observed that the structure of
these networks is highly irregular, with a great variability in the number of links of the nodes
and modular organization (NEWMAN, 2010). The distribution of the number of links follows a
power law, meaning that the majority of the nodes have few connections whereas a small fraction
of nodes are densely connected (FALOUTSOS; FALOUTSOS; FALOUTSOS, 1999).
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The advances in technology have enabled us to collect large amounts of data related to
complex systems. For instance, online social networks provide data on social interactions among
individuals and mobile phones provide data on communication networks. At the same time, new
methods to quantify the interaction between proteins and molecules, have enabled the mapping
of fundamental biological iterations (BARABÁSI, 2007).

With the network data, we can simulate dynamical systems, such as epidemic spreading
and synchronization (NEWMAN, 2010), on the network structure. In this way, we can study how
the network organization influence the emergence of endemic state or the collective behavior of
coupled oscillators. The quantification of the network role for dynamical system evolution is
important not only to understand the behavior of the process, but also to develop methods for
predicting and control of the dynamics. For instance, if we can identify the main propagators in
epidemic spreading, then we can propose very effective methods for vaccination (WANG et al.,
2016).

However, the quantification of this influence is not trivial (BOCCALETTI et al., 2006),
since the network organization generally presents very complex pattern of connections, such
as degree heterogeneity and modular organization. Several aspects of the network organization
affect dynamical processes and it is impossible to measure all influences. Thus, this study has
uncertainty associated and it is natural to consider statistical concepts to determine which network
properties play fundamental role on the dynamical process. Statistical tools, such as regression
analysis, can be employed to quantify the influence of the topology of the network in dynamical
processes, as performed in (ARRUDA et al., 2013), where Bayesian regression analysis was
considered to predict the degree of synchronization of Kuramoto oscillators.

Statistical methods are also important to make inference about the network structure.
The large size of some networks, which may be formed by thousands or even millions of
agents (BARABÁSI, 2007). For instance, more than 250TB of storage would be necessary to
store only the topology of the Facebook online social network (GJOKA et al., 2010; GJOKA et al.,
2011). Sometimes it is prohibitive to study the whole network, either because of computational
limitations, as in the case of Border Gate Protocol simulations, that are restricted to a few
thousand nodes (DIMITROPOULOS; RILEY, 2003), or because they exist in a decentralized
form and their global structure is not fully visible to the public (MAIYA, 2011) as in case of
online social networks (MISLOVE et al., 2007). Thus, instead of considering the whole network,
a smaller treatable subset of nodes and links of the original network can be used (MAIYA, 2011).

Since several methods are used to sample networks, such as protein interaction or social
networks, it is fundamental to determine which method produce graphs whose structure are
similar to the original network. In fact, the sampled network may have different topological
properties from the original network. For instance, in (STUMPF; WIUF; MAY, 2005) it was
shown that the distribution of the number of connections of a random uniform sample of a
scale-free network is not strictly scale-free.
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In a similar way, sampling can modify network properties related to dynamical processes
or the outcome of the process itself. For instance the spectral properties. In this case, dynamical
processes on networks are affected since they are related to critical parameters, such as the
epidemic threshold (PASTOR-SATORRAS et al., 2015) for disease spreading and the critical
coupling to reach the synchronous state (BOCCALETTI et al., 2006). Therefore, conclusions
drawn based on a sample of a network should not be generalized to the original network.

This work focuses on studying structural and functional properties of complex networks
with the aid of statistical tools. Structural properties are purely topological properties of a
network, while functional properties are related to dynamical processes that occur over the
network (MAIYA, 2011). For the latter, we concentrate on epidemic and rumor spreading.

The following sections present the working our hypotheses and goals, as well as the
organization of the thesis.

1.2 Working hypotheses
The working hypotheses of this work are:

(i) The structure of the network influences the collective behaviour in spreading processes
and such influence can be quantified.

a) The structure of the network can be well represented by its topological measures;

b) It is possible to quantify this influence by means of regression analysis.

(ii) Sampled networks have properties and characteristics that differ from the original network.

1.3 Objectives
This work has two main goals, related to the aforementioned hypotheses:

(i) Study the influence of the organization of links in spreading processes, specifically epi-
demic and rumor spreading.

a) Determine which topological property most influences the final fraction of infected
individuals in epidemic and rumor spreading processes by using regression analysis;

b) Compare the regression analysis to determine the similarities between these processes
in terms of network structure.

(ii) Study the structural and functional effects of sampling on complex networks. Here, we
focus on sampling a subnetwork, rather than a set of vertices.

a) Compare structural properties of networks with their samples;
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b) Study the behaviour of the epidemic threshold and the infection curve on sampled
networks.

c) Approximate the epidemic threshold and the infection curve of the original network
based on sampled graphs.

1.4 Organization of the thesis
This thesis is organized as follows:

∙ Chapter 2 presents theoretical background on network theory, regression analysis and
network sampling, as well as the related work;

∙ Chapter 3 presents the methods employed throughout this work;

∙ Chapter 4 presents our results;

∙ Chapter 5 presents our conclusions.
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CHAPTER

2
BACKGROUND

This chapter provides the necessary background and notation for understanding the
rest of the thesis. It is organized as follows: Section 2.1 introduces the basic concepts of
network theory and some methods for generating synthetic networks. Section 2.2 describes the
spreading processes that are the focus of this work. Section 2.3 introduces regression analysis
and Section 2.4 describes network sampling methods. Finally, Section 2.5 presents some related
works.

2.1 Network theory

2.1.1 Basic definitions

A network can be modeled by a graph, by representing the elements as vertices and their
interactions as edges. A graph is an ordered pair 𝒢 = (𝒱,ℰ) , where 𝒱 is the set of vertices and
ℰ ⊂ 𝒱 ×𝒱 is the set of edges that connect pairs of vertices. Here, we are interested in simple
graphs, so an edge is an unordered pair e = {u,v} that connects, or is incident in, two distinct
vertices u,v ∈ 𝒱 . Vertices connected by an edge are called adjacent or neighbors.

A graph is called simple if it is unweighted, undirected and has no multiple edges or
self loops. In other words, the edges of the graph do not have weights and are bidirectional,
there are no two edges connecting the same pair of vertices, and no edge connects a node to
itself (GIBBONS, 1985). Simple and non-simple graphs are illustrated in Figure 1.

A simple graph can be represented by a boolean symmetric square matrix A|𝒱|×|𝒱| ,
called adjacency matrix. An element Auv is one if there is an edge between vertices u and v and
zero otherwise. Figure 2 illustrates a graph and its adjacency matrix.

A walk is a sequence of edges connecting two vertices u and v ({u,w1},{w1,w2}, . . . ,{wl−1,v}).
The length of a walk is the number l of edges it contains. A walk is called a path if it passes
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Figure 1 – Simple and non-simple graphs.

(a) Simple graph. (b) Directed weighted graph.
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(c) Multigraph.

Source: Elaborated by the author.

Figure 2 – A simple graph and its adjacency matrix.
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Source: Elaborated by the author.

through a vertex at most once and a cycle if it starts and ends in the same vertex. Two vertices are
said connected if there is a path between them and a graph is connected if every pair of vertices
is connected. An acyclic connected graph is called tree and a graph with edges between every
pair of vertices is called clique. A vertex is called an articulation point if by removing it from the
graph, the graph becomes disconnected.

A graph 𝒢′ = (𝒱 ′,ℰ ′) is a subgraph of a graph 𝒢 = (𝒱,ℰ) if it is a graph and its set of
vertices and edges are subsets of the vertices and edges of 𝒢, that is 𝒱 ′ ⊂ 𝒱 and ℰ ′ ⊂ ℰ . 𝒢 is
called supergraph of 𝒢′. A connected component is a maximal connected subgraph, that is, every
pair of vertices in 𝒢′ is connected by a path and there are no additional vertices connected to
them in 𝒢.

2.1.2 Network measures

The degree ku of a vertex u is the number of edges that are incident in it. The average
degree of a network ⟨k⟩ is the average of ku for all vertices of the network and indicates how
dense it is. The degree distribution P(k) is the probability that a randomly and uniformly drawn
vertex has degree k.
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From the degree distribution, it is possible to measure the heterogeneity of a network,
which is closely related to its robustness to random failures (WANG et al., 2006).

The second moment of the degree distribution ⟨k2⟩ indicates the variability in the degree
distribution and is calculated as

⟨k2⟩= ∑
k

k2P(k). (2.1)

For networks with the same average degree, the one with a larger variability in the distribution of
edges will have a larger value of ⟨k2⟩. This measure also relates with other topological features,
like the existence of a giant component (MOLLOY; REED, 1995).

Another way to measure the heterogeneity of a network is the Shannon entropy of the
degree distribution S , which represents the diversity of the nodes in terms of the number of
connections and is defined as

H =−∑
k

P(k) logP(k). (2.2)

The entropy is a non-negative value that is minimal, that is H = 0, when all the vertices have the
same degree. Its maximum value is obtained when the degree distribution is uniform (WANG et

al., 2006).

Real world networks frequently exhibit correlation between the degrees of connected
vertices. Social networks often show positive correlation, while technological and biological
networks show negative correlation (NEWMAN, 2002).

The degree assortativity measures the correlation between the degree of connected ver-
tices. A network is assortative if high-degree vertices are connected to other high-degree vertices
and low-degree vertices are connected to other vertices with low-degree. When high-degree ver-
tices are connected to low-degree vertices, the network is said disassortative. Finally, if there is no
correlation between the degree of connected nodes, the network is said uncorrelated (NEWMAN,
2002).

One way to quantify the assortativity of a network is by calculating the Pearson corre-
lation coefficient r of the degrees of connected vertices (NEWMAN, 2002). In terms of the
adjacency matrix, the degree assortativity can be calculated as

r =
1
|ℰ |∑u<v kukvAuv−

[
1
|ℰ |∑u<v

1
2(ku + kv)Auv

]2

1
|ℰ |∑u<v

1
2(k

2
u + k2

v)Auv−
[

1
|ℰ |∑u<v

1
2(ku + kv)Auv

]2 . (2.3)

If r ≈ 0, the network is called uncorrelated. If r > 0 the network is assortative and if r < 0, the
network is disassortative.

Many real world networks exhibit a larger number of cycles of size 3 – or triangles –
than it is expected in random graphs (COSTA et al., 2007). For example, in friendship networks,
it shows the tendency of people having friends who are also friends with each other.
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The clustering coefficient (WATTS; STROGATZ, 1998) is a local measure of the
presence of triangles. The clustering coefficient of a node measures the probability that two of
its neighbors drawn randomly and uniformly are connected and is equal to:

ccu =
2eu

ku(ku−1)
, (2.4)

where eu is the number of connections between neighbors of u.

A more global way to measure the presence of such cycles is the transitivity C (AMA-
RAL; OTTINO, 2004), which is calculated as follows:

C =
3N△
N3

, (2.5)

where N△ is the number of triangles and N3 is the number of connected triples. A connected
triple is a sequence of three vertices connected by two edges, or a path of length two. In terms of
the adjacency matrix,

N△ = ∑
u<v<w

AuvAvwAwu (2.6)

and
N3 = ∑

u<v<w
AuvAvw +AuwAwv +AvuAuw. (2.7)

The transitivity assumes values in the range [0,1]. When C = 0, there are no triangles
and when C = 1, the graph is composed of a set of cliques.

The extent to which a vertex is involved when passing information in a network, or its
load, can be quantified by the betweenness centrality (FREEMAN, 1977). The betweenness of
vertex u, Bu, is defined as the fraction of shortest paths of the network that pass through u, that is

Bu = ∑
v<w

σ(v,u,w)
σ(v,w)

, (2.8)

where σ(v,u,w) is the number of shortest paths between v and w that go through u and σ(v,w)

is the total number of shortest paths between v and w.

Vertices that are crossed by many shortest paths have a high value of the betweenness
centrality and control the communication among other nodes in the network (FREEMAN, 1977)
whereas low values of betweenness indicate peripheral vertices.

Another way to measure the importance of vertices is by using the coreness measure (SEI-
DMAN, 1983; BATAGELJ; ZAVERSNIK, 2003). The k-core of a graph is the maximal subgraph
in which every node has degree at least k. The coreness of node u is kcu, if it is part of a kcu-core,
but not of a (kcu +1)-core. The overall organization of the network can be characterized by the
average coreness ⟨kc⟩ taken over all of the vertices.

In transportation and communication networks, the distance between vertices is an
important concept (BARTHÉLEMY, 2003). More specifically, the shortest path which connects
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a pair of vertices is relevant for routing in computer networks and in navigation in road networks.
In simple graphs, the distance duv between vertices u and v is the length of the shortest path
connecting u and v.

The efficiency E of a network measures how efficiently it exchanges information between
vertices. The efficiency in the communication between two vertices is calculated as the inverse
of the distance between them. A global measure can be obtained by taking the average of all
pairs of vertices (LATORA; MARCHIORI, 2001), that is

E =
2

N(N−1) ∑
u<v

1
duv

. (2.9)

The average search information S quantifies the difficulty to navigate or to search for
information in a network (ROSVALL et al., 2005), represented by the probability of following a
shortest path to a specific vertex while doing a random walk, i.e., navigating through edges at
random.

Formally, let p(u,v) be a shortest path from u to v. The probability of following this path
in a random walk is

P[p(u,v)] =
1
ku

∏
w∈p(u,v)
w/∈{u,v}

1
kw−1

. (2.10)

In this equation, the number of ways to leave vertex w is kw−1 because the edge used to get
to w is not counted. Since u is the start vertex, it is possible to leave u through all of its edges,
leading to ku possibilities.

The search information S(u,v), corresponding to the total information needed to identify
one of the shortest paths connecting u and v, is given by

S(u,v) =− log ∑
{p(u,v)}

P[p(u,v)], (2.11)

where {p(u,v)} is the set of all shortest paths between u and v. The average search information
is the average of the search information taken over all pairs of vertices (ROSVALL et al., 2005)

S =
1

N2 ∑
u,v

S(u,v). (2.12)

Other global measures of networks are characterized by the eigenvalues of the adjacency
matrix (FARKAS et al., 2001). For example, the shortest paths, number of cycles and connectivity
properties of the network are related to the eigenvalues and eigenvectors of the network (COSTA
et al., 2007).

The largest eigenvalue of the adjacency matrix λ1, also called principal eigenvalue or
spectral radius, is related to the average degree of the graph and plays an important role in
dynamical processes such as epidemic spreading (WANG et al., 2003) and synchronization of
coupled phase oscillators (RESTREPO; OTT; HUNT, 2005).
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On simple graphs, it is unique, real and positive and is bounded from below by max(⟨k⟩,
√

kmax)

and from above by kmax (RESTREPO; OTT; HUNT, 2007; ZUMSTEIN, 2005). Besides, the
λ1 of a graph never increases when a vertex is removed (RESTREPO; OTT; HUNT, 2007).
Therefore, subgraphs formed by deleting a set of vertices always have a spectral radius smaller
than the original graph.

2.1.3 Network models

2.1.3.1 Random graphs (ER)

The Erdös and Rényi (ER) (ERDÖS; RÉNYI, 1959) model generates random graphs
by connecting every pair of vertices with a constant probability p. The degree distribution is
binomial and follows a Poisson distribution when the number of vertices |𝒱| is large and p is
small. Therefore, the probability that a vertex has k edges is given by:

P(k) =
(|𝒱|p)ke−|𝒱|p

k!
, (2.13)

and ⟨k⟩= (|𝒱|−1)p
2 .

The ER model generates graphs with a homogeneous degree distribution, low average
clustering coefficient and small distances between vertices (COSTA et al., 2007).

2.1.3.2 Small-world (WS)

The Watts-Strogatz small world model (WS) (WATTS; STROGATZ, 1998) generates
graphs that exhibit the small world property, i.e., the average distance between vertices scales
logarithmically with the number of vertices (WATTS; STROGATZ, 1998). They also have a
larger clustering coefficient, characteristic present in real world networks.

The WS model starts with a regular lattice, where each vertex is connected to its ⟨k⟩2
neighbors in each direction, totalizing ⟨k⟩ connections. Then, each edge is rewired with a constant
probability p. When p = 0, the graph is a regular lattice, with large distances and high average
clustering coefficient. As p increases, the distances are shortened and the average clustering
coefficient decreases. Finally, when p→ 1, the graph becomes a random graph (COSTA et al.,
2007).

2.1.3.3 Barabási-Albert scale-free (BA)

The Barabási and Albert scale-free model (BA) (BARABÁSI; ALBERT, 1999) addresses
the heterogeneous degree distribution observed in many real world networks, that exhibit some
highly connected vertices and many vertices with few connections, with the absence of a
characteristic degree (COSTA et al., 2007). More specifically, the degree distribution follows a
power law function of the form

P(k) ∝ k−γ , (2.14)
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where γ is called the degree exponent, that is usually between 2 and 3 in real world networks.
Such networks are called scale-free (SF) (COSTA et al., 2007).

The BA model generates scale-free networks by incorporating two concepts: growth and
preferential attachment (BARABÁSI; ALBERT, 1999). The vertices are incrementally added to
the graph, connecting to the existing vertices with a probability which depends on their degree.
Formally, the graph starts with a set of m0 connected vertices. Then, in each step, a vertex u is
added to the graph and is connected to m existing vertices. The probability that u is connected to
v is given by

P({u,v}) = kv

∑i ki
. (2.15)

This process generates graphs with a power law degree distribution with γ = 3 (BARABÁSI;
ALBERT, 1999) and a low clustering coefficient (BARTHÉLEMY, 2003).

In (ONODY; CASTRO, 2004), a variation of the BA model, called nonlinear Barabási-
Albert (NLBA), was proposed. In the NLBA model, the network is generated by adding a new
vertex in each step, as in the BA model, but the probability that the new vertex connects to an
existing vertex v is proportional to kv

α , where α is a nonlinearity parameter.

2.1.3.4 Spatial random graphs (Waxman)

The Waxman model (WAXMAN, 1988) is a generalization of the ER model (ROUGHAN;
TUKE; PARSONAGE, 2015) and introduces spatial information to the network by considering
that longer links are more costly and, thus, less likely to be built. It considers that the vertices
of the graph are embedded in space and that the probability of two vertices being connected
depends on the euclidean distance between them.

Formally, vertices are randomly and uniformly distributed in a square and the probability
that there is an edge between vertices u and v is

P({u,v}) = β exp
−duv

Lα
, (2.16)

where duv is the euclidean distance between u and v, α and β are parameters in the range (0,1]
and L is the largest distance between any two points. The β parameter controls the density of
edges, while α regulates the density of short edges relative to longer ones (WAXMAN, 1988).

2.1.3.5 Spatial to scale-free (SpatialSF)

The spatial to scale-free (SpatialSF) model (BARTHÉLEMY, 2003) incorporates not
only the distance selection – short links are more likely to occur than long links, but also the
preferential attachment, generating networks that lie between scale-free and spatial random
graphs. It addresses a characteristic observed in many spatial real world networks, such as
airlines: a long-range link usually connects to a hub (BARTHÉLEMY, 2003).
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Figure 3 – Graph generated by the configuration model.
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The vertices are distributed uniformly in space and there is a set of m0 initially connected
nodes (BARTHÉLEMY, 2003). Like in the BA model, at each step, a new vertex is added to
the network, connecting to m existing vertices. However, the probability of connecting the new
vertex to an existing vertex depends not only on the degree of the existing vertex, but also on the
euclidean distance between them.

Formally, the probability that a new node u will connect with an existing node v is

P(u,v) ∝
Z(kv)

∆(duv)
, (2.17)

where Z and ∆ are given functions (BARTHÉLEMY, 2003).

Depending on the functions chosen for Z and ∆, it is possible to have only pref-
erential attachment, only distance selection or both (BARTHÉLEMY, 2003). For the last
case, a possibility for a natural generalization of the Waxman model is Z(k) = k + 1 and
∆(d) = exp d

α
(BARTHÉLEMY, 2003), yielding the equation

P(u,v) ∝ (kv +1)exp
−duv

α
. (2.18)

2.1.3.6 Configuration model

The configuration model (NEWMAN; STROGATZ; WATTS, 2001) generates a random
graph with a predefined degree distribution P(k). Each vertex u has ku stubs, where ku is drawn
from P(k). Then, pairs of stubs are randomly and uniformly drawn and connected to form an
edge until all stubs are used up. Figure 3 illustrates the process of generating a graph using the
configuration model.

2.1.3.7 Assortative rewiring

A similar idea to that of creating small-world networks can be used to make a network
more or less assortative (XULVI-BRUNET; SOKOLOV, 2004). To vary the assortativity, two
edges are drawn randomly and their incident nodes are connected according to their degree: to
make the network more assortative, the two nodes with largest degrees are connected, and to
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make the network less assortative, the node with largest degree is connected to the node with
smallest degree. This process changes the assortativity of the network, but maintains its degree
distribution.

2.2 Spreading processes
Spreading processes consider the transmission of an information between pairs of sub-

jects. Such information can be an infectious agent or some news, as in the case of rumors. As
following, we describe the main models considered to study epidemic and rumor spreading.

2.2.1 Epidemic spreading

The spread of a disease can be regarded as the transition of individuals through compart-
ments (or states) like susceptible, infected and recovered or removed (ANDERSON; MAY; AN-
DERSON, 1992). Here we are interested in the Susceptible-Infected-Removed (SIR) model (AN-
DERSON; MAY; ANDERSON, 1992), that simulates epidemic spreading in a network by
changing the state of each individual according to the state of its neighbors (infection) or
spontaneously (removal).

Infected individuals can spread the disease to their susceptible neighbors with probability
δ , who may become infected. They can also recover from the disease with probability ν , becom-
ing immune and playing no role on the process anymore. The SIR model imitates the behaviour
of diseases as measles, a disease that is transmitted by close contact and has an infective period
of approximately a week, after which the individual develops lifelong immunity (BJØRNSTAD;
FINKENSTÄDT; GRENFELL, 2002).

During the spreading process, in a given time t, an individual may either be suscepti-
ble, infected or removed. The SIR model considers that the rate of infection and recovery is
much faster than the lifespan of individuals, so births and natural deaths are unaccounted for,
maintaining the size of the population constant throughout the process (MORENO; PASTOR-
SATORRAS; VESPIGNANI, 2002). Thus, the densities of susceptible s(t), infected i(t) and
removed r(t) individuals are linked by the normalizing condition

s(t)+ i(t)+ r(t) = 1. (2.19)

For a homogeneous population, the SIR model (KERMACK; MCKENDRICK, 1927) is
described by the following system of differential equations:

ds(t)
dt =−δ ⟨k⟩i(t)s(t),

di(t)
dt =−ν i(t)+δ ⟨k⟩i(t)s(t),

dr(t)
dt = ν i(t),

(2.20)

with the initial conditions s(0) = |𝒱|−1
|𝒱| , i(0) = 1

|𝒱| and r(0) = 0.
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In this system, it assumed that the number of contacts per unit time ⟨k⟩ is constant for ev-
ery individual, δ is the microscopic infection rate and ν is the recovery rate. The above equations
state that the density of infected individuals increases at a rate proportional to the infection rate δ ,
the number of contacts ⟨k⟩ and the densities of infected and susceptible individuals, i(t) and s(t),
while the increase in the density of removed individuals is proportional to the recovery rate ν and
the density of infected individuals, i(t), but is independent of the connectivity ⟨k⟩ (MORENO;
PASTOR-SATORRAS; VESPIGNANI, 2002).

This model predicts the presence of epidemic threshold δc =
1
⟨k⟩ (MURRAY, 2002),

related to the basic reproductive number R0 ∝ δ ⟨k⟩, that is the average number of secondary
infections caused by an infected individual (MORENO; PASTOR-SATORRAS; VESPIGNANI,
2002). If the spreading rate is above δc, the disease infects a nonzero fraction of the population.
If δ < δc, the number of infected individuals is infinitesimally small in thermodynamic limit,
that is, when |V | → ∞ (MARRO; DICKMAN, 2005).

The homogeneity assumption is inadequate to model real world networks, which present
a heterogeneous topology, as the network of sexual partners, which is better described by a
scale-free topology (LILJEROS et al., 2003). In heterogeneous networks, the epidemic threshold
decreases with an increasing standard deviation of the degree distribution (ANDERSON; MAY;
ANDERSON, 1992). Scale-free networks with 2 < γ ≤ 3 are known to have a diverging ⟨k2⟩ on
the thermodynamic limit (PASTOR-SATORRAS; VESPIGNANI, 2001; BOGUNÁ; PASTOR-
SATORRAS; VESPIGNANI, 2003), meaning that the epidemic threshold vanishes for such
networks and diseases become endemic even with a small infection rate (PASTOR-SATORRAS;
VESPIGNANI, 2001; BOGUNÁ; PASTOR-SATORRAS; VESPIGNANI, 2003).

In general, under reasonable approximations, the epidemic threshold can be estimated by

δc =
1
λ1

, (2.21)

where λ1 is the largest eigenvalue of the adjacency matrix (WANG et al., 2003).

2.2.2 Rumor spreading

The process of spreading a rumor resembles the one of a disease. The individuals are
divided into three compartments: ignorants, which are individuals that do not know the rumor;
spreaders, that are the ones who know the rumor and tell others; and stiflers, which are individuals
who know the rumor but are not interested in it anymore. Hereafter this model will be addressed
as the Ignorant-Spreader-Stifler (ISR) model.

In the classical Daley-Kendall model (DALEY; KENDALL, 1965), the rumor is trans-
mitted by pairwise contacts between spreaders and other individuals. When spreaders contact
ignorants, they get to know the rumor and turn into spreaders with probability δ . When the
contacted individuals are spreaders or stiflers, the spreaders may lose interest in the rumor and



2.2. Spreading processes 41

turn into stiflers with probability ν . In the Maki-Thompson variant (MAKI et al., 1973), only the
initial spreader may turn into a stifler.

There is a correspondence between the rumor spreading and the epidemic spreading
states: ignorant to susceptible, spreader to infected and stiflers to removed. However, a spreader
turns into a stifler only when contacting another spreader or stifler, while in the epidemic
spreading, the recovery is always spontaneous. Also, stiflers are not removed from the rumor
dynamics, as they still affect the process by causing spreaders to turn into stiflers.

In a homogeneous population, the model can be described in terms of the densities of
ignorant i(t), spreaders s(t) and stiflers r(t), linked by the normalizing condition

i(t)+ s(t)+ r(t) = 1. (2.22)

The following system of equations describe the variation rate in the density of individuals in
each compartment:


di(t)

dt =−δ ⟨k⟩s(t)i(t),
ds(t)

dt =−ν⟨k⟩s(t)[s(t)+ r(t)]+δ ⟨k⟩s(t)i(t),
dr(t)

dt = ν⟨k⟩s(t)[s(t)+ r(t)],

(2.23)

with the initial conditions i(0) = |𝒱|−1
|𝒱| , s(0) = 1

|𝒱| and r(0) = 0.

In a similar way to the SIR model, the density of spreaders increases at a rate proportional
to the density of spreaders s(t) and ignorants i(t), as well as the spreading rate δ and the number
of contacts ⟨k⟩, which is constant for the whole population. However, in contrast to the SIR
model, the increase in the density of stiflers depends not only on the loss of interest rate ν and on
the density of spreaders s(t), but also on the connectivity ⟨k⟩ and on the density of the individuals
who once were aware of the rumor [s(t)+ r(t)].

An important consequence of the difference in the decay of the spreading process is that
there is no “rumor threshold”, opposed to the existence of the epidemic threshold (MORENO;
NEKOVEE; PACHECO, 2004). In fact, there is not phase transition in the rumor spreading,
while we have a second-order phase transition on epidemic spreading (PASTOR-SATORRAS et

al., 2015).

An interesting variation of the original model is the addition of the possibility of a
spreader spontaneously forgetting the rumor and turning into a stifler. This change causes the
emergence of a finite threshold, independent of ν , below which the rumor ceases to spread. And
like in the SIR case, it vanishes for scale-free networks with γ between 2 and 3 (NEKOVEE et

al., 2007).
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2.3 Regression analysis

2.3.1 Overview

Regression analysis is a statistical tool used to determine the relation between a dependent
variable and one or more independent variables. Usually, the analysis is aimed at describing how
the mean of a variable of interest varies with changing conditions (DRAPER; SMITH, 2014).

The variable of interest is called dependent variable or response, represented by Y , and
the n explanatory variables are called independent variables, regressors or predictors, and are
represented by an array X = (X1,X2, . . . ,Xm).

There are several types of regression models. The most widely known is the linear
regression, which assumes that there is a linear relation between Xt and the population mean
E(Yt) = µt of Yt , i.e., µt can be written as

µt = β0 +
m

∑
i=1

βiXti. (2.24)

β0 is called the intercept and is the value of µt when Xt = (0, . . . ,0), and βi is the increase or
decrease rate in µt per unit change in Xti when all the other values are held constant (DRAPER;
SMITH, 2014). The subscript t indicates the observation index and the subscript i is the index of
the explanatory variable.

It is assumed that the observations on X are measured without error, i.e., that they are a
set of constants. The observation on Yt is assumed to be a random observation from a distribution
with mean µt and the deviation of Yt from µt is accounted by a random error term εt (DRAPER;
SMITH, 2014), yielding

Yt = β0 +
m

∑
i=1

βiXti + εt . (2.25)

The errors εt are assumed to be normally and independently distributed with zero mean
and a constant variance σ2 (DRAPER; SMITH, 2014). This implies that the dependent variables
Yt are also normally and independently distributed with a constant variance σ2.

The coefficients are estimated from the data, according to some criteria. The least squares
method uses the criterion that the solution minimizes the sum of the squared deviations of the
observations of Yt from their estimated mean, provided by the solution (DRAPER; SMITH,
2014). Formally, let β̂i be the estimate of βi and Ŷt be the estimated mean of Yt . Ŷt is calculated
by

Ŷt = β̂0 +
m

∑
i=1

β̂iXti (2.26)

and the deviation of the t-th observation is calculated as

et = yt− ŷt . (2.27)
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Figure 4 – Example of linear regression with one explanatory variable using the least squares method. β1
is the slope of the real line and β̂1 is the slope of the fitted line.
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Source: Elaborated by the author.

Therefore, β̂ is chosen to minimize

∑
t

e2
t = ∑

t
(yt− ŷt)

2. (2.28)

Figure 4 illustrates some of the presented concepts.

The coefficient of determination R2 is the proportion of the variability in the data
explained by the model and measures how well the regression line represents the data. It varies
between zero and one, with zero meaning that the model explain none of the variability of the
data around its mean, and one meaning that it explains all the variability of the data around its
mean.

For a data set with observed values y and estimates ŷ, the square of the product moment
correlation between y and ŷ (DRAPER; SMITH, 2014) is calculated by

R2 =
∑t(ŷt− ȳt)

2

∑t(yt− ȳt)2 . (2.29)

The linear model makes some structural assumptions on the data: the random errors are
unbiased; have constant variance; are uncorrelated; and are normally distributed. The departure
from the underlying assumptions may cause problems, such as a biased estimation of β̂ and over-
estimation of σ2 (SEBER; LEE, 2012). Thus, other regression models may be more appropriate
depending on the application.
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Figure 5 – Beta density for different parameters µ and φ .
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2.3.2 Beta regression

In many applications, the response is continuous and restricted to the interval (0,1), as
for rates and proportions. The linear regression model may yield fitted values outside of this
interval, hence, it is not appropriate for these cases. A transformation in the response variable to
assume values on the real line may solve this problem. However, the model parameters cannot
be easily interpreted in terms of the original response (FERRARI; CRIBARI-NETO, 2004).
Besides, measures of proportions are typically asymmetric, hence the normality assumption may
be violated (FERRARI; CRIBARI-NETO, 2004).

The beta regression model (FERRARI; CRIBARI-NETO, 2004) assumes that the re-
sponse is in the (0,1) interval and is beta distributed. The beta density is given by:

f (y; p,q) =
Γ(p+q)
Γ(p)Γ(q)

yp−1(1− y)q−1, (2.30)

in which Γ(.) is the gamma function, p > 0 and q > 0 are parameters of the distribution and
y ∈ (0,1).

The distribution can be rewritten in terms of µ = p
p+q and φ = p + q (FERRARI;

CRIBARI-NETO, 2004). The beta density function then becomes:

f (y; µ,φ) =
Γ(φ)

Γ(µφ)Γ((1−µ)φ)
yµφ−1(1− y)(1−µ)φ−1. (2.31)

The mean and the variance of the distribution according to the new parameters µ and φ

are E(y) = µ and V (y) = µ(1−µ)
1+φ

, that is, µ is the mean of the response and φ can be seen as a
precision parameter, as the variance of the response decreases with the increase of φ for a fixed
µ (FERRARI; CRIBARI-NETO, 2004). Figure 5 illustrates the beta distribution for some values
of µ and φ .
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The model assumes that the observations on the dependent variable are a random sample
Y1, · · · ,Yn of independent beta distributed random variables (CRIBARI-NETO; ZEILEIS, 2009).
The mean E(Yt) = µt is, then, written as

g1(µt) =
m

∑
i=1

Xtiβi, (2.32)

where Xt1, · · · ,Xtm are observations of m < n regressors that are considered fixed and known
and β1, · · · ,βm are the unknown regression parameters. Finally, g1(.) is a strictly monotonic and
twice differentiable link function, that maps (0,1) into R (FERRARI; CRIBARI-NETO, 2004).

The beta regression model assumes that the precision parameter φ is constant across
observations. The variable dispersion beta regression model is a variant of the beta regression
model that allows variation in the precision parameter (SIMAS; BARRETO-SOUZA; ROCHA,
2010). In this model, the precision parameter φt of observation t is written as

g2(φt) =
p

∑
i=1

Ztiγi, (2.33)

where Zt1, · · · ,Zt p are observations of p < n regressors, γ1, · · · ,γp are the unknown regression
parameters and g2(.) is a strictly monotonic and twice differentiable link function, that maps
(0,1) into R (SIMAS; BARRETO-SOUZA; ROCHA, 2010).

The regression parameters are estimated by the maximum likelihood estimation method (FER-
RARI; CRIBARI-NETO, 2004), that chooses the parameters that will maximize the probability
of appearance of the observed data among all the parameter space.

The suitability of the model can be assessed by diagnostic plots of residuals and pre-
dictions, such as the half-normal plot of residuals with simulated envelope and the predicted
versus observed values plot, as well as by the pseudo-R2 coefficient (CRIBARI-NETO; ZEILEIS,
2009).

The half-normal plot of residuals with simulated envelope plots the absolute value of the
ordered residuals against their normal quantile and a confidence interval created by simulating
samples of the response variable. If the model suits the data, the points should fall inside the
simulated envelope and if the residuals are normally distributed, the points should fall in a
straight line (ATKINSON, 1981). The plot of predicted versus observed values shows the values
predicted for each data point against their true value. Finally, the pseudo-R2 is a measure of
explained variation, that ranges between zero with one representing a perfect agreement between
values predicted by the model and the observed values (FERRARI; CRIBARI-NETO, 2004).

2.4 Sampling in complex networks
In this section, N denotes the desired sample size, G = (V,E) stands for the original

graph, G′ = (V ′,E ′) is a graph sampled from G, in which V ′ is the set of sampled vertices and E ′
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is the set of sampled edges. The graph G will henceforth be called original graph and the graph
G′ will be called sampled graph or subgraph.

2.4.1 Induced subgraph sampling (VSS)

The induced subgraph sampling method (VSS, where V stands for vertex) consists
in drawing vertices from the original graph in a random uniform way and constructing the
subgraph that is formed by those vertices and all the edges in the original graph that connect
them (KOLASCYK, 2013), called induced subgraph. Formally, V ′ is composed of N vertices of
V drawn randomly uniformly without replacement and E ′ = {{u,v} ∈ E|(u,v) ∈V ′×V ′}. The
algorithm of the method is shown in Algorithm 1 and an example of a sample can be seen in
Figure 6.

This method is used by social network researchers to build contact networks. First a
sample of individuals (vertices) is selected and then the individuals are interviewed to discover
the links between them (edges) (KOLASCYK, 2013).

The probability of inclusion of a vertex follows directly from the definition of the VSS
and is equal to:

πu =
N
|𝒱|

. (2.34)

The inclusion of an edge depends on the inclusion of both of its incident vertices. Hence, the
probability of inclusion of an edge is equal to

π{u,v} =
N(N−1)
|𝒱|(|𝒱|−1)

. (2.35)

The VSS method is interesting when trying to estimate a global measure that is obtained
by the sum or the average of locally measured variables, such as the average degree of the
original network or the average age of individuals in a network. An unbiased estimate of the
global measure is obtained by the sum or average of the values observed in the sampled nodes or
edges.

However, the VSS method operates under the assumption of existence of a vertex list,
i.e., that it is possible to draw vertices uniformly from the original graph, which is not always
true. Also, the samples it produces may be disconnected and contain isolated vertices.

2.4.2 Incident subgraph sampling (ESS)

The incident subgraph sampling method (ESS, where E stands for edge) is similar to
the induced subgraph sampling method. In this case, the sample is based on the edges of the
original graph: instead of drawing vertices uniformly, the method draws edges with a uniform
probability. The set E ′ is composed of N edges drawn randomly and uniformly from E and
V ′ = {u|e = {u,v} ∈ E ′}, that is, the V ′ is composed of all the vertices that are incident on an
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Figure 6 – Example of a graph sampled by the VSS method.
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Source: Elaborated by the author.

Algorithm 1 – Induced subgraph sampling.
1: procedure VSS(G,N)

input: Graph G = (V,E); Sample size N.
output: Sampled graph G′.

2: let V ′ be the set of sampled vertices
3: let E ′ be the set of sampled edges
4: let C be the set of vertices that are not in the sample
5: initialize V ′ with the empty set
6: initialize E ′ with the empty set
7: initialize C with V
8: while |V ′| is less than N do
9: let u be the sampled vertex in this step

10: draw u from C randomly and uniformly
11: remove u from C
12: add u to V ′

13: end while
14: for all edge e = {u,v} in E do
15: if u is in V ′ and v is in V ′ then
16: add e to E ′

17: end if
18: end for
19: return G′ = (V ′,E ′)
20: end procedure

edge in E ′ (KOLASCYK, 2013). The ESS algorithm is shown in Algorithm 2 and an example of
sample is shown in Figure 7.

It is straightforward to see that |V ′| is usually different from N, varying between ap-
proximately

√
2N, when G′ is a clique and 2N, when each edge is a connected component of

G′.
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Figure 7 – Example of a graph sampled by the ESS method.
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Source: Elaborated by the author.

The probability of inclusion of an edge is uniform and equal to

π{u,v} =
N
|ℰ|

, (2.36)

and the probability of inclusion of a vertex is the complement of the probability that none of its
incident edges are sampled (KOLASCYK, 2013) and given by:

πu =

 1− (|ℰ |−ku
N )

(|ℰ |N )
if N ≤ |ℰ|− ku,

1 otherwise.
(2.37)

The ESS is implicit when constructing the network of telephone calls. First the telephone
calls are sampled and then the phone numbers of the involved parties are observed (KOLASCYK,
2013).

The ESS has the same drawbacks as the VSS: the sampled graph can be disconnected
and it needs of a list of edges.

2.4.3 Breadth-first search sampling (BFSS)

The breadth-first search sampling method is a breadth-first search based sampling algo-
rithm. The breadth-first search is a graph traversal algorithm that starts from a seed and explores
the vertices according to their distance from the seed. More specifically, at each step, it explores
an unexplored neighbor of the earliest explored vertex (CORMEN et al., 2001).

Likewise, the BFSS adds vertices to the sample gradually, starting from the ones closer
to the seed until the desired sample size is reached. The sampled graph can be obtained by the
explored vertices and the edges that reached them, however, this would always create a tree, so
we construct the sampled graph as the subgraph induced from the sampled vertices.

Although it has unknown statistical properties and is empirically known to be biased
toward high degree nodes (KURANT; MARKOPOULOU; THIRAN, 2011), it is widely used to
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Algorithm 2 – Incident subgraph sampling.
1: procedure ESS(G,N)

input: Graph G = (V,E); Sample size N.
output: Sampled graph G′.

2: let E ′ be the set of sampled edges
3: let V ′ be the set of sampled vertices
4: let C be the set of edges that are not in the sample
5: initialize E ′ with the empty set
6: initialize V ′ with the empty set
7: initialize C with E
8: while |E ′| is less than N do
9: let e be the sampled edge in this step

10: draw e from C randomly and uniformly
11: remove e from C
12: add e to E ′

13: end while
14: for all edge e = u,v in E ′ do
15: add u to V ′

16: add v to V ′

17: end for
18: return G′ = (V ′,E ′)
19: end procedure

Figure 8 – Example of a graph sampled by the BFSS method.

1

2

3

4
5

6

7
8

9

10 11

12

13

14
15 16

17

18
19

2021

22

23

2425

26

Source: Elaborated by the author.

sample social networks (MISLOVE et al., 2007; AHN et al., 2007; WILSON et al., 2009) as its
sample is a plausible graph on its own (KURANT; MARKOPOULOU; THIRAN, 2011).

The algorithm is shown in Algorithm 3 and an example of a sample can be seen in
Figure 8.
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Algorithm 3 – Breadth-first search sampling.
1: procedure BFSS(G,N)

input: Graph G; Sample size N; Seed vertex n0.
output: Sampled graph G′.

2: let V ′ be the set of sampled vertices
3: let Q be the queue of explored vertices
4: initialize V ′ with the empty set
5: initialize Q with the empty queue
6: enqueue n0 in Q
7: while Q is not empty and |V ′| is less than N do
8: let u be the foremost element of Q
9: dequeue u from Q

10: let Nu be randomly ordered set of neighbors of u in G
11: for all vertex v in Nu such that v is not in V ′ do
12: if |V ′| is less than SSize then
13: add v to V ′

14: enqueue v in Q
15: end if
16: end for
17: end while
18: let G′ be the subgraph of G induced from V ′

19: return G′

20: end procedure

2.4.4 Random walk sampling (RWS)

The random walk sampling method (RWS) is a random walk based sampling method. A
random walk in a graph is a special case of a Markov Chain, in which the states are vertices and
the next vertex is drawn randomly and uniformly from the neighbors of the current vertex. The
transition matrix P(u,v) that describes the probability of transitioning to vertex v, given that the
walk is currently in vertex u is

P(u,v) =

{
1
ku

if u and v are neighbors,

0 otherwise.
(2.38)

In the RWS method, the set of sampled vertices is obtained by navigating through the
edges of the graph. As in the random walk, the next vertex to be visited is chosen randomly
and uniformly among the neighbors of the current active vertex (RIBEIRO; TOWSLEY, 2010).
Each visited vertex is added once in the sample although it may be visited more than once. The
sampled graph is the subgraph induced from the sampled vertices.

The RWS method is biased toward higher degree vertices as the stationary probability of
a vertex being visited in a random walk is proportional to its degree (STUTZBACH et al., 2009)
and equal to

πu =
ku

2|ℰ|
. (2.39)



2.5. Related work 51

Figure 9 – Example of a graph sampled by the RWS method.
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Source: Elaborated by the author.

It is possible to remove the bias by changing the transition probabilities in order to obtain
a uniform sample of the nodes as in the Metropolis-Hastings random walk method, that is based
on the Metropolis-Hastings algorithm.

The Metropolis-Hasting algorithm is a Markov Chain Monte Carlo method that constructs
a Markov Chain with the desired probability distribution as its stationary distribution (HAST-
INGS, 1970). To obtain a stationary distribution µu, it creates a modified transition matrix Q(u,v),
given by

Q(u,v) =

{
P(u,v)min

(
µvP(v,u)
µuP(u,v) ,1

)
if u ̸= v,

1−∑u̸=v Q(u,v) otherwise.
(2.40)

In the uniform case, µv
µu

= 1, leading to

Q(u,v) =


1
ku

min
(

ku
kv
,1
)

if u and v are neighbors,

1−∑u̸=v Q(u,v) if v = u,

0 otherwise.

(2.41)

The algorithm for the RWS method is provided in Algorithm 4 and an example of sample
can be seen in Figure 9.

2.5 Related work
Various works have studied the influence of structure on spreading processes processes.

For instance, Newman (NEWMAN, 2002) showed that epidemic outbreaks occur more easily
in assortative networks, but spread less. In (KITSAK et al., 2010), it was shown that the
coreness represents better the influence of a node in an epidemic spreading than its degree, while
in (BORGE-HOLTHOEFER; MORENO, 2012), it was verified that there are no influential
spreaders in a rumor spreading. Watts and Strogatz (WATTS; STROGATZ, 1998) studied the
effect of the rewiring probability in small-world networks in the time needed for a disease
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Algorithm 4 – Random walk sampling.
1: procedure RWS(G,N)

input: Graph G; Sample size N; Seed vertex n0.
output: Sampled graph G′.

2: let V ′ be the set of sampled vertices
3: let u be the currently active vertex
4: initialize V ′ with the empty set
5: add n0 to V ′

6: u← n0
7: while |V ′| is less than N do
8: let Nu be set of neighbors of u in G
9: draw a vertex v from Nu randomly and uniformly

10: if v is not in V ′ then
11: add v to V ′

12: u← v
13: end if
14: end while
15: let G′ be the subgraph of G induced from V ′

16: return G′

17: end procedure

to reach the entire population and discovered that heterogeneous networks spread the disease
quicker. In (HÉBERT-DUFRESNE; ALTHOUSE, 2015), the effect of clustering on epidemic
spreading was studied for the contact process, in which every node contacts one neighbor per
time step. It was shown that the disease tends to be kept within the clusters, hindering the
spreading. Arruda (ARRUDA et al., 2013) applied bayesian inference to study the influence of
topology over the synchronization of Kuramoto oscillators and showed that the average shortest
path length is the most influential topological measure.

Sampling in complex networks was addressed in various works with different goals. For
example, Stumpf (STUMPF; WIUF; MAY, 2005) showed that samples of scale-free network
generated by random sampling are not strictly scale-free. In (LESKOVEC; FALOUTSOS,
2006), sampling methods were compared with two different goals: back-in-time sampling and
scale-down sampling. Back-in-time sampling means generating a sample that is similar to the
original network in a point in time in the past, while scale-down sampling means obtaining a
sample that is similar to the original network, but in a smaller scale. Maiya (MAIYA, 2011)
compared sampling methods when trying to obtain hierarchical information of the network and
representative samples of comunities. In the same work, the methods were compared when trying
to approximate the set of best spreaders of information. The bias of samples in plant-pollinator
networks was studied by using bootstrap confidence intervals in (LIN, 2015). In (KURANT;
MARKOPOULOU; THIRAN, 2011), the degree bias of the BFSS method was analytically
quantified.
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CHAPTER

3
METHODS

This chapter describes in details the methods and parameters employed throughout this
work.

3.1 Regression Analysis

3.1.1 Data collection

3.1.1.1 Independent and dependent variables

To characterize the structure of the network, we chose the measures described in Sec-
tion 2.1.2: (i) average search information (S), (ii) number of articulation points (A), (iii) second
moment (⟨k2⟩) and (iv) shannon entropy (H) of the degree distribution, (v) average efficiency
(E), (vi) assortativity coefficient (r), (vii) average clustering coefficient (⟨cc⟩), (viii) average
coreness (⟨kc⟩), (ix) transitivity (C) and (x) variance of the betweenness centrality (V (B)).

Because the measures have different scales, the regressors were obtained by normalizing
the measures with the z-normalization: for a list of observations x with average ⟨x⟩ and standard
deviation σx, an observation xt is normalized as zt =

xt−⟨x⟩
σx

. The probability distribution of each
normalized measure has zero mean and unit variance.

The response variable was calculated by simulating the spreading process 100 times
starting from each node of the network and averaging the result of the runs. For the epidemic
spreading, we set the spreading probability to 0.6 and the recovery probability to 1 and for the
rumor spreading, the spreading probability was set to 1 and the loss of interest probability to 0.6.

The rumor model was simulated by using the truncated process, in which a spreader
contacts all its neighbors in a random order. If it turns into a stifler during a contact, it immediately
stops contacting further nodes (BORGE-HOLTHOEFER; MORENO, 2012), and the epidemic
spreading was simulated by the reactive process, in which an infected node contacts all of its
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neighbors in every time step.

3.1.1.2 Networks

The data set contains 500 networks generated by the models presented in Section 2.1.3:
ER, BA, NLBA, WS, Waxman, Spatial SF, as well as SF networks generated by the configuration
model and rewired to become more or less assortative. The models were chosen as they generate
networks with different topological properties (COSTA et al., 2007), yielding variability in the
independent variables. The networks were generated with |𝒱| = 1000 and ⟨k⟩ = 4, as we are
interested in the influence of the organization of the edges in the dynamical processes.

Table 1 shows the parameters used for each model. Concealed parameters were calculated
in a way that the average degree remained constant for all the networks.

Table 1 – Model variations for generating networks.

Model Parameters
ER -
BA -

NLBA α = 1.3,1.5
WS p = 0.1,0.3

Waxman α = 0.3
Spatial SF α = 0.3

Assortative SF γ = 3.0, iterations = 2000
Disassortative SF γ = 3.0, iterations = 2000

For each model variation, we generated 50 networks, yielding the total of 500 networks.

3.1.2 Analysis

The data was analysed with the variable dispersion beta regression model because the
dependent variable is a proportion, restricted to the interval (0,1) and other regression models
may not be appropriate for such situations, since they may yield fitted values that lay outside of
this range (FERRARI; CRIBARI-NETO, 2004).

In our model, the mean µt depends on regressors (i) to (ix) and the precision parameter
φt depends on regressors (iv), (vii) and (x). As link functions, we adopted the log-log link for
the mean and the log link for the precision as suggested in (FERRARI; CRIBARI-NETO, 2004;
CRIBARI-NETO; ZEILEIS, 2009). The regression equations are:

g1(µ) = β0 +β1S+β2A+β3⟨k2⟩+β4E +β5H +β6r+β7⟨cc⟩+β8⟨kc⟩+β9C, (3.1)

and

g2(φ) = γ0 + γ1V (B)+ γ2⟨cc⟩+ γ3H + γ4V (B)⟨cc⟩+ γ5V (B)H + γ6⟨cc⟩H + γ7V (B)⟨cc⟩H.

(3.2)
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Interaction terms were not added in the regression model for the mean because of the large
number of regressors and because it complicates the interpretation of the effects. Also, it was
later verified that they are not needed.

3.2 Network Sampling

3.2.1 Data collection

3.2.1.1 Structural properties

To compare the structure of the original versus sampled networks, we analyse the degree
distribution and measures that account for other important properties of a network, such as
connectivity and clustering: average degree, transitivity and the spectral radius.

The average degree is calculated over the sampled graph, that is, we take the average of
the degrees of the nodes in the sampled graph, instead of the degrees in the original graph.

3.2.1.2 Functional properties

The behaviour of the SIR dynamic was represented by the epidemic threshold and the
curve of removed individuals per infection rate (henceforth called SIR or evolution curve).

The epidemic threshold was approximated by the inverse of the largest eigenvalue of the
network and the SIR curve was obtained by simulating the SIR dynamic 30 times per network
(original and sampled) and averaging the result of the runs.

3.2.1.3 Networks

The data set was extracted from two real world networks and two sets of synthetic
networks, one composed of ER networks and one composed of uncorrelated scale-free networks
generated by the configuration model with γ = 2.2 (Uncorrelated SF). The ER and Uncorrelated
SF networks have 𝒱 = 1000 and ⟨k⟩ ≈ 10. The real world networks are a subset of the Facebook
network (NIPS) (MCAULEY; LESKOVEC, 2012) and the e-mail communication network of the
University Rovira i Virgili (E-mail) (GUIMERA et al., 2003).

3.2.2 Sampling methods

We considered four sampling methods: induced subgraph sampling (VSS), incident
subgraph sampling (ESS), breadth-first-search sampling (BFSS) and random walk sampling
(RWS).

Each method was used to sample networks with various sampling rates, ranging from
25% to 95% of the network. For each sampling rate, the real world networks were sampled 50
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Figure 10 – SIR curves of subgraphs of an ER network for different sampling rates.
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times and each synthetic network was sampled 10 times, generating 50 sampled networks per
real world network and 500 sampled networks per synthetic network set.

3.2.3 Approximation of the SIR curve

The SIR curve of the original network seems to be related to the one of sampled networks,
as shown in Figure 10. In order to approximate the original curve, we chose to rescale the x-axis
(infection rate) by multiplying it by a constant. The constant was chosen to be the ratio between
the spectral radius of the original and sampled networks, so that the epidemic thresholds match.
As a best case scenario, we use the rescaling factor that yields the closest curve considering the
Fréchet distance (see Appendix A) between the original and rescaled SIR curves.
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CHAPTER

4
RESULTS

This chapter presents the results of this work. Section 4.1 focuses on the influence of the
topology of the network in spreading processes and Section 4.2 presents our findings on network
sampling.

4.1 Regression analysis

Tables 2 and 3 present the coefficients of the regression model for the mean in the
epidemics and rumor models, and the coefficients of the regression model for the precision
parameter are shown in Tables 4 and 5.

Mean Std. error p-value Measure
β0 1.913 0.001 ≈ 0 −
β1 -0.2 0.008 ≈ 0 S
β2 -0.123 0.004 ≈ 0 A
β3 -0.097 0.011 ≈ 0 ⟨k2⟩
β4 0.108 0.013 ≈ 0 E
β5 0.063 0.008 ≈ 0 H
β6 -0.134 0.002 ≈ 0 r
β7 0.002 0.012 0.843 ⟨cc⟩
β8 0.066 0.008 ≈ 0 ⟨kc⟩
β9 0.119 0.012 ≈ 0 C
Table 2 – SIR – Estimates of the β parameters.

The measure that is statistically significant (has a p-value smaller than 0.05) and presents
the largest coefficient in absolute value is the average search information (S) in both cases,
i.e. disease and rumor spreading, indicating that it is the measure that most influences in both
spreading processes. In addition, the coefficients related to the average search information are
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Mean Std. error p-value Measure
β0 1.43 0.001 ≈ 0 −
β1 -0.29 0.01 ≈ 0 S
β2 -0.142 0.005 ≈ 0 A
β3 0.196 0.017 ≈ 0 ⟨k2⟩
β4 -0.231 0.018 ≈ 0 E
β5 0.043 0.008 ≈ 0 H
β6 ≈ 0 0.002 0.813 r
β7 -0.188 0.02 ≈ 0 ⟨cc⟩
β8 0.127 0.008 ≈ 0 ⟨kc⟩
β9 0.072 0.017 ≈ 0 C
Table 3 – ISR – Estimates of the β parameters.

negative, so harder navigation implies in fewer contacted nodes during an epidemic or rumor
spreading.

The number of articulation points (A) also influences negatively the outcome of both
dynamics, because if a node that is an articulation point does not become a spreader, a part of
the network has no chance of being reached. Conversely, the transitivity (C) and the avearage
coreness (⟨kc⟩) influence positively because triangles and cores create redundant paths through
which the spread may continue if a node is not contacted.

The assortativity (r) is not influential in the rumor spreading, and affects negatively the
epidemic spreading. For the epidemic spreading, this means that the fraction of individuals that
are infected is larger in networks that are disassortative, as discussed in (NEWMAN, 2002) and
also shown for the percolation process.

The average clustering coefficient (⟨cc⟩) is not influential in the epidemic spreading and
influences negatively the rumor spreading and the efficiency (E) affects positively in the SIR
dynamic, but negatively in the ISR dynamic. This is due to differences in the removal process,
that is spontaneous in the epidemic spreading and by contact in the rumor spreading. A high
average clustering coefficient means a high average probability of having connected neighbors,
increasing the chance of contact between spreaders. In a similar way, a higher efficiency favours
the spread of a disease, but may hinder the spread of a rumor as it facilitates the contacts of type
spreader-spreader and spreader-stifler.

The diversity of degrees in the network, represented by the Shannon entropy of the degree
distribution (H) has a positive impact in both epidemic and rumor spreading. In contrast, the
second moment of the degree distribution (⟨k2⟩) has a positive coefficient in the ISR dynamics
while for the SIR dynamics, the coefficient is negative. A large ⟨k2⟩ for a fixed average degree
means that there are some few very large hubs. If the average degree is low, as in this case, the
edges will mostly connect a low-degree node to one of the few hubs, making the hubs responsible
for the spreading.
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In the case of epidemic spreading, having smaller hubs and more triangles can be more
beneficial, as the spreading will still continue after the hubs are removed. In the case of rumor
spreading, the same is true, however, having a few large hubs means that when the hub tries to
spread the rumor to its neighbors, there will be only a few neighbors that are spreaders or stiflers,
meaning that it will spread the rumor to a larger fraction of the network before turning into a
stifler.

This can be illustrated for a star-like network with two large hubs that connect to the
remaining nodes, which can be obtained by the NLBA model with a non-linearity parameter of
3.0. For this network, the average fraction of removed nodes is 0.84 and the average fraction
of nodes that got to know about the rumor is 0.75. Both values are high, but for the epidemic
spreading, the removed fraction in the training data lies in the range from approximately 0.83
to 0.91, while in the rumor spreading, the stifler fraction is in the range between 0.47 to 0.89.
Because of that, even though the removed fraction is higher than the stifler fraction, the coefficient
associated to ⟨k2⟩ in the epidemic spreading is negative, while in the rumor spreading is positive.

Mean Std. error p-value Measure
γ0 9.611 0.151 ≈ 0 −
γ1 0.065 0.158 0.681 V (B)
γ2 -0.562 0.304 0.064 ⟨cc⟩
γ3 -0.388 0.201 0.053 H
γ4 -0.483 0.346 0.163 V (B) : ⟨cc⟩
γ5 -0.191 0.333 0.566 V (B) : H
γ6 -0.01 0.263 0.968 ⟨cc⟩ : H
γ7 -0.223 0.183 0.224 V (B) : ⟨cc⟩ : H

Table 4 – SIR – Estimates of the γ parameters.

Mean Std. error p-value Measure
γ0 8.828 0.151 ≈ 0 −
γ1 -1.863 0.158 ≈ 0 V (B)
γ2 -1.007 0.303 0.001 ⟨cc⟩
γ3 -1.194 0.201 ≈ 0 H
γ4 0.134 0.346 0.698 V (B) : ⟨cc⟩
γ5 -0.875 0.333 0.009 V (B) : H
γ6 0.338 0.263 0.198 ⟨cc⟩ : H
γ7 -0.021 0.183 0.911 V (B) : ⟨cc⟩ : H

Table 5 – ISR – Estimates of the γ parameters.

The precision parameter may be considered constant across observations in the SIR
model, while it depends on the variance of the betweenness centrality (V (B)), the average
clustering coefficient (⟨cc⟩) and the Shannon entropy of the degree distribution (H), as well as a
first order interaction between V (B) and H in the ISR model.



60 Chapter 4. Results

For the rumor dynamics, a large average clustering coefficient implies that a spreader
is likely to have neighbors that also are spreaders, as neighbors of your neighbors are likely
to be your neighbors. Hence, depending on the order of contact of the neighbors, a node may
spread the rumor more or less, thus the negative regression parameter for ⟨cc⟩. The variance
of the betweenness centrality and the Shannon entropy of the degree distribution can be seen
as measures of diversity of the nodes, in terms of the number of links and importance in
communication. The negative values of the regression parameters for V (B), H, and for the first
order interaction indicate that heterogeneous networks show larger dispersion in the outcome of
the rumor spreading.

The pseudo R2 of the models are 0.98 (SIR) and 0.99 (ISR), suggesting that most of the
variability in the data is explained by the proposed models. Figure 11 presents the half-normal
plot and predicted versus observed values plot for both dynamics.

Most of the data points lie inside of the 95% confidence interval delimited by the black
lines in both plots, which indicates that the regression model is adequate for both the SIR and
ISR dynamics. This can also be seen in the predicted versus observed values plots. In both cases,
the correlation between the predicted and measured values of the variable of interest is larger
than 0.95.

4.2 Network sampling

4.2.1 Structural properties

In general, the sampled networks do not represent well the original network considering
the analysed properties. The 95% confidence interval for the average degree and transitivity are
presented on Figures 12 and 15, respectively. The colored range represents the 95% confidence
interval of the sample and the red dotted line is the value of the measure in the original network.

The average degree is not maintained by any of the sampling methods. The BFSS and
RWS methods overestimate the average degree for the real world networks because they are
biased to sample hubs, that are not present in ER networks and are small and numerous in
the uncorrelated SF network. Nevertheless, the bias by itself does not explain why hubs in the
original network are still hubs in the sample.

In the BFSS method, this happens by construction, because after exploring a hub, the
neighbors of the hub will be enqueued to be explored. Therefore, they are likely to be in the
sample, except for limitations in the sample size. In contrast, in the RWS method, there is no
guarantee that many neighbors of a hub will be visited. However, the random walk is biased
toward hubs and the process is memoryless, so a hub is likely to be visited many times, and
every visit is a chance of visiting a new neighbor. This is illustrated in Figure 13, that shows the
distribution of the excess visits according to the degree compared to the degree distribution for
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Figure 11 – Half-normal plot of residuals and predicted versus observed values plots.
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(a) Half normal plot of residuals for the SIR
model.
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(b) Half normal plot of residuals for the ISR
model.
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(c) Predicted vs Observed values for the SIR
model.
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(d) Predicted vs Observed values for the ISR
model.

Source: Elaborated by the author.
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Figure 12 – Average degree of samples of different networks.

(a) ER (b) Uncorrelated SF

(c) E-mail (d) NIPS

Source: Elaborated by the author.

the E-mail and NIPS networks. The excess visit of a node is the number of times a node was
visited aside from the first visit.

The ESS method is also biased toward hubs, but the procedure of getting all the vertices
that are incident in sampled edges causes the sampled vertices set to be very large, while
maintaining the edge set small. For instance, samples of an ER network with 25% of the edges
(approximately 1250 edges) contain, in average, approximately 900 vertices (90% of the vertices).
The VSS samples the vertices with a uniform probability, so hubs are unlikely to be chosen and
the subgraphs have a small average degree.

The degree distribution is shown for samples of size 50% in Figure 14. The degree
distribution of the original network differs significantly from that of the samples in all the cases.

It is interesting to notice that, on top of producing samples with the same average
degree, the samples of the ESS and VSS methods have a close degree distribution, with a higher
probability for intermediate values than for high degrees. In contrast, although the average
degree is similar for the RWS and BFSS methods, the degree distribution of the samples have
different properties, with the BFSS method presenting a higher probability in the extremes of the
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Figure 13 – Excess visit distribution for samples with sampling rate of 25%.

(a) E-mail (b) NIPS

Source: Elaborated by the author.

distribution than the RWS method.

The VSS method is suitable to estimate the transitivity of the network, as the true
transitivity lies inside the confidence interval for most sampling rates. The samples obtained via
the ESS method present a smaller transitivity than the original network. This may occur because
sampling a triangle requires that the three edges that compose it are sampled. In contrast, for
crawling methods, it is only necessary that a vertex and its connected neighbors are sampled.

The analysis for the spectral radius is presented in the following subsection.

4.2.2 Epidemic spreading

4.2.2.1 Epidemic threshold

The epidemic threshold was approximated with the inverse of the principal eigenvalue of
the adjacency matrix (λ−1

1 ). Figure 16 shows the growth of λ
−1
1 according to the sampling rate.

The sampling methods have a consistent performance across the networks. The BFSS
is the method that best approximates λ

−1
1 . Besides, the obtained value is closer for real world

networks than for the synthetic networks.

Since the spectral radius of a graph is never smaller than the spectral radius of a subgraph
obtained by removing any number of nodes, we can obtain a better estimate of λ

−1
1 by choosing

the minimum among the obtained values in a sample of subgraphs of a graph. In Figure 17, the
lines represent the minimum value of the sample.

As expected, none of the curves underestimate the true value. The BFSS method shows
the best results in all the networks, and for the real world networks, obtains the true value for a
samples with 65% of the network.

There are cases, however, in which we are unable to have many samples of the network.
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Figure 14 – Degree distribution of samples with sampling rate of 50%.

(a) ER (b) Uncorrelated SF

(c) E-mail (d) NIPS

Source: Elaborated by the author.

In these cases, it is desired to minimize λ
−1
1 while maintaining the sample size. For this analysis,

we will consider only the BFSS method, as it showed better results than the other methods.

Our results suggest that for a constant sampling rate, more heterogeneous samples present
lower values of λ

−1
1 , as shown in Figure 18. The NIPS network is not shown, as the obtained

value of λ
−1
1 is already close to the true value for samples of 25% of the network.

4.2.2.2 Approximation of the SIR curve

All sampling methods underestimate the final fraction of removed individuals for the
ER and uncorrelated SF networks, while for the real world networks, the results vary, as shown
in Figure 19 and 20 for samples of 30% and 50% of the network. When the sampling rate is
increased, the curves get closer to the original curve. However, they are still far from being an
accurate representation of it.

The ratio of the spectral radius is a good rescaling coefficient for the ER and uncorrelated
SF networks, as well as the E-mail network, when considering only the VSS and ESS method.
However, in the other cases, it yields curves that are further away than the non-rescaled curves.
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Figure 15 – Transitivity of samples compared to the true value.

(a) ER (b) Uncorrelated SF

(c) E-mail (d) NIPS

Source: Elaborated by the author.

This always happens in cases in which the sampled curve overestimates the true curve, as the ratio
of the eigenvalues is always smaller than one because of the property that the largest eigenvalue
of a sample never surpasses that of the original network.

The Fréchet-rescaled curves are close to the original curves, which tells us that it is
possible to rescale the SIR curve so that the sampled curve has a similar shape to that of the
original curve. Nevertheless, finding the Fréchet coefficient is not a trivial task and, for now,
requires knowledge of the structure of the original network. We leave this step for further
analysis.
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Figure 16 – Inverse of the principal eigenvalue of samples compared to the true value.

(a) ER (b) Uncorrelated SF

(c) E-mail (d) NIPS

Source: Elaborated by the author.
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Figure 17 – Minimum inverse of the principal eigenvalue of samples compared to the true value.

(a) ER (b) Uncorrelated SF

(c) E-mail (d) NIPS

Source: Elaborated by the author.



68 Chapter 4. Results

Figure 18 – Inverse of the principal eigenvalue versus second moment of the degree distribution for
samples of 25% of the network.

(a) ER (b) Uncorrelated SF

(c) E-mail

Source: Elaborated by the author.
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Figure 19 – Approximation of the SIR curve sampling 35% of the network.

(a) ER (b) Uncorrelated SF

(c) E-mail (d) NIPS

Source: Elaborated by the author.
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Figure 20 – Approximation of the SIR curve sampling 50% of the network.

(a) ER (b) Uncorrelated SF

(c) E-mail (d) NIPS

Source: Elaborated by the author.
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CHAPTER

5
CONCLUSION

Many real world phenomena, such as the outbreak of a disease and a rumor, can be
modeled and analysed as spreading processes in complex networks. As the size of the networks
and availability of the data grows, it is necessary to study them by means of topological measures,
such as the number of vertices per node and the degree correlation between nodes that are
incident in an edge. Complementarily, it is possible to reduce the size of the network by sampling
a subgraph of it.

In this work, we have shown that the organization of the edges in a network influences
the final fraction of removed individuals in an epidemic spreading and the final fraction of
individuals that got to know about a rumor and that the most influential topological measure
in both dynamics is the average search information, that quantifies the ease or difficulty of
navigating through the network. Although the most influential measure is the same for both
networks, there are differences, such as the need of a variable precision parameter in the rumor
dynamic.

We also studied the behaviour of structural measures, such as the average degree, when a
network is sampled by four sampling methods. Our results have shown that the structure of the
sampled network differs significantly from the original network. Therefore, conclusions made
over sampled network data should not be carelessly generalized to the original network.

As an application of sampling for dynamical processes, we estimated the epidemic
threshold based on sampled networks generated by four sampling methods. Our results indicate
that the most appropriate method, in this case, is the breadth-first-search sampling method, which
produces the closest estimations for lower sampling rates and that more heterogeneous samples
yield closer estimates.

Finally, we tried to approximate the evolution curve of the SIR dynamic by rescaling
it using the ratio between the epidemic threshold of the sample and the original network. The
rescaling coefficient was proved to be inadequate, although it matches the epidemic threshold of
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the two networks, there is a limitation that curves that overestimate the real curve will be rescaled
to overestimate it even more. However, our results also suggest that the rescaling is possible, as
the curve generated by the Fréchet coefficient, determined empirically and with knowledge of
the original network, is close to the real one.
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APPENDIX

A
DISCRETE FRÉCHET DISTANCE

The discrete Fréchet distance is a measure of similarity between two polygonal curves.
A polygonal curve is a continuous piecewise linear curve composed of line segments.

The discrete Fréchet distance takes into account not only the location of the points, but
also their ordering, and is informally defined as the minimum length of a leash required to
connect a dog and its owner, as they walk on two separate paths, given that they may vary their
speed, but not backtrack along their path (ALT; GODAU, 1995).

Formally, let P : [0,N] be a polygonal curve with N line segments. P can be parametrized
with a parameter a ∈ [0,N] such that P(a) indicates a position in the curve, with P(0) as the first
point of the curve and P(N) as the last one. The discrete Fréchet distance (FRÉCHET, 1906)
between two polygonal curves P : [0,N] and Q : [0,M] is equal to:

δF(P,Q) = inf
α,β
{max

t∈[0,1]
d(P(α(t)),Q(β (t)))}, (A.1)

where d(a,b) the euclidean distance between points a and b and α and β are continuous non
decreasing functions with α(0) = 0, α(1) = N, β (0) = 0 and β (1) = M (ALT; GODAU, 1995).
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