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ABSTRACT

SIKANSI, F.. A similarity-based approach to generate edge bundles. 2017. 93 f. Master
dissertation (Master student Program in Computer Science and Computational Mathematics) —
Instituto de Ciéncias Matematicas e de Computagéo (ICMC/USP), Sao Carlos— SP.

Graphs have been successfully employed in avariety of problems and applications, being the
object of study in modeling, analysis and construction of visua representations. While different
gpproaches exist for graph visualization, most of them suffer from the severe clutter when the
number of nodes or edges is large. Among the approaches that handle such problem, edge
bundling techniques attained relative success on improving the quality of the visual represen-
tations by bending and aggregating edges in order to produce an organized layout. Despite
this success, most of the exiting techniques create edge bundles based only on the visual space
information, that is, there is no explicit connection between the edge bundling layout and the
original data. Therefore, these techniques generates less meaningful bundles and may lead
users to misinterpret the data. This master’s research presents a novel edge bundling technique
based on the similarity relationships among vertices. We devel oped such technique based on
two assumptions. First, it supports the hypothesis that edge bundling can better represent the
data when there is an inherent connection between the proximity among the elementsin the
information space and the proximity between edges in the edge bundling layout. We address this
question by presenting a similarity bundling framework, that considers the similarity between
vertices when performing the edges bending. To guide the bundling, we create a similarity
hierarchy, called backbone. Thisis based on a multilevel partition of the data, which groups
edges of similar vertices. Second, we aso support that a multiscal e representation improves the
visual and complexity scalability of bundling layouts. We present a multiscale edge bundling,
which alows an overview plus detailed exploration, coarsening or revealing the bundling at
different levels of the same visuaization. Our evaluation framework shows that our backbone
produces a balanced hierarchy with a good representation of similarity relationships among
vertices. Moreover, the edge bundling layout guided by the backbone reduces the visual clutter
and surpass state-of-the-art techniques in displaying global and local edge patterns.

Key-words: Edge bundling, graph visualization, information visualization.






RESUMO

SIKANSI, F.. A similarity-based approach to generate edge bundles. 2017. 93 f. Master
dissertation (Master student Program in Computer Science and Computational Mathematics) —
Instituto de Ciéncias Matematicas e de Computagéo (ICMC/USP), Séo Carlos— SP.

Grafos sdo empregados com sucesso em uma grande variedade de problemas e aplicagdes,
sendo objeto de estudo na modelagem, andlise e na construgcéo de representacdes visuais.
Embora existam diferentes formas para a visualizacdo de grafos, a maioria delas sofrem pela
desorganizacdo do espago visual quando o numero de vértices ou arestas € ato. Entre as
abordagens que lidam com este problema, as técnicas de agrupamentos visuais de arestas
obtiveram sucesso na melhora da representacéo visua pelo encurvamento e agrupamento de
arestas que aperfeicoam a organizacdo da representacdo. Apesar deste sucesso, a maioria das
técniques criam grupos de arestas baseados gpenas nainformagao do espaco visua, ndo existindo
conexado explicita entre 0 desenho no espaco visua e o conjunto de dados origina. Dessa
forma, estas técnicas produzem agrupamentos de arestas com baixa significancia e podem levar
0 usuario aumainterpretagdo incorreta dainformacdo. Esta pesquisa de mestrado gpresentauma
nova técnica de agrupamento visua de arestas baseado nas relagbes de similaridade entre os
vértices. NoOs desenvolvemos esta técnica com base em duas premissas. Primeiro, eladefende a
hipbtese que a representacdo por agrupamento de arestas pode representar melhor o conjunto
de dados se existir uma conexao inerente entre a proximidade dos elementos no espago de
informagao e a proximidade entre arestas no desenho de arestas agrupadas. N6s atendemos esta
questéo gpresentando um arcabougo para 0 agrupamento de arestas baseado em similaridade,
que considera a similaridade entre vértices pararealizar o encurvamento das arestas. Para guiar
este encurvamento, nos criamos uma estrutura de similaridade, denominada backbone. Esta
estrutura é baseada em um particionamento multi-nivel do conjunto de dados, que agrupa arestas
de vértices similares. A segunda premissa, nés também defendemos que uma representacéo
multiescala melhora a escal abilidade computacional e visua da representacéo visual de arestas
agrupadas. Nés apresentamos um agrupamento visual multi-nivel de arestas que permite uma
exploracdo generalizada e detalhada, revelando detal hes em mdltiplos niveis da visualizagéo.
Nosso processo de avaliagdo mostra que a construcdo do backbone produz uma hierarquia
bal anceada e com boa representacdo das rel agdes de similaridade entre os vértices. Além disso,
avisualizagdo com arestas guiadas pelo backbone reduz a desordem visua e melhora as técnicas
do estado-da-arte na identificacdo de padrdes de arestas globais e locais.

Palavras-chave: Agrupamento visua de arestas, visuadizagéo de grafos, visualizagéo deinfor-
magao.
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CHAPTER

INTRODUCTION

A graph is commonly defined as a set of vertices (also called nodes) and edges that
represent rel ationships between vertices. Thisis considered one of the most important information
structure in discrete mathematics and computer science. The fundamentals, concepts, topology
and geometry of graphs are part of the graph theory area. Graph theory started with the famous
Koénigsberg Bridge Problem, which consisted of determining if it is possible to wak by a
set of seven bridges over the river Preger in Kénigsberg without crossing any bridge more
than once. This problem was modeled as a graph and answered as negative by Euler in 1735
(ALEXANDERSON, 2006). More than 270 years after, graph theory is still an evolving field
used to model and solve problems.

One of the most important characteristics of graphs is the possibility of mathemati-
cally model diverse real-world scenarios and multiple tasks. Examples of graph theory us-
ages exist in economics (SERRANO; BOGUNA, 2003), sociology (MERCKEN et al., 2010),
biology (KIKUCHI et al., 2003), geography (NOCAJ; BRANDES, 2013), physics (DOYE;
MASSEN, 2005), transport engineering (BEN-AKIVA; PALMA; ISAM, 1991) and software
engineering (ELZEN et al., 2013).

Recent events quickly changed the way that users analyse data. The growing amount of
information brought an extensive collection of challenges on the storage, analysis and exploration
of information (KEIM, 2002). We live in the Information Era, in which data has been generated
faster and in a greater volume than the analytical capacity of an average human can handle.
Examples of the availability of information include reaching a person among billionsin a globa
coverage social network like Twitter! or Facebook?; tracking every flight in the Earth with
Flight Radar; or reading reviews of hotels, restaurants and attractions before planning a trip on

1 https:/twitter.com/
https://www.facebook.com/
8 http://www.flightradar24.com/
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TripAdvisor®,

As great as the challenges it represents, that amount of information can produce the
necessary knowledge to detect and understand behaviors, solve problems and make decisions that
improve several aspects of human life. Nowadays, data comes from a wide range of sources and
directions, and new models and processes are crucial to deal with that information. In computer
science, many research topics are dedicated to address these problems, such as data mining,
machine learning, visualization and visual analytics.

Purely computational techniques might replace the human activity in order to solve
many problems, mainly when the problems can be strictly formulated. However, there are still
some tasks that request user interaction. The process of visua representation of the data and the
interaction with and a human is studied by the field called visualization (MUNZNER, 2014).
Specifically, information visualization is the representation of datain avisual space, by drawing
methods that form an image to improve the ability of a user to interpret the data (SPENCER,
2007). The visuaization pipeline involves concepts from different areas, such as mathematics,
computering, perception and cognitive sciences (TELEA, 2007).

The crossroad of graph theory and information visualization is the field of graph drawing.
Drawing a graph is the method of building a visua representation of vertices and edges. There
are avariety of algorithms that perform this task, often taking advantage of graph properties
like planarity, symmetry, edge direction and cycles (BATTISTA et al., 1998). Techniques may
also leverage the underlying data to produce better layouts (LANDESBERGER et al., 2011;
BECK et al., 2014). For complex inputs with many elements and edge crossings, the drawing
method can fail to produce a valuable visual representation, thus being an open challenge on
information visualization. More precisely, a problem frequently faced in graph visualization is
the visual clutter. In essence, visua clutter isthe reduction of the usefulness of a visuaization by
the excessive number of elementsin alimited visual space (ELLIS; DIX, 2007).

In graph visualization, the visual clutter problem has been often addressed by the reorga-
nization, reduction and aggregation of e ements (EPPSTEIN; GOODRICH; MENG, 2007; J A
et al., 2008; HENRY; BEZERIANOS; FEKETE, 2008; DWY ER et al., 2013), or modifying how
theinformationis displayed (CUI; QU, 2007). This can be achieved by changing the vertices and
edges placement. Among those strategies, edge bundling techniques aim to reduce the clutter by
drawing curved and aggregated edges through similar roads. In this process, close edges share
routes and are drawn together, reducing the visual space usage and improving the usefulness of
the visualization by representing edge patterns and groups.

Edge bundling was introduced by the technique Hierarchical Edge Bundling (HEB)
(HOLTEN, 2006) in a process that involved the usage of a hierarchy to determine a set of paths
and control points. Once this hierarchy connects all graph vertices through control points, the

4 nhttps://www.tripadvisor.com.br/



original edges are replaced by B-Splines curves, which follow the path that connects the source
and the target over the hierarchy. HEB produces more pleasant layouts and its eff ectiveness was
showed by the visualization of software dependencies and traits (HOLTEN; CORNELISSEN;
WIJK, 2007). However, the hierarchy dependence does not allow this technique to be applicable
to alarge range of datasets.

Subsequently, several other approaches have been devel oped to perform edge bundling
without an external structure to guide the edge bending and to process larger datasets. These
methods often take advantage of geometry information, parallel and GPU computing. For those
techniques, we use ataxonomy that considers the main concepts under its layout construction
process. Thistaxonomy divides the techniques in geometry-based approaches (CUI et al., 2008;
LAMBERT; BOURQUI; AUBER, 2010), force-based approaches (HOLTEN; WIJK, 2009),
image-based and GPU techniques (TELEA ; ERSOY, 2010; ERSOY et al., 2011; HURTER,;
ERSQY; TELEA, 2012; ZWAN; CODREANU; TELEA, 2016). The evolution of edge bundling
techniques allowed the bundling of graphs with thousands or even millions of edges to be
processed in an order of hundredths of a second, and to deal with real-time dynamic graphs
(NGUYEN; EADES; HONG, 2013b; HURTER et al., 2013).

However, all those techniques mainly use the spatially information to perform the edge
bundling and ignore the underlying data, thereby creating less meaningful aggregations that might
not explicitly reflect the data. Recently, the use of data information to approximate the edges
gained attention in some publications (NGUY EN; HONG; EADES, 2012; PEY SAKHOVICH;
HURTER; TELEA, 2015; GUO et al., 2015; YAMASHITA; SAGA, 2015; SUN et al., 2016).
They modified prior techniques to use related attributes when bending edges. However, these
changes only performed minor transformations in the edge bundling layout.

This master’s research defends that similarity based approaches to build a bundling-
oriented hierarchy can increase the readability of edge bundling layouts. Thisis achieved by
taking an exclusive data-oriented approach that determines how the edges share their routes,
such as the hierarchy in the Hierarchical Edge Bundling. This method has a straightforward
methodology and can easily scale when the number of edges increase. Although there are many
techniques for hierarchical construction from similarity information, to the best of our knowledge
there are no studies regarding the application of those approaches on the Hierarchical Edge
Bundling.

During this master’s research, we analyzed some algorithms to build hierarchical lay-
outs from a set of elements, such as the Neighbor-Joining (NJ) (SAITOU; NEI, 1987) and the
Unweighted-pair Group Method with Arithmetic Means (UPGMA) (SOKAL; MICHENER,
1958). Initially, those algorithms were applied directly to the edge bundling construction. Then,
we considered cluster-based (JAIN; DUBES, 1988) and hybrid (clustering/similarity tree con-
struction) algorithmsto obtain a more stable and faster method. Our final methodology coversthe
hierarchica construction, the points placement into the visual space and the edge bending process.
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Our technique was then compared with edge bundling algorithms from the state-of-the-art.

The result of this research isanovel edge bundling technique, called Similarity-driven
Edge Bundling (SDEB), that produces an edge bundling layout guided by an accurate similarity
structure. This structure is built with ahierarchical clustering method that uses only data from
the original data vertices. Moreover, our technique is fast enough and offers the possibility of
visualizing large graphs using a multiscale approach that filters similar data objects into clusters,
thus reducing the visual -clutter.

1.1 Goals, Evaluation and Contributions

Edge bundling state-of-the-art techniques achieved great success on visual-clutter reduc-
tion. However, these techniques do not take into account the underlying data when performing
edge aggregation and do not validate the usefulness of the produced layout. This research aimed
to produce a more faithful bundling layout by using a bundling process that only considers
similarities amongst vertices to determine how edges are bundled. The research goal is described
formally in the following paragraph:

“This master’s research aimed to develop a new edge bundling technique for graph
visualization. This technique must produce edge bundling layouts that reduce the vi-
sual clutter on graph visualization and diminish the distortion caused by differences
between the representation of aggregated edges and the similarity relationships
among vertices. Furthermore, this technique must handle multiple levels of detail
and filter the elements on large datasets, where the process of bundling edges is not

enough to reduce the visual clutter. ”

The main result of this research is atechnique called Similarity-driven Edge Bundling,
which was built from a framework designed to construct edge bundling layouts. This framework
uses a similarity-based algorithm to build a backbone from the origina set of vertices. Then, the
bundling is created by drawing the original edges towards the backbone. Edges are drawn as
curves towards the intermediate vertices from the path that connects the edge source and target
in the backbone. Edges that share intermediate vertices are rendered together, which reduces the
drawing occupation area and, hence, reduces the visual-clutter. Further enhancements give the
user parameters that may be used to manipul ate the visualization.

Even though the visual-clutter reduction is recognizable, it is difficult to validate edge
bundling layouts because there are afew experiments or measures that evaluate the gain in terms
of data analysis or pattern recognition. This problem was mentioned before in many publications
(ERSQY et al., 2011; NGUYEN; EADES; HONG, 2013a; HURTER et al., 2013). In general,
edge bundling techniques do not validate the usefulness of the bundling layout. In order to
perform an evauation of patterns and their relationships with the similarity structurein graph
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layouts, we compare our technique with others, covering the major edge bundling strategiesin
the state-of-the-art.

From our evaluation process, we outline the following contributions of this research:

- A novel edge bundling layout obtained from the similarity hierarchy that improves the
visual and computational scalability, which allows the technique to work with bigger
datasets and to be explored in a multi-level approach.

- A framework to build edge bundling layouts from similarities of vertices which can
meaningfully simplify the visualization by adding meaning to the bundling process.

- Applications of Similarity-driven Edge Bundling to visualize static graphs from different
kinds of data, such as paper citations or co-purchased items.

- A straightforward application in a specific type of dynamic graph, in which the set of
edges changes over time, but vertices and their similarity relationships are fixed.

1.2 Structure of the document

The remainder of this document is organized as follows:
- Chapter 2 presents and discusses fundamental concepts on graph visualization and the
state-of -the-art on edge bundling.

- Chapter 3 describes the similarity bundling framework and methods to improve the
bundling layout.

- Chapter 4 reports the main results and the evaluation of our technique.
- Chapter 5 presents the applications of our technique in rea-world datasets.

- Chapter 6 discusses the contributions and limitations of this thesis, along with some
directions for future work.






CHAPTER

BACKGROUND

2.1 Initial Remarks

In this chapter, we present the fundamentals on graph drawing and the literature review
of edge bundling. We classify these methods according to their approach to create the edge
bundling layout. Prior to the discussion of the general concepts and the edge bundling methods,
we give some definitions:

Definition 1. A graph G = (V;E) isapair of finite setsV and E, in which the elements of E are
called edges and the elements of V are called vertices (or nodes). Each edge connects a pair of
vertices (vi;vj)|vi;j € V (GROSS; YELLEN, 2005).

Definition 2. A vertex v; € V isdefined asadjacent to avertex v; € V if the pair (v;;v;j) €E.

Definition 3. An edge can be an ordered pair, when it represents a directed connection between
the source and target vertices, or an unordered pair, when (v;;v;) and (vj;v;) represent the same
connection. A graph of ordered edges is defined as direct graph (or digraph).

Definition 4. A graph is defined as connected if there is at |east one path between any pair of
vertices (vi;vj) € V. In contrast, if thereis any pair of vertices (vi;v;) breaking this rule, agraph
is defined as disconnected.

Definition 5. A graphisdefined as cyclic if thereis at least one path of vertices that starts and
ends in the same vertex. In contrast, agraph is defined as acyclic if thereis no path satisfying
such condition.

Definition 6. A graphisatree if it isboth connected and acyclic.

A graph can be used to mode! instances and the relationship amongst them. In addition,
any vertices or edges can contain attributes, such as their size, length, weight or any other related
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information (THULASIRAMAN; SWAMY, 2011). In information visualization, we are mainly
interested on the visual representation of a given graph. In the next section, we present areview
of graph drawing algorithms.

2.2 Graph Visualization

Information visualizations studies how a graph can be represented in a visua space.
Practical examples of this task are adjacency matrices and node-link diagrams. To create a
node-link diagram, vertices are represented by some entity in the visual space, and edges are
represented with lines connecting each pair of vertices. In this case, a good vertices placement is
crucial to achieve useful representation. Figure 1 shows a graph visualization using a node-link
diagram for a graph with 77 vertices and 254 edges. The vertices are organized in the space
by aforce-based system. Although this visualization is effective, there is a huge challenge on
obtaining a readable and pleasant visualization. Moreover, this challenge is more evident when
the number of vertices and/or edges increases.

Figure 1 — A node-link diagram for the undirected graph Les Miserables (KNUTH, 1993) with 77 vertices and 254
edges. The vertices are represented as circles and the edges are lines connecting pairs of vertices.

Source: Adapted from <http://bl.ocks.org/mbostock/4062045>

Severd graph drawing algorithms have been published to improve this representation. In
this range of algorithms, there are general ones, applied for generic graphs, and others designed
for specific cases, often taking advantage of one or more graph properties (e.g., if it is planar,
undirected, or atree) or datainformation. In this section, we discuss the most common approaches.
It is not our intention to present the state-of-the-art on graph visualization. Moreover, we aso
present some tree drawing algorithms, since this structure is akey concept in this research.
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A frequent challenge in graph drawing is the size of the input graph. Graphs with more
vertices and edges hamper the object placement on the visual space. Moreover, vertices occlusion
and edge crossings reduce the efficacy of the visualization, because it becomes impossible to
discern between vertices and edges (HERMAN; MELANCON; MARSHALL, 2000). The most
common way to address this challenge is to improve the elements distribution across the visual
space. In general, a graph drawing agorithm must reduce the € ements congestion in sub-areas
of the drawing space, thus maximizing the visual space occupation (LANDESBERGER et al.,
2011). A pleasant layout also has a good aspect ratio and symmetry (WARD; GRINSTEIN;
KEIM, 2010). It is desirable that the drawing a gorithm always presents a similar output given
the same input, in order to prevent the context loss.

Those rules can be easily described, but it is atough task to gpply them in the drawing
process. In detall, it is only possible to avoid edge crossings when the graph is planar, which can
be done by planar layout algorithms (KAUFMANN; WAGNER, 2003). Therefore, the goal when
we have non-planar graphs is to minimize the number of crossings. When vertices coordinates
are fixed according to their attributes (e.g., geography locations), drawing algorithms can curve
edges to improve the layout. Other properties, such as symmetry and aspect ratio are susceptible
to the inherent information. These characteristics make the usage of a genera agorithm difficult
for dl kinds of graphs.

When the vertices coordinates are not given, an often employed approach in general
graphsisthe force-based algorithm. This strategy uses a physical simulation of aforce system,
in which visual elements move in each iteration until the system reaches its stability. In this case,
vertices form a system of particles. A force of attraction is applied between adjacent vertices and
arepulsive force separates close vertices. According to the forces, the final result might depend
on theinitialization placement, and other constraints can be applied, such as dragging forces.

Algorithms for tree drawing have a great advantage since atreeis planar and acyclic.
The drawing process can be done iteratively, from the root of the tree to the leaves, assuring
that there is no edge crossings. Some of the most relevant techniques for tree drawing based
on the node-link diagram are the circular layout (MELANCON; HERMAN, 1998) and radial
layout (REINGOLD; TILFORD, 1981; EADES, 1991). Figure 2 shows examples of radia and
circular layouts for atree.

The algorithms mentioned above are frequently applied in graph and tree drawing.
However, those approaches do not construct areliable layout for several datasets. Furthermore,
those models employ only the spatially information, discarding any additional information that
can be used in the drawing, such as data attributes. This strategy can generate uncertainty and
misinterpretation about the dataset. Thus, there are aesthetic factors, in terms of perception and
cognition, that contribute to improve the readability of a graph visualization (BENNETT et al.,
2007). Those factors show that only organizing elements through space do not produce a suitable
graph or tree layout for many datasets.
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Figure 2 — Examples of tree visualization algorithms.

(@) Circular layout (b) Radial layout

Source: (a) Melangon and Herman (1998) (b) Burch et al. (2011) < 2011 IEEE

A graph layout can be transformed in order to improve the extraction of knowledge from
the data. Herman, Melancon and Marshall (2000) and Landesberger et al. (2011) presented an
extensive collection of techniques that aim to improve the graph representation with different
approaches, such as, data filtration, colorization, auxiliary visuaization metaphors and user
interaction. Those works present many common problems on graph visualization, most of them
out of the scope of this research.

In particul ar, this research addresses the problem of visual clutter in graph visualization.
In essence, visual clutter isthe result of representing much datain a small area, which reduces
the potential usefulness of the visuaization. Thisis a genera problem that affects the entire
visualization field. Several techniques and applications in a high diversity of domains can
suffer from visual clutter (ELLIS; DIX, 2007). In graphs, it is noticed when the number of
vertices and edges increases. Visua clutter makes the task of analysing a graph more complex
and useless. Some techniques have been proposed to address this problem using strategies
like edge filtering, edge clustering, hierarchy representations, space-filling techniques, anong
others (LANDESBERGER et al., 2011).

One of those gpproaches that has been attaining success on reducing visual clutter
is the group of edge bundling techniques. Edge bundling consists in attract edges towards
similar flows. Although it is not necessary, edges are often curved to be easy to follow with the
eye. The overlap of multiples edges reduces the clutter and reveals high-level patterns about
the data. Edge bundling was already used to reduce the visual clutter in several domains and
applications, such as geographic information (CUI et al., 2008; HOLTEN; WIJK, 2009), socia
networks (MARTINS et al., 2012), scientific papers (ERSOY et al., 2011), multidimensional
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projection evaluation (FADEL, 2016), and others (KIENREICH; SEIFERT, 2010). In the next
section, we present the state-of-the-art on edge bundling.

2.3 Edge Bundling

Edge bundling tackles the visual clutter problem by bending edges from the origi-
nal graph, which generates routes and groups that improves the readability of node-link di-
agrams (SUN et al., 2013). Curved edges are easy to be followed by the eye (BACH et al.,
2016), while the edges overlapping reduces the clutter. In summary, edge bundling is based on a
trade-off between clutter and overlap, since it improves edges macro-structures identification,
while fewer individual ones are visible (ERSOY, 2013).

The first edge bundling technique is the Hierarchica Edge Bundling (HEB) (HOLTEN,
2006). This technique uses an adternative structure to determine how the edges are bundled. This
structure defines a hierarchy amongst al vertices of V, apart from the graph layout and the set
of edgesE. In detail, this process starts with the drawing of the given structure into the visual
space, which can be made by any tree layout algorithm such as the radial, circular, hiperbolic or
treemaps (JOHNSON; SHNEIDERMAN, 1991; BRULS; HUIZING; WIJK, 2000). Then, each
origina edge is drawn as a curve that follows the path between the source and the target vertex
in the hierarchy.

In order to transform an edge into a curve, HEB uses the intermediate vertices of the
hierarchy, which are not part of the origina graph layout. Holten (2006) drawn the edges as
cubic B-splines (basis splines) curves, in which the intermediate vertices are set as control points.
Figure 3 shows how this process is executed for a given edge. To draw the edge between the
origina vertices Ps,« and Pgnq (Figure 3a), thefirst step consists of finding the least common
ancestor LCA(Psart; Peng) to define a path between these vertices (Figure 3b). Then, the curveis
drawn using the intermediate vertices (P1; P2; P3) as control points (Figure 3c).

The cubic B-Spline is a well-known way to draw a curve from a set of points. In
summary, aspline is a piecewise function that creates an approximated curve from a sequence of

Figure 3 — The Hierarchical Edge Bundling proposa to bend edges. To draw the edge that connects Ps;,r¢ and Pgpg
(a), first the path between the source and the target determine the intermediate points (Py;P2; Ps) (b).
Then, acurved B-Splineis drawn using Py ;P»; P5 as control points (c).

Pena=Fy P,=LCA(Py, Py) Py
[#] ° 0 [ ‘ )P4 . P
% ) 4
o /O P P P \% ¥<| P
’ Psarn =Py - e © Py e 9 ¢ O Py o )
(a) Step 1 (b) Step 2 (c) Step 3

Source: Holten (2006) « 2006 |EEE.
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coordinates. The curves obtained from a spline can be interpolated splines, when they passes
through al the control points, or approximation splines when they do not pass over the control
points (HEARN; BAKER, 1986).

B-Splines are approximation splines, suitable for bundling purposes, because the resulting
curve is smoother and we can draw severa curves that are close but do not exactly overlap each
other. In contrast, the interpol ated ones are rougher for bundling purposes and would lead us
to just draw a curved representation of the hierarchy, once al edges are drawn exactly over the
control points. In order to fit approximation curves in the graph layout, we need to perform a
slightly modification in the points sets, duplicating the first and the last point. Hence, we assure
that all edges will start and finish in the exact position of the source and target vertices.

Holten (2006) conducted an extensive study over B-Splines, Beta-splines and Bézier
curves and concluded that there is no significant difference among them. Therefore, the use of a
B-Splineis not properly a bundling requirement. Other bundling techniques employ different
curves or gpproaches that do not use any curve construction model. Despite that, Holten (2006)
presents atransformation over the spline curve regul ated by atension parameter 3. This parameter
determines how rigid the edges are drawn, when 3 tends to 0, the edges are drawn without any
distortion (straight), and when 8 approximates to 1, the edges become rigid curves. Given a
curve S(t) over t € [0;1], starting in Py and ending in Py, this transformation is defined by the
following equation:

S'(t) = S(t)B + (1- B)(Po+ t(Px— Po)) (2.1)

For agiven set of points P = Py;Py;...;Pn, thistransformation can be applied directly
over each control point P;, by the equation

P/ = BB + (1~ B)(Ro+ (P~ Po) 2

Resulting in the transformed set S' = {Py;...;Py} used to drawn the edges. Figure 4
shows how the value of 3 modifies the edge bundling visualization.

Furthermore, an edge bundling layout can also be enhanced by color and opacity. A
potential usage of color in the edge drawing is to identify edge directions on directed graphs.
Edges directions are often represented as arrows. However, it only works for small graphs.
Figure 5 shows the visualization of function calls in a source code package using a red-to-
green interpolation from the source to the target of each edge. Although this figure has a good
representation for directions, the result depends on the dataset features and is not useful when
the graph has a more uniform distribution amongst its edges.

Finally, Holten (2006) also evaluated how opacity can be used to improve the bundling
visualization. Opacity is commonly used in visualization when there overlapping amongst
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Figure 4 — Different edge bundling layouts showing how the value of B affects the visualization.

(@B=0.0 B =105 (cB=1.0
Source: Adapted from <http://mbostock.github.io/d3/talk/20111116/bundle.html>

elements, so that it would show elements that were hidden before. Moreover, specifically for
the edge bundling layout, combine transparent edges may increase the detection of how many
edges are bundled together on each route. Usually, thisis aparameter that can be modified by
the user. However, Holten (2006) observed that long distance edges overshadowed short ones, so
he defines the opacity inversely proportional to the edge length.

Figure 5 — Different examples of a combined usage of gradient color scheme to represent edges directions and
values of B.

Iz Nz

B=0.5 B=075

Source: Holten (2006) © 2006 |EEE.

HEB proved to be a good approach to handle visua clutter in graph visualization that
can be applied in rea world scenarios. Specifically, it was applied in software visualization
(HOLTEN; CORNELISSEN; WIJK, 2007), and in many others domains (TAYLOR et al., 2009;
MANSMANN et al., 2009; GOU et al., 2011). Its achievements created a new branch of graph
visualization, which became an interesting field for many researchers. However, HEB requires a
hierarchical structure to conduct the bundling process, which might not be properly found in
many datasets and there is no discussion about methods that create this hierarchy. In addition,
HEB also does not work for geometric based graphs, since it demands a point placement that
considers the hierarchy, not the set of original vertices.

In the next sections, we outline different edge bundling approaches that were presented
after HEB. In order to have a better organization, these techniques were grouped by their most
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remarkable aspect: geometry-based, force-based, image-based, or attribute-based approaches.

2.3.1 Geometry-based Edge Bundling

In this section, we present edge bundling techniques that use as primary concept any
kind of geometric information from the origina graph layout to bundle edges. Therefore, instead
of using an additiona hierarchy or other information, these techniques require an origina graph
layout with vertices already placed in the visual space. These techniques are the Geometry-based
Edge Clustering (GBEC) (CUI et al., 2008), the Winding Roads (WR) (LAMBERT; BOURQUI;
AUBER, 2010), and the Multilevel Agglomerative Edge Bundling (MINGLE) (GANSNER et
al., 2011).

As mentioned before, one of HEB major problems is that it needs a hierarchy and
the vertices placement is based on the hierarchy layout. Hence, this makes HEB unable to
handle graphs that vertices coordinates must be retained. The GBEC is the first technique that
successfully achieved such goal. Thistechniqueis an extension of Qu, Zhou and Wu (2007) that
builds a mesh based on the original graph and it uses this mesh to bend the edges. The resulting
layout quality is defined by the quality of the applied mesh, so the major problem with this
approach is how to determine a good mesh.

The mesh construction method is not trivial because it needs to reflect the underlying
graph structure in order to create aroad-map of edges. The strategy presented by Qu, Zhou
and Wu (2007) consists of building a mesh using a Delaunay triangulation of nodes. However,
Cui et al. (2008) showed that this approach can not handle large graphs and it often produces
unpleasant layouts. A straightforward way to create this mesh is a manua process, managed by
the user after some observation of the graph structure, in which edge densities and directions are
analyzed. However, this can be a complex and time-consuming task, in special for large graphs.
In addition, it is not guaranteed that the user will provide a useful mesh.

In order to provide an automatic mesh generation, Cui et al. (2008) performed an analysis
of edge patterns through the origina graph by a discretization of the visual space. This process
computes the original graph bounding-box and divides the resulting areainto cells. After that,
each cell isanalyzed in terms of its density of € ements and edges directions. Next, small regions
with similar direction are merged to construct larger regions, thus forming clusters. At the end,
the mesh can be constructed applying a constrained Delaunay triangulation on segments that
perpendicularly cross each cluster. Using this process, the variation of direction when merging
small cellsinto larger ones can produce different levels of details.

Finally, the edge bundling layout is constructed by setting control points and drawing
segments or curves through them. These points are determined by the intersections among the
mesh and the original edges, with close points being merged. Figure 6 shows the GBEC result
for the dataset United States airlines, a graph with 1,790 vertices and 9,798 edges representing
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flights between different US cities. The set of verticesis placed into the visualization according
to their corresponding geographic location. This was not possible with HEB.

Figure 6 — A GBEC layout for the dataset United States airlines, with 1,790 vertices ans 9,798 edges representing
flights between different US cities. It is possible to notice that edges are bundled into “road-maps’.

(b) Bundled graph

Source: Cui et al. (2008) < 2008 |EEE.

In a similar approach, the technique Winding Roads (WR) (LAMBERT; BOURQUI;
AUBER, 2010) also discretizes the visual space to determine edges routes. This technique has a
process similar to atraffic system, in which different segments are larger or shorter depending
on the number of vehicles they support. Thus, this technique creates routes and then transform
each original edge to follow the most suitable route for its direction.

In detail, WR first divides the space into a grid of cells considering each vertex position.
This process uses a hybrid approach based on QuadTree decomposition (FINKEL; BENTLEY,
1974) and the Voronoi diagram construction (VORONOI, 1908), to create a “city map” over the
origina graph. Next, using the Dijkstra agorithm, each origina edge is transformed into the
shortest path between its source and target in the grid. This process assures that the final graph
will not have edge crossings. Finally, the edges are smoothened using Bezier Curves. The control
points are determined by the crossings between the origina edge and the grid. WR produces
better edge bundling layouts (in terms of clutter reduction) and it runs faster than the GBEC.
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The last technique in this group isthe Multilevel Agglomerative Edge Bundling (MIN-
GLE) (GANSNER et al., 2011). Different from previous techniques, that share the same genera
strategy, MINGLE employs an approach that aims to minimize the density of elementsin the
visud space. To achieve it, the technique performs an iterative edge clustering computation and
calculates the usage of ink to draw the graph. This process is an extension of an edge clustering
method to improve circular layouts (GANSNER; KOREN, 2007). It can be computed faster than
previous agorithms and it can be applied in larger graphs.

To create an edge bundling layout, MINGLE uses an auxiliary structure, which is caled
graph of edges proximity, computed from the compatibility among edges from the original graph
layout. Each edge is formed by apoint in a 4-dimensional space, consisting of the coordinates of
the edge source and target. Thus, original graph is processed to determine connections among
each edge with its k nearest edges in the graph of edges proximity, The parameter k can be used
to determine how many edges will be bundled together. Once the proximity graph is constructed,
it will guide the bundling decisions.

The bundling process consists of merging edges in order to minimize the amount of ink
used to drawn the entire graph. This computation is performed considering the proximity graph.
For each adjacency (i.e., for each pair of neighboring edges from the original graph), the amount
of ink to draw the graph is calculated considering that the pair was bundled. Then, the pair with
maximum ink saving is chosen to be bundled. When edges are bundled, they are also grouped in
the proximity graph. The next step can join not only pairs of edges, but also groups that represent
bundles processed before. The rendering process consists in drawing each bundle of edges asa
unique line and connects this line with the original vertices at its endings. Finaly, the lines are
transformed into splines to smooth out the drawing. Figure 7 shows the edge bundling layout
performed by MINGLE for the airlines graph.

Figure 7— A MINGLE layout for the dataset United States airlines.

Source: Gansner et al. (2011) « 2011 |EEE.
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Among the three techniques presented in this section, MINGLE has the lowest compu-
tational cost, and it is the first technique to perform edge bundling in graphs with millions of
edges. However, thereis no further discussion on graph readability (for example, if the bundling
can really increase the readability of millions of edges). Theink saving measure can be used to
make the MINGL E bundling decisions, but not to compare different bundling techniques, since
it is not possible to conclude that lesser the ink usage is, better is the graph layout.

Furthermore, those techniques only use the geometric information, by the grid compu-
tation or the proximity graph from the original edges placement, to execute the bundling task.
It means that there is nothing else about the data are being considered in order to create edge
bundles. In the next section, we present other group of techniques, that employs force-based
methods to bundle edges.

2.3.2 Force-based Edge Bundling

Force-based approaches cover alarge domain of techniques in information visualiza-
tion, such as multidimensiona projection (TEJADA; MINGHIM; NONATO, 2003) and text
visualization (ALSAKRAN et al., 2012). These approaches simulate a force system, in which
each element in the visual space is a point with attractive and repulsive forces to other elements,
the elements move over the space until the equilibrium state is reached. In edge bundling, the
force-based approach is an alternative to more complex mesh generation layouts. This group
consists of two main techniques, the Force-Directed Edge Bundling (FDEB) (HOLTEN; WIJK,
2009) and the Divided Edge Bundling (DEB) (SELASSIE; HELLER; HEER, 2011). FDEB
segments each edge into a set of points to build a spring—mass system and executes an iterative
process to bend the edges. This process groups similar edges until the system reaches a stable
state. DEB improves the FDEB layout by separating edges with different directions, improving
the readability of directed graphs.

The method employed by FDEB consists in a spring—mass system, which combines
a spring compressing force and an electrostatic force. First, each edge is segmented into k
intermediate points P;;;, wherei is the edge index and j one point (j € [1;k]) along its length.
Next, the forces system is built with each point P;;; being affected by a spring force in the
direction of its neighboring points (P;;;— 1 and P;;;. 1), and an electrostatic force for each other
point P;; with s = i. Figure 8 shows how this process works, considering the segmentation of
two edges and the forces applied to one intermediate point. In each step of the iterative process,
al points are moved towards the resulting force, which is computed by the following equation:

1
sl LS

i (2.3)

with K; being the spring constant for the edge i and P;;; the intermediate point j of the edge s.
The edge bundled graph is obtained when this system reaches its state of equilibrium, by drawing
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splines using the intermediate points as control points. The authors limited the interaction
among control points to only those with the same index to reduce the computationa cost of the
simulation.

Figure 8 — Forces involved to determine the control points in the Force-Directed Edge Bundling. In detail, the figure
highlights the forces that determine the position of the intermediate point po. These forces represent a
spring forcein the direction of py and p3 and an electrostatic force in the direction of qa.

F =
Fsz kp“pz - pg”
1":c='|||:'1 - pz"

1 Fo=1/1Ip,-q,ll

@ -_"————4.______’_____._*_@
Q qn q] qi‘ q3 Q

1
Source: Holten and Wijk (2009) < 2009 |EEE.

However, the resulting graph is often unreadable due to the strength of the bundies.
Varying the spring constant K; is not useful to solve this problem since it relaxes bundles too
much. So, Holten and Wijk (2009) employed an edge-compatibility measureC; into the force
system, which controls the level of interaction between each pair of edges. This measure can
consider different factors, such asthe angle, size, position and visibility of the edges. Therefore,
thefinal formulation is given by the equation:

C.
FPi;j = Ki.(||Pi;j_1 - Pi;j" + "Pi;j - Pi;j+1") + S/Z i LS (2.4)
=1

Another benefit of the compatibility measureisthat it is aflexible metric. Basicaly, it
is possible to add any feature that measures the relationship between edges, including related
information about the edges, such as attributes or weights. Divided Edge Bundling (DEB) is an
example of the manipulation of this compatibility measure. Selassie, Heller and Heer (2011)
modified the forces in the physical simulation in order to highlight edges directions and weights.
Figure 9 shows a comparison between FDEB and DEB for the same dataset. It is possible to see
how DEB better represents the bundling directions and weights.

Both force-based approaches presented an important contribution to edge bundling
layouts by creating clean and meaningful edge routes. However, force-based techniques have a
high computational cost. FDEB is O(E2C) for a graph with E edges and C control points per
edge for every iteration. DEB has pre-processing tasks that reduce the complexity to O(E?) per
iteration. Also, those techniques do not describe deeply or evaluate the usage of underlying data
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Figure 9 — A comparison between the FDEB and DEB layouts for the United States airlines. This comparison
shows how DEB better represents the edges directions.

(b) DEB

Source: Selassie, Heller and Heer (2011) < 2011 |IEEE.

into the compatibility measure. Thisis only addressed in other publications (NGUY EN; HONG;
EADES, 2012; SAGA; YAMASHITA, 2015; YAMASHITA; SAGA, 2015).

In the next section, we discuss the group of image-based edge bundling techniques.
Those techniques reduce the computational cost and running times by using image processing
methods.

2.3.3 Image-based Edge Bundling

Using adifferent strategy, a group of techniques relies on image processing approachesto
produce and improve edge bundling layouts. There are four techniques in this group, the pioneer
is the Image Based Edge Bundles (IBEB) (TELEA; ERSQY, 2010), that processes an existing
image of abundled graph to improve the visual representation and provide a better perception on
groups separation. The second technique is the Skeleton-Based Edge Bundling (SBEB) (ERSOY
et al., 2011), that employs a set of image processing algorithms to create paths that guide the
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edges bending. The Kernel Density Estimation Edge Bundling (KDEEB) (HURTER; ERSOY;
TELEA, 2012) draws bundled edges using the kernel density estimation algorithm, rendering a
bundling layout much faster than prior techniques. Finally, the bundling process is further speed
up by the technique CUDA-based Universal Bundling (CUBuU) (ZWAN; CODREANU; TELEA,
2016), which is an extension of KDEEB that takes advantage of Graphics Processing Unit (GPU)
parallelization.

The IBEB is not a properly novel edge bundling technique because it does not present a
bundling construction agorithm. Instead, this method presents an image-based transformation to
enhance the edge bundling visualization, emphasizing edge clusters and patterns. This technique
receives as input an edge bundling layout built with HEB or other techniques. The original set
of edgesis divided into different clusters by their distances. Then, severa image processing
methods are applied, such as to determine contours and shadows of each cluster. The bundles aso
receive distinct colors. Distinct groups can be moved to reduce the overlap among them, which
was hot possiblein prior techniques. Figure 10 shows the enhancement obtained by employing
the IBEB in aorigina HEB layout.

Figure 10 — A comparison between HEB layout and its enhanced version using the IBEB. The IBEB highlight edge
bundles and remove the occlusion among them.

(a) HEB (o) IBEB

Source: Teleaand Ersoy (2010) € 2010 The Author(s) Journal compilation & 2010 The Eurographics Association
and Blackwell Publishing Ltd.

Extending the IBEB, the Skeleton-Based Edge Bundling (SBEB) (ERSQY et al., 2011)
technique proposes an entire image based framework to construct edge bundling layouts. Instead
of receiving a pre-processed graph, the technique receives as input the original graph layout,
where vertices are aready placed in the visual space. This technique uses similar IBEB iterative
image manipulation methods to create the bundling visualization. During the bundling process,
the technique takes advantage of GPU processing to create bundling layouts faster than previous
methods.
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In detail, SBEB uses a skeleton computed from the original graph to guide the bundling.
This process resembles the HEB, but it does not require any additional information apart from
the original graph. The skeleton isinherent to the graph topology and computed in the first stage
of the framework. The whole process of SBEB is complex and it takes several steps, which
are beyond the scope of this section. Briefly, in order to create the skeleton, the edges arefirst
divided into clusters according to their geometry similarity, such asin IBEB. Next, the technique
obtains the shape of each cluster and a skeleton is computed from each shape. Finally, edges are
attracted towards their respective cluster skeleton.

Although the technique produces a suitable layout after one execution, the process can
be repeated iteratively to improve the visualization. Moreover, other minor enhancements are
applied, such as relaxation and smoothing of the edges. A Compute Unified Device Architecture
(CUDA) based implementation of SBEB performs the bundling of small graphsin few millisec-
onds. Figure 11 shows the United States airlines graph produced by SBEB, colors were used to
identify each edge cluster.

Figure 11 — The edge bundling layout produced by the SBEB for the dataset United States airlines.

Source: Ersoy et al. (2011) < 2011 IEEE.

The third image-based technique is the Kernel Density Estimation Edge Bundling
(KDEEB) (HURTER; ERSQY; TELEA, 2012). This technique uses an approach based on
the Kernel Density Estimation algorithm. Basically, it generates the density map of a given
graph layout. Then, it transports the edges in the gradient of this map in an iterative process,
reducing the kernel size at each step. Similar to SBEB, the input graph can be the original or
bundled graph. This approach allows the user to modify the density map, for example, by adding
obstacles that must be avoided in the bundling construction. Finally, the technique aso improves
the shading algorithm from former image-based techniques, used to enhance the visualization.
KDEEB produces similar results to the previous techniques in terms of clutter reduction and
bundling quality, while it runsin a fraction of time of prior algorithms.
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Figure 12— A KDEEB layout for the dataset United States airlines.

Source: Hurter, Ersoy and Telea (2012) @ 2012 The Author(s) Computer Graphics Forum © 2012 The Eurographics
Association and Blackwell Publishing Ltd.

The last image based technique is also the most recent edge bundling publication, called
CUDA-based Universal Bundling (ZWAN; CODREANU; TELEA, 2016). Asits name says, this
technique consists in a completely parallelized GPU-based approach to construct edge bundling
layouts. This approach runs faster than KDEEB, which was the quickest bundling implementation
so far. Furthermore, CUBuU claims to improve scal ability, edges direction representation, the level
of details and the generality for edge bundling.

In detail, CUBuU algorithm receives as input an original graph layout, like other image-
based techniques. CUBU’s bundling approach originated from the KDEEB al gorithm without
major changes. It also obtains a density map from the kernel density estimation algorithm.
However, CUBuU improves each step to a more parallelized strategy. For instance, the density
map takes between 40% and 60% of the execution time of KDEEB and it can not be completely
executed in parallel due to concurrent image-writes. Another difference is how frequent the
smoothing process is applied, one for each 3 or 4 iterations, instead of one for each iteration in
KDEEB. Despite the similar bundling algorithm, CUBuU presents improvements in the bundling
shape control, the representation of edges directions and a set of original options that can be
used to change the final layout. Figure 13 shows an edge bundling layout generated with CUBLU.

KDEEB and, recently, CUBu are considered the state-of-the-art on edge bundling tech-
niques. Comparing these techniques, KDEEB processes a graph with 738,491 vertices and
899,791 edges in 8 seconds, while CUBuU takes 0.152 seconds for the same input, according
to the results reported in Zwan, Codreanu and Telea (2016). Both techniques are also used for
real-time dynamic bundling. These techniques have been proposed only to address the poor
computationa performance of prior techniques, and there is no discussion about the faithfulness
of the bundling representation considering the input data. Thisis a common practice on most
edge bundling publications, although some new techniques discuss how the underlying data can
improve edge bundling layouts. Those techniques are presented in the next section.
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Figure 13— A CUBU layout for the dataset United States airlines using different configuration parameters.

Source: Zwan, Codreanu and Telea (2016) < 2016 |EEE.

2.3.4 Attribute-based Edge Bundling

Although previous methods produced good results regarding running times, which
allowed the processing of thousands of edgesin rea-time, the layout meaningfulness is neglected
when information on edges or vertices (data attributes) is ignored. Thisinformation is not used
to guide the bundling process, so there is no connection between the visual representation and
the underlying data.

a few techniques define strategies that consider some information. Hierarchical Edge
Bundling consider underlying data by means of a hierarchy. However, it does not discuss any
alternative way to construct this structure from the data. It presents results only for software
based graphs, which used the software structure, a natural hierarchy, to generate the bundling
layout. Another common approach is, as mentioned before, to modify the Force-Directed Edge
Bundling compatibility measure. FDEB has been extended to use semantic properties inherent
from edges (KIENREICH; SEIFERT, 2010), edge type or attributes (YAMASHITA; SAGA,
2015), and compound compatibility measures (NGUY EN; HONG; EADES, 2012) on the force
mode! calculation.

Recently, Attribute-Driven Edge Bundling (ADEB) (PEY SAKHOVICH; HURTER,;
TELEA, 2015) extends the image-based KDEEB by using edge attributes to set the bundling
flow map. ADEB uses the same framework from KDEEB, but creates different density maps for
each edges attributes. This process basically adds the compatibility modifier transformation to
KDEEB and it can only be processed for numerical edges attributes. The results presented show
its usefulness to separate bundles according to edges directions, which can not be achieved with
KDEEB. Figure 14 shows a comparison between KDEEB and ADEB.

In al presented cases, only the edge information is considered to improve edge bundling
techniques. The information contained on vertices is still ignored. Moreover, one of the most
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Figure 14 — A comparison between the KDEEB and ADEB layouts of the Paris Air Traffic dataset. This result
shows that ADEB uses edges weights to create better bundles. Using this information, the ADEB layout
can separate flights between departures and arrivals for each direction.

= gt

(a) KDEEB

Source: Peysakhovich, Hurter and Telea (2015) < 2015 IEEE.

important open problems in edge bundling is to determine how faithful is an edge bundling
representation (NGUY EN; EADES; HONG, 2013a; LHUILLIER; HURTER, 2015).

2.4 Final Remarks

Inthis chapter, we presented the techniques that turned edge bundling into one of the most
successful graph drawing transformations to reduce visual clutter. Edge bundling techniques
have been used in the last 10 years in many fields, proving that they deliver a great way to
enhance graph visualization and improve visual analytics tasks. Also, edge bundling has been
consistently improved and extended by new techniques during al this period.

By taking advantage of parallel and graphics processing, recent edge bundling techniques
reached a superb performance for large graphs, alowing them to be used with graphs containing
thousands, or even millions, of vertices and edges, and to compute real-time changes, asin
dynamic graphs.

Despite that, there are still concerns about edge bundling visualization. In general, the
goal of the existing bundling techniques is to simplify the visua representation of a graph,
emphasizing the main topological patterns presented in the entire dataset. The edge bundling
techniques presented in this chapter did not have a suitable validation process to measure how
faithful was a given edge bundling layout, considering the given data. As presented, most
techniques create roadmaps, but do not consider the real meaning of drawing a set of edgesin
the same route, or what the user can interpret from that.
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For example, this chapter presented edge bundling layouts from the dataset United States
airlines constructed by six different techniques (GBEB, MINGLE, DEB, SBEB, KDEEB and
CUBuU). In al results, the clutter reduction is easily observed, but there is no consensus on which
technique provided the best result. Interpret a bundling layout is often difficult, because the user
has no information that explains what a bundle represents in the original data.

This master’s thesis aims to fill this gap, by presenting a suitable bundling framework
that handles the information surrounding vertices and edges in order to determine how the edges
are bundled. Different from geometry-based techniques, we do not use the graph’s spatially data
to create bundles, because it can lead the visualization to show misleading information. Instead,
we attract the edges over a similarity-based structure, called backbone. Thisis also different
from the force-based approach and its alternatives that may consider data not only spatially data,
but merge al information in the same system.

In addition, prior techniques, such as GBEB, MINGLE and iterative image-based tech-
niques, support multiple levels of details. However, those methods just vary how generic the
bundles are. For example, MINGL E determines it by the maximum amount of edges that can
be bundled together. On the contrary, this research explores a multiscale visualization based on
vertices filtration, which can separate global and local patterns. Hence, improving the visuaiza-
tion of huge graphs. Therefore, we discuss the gpplication of our technique in huge graphs by its
ability to present a readable graph, not by its computational cost.
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CHAPTER

SIMILARITY EDGE BUNDLING
FRAMEWORK

3.1 Initial Remarks

In the previous chapter, we reviewed the existing techniques, discussing their most
important points and drawbacks. Currently, as discussed, most techniques focus on improving
the computational scalability, reducing the computational costs. However, not much has been
made to prove if the generated bundles can faithfully display the information of the origina data.

Inthis chapter, we present our framework for similarity-driven edge bundling. Theidea of
adding similarity to the process to improve its meaningfulness is based on the Gestalt principle of
proximity (STERNBERG, 2008). Gestalt is a well-known set of psychology laws and principles
that aims to understand the human ability to perceptually acquire and maintain information, being
afundamental concept in the field of information visualization. One of those principles states
that the human mind, when processing a visua representation, usually associates the similarity
among elements by their proximity (KOFFKA, 2013). Although this principle isimportant for
bundling purposes, it has been ignored by current techniques.

Moreover, it has been a consensus that edge bundling techniques are capable of reduce
clutter while representing generic information, being often applied to present apreliminary insight
into the data (HOLTEN, 2006). However, it is also a consensus that edge bundling techniques
presents problems when handling large datasets, since the cluttering, although reduced, will
persist when graphs with many nodes and/or edges are bundled.

From those assumptions, we consider to improve edge bundling following two different
principles. First, taking the similarity among el ements into account at the moment we pack the
edges into bundles, and second, creating strategies to display the information over different levels
of detail. This research supports the following hypothesis:
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“Edge bundling can better represent the data when there is an inherent connection
between the proximity among the elements in the information space and the prox-
imity of edges in the visual space. Moreover, providing a multiscale representation
improves the visual and complexity scalability of bundling layouts, making them

able to represent more information and to handle bigger datasets.”

In this context, our goal isto create multiscale edge bundling layouts using the distance
information contained on the dataset. In other words, given a graph G = (V;E) composed of
afinite set V of vertices and afinite set E of edges, with a vertex v; € V representing a data
object d; € D, and an edgee;; = {vi;v;} €E representing some relationship between different
vertices vi €V and v; € V. Moreover, suppose that d(d;;d;) is a function that measures the
dissimilarity between two data objects d; and d;. Our goal is, when drawing this graph, to bundle
edges creating groups that obey the dissimilarity relationships amongst the vertices, i.e., the data
objects they represent. To reach this goal, we developed the Similarity Bundling Framework.

Our framework defines some steps in order to compose similarity driven bundles. In
this process, we employ a structure called backbone to create a “road-map” of bundles and,
finally, draw edges following these roads. In detail, our methodology splits the edge bundling
construction into three different steps. Thefirst step consists of the backbone construction, in
which we build a structure that will guide the bundling. In the second step, we place the original
vertices and the backbone into the visua space. Finally, the third step involves bending the edges
from the origina graph into bundles. Figure 15 presents an overview of our methodology.

Figure 15 — Similarity Bundling Framework overview. (a) represents the input graph and its matrix of dissimilarities,
(b) shows the backbone created from the dissimilarities, (¢) shows the backbone placement using the
radia layout, (d) shows the bundling layout with edges bent through the backbone.
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Source: Elaborated by the author.

In the next sections, we detail each step, starting with the backbone construction.

3.2 Backbone Construction

The backbone is a structure composed by an additional set of elements, the intermediate
vertices V', linking al vertices V of the graph G. From now on, vertices V are called data vertices,
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i.e., vertices that represent data objects. Every pair of verticesv; € V and vj € V islinked through
a sequence of vertices (path) pij = {vi;Vy;Vos...;vj} passing through different intermediate
vertices { v;;vs;...} € V. The primary function of the backbone is to serve as a guide to bend
the edges, resulting on the bundles. If an edge e;; connects two vertices v; and vj, e;; will be
curved towards the path p;; that links v; and v; in the backbone.

Different paths can share intermediate vertices. Therefore, the bundle process resultsin
groups of curved edges, potentially reducing the visual clutter. In our approach, the backboneis
akey piece and has to obey the following design principles to fulfill itsrole:

1. The backbone should define paths between all pairs of data vertices, precisely connecting
the vertices according to the similarity among them (data objects);

2. Any two data vertices should be linked by a unique path;

3. A path between two data vertices should not pass by any other data vertex.

Thefirst and the second principles are straightforward. Because the backbone is used to
attract the edges during the bending, it is necessary to have routes connecting all pairs of data
vertices, considering that the origina graph could have edges between any pair of data vertices.
In addition, the path connecting two data vertices should be unique in order to avoid ambiguity
problems during the bending. The third principle is broader. Suppose that an edge e;; connects
the vertices v; and v;, but that neither v; nor v; are linked to a third vertex vy. Since the backbone
is used to attract e;j towards the path p;j, if vk € pij, the edge will be bent towards vy. This gives
the wrong impression that v; and/or v; are connected to vy, potentially resulting in misleading
visua representations.

As a consequence, our backbone is atree-like structure where the data vertices V of the
graph G are the leaves. Among the candidate techniques to construct such tree, the minimum
spanning tree (GRAHAM; HELL, 1985) can be discarded since it violates (3). We can also
discard hierarchical clustering techniques, such as the Unweighted-pair Group Method with
Arithmetic Means (UPGMA) (SOKAL; MICHENER, 1958) (SOKAL; MICHENER, 1958), since
they are extremely sensitive to certain distance distributions (LEMEY; SALEMI; VANDAMME,
2009), and prone to produce unbalanced structures, which violates (1).

We devel oped two backbone constructions that obey all design principles. First, we used
the Neighbor-Joining (NJ) (SAITOU; NEI, 1987) agorithm for phylogenetic tree construction,
and then we improved this approach to add the multi-level capability defined in our hypothesis. In
sequence, we developed a novel algorithm, called Similarity Tree (STree), for the construction of
the backbone that addresses all the design principles, which creates a multi-level similarity-based
binary tree with alow computational cost. We describe these methods in the next sections.
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3.2.1 The Neighbor-Joining Backbone Construction

The Neighbor-Joining (NJ) (SAITOU; NEI, 1987) phylogenetic tree was the first ap-
proach we used to build the backbone in our edge bundling method. This treeis also used to
place the verticesin the visual space. Thus, the resulting graph has its edges grouped, and the
nodes placed considering the similarity relationships existent on the dataset.

The NJ algorithm creates a tree containing vertices that represent all N data elements
and N - 2 intermediate vertices, that is, vertices that are not part of the origina dataset, but were
created by the algorithm. This method starts with a pair-wise distance matrix D and a star-like
tree, in which all data vertices are connected to one virtual vertex. Then, the algorithm finds a
pair of vertices (i; j) by the criterion of minimum evolution, that is, the pair with the smallest
sum of branch lengths S;:; given by the following equation

1 & 1 1 0
Sij = o(n— 2 '.‘(Dik"' Djk) + éDij + 71’1_ 2 ' z Dkl (31)
=1; (kl=1;)) Ak< 1)

When the pair (i; j) is selected, a new intermediate vertex X is created, with the vertices
i and j asits children and connected to the common ancestor of i and j. We then update the
distance matrix D by removing the distances that involve the vertices i and j and adding the
distances from X to each remaining vertex (k). To calculate these distances, we use the following
equation

(3.2)

This process finishes when only two nodes are remaining in D. In the end, the neighbor-
joining treewill have N data vertices and N — 2intermediate vertices. We used theimplementation
proposed by Studier, Keppler et al. (1988), in which the NJ is obtained with complexity O(V3),
where V is the number of vertices. Although most usages of the NJ algorithm are related to
biological studies, it was applied in information visualization before. Cuadros et al. (2007)
created a NJ from collections of documents to perform a visua analysis of text similarity.
Degpite the requirement of adistance matrix, this matrix can be generated by any data associated
with the vertices of the origina graph. Figure 16 shows the neighbor-joining tree using the radial
layout for the dataset INFOV1S04 (FEKETE; GRINSTEIN; PLAISANT, 2004) (see section 5.2).

The NJis suitableto construct the backbone because it avoids ambiguitiesin the bundling
visuadization. This happens because the algorithm adds intermediate vertices to the tree, and it
guarantees that the path between two different data vertices passes only through intermediate
vertices, which is crucial to fulfill our design principle (3). Paivaet al. (2011) extended the NJ
algorithm in order to promote data vertices in the hierarchy, thus removing intermediate ones.
However, this modification would produce a backbone that does not obey this principle.
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Figure 16 — The neighbor-joining tree of the dataset INFOV1S04.

Source: Elaborated by the author.

3.2.2 Multi-level Neighbor-Joining Backbone

We transformed the NJ backbone construction into an iterative process that combines
the NJ method with a clustering process, such as presented by the Visual Super-Tree (SILVA et
al., 2016). In this gpproach, instead of building the NJ tree from the entire set of vertices, we
first split the data vertices into clusters, repeating it in multiple levels, and then construct the tree
from the clusters.

Figure 17 shows how the multi-level clustering is applied to construct the bundling
backbone. First, starting with the original set of vertices V, wecreateaset C' = {cl;cl;...;ck}
with K clustersat thefirst level 1 = 1, which is obtained using the K-means (JAIN; DUB~ES, 19§8)

algorithm. Then, we compute the neighbor-joining from the set of centroidsC? = { clieks..sek)
of C' to start our backbone. Next, the same process is executed recursively. For each level 1,
we divide each cluster ¢} into anew set of Q clusters and compute the neighbor-joining of this

set. Finally, this tree is attached to the branch where c%‘ ! was positioned in the superior level
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tree. The process stops when it reaches the desired number of levels. To create the backbone, the
user setsthe value of K, and the minimum size for a given cluster in the last level. Hence, if a
cluster reaches the minimum size before L levels, the process is stopped in this branch and the
remaining elements are directly attached to their respective superior tree level.

Figure 17 — Multi-level clustering processing. (a) shows the division of an original set of 11 vertices into three
clusters with size 5, 4 and 3 in thefirst level. Then, the second level divides each cluster in three degper
ones. On the last level, only clusters with more than one element are divided into new ones. (b) shows
the backbone built from that division, highlighting the intermediate vertices that link different tree
levels.
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Source: Elaborated by the author.

When compared with the NJ, the multi-level neighbor-joining presents fewer intermediate
vertices, being the clustering strategy a powerful way to reduce the space occupied by these
vertices. This gpproach aso enables the usage of summarization to visualize larger graphs (in
particular with a large number of vertices). A cluster can represent al vertices below itself,
which makes it applicable not only for graphs where the number of edges generates the visual
clutter but al'so when it is not adequate to represent al vertices into the visua space. Furthermore,
the multi-level execution reduces the computation cost of the entire process, once we replace
one execution of the cubic NJ algorithm for the whole dataset for some executions of the same
algorithm with small subsets of the original data.

Regarding the parametrization, the user determines the number of clusters, the number
of levels and the minimum cluster size. Figure 18 shows three different backbones created with
the multi-level neighbor-joining from the dataset INFOVIS15 (ISENBERG et al., 2015) (see
section 5.2), when the algorithm is set to produce the multi-level neighbor-joining tree with 1, 2,
and 3 levels. By creating different views for the same data, those parameters may improve the
user experience with the visualization.

However, those parameters are less accurate to the user, and it is hard to determine a
good vaue for K, which may require a previous knowledge of the dataset. Furthermore, those
parameters are a big challenge when devel oping a proper bundling eva uation and comparison
with others techniques. Different from other parameters (discussed | ater) that can be changed in
real-time and preserve the visualization context, any change in the backbone parameters makes a
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Figure 18 — Different views of the dataset INFOVIS15 using the multi-level neighbor-joining method with different
levels of processing. The increment of levels expands the number of groups, creating a more detailed
view, but it also increases the number of intermediate vertices.

(a1 leve (b) 2 levels (c) 3levels

Source: Elaborated by the author.

huge impact in the bundling layout. This discussion led us to improve the method to avoid those
parameters. We present this method in the next section.

3.2.3 A Cluster-based Backbone Construction

Inspired by the running time and computational cost reduction alowed by the clustering
approach on the multi-level neighbor-joining bundling and a so looking for aless parametrized
technique, we devised a novel strategy for the backbone creation based on the Bisecting k-means
(WEISS, 2001). Our goal was to completely avoid the usage of the NJ method, but still produce a
similarity tree-like structure to fulfil the constraints imposed by our methodology. To fill this need,
we developed a divisive agorithm, called Similarity Tree (STree), to construct a similarity binary
tree where the original vertices are sequentialy split into clusters and sub-clusters, defining a
hierarchy of clusters.

As already mentioned, due to the design principles, the backbone is atree-like structure
where the intermediate vertices V' are internal vertices and the vertices V of G are leaves. Also,
to satisfy our primary goal, which is to bundle the edges creating groups according to the
dissimilarities amongst the vertices, the length of the path between any two verticesv; € V and
vj € V needs to be proportional to d(d;;d;). We define this length as the number of intermediate
vertices between v; and v;. In other words, vertices representing similar objects need to be placed
close to each other in the backbone structure.

The Similarity Tree algorithm starts with one cluster C containing all data vertices,
representing the root of the backbone. Then, the process splits C into two new clustersC, and



34 Chapter 3. Similarity Edge Bundling Framework

Cyp, so that each cluster contains the most similar vertices among themselves, minimizing

S 8(di;Ca)+ S 8(dj;Co) (33)
d;eC, d;eC,

where C, and C,, represent the centroid of the verticesin C, and Cy, respectively. After that, C,
and C,, are attached as left and right child of C, and the processis applied to C, and Cy,. Thisis
repeated until singleton clusters are created, that is, clusters containing only one vertex. As a
result, the clusters and sub-clusters are intermediate vertices, and the data vertices are leaves.
The splitting is based on the same strategy applied by the K-means algorithm (JAIN; DUBES,
1988), withk = 2.

The process for the backbone construction is outlined in the Algorithm 1. It receives
adataset D and returns atree T. In this algorithm, the function PIvoTs(C) isimplemented as
follows. We first calculate the centroid C of C. Then, we get the fartherst data object d, € C from
C asthefirst pivot, and the fartherst object from d, as the second pivot dy,. Also, the function
MEAN(C) returns the centroid of C, that isC = ﬁ > 4,ec di, where |C| represents the number of
objectsinC.

Figure 19 shows an example of atree drawn with the H-Tree algorithm (SHILOACH,
1976). The result of this processis a hierarchica structure in which the degper the cluster (from
the root to the leaves), more similar are the objects belonging to it. As a consequence, the most
similar objects are close placed on the backbone, and the path between them is reduced. Also,
the resulting tree is a binary tree, with N — 1 intermediate nodes. This results on aimost the
same number of intermediate vertices obtained with the NJ, but in a more balanced tree, that
is, ashallower tree. As shown in the next chapter, when we describe the complete eval uation of
this method, the Similarity Tree is balanced enough to provide a better edge bundling layout.
Furthermore, an intermediate vertex is a (super) cluster representation of its children, so it allows
the multiscale analysis over the original tree, by “contracting” the tree vertices at some level.

This section and the previous one presented different tree-like backbone construction
strategies developed during this master’s research. This step addresses the first stage of our
bundling pipeline, consisting of the creation of a structure that will guide the bundling. In the
following section, we present the next stage of our bundling pipeline, the vertices placement that
will guide the drawing of the curved edges.

3.3 Backbone Placement

Once we have the backbone, the next step is to place the data and intermediate vertices
on the plane. The backbone construction method does not provide any spatial information to
determine the placement. However, since backbones are tree-like structures, any method for
drawing trees can be used, which is normally very fast to be accomplished when compared with
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Algorithm 1 Similarity Tree agorithm.

function SIMILARITYTREE(D)
C«—{dy;...;dy} €D
T.root < C
C — MEAN(C)
SIMILARITY TREEREC(C, D)
return T

end function

function SIMILARITY TREEREC(C)
if |C| > 2then
{Ca;Cp} < SPLIT(C)
C.left < C,
C.right < Cy
SIMILARITY TREEREC(C,)
SIMILARITY TREEREC(Cy)
elseif |C| = 2then
C.left < C,
C.right < Cy
elseif |C[ = 1then
C«—d
end if
end function

function SPLIT(C)
{da;dp} < PIvoTS(C)
éa —d,
Cp < dy
whileit < MAX_ITERATIONS do
for dj eC do }
if 8(d;i;C,) < 6(d;;Cp) then
C,—Cyu d;
else
Cb <—Cb V) dj
end if
end for
Ca — MEAN(C,)
Ch — MEAN(Cp)
it «—it+ 1
end while
return {C,;Cyp}
end function

<assigns al data objectsto C
<createsatree T and set C asroot
< sets the centroid of C

<gplitsC into two clusters
<setsC, astheleft child of C
<setsCy, astheright child of C

<setsC, astheleft child of C
<setsCy, astheright child of C

< sets the centroid equal to the single data object

<selectsinitia pivots for splitting

<addsd; to C,

<addsd; to G,

< updates the centroid of C,
< updates the centroid of Cy,
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Figure 19 — Similarity Tree from a synthetic dataset with 380 objects divided into 4 different classes (identified by
the vertex color).
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Source: Elaborated by the author.

drawing the entire graph. For the neighbor-joining approach, we have performed tests using
radial and force-based algorithms. For the Similarity Tree, we took advantage of the binary tree
property to devise an adaptation of the H-tree algorithm (SHILOACH, 1976) that preserves the
similarity relationships and that makes a better use of the visual space.

Theradia layout distributes the vertices on a circle, and places the intermediate vertices
over inner concentric circles, with the root on the center. Consequently, the edges only intersect
the vertices on their beginning and ending points, thus, avoiding the ambiguity problems related
to intersecting vertices and edges, previously discussed. In our strategy, the distribution of the
vertices on the circle follows the order imposed by the backbone. The a gorithm places the
backbone leaves side-by-side following a canonical post-order traversal approach. One important
aspect of the radial layout, especialy interesting for bundling, is that the focusis on the edges
instead of the spatial position of the vertices. Thereby, most of the visual space is used to
represent the graph connections, which reduces the visua cluitter.

Although we performed some tests using the force-based algorithm with distinct initial-
izations, it is the less suitable layout for bundling purposes. First, because the force layout is an
expensive algorithm that takes severa iterations to reach a stable state. Second, because it cannot
guarantee the absence of crossing paths, even when it isdrawing a planar graph (TAMASSIA,
2013). Finally, this method is not stable, which means that different results can be attained for
the same input in multiple iterations.

On the other hand, the H-tree layout focuses on the vertices. The H-tree algorithm places
the vertices in arecursive process linking nodes through perpendicular line segments, resulting in



3.3. Backbone Placement 37

afractal structure with arepeating pattern that resembles the letter “H”. By equally dividing the
avail able space to represent the two sub-trees of each node, the resulting layout effectively uses
the available visual space on the presence of balanced trees. However, for unbal anced trees, it
fails because the spaceis split into two half-parts independently of how many vertices belongs to
each sub-tree. In the following sub-section, we detail how we adapt the H-tree agorithm to make
a better use of the available space when handling unbalanced trees and to preserve similarity
relationships.

3.3.1 Swapping H-tree

On the original H-tree, the vertices are positioned with a recursive process that starts
placing the root v, Of the tree on the center of the visual space and its two children viqo.le ft
and vyoor -right (if they exist) horizontally equidistant from v,oo; by alength. Then, the children
of Vroot.le ft and vyoor-right are positioned vertically equidistant from viooc.le ft and vioe .right,
respectively, by afraction of length. This process\/is repeated aternating the direction (verti-
cal/horizontal) and reducing length by afactor of 2. Figure 20 shows how the layout is built
after each recursive step of this algorithm.

Figure 20 — An H-Tree layout represented by each iterative step. In this example, each edge is drawn with the color
that indicates which step the vertices were processed.
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Source: Elaborated by the author.

Since our god is to preserve distances, we modified this algorithm to alow swaps
between siblings vertices, that is, aright sibling becomes aleft sibling and vice-versa. Figure 21
explains this modification. Considering that the vertex v, has been processed, with coordinates
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on the plane assigned to it, before positioning its children, v,.le ft and v,.right, we perform a
test to check if swapping them will improve the distance preservation.

Once v,.le ft and v,.right represent different clusters of objects (their centroids), and
that vioo-right represents a (super) cluster encompassing different clusters (vc.le ft, vc.right,
vg.left, and v4.right), we can swap v,.le ft with v,.right in order to place closeto ;o -right the
most similar cluster (vertex) to it, if it improves the distance preservation between the clusters
represented by v,.le ft and v,.right with respect to vy .right. The same appliesto vy.le ft and
vp.right with respect t0 vioo.right, ve.le ft and ve.right with respect to vioor.le ft, and vgy.le ft
and vq4.right with respect to viooc.le ft.

Figure 21 — Swapping branches using the H-Tree layout. The image shows, for v,,vy,v. and vq4, the dissimilarity
evaluation made to decide which branch is positioned in the center of the visualization, and which one

is positioned outside.
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Source: Elaborated by the author.

Through those swaps, it is possible to improve the distance preservation between the
vertices belonging to neighbors (super) clusters, represented by vioor.le ft and vioor.le ft, since it
will place the most similar vertices close on the final layout. These swaps potentially lead to the
improvement of the overall distance preservation of the produced layout without corrupting the
tree topology since only swaps between siblings are allowed.

Notice that this swap strategy performs only local modifications, so it does not guarantee
that we are producing the H-tree arrangement that best preserves the distance relationships on
the plane. Nevertheless, due to the triangle inequality axiom of distance functions, we expect
to improve (when possible) the results of any given tree. The complete process is detailed in
Algorithm 2. In this agorithm, the function SWAPSIBLINGS(v.le ft; v.right) simply swaps the
sibling nodes v.le ft and v.right, and v; represents the centroid of the cluster represented by v;.

Different from the radial layout, the H-tree layout focuses on the vertices instead of on
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Algorithm 2 Swapping H-tree agorithm.
function SWAPPINGHTREE(T)
SWAPPINGHTREEREC(T.root, initial _length, false)
return T
end function

function SWAPPINGHTREEREC(v, length, horizontal)

if v== T.root then < Set the root vertex to the layout’s center
vx<—0
vy<—0

else
if horizontal == true then <|f it isan horizontal placement

if visleft childthen
V.X < V.parent.x— length
else
V.X < V.parent.x+ length
end if
V.y < V.parent.y
else <|f it isan vertical placement
if visleft childthen
V.y < V.parent.y+ length
else
V.y < V.parent.y— length
end if
V.X «— V.parent.x
end if
SWAP(v) \J <Swap the children of v if it improves the layout
SWAPPINGHTREEREC(v.1e ft;length= \2; lhorizontal)
SWAPPINGHTREEREC(v.right;length= 2;!horizontal)
end if
end function

function SWAP(v)
if v.parent == v.parent.parent.right then
vp <« v.parent.parent.le ft
vN « v.left
VE < v.right
else
Vp «— v.parent.parent.right
VN «— v.right
Vg « v.left
end if
if &(vg;vp) < &(vn;vp) then
SWAPSIBLINGS(v.right.le ft, v.right.right)
end if
end function
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the edges. Therefore, the distances between the data objects are better preserved. However, it
is expected to generate more cluttered layouts due to the reduced space for the edges. Also,
theradia layout provides a clear separation between the space designed for leaves (around the
circumference) and intermediary nodes and branches, that are overlapped by the bundling edges.
The H-tree layout places the vertices spread on the plane, creating some overlap with edges.

3.3.2 Multiscale Backbone Placement

A important question during the backbone placement is how to handle the scalability
of the layout. The circular layout organizes all vertices over a circumference, which limits the
layout by the length of this circumference. Therefore, the circular layout is not useful for large
datasets. On other hand, the H-Tree layout supports more vertices, since it makes a better use of
the visual space. However, because the algorithm divides the length of each branch (and thusits
available area), the layout is aso limited in degper levels, where the small drawing area makes
the graph visualization unreadable.

In order to reduce the impact of this limitation, we added a parameter, called 1, that
control the maximum depth in which vertices will be placed in the visualization. When the
vertices placement algorithm reaches this level, the intermediate vertex that represents its cluster
is defined as the fina vertex and the a gorithm stops the recursive process. Thereby, al vertices
of this branch will be hidden. Although this process reduces the available information, the user
can control the vaue of T, thus visuaizing the graph in multiple levels. Figure 22 shows a
comparison of two values of T for ahuge graph. When 1 = 10 all vertices are easily detected
and the size of each circle represents the number of hidden vertices that are below. For larger
values of T, more vertices are displayed, but they are positioned close in deeper levels, which
makes them hard to be identified.

Figure 22 — Comparison between the backbone placement of a huge graph using different values of 7.

Source: Elaborated by the author.
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3.4 Edges Drawing and Bundling Enhancements

Finaly, the last task for drawing the graph is to bend the edges in order to compose edge
bundles. In this process, for each edgee;; in G wefirst search the path pij = {vi;vy;vo;...; v}
on the backbone that connects v; and v;. Then, we bend e;; towards p;; by considering its vertices
as control points of a B-Spline curve. Since we can guarantee that the hierarchy has one path
connecting any pair of original vertices over a subset of virtual vertices (design principle (1)), we
first find those paths executing a simple breadth-first search from the root of the tree. By knowing
the path from the root to every origina vertex, we can find any path between two origina vertices
in a faster and simpler way than any shortest-path algorithm for graphs. An overview of this
process is shown in Figure 23.

Figure 23 — Curving an edge through the backbone. First, the original edge is selected (a); the path between the
source and the target is found (b); a B-Spline curve is drawn using the intermediary vertices as control

points.

Source: Adapted from Sikansi and Paulovich (2015).

Regarding the multiscale placement, the edge drawing is modified according to the
available vertices. When part of the vertices in the path p;; is hidden, the edge is rendered using
only the available vertices. If the path p;; contains only hidden vertices the edge is not rendered.
Thereby, the multiscale placement filters local edges, hence it controls the amount of visible
edges in favor of edges connecting less similar vertices.

3.4.1 Control Points Filtering

The standard edge drawing uses all intermediate verticesin the path p;; to bend the edges.
However, bundles can be enhanced by filtering the intermediate vertices used as control points.
To perform thisfiltration, afunction CID(V;() establishesif an intermediate vertex should be used
as acontrol point, and the edge is curved towards the path p;; = {vi; v, € 1] D(v) ;vj} < pij,
being I the set of intermediate verticesin the path p;;. Although there are many waysto determine
®(v,), we defined it in function of the level Ly of each intermediate vertex v, . Ly represents the
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stage in which the given cluster was divided and, consequently, the distance from the vertex to
the root vyoor- Thus, Ly, = 1 becauseit isdefined in thefirst iteration of our algorithm. ®(vy) is
defined as follows:

HE

' ifeu<L,; < q;
o= S TR S @ (3.4

Fi
alse otherwise.

where @ < @u. The parameters ¢, and @ are controlled by the user. These values work
as alower and upper delimiter to decide if the intermediate vertex vy, will be used as control point.
@ determines how far from the root the intermediate vertex vy should be, while @y determines
the maximum level used to bend the edges. Figure 24 shows a comparison between an edge bent
towards p;; and p; i Filtering intermediate points avoid the construction of a bundling layout
tightly close to the backbone. The lower bound improves the identification of connections among
opposite groups, while the upper bound reduces the distortion caused by unbalanced branches.

Figure 24 — Comparison between a curved edge when no filtration is performed (a) and a edge drawn with control
pointsin theinterval [4;6] (b).

Source: Elaborated by the author.

3.4.2 Adaptive-f

In addition to the intermediate vertices filtration, the user can also control the edges’
curvatures by moving the control pointsin the path p; i towards the straight line connecting v; and
vj. This enhancement is similar to the approach presented by Holten (2006). However, instead of
considering a constant value for all edges, we calculate different values for each edge depending
onitssize. Themain ideaisthat a edge bundling layout tends to hide short edges while highlight
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bundles formed by long ones. Therefore, we changed this process to remove short edges from
bundles. Given the position ¥ of the vertex vy € p; ;» we caculate the transformed position as

U= £(pij) ¥+ (1— £(pi;)) (9 + oy (Fim @) (3.5)

ij
where v; and V; are the transformed positions of the ending points of an edge e;;, k is the index
of vi in pij, and f(pi;) isafunction that controls the bending, given by

B-v
f(pij) = — adeey TV (3.6)
1+e 005

f(pij) ranges from [0;1] to alow a proper convex interpolation between the straight
line and the B-spline curve. The function f(pi;) has three parameters defined by the user: A
is the minimum size for edges that will be bundled, 3 isthe strength of curvature for bundled
edges and y is the strength of curvature for unbundled edges. In addition, d(Vi;V;) isthe origina
edge length (Euclidean distance). Usually, B is set with avalue closeto 1, whiley is set with a
value closeto 0. Basically, this manipulation creates a function with a hard-step that works as an
activation function (its behavior gpproximates a step-function). This function consider the size of
each edge and determineif it should be placed in abundle or draw straight to its target. Figure 25
shows the effect of thisinterpolation in a curve and the behavior of this function according to the
parameters used.

Figure 25 — The interpol ation between the straight and the curved edge. (a) shows how the value f(p;;) affectsthe
drawing of an edge connecting A and D through the control points B and C. The curved lines show
an interpolation from the straight line (f(pi;) = 0.0) up to the most distorted drawing (f(p;;) = 1).
(b) shows aplot of f(p;j) according to the parameters B, a and A, set by the user. A determines the
minimum size of an edge to be placed in abundle, 8 is the strength of curvature for bundled edges
(usually set closeto 1.0) and y is the strength of curvature for unbundled edges (usually set close to
0.0).

C Edge length
(a) Different curves according to f(pi;) (b) £(pij)

Source: Elaborated by the author.



44 Chapter 3. Similarity Edge Bundling Framework

Because there are no conclusive experiments about the best values for the strength
of curvature, it is useful to allow users to change this parameter interactively. A small value
of f(pij) produces a less distorted graph, but with less clutter reduction. On the other hand,
f(pij) vauescloseto 1 produce the best result concerning the clutter reduction, but with more
distortion. Therefore, f(pi;) will result in two different scenarios. Edges with d(Vi; V) < A will
have their curvature strength equal to y, while edges with d(V;;V;) > A will have their curvature
strength equal B. Oncey is close to zero, those edges will not be placed in bundles and they
will be rendered similarly to straight lines. We believe that small edges should not be included
in bundles, since they generate too much distortion and ambiguity, depending on the dataset.
However, removing edges from bundles increases the visual clutter, so the parameter A isused to
balance this trade-off. Figure 26 shows a comparison between the original formulation and our
proposal.

Figure 26 — Comparison between B proposed by Holten (2006) and our proposal of an adaptive- using the dataset
INFOV1S15. The comparison shows short edges (smaller than a length threshold) in red, those edges

are better identified in our proposal. For this visualization we used the values 3 = 0.97, y = 0.1 and
A= 0.2

(a) Holten (2006) B’ variation (b) Our B’ variation

Source: Elaborated by the author.

3.4.3 Opacity and Coloring

Finally, opacity and coloring can improve the bundling appearance. There are many
examples of their usage in prior edge bundling applications. For example, a color scale can be
used to represent an attribute or aspects of each edge. Telea and Ersoy (2010) and Selassie, Heller
and Heer (2011) use colors to represent bundles or clusters, in order to improve the identification
of distinct groups of edges. Holten (2006) uses a gradient to represent each edge direction,
with different colors that identify the source and the target of an edge. This approach is useful
since other solutions, such as arrows, are unlikely to work in a cluttered layout. However, our
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experiments showed that this method loses efficiency when it needs to face graphs with more
complex edge patterns, such as bundles that contain a huge number of edges in both directions.

In addition to the color, manipulating the alpha channel may be helpful to highlight the
level of aggregation in each bundle. More specifically, opacity has a crucia rolein representing
the number of edges grouped in a bundle. Once the bundle is formed by an overlap of edges,
the combination of multiple layers increments the bundle intensity. Thus, bundles with more
edges have a strong intensity, while bundles with fewer ones are less recognizable. This value
aso hides non-bundled edges, which will have the less intensity in the layout. The bundling
layout can have aglobal opacity, which can be modified in red time, or a different value for each
edge, as presented by Holten (2006) to highlight short edges. Figure 27 shows an example of
bundling col orization with and without a global opacity. The edge color is determined by the
angle formed by the edge and the horizonta axis. When only the colorization is used, al bundles
seem to have the same intensity, while reducing the global opacity reveals the most and the least
representative bundles.

Figure 27 — Comparison between a colorized bundling layout and the combination of color and opacity.
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Source: Elaborated by the author.

3.5 Final Remarks

In this chapter, we presented the main formulation of this research work. During the
research, from the neighbor joining to the similarity tree, each step represented a movement
toward of the main goal. Thistechnique was beyond to the state-of-the-art presented before, once,
although the aspect that similarity representation is a prominent discussion on edge bundling
related publications, none of them have built an entire similarity-based approach before.
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CHAPTER

RESULTS

4.1 Initial Remarks

In this chapter, we report and evaluate the results of the Similarity Bundling Framework.
Regarding edge bundling evaluation, prior techniques often concentrate their reports on applica
tions and sometimes perform informal user studies. For example, Holten (2006) presented user
studies that recognized the effectiveness of an edge bundling layout for quickly gaining insight
into the relationship among el ements. However, most techniques limited their discussion to the
computational cost and applications, without an extensive evaluation.

Thereby, aremaining challenge isthe lack of an effective evaluation of those methods
according to their all features, not only their computational costs. This problem is mentioned in
many publications (ERSQY et al., 2011; HURTER; ERSOY; TELEA, 2012; NGUYEN; EADES;
HONG, 2013a), showing that there is no consensus about an evaluation framework that compares
different methods. Therefore, we developed an evaluation pipeline that verifies the ability of
our backbone, the Similarity Tree, to express similarities relationships and the quality of the
Similarity-driven Edge Bundling layout.

Our evaluation pipeline is divided into two sections. First, we performed a comparative
analysis of the Similarity Tree with others well-known tree construction methods (Neighbor-
Joining and UPGMA). In this analysis, two metrics were used to compare those methods in
terms of similarity representation and tree balance. In addition, we validated the swapping
transformation designed for the H-Tree layout. Second, we performed an analytical evaluation of
our method, comparing it with different edge bundling techniques, namely CUBu, MINGLE
and FDEB. We initially present a short anaysis using the Neighbor-Joining and its multi-
level transformation to create the backbone. To differentiate these methods from that using the
Similarity Tree, we called them Neighbor-Joining Bundling (NJB) and Multi-level Neighbor-
Joining Bundling (Multi-level NJB), respectively. Next, we describe the datasets employed in
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this comparative analysis.

4.2 Datasets

Our experiments and comparative studies used public datasets from previous publications,
as well as artificia datasets generated during this research. Those datasets were chosen due
to their specific properties that allowed us to evaluate each stage of our method according to
previous knowledge about the data. This section describes the datasets used for the backbone
evaluation and the ones used to compare the edge bundling layouts created with the Multi-level
Neighbor-Joining and the Similarity Tree.

4.2.1 Datasets for the Similarity Tree Evaluation

To evaluate the backbone construction, we used four datasets from a previous study on
visual representation of multidimensional data (FADEL et al., 2015). These datasets represents
different data distributions and were already used to represent problems often detected in such
analysis. The four datasets are described below and their distance distributions are presented in
Figure 28.

-+ WDBC: abreast cancer dataset obtained from digitized images of breast masses (ASUN-
CION; NEWMAN, 2007) classified according to two classes. In this dataset, most data
objects are similar among themselves, with few dissimilar ones.

- TWO_NORM: an artificial dataset with two classes, composed of multidimensional points
from two Gaussian distributions with unit covariance matrix. There is a good distribution
between similar and dissimilar objects, composing well-separated groups of data objects.

- SIMPLEX: an artificial dataset with six well-separated classes. This dataset consists of
m-dimensional spherical Gaussian points with a predefined standard deviation and means
at the corners of am-dimensional simplex.

- TEXT: avector space model representation of scientific papers from four distinct areas. In
this dataset, most data objects are dissimilar among themselves, with few similar objects,
afeature normally found on high-dimensional sparse spaces.

4.2.2 Datasets for the Multi-level NJ Bundling Evaluation

Our bundling method was evaluated using artificial undirected graphs. Recalling that
our bundling framework uses information from data objects to create the backbone and edges
are rendered following this structure, our synthetic sets of vertices and edges were generated in
different ways aiming at testing different properties. Moreover, this alowed us to gpply different
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Figure 28 — Distance distributions of the four datasets employed on the backbone evaluation.
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Source: Elaborated by the author.

sets of edges to the same set of vertices. We call DATASET each set of vertices and its related
datathat is used to construct the backbone, and DISTRIBUTION each set of edges.

The results obtained with the Multi-level Neighbor-Joining are presented using three
graphs. Those were generated considering different edges distributions from the same DATASET
of 600 data objects. These elements are equaly divided into five well separated clusters
(Cq;C2;C3;C4;Cs). Each DISTRIBUTION contains 4,000 edges, where a few edges connect
randomly any pair of elements (noise) and the remaining ones follow one specific pattern. The
three distributions are presented below:

- DISTRIBUTION 1: apart from noise, most edges connect elements from clustersCy and Cs
and elements from clusters C> and Cs;

- DISTRIBUTION 2: gpart from noise, most edges connect €lements from clusters C1 and Cy
and elements from clusters Co and Cy;

- DISTRIBUTION 3: apart from noise, al the other edges connect elements inside cluster C3
and inside cluster Cs;

4.2.3 Datasets for the Similarity-driven Edge Bundling Evaluation

The evaluation of the Similarity-driven Edge Bundling used six graphs also generated
with artificial data. In this case, we combine different DATASETS and edges DISTRIBUTIONS.
We created three set of vertices following different similarity relationships, namely DATASET |,
DATASET || and DATASET |I1. The differences among them include the number of elements,
classes and intersections. Figure 29 shows a two-dimensional representation of the three artificial
datasets.

To create the six different graphs, for each set of vertices, we defined two edges distri-
butions, namely DISTRIBUTION A and DISTRIBUTION B. The set of edges were planned to
show a pattern or relationship among elements considering their classes. These patterns can be
visualized in amatrix of adjacency, and we can compare the bundling result with the adjacency
visualization. Table 1 summarizes the artificial datasets and presents a matrix visualization of
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Figure 29 — Two-dimensional representation of the three artificial datasets used in the Similarity-driven Edge
Bundling evauation.

(a) Dataset | (b) Dataset || (c) Dataset 11

Source: Elaborated by the author.

each edge distribution. All sets of edges have 1,600 elements. We defined both size of vertices
and edges following the most common size used in former edge bundling papers.

Table 1 — Summarization of the artificial datasets used in the Similarity-driven Edge Bundling evauation.

DATASET | DATASET Il DATASET I
Number of classes: 3 4 5
Elementsper class:  [120; 120; 120]  [50; 30; 180; 120] [80; 80; 80; 80; 80]
s :

3 N

DISTRIBUTION A

DISTRIBUTION B

The following sections describe our evaluation process, starting with the evaluation of
our backbone, followed by our bundling evaluation.

4.3 Backbone evaluation

We chose two measures to evaluate the Similarity Tree (STree). The first one is the
nei ghborhood preservation, which evaluates the ability to represent the similarity relationships
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of agiven dataset. The last oneisthe average path size from root to leaves, which evaluates the
capability to create less distorted branches in the resulting backbone. We compared our method
against other techniques that present the same goal of distance preservation: the Neighbour-
Joining (SAITOU; NEI, 1987) and the UPGMA hierarchical clustering (SOKAL; MICHENER,
1958). In thefirst test, we evaluated the neighborhood preservation of the origina space conveyed
by the three different techniques. In other words, objects from the same neighborhood should be
placed nearby on the tree. We calculated the distance preservation of a data object d; asfollows.
First, we compute the k-nearest neighbours of d;, resulting on alist NN; = {di,;d,;...;d;} €

D. Then, for each element d;; € NN; we computed how many nodes are between the node
representing d; and the node representing d;, i.e., thelength of the path. The distance preservation
of d; isthe median of these values, with small values indicating better results. In this way, we
favor the local preservation, that is, well-constructed trees are the ones that closely link the most
similar objects and, consequently, place the neighbor objects closely when embedded on the
plane.

Figure 30 presents boxpl ots of the results comparing the methods for each dataset. The
blue boxplots represent the results conveyed by the NJ; the gray boxplots depict the results of
the UPGMA ; and the orange ones outline the results of our gpproach, the STree. To obtain these
boxplots, we varied the neighborhood size from 5 to 20 and computed the preservation distance
for each data object. On average, the results produced by the STree are very close or better than
the results of the others, with a smaller deviation from the average. Thereby, the layout produced
by the STree is more “reliable” since the degree of neighborhood preservation is uniformly
distributed over the entire tree, without bad spots that are compensated on the average by good
spots. It is worth noting that NJ and UPGMA are more computationally expensive techniques
than STree.

Regarding tree balance, the STree presented better results when compared to the other
techniques. Figure 31 presents the results of each technique for each dataset. Again, the blue
boxplots represent the results for the NJ algorithm, the gray ones for the UPGMA, and the orange
ones for the STree. These boxplots summarize the depth of the leaves. The red line represents the
results of a perfectly balanced tree. We divide the depth of each leaf by log, n, where n accounts
for the number of data objects.

On average, the results rendered by the STree are very close to the red line, while other
techniques deviate from it, indicating that the STree creates more balanced trees. On balanced
trees, the positive sideis that less intermediate nodes (on average) are between one data object
to any other data object (Ieaves). Thereby, resulting in |ess distorted edges since less bending
is introduced in the process. Moreover, this provides a more consistent use of the available
visual space, especially for the H-tree layout, reducing the visual clutter resulted from the edges
overlgpping. On the radial layout, the uniform depth of STree results on a uniform distortion of
the edges, avoiding long distorted edges that could be produced by the NJ or UPGMA trees.
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Figure 30 — Boxplots summarizing the neighbourhood preservation attained by the STree, NJ, and UPGMA consid-
ering the four distinct datasets. On average, the STree presents very competitive results if compared to
more expensive techniques, with a smaller deviation. Therefore presenting less bad spotsin terms of
neighborhood preservation.
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Source: Elaborated by the author.

Figure 31 — Boxplots summarizing the balance attained by the STree, NJ, and UPGMA considering the four distinct
datasets. The STree produces more balanced trees, therefore leading to less distorted edges on the
bundling and a better use of the available visual space. The red line indicates the perfect balance.
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Source: Elaborated by the author.

4.3.1 Swapping Evaluation

We aso evaluated whether our H-tree swap strategy effectively improves the distance
preservation on the produced layouts or not. We defined as distance preservation the degree
of how much the pairwise distance between the data objects is preserved in the visua space
considering their corresponding leaves positions. The most common gpproach for such kind of
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evaluation is a metric stress function, such as the Kruskal stress (KRUSKAL, 1964). However,
the metric evaluation is not gpplicable because we do not use distances to position the leaves,
we only use the topology of the tree. Hence, the distance between two leaves are not directly
proportional to the distance of their corresponding data objects in the original space.

We opted to use a non-metric evaluation based on the rank of the distances. The
distance preservation of a data object d; € D is computed as follows. We calculate a rank
Ry, = {r4,;rq,;...;rq,} COmparing the data objectsin D with d;, assigning 1 to the most similar
and n to the least similar data object, where n accounts for the number of data objects. For the
corresponding leaf v;, we calculate another rank Ry, = {1v,;Tv,;...;Iy,} comparing its position
on the plane with the positions of the other leaves, assigning 1 to the closest leaf and n to the one
farthest positioned. The distance preservation is then computed comparing both ranks using the
Spearman rank-order correlation coefficient (SPEARMAN, 1904), given by

6 x Z?(rdi - rvi)z

B (4.1)

rg=1-

rg variesin the range of [- 1;+ 1], with larger values indicating better rank-order preservation or,
in our case, distance preservation.

We compared our approach with the opposite swap, that, which is expected to produce
worst results. Because our approach only performslocal changes, instead of global ones, it is
possible that random swaps might produce better results. In our tests, none random swapping
leads to layouts that better preserves distance rel ationships, but we cannot guarantee that it will

never happen.

Figure 32 presents boxpl ots summarizing the results of our swapping strategy for each
dataset. The blue boxplots represent the opposite swaps and the orange boxplots represent our
strategy swaps. For al datasets, the average distance preservation attained by the normal swap
is considerably better than the inverted swap. Only for the TEXT dataset this improvement is
not evident. Since in this dataset the distance distribution indicates that most data objects are
dissimilar among themselves (see Figure 28), without a clear dissimilarity “ranking” amongst
them, thisis an expected outcome. In fact, such kind of distance distribution is usually observed
on high-dimensional sparse spaces, and it is known that distance metrics are poorly-defined for
such spaces.

The experiments above validated the Similarity Tree as a reliable process to generate
the backbone, which is considered the first part of our methodology. The Similarity Treeis a
process faster than conventional similarity-driven tree construction algorithms, and produces
more balanced trees. Therefore, this processis very competitive with other listed techniques to
represent the similarity among elements, and it was further improved with our swap strategy.
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Figure 32 — Boxplots summarising the results, in terms of distance preservation (rank), of the swap strategy. If
compared to the opposite swap, the results are considerably better, showing its efficacy on improving
the distance preservation
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4.4 Bundling Evaluation

A few metrics have been proposed to assure the quality of an edge bundling layout.
For example, Gansner et al. (2011) calculated the amount of ink saved to measure the clutter
reduction, but did not address the graph readability. Another metric is the bundling stress
proposed by Nguyen, Eades and Hong (2013b). Based on the Kruskal stress, this metric aimsto
measure the difference between edges compatibilities and their distance in the bundling layoui.
Although this metric seems promising, we could not determine a trustworthy way to compute
the compatibility among edges.

Therefore, we compared our technique with others from the state-of-the-art in aquali-
tative analysis. Specifically, we chose one method from each group of techniques presented in
chapter 2. From the group of image-based techniques, we used the technique CUBuU. The tech-
niques FDEB and MINGLE were selected to represent the force-based and the geometry-based
techniques, respectively. In al experiments, we generated CUBuU layouts using the source code
provided by the authors, while we generated the graphs from MINGLE" and FDEB? using open
source libraries.

4.4.1 Neighbor-Joining Bundling

Thefirst visualization devised from our framework uses the Neighbor-Joining to create
the backbone and the Reingold-Tilford radial layout to place the vertices in the visua space. We

' https://github.com/philogb/mingle
2 https://github.com/upphiminn/d3.ForceBundle
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applied these methods to visualize the graph of citations from a subset of the 2015 IEEE Infovis
dataset (ISENBERG et al., 2015), comprising papers published on the IEEE InfoVis Conference
between 1990 and 2014. Figure 33 shows this graph, which has 490 vertices representing the
papers and 1;547 edges describing the citations among these papers.

Figure 33 — Graph visualization using the Neighbor-Joining Bundling for the dataset INFOVIS15.
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Source: Sikansi and Paulovich (2015) «© 2015 IEEE.

This result shows how edges are drawn into bundles. The backbone organizes the edges
in paths according to the similarity among documents. The bundling layout enables the detection
of larger and smaller bundles. Moreover, it differentiates local bundles from global ones, i.e.,
bundles generated from edges connecting data objects from the same group from bundles of
edges linking data objects from different groups, crossing the center of the visualization. The
bundled graph presents different branches sizes, but it does not generate aimplicit distortion on
the resulting bundles.

However, we noticed problems when applying the neighbor-joining in datasets with
similarity distributions different than the commonly presented in text datasets. In such scenarios,
the bundling algorithm still reduces the visual clutter, but there is a high variance among the
length of each data object branch, which generates distortions on edge paths. In order to show
this problem, Figure 34 presents a comparison between the origina and the bundled graph of the
dataset #NBABALLOT (see section 5.2).

The backbone obtained from this dataset generates a huge contrast between small and
large branches. This is noticed by the forms of bundles, not as smooth as the ones presented
in Figure 33. Consequently, the neighbor-joining might not be suitable for some datasets, once
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Figure 34 — A comparison between the unbundled graph and the one obtained with the Neighbor-Joining Bundling
for the dataset #NBABALLOT.

(@) Original graph (b) Bundled graph

Source: Elaborated by the author.

unbal anced backbones generate too much distortion on edge bundles. Moreover, this example
reassures the importance of eva uating the backbone because of its ability to express similarity
relationships and represent a useful bundling layout.

4.4.2 Multi-level Neighbor-Joining Bundling

The Multi-level Neighbor-Joining is a transformation from the previous method to reduce
the number of intermediate vertices, to provide a reliable backbone and to decrease the NJ
algorithm computational cost. Figure 35 shows the comparison among this method and the
selected state-of-the-art techniques. In this comparison, we aim to discuss the readability of
bundling layouts and the patterns extracted from each input graph. The Multi-level NJ layouts
were generated using two levelsand K = 5 number of clusters. We use the radial and the force
layout to determine the vertices placement into the visual space. This placement is used by dl
state-of -the-art techniques because they require the vertices position to perform the bundling. As
presented in section 4.2, the artificial edges distributions were generated to create edge patterns
easily identified when transformed into bundles.

Although the verification of the visua clutter reduction could be a subjective eva uation,
we can assert that our edge bundling layout is equal, or better, than some of the most successful
edge bundling techniques. Our framework shows the same patterns that are visualized when using
other edge bundling methods. Moreover, our method makes the identification of bundles sources
and targets easier, while other methods tend to bend edges close to the origin and destination.

Regarding MINGLE and FDEB, the former was not able to create clear patterns that
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Figure 35— A comparison among the results obtained with the Multi-level NJB, CUBu, FDEB and MINGLE using
theradial and force layout. In the first image for each layout, the clusters are highlighted following the
artificial dataset description.
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highlight the relationship among groups of edges for any input graph. The latter presented
better graphs using the force-directed layout, but did not achieve the same result with the radial
one, being the worst case for the DISTRIBUTION Il. This distribution represents one group
with severa connections to two opposite groups in the visualization. However, FDEB failed in
recognizing them and merged these two groups into a singleton bundle.

CUBu isthe only technique that generates multiple bundles to connect the same pair of
groups. This technique layout has straighter bundles and less distortion when compared with
other techniques. It is possible to identify the groups patterns as defined by the edges distributions.
However, more bundles generate more crossing routes. |n particular, the crossings decreased the
graph readability, as shown in the graph from the DISTRIBUTION | for the force layout. In this
graph, CUBuU failed to represent the crossings between two pairs of groups, as presented in the
Multi-level and FDEB graphs.

The Multi-level Neighbor-Joining generates more compact bundles connecting differ-
ent groups. In addition, we can see the expected patterns for al distributions. The technique
provided good results for the two methods used to place the vertices. In the radial 1ayout of the
DisTRIBUTION |11, the bundling result of thistechnique outstands because the edges connecting
elements from the same group are not bent over the virtual circumference where vertices are
placed.

Moreover, it is possible to modify the bundling scale through user interaction. As
explained in chapter 3, the user can determine the desired number of levels or the minimum
cluster size. Figure 36 shows the visualization of one graph with different numbers of levels. For
the one-level bundling, the backbone contains only one segmentation of groups. Hence, few and
larger bundles are generated, which provides a generic visuaization. When the user increases
the number of levels, bundles are refined and the relationship among smaller groups are more
evident.

Figure 36 — The bundling layout of the graph INFOV1S15 rendered with different number of levels.
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The Multi-level Neighbor-Joining Bundling fulfills the aspects listed in our research
gods. However, this method requires parameters that make the usage and the evaluation more
difficult, such as the number of levels and clusters. While the number of levels affects just the
degree of detailsin the bundling, the number of clustersis a sensitive parameter and demands
aprior knowledge of the dataset. Once edge bundling layouts are commonly applied to get a
first insight of the data, it is contradictory to require a previous knowledge about the dataset. To
address such limitation we devised the STree backbone, next evaluated.

4.4.3 Similarity-driven Edge Bundling

We evaluated the Similarity-driven Edge Bundling (SDEB) with aqualitative analysis
of the bundling results using the radial and the H-Tree layout for vertices placement. Once
more, we replicated the same vertices placement given by our backbone in the other techniques.
Starting with the radial layout, Figure 37 shows the comparison using the three datasets with
two edges distributions, as presented in section 4.2. For al techniques, we determined the best
possible parameters for such input graphs. For the SDEB, we set afilter of intermediate vertices
to drop the two first levels of the Similarity Tree (more details about this filter will be presented
in section 4.6).

Considering that the backbone construction divides the data objects in two groups at each
interaction, this experiment used different datasets, with 3, 4 and 5 clusters. Therefore, we avoid
the usage of a biased input graph with only two clusters. The result shows that our layout is not
affected by these different numbers of clusters. In al cases, the backbone remains balanced and
the clusters are still recognizable.

For al input graphs, we noticed that FDEB and MINGLE failed to present well defined
bundles. The worst results were presented by FDEB, which could not create any bundle and
resulted in acompletely disorganized layout. According to its behavior, MINGLE created bundles
with afew edges. Even though it has some bundles, the layout is congested in the border of the
visualization. Moreover, FDEB and MINGLE presented several “outlier” edges, i.e., edges that
are not grouped into any bundle. Regarding CUBuU results, we noticed a less cluttered layout.
The expected dense connections between groups are recognizable, as shown in the adjacency
matrix presented in Table 1. However, this technique generates bundles using lesser bent lines,
leaving the center of the visualization empty and the board loaded with too much information.

Different than CUBuU, SDEB does not agglomerate the edges around the border of the
visudization. Instead, our technique follows the backbone, which distributes the bundles through
all visua space. The center of the visualization is the most important area, where several bundles
are divided and there are crossing routes. Most crossings in the SDEB layout happen in different
directions, so there is no misinterpretations of the crossings as it may happen in the CUBuU layout.

Figure 38 shows in detail the differences between CUBuU and SDEB. CUBuU bundled all
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Figure 37 — A comparison among the results attained by the SDEB, CUBu, FDEB and MINGLE using the radial

layout.
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edges close to their source/target vertices, generating an ambiguity concerning the edges flow. On
the other hand, SDEB drawn edges following a direction which is perpendicular to the tangent
on their source/target. The agglomeration of edges happens at different levels and not all edges
at the same time. In addition, CUBu seems to mix several bundles in away that disregards each
bundle meaning. The same does not happen with the SDEB, in which it is possible to identify
the group of vertices represented in each bundling.

Figure 38 — A zoom in on part of the visualization produced by the techniques CUBuU and SDEB.
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Source: Elaborated by the author.

Figure 39 shows the same input graphs from Figure 37 but the backbone is positioned
using the H-Tree layout. As explained in chapter 3, the H-tree layout focuses on the vertices,
spreading them through the visual space. Even tough the techniques share the same vertices
position, there is a huge contrast, not noticeable on the radial layout, between the SDEB and
other techniques. This contrast happens because the other techniques generate the bundles only
considering the spatialy-similar edges trajectories, while our technique follows the H-Tree

layout. Once more, we did not apply any enhancements developed for our technique (these are
discussed in the next section).

This comparison shows that al state-of-the-art techniques were able to produce an edge
bundling layout that highlights the major pattern of each graph. FDEB and MINGLE presented
competitive results, showing a better performance when the vertices are spread over the visua
space. However, their graphs do not reach the same clutter-reduction observed in CUBuU and
SDEB. Techniques MINGLE and FDEB created distinct flows that agglomerate amost all edges

for each direction observed in the input graphs, while CUBuU created separated bundlesin several
directions.
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Figure 39 — A comparison among the results attained by the SDEB, CUBu, FDEB and MINGLE using the H-Tree
layout.
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Our technique takes advantage of the H-Tree layout to produce more compact bundles
and a less cluttered layout than any other technique. In addition, vertices placed in the center
of the visudization are easier to be identified. Although there is some overlapping of edges
over vertices, this occurs less often than in the other techniques, in which centralized vertices
are completely hidden by the bundles. However, bending edges according to the H-Tree layout
forced the bundles to repeat the pattern existent in the fractal structure, which makes the edges
patterns a little harder to be identified.

Despite that, we can recognize the edges patterns by anaysing the bundles density.
Moreover, the compacted view provided by the SDEB using the H-Tree layout improves the
identification of sectiona shapes. Thisis evident in the graph from the DATASET Il DISTRIBU-
TION A, where there is alocal concentration of strong bundles in the group positioned in the
right-bottom area. In other techniques, this local behavior is obfuscated by the largest (global)
pattern.

4.5 Computational Cost

Being |V| and |E|, respectively, the number of vertices and edges of a given graph, we
outline the computational cost of each stage of our bundling framework as follow:

- First, to compute the Similarity Tree, the algorithm has time complexity O(|V|log|V|);

- Second, to compute the edges path, the framework takes two steps: it computes the path
between the root and each leaf, which has time complexity O(|V]), and then compute the
path of each edge, which has time complexity O(|E|). Therefore, the total computation
cost of thisprocessis (O(|V|+ |E]));

- Third, to perform the backbone placement, the circular and the H-Tree layout have time

complexity O(|V]).

- Finally, to draw each edge though its control points, computing the edge transformed by
the parameters, the computational cost isO(|E|).

Thereby, the Similarity-driven Edge Bundling has computational cost O(|V|log|V|)
defined by the similarity tree construction. Just for comparison, the the Neighbor-Joining has
time complexity O(|V|3) and the UPGMA has time complexity O(|V|?). Both methods are more
expensive than the Similarity Tree, apart from the layout issues commented before.

4.6 Bundling Enhancements

In this section, we report the results of three enhancements designed to give the user a set
of options that transforms the bundling visualization. These transformations are the Adaptive-3,
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the intermediate vertices filtration and the multiscale visualization.

The Adaptive-3 enables an adaptive control of tension of each edge. In our method, the
tension, i.e., the strength with which edges are attracted into the backbone structure, is defined by
three parameters: 8, y, and A. As established by the Equation 3.4.2, the tension is defined by an
activation function, where B isthe tension for activated edges and y is the tension for inactivated
ones. A defines the minimum size for activation. Figure 40 shows different examples of those
parameters for the same input graph.

Figure 40 — Multiples bundling configurationsin the radial layout by varying the parametersy and A
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Source: Elaborated by the author.

From these results, we see how the parametersy and A can be changed to improve the
visuaization, revealing hidden loca information. When we set A = 0 (Figure 40a), short edges
are hardly identified because they are mixed with long ones, which are most distinguishable.
When we increase the value of A (Figure 40b and Figure 40c), it separates short edges from
bundles, showing concealed information, such as the groups of similar vertices with more
connections. These connections are highlighted when we vary y because they are pushed towards
the center of the visualization (Figure 40d). However, the unbundled edges generate a noise that
must be controlled (Figure 40e) and high values of y and A might make the visualization worse.
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The second enhancement is the intermediate vertices filtration. In this modification, the
user setstheinterva [q; @u] of levelsthat should be considered when the edges are bent over
the backbone. Therefore, the edges are drawn only using the intermediate verticesin that interval .
Figure 41 shows four variations of the intermediate vertices filtration. These examples show
the effects of dropping intermediate vertices from the root and from the leaves of the backbone.
Removing intermediate vertices closer to the root creates direct connections between groupsin
deeper levels, resulting in a more detailed visualization. In the other side, dropping intermediate
vertices closer to the leaves generates bigger and more generic groups.

Figure 41 — Multiples bundling configurations in the radial layout by varying theinterva of intermediate vertices
used to bend the edges.

Source: Elaborated by the author.

Finally, the edge bundling layout can be modified by the multiscale visualization. This
feature enables the user to determine if the backbone placement will draw the entire backbone or
the branches will be cut in amaximum level (1). Thisinteraction summarizes the branches and
might be used to reduce the size of large datasets, since the user can control the amount of vertices
placed in the visualization. Figure 42 shows three different values for the global threshold. When
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the maximum depth is small, it generates a coarse visuaization with fewer vertices representing
the set of their children (Figure 42a). When the maximum depth is increased, the visualization
shows more detailed information and contains more edges in local areas (Figure 42b). For larger
values, local information is more readable and there are final verticesin less dense areas, as well
as other ones that still represent its children (Figure 42c).

Figure 42 — Multiples bundling configurations using the H-Tree layout by varying the maximum depth in which the
vertices are positioned.
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Source: Elaborated by the author.

4.7 Final Remarks

In this chapter, we presented the evaluation of our technique and its comparison with
the state-of-the-art. We divided our evaluation framework into two main experiments. The first
one showed the efficiency of the Similarity Tree to represent similarities among the origina
vertices. Two metrics demonstrated that our technique is competitive with classic similarity
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based three constructions Nd e UPGMA. Moreover, our algorithm has alower computational
cost and produces a more balanced tree, which is better for bundling purposes.

In the second stage, we evauated the edge bundling layout guided by the Similarity
Tree. We compared our technique with three of the most successful state-of-the-art techniques,
each one from a different group of techniques presented in chapter 2. We attested that our
technique outstands others by producing more meaningful bundles using both radial and H-tree
layouts. The experiments were made using artificial data and datasets commonly used to assess
similarity-based methods, such as trees and multidimensiona projections. Since we had prior
knowledge about the data, we could verify the expected behaviors of the bundling layout. Finally,
we presented enhancements to the SDEB layout that improves the edge bundling readability.

In the next chapter, we present a set of applications with real-world datasets, where we
can see the advantages of the edge bundling layout to visualize data with complex similarities
rel ationships and without any prior knowledge.
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CHAPTER

APPLICATIONS

5.1 Initial Remarks

In this chapter, we show the usage of the Similarity-driven Edge Bundling with real-
world datasets. In these scenarios, the similarity relationships and data distributions are not
well-defined as they werein the artificial datasets. Hence, we do not have prior knowledge to
verify the bundling meaning. These applications are examples where our technique produced a
good edge bundling visualization and allowed the analysis and detection of patterns. We present
three applications, each one with a different dataset. The following section describes the datasets
employed in these applications.

5.2 Datasets

The gpplications use datasets found in related works or commonly used in others fields of
information visualization. In addition, we a so collected data during this research. In this section,
we present each dataset.

The InfoVis 2004 Contest - The History of InfoVis (INFOVIS04) (FEKETE; GRINSTEIN;
PLAISANT, 2004) and the Visualization Publication Dataset (INFOVIS15) (ISENBERG et al.,
2015) are examples of citations network datasets. The first one has 433 vertices and 1;446 edges,
while the second one has 384 vertices and 1;633 edges. Citations networks are a well-known
subject in graph visualization. We extract the similarity among papers from their abstract and
other meta-data available.

The #NBABALLOT was built during this research and consists of a collection of posts
extracted from Twitter (commonly called tweets). We created this dataset to apply our technique
in time-varying information. We selected tweets published with the hashtag #NBABALLOT
between December 19th, 2014 and January 21th, 2015. The users used this term to vote in a



70 Chapter 5. Applications

NBA' player to compose one of the two teams of the 2015 NBA All-Star Game. This election
selected 5 players for each team, the Eastern All-Stars and the Western All-Stars. During this
stage, more than 2 millions of posts were collected.

After collecting the tweets, we processed the raw data to create our dataset. The data
used to represent each player and calculate the similarity among them was extracted from the
official league statistics page?, which covered the major statistics measures of basketball matches
during that season. Each edge connects players that had received votes from the same user. This
graph was segmented by days of voting, which we called a voting frame. The final graph consists
of adynamic graph with 436 vertices, 11;793 distinct edges and 34 frames. Considering the
wholelist of pairs, we found 565; 829 associations between two players that received a vote from
some user in the same day.

Finally, to present the application of our techniquein alarge dataset, we use the AMAZON
GROCERIES REVIEWS from SNAP? (MCAULEY; LESKOVEC, 2013). This dataset represents
more than 500; 000 products from the Amazon website* and their respective information, such
as category, similar products and a set of reviews written by clients. We filtered this data to
create a graph with only groceries products. The resulting graph has 8; 700 vertices and 129;407
edges. Each edge represents a pair of co-purchased items. The similarity among products was
calculated using the reviews published by customers.

5.3 Visualization of citations networks

Qur first gpplication concerns the exploration of citations among scientific papers. Ci-
tations networks are often applied in graph visualization to detect patterns, such as citations
among researchers, research areas or publication venues. A graph of citations from the dataset
INFOV1S04 was presented by Ersoy et al. (2011) using the SBEB technique. This technique
requires the original placement for each vertex, and Ersoy et al. (2011) used multidimensiona
scaling with the least-square projection (PAULOVICH et al., 2008). Differently, our technique
uses the vertices placement obtained from the backbone to build the visualization.

In our gpplication, we use the recent INFOV1S15, selecting a subset with papers that have
at least 5 citations. This subset has 384 vertices and 1;633 edges. First, we extracted a term
vector using the available data (title, authors and abstract) of each paper. Then, the distances
among papers are calculated using the cosine-based (SALTON, 1991) dissimilarity from the
term vectors of the papers. The similarity between two documents is given by the inverse of
their distances. Figure 43 shows the visualization using the radia layout. We set the parameters

! National Basketball League, the famous North American basketball championship
2 http:/stats.nba.com/

8 https://snap.stanford.edu/

4 nhttps://www.amazon.com/
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B =0.97,y= 0.1,A= 0.12, and the filtering function of control points was set with parameters
Q.= 2and @y = 7. Edges’ colors represent their sizes.

Figure 43 — Edge bundling layout from the dataset INFOV1S15.
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Source: Elaborated by the author.

Our first observation concerns the non-bundled edges. Because close vertices represent
similar papers that probably share the main subject, we could expect a large number of short
distance edges. However, the distribution is not regular, which may indicate that some topics
concentrate more citations among related papers, while other groups cite similar papers less
frequently.

We also observe relationships among different groups, although it is hard to make
conclusions by only looking at the complete graph. Taking advantage of the hierarchical structure,
the user can interact with the visualization to obtain a more detailed visual representation. One
possible interaction is the graph summarization. By applying the multi-level control in certain
branches, the user can select groups of similar vertices and visualize them as asingle vertex. In
that visualization, the selection hides the grouped edges and shows data information about the
group. We replace the hidden vertices by atag cloud with the most frequent terms. Figure 44
shows the summarization of four groups, each one identified by a different color, the user also
sees alist with the selected papers.
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Figure 44 — Edge bundling layout summarization by collapsing branches from the backbone. A tag cloud describes
the most frequent terms found in the papers showed in the auxiliary list on the right. The color of each
entry identifies the group in which the paper is positioned in the graph.
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5.4 Visualization of social networks data

An important aspect of social networks is the fact that data changes over time and it
may be related to how people react about different events. This kind of data includes not only
persona relationships, but also content based information, such as texts, videos and images. In
our case, we want to visualize how users from Twitter interact with the election of the players
for the 2015 NBA All-Star Game, explained in section 5.2. This visualization shows how the
Similarity-driven Edge Bundling can be used to visuaize a dynamic set of edges, when the
vertices and the similarity relationship among them are static.

We start this discussion analysing the backbone construction. In this graph, each ver-
tex represents a candidate for the 2015 NBA All-Star Game. The similarity among playersis
determined by the statistics commonly measured in a basketball game (e.g., points, rebounds,
assists, turnovers, field goal percentage, three point percentage, blocks, etc). Figure 45 showsthe
backbone obtained using the statistics collected in the same season, before the election started.
Moreover, some groups are highlighted to help identifying important players, which may be
positioned close to each other due to their similar attributes.



Figure 45 — Backbone of the dataset #NBABALLOT. Some vertices are |abeled to show some players in the backbone. Colored groups display noticeable players that share
characteristics and attributes.
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We perform an analytical evauation of the dataset considering the common knowledge
of thefield. Part of our andysis uses the terms that define the position of playersin a basketball
game. Basketball players are commonly assigned to one of five positionsin the court, which are
Point-guard, Small-guard, Small-forward, Power-forward and Center. The first two positions
are usually called guards, while the last two are usually called post. Small-forward players are
versatile players that may be associated to both post and guard positions, according to the team
strategy.

The first noticeable event is the first division in the backbone construction. It splits
the playersinto two groups. Thefirst group represents the more active players (i.e., startersor
engaged bench players), while the second group is formed by less active players (i.e., players that
usually play for afew minutes). The right side of the backbone concentrates the most famous
players of the league, which are on the top of many statistics of the season. On the contrary,
players from the left side are less relevant players.

After the second division, it becomes harder to analyse the left side, because players
with afew minutes per game have inaccurate statistics. Regarding the right side, the backbone
clearly separates post players, placed at the top, and guard players, placed at the bottom. Thisis
an evidence that we can find similar players, according to the position they act on the court, only
using their statistics.

The backbone shows more similar players in deeper levels. The red group encompasses
the ones considered to be the best playersin the league. These players are known to have a good
performance in most statistics measures, which makes them the most important player of each
respective team. The blue group identifies players with similar abilities, but they do not have a
leading role in their teams. Groups identified in yellow are similar to the red and blue groups.
The players from the yellow groups are important ones, but they present a good performancein
only afew metrics.

On the top, the labeled post players are divided in three different groups. The orange and
cyan groups embrace the best post players in the league, athough the cyan one covers players
with lessimpact in their team statistics. The purple group depicts good players with a supporting
rolein their teams. It is noticeable that there are less post players than guard ones in the league.
Thisis because teams usually play with only two, or even one post player, while there are three
to four guards.

Figure 46 shows the edge bundling layout of the entire dataset (i.e., not divided by
frames). When anayzing the graph, the first recognizable aspect is the pattern of connections
between the red and the orange groups identified in Figure 45. These edges show a voting pattern,
which consists of users voting for guard and post players. Therefore, the users split their votes
in the two categories, even though this is not a requirement of the election. Moreover, short
distance edges, which connect similar players, are easily identified. There is a large amount
of unbundled edges connecting elements inside the red, yellow and blue groups, while there
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are fewer occurrences of thosein other areas. The visualization also shows that users usually
vote in more players from those groups, while they select fewer post players. This behavior was
confirmed in the election’s result, in which just three players (Anthony Davis, Pau Gasol and
Marc Gasol) out of ten were elected from the top-right side.

Figure 46 — SDEB layout of the dataset #NBABALLOT with parameters 3 = 0.96,y = 0.05and A= 0.15

log (paired votes frequency)
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Source: Elaborated by the author.

Furthermore, we can analyse different voting frames separated to understand how the
votes behavior changed over the time. Regarding the visualization of time-varying information,
there are two main metaphors to visualize such kind of data: animation and small multiples
(BOYANDIN; BERTINI; LALANNE, 2012). The latter is preferred by some studies since it can
show different frames together (ARCHAMBAULT; PURCHASE; PINAUD, 2011). Considering
our framework, both methods can be used because the backbone is the only information used to
bend edges and it guarantee the context. Once this application is composed by a sequence of static
frames, the small multiples metaphor can be easily applied. Figure 47 shows the #NBABALLOT
graph of votes for six selected frames using small multiples. All graphs were generated with
parameters B = 0.96, y = 0.05and A = 0.2. The edges are colored according to the number of
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occurrences of paired votes.

Figure 47 — Small-multiples visualization for multiple voting frames from the dataset #NBABALLOT
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Comparing the different frames, the same mgjor pattern identified in Figure 46 is also
visible. However, we can observe slight modifications in the density of each bundle, such asin
frame 1 and 11. Moreover, the group of less important players (left-side) concentrates fewer
edges, which provides interesting insights. There are some outlier players that have severa
connections with the opposite side in some frames. For example, there are edges from the top-left
group that only appear in frames 1, 6 and 33. A further investigation can map this behavior with
events related to the election, such as game days or marketing campaign to ask for votes.
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The main difference between our method and previous techniques used in the context of
dynamic graphs concerns the stability. Techniques that compute bundles based on edges would
create different bundles based on edges spatially distribution. Therefore, the same edge may be
placed in different bundles when comparing different frames. This shows the poor stability of
those techniques, resulting in potential context loss and misinterpretation. Our technique draws
edges in the same bundle disregarding changes over time. Thereby, opacity and colors show the
amount of edges in each bundle. Although this may be harder to analyze, it provides a more
faithful information.

5.5 Similarity Bundling on large datasets

Most bundling techniques have reported results with datasets restricted to few hundreds
of vertices and thousands of edges. For example, the United States Airlines has, with some
variations, 1;790 vertices and up to 9; 798 edges. Those are larger values for acommon graph
drawing algorithms, thus subject to the visua clutter. However, those techniques do not tackle
larger graphs with, for example, more than 10; 000 vertices or 100; 000 edges. The techniques
that handle such size of input, like MINGLE, KDEEB and CUBuU, claim it only because they are
fast enough to calculate bundles, not because of their layout scalability.

Usually, the number of edges does not affect the bundling performance. Because overlap
edges is the bundling goal, more edges just imply in more overlapping. However, the number of
verticesisacritical agpect, once the user needs to be able to detect and identify different vertices.
Moreover, different from other visualization metaphors, such as scatter-plots or projections,
elements overlapping are a major concern in graph visualization. In fact, the vertices must be
visible and well represented through the visual space. Our strategy to avoid vertices overlapping
is the multiscale bundling.

In this section, we discuss how the multiscale bundling layout can provide useful in-
sights on large graphs. We chose the Amazon Groceries Reviews from SNAP° (MCAULEY;
LESKOVEC, 2013). This graph has 8;700 vertices, representing each product, and 129;407
edges, representing a pair of products purchased together. To avoid the representation of this
amount of vertices, we used multiple values of the multiscale threshold 1. Products under the
level of T will be represented by their clusters. Edges connecting elements inside the same
cluster disappear, because their source and target are being represented by the same vertex in the
visualization. The user can manipul ate this valueto get different levels of details. Figure 48 shows
three layouts, varying the maximum depth in which the backbone is rendered. The similarity
among products was cal culated using the bag-of-words vector of multiple products reviews.

The different layouts show how the level of detail increases when deeper levels of the
backbone are rendered, thus reducing the amount of filtration. When 1 = 8 (Figure 483), only

5 https://snap.stanford.edu/
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Figure 48 — Comparing multiple scales for the bundling layout of the dataset Amazon Groceries Reviews .
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248 vertices are visible, with almost al vertices are representing clusters of products. If the
maximum depth is increased, the layout shows more vertices. The layout with T = 12 shows
2;108 vertices (Figure 48b) and the one with T = 16 shows 5;856 (Figure 48c), which means
that only few vertices still represent clusters of products. In such cases, we aso observe the
congestion of edges inside more populated groups.

To extend our analysis, we fixed T = 10. Figure 49 shows the bundling layout of this
graph. In addition, we highlighted the 64 groups of products with the most common topics found
in their reviews. By labeling the groups, we can see which products belong to each group. Some
neighbor groups share the same topics, indicating that these categories were defined in a higher
level and refined in the lower ones. For example, al groups in the bottom-left branch are |abeled
with “Tea”. Another noticed behavior isthat the first division segments liquid and solid groceries.
The bundling layout was created using the parameters 3 = 0.95, y = 0.1 and A = 0.13. This
configuration also highlight the dense groups, with more connections among their elements and



5.6. Final Remarks 79

their neighbors.

Looking for more detailed information about relationships among groups, the user can
select multiple groups and filter edges. Figure 50 shows the edge filtration from three different
groups: the bottom-left “Tea’, “Cherries” and “Organic and Baby Food”. In this visualization,
weset B = 0.90 and A = 0, because we were not focused in short edges. Although the reduced
value of B increases the edges overlap over vertices, it improves the observation of multiple
groups, which were the main goal of this example. Thisis necessary because edges opacity are
not effective in a graph with such amount of edges, and, consequently, too much overlapping.
Moreover, the selection highlights how groups are related with other ones. A useful insight
observed is the difference between how the groups black and green are related with their
respective opposite products. While a wide bundle connects edges in black directed to this
opposite group, a narrow green one represent the inverse direction.

Our analysis shows that the Similarity-driven Edge Bundling is able to present several
insights about the relationship among co-purchased products, such as categories of products
that are usually purchased together. Furthermore, the clear layout produced by our technique
facilitates the detection of vertices and clusters. Just for comparison, Figure 51 shows the original
graph and the edge bundling layout produced by CUBLU, the fastest technique in the state-of -the-
art. Although CUBuU generates the same graph in 1.437 seconds, the layout could not organize
edges into meaningful bundles and the clutter reduction is not as effective as in the layout
produced by our technique. Vertices in dense areas are equally hidden in CUBuU layout as they
arein the origina one. Our technique needs around 100 seconds to create the backbone and 55
seconds to render the full graph, but created a less cluttered layout.

5.6 Final Remarks

In this chapter, we presented examples of technique developed during this master’s
research using graphs from different data sources. These applications, combined with the
evaluation presented in the last chapter, provide enough evidence of the contribution of this
research in the state-of-the-art.

Regarding large graphs, we believe that the fact that prior techniques perform paralelized
tasksthat can handle alarge amount of data does not mean they can produce agood edge bundling
layout. Instead, we take advantage of our multi-level similarity-based hierarchy to combine the
edge bundling with a verticesfiltering that reduces the amount of information, while grouping
the most similar verticesinto clusters.

In the next chapter, we conclude this document with a critical review of our work,
highlighting the contributions and discussing limitations and possible ideas for future work.
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set of reviews written by customers.

‘ & )
| Starbucks \E (9930 Agave i
Latte o~ i Sugar |
V’arismo A % p i
........ - —
g ‘
, r —
N coree | vanina | | Suger |
— Ftuaps _E ra(:t ,Sp'lenda /i
7 : PYCEN Taste

S VI -

" ZRLS |
e\ Ve ]H Fr > v
XA i\ | Syrup Juice

i . t
- 7 ;
i Matcha N e
_— |
| Greehy i
\ i _JI
: 4 &
or
Ja - N
\ G
N ¥ \
Tea Tea < \
wor ai v
a Y e
uka L
\ 1~ Ba |
21 ¢
671 | ciager
ste. | L_teman

Source: Elaborated by the author.

via

Grey

Bergomot

e

Don
. Sachets
. Smell

Great

e
i
/1‘

Chai
Stash

X

ive

Figure 49 — SDEB layout of the dataset Amazon Groceries Reviews. The dataset has 8,700 vertices and 129,407 eges. However, this visualization is limited at the 9™ level. The
filtered graph has 843 vertices and 112,736 edges. Vertices were divided into 63 groups and each group is highlighted with its most common topics, extracted from the

. o ¢
a yup
' .
A e g
| o/
i a2
- u V R
i | : /
v\
N
%, A
ANt
i
i
\ i
\ +f {
& i st 2
> IR
3
ed |- N\ | 4V
! e \ \
R/ ice \

T | [ i
L RS T %
L~ \ avioli | _
[ otato, Cheese | | @
o _— \ | S —~ N



5.6. Final Remarks 81

Figure 50 — SDEB layout of the dataset Amazon Groceries Reviews with edges from 3 groups highlighted
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Figure 51 — Original and CUBuU layouts of the dataset Amazon Groceries Reviews
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Source: Elaborated by the author.
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CHAPTER

CONCLUSION

In this chapter, we present the final remarks about this master’s thesis, which consist of a
review of the results, contributions, and suggestions of directions for future work. This research
presented a novel edge bundling technique devised from two main principles: meaningful
bundles can be created when similarity relationship are used to aggregate edges and a multiscae
representation can improve the readability of bundling layouts for huge datasets.

Edge bundling techniques are a consolidated group of methods to construct the visual-
ization of graphs. Several contributions have been made in this area in the last ten years. The
state-of-the-art shows that grouping edges through curved bundles reduces the visual-clutter
and improves the identification of edge patterns, while thereis atrade-off between detailed and
generic information. For example, edge bundling does not allow the identification of a single
connection, but it may help global analytical studiesin a graph. For such scenario, edge bundling
techniques have achieved successful results.

This master’s research added a new paradigm that highlights the relationship among
vertices in order to create meaningful bundles. Our main contribution is a new technique that
uses the data, instead of spatially information, to determine the bundles. We also validated this
method using a broader evaluation, instead of a simple performance comparison and informal
user studies, which have been done in most recent publications.

Different from contemporary edge bundling methods that rely on complex computational
resources to achieve the shortest running time, like paralleled GPU algorithms, our technique
uses straightforward algorithms from clustering and tree drawing. It makes our method easier to
be replicated than the most recent ones. We are aware that our process can be further improved
to reduce its running time, but this was not the goal of this study. In the next section, we detail a
list of our contributions, followed by the discussions and suggestions for future work.
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6.1 Contributions

The contribution of this research is a new edge bundling technique, called Similarity-
driven Edge Bundling. This techniqueis the result of a bundling framework that consists of two
main steps. In the first one, we create a structure called backbone from a series of studies on
similarity based methods, which works as a hierarchy. Then, the backbone is used to bend the
edges through similar routes, which creates edge bundles, thus reducing the visual-clutter in the
graph layout.

Most of the previous techniques did not consider the similarities of bundled edges and,
consequently, produced less meaningful representations. Although afew recent methods have
embraced this discussion, they only adapted former techniques. For the best of our knowledge,
this research presents the first technique that use exclusively a similarity-based approach. Our
method may lead to new discussions and contributions for future research on edge bundling.

Furthermore, we performed a robust evaluation of our technique. The backbone evalua-
tion validated the precision in which the backbone describes the similarity among elements. This
evaluation also verified that our method produces more balanced branches, which creates less
distorted bundles. Later on, we used artificial datasets to show that our technique reproduces
known patterns contained on the data. Since the lack of evaluation is aproblemin thefield, our
evaluation framework is also a contribution to this discussion.

Moreover, we presented a novel bundling model for large graphs, which consists of a
multiscale bundling visualization. In former edge bundling techniques, the discussion of applica-
tionsin large graphs only considered performance issues and not the fina layout. Even though
some techniques can generate edge bundling layouts of large graphsin a short time, we believe
that aspects of their visualization, such asthe limited visual space and vertices overlapping, make
those useless without data filtering. Our backbone method produces a better visualization by
grouping similar vertices and keeping the visual space clearer. We presented applications (see
chapter 5) that confirmed the multiscale bundling ability of extracting information from large
datasets.

Finally, we a so presented a strai ghtforward derivation of our technique to handle dynamic
graphs with afixed set of vertices. In this case, we built the backbone from vertices similarities
and then processed atime series of edges. Most edge bundling techniques wereinitially developed
for static graphs and then adapted for some dynamic scenarios. Our approach can be applied to
dynamic graphs without any significant change. In addition, we guarantee the stability from the
time-varying set of edges, i.e., our technique will render an edge in the same way in any time
frame. Thisis different from the density-based methods, which may render the same edge in
different ways depending on the other edges.
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6.2 Limitations and Future Work

We outline the following points as limitations of our work and briefly discuss directions
that can be taken to fill these gaps:

- Similarity based approaches for fixed vertices layouts: The main limitation of this
research is the inability to bundle edges for graph layouts when the vertices have fixed
positions. This limitation affects the comparison with most state-of-the-art techniques. Our
backbone process can not handle properly this kind of graph because it might not place
the intermediate vertices in a suitable form to create pleasant bundles. A possible solution
could be to change the tree-like backbone for a similarity-based grid.

- Edge bundling evaluation: This research presented a more extensive evaluation process
than many prior techniques, but we also relied on a subjective pattern analysis. Edge
bundling evaluation methods lack richer designed user studies and quantitative measures.
User-experience tests are an essential task in information visualization, but they require
many resources to perform useful and reliable tests, while poor designed ones might
present biased results. For quantitative measures, the recent stress-based metric proposed
by Nguyen, Eades and Hong (2013b) represents a large step in this direction. However,
we could not determine areliable edges compatibility measure to usein our evaluation. A
future study that formulates better edges compatibility and curve fitting measures can turn
this metric suitable for bundling evaluations.

- Bundling layout presentation: We presented some visua enhancement options for our
technique, such as the transformed tension (Adaptive-B) and the intermediate vertices
filtering. However, there are other options that were not explored in this research and could
be used for ours and other edge bundling methods. Specialy, coloring edges has been used
in many techniques to improve the edge bundling graph readability and could be used to
separate better the bundles or clusters of vertices.

- Edge bundling for dynamic graphs: Our technique can handle one particul ar scenario
of dynamic graphs, since we require afixed set of vertices to achieve a stable backbone.
Any changein this set would lead to aloss of context. Edge bundling for dynamic graphs
is an open field in visualization, and there is still a need for future research addressing
edge bundling methods that can show complex time-varying changes and keep the context
for edges and vertices.

6.3 Publications

The contributions of this research are reported in the following research papers:
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- Skansi, F, SilvaR. R. O., Paulovich, F. V. Similarity-driven Edge Bundling: Revisiting

Hierarchical Edge Bundling for semantic meaningful clutter reduction in graphs
layouts. Manuscript in preparation

- Sikansi, F., Paulovich, F. V. (2015). Using phylogenetic trees to generate semantic

meaningful edge bundles. In Conference on Graphics, Patterns and Images, XXVIII;
Workshop on Visua Analytics, Information Visualization and Scientific Visualization, V1.
Sociedade Brasileira de Computagéo-SBC. Short-paper

In addition, the following publications were developed in collaboration with other re-

searchers during the development of this research:

- Duarte, F. S. L. D., Skansi, F, Fatore, F. M., Fadd, S. G., Paulovich, F. V. (2014).

Nmap: A novel neighborhood preservation space-filling algorithm. |EEE transactions
on visualization and computer graphics, 20(12), (pp. 2063-2071).

- Ono, J. H. P, Skansi, F., Corréa, D. C., Paulovich, F. V., Paiva, A., Nonato, L. G. (2015,

August). Concentric RadViz: visual exploration of multi-task classification. In 2015
28th SIBGRAPI Conference on Graphics, Patterns and Images (pp. 165-172). IEEE.
Computer Graphics/Visualization Honorable Mention Award

- Neves, T. T. A. T., Coimbra, D., Sikansi, F., Paulovich, F. V. A Single-pass Model for

Multidimensional Projection and its Applicationsto Data Streaming. Manuscript in
preparation
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