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ABSTRACT

SIKANSI, F.. A similar ity-based approach to generate edge bundles. 2017. 93 f. Master
dissertation (Master student Program in Computer Science and Computational Mathematics) –
Instituto deCiências Matemáticas edeComputação (ICMC/USP), São Carlos– SP.

Graphshavebeen successfully employed in avariety of problemsand applications, being the

object of study in modeling, analysisand construction of visual representations. Whiledifferent

approachesexist for graph visualization, most of them suffer from thesevereclutter when the

number of nodes or edges is large. Among the approaches that handle such problem, edge

bundling techniques attained relative success on improving the quality of the visual represen-

tations by bending and aggregating edges in order to produce an organized layout. Despite

thissuccess, most of theexiting techniquescreateedgebundlesbased only on the visual space

information, that is, there isno explicit connection between the edge bundling layout and the

original data. Therefore, these techniques generates less meaningful bundles and may lead

users to misinterpret thedata. Thismaster’s research presentsanovel edgebundling technique

based on the similarity relationships among vertices. We developed such technique based on

two assumptions. First, it supports the hypothesis that edge bundling can better represent the

data when there is an inherent connection between the proximity among the elements in the

information space and the proximity between edges in theedgebundling layout. Weaddress this

question by presenting asimilarity bundling framework, that considers thesimilarity between

vertices when performing the edges bending. To guide the bundling, we create a similarity

hierarchy, called backbone. This is based on a multilevel partition of the data, which groups

edgesof similar vertices. Second, we also support that a multiscale representation improves the

visual and complexity scalability of bundling layouts. We present a multiscaleedgebundling,

which allows an overview plus detailed exploration, coarsening or revealing the bundling at

different levelsof thesamevisualization. Our evaluation framework shows that our backbone

produces a balanced hierarchy with a good representation of similarity relationships among

vertices. Moreover, theedgebundling layout guided by thebackbone reduces thevisual clutter

and surpass state-of-the-art techniques in displaying global and local edge patterns.

Key-words: Edge bundling, graph visualization, information visualization.





RESUMO

SIKANSI, F.. A similar ity-based approach to generate edge bundles. 2017. 93 f. Master
dissertation (Master student Program in Computer Science and Computational Mathematics) –
Instituto de Ciências Matemáticas e de Computação (ICMC/USP), São Carlos– SP.

Grafos são empregados com sucesso em uma grande variedade de problemas e aplicações,

sendo objeto de estudo na modelagem, análise e na construção de representações visuais.

Embora existam diferentes formaspara a visualização de grafos, a maioria delas sofrem pela

desorganização do espaço visual quando o número de vértices ou arestas é alto. Entre as

abordagens que lidam com este problema, as técnicas de agrupamentos visuais de arestas

obtiveram sucesso na melhora da representação visual pelo encurvamento e agrupamento de

arestasqueaperfeiçoam aorganização da representação. Apesar deste sucesso, amaioria das

técniquescriam gruposdearestasbaseadosapenasnainformação do espaço visual, não existindo

conexão explícita entre o desenho no espaço visual e o conjunto de dados original. Dessa

forma, estas técnicasproduzem agrupamentosdearestas com baixasignificânciaepodem levar

o usuário auma interpretação incorretada informação. Estapesquisademestrado apresentauma

nova técnica de agrupamento visual de arestas baseado nas relações de similaridade entre os

vértices. Nós desenvolvemosesta técnicacom base em duas premissas. Primeiro, eladefende a

hipótesequea representação por agrupamento dearestaspoderepresentar melhor o conjunto

de dados se existir uma conexão inerente entre a proximidade dos elementos no espaço de

informação e aproximidade entre arestas no desenho de arestasagrupadas. Nós atendemosesta

questão apresentando um arcabouço para o agrupamento de arestas baseado em similaridade,

que considera asimilaridade entre vérticespara realizar o encurvamento das arestas. Para guiar

este encurvamento, nós criamos uma estrutura de similaridade, denominada backbone. Esta

estruturaébaseadaem um particionamento multi-nível do conjunto dedados, queagrupaarestas

de vértices similares. A segunda premissa, nós também defendemos que uma representação

multiescala melhora a escalabilidade computacional e visual da representação visual de arestas

agrupadas. Nósapresentamosum agrupamento visual multi-nível dearestasquepermiteuma

exploração generalizada e detalhada, revelando detalhes em múltiplos níveis da visualização.

Nosso processo de avaliação mostra que a construção do backbone produz uma hierarquia

balanceada ecom boa representação das relações desimilaridadeentreos vértices. Além disso,

a visualização com arestas guiadas pelo backbone reduz a desordem visual emelhoraas técnicas

do estado-da-artena identificação depadrõesdearestasglobaise locais.

Palavras-chave: Agrupamento visual dearestas, visualização degrafos, visualização de infor-

mação.
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1

CHAPTER

1
INT RODUCTION

A graph is commonly defined as a set of vertices (also called nodes) and edges that

represent relationshipsbetween vertices. Thisisconsidered oneof themost important information

structure in discretemathematicsand computer science. The fundamentals, concepts, topology

and geometry of graphsarepart of thegraph theory area. Graph theory started with the famous

Königsberg Bridge Problem, which consisted of determining if it is possible to walk by a

set of seven bridges over the river Preger in Königsberg without crossing any bridge more

than once. This problem was modeled as a graph and answered as negative by Euler in 1735

(ALEXANDERSON, 2006). More than 270 yearsafter, graph theory isstill an evolving field

used to model and solveproblems.

One of the most important characteristics of graphs is the possibility of mathemati-

cally model diverse real-world scenarios and multiple tasks. Examples of graph theory us-

ages exist in economics (SERRANO; BOGUÑÁ, 2003), sociology (MERCKEN et al., 2010),

biology (KIKUCHI et al., 2003), geography (NOCAJ; BRANDES, 2013), physics (DOYE;

MASSEN, 2005), transport engineering (BEN-AKIVA; PALMA; ISAM, 1991) and software

engineering (ELZEN et al., 2013).

Recent events quickly changed theway that usersanalysedata. The growing amount of

information brought an extensivecollection of challengeson thestorage, analysisand exploration

of information (KEIM, 2002). We live in the Information Era, in which data hasbeen generated

faster and in a greater volume than the analytical capacity of an average human can handle.

Examples of theavailability of information include reaching aperson among billions in aglobal

coverage social network like Twitter1 or Facebook2; tracking every flight in the Earth with

Flight Radar3; or reading reviews of hotels, restaurantsand attractionsbeforeplanning a trip on

1 https://twitter.com/
2 https://www.facebook.com/
3 http://www.flightradar24.com/



2 Chapter 1. Introduction

TripAdvisor4.

As great as the challenges it represents, that amount of information can produce the

necessary knowledgeto detect and understand behaviors, solveproblemsand makedecisionsthat

improveseveral aspectsof human life. Nowadays, data comes from awide range of sourcesand

directions, and new models and processesare crucial to deal with that information. In computer

science, many research topics are dedicated to address these problems, such as data mining,

machine learning, visualization and visual analytics.

Purely computational techniques might replace the human activity in order to solve

many problems, mainly when theproblemscan bestrictly formulated. However, therearestill

some tasks that request user interaction. The processof visual representation of thedata and the

interaction with and a human is studied by the field called visualization (MUNZNER, 2014).

Specifically, information visualization is the representation of data in avisual space, by drawing

methods that form an image to improve the ability of a user to interpret the data (SPENCER,

2007). Thevisualization pipeline involves concepts from different areas, such asmathematics,

computering, perception and cognitive sciences (TELEA, 2007).

Thecrossroad of graph theory and information visualization is thefield of graph drawing.

Drawing agraph is themethod of building avisual representation of verticesand edges. There

are a variety of algorithms that perform this task, often taking advantage of graph properties

likeplanarity, symmetry, edgedirection and cycles (BATTISTA et al., 1998). Techniques may

also leverage the underlying data to produce better layouts (LANDESBERGER et al., 2011;

BECK et al., 2014). For complex inputswith many elementsand edgecrossings, thedrawing

method can fail to produce a valuable visual representation, thus being an open challenge on

information visualization. Moreprecisely, aproblem frequently faced in graph visualization is

thevisual clutter. In essence, visual clutter is the reduction of the usefulness of avisualization by

the excessive number of elements in a limited visual space (ELLIS; DIX, 2007).

In graph visualization, thevisual clutter problem hasbeen often addressed by the reorga-

nization, reduction and aggregation of elements (EPPSTEIN; GOODRICH; MENG, 2007; JIA

et al., 2008; HENRY; BEZERIANOS; FEKETE, 2008; DWYER et al., 2013), or modifying how

the information isdisplayed (CUI; QU, 2007). Thiscan beachieved by changing theverticesand

edges placement. Among thosestrategies, edge bundling techniquesaim to reduce the clutter by

drawing curved and aggregated edges through similar roads. In thisprocess, closeedgesshare

routes and are drawn together, reducing the visual space usage and improving the usefulness of

the visualization by representing edge patterns and groups.

Edge bundling was introduced by the technique Hierarchical Edge Bundling (HEB)

(HOLTEN, 2006) in a process that involved the usage of ahierarchy to determine aset of paths

and control points. Once thishierarchy connectsall graph vertices through control points, the

4 https://www.tripadvisor.com.br/
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original edgesare replaced by B-Splines curves, which follow thepath that connects the source

and the target over thehierarchy. HEB producesmore pleasant layouts and itseffectiveness was

showed by thevisualization of softwaredependencies and traits (HOLTEN; CORNELISSEN;

WIJK, 2007). However, thehierarchy dependence doesnot allow this technique to beapplicable

to a large rangeof datasets.

Subsequently, several other approacheshavebeen developed to perform edgebundling

without an external structure to guide the edge bending and to process larger datasets. These

methods often takeadvantageof geometry information, parallel and GPU computing. For those

techniques, weusea taxonomy that considers themain conceptsunder its layout construction

process. This taxonomy divides the techniques in geometry-based approaches (CUI et al., 2008;

LAMBERT; BOURQUI; AUBER, 2010), force-based approaches (HOLTEN; WIJK, 2009),

image-based and GPU techniques (TELEA; ERSOY, 2010; ERSOY et al., 2011; HURTER;

ERSOY; TELEA, 2012; ZWAN; CODREANU; TELEA, 2016). Theevolution of edge bundling

techniques allowed the bundling of graphs with thousands or even millions of edges to be

processed in an order of hundredths of a second, and to deal with real-time dynamic graphs

(NGUYEN; EADES; HONG, 2013b; HURTER et al., 2013).

However, all those techniquesmainly use thespatially information to perform theedge

bundlingand ignoretheunderlying data, thereby creating lessmeaningful aggregationsthat might

not explicitly reflect the data. Recently, the use of data information to approximate the edges

gained attention in somepublications (NGUYEN; HONG; EADES, 2012; PEYSAKHOVICH;

HURTER; TELEA, 2015; GUO et al., 2015; YAMASHITA; SAGA, 2015; SUN et al., 2016).

They modified prior techniques to use related attributes when bending edges. However, these

changes only performed minor transformations in theedgebundling layout.

This master’s research defends that similarity based approaches to build a bundling-

oriented hierarchy can increase the readability of edge bundling layouts. This is achieved by

taking an exclusive data-oriented approach that determines how the edges share their routes,

such as the hierarchy in the Hierarchical Edge Bundling. This method has a straightforward

methodology and can easily scalewhen thenumber of edges increase. Although therearemany

techniquesfor hierarchical construction from similarity information, to thebest of our knowledge

there are no studies regarding the application of those approaches on the Hierarchical Edge

Bundling.

During this master’s research, we analyzed some algorithms to build hierarchical lay-

outs from aset of elements, such as theNeighbor-Joining (NJ) (SAITOU; NEI, 1987) and the

Unweighted-pair Group Method with Arithmetic Means (UPGMA) (SOKAL; MICHENER,

1958). Initially, thosealgorithms wereapplied directly to theedgebundling construction. Then,

weconsidered cluster-based (JAIN; DUBES, 1988) and hybrid (clustering/similarity tree con-

struction) algorithmsto obtain amorestableand faster method. Our final methodology covers the

hierarchical construction, thepointsplacement into thevisual spaceand theedgebending process.
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Our technique was then compared with edgebundling algorithms from thestate-of-the-art.

The result of this research isanovel edgebundling technique, called Similarity-driven

Edge Bundling (SDEB), that producesan edgebundling layout guided by an accuratesimilarity

structure. This structure isbuilt with ahierarchical clustering method that usesonly data from

the original datavertices. Moreover, our technique is fast enough and offers thepossibility of

visualizing large graphs using amultiscaleapproach that filterssimilar dataobjects into clusters,

thusreducing thevisual-clutter.

1.1 Goals, Evaluat ion and Cont ribut ions

Edgebundling state-of-the-art techniquesachieved great successon visual-clutter reduc-

tion. However, these techniquesdo not take into account theunderlying datawhen performing

edge aggregation and do not validate theusefulnessof the produced layout. This research aimed

to produce a more faithful bundling layout by using a bundling process that only considers

similaritiesamongst vertices to determinehow edgesarebundled. Theresearch goal isdescribed

formally in the following paragraph:

“This master’s research aimed to develop a new edge bundling technique for graph

visualization. This technique must produce edge bundling layouts that reduce the vi-

sual clutter on graph visualization and diminish the distortion caused by differences

between the representation of aggregated edges and the similarity relationships

among vertices. Furthermore, this technique must handle multiple levels of detail

and filter the elements on large datasets, where the process of bundling edges is not

enough to reduce the visual clutter. ”

Themain result of this research isa techniquecalled Similarity-driven Edge Bundling,

which wasbuilt from a framework designed to construct edgebundling layouts. This framework

usesasimilarity-based algorithm to build a backbone from theoriginal set of vertices. Then, the

bundling is created by drawing the original edges towards the backbone. Edges are drawn as

curves towards the intermediatevertices from thepath that connects theedgesourceand target

in thebackbone. Edges that share intermediate verticesare rendered together, which reduces the

drawing occupation areaand, hence, reduces thevisual-clutter. Further enhancementsgive the

user parameters that may beused to manipulate the visualization.

Even though thevisual-clutter reduction is recognizable, it is difficult to validate edge

bundling layouts because therearea few experiments or measures that evaluate thegain in terms

of dataanalysis or pattern recognition. Thisproblem was mentioned before in many publications

(ERSOY et al., 2011; NGUYEN; EADES; HONG, 2013a; HURTER et al., 2013). In general,

edge bundling techniques do not validate the usefulness of the bundling layout. In order to

perform an evaluation of patternsand their relationshipswith thesimilarity structure in graph
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layouts, wecompareour techniquewith others, covering themajor edgebundling strategies in

the state-of-the-art.

From our evaluation process, weoutline the following contributionsof this research:

∙ A novel edge bundling layout obtained from the similarity hierarchy that improves the

visual and computational scalability, which allows the technique to work with bigger

datasetsand to beexplored in amulti-level approach.

∙ A framework to build edge bundling layouts from similarities of vertices which can

meaningfully simplify thevisualization by adding meaning to thebundling process.

∙ Applications of Similarity-driven EdgeBundling to visualizestatic graphs from different

kinds of data, such as paper citations or co-purchased items.

∙ A straightforward application in a specific type of dynamic graph, in which the set of

edges changesover time, but vertices and their similarity relationshipsarefixed.

1.2 St ruct ure of the document

The remainder of thisdocument is organized as follows:

∙ Chapter 2 presents and discusses fundamental concepts on graph visualization and the

state-of-the-art on edgebundling.

∙ Chapter 3 describes the similarity bundling framework and methods to improve the

bundling layout.

∙ Chapter 4 reports themain resultsand theevaluation of our technique.

∙ Chapter 5 presents theapplicationsof our technique in real-world datasets.

∙ Chapter 6 discusses the contributions and limitations of this thesis, along with some

directions for futurework.
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CHAPTER

2
BACKGROUND

2.1 Init ial Remarks

In thischapter, wepresent the fundamentalson graph drawing and the literature review

of edge bundling. We classify these methods according to their approach to create the edge

bundling layout. Prior to the discussion of the general conceptsand theedgebundling methods,

wegivesomedefinitions:

Definition 1. A graph G = (V;E) is a pair of finite setsV and E, in which theelements of E are

called edges and theelementsof V arecalled vertices (or nodes). Each edgeconnects apair of

vertices (vi;vj)|vi; j ∈V (GROSS; YELLEN, 2005).

Definition 2. A vertex vi ∈V isdefined asadjacent to avertex vj ∈V if thepair (vi;vj) ∈E.

Definition 3. An edge can be an ordered pair, when it representsa directed connection between

thesourceand target vertices, or an unordered pair, when (vi;vj) and (vj;vi) represent thesame

connection. A graph of ordered edges is defined as direct graph (or digraph).

Definition 4. A graph is defined as connected if there isat least onepath between any pair of

vertices (vi;vj) ∈V. In contrast, if there is any pair of vertices (vi;vj) breaking this rule, agraph

isdefined asdisconnected.

Definition 5. A graph isdefined ascyclic if there isat least one path of vertices that startsand

ends in thesamevertex. In contrast, agraph isdefined as acyclic if there isno path satisfying

such condition.

Definition 6. A graph is a tree if it is both connected and acyclic.

A graph can beused to model instances and the relationship amongst them. In addition,

any verticesor edges can contain attributes, such as their size, length, weight or any other related
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information (THULASIRAMAN; SWAMY, 2011). In information visualization, wearemainly

interested on thevisual representation of agiven graph. In thenext section, wepresent a review

of graph drawing algorithms.

2.2 Graph Visualizat ion

Information visualizations studies how a graph can be represented in a visual space.

Practical examples of this task are adjacency matrices and node-link diagrams. To create a

node-link diagram, vertices are represented by some entity in the visual space, and edges are

represented with linesconnecting each pair of vertices. In this case, agood verticesplacement is

crucial to achieve useful representation. Figure1 showsagraph visualization using anode-link

diagram for a graph with 77 vertices and 254 edges. The vertices are organized in the space

by a force-based system. Although this visualization is effective, there is ahugechallengeon

obtaining areadableand pleasant visualization. Moreover, thischallenge ismoreevident when

thenumber of vertices and/or edges increases.

Figure 1 – A node-link diagram for theundirected graph Les Miserables (KNUTH, 1993) with 77 verticesand 254
edges. The vertices are represented as circles and the edges are lines connecting pairs of vertices.

Source: Adapted from <http://bl.ocks.org/mbostock/4062045>

Several graph drawing algorithmshavebeen published to improve this representation. In

this rangeof algorithms, thereare general ones, applied for generic graphs, and othersdesigned

for specific cases, often taking advantage of one or more graph properties (e.g., if it is planar,

undirected, or atree) or datainformation. In thissection, wediscussthemost commonapproaches.

It isnot our intention to present thestate-of-the-art on graph visualization. Moreover, wealso

present some tree drawing algorithms, since this structure is akey concept in this research.
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A frequent challenge in graph drawing is thesize of the input graph. Graphswith more

verticesand edgeshamper theobject placement on thevisual space. Moreover, verticesocclusion

and edge crossings reduce the efficacy of the visualization, because it becomes impossible to

discern between verticesand edges (HERMAN; MELANÇON; MARSHALL, 2000). Themost

common way to address this challenge is to improve the elements distribution across thevisual

space. In general, agraph drawing algorithm must reduce theelementscongestion in sub-areas

of thedrawing space, thusmaximizing thevisual spaceoccupation (LANDESBERGER et al.,

2011). A pleasant layout also has a good aspect ratio and symmetry (WARD; GRINSTEIN;

KEIM, 2010). It isdesirable that the drawing algorithm alwayspresents asimilar output given

the same input, in order to prevent thecontext loss.

Those rules can beeasily described, but it isa tough task to apply them in thedrawing

process. In detail, it isonly possible to avoid edge crossingswhen thegraph isplanar, which can

bedoneby planar layout algorithms(KAUFMANN; WAGNER, 2003). Therefore, thegoal when

wehave non-planar graphs is to minimize thenumber of crossings. When vertices coordinates

arefixed according to their attributes (e.g., geography locations), drawing algorithmscan curve

edges to improve the layout. Other properties, such assymmetry and aspect ratio are susceptible

to the inherent information. These characteristicsmake the usage of ageneral algorithm difficult

for all kindsof graphs.

When the vertices coordinates are not given, an often employed approach in general

graphs is the force-based algorithm. Thisstrategy usesaphysical simulation of a forcesystem,

in which visual elements move in each iteration until thesystem reaches its stability. In this case,

vertices form asystem of particles. A forceof attraction isapplied between adjacent verticesand

arepulsive forceseparatesclosevertices. According to the forces, the final result might depend

on the initialization placement, and other constraintscan beapplied, such as dragging forces.

Algorithms for tree drawing have a great advantage since a tree is planar and acyclic.

The drawing process can be done iteratively, from the root of the tree to the leaves, assuring

that there is no edge crossings. Some of the most relevant techniques for tree drawing based

on thenode-link diagram are thecircular layout (MELANÇON; HERMAN, 1998) and radial

layout (REINGOLD; TILFORD, 1981; EADES, 1991). Figure2 shows examplesof radial and

circular layouts for a tree.

The algorithms mentioned above are frequently applied in graph and tree drawing.

However, those approachesdo not construct a reliable layout for several datasets. Furthermore,

thosemodels employ only thespatially information, discarding any additional information that

can beused in thedrawing, such asdataattributes. Thisstrategy can generateuncertainty and

misinterpretation about thedataset. Thus, thereareaesthetic factors, in termsof perception and

cognition, that contribute to improve the readability of agraph visualization (BENNETT et al.,

2007). Those factorsshow that only organizing elements through spacedo not produceasuitable

graph or tree layout for many datasets.
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Figure 2 – Examples of tree visualization algorithms.

(a) Circular layout (b) Radial layout

Source: (a) Melançon and Herman (1998) (b) Burch et al. (2011) c○ 2011 IEEE

A graph layout can be transformed in order to improve theextraction of knowledge from

the data. Herman, Melançon and Marshall (2000) and Landesberger et al. (2011) presented an

extensive collection of techniques that aim to improve thegraph representation with different

approaches, such as, data filtration, colorization, auxiliary visualization metaphors and user

interaction. Thoseworkspresent many common problemson graph visualization, most of them

out of thescopeof this research.

In particular, this research addresses theproblem of visual clutter in graph visualization.

In essence, visual clutter is the result of representing much data in a small area, which reduces

the potential usefulness of the visualization. This is a general problem that affects the entire

visualization field. Several techniques and applications in a high diversity of domains can

suffer from visual clutter (ELLIS; DIX, 2007). In graphs, it is noticed when the number of

verticesand edges increases. Visual clutter makes the task of analysing agraph morecomplex

and useless. Some techniques have been proposed to address this problem using strategies

likeedgefiltering, edgeclustering, hierarchy representations, space-filling techniques, among

others (LANDESBERGER et al., 2011).

One of those approaches that has been attaining success on reducing visual clutter

is the group of edge bundling techniques. Edge bundling consists in attract edges towards

similar flows. Although it isnot necessary, edgesareoften curved to beeasy to follow with the

eye. The overlap of multiples edges reduces the clutter and reveals high-level patterns about

the data. Edge bundling was already used to reduce the visual clutter in several domains and

applications, such asgeographic information (CUI et al., 2008; HOLTEN; WIJK, 2009), social

networks (MARTINS et al., 2012), scientific papers (ERSOY et al., 2011), multidimensional
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projection evaluation (FADEL, 2016), and others (KIENREICH; SEIFERT, 2010). In the next

section, wepresent thestate-of-the-art on edgebundling.

2.3 Edge Bundling

Edge bundling tackles the visual clutter problem by bending edges from the origi-

nal graph, which generates routes and groups that improves the readability of node-link di-

agrams (SUN et al., 2013). Curved edges are easy to be followed by the eye (BACH et al.,

2016), while theedgesoverlapping reduces the clutter. In summary, edge bundling isbased on a

trade-off between clutter and overlap, since it improvesedges macro-structures identification,

while fewer individual ones are visible (ERSOY, 2013).

Thefirst edgebundling technique is theHierarchical EdgeBundling (HEB) (HOLTEN,

2006). This technique usesan alternative structure to determine how the edgesarebundled. This

structuredefinesahierarchy amongst all verticesof V, apart from thegraph layout and theset

of edges E. In detail, this processstartswith thedrawing of thegiven structure into thevisual

space, which can be madeby any tree layout algorithm such as the radial, circular, hiperbolic or

treemaps (JOHNSON; SHNEIDERMAN, 1991; BRULS; HUIZING; WIJK, 2000). Then, each

original edge isdrawn asacurve that follows the path between thesourceand the target vertex

in thehierarchy.

In order to transform an edge into a curve, HEB uses the intermediate vertices of the

hierarchy, which are not part of the original graph layout. Holten (2006) drawn the edges as

cubic B-splines (basissplines) curves, in which the intermediateverticesareset ascontrol points.

Figure 3 shows how this process is executed for a given edge. To draw the edge between the

original vertices PStart and PEnd (Figure3a), thefirst step consists of finding the least common

ancestor LCA(PStart ;PEnd) to defineapath between these vertices (Figure3b). Then, thecurve is

drawn using the intermediatevertices (P1;P2;P3) ascontrol points (Figure3c).

The cubic B-Spline is a well-known way to draw a curve from a set of points. In

summary, a spline is apiecewise function that creates an approximated curve from asequenceof

Figure 3 – TheHierarchical EdgeBundling proposal to bend edges. To draw theedge that connects PStart and PEnd

(a), first the path between the source and the target determine the intermediate points (P1;P2;P3) (b).
Then, acurved B-Spline is drawn using P1;P2;P3 as control points (c).

(a) Step 1 (b) Step 2 (c) Step 3

Source: Holten (2006) c○ 2006 IEEE.
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coordinates. The curves obtained from a spline can be interpolated splines, when they passes

through all the control points, or approximation splineswhen they do not pass over thecontrol

points (HEARN; BAKER, 1986).

B-Splinesareapproximationsplines, suitablefor bundlingpurposes, becausetheresulting

curve is smoother and we can draw several curves that areclosebut do not exactly overlap each

other. In contrast, the interpolated ones are rougher for bundling purposes and would lead us

to just draw acurved representation of thehierarchy, once all edgesaredrawn exactly over the

control points. In order to fit approximation curves in the graph layout, we need to perform a

slightly modification in thepointssets, duplicating the first and the last point. Hence, weassure

that all edgeswill start and finish in theexact position of thesourceand target vertices.

Holten (2006) conducted an extensive study over B-Splines, Beta-splines and Bézier

curves and concluded that there isno significant differenceamong them. Therefore, the use of a

B-Spline isnot properly abundling requirement. Other bundling techniques employ different

curves or approaches that do not useany curveconstruction model. Despite that, Holten (2006)

presentsatransformation over thesplinecurveregulatedby atensionparameter β . Thisparameter

determineshow rigid theedgesaredrawn, when β tends to 0, the edgesare drawn without any

distortion (straight), and when β approximates to 1, the edges become rigid curves. Given a

curve S(t) over t ∈ [0;1], starting in P0 and ending in PN, this transformation isdefined by the

following equation:

S′(t) = S(t)β + (1− β)(P0 + t(PN − P0)) (2.1)

For agiven set of points P = P0;P1; . . . ;PN, this transformation can beapplied directly

over each control point Pi, by theequation

P ′i = Piβ + (1− β)(P0 +
i

N
(PN − P0)) (2.2)

Resulting in the transformed set S′ = { P ′0; . . . ;P ′N} used to drawn the edges. Figure 4

shows how thevalueof β modifies theedgebundling visualization.

Furthermore, an edge bundling layout can also be enhanced by color and opacity. A

potential usage of color in the edge drawing is to identify edge directions on directed graphs.

Edges directions are often represented as arrows. However, it only works for small graphs.

Figure 5 shows the visualization of function calls in a source code package using a red-to-

green interpolation from thesource to the target of each edge. Although thisfigurehas agood

representation for directions, the result depends on thedataset featuresand is not useful when

thegraph has amoreuniform distribution amongst itsedges.

Finally, Holten (2006) also evaluated how opacity can beused to improve thebundling

visualization. Opacity is commonly used in visualization when there overlapping amongst



2.3. Edge Bundling 13

Figure 4 – Different edgebundling layouts showing how thevalue of β affects the visualization.

(a) β = 0.0 (b) β = 0.5 (c) β = 1.0

Source: Adapted from <http://mbostock.github.io/d3/talk/20111116/bundle.html>

elements, so that it would show elements that were hidden before. Moreover, specifically for

theedgebundling layout, combine transparent edgesmay increase thedetection of how many

edgesarebundled together on each route. Usually, this isaparameter that can bemodified by

theuser. However, Holten (2006) observed that long distanceedges overshadowed short ones, so

hedefines theopacity inversely proportional to theedge length.

Figure 5 – Different examples of a combined usage of gradient color scheme to represent edges directions and
values of β .

Source: Holten (2006) c○ 2006 IEEE.

HEB proved to bea good approach to handlevisual clutter in graph visualization that

can be applied in real world scenarios. Specifically, it was applied in software visualization

(HOLTEN; CORNELISSEN; WIJK, 2007), and in many others domains (TAYLOR et al., 2009;

MANSMANN et al., 2009; GOU et al., 2011). Its achievementscreated anew branch of graph

visualization, which became an interesting field for many researchers. However, HEB requiresa

hierarchical structure to conduct the bundling process, which might not be properly found in

many datasetsand there isno discussion about methods that create thishierarchy. In addition,

HEB also does not work for geometric based graphs, since it demands a point placement that

considers thehierarchy, not theset of original vertices.

In thenext sections, weoutline different edgebundling approaches that werepresented

after HEB. In order to havea better organization, these techniques weregrouped by their most
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remarkable aspect: geometry-based, force-based, image-based, or attribute-based approaches.

2.3.1 Geomet ry-based Edge Bundling

In this section, we present edge bundling techniques that use as primary concept any

kind of geometric information from theoriginal graph layout to bundleedges. Therefore, instead

of using an additional hierarchy or other information, these techniques require an original graph

layout with verticesalready placed in thevisual space. These techniquesare theGeometry-based

EdgeClustering (GBEC) (CUI et al., 2008), the Winding Roads (WR) (LAMBERT; BOURQUI;

AUBER, 2010), and theMultilevel AgglomerativeEdgeBundling (MINGLE) (GANSNER et

al., 2011).

As mentioned before, one of HEB major problems is that it needs a hierarchy and

the vertices placement is based on the hierarchy layout. Hence, this makes HEB unable to

handlegraphs that verticescoordinates must be retained. TheGBEC is thefirst technique that

successfully achieved such goal. This technique isan extension of Qu, Zhou and Wu (2007) that

buildsa mesh based on theoriginal graph and it uses this mesh to bend theedges. The resulting

layout quality is defined by the quality of the applied mesh, so the major problem with this

approach is how to determineagood mesh.

The mesh construction method is not trivial because it needs to reflect the underlying

graph structure in order to create a road-map of edges. The strategy presented by Qu, Zhou

and Wu (2007) consistsof building amesh using aDelaunay triangulation of nodes. However,

Cui et al. (2008) showed that this approach can not handle largegraphs and it often produces

unpleasant layouts. A straightforward way to create this mesh isamanual process, managed by

the user after someobservation of thegraph structure, in which edge densitiesand directionsare

analyzed. However, thiscan beacomplex and time-consuming task, in special for largegraphs.

In addition, it isnot guaranteed that theuser will providea useful mesh.

In order to providean automatic mesh generation, Cui et al. (2008) performed an analysis

of edgepatterns through theoriginal graph by adiscretization of thevisual space. Thisprocess

computes the original graph bounding-box and divides theresulting area into cells. After that,

each cell isanalyzed in terms of itsdensity of elements and edges directions. Next, small regions

with similar direction are merged to construct larger regions, thus forming clusters. At theend,

the mesh can be constructed applying a constrained Delaunay triangulation on segments that

perpendicularly cross each cluster. Using thisprocess, the variation of direction when merging

small cells into larger ones can producedifferent levels of details.

Finally, the edgebundling layout is constructed by setting control points and drawing

segments or curves through them. Thesepointsaredetermined by the intersectionsamong the

mesh and theoriginal edges, with close pointsbeing merged. Figure6 shows the GBEC result

for thedataset United States airlines, agraph with 1,790 verticesand 9,798 edgesrepresenting
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flightsbetween different UScities. Theset of vertices isplaced into thevisualization according

to their corresponding geographic location. Thiswasnot possiblewith HEB.

Figure 6 – A GBEC layout for thedataset United States airlines, with 1,790 vertices ans 9,798 edges representing
flights between different US cities. It is possible to notice that edges are bundled into “ road-maps” .

(a) Original graph

(b) Bundled graph

Source: Cui et al. (2008) c○ 2008 IEEE.

In a similar approach, the technique Winding Roads (WR) (LAMBERT; BOURQUI;

AUBER, 2010) also discretizes thevisual space to determineedges routes. This techniquehasa

processsimilar to a traffic system, in which different segments are larger or shorter depending

on thenumber of vehicles they support. Thus, this techniquecreates routesand then transform

each original edge to follow themost suitable route for itsdirection.

In detail, WR first divides thespace into agrid of cellsconsidering each vertex position.

This process usesa hybrid approach based on QuadTree decomposition (FINKEL; BENTLEY,

1974) and theVoronoi diagram construction (VORONOÏ, 1908), to createa “city map” over the

original graph. Next, using the Dijkstra algorithm, each original edge is transformed into the

shortest path between itssourceand target in the grid. Thisprocessassures that thefinal graph

will not haveedgecrossings. Finally, theedgesaresmoothened using Bezier Curves. Thecontrol

points are determined by the crossings between the original edge and the grid. WR produces

better edgebundling layouts (in terms of clutter reduction) and it runs faster than theGBEC.
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The last technique in this group is theMultilevel AgglomerativeEdge Bundling (MIN-

GLE) (GANSNER et al., 2011). Different from previous techniques, that share thesame general

strategy, MINGLE employs an approach that aims to minimize the density of elements in the

visual space. To achieve it, the technique performsan iterativeedgeclustering computation and

calculates theusageof ink to draw thegraph. This process isan extension of an edgeclustering

method to improve circular layouts (GANSNER; KOREN, 2007). It can becomputed faster than

previous algorithmsand it can beapplied in larger graphs.

To createan edge bundling layout, MINGLE uses an auxiliary structure, which iscalled

graph of edgesproximity, computed from thecompatibility among edges from theoriginal graph

layout. Each edge is formed by apoint in a4-dimensional space, consisting of the coordinatesof

theedgesourceand target. Thus, original graph is processed to determineconnectionsamong

each edge with its k nearest edges in thegraph of edgesproximity, The parameter k can beused

to determinehow many edgeswill bebundled together. Once the proximity graph isconstructed,

it will guide thebundling decisions.

Thebundling process consistsof merging edges in order to minimize theamount of ink

used to drawn theentiregraph. Thiscomputation isperformed considering theproximity graph.

For each adjacency (i.e., for each pair of neighboring edges from the original graph), the amount

of ink to draw thegraph iscalculated considering that thepair wasbundled. Then, thepair with

maximum ink saving is chosen to bebundled. When edges are bundled, they arealso grouped in

theproximity graph. Thenext step can join not only pairsof edges, but also groups that represent

bundlesprocessed before. Therendering processconsists in drawing each bundleof edgesasa

unique line and connects this linewith theoriginal verticesat its endings. Finally, the linesare

transformed into splines to smooth out the drawing. Figure7 shows the edgebundling layout

performed by MINGLE for theairlinesgraph.

Figure 7 – A MINGLE layout for the dataset United States airlines.

Source: Gansner et al. (2011) c○ 2011 IEEE.
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Among the three techniques presented in thissection, MINGLE has the lowest compu-

tational cost, and it is the first technique to perform edge bundling in graphs with millions of

edges. However, there is no further discussion on graph readability (for example, if the bundling

can really increase the readability of millionsof edges). The ink saving measurecan beused to

make theMINGLE bundling decisions, but not to comparedifferent bundling techniques, since

it is not possible to conclude that lesser the ink usage is, better is thegraph layout.

Furthermore, those techniquesonly use thegeometric information, by thegrid compu-

tation or theproximity graph from the original edgesplacement, to execute thebundling task.

It means that there is nothing else about the data are being considered in order to create edge

bundles. In the next section, we present other group of techniques, that employs force-based

methods to bundleedges.

2.3.2 Force-based Edge Bundling

Force-based approaches cover a large domain of techniques in information visualiza-

tion, such as multidimensional projection (TEJADA; MINGHIM; NONATO, 2003) and text

visualization (ALSAKRAN et al., 2012). Theseapproachessimulatea forcesystem, in which

each element in the visual space is a point with attractiveand repulsive forces to other elements,

theelementsmoveover the spaceuntil theequilibrium state is reached. In edgebundling, the

force-based approach is an alternative to more complex mesh generation layouts. This group

consistsof two main techniques, theForce-Directed EdgeBundling (FDEB) (HOLTEN; WIJK,

2009) and the Divided Edge Bundling (DEB) (SELASSIE; HELLER; HEER, 2011). FDEB

segmentseach edge into aset of points to build aspring–masssystem and executesan iterative

process to bend theedges. Thisprocessgroupssimilar edgesuntil thesystem reachesastable

state. DEB improves theFDEB layout by separating edgeswith different directions, improving

the readability of directed graphs.

The method employed by FDEB consists in a spring–mass system, which combines

a spring compressing force and an electrostatic force. First, each edge is segmented into k

intermediate points Pi; j, where i is the edge index and j one point ( j ∈ [1;k]) along its length.

Next, the forces system is built with each point Pi; j being affected by a spring force in the

direction of itsneighboring points (Pi; j− 1 and Pi; j+ 1), and an electrostatic force for each other

point Ps; j with s ̸= i. Figure 8 showshow this process works, considering thesegmentation of

two edges and the forces applied to one intermediatepoint. In each step of the iterative process,

all points are moved towards the resulting force, which is computed by the following equation:

FPi; j
= Ki.(ǁPi; j− 1 − Pi; jǁ + ǁPi; j − Pi; j+ 1ǁ) + ∑

s̸= i

1
ǁPi; j − Ps; jǁ

(2.3)

with Ki being thespring constant for theedge i and Ps; j the intermediate point j of the edge s.

Theedgebundled graph isobtained when thissystem reaches itsstateof equilibrium, by drawing
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splines using the intermediate points as control points. The authors limited the interaction

among control points to only thosewith thesame index to reduce the computational cost of the

simulation.

Figure 8 – Forces involved to determine the control points in the Force-Directed Edge Bundling. In detail, thefigure
highlights the forces that determine theposition of the intermediatepoint p2. These forces represent a
spring force in the direction of p1 and p3 and an electrostatic force in the direction of q2.

Source: Holten and Wijk (2009) c○ 2009 IEEE.

However, the resulting graph is often unreadable due to the strength of the bundles.

Varying the spring constant Ki is not useful to solve this problem since it relaxes bundles too

much. So, Holten and Wijk (2009) employed an edge-compatibility measureCi;s into the force

system, which controls the level of interaction between each pair of edges. This measure can

consider different factors, such as theangle, size, position and visibility of theedges. Therefore,

thefinal formulation is given by theequation:

FPi; j
= Ki.(ǁPi; j− 1 − Pi; jǁ + ǁPi; j − Pi; j+ 1ǁ) + ∑

s̸= i

Ci;s

ǁPi; j − Ps; jǁ
(2.4)

Another benefit of thecompatibility measure is that it isaflexiblemetric. Basically, it

is possible to add any feature that measures the relationship between edges, including related

information about the edges, such asattributes or weights. Divided Edge Bundling (DEB) is an

example of the manipulation of this compatibility measure. Selassie, Heller and Heer (2011)

modified the forces in the physical simulation in order to highlight edges directions and weights.

Figure9 shows acomparison between FDEB and DEB for the same dataset. It is possible to see

how DEB better represents thebundling directions and weights.

Both force-based approaches presented an important contribution to edge bundling

layoutsby creating clean and meaningful edgeroutes. However, force-based techniqueshavea

high computational cost. FDEB is O(E2C) for a graph with E edges and C control points per

edge for every iteration. DEB has pre-processing tasks that reduce thecomplexity to O(E2) per

iteration. Also, those techniques do not describedeeply or evaluate the usage of underlying data
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Figure 9 – A comparison between the FDEB and DEB layouts for the United States airlines. This comparison
shows how DEB better represents theedges directions.

(a) FDEB

(b) DEB

Source: Selassie, Heller and Heer (2011) c○ 2011 IEEE.

into thecompatibility measure. This is only addressed in other publications (NGUYEN; HONG;

EADES, 2012; SAGA; YAMASHITA, 2015; YAMASHITA; SAGA, 2015).

In the next section, we discuss the group of image-based edge bundling techniques.

Those techniques reduce thecomputational cost and running timesby using imageprocessing

methods.

2.3.3 Image-based Edge Bundling

Using adifferent strategy, agroup of techniquesrelieson imageprocessing approachesto

produceand improve edge bundling layouts. Thereare four techniques in this group, the pioneer

is the ImageBased Edge Bundles (IBEB) (TELEA; ERSOY, 2010), that processesan existing

imageof abundled graph to improve thevisual representation and provideabetter perception on

groups separation. The second technique is the Skeleton-Based EdgeBundling (SBEB) (ERSOY

et al., 2011), that employs aset of imageprocessing algorithms to create paths that guide the
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edges bending. TheKernel Density Estimation EdgeBundling (KDEEB) (HURTER; ERSOY;

TELEA, 2012) drawsbundled edges using thekernel density estimation algorithm, rendering a

bundling layout much faster than prior techniques. Finally, thebundling process is further speed

up by the technique CUDA-based Universal Bundling (CUBu) (ZWAN; CODREANU; TELEA,

2016), which isan extension of KDEEB that takesadvantageof GraphicsProcessing Unit (GPU)

parallelization.

The IBEB isnot aproperly novel edgebundling techniquebecause it doesnot present a

bundling construction algorithm. Instead, this method presents an image-based transformation to

enhance theedge bundling visualization, emphasizing edge clusters and patterns. This technique

receivesas input an edgebundling layout built with HEB or other techniques. Theoriginal set

of edges is divided into different clusters by their distances. Then, several image processing

methodsareapplied, such asto determinecontoursand shadowsof each cluster. Thebundlesalso

receive distinct colors. Distinct groups can bemoved to reduce theoverlap among them, which

wasnot possible in prior techniques. Figure10 showstheenhancement obtained by employing

the IBEB in a original HEB layout.

Figure 10 – A comparison between HEB layout and itsenhanced version using the IBEB. The IBEB highlight edge
bundles and remove the occlusion among them.

(a) HEB (b) IBEB

Source: Teleaand Ersoy (2010) c○ 2010 The Author(s) Journal compilation c○ 2010 The EurographicsAssociation
and Blackwell Publishing Ltd.

Extending the IBEB, theSkeleton-Based EdgeBundling (SBEB) (ERSOY et al., 2011)

techniqueproposes an entire imagebased framework to construct edge bundling layouts. Instead

of receiving a pre-processed graph, the technique receives as input the original graph layout,

where vertices are already placed in the visual space. This technique uses similar IBEB iterative

imagemanipulation methods to create the bundling visualization. During thebundling process,

the technique takes advantageof GPU processing to create bundling layouts faster than previous

methods.
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In detail, SBEB uses askeleton computed from theoriginal graph to guide thebundling.

Thisprocessresembles theHEB, but it doesnot require any additional information apart from

theoriginal graph. Theskeleton is inherent to thegraph topology and computed in thefirst stage

of the framework. The whole process of SBEB is complex and it takes several steps, which

arebeyond thescopeof thissection. Briefly, in order to create theskeleton, theedges arefirst

divided into clusters according to their geometry similarity, such as in IBEB. Next, the technique

obtains theshape of each cluster and askeleton is computed from each shape. Finally, edges are

attracted towards their respectivecluster skeleton.

Although the techniqueproducesa suitable layout after one execution, the processcan

be repeated iteratively to improve thevisualization. Moreover, other minor enhancementsare

applied, such as relaxation and smoothing of the edges. A ComputeUnified DeviceArchitecture

(CUDA) based implementation of SBEB performs thebundling of small graphs in few millisec-

onds. Figure 11 shows the United States airlines graph produced by SBEB, colors wereused to

identify each edgecluster.

Figure 11 – The edgebundling layout produced by the SBEB for the dataset United States airlines.

Source: Ersoy et al. (2011) c○ 2011 IEEE.

The third image-based technique is the Kernel Density Estimation Edge Bundling

(KDEEB) (HURTER; ERSOY; TELEA, 2012). This technique uses an approach based on

the Kernel Density Estimation algorithm. Basically, it generates the density map of a given

graph layout. Then, it transports the edges in the gradient of this map in an iterative process,

reducing the kernel size at each step. Similar to SBEB, the input graph can be the original or

bundled graph. This approach allows the user to modify thedensity map, for example, by adding

obstacles that must be avoided in thebundling construction. Finally, the techniquealso improves

theshading algorithm from former image-based techniques, used to enhance thevisualization.

KDEEB produces similar results to the previous techniques in terms of clutter reduction and

bundling quality, while it runs in a fraction of timeof prior algorithms.
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Figure12 – A KDEEB layout for the dataset United States airlines.

Source: Hurter, Ersoy and Telea(2012) c○ 2012 TheAuthor(s) Computer GraphicsForum c○ 2012 TheEurographics
Association and Blackwell Publishing Ltd.

The last imagebased technique is also themost recent edgebundling publication, called

CUDA-based Universal Bundling (ZWAN; CODREANU; TELEA, 2016). As itsnamesays, this

technique consists in acompletely parallelized GPU-based approach to construct edgebundling

layouts. Thisapproach runsfaster than KDEEB, which wasthequickest bundling implementation

so far. Furthermore, CUBu claimsto improvescalability, edgesdirection representation, the level

of detailsand thegenerality for edgebundling.

In detail, CUBu algorithm receives as input an original graph layout, likeother image-

based techniques. CUBu’sbundling approach originated from theKDEEB algorithm without

major changes. It also obtains a density map from the kernel density estimation algorithm.

However, CUBu improves each step to a more parallelized strategy. For instance, the density

map takes between 40% and 60% of the execution time of KDEEB and it can not be completely

executed in parallel due to concurrent image-writes. Another difference is how frequent the

smoothing process isapplied, one for each 3 or 4 iterations, instead of one for each iteration in

KDEEB. Despite the similar bundling algorithm, CUBu presents improvements in thebundling

shape control, the representation of edges directions and a set of original options that can be

used to change thefinal layout. Figure13 shows an edgebundling layout generated with CUBu.

KDEEB and, recently, CUBu areconsidered the state-of-the-art on edge bundling tech-

niques. Comparing these techniques, KDEEB processes a graph with 738,491 vertices and

899,791 edges in 8 seconds, while CUBu takes 0.152 seconds for the same input, according

to the results reported in Zwan, Codreanu and Telea (2016). Both techniquesarealso used for

real-time dynamic bundling. These techniques have been proposed only to address the poor

computational performance of prior techniques, and there is no discussion about the faithfulness

of the bundling representation considering the input data. This is acommon practice on most

edge bundling publications, although somenew techniquesdiscuss how theunderlying datacan

improveedge bundling layouts. Those techniques arepresented in thenext section.
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Figure13 – A CUBU layout for the dataset United States airlines using different configuration parameters.

Source: Zwan, Codreanu and Telea (2016) c○ 2016 IEEE.

2.3.4 At t ribut e-based Edge Bundling

Although previous methods produced good results regarding running times, which

allowed theprocessing of thousandsof edges in real-time, the layout meaningfulness isneglected

when information on edgesor vertices (dataattributes) is ignored. This information isnot used

to guide thebundling process, so there isno connection between thevisual representation and

the underlying data.

a few techniques define strategies that consider some information. Hierarchical Edge

Bundling consider underlying databy meansof a hierarchy. However, it does not discuss any

alternative way to construct this structure from the data. It presents results only for software

based graphs, which used thesoftwarestructure, anatural hierarchy, to generate thebundling

layout. Another common approach is, as mentioned before, to modify theForce-Directed Edge

Bundling compatibility measure. FDEB hasbeen extended to usesemantic properties inherent

from edges (KIENREICH; SEIFERT, 2010), edge type or attributes (YAMASHITA; SAGA,

2015), and compound compatibility measures (NGUYEN; HONG; EADES, 2012) on the force

model calculation.

Recently, Attribute-Driven Edge Bundling (ADEB) (PEYSAKHOVICH; HURTER;

TELEA, 2015) extends the image-based KDEEB by using edge attributes to set the bundling

flow map. ADEB uses thesame framework from KDEEB, but creates different density maps for

each edges attributes. Thisprocessbasically adds thecompatibility modifier transformation to

KDEEB and it can only beprocessed for numerical edges attributes. The results presented show

its usefulness to separate bundles according to edges directions, which can not beachieved with

KDEEB. Figure14 shows acomparison between KDEEB and ADEB.

In all presented cases, only theedge information is considered to improve edgebundling

techniques. The information contained on vertices is still ignored. Moreover, one of the most
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Figure 14 – A comparison between the KDEEB and ADEB layouts of the Paris Air Traffic dataset. This result
shows that ADEB usesedgesweights to createbetter bundles. Using this information, theADEB layout
can separate flights between departures and arrivals for each direction.

(a) KDEEB (b) ADEB

Source: Peysakhovich, Hurter and Telea (2015) c○ 2015 IEEE.

important open problems in edge bundling is to determine how faithful is an edge bundling

representation (NGUYEN; EADES; HONG, 2013a; LHUILLIER; HURTER, 2015).

2.4 Final Remarks

In thischapter, wepresented thetechniquesthat turned edgebundling into oneof themost

successful graph drawing transformations to reduce visual clutter. Edge bundling techniques

have been used in the last 10 years in many fields, proving that they deliver a great way to

enhancegraph visualization and improvevisual analytics tasks. Also, edgebundling hasbeen

consistently improved and extended by new techniques during all this period.

By taking advantageof parallel and graphicsprocessing, recent edgebundling techniques

reached asuperb performance for large graphs, allowing them to be used with graphs containing

thousands, or even millions, of vertices and edges, and to compute real-time changes, as in

dynamic graphs.

Despite that, therearestill concernsabout edgebundling visualization. In general, the

goal of the existing bundling techniques is to simplify the visual representation of a graph,

emphasizing the main topological patterns presented in the entire dataset. The edge bundling

techniquespresented in thischapter did not haveasuitablevalidation process to measurehow

faithful was a given edge bundling layout, considering the given data. As presented, most

techniquescreate roadmaps, but do not consider the real meaning of drawing aset of edges in

thesameroute, or what the user can interpret from that.
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For example, thischapter presented edgebundling layouts from thedataset United States

airlines constructed by six different techniques (GBEB, MINGLE, DEB, SBEB, KDEEB and

CUBu). In all results, theclutter reduction is easily observed, but there is no consensuson which

techniqueprovided thebest result. Interpret a bundling layout is often difficult, because theuser

has no information that explainswhat abundle represents in theoriginal data.

Thismaster’s thesis aims to fill this gap, by presenting asuitable bundling framework

that handles the information surrounding vertices and edges in order to determine how theedges

are bundled. Different from geometry-based techniques, we do not use thegraph’s spatially data

to createbundles, because it can lead thevisualization to show misleading information. Instead,

we attract the edges over a similarity-based structure, called backbone. This is also different

from the force-based approach and its alternatives that may consider datanot only spatially data,

but mergeall information in thesamesystem.

In addition, prior techniques, such asGBEB, MINGLE and iterative image-based tech-

niques, support multiple levels of details. However, those methods just vary how generic the

bundles are. For example, MINGLE determines it by themaximum amount of edges that can

bebundled together. On thecontrary, this research exploresamultiscalevisualization based on

vertices filtration, which can separateglobal and local patterns. Hence, improving the visualiza-

tion of huge graphs. Therefore, we discuss theapplication of our technique in huge graphs by its

ability to present a readablegraph, not by its computational cost.
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CHAPTER

3
SIMILARITY EDGE BUNDLING

FRAMEWORK

3.1 Init ial Remarks

In the previous chapter, we reviewed the existing techniques, discussing their most

important pointsand drawbacks. Currently, asdiscussed, most techniques focus on improving

thecomputational scalability, reducing thecomputational costs. However, not much has been

made to prove if thegenerated bundles can faithfully display the information of theoriginal data.

In thischapter, wepresent our framework for similarity-driven edgebundling. Theideaof

adding similarity to theprocessto improveitsmeaningfulnessisbased on theGestalt principleof

proximity (STERNBERG, 2008). Gestalt is a well-known set of psychology laws and principles

that aimsto understand thehuman ability to perceptually acquireand maintain information, being

a fundamental concept in thefield of information visualization. Oneof thoseprinciplesstates

that thehuman mind, when processing avisual representation, usually associates thesimilarity

among elements by their proximity (KOFFKA, 2013). Although thisprinciple is important for

bundling purposes, it hasbeen ignored by current techniques.

Moreover, it hasbeen aconsensus that edgebundling techniquesarecapableof reduce

clutter whilerepresentinggeneric information, beingoftenapplied topresent apreliminary insight

into the data (HOLTEN, 2006). However, it is also aconsensus that edgebundling techniques

presents problems when handling large datasets, since the cluttering, although reduced, will

persist when graphswith many nodesand/or edges arebundled.

From thoseassumptions, weconsider to improveedge bundling following two different

principles. First, taking thesimilarity among elements into account at the moment wepack the

edges into bundles, and second, creating strategies to display theinformation over different levels

of detail. This research supports the following hypothesis:
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“Edge bundling can better represent the data when there is an inherent connection

between the proximity among the elements in the information space and the prox-

imity of edges in the visual space. Moreover, providing a multiscale representation

improves the visual and complexity scalability of bundling layouts, making them

able to represent more information and to handle bigger datasets.”

In this context, our goal is to createmultiscaleedgebundling layoutsusing the distance

information contained on the dataset. In other words, given a graph G = (V;E) composed of

a finite set V of vertices and a finite set E of edges, with a vertex vi ∈V representing a data

object di ∈D, and an edge ei j = { vi;vj} ∈E representing somerelationship between different

vertices vi ∈V and vj ∈V. Moreover, suppose that δ(di;d j) is a function that measures the

dissimilarity between two dataobjects di and d j. Our goal is, when drawing thisgraph, to bundle

edges creating groups that obey thedissimilarity relationships amongst thevertices, i.e., the data

objects they represent. To reach this goal, wedeveloped theSimilarity Bundling Framework.

Our framework defines some steps in order to compose similarity driven bundles. In

this process, we employ a structure called backbone to create a “road-map” of bundles and,

finally, draw edges following these roads. In detail, our methodology splits the edgebundling

construction into three different steps. Thefirst step consistsof thebackboneconstruction, in

which we build a structure that will guide thebundling. In the second step, weplace the original

vertices and thebackbone into thevisual space. Finally, the third step involvesbending theedges

from theoriginal graph into bundles. Figure15 presents an overview of our methodology.

Figure 15 – Similarity Bundling Framework overview. (a) represents the input graph and itsmatrix of dissimilarities,
(b) shows thebackbone created from thedissimilarities, (c) shows thebackboneplacement using the
radial layout, (d) shows the bundling layout with edges bent through the backbone.

Source: Elaborated by the author.

In thenext sections, wedetail each step, starting with thebackboneconstruction.

3.2 Backbone Const ruct ion

The backbone is astructurecomposed by an additional set of elements, the intermediate

verticesV′ , linking all verticesV of thegraph G. From now on, verticesV arecalled datavertices,
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i.e., vertices that represent dataobjects. Every pair of verticesvi ∈V and vj ∈V is linked through

a sequence of vertices (path) pi j = { vi;v′1;v′2; . . . ;vj} passing through different intermediate

vertices { v′1;v′2; . . .} ∈V′ . Theprimary function of the backbone is to serve as aguide to bend

the edges, resulting on the bundles. If an edge ei j connects two vertices vi and vj, ei j will be

curved towards thepath pi j that links vi and vj in the backbone.

Different paths can share intermediatevertices. Therefore, thebundleprocess results in

groupsof curved edges, potentially reducing thevisual clutter. In our approach, thebackbone is

akey piece and has to obey the following design principles to fulfill its role:

1. Thebackboneshould definepathsbetween all pairsof datavertices, precisely connecting

the vertices according to thesimilarity among them (dataobjects);

2. Any two dataverticesshould be linked by a uniquepath;

3. A path between two datavertices should not pass by any other datavertex.

Thefirst and thesecond principles arestraightforward. Because the backbone isused to

attract theedgesduring thebending, it isnecessary to have routesconnecting all pairsof data

vertices, considering that theoriginal graph could haveedges between any pair of datavertices.

In addition, thepath connecting two dataverticesshould beunique in order to avoid ambiguity

problems during thebending. The third principle isbroader. Supposethat an edge ei j connects

thevertices vi and vj, but that neither vi nor vj are linked to a third vertex vk. Since the backbone

is used to attract ei j towards thepath pi j, if vk ⊂ pi j, the edgewill bebent towards vk. This gives

thewrong impression that vi and/or vj areconnected to vk, potentially resulting in misleading

visual representations.

As aconsequence, our backbone is a tree-likestructurewhere the dataverticesV of the

graph G are the leaves. Among thecandidate techniques to construct such tree, theminimum

spanning tree (GRAHAM; HELL, 1985) can be discarded since it violates (3). We can also

discard hierarchical clustering techniques, such as the Unweighted-pair Group Method with

Arithmetic Means (UPGMA) (SOKAL; MICHENER, 1958) (SOKAL; MICHENER, 1958), since

they are extremely sensitive to certain distance distributions (LEMEY; SALEMI; VANDAMME,

2009), and prone to produceunbalanced structures, which violates (1).

Wedeveloped two backbone constructions that obey all design principles. First, weused

theNeighbor-Joining (NJ) (SAITOU; NEI, 1987) algorithm for phylogenetic treeconstruction,

and then weimproved thisapproach to add themulti-level capability defined in our hypothesis. In

sequence, we developed a novel algorithm, called Similarity Tree (STree), for theconstruction of

thebackbone that addressesall thedesign principles, which createsamulti-level similarity-based

binary treewith a low computational cost. Wedescribe thesemethods in the next sections.
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3.2.1 The Neighbor-J oining Backbone Const ruct ion

The Neighbor-Joining (NJ) (SAITOU; NEI, 1987) phylogenetic tree was the first ap-

proach we used to build the backbone in our edge bundling method. This tree is also used to

place thevertices in thevisual space. Thus, the resulting graph has itsedgesgrouped, and the

nodes placed considering thesimilarity relationshipsexistent on thedataset.

The NJ algorithm creates a tree containing vertices that represent all N data elements

and N− 2 intermediate vertices, that is, vertices that arenot part of the original dataset, but were

created by thealgorithm. Thismethod startswith apair-wisedistancematrix D and astar-like

tree, in which all dataverticesareconnected to onevirtual vertex. Then, thealgorithm findsa

pair of vertices (i; j) by thecriterion of minimum evolution, that is, the pair with the smallest

sum of branch lengths Si; j given by the following equation

Si j =
1

2(n − 2)

n

∑
k̸= i; j

(Dik + D jk) +
1
2

Di j +
1

n − 2

n

∑
(k;l ̸= i; j)∧(k< l)

Dkl (3.1)

When thepair (i; j) is selected, anew intermediatevertex X is created, with thevertices

i and j as its children and connected to the common ancestor of i and j. We then update the

distance matrix D by removing the distances that involve the vertices i and j and adding the

distances from X to each remaining vertex (k). To calculate thesedistances, weuse the following

equation

DX;k =
Dik + D jk

2
(3.2)

Thisprocess finisheswhen only two nodesare remaining in D. In theend, theneighbor-

joining treewill haveN dataverticesand N− 2 intermediatevertices. Weused theimplementation

proposed by Studier, Keppler et al. (1988), in which theNJ is obtained with complexity O(V3),

where V is the number of vertices. Although most usages of the NJ algorithm are related to

biological studies, it was applied in information visualization before. Cuadros et al. (2007)

created a NJ from collections of documents to perform a visual analysis of text similarity.

Despite the requirement of adistancematrix, thismatrix can begenerated by any dataassociated

with thevertices of the original graph. Figure 16 shows theneighbor-joining treeusing the radial

layout for thedataset INFOVIS04 (FEKETE; GRINSTEIN; PLAISANT, 2004) (see section 5.2).

TheNJissuitableto construct thebackbonebecauseit avoidsambiguities in thebundling

visualization. Thishappens because the algorithm adds intermediatevertices to the tree, and it

guarantees that the path between two different datavertices passes only through intermediate

vertices, which is crucial to fulfill our design principle (3). Paiva et al. (2011) extended the NJ

algorithm in order to promotedata vertices in thehierarchy, thus removing intermediateones.

However, this modification would producea backbone that does not obey thisprinciple.
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Figure 16 – The neighbor-joining treeof thedataset INFOVIS04.

Source: Elaborated by theauthor.

3.2.2 Mult i-level Neighbor-J oining Backbone

We transformed the NJ backbone construction into an iterative process that combines

theNJ method with aclustering process, such aspresented by theVisual Super-Tree(SILVA et

al., 2016). In this approach, instead of building the NJ tree from the entire set of vertices, we

first split thedatavertices into clusters, repeating it in multiple levels, and then construct the tree

from theclusters.

Figure 17 shows how the multi-level clustering is applied to construct the bundling

backbone. First, starting with theoriginal set of verticesV, wecreatea set C1 = { c1
1;c1

2; . . . ;c1
K}

with K clustersat thefirst level l = 1, which isobtained using theK-means(JAIN; DUBES, 1988)

algorithm. Then, wecomputetheneighbor-joining from theset of centroidsC̃1 = { c̃1
1; c̃1

2; . . . ; c̃1
K}

of C1 to start our backbone. Next, the same process is executed recursively. For each level l,

wedivideeach cluster cl
i into anew set of Q clustersand compute theneighbor-joining of this

set. Finally, this tree is attached to the branch where cl− 1
i was positioned in the superior level
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tree. The processstops when it reaches thedesired number of levels. To create the backbone, the

user sets thevalueof K, and theminimum size for agiven cluster in the last level. Hence, if a

cluster reaches theminimum size beforeL levels, the process isstopped in thisbranch and the

remaining elements aredirectly attached to their respectivesuperior tree level.

Figure 17 – Multi-level clustering processing. (a) shows the division of an original set of 11 vertices into three
clusterswith size 5, 4 and 3 in the first level. Then, the second level divides each cluster in three deeper
ones. On the last level, only clusters with more than oneelement aredivided into new ones. (b) shows
the backbone built from that division, highlighting the intermediate vertices that link different tree
levels.

(a) Multi-level clustering (b) Multi-level Neighbor-Joining Tree

Source: Elaborated by the author.

When comparedwith theNJ, themulti-level neighbor-joiningpresentsfewer intermediate

vertices, being the clustering strategy a powerful way to reduce the space occupied by these

vertices. This approach also enables theusage of summarization to visualize larger graphs (in

particular with a large number of vertices). A cluster can represent all vertices below itself,

which makes it applicablenot only for graphswhere thenumber of edgesgenerates thevisual

clutter but also when it isnot adequate to represent all vertices into thevisual space. Furthermore,

the multi-level execution reduces the computation cost of the entire process, once we replace

oneexecution of thecubic NJalgorithm for the wholedataset for some executionsof the same

algorithm with small subsets of theoriginal data.

Regarding theparametrization, theuser determines thenumber of clusters, thenumber

of levels and theminimum cluster size. Figure18 shows threedifferent backbonescreated with

the multi-level neighbor-joining from the dataset INFOVIS15 (ISENBERG et al., 2015) (see

section 5.2), when thealgorithm is set to produce the multi-level neighbor-joining tree with 1, 2,

and 3 levels. By creating different views for thesamedata, thoseparametersmay improve the

user experiencewith thevisualization.

However, those parameters are less accurate to the user, and it is hard to determine a

good value for K, which may requireapreviousknowledgeof thedataset. Furthermore, those

parametersareabig challengewhen developing aproper bundling evaluation and comparison

with others techniques. Different from other parameters (discussed later) that can bechanged in

real-timeand preserve thevisualization context, any change in the backboneparametersmakes a
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Figure 18 – Different views of the dataset INFOVIS15 using themulti-level neighbor-joining method with different
levels of processing. The increment of levelsexpands thenumber of groups, creating a moredetailed
view, but it also increases the number of intermediate vertices.

(a) 1 level (b) 2 levels (c) 3 levels

Source: Elaborated by theauthor.

huge impact in the bundling layout. This discussion led us to improve themethod to avoid those

parameters. Wepresent this method in the next section.

3.2.3 A Clust er-based Backbone Const ruct ion

Inspired by the running time and computational cost reduction allowed by the clustering

approach on themulti-level neighbor-joining bundling and also looking for a less parametrized

technique, wedevised anovel strategy for thebackbonecreation based on theBisecting k-means

(WEISS, 2001). Our goal was to completely avoid theusageof theNJmethod, but still producea

similarity tree-likestructureto fulfil theconstraints imposed by our methodology. To fill thisneed,

wedeveloped adivisive algorithm, called Similarity Tree (STree), to construct asimilarity binary

tree where the original verticesaresequentially split into clustersand sub-clusters, defining a

hierarchy of clusters.

Asalready mentioned, due to the design principles, thebackbone is a tree-likestructure

where the intermediateverticesV′ are internal vertices and theverticesV of G are leaves. Also,

to satisfy our primary goal, which is to bundle the edges creating groups according to the

dissimilarities amongst thevertices, the length of thepath between any two verticesvi ∈V and

vj ∈V needs to beproportional to δ(di;d j). We define this length as thenumber of intermediate

verticesbetween vi and vj. In other words, verticesrepresenting similar objectsneed to beplaced

close to each other in thebackbonestructure.

The Similarity Tree algorithm starts with one cluster C containing all data vertices,

representing theroot of thebackbone. Then, theprocess splitsC into two new clustersCa and
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Cb, so that each cluster contains themost similar vertices among themselves, minimizing

∑
di∈Ca

δ(di;C̃a) + ∑
d j∈Cb

δ(d j;C̃b) (3.3)

whereC̃a and C̃b represent thecentroid of the vertices in Ca and Cb, respectively. After that, Ca

and Cb are attached as left and right child of C, and theprocess isapplied to Ca and Cb. This is

repeated until singleton clusters are created, that is, clusters containing only one vertex. As a

result, the clusters and sub-clusters are intermediate vertices, and the data vertices are leaves.

Thesplitting isbased on thesamestrategy applied by theK-meansalgorithm (JAIN; DUBES,

1988), with k = 2.

The process for the backbone construction is outlined in the Algorithm 1. It receives

adataset D and returns a tree T. In thisalgorithm, the function PIVOTS(C) is implemented as

follows. Wefirst calculate thecentroid C̃ of C. Then, weget the fartherst dataobject da ∈C from

C̃ as the first pivot, and the fartherst object from da as the second pivot db. Also, the function

MEAN(C) returns thecentroid of C, that isC̃ = 1
|C| ∑di∈C di, where |C| represents thenumber of

objects in C.

Figure 19 shows an exampleof a tree drawn with the H-Tree algorithm (SHILOACH,

1976). The result of this process isa hierarchical structure in which thedeeper the cluster (from

the root to the leaves), moresimilar are theobjects belonging to it. As aconsequence, the most

similar objectsarecloseplaced on thebackbone, and thepath between them is reduced. Also,

the resulting tree is a binary tree, with N − 1 intermediate nodes. This results on almost the

same number of intermediate vertices obtained with the NJ, but in a more balanced tree, that

is, ashallower tree. As shown in the next chapter, when wedescribe thecompleteevaluation of

this method, the Similarity Tree is balanced enough to provide a better edge bundling layout.

Furthermore, an intermediatevertex isa (super) cluster representation of itschildren, so it allows

themultiscaleanalysis over theoriginal tree, by “contracting” the treevertices at some level.

This section and the previous one presented different tree-like backbone construction

strategies developed during this master’s research. This step addresses the first stage of our

bundling pipeline, consisting of thecreation of astructure that will guide thebundling. In the

following section, wepresent thenext stageof our bundling pipeline, thevertices placement that

will guide thedrawing of thecurved edges.

3.3 Backbone P lacement

Once we have thebackbone, the next step is to place the dataand intermediatevertices

on the plane. The backbone construction method does not provide any spatial information to

determine the placement. However, since backbones are tree-like structures, any method for

drawing trees can beused, which is normally very fast to be accomplished when compared with
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Algor ithm 1 Similarity Treealgorithm.
function SIMILARITYTREE(D)
C← { d1; . . . ;dn} ∈D ⊲assigns all data objects to C

T.root ←C ⊲creates a tree T and set C asroot
C̃← MEAN(C) ⊲sets thecentroid of C

SIMILARITYTREEREC(C, D)
return T

end function

function SIMILARITYTREEREC(C)
if |C| > 2 then
{Ca ;Cb} ← SPLIT(C) ⊲splitsC into two clusters
C.le ft ←Ca ⊲setsCa as the left child of C

C.right ←Cb ⊲setsCb as the right child of C

SIMILARITYTREEREC(Ca)
SIMILARITYTREEREC(Cb)

else if |C| = 2 then
C.le ft ←Ca ⊲setsCa as the left child of C

C.right ←Cb ⊲setsCb as the right child of C

else if |C| = 1 then
C̃← d ⊲sets thecentroid equal to thesingledataobject

end if
end function

function SPLIT(C)
{ da ;db} ← PIVOTS(C) ⊲selects initial pivots for splitting
C̃a ← da

C̃b ← db

while it < MAX_ITERATIONS do
for di ∈C do
if δ(di;C̃a) < δ(di;C̃b) then
Ca ←Ca ∪ di ⊲adds di to Ca

else
Cb ←Cb∪ di ⊲adds di to Cb

end if
end for
C̃a ← MEAN(Ca) ⊲updates thecentroid of Ca

C̃b ← MEAN(Cb) ⊲updates thecentroid of Cb

it ← it + 1
end while
return {Ca;Cb}

end function
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Figure 19 – Similarity Tree from a synthetic dataset with 380 objectsdivided into 4 different classes (identified by
thevertex color).

Source: Elaborated by the author.

drawing the entire graph. For the neighbor-joining approach, we have performed tests using

radial and force-based algorithms. For theSimilarity Tree, we took advantageof thebinary tree

property to devisean adaptation of theH-treealgorithm (SHILOACH, 1976) that preserves the

similarity relationships and that makes abetter useof thevisual space.

The radial layout distributes the vertices on a circle, and places the intermediate vertices

over inner concentric circles, with the root on thecenter. Consequently, theedges only intersect

thevertices on their beginning and ending points, thus, avoiding the ambiguity problems related

to intersecting vertices and edges, previously discussed. In our strategy, thedistribution of the

vertices on the circle follows the order imposed by the backbone. The algorithm places the

backbone leavesside-by-side following acanonical post-order traversal approach. One important

aspect of the radial layout, especially interesting for bundling, is that the focus ison theedges

instead of the spatial position of the vertices. Thereby, most of the visual space is used to

represent thegraph connections, which reduces thevisual clutter.

Although weperformed sometestsusing the force-based algorithm with distinct initial-

izations, it is the less suitable layout for bundling purposes. First, because the force layout isan

expensivealgorithm that takesseveral iterations to reach astablestate. Second, because it cannot

guarantee theabsenceof crossing paths, even when it isdrawing aplanar graph (TAMASSIA,

2013). Finally, thismethod is not stable, which means that different results can beattained for

thesame input in multiple iterations.

On theother hand, theH-tree layout focuses on thevertices. TheH-treealgorithm places

thevertices in a recursiveprocess linking nodes through perpendicular linesegments, resulting in
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a fractal structurewith a repeating pattern that resembles the letter “H” . By equally dividing the

availablespace to represent the two sub-treesof each node, the resulting layout effectively uses

theavailablevisual spaceon thepresenceof balanced trees. However, for unbalanced trees, it

fails because thespace issplit into two half-parts independently of how many verticesbelongs to

each sub-tree. In the following sub-section, wedetail how weadapt theH-treealgorithm to make

a better use of the available space when handling unbalanced trees and to preserve similarity

relationships.

3.3.1 Swapping H-t ree

On the original H-tree, the vertices are positioned with a recursive process that starts

placing the root vroot of the treeon thecenter of the visual space and its two children vroot.le ft

and vroot .right (if they exist) horizontally equidistant from vroot by a length. Then, thechildren

of vroot .le ft and vroot .right arepositioned vertically equidistant from vroot .le ft and vroot .right,

respectively, by a fraction of length. This process is repeated alternating the direction (verti-

cal/horizontal) and reducing length by a factor of
√

2. Figure20 showshow the layout isbuilt

after each recursivestep of this algorithm.

Figure 20 – An H-Tree layout represented by each iterativestep. In thisexample, each edge isdrawn with the color
that indicates which step thevertices were processed.

Source: Elaborated by theauthor.

Since our goal is to preserve distances, we modified this algorithm to allow swaps

between siblings vertices, that is, a right sibling becomes a left sibling and vice-versa. Figure21

explains thismodification. Considering that the vertex va hasbeen processed, with coordinates
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on the plane assigned to it, before positioning its children, va .le ft and va.right, we perform a

test to check if swapping them will improve thedistancepreservation.

Once va.le ft and va .right represent different clusters of objects (their centroids), and

that vroot .right represents a (super) cluster encompassing different clusters (vc.le ft, vc.right,

vd.le ft, and vd.right), wecan swap va .le ft with va .right in order to placecloseto vroot .right the

most similar cluster (vertex) to it, if it improves thedistancepreservation between theclusters

represented by va .le ft and va .right with respect to vroot .right. Thesameapplies to vb.le ft and

vb.right with respect to vroot .right, vc.le ft and vc.right with respect to vroot .le ft, and vd.le ft

and vd.right with respect to vroot .le ft.

Figure 21 – Swapping branches using the H-Tree layout. The image shows, for va ,vb,vc and vd , the dissimilarity
evaluation made to decide which branch is positioned in thecenter of thevisualization, and which one
is positioned outside.

Source: Elaborated by the author.

Through those swaps, it is possible to improve the distance preservation between the

vertices belonging to neighbors (super) clusters, represented by vroot .le ft and vroot .le ft, since it

will place themost similar verticescloseon the final layout. Theseswapspotentially lead to the

improvement of theoverall distancepreservation of theproduced layout without corrupting the

tree topology since only swaps between siblings are allowed.

Notice that thisswap strategy performsonly local modifications, so it doesnot guarantee

that weareproducing theH-treearrangement that best preserves thedistancerelationshipson

the plane. Nevertheless, due to the triangle inequality axiom of distance functions, weexpect

to improve (when possible) the results of any given tree. The complete process is detailed in

Algorithm 2. In thisalgorithm, the function SWAPSIBL INGS(v.le ft;v.right) simply swaps the

sibling nodes v.le ft and v.right, and ṽi represents thecentroid of thecluster represented by vi.

Different from the radial layout, the H-tree layout focuseson thevertices instead of on
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Algor ithm 2 Swapping H-tree algorithm.
function SWAPPINGHTREE(T)
SWAPPINGHTREEREC(T.root, initial_length, false)
return T

end function

function SWAPPINGHTREEREC(v, length, horizontal)
if v = = T.root then ⊲Set the root vertex to the layout’s center

v̂.x← 0
v̂.y← 0

else
if horizontal = = true then ⊲If it isan horizontal placement
if v is left child then

v̂.x← v̂.parent.x− length

else
v̂.x← v̂.parent.x+ length

end if
v̂.y← v̂.parent.y

else ⊲If it is an vertical placement
if v is left child then

v̂.y← v̂.parent.y+ length

else
v̂.y← v̂.parent.y− length

end if
v̂.x← v̂.parent.x

end if
SWAP(v) ⊲Swap thechildren of v if it improves the layout
SWAPPINGHTREEREC(v.le ft; length=

√
2; !horizontal)

SWAPPINGHTREEREC(v.right; length=
√

2; !horizontal)
end if

end function

function SWAP(v)
if v.parent = = v.parent.parent.right then

vP ← v.parent.parent.le ft

vN ← v.le ft

vF ← v.right

else
vP ← v.parent.parent.right

vN ← v.right

vF ← v.le ft

end if
if δ(ṽF ; ṽP) < δ(ṽN; ṽP) then
SWAPSIBL INGS(v.right.le ft, v.right.right)

end if
end function
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the edges. Therefore, thedistances between the data objects arebetter preserved. However, it

is expected to generate more cluttered layouts due to the reduced space for the edges. Also,

the radial layout providesaclear separation between thespacedesigned for leaves (around the

circumference) and intermediary nodes and branches, that are overlapped by thebundling edges.

TheH-tree layout places theverticesspread on the plane, creating someoverlap with edges.

3.3.2 Mult iscale Backbone P lacement

A important question during the backbone placement is how to handle the scalability

of the layout. Thecircular layout organizesall verticesover acircumference, which limits the

layout by the length of thiscircumference. Therefore, thecircular layout isnot useful for large

datasets. On other hand, the H-Tree layout supports morevertices, since it makes a better use of

thevisual space. However, because thealgorithm divides the length of each branch (and thus its

availablearea), the layout isalso limited in deeper levels, where the small drawing area makes

thegraph visualization unreadable.

In order to reduce the impact of this limitation, we added a parameter, called τ , that

control the maximum depth in which vertices will be placed in the visualization. When the

vertices placement algorithm reaches this level, the intermediatevertex that represents its cluster

isdefined as thefinal vertex and the algorithm stops the recursiveprocess. Thereby, all vertices

of thisbranch will behidden. Although thisprocess reduces the available information, theuser

can control the value of τ , thus visualizing the graph in multiple levels. Figure 22 shows a

comparison of two values of τ for a huge graph. When τ = 10 all vertices are easily detected

and the size of each circle represents the number of hidden vertices that are below. For larger

values of τ , more verticesaredisplayed, but they are positioned close in deeper levels, which

makes them hard to be identified.

Figure 22 – Comparison between the backbone placement of a huge graph using different values of τ .

(a) τ = 10 (b) τ = 15

Source: Elaborated by the author.
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3.4 Edges Drawing and Bundling Enhancement s

Finally, the last task for drawing thegraph is to bend theedges in order to composeedge

bundles. In this process, for each edgeei j in G wefirst search thepath pi j = { vi;v′1;v′2; . . . ;vj}

on thebackbonethat connectsvi and vj. Then, webend ei j towards pi j by considering itsvertices

as control points of a B-Spline curve. Since we can guarantee that the hierarchy has one path

connecting any pair of original verticesover asubset of virtual vertices (design principle (1)), we

first find thosepathsexecuting asimplebreadth-first search from theroot of the tree. By knowing

thepath from theroot to every original vertex, wecan find any path between two original vertices

in a faster and simpler way than any shortest-path algorithm for graphs. An overview of this

process is shown in Figure23.

Figure 23 – Curving an edge through the backbone. First, the original edge is selected (a); the path between the
source and the target is found (b); aB-Splinecurve isdrawn using the intermediary verticesas control
points.

(a) Step 1 (b) Step 2 (c) Step 3

Source: Adapted from Sikansi and Paulovich (2015).

Regarding the multiscale placement, the edge drawing is modified according to the

availablevertices. When part of thevertices in thepath pi j ishidden, theedge is rendered using

only the available vertices. If the path pi j contains only hidden vertices the edge is not rendered.

Thereby, the multiscale placement filters local edges, hence it controls the amount of visible

edges in favor of edges connecting lesssimilar vertices.

3.4.1 Cont rol Point s Filt ering

Thestandard edgedrawing usesall intermediateverticesin thepath pi j to bend theedges.

However, bundlescan beenhanced by filtering the intermediateverticesused ascontrol points.

To perform thisfiltration, a functionΦ(v′k) establishes if an intermediatevertex should beused

as acontrol point, and the edge is curved towards thepath p′i j = { vi; v′k ∈ I | Φ(v′k) ;vj} ⊂ pi j,

being I theset of intermediateverticesin thepath pi j. Although therearemany waysto determine

Φ(v′k), wedefined it in function of the level Lv′k
of each intermediatevertex v′k. Lv′k

represents the
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stage in which thegiven cluster wasdivided and, consequently, the distance from thevertex to

the root vroot . Thus, Lvroot = 1 because it isdefined in thefirst iteration of our algorithm.Φ(vk) is

defined as follows:

Φ(v′k) =
true i f φL ≤ Lv′

k
≤ φU ;

false otherwise.
(3.4)

whereφL ≤ φU . TheparametersφL and φU arecontrolled by the user. These values work

asa lower and upper delimiter to decide if the intermediatevertex vk will beused ascontrol point.

φL determineshow far from theroot the intermediatevertex vk should be, whileφU determines

the maximum level used to bend theedges. Figure24 shows acomparison between an edge bent

towards pi j and p′i j. Filtering intermediate points avoid the construction of a bundling layout

tightly closeto thebackbone. The lower bound improves the identification of connectionsamong

oppositegroups, while theupper bound reduces thedistortion caused by unbalanced branches.

Figure 24 – Comparison between a curved edge when no filtration is performed (a) and aedgedrawn with control
points in the interval [4;6] (b).

(a)Φ(vk) = true (b) φL = 4 & φU = 6

Source: Elaborated by the author.

3.4.2 Adapt ive-β

In addition to the intermediate vertices filtration, the user can also control the edges’

curvaturesby moving thecontrol points in thepath p′i j towards thestraight lineconnecting vi and

vj. This enhancement is similar to theapproach presented by Holten (2006). However, instead of

considering aconstant value for all edges, we calculate different values for each edgedepending

on itssize. Themain idea is that aedgebundling layout tends to hideshort edgeswhilehighlight
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bundles formed by long ones. Therefore, wechanged thisprocess to removeshort edges from

bundles. Given theposition v̂k of thevertex vk ∈ p′i j, we calculate the transformed position as

v̂k = f( p′i j)v̂k + (1− f( p′i j))(v̂i +
k

|p′i j|
(v̂j − v̂i)) (3.5)

where v̂i and v̂j are the transformed positionsof theending points of an edge ei j, k is the index

of vk in pi j, and f(pi j) is a function that controls the bending, given by

f(pi j) =
β − γ

1+ e
∆− d(v̂i ;v̂ j )

0.05

+ γ (3.6)

f(pi j) ranges from [0;1] to allow a proper convex interpolation between the straight

line and the B-spline curve. The function f(pi j) has three parameters defined by the user: ∆

is theminimum size for edges that will be bundled, β is thestrength of curvature for bundled

edges and γ is thestrength of curvature for unbundled edges. In addition, d(v̂i; v̂j) is the original

edge length (Euclidean distance). Usually, β is set with a value close to 1, whileγ isset with a

value close to 0. Basically, this manipulation creates a function with a hard-step that works as an

activation function (itsbehavior approximatesastep-function). This function consider thesizeof

each edgeand determine if it should beplaced in abundleor draw straight to its target. Figure25

shows theeffect of this interpolation in acurveand thebehavior of this function according to the

parameters used.

Figure 25 – The interpolation between the straight and thecurved edge. (a) shows how the value f( pi j) affects the
drawing of an edge connecting A and D through the control points B and C. The curved lines show
an interpolation from the straight line ( f(pi j) = 0.0) up to the most distorted drawing ( f( pi j) = 1).
(b) shows a plot of f(pi j) according to the parametersβ , α and ∆, set by the user. ∆ determines the
minimum size of an edge to be placed in a bundle, β is the strength of curvature for bundled edges
(usually set close to 1.0) and γ is the strength of curvature for unbundled edges (usually set close to
0.0).

(a) Different curvesaccording to f(pi j) (b) f(pi j)

Source: Elaborated by theauthor.
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Because there are no conclusive experiments about the best values for the strength

of curvature, it is useful to allow users to change this parameter interactively. A small value

of f(pi j) produces a less distorted graph, but with less clutter reduction. On the other hand,

f(pi j) valuesclose to 1 produce thebest result concerning theclutter reduction, but with more

distortion. Therefore, f(pi j) will result in two different scenarios. Edges with d(v̂i; v̂j) < ∆ will

have their curvaturestrength equal to γ, whileedges with d(v̂i; v̂j) > ∆ will have their curvature

strength equal β . Once γ is close to zero, those edges will not be placed in bundles and they

will be rendered similarly to straight lines. Webelieve that small edgesshould not be included

in bundles, since they generate too much distortion and ambiguity, depending on the dataset.

However, removing edges from bundles increases thevisual clutter, so theparameter ∆ isused to

balance this trade-off. Figure 26 showsa comparison between theoriginal formulation and our

proposal.

Figure 26 – Comparison between β proposed by Holten (2006) and our proposal of an adaptive-β using the dataset
INFOVIS15. Thecomparison showsshort edges (smaller than a length threshold) in red, thoseedges
are better identified in our proposal. For this visualization we used the valuesβ = 0.97, γ = 0.1 and
∆ = 0.2.

(a) Holten (2006) β ’ variation (b) Our β ’ variation

Source: Elaborated by the author.

3.4.3 Opacity and Coloring

Finally, opacity and coloring can improve the bundling appearance. There are many

examplesof their usage in prior edgebundling applications. For example, acolor scalecan be

used to represent an attributeor aspectsof each edge. Teleaand Ersoy (2010) and Selassie, Heller

and Heer (2011) usecolors to represent bundles or clusters, in order to improve the identification

of distinct groups of edges. Holten (2006) uses a gradient to represent each edge direction,

with different colors that identify thesourceand the target of an edge. Thisapproach isuseful

sinceother solutions, such as arrows, areunlikely to work in a cluttered layout. However, our
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experiments showed that thismethod losesefficiency when it needs to face graphswith more

complex edge patterns, such asbundles that contain ahugenumber of edges in both directions.

In addition to the color, manipulating thealphachannel may be helpful to highlight the

level of aggregation in each bundle. More specifically, opacity hasa crucial role in representing

the number of edges grouped in a bundle. Once the bundle is formed by an overlap of edges,

the combination of multiple layers increments the bundle intensity. Thus, bundles with more

edgeshaveastrong intensity, whilebundleswith fewer ones are less recognizable. This value

also hides non-bundled edges, which will have the less intensity in the layout. The bundling

layout can haveaglobal opacity, which can bemodified in real time, or adifferent value for each

edge, as presented by Holten (2006) to highlight short edges. Figure 27 shows an example of

bundling colorization with and without a global opacity. The edge color is determined by the

angle formed by theedgeand thehorizontal axis. When only thecolorization isused, all bundles

seem to have thesame intensity, while reducing the global opacity reveals themost and the least

representativebundles.

Figure27 – Comparison between a colorized bundling layout and thecombination of color and opacity.

(a) Only color (b) Color and opacity

Source: Elaborated by the author.

3.5 Final Remarks

In this chapter, we presented the main formulation of this research work. During the

research, from the neighbor joining to the similarity tree, each step represented a movement

toward of themain goal. This techniquewasbeyond to thestate-of-the-art presented before, once,

although the aspect that similarity representation is a prominent discussion on edge bundling

related publications, none of them havebuilt an entire similarity-based approach before.
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CHAPTER

4
RESULTS

4.1 Init ial Remarks

In this chapter, we report and evaluate the results of theSimilarity Bundling Framework.

Regarding edge bundling evaluation, prior techniques often concentrate their reports on applica-

tionsand sometimesperform informal user studies. For example, Holten (2006) presented user

studies that recognized theeffectivenessof an edge bundling layout for quickly gaining insight

into the relationship among elements. However, most techniques limited their discussion to the

computational cost and applications, without an extensive evaluation.

Thereby, a remaining challenge is the lack of an effectiveevaluation of thosemethods

according to their all features, not only their computational costs. This problem ismentioned in

many publications(ERSOY et al., 2011; HURTER; ERSOY; TELEA, 2012; NGUYEN; EADES;

HONG, 2013a), showing that there isno consensusabout an evaluation framework that compares

different methods. Therefore, we developed an evaluation pipeline that verifies the ability of

our backbone, the Similarity Tree, to express similarities relationships and the quality of the

Similarity-driven EdgeBundling layout.

Our evaluation pipeline isdivided into two sections. First, weperformed acomparative

analysis of the Similarity Tree with others well-known tree construction methods (Neighbor-

Joining and UPGMA). In this analysis, two metrics were used to compare those methods in

terms of similarity representation and tree balance. In addition, we validated the swapping

transformation designed for theH-Tree layout. Second, weperformed an analytical evaluation of

our method, comparing it with different edge bundling techniques, namely CUBu, MINGLE

and FDEB. We initially present a short analysis using the Neighbor-Joining and its multi-

level transformation to create the backbone. To differentiate these methods from that using the

Similarity Tree, we called them Neighbor-Joining Bundling (NJB) and Multi-level Neighbor-

Joining Bundling (Multi-level NJB), respectively. Next, wedescribe thedatasets employed in
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thiscomparativeanalysis.

4.2 Dat aset s

Our experimentsand comparativestudiesused public datasetsfrom previouspublications,

as well as artificial datasets generated during this research. Those datasets were chosen due

to their specific properties that allowed us to evaluate each stage of our method according to

previous knowledge about the data. This section describes the datasets used for the backbone

evaluation and theones used to compare theedgebundling layoutscreated with theMulti-level

Neighbor-Joining and theSimilarity Tree.

4.2.1 Dataset s for the Similarity Tree Evaluat ion

To evaluate the backboneconstruction, weused four datasets from a previousstudy on

visual representation of multidimensional data (FADEL et al., 2015). Thesedatasets represents

different datadistributionsand were already used to represent problemsoften detected in such

analysis. The four datasets aredescribed below and their distancedistributionsarepresented in

Figure 28.

∙ WDBC: abreast cancer dataset obtained from digitized imagesof breast masses (ASUN-

CION; NEWMAN, 2007) classified according to two classes. In this dataset, most data

objects aresimilar among themselves, with few dissimilar ones.

∙ TWO_NORM: an artificial dataset with two classes, composed of multidimensional points

from two Gaussian distributionswith unit covariancematrix. There isa good distribution

between similar and dissimilar objects, composing well-separated groups of dataobjects.

∙ SIMPLEX: an artificial dataset with six well-separated classes. This dataset consists of

m-dimensional spherical Gaussian pointswith apredefined standard deviation and means

at thecorners of a m-dimensional simplex.

∙ TEXT: a vector spacemodel representation of scientific papers from four distinct areas. In

thisdataset, most dataobjectsaredissimilar among themselves, with few similar objects,

a featurenormally found on high-dimensional sparsespaces.

4.2.2 Dataset s for the Mult i-level NJ Bundling Evaluat ion

Our bundling method was evaluated using artificial undirected graphs. Recalling that

our bundling framework uses information from dataobjects to create thebackboneand edges

are rendered following this structure, our synthetic setsof vertices and edgesweregenerated in

different ways aiming at testing different properties. Moreover, this allowed us to apply different
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Figure 28 – Distancedistributions of the four datasets employed on the backbone evaluation.

(a) WDBC (b) TWO_NORM (c) SIMPLEX (d) TEXT

Source: Elaborated by theauthor.

sets of edges to the same set of vertices. Wecall DATASET each set of vertices and its related

data that is used to construct thebackbone, and DISTRIBUTION each set of edges.

The results obtained with the Multi-level Neighbor-Joining are presented using three

graphs. Those weregenerated considering different edges distributions from thesame DATASET

of 600 data objects. These elements are equally divided into five well separated clusters

(C1;C2;C3;C4;C5). Each DISTRIBUTION contains 4,000 edges, where a few edges connect

randomly any pair of elements (noise) and the remaining ones follow onespecific pattern. The

threedistributionsarepresented below:

∙ DISTRIBUTION 1: apart from noise, most edges connect elements from clustersC1 and C3

and elements from clustersC2 and C5;

∙ DISTRIBUTION 2: apart from noise, most edges connect elements from clustersC1 and C4

and elements from clustersC2 and C4;

∙ DISTRIBUTION 3: apart from noise, all the other edges connect elements inside cluster C3

and inside cluster C5;

4.2.3 Dataset s for the Similarity-driven Edge Bundling Evaluat ion

Theevaluation of theSimilarity-driven EdgeBundling used six graphsalso generated

with artificial data. In this case, we combine different DATASETS and edges DISTRIBUTIONS.

Wecreated threeset of vertices following different similarity relationships, namely DATASET I,

DATASET I I and DATASET I I I. Thedifferencesamong them include the number of elements,

classesand intersections. Figure29 showsatwo-dimensional representation of the threeartificial

datasets.

To create thesix different graphs, for each set of vertices, wedefined two edges distri-

butions, namely DISTRIBUTION A and DISTRIBUTION B. The set of edges were planned to

show apattern or relationship among elementsconsidering their classes. Thesepatternscan be

visualized in amatrix of adjacency, and wecan compare thebundling result with theadjacency

visualization. Table1 summarizes theartificial datasetsand presents a matrix visualization of
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Figure 29 – Two-dimensional representation of the three artificial datasets used in the Similarity-driven Edge
Bundling evaluation.

(a) Dataset I (b) Dataset II (c) Dataset III

Source: Elaborated by the author.

each edgedistribution. All setsof edgeshave 1,600 elements. Wedefined both size of vertices

and edges following the most common sizeused in former edgebundling papers.

Table 1 – Summarization of the artificial datasets used in theSimilarity-driven EdgeBundling evaluation.

DATASET I DATASET I I DATASET I I I

Number of classes: 3 4 5
Elements per class: [120; 120; 120] [50; 30; 180; 120] [80; 80; 80; 80; 80]

DISTRIBUTION A

DISTRIBUTION B

Thefollowing sectionsdescribeour evaluation process, starting with theevaluation of

our backbone, followed by our bundling evaluation.

4.3 Backbone evaluat ion

We chose two measures to evaluate the Similarity Tree (STree). The first one is the

neighborhood preservation, which evaluates theability to represent thesimilarity relationships
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of agiven dataset. The last one is theaveragepath size from root to leaves, which evaluates the

capability to create lessdistorted branches in the resulting backbone. Wecompared our method

against other techniques that present the same goal of distance preservation: the Neighbour-

Joining (SAITOU; NEI, 1987) and theUPGMA hierarchical clustering (SOKAL; MICHENER,

1958). In thefirst test, weevaluated theneighborhood preservation of theoriginal spaceconveyed

by the three different techniques. In other words, objects from the same neighborhood should be

placed nearby on the tree. Wecalculated thedistancepreservation of a dataobject di as follows.

First, wecompute the k-nearest neighbours of di, resulting on a list NNi = { di1;di2; . . . ;dik} ⊂

D. Then, for each element di j
∈ NNi we computed how many nodes are between the node

representing di and thenoderepresenting di j
, i.e., thelength of thepath. Thedistancepreservation

of di is the median of thesevalues, with small values indicating better results. In thisway, we

favor the local preservation, that is, well-constructed trees are the ones that closely link themost

similar objects and, consequently, place the neighbor objects closely when embedded on the

plane.

Figure30 presents boxplotsof the results comparing themethods for each dataset. The

blueboxplots represent the results conveyed by theNJ; thegray boxplotsdepict the resultsof

the UPGMA; and the orangeones outline the results of our approach, theSTree. To obtain these

boxplots, wevaried theneighborhood size from 5 to 20 and computed thepreservation distance

for each dataobject. On average, the results produced by theSTreearevery close or better than

the results of theothers, with asmaller deviation from theaverage. Thereby, the layout produced

by the STree is more “reliable” since the degree of neighborhood preservation is uniformly

distributed over theentire tree, without bad spots that are compensated on theaverageby good

spots. It isworth noting that NJand UPGMA are morecomputationally expensive techniques

than STree.

Regarding treebalance, theSTreepresented better resultswhen compared to theother

techniques. Figure 31 presents the results of each technique for each dataset. Again, the blue

boxplotsrepresent theresultsfor theNJalgorithm, thegray onesfor theUPGMA, and theorange

ones for theSTree. Theseboxplotssummarize thedepth of the leaves. Thered linerepresents the

results of aperfectly balanced tree. We divide the depth of each leaf by log2n, where n accounts

for thenumber of dataobjects.

On average, the results rendered by theSTreeare very close to the red line, whileother

techniquesdeviate from it, indicating that theSTreecreatesmorebalanced trees. On balanced

trees, the positive side is that less intermediatenodes(on average) are between onedataobject

to any other data object (leaves). Thereby, resulting in less distorted edges since less bending

is introduced in the process. Moreover, this provides a more consistent use of the available

visual space, especially for the H-tree layout, reducing thevisual clutter resulted from the edges

overlapping. On the radial layout, theuniform depth of STree results on auniform distortion of

the edges, avoiding long distorted edges that could beproduced by theNJor UPGMA trees.
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Figure 30 – Boxplotssummarizing the neighbourhood preservation attained by the STree, NJ, and UPGMA consid-
ering the four distinct datasets. On average, theSTreepresents very competitive results if compared to
moreexpensive techniques, with asmaller deviation. Thereforepresenting less bad spots in termsof
neighborhood preservation.

Source: Elaborated by the author.

Figure 31 – Boxplotssummarizing thebalanceattained by theSTree, NJ, and UPGMA considering the four distinct
datasets. The STree produces more balanced trees, therefore leading to less distorted edges on the
bundling and a better use of the available visual space. The red line indicates the perfect balance.

Source: Elaborated by the author.

4.3.1 Swapping Evaluat ion

We also evaluated whether our H-treeswap strategy effectively improves the distance

preservation on the produced layouts or not. We defined as distance preservation the degree

of how much the pairwise distance between the data objects is preserved in the visual space

considering their corresponding leaves’ positions. Themost common approach for such kind of
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evaluation isametric stress function, such as theKruskal stress (KRUSKAL, 1964). However,

themetric evaluation is not applicablebecause wedo not use distances to position the leaves,

we only use the topology of the tree. Hence, the distance between two leaves are not directly

proportional to the distanceof their corresponding dataobjects in theoriginal space.

We opted to use a non-metric evaluation based on the rank of the distances. The

distance preservation of a data object di ∈ D is computed as follows. We calculate a rank

Rdi
= { rd1; rd2; . . . ; rdn

} comparing the data objects in D with di, assigning 1 to themost similar

and n to the least similar dataobject, where n accounts for thenumber of dataobjects. For the

corresponding leaf vi, wecalculateanother rank Rvi
= { rv1; rv2; . . . ; rvn} comparing its position

on theplanewith thepositions of theother leaves, assigning 1 to theclosest leaf and n to theone

farthest positioned. Thedistancepreservation is then computed comparing both ranks using the

Spearman rank-order correlation coefficient (SPEARMAN, 1904), given by

rs = 1−
6× ∑n

i (rdi
− rvi

)2

n3 − n
(4.1)

rs varies in the range of [− 1;+ 1], with larger values indicating better rank-order preservation or,

in our case, distancepreservation.

Wecompared our approach with the oppositeswap, that, which isexpected to produce

worst results. Because our approach only performs local changes, instead of global ones, it is

possible that random swapsmight producebetter results. In our tests, none random swapping

leads to layouts that better preservesdistance relationships, but wecannot guarantee that it will

never happen.

Figure 32 presentsboxplotssummarizing the resultsof our swapping strategy for each

dataset. Theblueboxplots represent theoppositeswapsand theorangeboxplots represent our

strategy swaps. For all datasets, theaverage distancepreservation attained by thenormal swap

is considerably better than the inverted swap. Only for the TEXT dataset this improvement is

not evident. Since in this dataset the distance distribution indicates that most data objects are

dissimilar among themselves (seeFigure28), without aclear dissimilarity “ ranking” amongst

them, this is an expected outcome. In fact, such kind of distance distribution is usually observed

on high-dimensional sparse spaces, and it is known that distancemetricsarepoorly-defined for

such spaces.

The experiments above validated the Similarity Tree as a reliable process to generate

the backbone, which is considered the first part of our methodology. The Similarity Tree is a

process faster than conventional similarity-driven tree construction algorithms, and produces

more balanced trees. Therefore, thisprocess isvery competitivewith other listed techniques to

represent thesimilarity among elements, and it was further improved with our swap strategy.
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Figure 32 – Boxplots summarising the results, in terms of distance preservation (rank), of the swap strategy. If
compared to the opposite swap, the resultsareconsiderably better, showing its efficacy on improving
thedistancepreservation

Source: Elaborated by the author.

4.4 Bundling Evaluat ion

A few metrics have been proposed to assure the quality of an edge bundling layout.

For example, Gansner et al. (2011) calculated the amount of ink saved to measure the clutter

reduction, but did not address the graph readability. Another metric is the bundling stress

proposed by Nguyen, Eades and Hong (2013b). Based on the Kruskal stress, this metric aims to

measure the differencebetween edgescompatibilitiesand their distance in thebundling layout.

Although this metric seems promising, wecould not determinea trustworthy way to compute

thecompatibility among edges.

Therefore, we compared our techniquewith others from the state-of-the-art in aquali-

tativeanalysis. Specifically, wechoseonemethod from each group of techniquespresented in

chapter 2. From thegroup of image-based techniques, weused the techniqueCUBu. The tech-

niquesFDEB and MINGLE were selected to represent the force-based and thegeometry-based

techniques, respectively. In all experiments, wegenerated CUBu layouts using thesourcecode

provided by theauthors, whilewe generated thegraphs from MINGLE1 and FDEB2 using open

source libraries.

4.4.1 Neighbor-J oining Bundling

Thefirst visualization devised from our framework uses theNeighbor-Joining to create

thebackboneand theReingold-Tilford radial layout to place the vertices in the visual space. We

1 https://github.com/philogb/mingle
2 https://github.com/upphiminn/d3.ForceBundle
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applied these methods to visualize the graph of citations from asubset of the 2015 IEEE Infovis

dataset (ISENBERG et al., 2015), comprising papers published on the IEEE InfoVis Conference

between 1990 and 2014. Figure 33 shows this graph, which has 490 vertices representing the

papers and 1;547 edgesdescribing thecitations among thesepapers.

Figure 33 – Graph visualization using theNeighbor-Joining Bundling for the dataset INFOVIS15.

Source: Sikansi and Paulovich (2015) c○ 2015 IEEE.

This result showshow edgesaredrawn into bundles. Thebackboneorganizes theedges

in paths according to thesimilarity among documents. Thebundling layout enables thedetection

of larger and smaller bundles. Moreover, it differentiates local bundles from global ones, i.e.,

bundles generated from edges connecting data objects from the same group from bundles of

edges linking data objects from different groups, crossing the center of the visualization. The

bundled graph presents different branches sizes, but it does not generatea implicit distortion on

the resulting bundles.

However, we noticed problems when applying the neighbor-joining in datasets with

similarity distributions different than thecommonly presented in text datasets. In such scenarios,

the bundling algorithm still reduces the visual clutter, but there is a high variance among the

length of each dataobject branch, which generatesdistortionson edgepaths. In order to show

thisproblem, Figure34 presents acomparison between the original and the bundled graph of the

dataset #NBABALLOT (seesection 5.2).

Thebackboneobtained from thisdataset generatesahugecontrast between small and

large branches. This is noticed by the forms of bundles, not as smooth as the ones presented

in Figure 33. Consequently, theneighbor-joining might not besuitable for somedatasets, once
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Figure 34 – A comparison between theunbundled graph and theone obtained with the Neighbor-Joining Bundling
for the dataset #NBABALLOT.

(a) Original graph (b) Bundled graph

Source: Elaborated by the author.

unbalanced backbonesgenerate too much distortion on edgebundles. Moreover, thisexample

reassures the importance of evaluating thebackbonebecause of itsability to expresssimilarity

relationships and represent a useful bundling layout.

4.4.2 Mult i-level Neighbor-J oining Bundling

TheMulti-level Neighbor-Joining isatransformation from thepreviousmethod to reduce

the number of intermediate vertices, to provide a reliable backbone and to decrease the NJ

algorithm computational cost. Figure 35 shows the comparison among this method and the

selected state-of-the-art techniques. In this comparison, we aim to discuss the readability of

bundling layouts and thepatternsextracted from each input graph. TheMulti-level NJ layouts

weregenerated using two levelsand K = 5 number of clusters. Weuse the radial and the force

layout to determine theverticesplacement into thevisual space. Thisplacement is used by all

state-of-the-art techniquesbecause they require the vertices position to perform thebundling. As

presented in section 4.2, theartificial edgesdistributionsweregenerated to createedgepatterns

easily identified when transformed into bundles.

Although the verification of the visual clutter reduction could bea subjectiveevaluation,

wecan assert that our edge bundling layout is equal, or better, than someof themost successful

edgebundling techniques. Our framework showsthesamepatternsthat arevisualized when using

other edge bundling methods. Moreover, our method makes the identification of bundles sources

and targets easier, whileother methods tend to bend edges close to theorigin and destination.

Regarding MINGLE and FDEB, the former was not able to create clear patterns that
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Figure 35 – A comparison among the results obtained with the Multi-level NJB, CUBu, FDEB and MINGLE using
the radial and force layout. In thefirst image for each layout, theclusters are highlighted following the
artificial dataset description.

Source: Elaborated by theauthor.
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highlight the relationship among groups of edges for any input graph. The latter presented

better graphs using the force-directed layout, but did not achieve thesameresult with the radial

one, being the worst case for the DISTRIBUTION I I. This distribution represents one group

with several connections to two oppositegroups in the visualization. However, FDEB failed in

recognizing them and merged these two groups into asingleton bundle.

CUBu is theonly technique that generatesmultiplebundles to connect thesame pair of

groups. This technique layout has straighter bundles and less distortion when compared with

other techniques. It ispossibleto identify thegroupspatternsasdefined by theedgesdistributions.

However, morebundles generatemorecrossing routes. In particular, the crossings decreased the

graph readability, asshown in thegraph from the DISTRIBUTION I for the force layout. In this

graph, CUBu failed to represent thecrossingsbetween two pairsof groups, aspresented in the

Multi-level and FDEB graphs.

The Multi-level Neighbor-Joining generates morecompact bundles connecting differ-

ent groups. In addition, we can see the expected patterns for all distributions. The technique

provided good results for the two methodsused to place thevertices. In the radial layout of the

DISTRIBUTION I I I, thebundling result of this techniqueoutstands because theedges connecting

elements from the same group are not bent over the virtual circumference where vertices are

placed.

Moreover, it is possible to modify the bundling scale through user interaction. As

explained in chapter 3, the user can determine the desired number of levels or the minimum

cluster size. Figure 36 shows thevisualization of one graph with different numbersof levels. For

theone-level bundling, thebackbonecontains only one segmentation of groups. Hence, few and

larger bundlesaregenerated, which providesageneric visualization. When theuser increases

thenumber of levels, bundles are refined and the relationship among smaller groupsaremore

evident.

Figure36 – Thebundling layout of the graph INFOVIS15 rendered with different number of levels.

(a) One-level bundling (b) Two-levelsbundling (c) Three-levelsbundling

Source: Elaborated by the author.
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The Multi-level Neighbor-Joining Bundling fulfills the aspects listed in our research

goals. However, this method requires parameters that make theusageand theevaluation more

difficult, such as the number of levelsand clusters. While thenumber of levelsaffects just the

degreeof details in thebundling, thenumber of clusters isasensitiveparameter and demands

a prior knowledge of the dataset. Once edge bundling layouts are commonly applied to get a

first insight of the data, it is contradictory to requirea previous knowledgeabout thedataset. To

address such limitation wedevised theSTree backbone, next evaluated.

4.4.3 Similarity-driven Edge Bundling

Weevaluated the Similarity-driven EdgeBundling (SDEB) with aqualitativeanalysis

of the bundling results using the radial and the H-Tree layout for vertices placement. Once

more, wereplicated thesameverticesplacement given by our backbone in theother techniques.

Starting with the radial layout, Figure 37 shows the comparison using the three datasets with

two edgesdistributions, aspresented in section 4.2. For all techniques, we determined the best

possibleparameters for such input graphs. For theSDEB, weset a filter of intermediate vertices

to drop the two first levelsof theSimilarity Tree (moredetails about this filter will be presented

in section 4.6).

Considering that thebackboneconstruction divides thedataobjects in two groupsat each

interaction, this experiment used different datasets, with 3, 4 and 5 clusters. Therefore, weavoid

the usage of abiased input graph with only two clusters. The result shows that our layout isnot

affected by thesedifferent numbersof clusters. In all cases, thebackboneremainsbalanced and

the clusters arestill recognizable.

For all input graphs, wenoticed that FDEB and MINGLE failed to present well defined

bundles. The worst results were presented by FDEB, which could not create any bundle and

resulted in acompletely disorganized layout. According to itsbehavior, MINGLE createdbundles

with a few edges. Even though it hassomebundles, the layout iscongested in theborder of the

visualization. Moreover, FDEB and MINGLE presented several “outlier” edges, i.e., edges that

are not grouped into any bundle. Regarding CUBu results, we noticed a less cluttered layout.

The expected dense connections between groups are recognizable, as shown in the adjacency

matrix presented in Table1. However, this techniquegeneratesbundlesusing lesser bent lines,

leaving thecenter of thevisualization empty and theboard loaded with too much information.

Different than CUBu, SDEB doesnot agglomerate theedgesaround theborder of the

visualization. Instead, our technique follows thebackbone, which distributes thebundles through

all visual space. Thecenter of thevisualization is themost important area, whereseveral bundles

are divided and therearecrossing routes. Most crossings in theSDEB layout happen in different

directions, so there isno misinterpretationsof thecrossingsas it may happen in theCUBu layout.

Figure38 shows in detail thedifferencesbetween CUBu and SDEB. CUBu bundled all
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Figure 37 – A comparison among the results attained by theSDEB, CUBu, FDEB and MINGLE using the radial
layout.

Source: Elaborated by the author.
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edgescloseto their source/target vertices, generating an ambiguity concerning theedgesflow. On

theother hand, SDEB drawn edges following adirection which isperpendicular to the tangent

on their source/target. Theagglomeration of edges happensat different levelsand not all edges

at thesame time. In addition, CUBu seems to mix several bundles in away that disregardseach

bundlemeaning. Thesamedoesnot happen with theSDEB, in which it is possible to identify

the group of vertices represented in each bundling.

Figure38 – A zoom in on part of the visualization produced by the techniques CUBu and SDEB.

(a) CUBu (b) SDEB

Source: Elaborated by theauthor.

Figure39 shows thesame input graphs from Figure37 but thebackbone is positioned

using the H-Tree layout. As explained in chapter 3, the H-tree layout focuses on the vertices,

spreading them through the visual space. Even tough the techniques share the same vertices

position, there is a huge contrast, not noticeable on the radial layout, between the SDEB and

other techniques. This contrast happens because theother techniques generate thebundles only

considering the spatially-similar edges trajectories, while our technique follows the H-Tree

layout. Oncemore, wedid not apply any enhancementsdeveloped for our technique(theseare

discussed in thenext section).

Thiscomparison shows that all state-of-the-art techniqueswereable to produce an edge

bundling layout that highlights themajor pattern of each graph. FDEB and MINGLE presented

competitive results, showing a better performancewhen theverticesarespread over thevisual

space. However, their graphs do not reach the same clutter-reduction observed in CUBu and

SDEB. TechniquesMINGLE and FDEB created distinct flows that agglomeratealmost all edges

for each direction observed in the input graphs, whileCUBu created separated bundles in several

directions.
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Figure 39 – A comparison among the results attained by theSDEB, CUBu, FDEB and MINGLE using the H-Tree
layout.

Source: Elaborated by the author.
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Our technique takesadvantageof theH-Tree layout to producemorecompact bundles

and a less cluttered layout than any other technique. In addition, vertices placed in the center

of the visualization are easier to be identified. Although there is some overlapping of edges

over vertices, thisoccurs lessoften than in theother techniques, in which centralized vertices

arecompletely hidden by thebundles. However, bending edgesaccording to the H-Tree layout

forced thebundles to repeat thepattern existent in the fractal structure, which makes theedges

patternsa littleharder to be identified.

Despite that, we can recognize the edges patterns by analysing the bundles density.

Moreover, the compacted view provided by the SDEB using the H-Tree layout improves the

identification of sectional shapes. This isevident in thegraph from the DATASET I I DISTRIBU-

TION A, where there is a local concentration of strong bundles in the group positioned in the

right-bottom area. In other techniques, this local behavior isobfuscated by the largest (global)

pattern.

4.5 Comput at ional Cost

Being |V| and |E|, respectively, thenumber of verticesand edges of agiven graph, we

outline thecomputational cost of each stageof our bundling framework as follow:

∙ First, to compute the Similarity Tree, the algorithm has timecomplexity O(|V|log|V|);

∙ Second, to compute theedges path, the framework takes two steps: it computes thepath

between theroot and each leaf, which has timecomplexity O(|V|), and then compute the

path of each edge, which has time complexity O(|E|). Therefore, the total computation

cost of this process is (O(|V| + |E|));

∙ Third, to perform thebackboneplacement, thecircular and theH-Tree layout have time

complexity O(|V|).

∙ Finally, to draw each edge though its control points, computing the edge transformed by

the parameters, thecomputational cost is O(|E|).

Thereby, the Similarity-driven Edge Bundling has computational cost O(|V|log|V|)

defined by the similarity tree construction. Just for comparison, the the Neighbor-Joining has

timecomplexity O(|V|3) and theUPGMA hastimecomplexity O(|V|2). Both methodsaremore

expensive than theSimilarity Tree, apart from the layout issues commented before.

4.6 Bundling Enhancement s

In thissection, wereport theresultsof threeenhancementsdesigned to give theuser aset

of options that transforms thebundling visualization. These transformations are theAdaptive-β ,
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the intermediateverticesfiltration and themultiscale visualization.

TheAdaptive-β enablesan adaptivecontrol of tension of each edge. In our method, the

tension, i.e., thestrength with which edgesareattracted into thebackbonestructure, isdefined by

three parameters: β , γ, and ∆. As established by theEquation 3.4.2, the tension isdefined by an

activation function, whereβ is the tension for activated edgesand γ is the tension for inactivated

ones. ∆ defines the minimum size for activation. Figure40 showsdifferent examples of those

parameters for thesame input graph.

Figure40 – Multiples bundling configurations in the radial layout by varying the parametersγ and ∆

(a) γ = 0.05 and ∆ = 0 (b) γ = 0.05 and ∆ = 0.25 (c) γ = 0.05 and ∆ = 0.50

(d) γ = 0.15 and∆ = 0.25 (e) γ = 0.15 and ∆ = 0.50

Source: Elaborated by the author.

From these results, weseehow theparametersγ and ∆ can be changed to improve the

visualization, revealing hidden local information. When weset ∆ = 0 (Figure40a), short edges

are hardly identified because they are mixed with long ones, which are most distinguishable.

When we increase the value of ∆ (Figure 40b and Figure 40c), it separates short edges from

bundles, showing concealed information, such as the groups of similar vertices with more

connections. Theseconnectionsarehighlighted when wevary γ becausethey arepushed towards

the center of thevisualization (Figure40d). However, theunbundled edges generate a noise that

must becontrolled (Figure40e) and high valuesof γ and ∆might make thevisualization worse.
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Thesecond enhancement is the intermediatevertices filtration. In this modification, the

user sets the interval [φL;φU ] of levels that should beconsidered when the edgesarebent over

thebackbone. Therefore, theedgesaredrawn only using the intermediatevertices in that interval.

Figure 41 shows four variations of the intermediate vertices filtration. These examples show

theeffectsof dropping intermediatevertices from the root and from the leaves of thebackbone.

Removing intermediate vertices closer to the root createsdirect connections between groups in

deeper levels, resulting in a more detailed visualization. In the other side, dropping intermediate

vertices closer to the leaves generatesbigger and moregeneric groups.

Figure 41 – Multiplesbundling configurations in the radial layout by varying the interval of intermediatevertices
used to bend theedges.

(a) φL = 2 and φU = 10 (b) φL = 3 andφU = 10

(c) φL = 3 andφU = 6 (d) φL = 5 andφU = 6

Source: Elaborated by theauthor.

Finally, the edge bundling layout can be modified by the multiscalevisualization. This

featureenables theuser to determine if thebackboneplacement will draw theentirebackboneor

the branches will becut in amaximum level (τ ). This interaction summarizes thebranches and

might beused to reducethesizeof largedatasets, sincetheuser can control theamount of vertices

placed in thevisualization. Figure42 shows threedifferent values for theglobal threshold. When
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themaximum depth is small, it generates acoarse visualization with fewer vertices representing

theset of their children (Figure42a). When themaximum depth is increased, the visualization

shows moredetailed information and contains more edges in local areas (Figure 42b). For larger

values, local information is more readableand therearefinal vertices in less denseareas, as well

asother ones that still represent itschildren (Figure42c).

Figure 42 – Multiples bundling configurations using theH-Tree layout by varying the maximum depth in which the
vertices are positioned.

(a) τ = 8 (b) τ = 11

(c) τ = 14

Source: Elaborated by the author.

4.7 Final Remarks

In this chapter, we presented the evaluation of our technique and its comparison with

thestate-of-the-art. We divided our evaluation framework into two main experiments. Thefirst

one showed the efficiency of the Similarity Tree to represent similarities among the original

vertices. Two metrics demonstrated that our technique is competitive with classic similarity
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based three constructions NJ e UPGMA. Moreover, our algorithm has a lower computational

cost and produces amore balanced tree, which is better for bundling purposes.

In the second stage, we evaluated the edge bundling layout guided by the Similarity

Tree. We compared our techniquewith threeof themost successful state-of-the-art techniques,

each one from a different group of techniques presented in chapter 2. We attested that our

techniqueoutstandsothers by producing more meaningful bundlesusing both radial and H-tree

layouts. Theexperimentsweremadeusing artificial dataand datasets commonly used to assess

similarity-based methods, such as trees and multidimensional projections. Sincewehad prior

knowledgeabout thedata, wecould verify theexpected behaviorsof thebundling layout. Finally,

wepresented enhancements to the SDEB layout that improves theedgebundling readability.

In the next chapter, wepresent aset of applicationswith real-world datasets, wherewe

can see theadvantagesof theedgebundling layout to visualizedatawith complex similarities

relationships and without any prior knowledge.
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CHAPTER

5
AP P LICATIONS

5.1 Init ial Remarks

In this chapter, we show the usage of the Similarity-driven Edge Bundling with real-

world datasets. In these scenarios, the similarity relationships and data distributions are not

well-defined as they were in the artificial datasets. Hence, wedo not have prior knowledge to

verify thebundling meaning. These applicationsare exampleswhere our techniqueproduced a

good edgebundling visualization and allowed the analysis and detection of patterns. Wepresent

threeapplications, each onewith a different dataset. The following section describes thedatasets

employed in theseapplications.

5.2 Dat aset s

Theapplicationsusedatasets found in related worksor commonly used in othersfieldsof

information visualization. In addition, we also collected dataduring this research. In this section,

wepresent each dataset.

The InfoVis 2004 Contest - The History of InfoVis (INFOVIS04) (FEKETE; GRINSTEIN;

PLAISANT, 2004) and the Visualization Publication Dataset (INFOVIS15) (ISENBERG et al.,

2015) areexamplesof citationsnetwork datasets. Thefirst onehas433 verticesand 1;446 edges,

while the second one has 384 vertices and 1;633 edges. Citations networks are a well-known

subject in graph visualization. We extract thesimilarity among papers from their abstract and

other meta-dataavailable.

The #NBABALLOT wasbuilt during this research and consistsof a collection of posts

extracted from Twitter (commonly called tweets). We created this dataset to apply our technique

in time-varying information. We selected tweets published with the hashtag #NBABALLOT

between December 19th, 2014 and January 21th, 2015. The users used this term to vote in a
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NBA1 player to compose one of the two teams of the 2015 NBA All-Star Game. This election

selected 5 players for each team, the Eastern All-Stars and the Western All-Stars. During this

stage, more than 2 millions of postswerecollected.

After collecting the tweets, we processed the raw data to create our dataset. The data

used to represent each player and calculate the similarity among them wasextracted from the

official leaguestatisticspage2, which covered themajor statisticsmeasuresof basketball matches

during that season. Each edgeconnects players that had received votes from the same user. This

graph wassegmented by daysof voting, which wecalled avoting frame. Thefinal graph consists

of a dynamic graph with 436 vertices, 11;793 distinct edges and 34 frames. Considering the

whole list of pairs, wefound 565;829 associationsbetween two players that received avote from

someuser in thesameday.

Finally, to present theapplication of our techniquein alargedataset, weusetheAMAZON

GROCERIES REVIEWS from SNAP3 (MCAULEY; LESKOVEC, 2013). Thisdataset represents

more than 500;000 products from theAmazon website4 and their respective information, such

as category, similar products and a set of reviews written by clients. We filtered this data to

createagraph with only groceries products. The resulting graph has 8;700 verticesand 129;407

edges. Each edgerepresents apair of co-purchased items. Thesimilarity among productswas

calculated using the reviews published by customers.

5.3 Visualizat ion of cit at ions networks

Our first application concerns the exploration of citations among scientific papers. Ci-

tations networks are often applied in graph visualization to detect patterns, such as citations

among researchers, research areasor publication venues. A graph of citations from thedataset

INFOVIS04 was presented by Ersoy et al. (2011) using the SBEB technique. This technique

requires the original placement for each vertex, and Ersoy et al. (2011) used multidimensional

scaling with the least-squareprojection (PAULOVICH et al., 2008). Differently, our technique

uses the vertices placement obtained from the backbone to build thevisualization.

In our application, weuse the recent INFOVIS15, selecting asubset with papers that have

at least 5 citations. This subset has 384 vertices and 1;633 edges. First, we extracted a term

vector using the available data (title, authors and abstract) of each paper. Then, the distances

among papers are calculated using the cosine-based (SALTON, 1991) dissimilarity from the

term vectors of the papers. The similarity between two documents is given by the inverse of

their distances. Figure 43 shows thevisualization using the radial layout. Weset the parameters

1 National Basketball League, the famous North American basketball championship
2 http://stats.nba.com/
3 https://snap.stanford.edu/
4 https://www.amazon.com/
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β = 0.97, γ = 0.1, ∆ = 0.12, and the filtering function of control points was set with parameters

φL = 2 and φU = 7. Edges’ colors represent their sizes.

Figure 43 – Edgebundling layout from thedataset INFOVIS15.

Source: Elaborated by theauthor.

Our first observation concerns thenon-bundled edges. Becauseclosevertices represent

similar papers that probably share the main subject, we could expect a large number of short

distance edges. However, the distribution is not regular, which may indicate that some topics

concentrate more citations among related papers, while other groups cite similar papers less

frequently.

We also observe relationships among different groups, although it is hard to make

conclusionsby only looking at thecompletegraph. Taking advantageof thehierarchical structure,

the user can interact with thevisualization to obtain amoredetailed visual representation. One

possible interaction is thegraph summarization. By applying themulti-level control in certain

branches, theuser can select groups of similar vertices and visualize them as asinglevertex. In

that visualization, theselection hides thegrouped edgesand showsdata information about the

group. We replace the hidden vertices by a tag cloud with the most frequent terms. Figure 44

shows thesummarization of four groups, each one identified by adifferent color, theuser also

sees a list with the selected papers.
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Figure 44 – Edgebundling layout summarization by collapsing branches from the backbone. A tag cloud describes
themost frequent terms found in thepapers showed in the auxiliary list on the right. Thecolor of each
entry identifies the group in which the paper is positioned in thegraph.

Source: Elaborated by the author.

5.4 Visualizat ion of social networks dat a

An important aspect of social networks is the fact that data changes over time and it

may be related to how people react about different events. This kind of data includesnot only

personal relationships, but also content based information, such as texts, videosand images. In

our case, wewant to visualizehow users from Twitter interact with theelection of theplayers

for the 2015 NBA All-Star Game, explained in section 5.2. This visualization shows how the

Similarity-driven Edge Bundling can be used to visualize a dynamic set of edges, when the

verticesand thesimilarity relationship among them arestatic.

We start this discussion analysing the backbone construction. In this graph, each ver-

tex represents a candidate for the 2015 NBA All-Star Game. The similarity among players is

determined by thestatisticscommonly measured in abasketball game (e.g., points, rebounds,

assists, turnovers, field goal percentage, threepoint percentage, blocks, etc). Figure45 showsthe

backboneobtained using the statisticscollected in the same season, before the election started.

Moreover, some groups are highlighted to help identifying important players, which may be

positioned close to each other due to their similar attributes.
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Figure 45 – Backbone of the dataset #NBABALLOT. Some vertices are labeled to show some players in the backbone. Colored groups display noticeable players that share
characteristicsand attributes.

Source: Elaborated by theauthor.
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Weperform an analytical evaluation of thedataset considering thecommon knowledge

of thefield. Part of our analysis uses the terms that define the position of players in abasketball

game. Basketball players are commonly assigned to one of five positions in thecourt, which are

Point-guard, Small-guard, Small-forward, Power-forward and Center. Thefirst two positions

areusually called guards, while the last two areusually called post. Small-forward playersare

versatileplayers that may beassociated to both post and guard positions, according to the team

strategy.

The first noticeable event is the first division in the backbone construction. It splits

theplayers into two groups. Thefirst group represents themoreactiveplayers (i.e., startersor

engaged bench players), while thesecond group is formed by lessactiveplayers(i.e., players that

usually play for a few minutes). The right side of thebackboneconcentrates themost famous

players of the league, which are on the top of many statistics of the season. On the contrary,

players from the left side are less relevant players.

After the second division, it becomes harder to analyse the left side, because players

with a few minutesper gamehave inaccurate statistics. Regarding the right side, the backbone

clearly separates post players, placed at the top, and guard players, placed at the bottom. This is

an evidence that wecan find similar players, according to the position they act on the court, only

using their statistics.

Thebackboneshows moresimilar players in deeper levels. The red group encompasses

theones considered to be thebest players in the league. These players are known to have agood

performance in most statisticsmeasures, which makes them the most important player of each

respective team. The blue group identifiesplayers with similar abilities, but they do not have a

leading role in their teams. Groups identified in yellow aresimilar to the red and blue groups.

Theplayers from theyellow groups are important ones, but they present agood performance in

only a few metrics.

On the top, the labeled post players aredivided in threedifferent groups. The orangeand

cyan groupsembrace thebest post players in the league, although thecyan onecoversplayers

with less impact in their team statistics. The purplegroup depictsgood playerswith a supporting

role in their teams. It isnoticeable that thereare less post players than guard ones in the league.

This isbecause teams usually play with only two, or even one post player, while thereare three

to four guards.

Figure 46 shows the edge bundling layout of the entire dataset (i.e., not divided by

frames). When analyzing thegraph, thefirst recognizableaspect is thepattern of connections

between thered and theorangegroups identified in Figure45. Theseedgesshow avoting pattern,

which consistsof usersvoting for guard and post players. Therefore, the userssplit their votes

in the two categories, even though this is not a requirement of the election. Moreover, short

distance edges, which connect similar players, are easily identified. There is a large amount

of unbundled edges connecting elements inside the red, yellow and blue groups, while there
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are fewer occurrences of those in other areas. The visualization also shows that users usually

vote in more players from thosegroups, while they select fewer post players. This behavior was

confirmed in theelection’s result, in which just three players (Anthony Davis, Pau Gasol and

Marc Gasol) out of ten wereelected from the top-right side.

Figure 46 – SDEB layout of the dataset #NBABALLOT with parametersβ = 0.96, γ = 0.05 and ∆ = 0.15

Source: Elaborated by theauthor.

Furthermore, wecan analyse different voting frames separated to understand how the

votes behavior changed over the time. Regarding thevisualization of time-varying information,

there are two main metaphors to visualize such kind of data: animation and small multiples

(BOYANDIN; BERTINI; LALANNE, 2012). The latter is preferred by somestudies since it can

show different frames together (ARCHAMBAULT; PURCHASE; PINAUD, 2011). Considering

our framework, both methodscan beused because thebackbone is theonly information used to

bend edgesand it guaranteethecontext. Oncethisapplication iscomposed by asequenceof static

frames, the small multiples metaphor can beeasily applied. Figure47 shows the #NBABALLOT

graph of votes for six selected frames using small multiples. All graphs were generated with

parametersβ = 0.96, γ = 0.05 and ∆ = 0.2. Theedgesare colored according to thenumber of
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occurrences of paired votes.

Figure 47 – Small-multiples visualization for multiple voting frames from the dataset #NBABALLOT

Source: Elaborated by the author.

Comparing the different frames, the samemajor pattern identified in Figure 46 isalso

visible. However, wecan observeslight modifications in thedensity of each bundle, such as in

frame 1 and 11. Moreover, the group of less important players (left-side) concentrates fewer

edges, which provides interesting insights. There are some outlier players that have several

connectionswith theoppositeside in someframes. For example, thereareedgesfrom thetop-left

group that only appear in frames 1, 6 and 33. A further investigation can map this behavior with

events related to theelection, such as gamedays or marketing campaign to ask for votes.
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The main differencebetween our method and previous techniques used in thecontext of

dynamic graphs concerns thestability. Techniques that compute bundles based on edges would

createdifferent bundles based on edges spatially distribution. Therefore, thesame edgemay be

placed in different bundleswhen comparing different frames. Thisshows thepoor stability of

those techniques, resulting in potential context loss and misinterpretation. Our techniquedraws

edges in thesamebundledisregarding changesover time. Thereby, opacity and colorsshow the

amount of edges in each bundle. Although this may be harder to analyze, it provides a more

faithful information.

5.5 Similarity Bundling on large dat aset s

Most bundling techniqueshave reported resultswith datasets restricted to few hundreds

of vertices and thousands of edges. For example, the United States Airlines has, with some

variations, 1;790 vertices and up to 9;798 edges. Thoseare larger values for acommon graph

drawing algorithms, thussubject to thevisual clutter. However, those techniques do not tackle

larger graphs with, for example, more than 10;000 vertices or 100;000 edges. The techniques

that handle such sizeof input, likeMINGLE, KDEEB and CUBu, claim it only because they are

fast enough to calculatebundles, not becauseof their layout scalability.

Usually, the number of edges does not affect the bundling performance. Becauseoverlap

edges is the bundling goal, moreedges just imply in moreoverlapping. However, the number of

vertices isacritical aspect, once theuser needs to beable to detect and identify different vertices.

Moreover, different from other visualization metaphors, such as scatter-plots or projections,

elements overlapping areamajor concern in graph visualization. In fact, the vertices must be

visible and well represented through the visual space. Our strategy to avoid vertices overlapping

is themultiscale bundling.

In this section, we discuss how the multiscale bundling layout can provide useful in-

sights on large graphs. We chose the Amazon Groceries Reviews from SNAP5 (MCAULEY;

LESKOVEC, 2013). This graph has 8;700 vertices, representing each product, and 129;407

edges, representing a pair of products purchased together. To avoid the representation of this

amount of vertices, weused multiplevalues of themultiscale threshold τ . Productsunder the

level of τ will be represented by their clusters. Edges connecting elements inside the same

cluster disappear, because their sourceand target arebeing represented by thesamevertex in the

visualization. Theuser can manipulatethisvalueto get different levelsof details. Figure48 shows

three layouts, varying the maximum depth in which the backbone is rendered. The similarity

among products was calculated using thebag-of-words vector of multipleproducts reviews.

The different layouts show how the level of detail increaseswhen deeper levelsof the

backboneare rendered, thus reducing theamount of filtration. When τ = 8 (Figure 48a), only

5 https://snap.stanford.edu/
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Figure48 – Comparing multiplescales for thebundling layout of the dataset Amazon Groceries Reviews .

(a) τ = 8 (b) τ = 12

(c) τ = 16

Source: Elaborated by the author.

248 vertices are visible, with almost all vertices are representing clusters of products. If the

maximum depth is increased, the layout shows more vertices. The layout with τ = 12 shows

2;108 vertices (Figure 48b) and theone with τ = 16 shows 5;856 (Figure 48c), which means

that only few vertices still represent clusters of products. In such cases, we also observe the

congestion of edges insidemorepopulated groups.

To extend our analysis, we fixed τ = 10. Figure 49 shows the bundling layout of this

graph. In addition, wehighlighted the64 groupsof productswith themost common topics found

in their reviews. By labeling the groups, wecan seewhich products belong to each group. Some

neighbor groupsshare thesame topics, indicating that thesecategories weredefined in ahigher

level and refined in the lower ones. For example, all groups in thebottom-left branch are labeled

with “Tea”. Another noticed behavior is that thefirst division segments liquid and solid groceries.

The bundling layout was created using the parameters β = 0.95, γ = 0.1 and ∆ = 0.13. This

configuration also highlight thedensegroups, with moreconnectionsamong their elementsand
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their neighbors.

Looking for moredetailed information about relationshipsamong groups, the user can

select multiplegroupsand filter edges. Figure 50 showstheedgefiltration from threedifferent

groups: thebottom-left “Tea” , “Cherries” and “Organic and Baby Food” . In thisvisualization,

weset β = 0.90 and ∆ = 0, becausewewerenot focused in short edges. Although the reduced

value of β increases the edges overlap over vertices, it improves the observation of multiple

groups, which were themain goal of thisexample. This isnecessary becauseedgesopacity are

not effective in a graph with such amount of edges, and, consequently, too much overlapping.

Moreover, the selection highlights how groups are related with other ones. A useful insight

observed is the difference between how the groups black and green are related with their

respective opposite products. While a wide bundle connects edges in black directed to this

opposite group, anarrow green one represent the inversedirection.

Our analysisshows that theSimilarity-driven EdgeBundling is able to present several

insights about the relationship among co-purchased products, such as categories of products

that are usually purchased together. Furthermore, the clear layout produced by our technique

facilitatesthedetection of verticesand clusters. Just for comparison, Figure51 showstheoriginal

graph and theedgebundling layout produced by CUBu, the fastest technique in the state-of-the-

art. Although CUBu generates thesamegraph in 1.437 seconds, the layout could not organize

edges into meaningful bundles and the clutter reduction is not as effective as in the layout

produced by our technique. Vertices in denseareas areequally hidden in CUBu layout as they

are in theoriginal one. Our techniqueneedsaround 100 seconds to create thebackbone and 55

seconds to render the full graph, but created a less cluttered layout.

5.6 Final Remarks

In this chapter, we presented examples of technique developed during this master’s

research using graphs from different data sources. These applications, combined with the

evaluation presented in the last chapter, provide enough evidence of the contribution of this

research in thestate-of-the-art.

Regarding largegraphs, webelievethat thefact that prior techniquesperform parallelized

tasksthat can handlealargeamount of datadoesnot mean they can produceagoodedgebundling

layout. Instead, we take advantageof our multi-level similarity-based hierarchy to combine the

edgebundling with averticesfiltering that reduces theamount of information, whilegrouping

the most similar vertices into clusters.

In the next chapter, we conclude this document with a critical review of our work,

highlighting thecontributions and discussing limitations and possible ideas for futurework.
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Figure49 – SDEB layout of thedataset Amazon Groceries Reviews. Thedataset has8,700 vertices and 129,407 eges. However, thisvisualization is limited at the 9th level. The
filtered graph has 843 verticesand 112,736 edges. Vertices weredivided into 63 groups and each group ishighlighted with its most common topics, extracted from the
set of reviewswritten by customers.

Source: Elaborated by the author.
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Figure 50 – SDEB layout of the dataset Amazon Groceries Reviews with edges from 3 groups highlighted

Source: Elaborated by theauthor.

Figure 51 – Original and CUBu layouts of thedataset Amazon Groceries Reviews

(a) Original Graph (b) CUBu layout

Source: Elaborated by theauthor.
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CHAPTER

6
CONCLUSION

In this chapter, wepresent thefinal remarks about this master’s thesis, which consist of a

review of the results, contributions, and suggestionsof directions for futurework. This research

presented a novel edge bundling technique devised from two main principles: meaningful

bundles can be created when similarity relationship areused to aggregate edges and a multiscale

representation can improve the readability of bundling layouts for hugedatasets.

Edgebundling techniquesareaconsolidated group of methods to construct thevisual-

ization of graphs. Several contributions have been made in this area in the last ten years. The

state-of-the-art shows that grouping edges through curved bundles reduces the visual-clutter

and improves the identification of edgepatterns, while there is a trade-off between detailed and

generic information. For example, edge bundling does not allow the identification of a single

connection, but it may help global analytical studies in agraph. For such scenario, edgebundling

techniques have achieved successful results.

This master’s research added a new paradigm that highlights the relationship among

vertices in order to create meaningful bundles. Our main contribution is anew technique that

uses thedata, instead of spatially information, to determine the bundles. We also validated this

method using abroader evaluation, instead of asimpleperformancecomparison and informal

user studies, which havebeen done in most recent publications.

Different from contemporary edgebundling methods that rely on complex computational

resources to achieve theshortest running time, likeparalleled GPU algorithms, our technique

uses straightforward algorithms from clustering and treedrawing. It makes our method easier to

be replicated than themost recent ones. Weareaware that our processcan be further improved

to reduce its running time, but this was not the goal of this study. In thenext section, we detail a

list of our contributions, followed by thediscussions and suggestions for futurework.



84 Chapter 6. Conclusion

6.1 Cont ribut ions

The contribution of this research is a new edge bundling technique, called Similarity-

driven EdgeBundling. This technique is the result of a bundling framework that consistsof two

main steps. In the first one, we create a structure called backbone from a series of studies on

similarity based methods, which worksasahierarchy. Then, thebackbone isused to bend the

edges through similar routes, which createsedgebundles, thus reducing thevisual-clutter in the

graph layout.

Most of theprevious techniques did not consider the similaritiesof bundled edgesand,

consequently, produced lessmeaningful representations. Although a few recent methodshave

embraced thisdiscussion, they only adapted former techniques. For thebest of our knowledge,

this research presents thefirst technique that useexclusively asimilarity-based approach. Our

method may lead to new discussionsand contributions for future research on edgebundling.

Furthermore, weperformed arobust evaluation of our technique. Thebackboneevalua-

tion validated theprecision in which thebackbonedescribes thesimilarity among elements. This

evaluation also verified that our method producesmorebalanced branches, which creates less

distorted bundles. Later on, we used artificial datasets to show that our technique reproduces

known patterns contained on thedata. Since the lack of evaluation isaproblem in thefield, our

evaluation framework isalso acontribution to thisdiscussion.

Moreover, we presented a novel bundling model for large graphs, which consists of a

multiscale bundling visualization. In former edgebundling techniques, thediscussion of applica-

tions in largegraphs only considered performance issuesand not thefinal layout. Even though

some techniques can generateedgebundling layoutsof largegraphs in ashort time, webelieve

that aspectsof their visualization, such asthe limited visual spaceand verticesoverlapping, make

those useless without data filtering. Our backbone method produces a better visualization by

grouping similar vertices and keeping thevisual spaceclearer. Wepresented applications (see

chapter 5) that confirmed themultiscalebundling ability of extracting information from large

datasets.

Finally, wealsopresented astraightforwardderivationof our techniqueto handledynamic

graphs with afixed set of vertices. In this case, webuilt thebackbone from verticessimilarities

and then processed atimeseriesof edges. Most edgebundling techniqueswereinitially developed

for static graphs and then adapted for somedynamic scenarios. Our approach can be applied to

dynamic graphswithout any significant change. In addition, weguarantee thestability from the

time-varying set of edges, i.e., our techniquewill render an edge in the same way in any time

frame. This is different from the density-based methods, which may render the same edge in

different ways depending on theother edges.
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6.2 Limit at ions and Fut ure Work

We outline the following points as limitations of our work and briefly discuss directions

that can be taken to fill thesegaps:

∙ Similar ity based approaches for fixed ver tices layouts: The main limitation of this

research is the inability to bundle edges for graph layouts when the vertices have fixed

positions. This limitation affects thecomparison with most state-of-the-art techniques. Our

backbone processcan not handleproperly this kind of graph because it might not place

the intermediate vertices in a suitable form to create pleasant bundles. A possiblesolution

could be to change the tree-likebackbone for asimilarity-based grid.

∙ Edgebundling evaluation: This research presented a moreextensiveevaluation process

than many prior techniques, but we also relied on a subjective pattern analysis. Edge

bundling evaluation methods lack richer designed user studies and quantitative measures.

User-experience testsarean essential task in information visualization, but they require

many resources to perform useful and reliable tests, while poor designed ones might

present biased results. For quantitativemeasures, the recent stress-based metric proposed

by Nguyen, Eades and Hong (2013b) represents a large step in this direction. However,

wecould not determine a reliableedges compatibility measure to use in our evaluation. A

futurestudy that formulates better edges compatibility and curvefitting measures can turn

this metric suitable for bundling evaluations.

∙ Bundling layout presentation: Wepresented somevisual enhancement options for our

technique, such as the transformed tension (Adaptive-β ) and the intermediate vertices

filtering. However, thereareother options that werenot explored in thisresearch and could

beused for oursand other edgebundling methods. Specially, coloring edgeshasbeen used

in many techniques to improve theedgebundling graph readability and could be used to

separatebetter the bundlesor clusters of vertices.

∙ Edge bundling for dynamic graphs: Our techniquecan handle oneparticular scenario

of dynamic graphs, sincewerequireafixed set of vertices to achieveastablebackbone.

Any change in thisset would lead to a lossof context. Edgebundling for dynamic graphs

is an open field in visualization, and there is still a need for future research addressing

edge bundling methods that can show complex time-varying changes and keep the context

for edges and vertices.

6.3 P ublicat ions

Thecontributions of this research are reported in the following research papers:
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∙ Sikansi, F., SilvaR. R. O., Paulovich, F. V. Similar ity-dr iven EdgeBundling: Revisiting

Hierarchical Edge Bundling for semantic meaningful clutter reduction in graphs

layouts. Manuscript in preparation

∙ Sikansi, F., Paulovich, F. V. (2015). Using phylogenetic trees to generate semantic

meaningful edge bundles. In Conference on Graphics, Patterns and Images, XXVIII;

Workshop on Visual Analytics, Information Visualization and Scientific Visualization, VI.

SociedadeBrasileiradeComputação-SBC. Short-paper

In addition, the following publications were developed in collaboration with other re-

searchers during thedevelopment of this research:

∙ Duarte, F. S. L. D., Sikansi, F., Fatore, F. M., Fadel, S. G., Paulovich, F. V. (2014).

Nmap: A novel neighborhood preservation space-filling algor ithm. IEEE transactions

on visualization and computer graphics, 20(12), (pp. 2063-2071).

∙ Ono, J. H. P., Sikansi, F., Corrêa, D. C., Paulovich, F. V., Paiva, A., Nonato, L. G. (2015,

August). Concentr ic RadViz: visual exploration of multi-task classification. In 2015

28th SIBGRAPI Conference on Graphics, Patterns and Images (pp. 165-172). IEEE.

Computer Graphics/Visualization Honorable Mention Award

∙ Neves, T. T. A. T., Coimbra, D., Sikansi, F., Paulovich, F. V. A Single-pass Model for

Multidimensional Projection and its Applications to Data Streaming. Manuscript in

preparation
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