• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2019.tde-25032019-102215
Document
Auteur
Nom complet
Fernando Soares de Aguiar Neto
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2018
Directeur
Jury
Carvalho, André Carlos Ponce de Leon Ferreira de (Président)
Batista, Gustavo Enrique de Almeida Prado Alves
Domingues, Marcos Aurelio
Gonçalves, Marcos André
Titre en anglais
Pre-processing approaches for collaborative filtering based on hierarchical clustering
Mots-clés en anglais
Clustering
Dissertation
Optimization
Recommender systems
Resumé en anglais
Recommender Systems (RS) support users to find relevant content, such as movies, books, songs, and other products based on their preferences. Such preferences are gathered by analyzing past users interactions, however, data collected for this purpose are typically prone to sparsity and high dimensionality. Clustering-based techniques have been proposed to handle these problems effectively and efficiently by segmenting the data into a number of similar groups based on predefined characteristics. Although these techniques have gained increasing attention in the recommender systems community, they are usually bound to a particular recommender system and/or require critical parameters, such as the number of clusters. In this work, we present three variants of a general-purpose method to optimally extract users groups from a hierarchical clustering algorithm specifically targeting RS problems. The proposed extraction methods do not require critical parameters and can be applied prior to any recommendation system. Our experiments have shown promising recommendation results in the context of nine well-known public datasets from different domains.
Titre en portugais
Abordagens de pré-processamento para filtragem colaborativa baseada em agrupamento hierárquico
Mots-clés en portugais
Agrupamento de Dados
Dissertação
Otimização
Sistemas de recomendação
Resumé en portugais
Sistemas de Recomendação auxiliam usuários a encontrar conteúdo relevante, como filmes, livros, músicas entre outros produtos baseando-se em suas preferências. Tais preferências são obtidas ao analisar interações passadas dos usuários, no entanto, dados coletados com esse propósito tendem a tipicamente possuir alta dimensionalidade e esparsidade. Técnicas baseadas em agrupamento de dados têm sido propostas para lidar com esses problemas de foma eficiente e eficaz ao dividir os dados em grupos similares baseando-se em características pré-definidas. Ainda que essas técnicas tenham recebido atenção crescente na comunidade de sistemas de recomendação, tais técnicas são usualmente atreladas a um algoritmo de recomendação específico e/ou requerem parâmetros críticos, como número de grupos. Neste trabalho, apresentamos três variantes de um método de propósitvo geral de extração ótima de grupos em uma hierarquia, atacando especificamente problemas em Sistemas de Recomendação. Os métodos de extração propostos não requerem parâmetros críticos e podem ser aplicados antes de qualquer sistema de recomendação. Os experimentos mostraram resultados promissores no contexto de nove bases de dados públicas conhecidas em diferentes domínios.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-03-25
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.