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Abstract

Extracting useful knowledge from data sets is a key concept in modern information
systems. Consequently, the need of efficient techniques to extract the desired knowl-
edge has been growing over time. Machine learning is a research field dedicated to the
development of techniques capable of enabling a machine to "learn" from data. Many
techniques have been proposed so far, but there are still issues to be unveiled specially
in interdisciplinary research. In this thesis, we explore the advantages of network data
representation to develop machine learning techniques based on dynamical processes
on networks. The network representation unifies the structure, dynamics and func-
tions of the system it represents, and thus is capable of capturing the spatial, topologi-
cal and functional relations of the data sets under analysis. We develop network-based
techniques for the three machine learning paradigms: supervised, semi-supervised
and unsupervised. The random walk dynamical process is used to characterize the
access of unlabeled data to data classes, configuring a new heuristic we call ease of
access in the supervised paradigm. We also propose a classification technique which
combines the high-level view of the data, via network topological characterization, and
the low-level relations, via similarity measures, in a general framework. Still in the su-
pervised setting, the modularity and Katz centrality network measures are applied
to classify multiple observation sets, and an evolving network construction method
is applied to the dimensionality reduction problem. The semi-supervised paradigm
is covered by extending the ease of access heuristic to the cases in which just a few
labeled data samples and many unlabeled samples are available. A semi-supervised
technique based on interacting forces is also proposed, for which we provide param-
eter heuristics and stability analysis via a Lyapunov function. Finally, an unsuper-
vised network-based technique uses the concepts of pinning control and consensus
time from dynamical processes to derive a similarity measure used to cluster data. The
data is represented by a connected and sparse network in which nodes are dynamical
elements. Simulations on benchmark data sets and comparisons to well-known ma-
chine learning techniques are provided for all proposed techniques. Advantages of
network data representation and dynamical processes for machine learning are high-
lighted in all cases.

Keywords: machine learning, supervised learning, semi-supervised learning, unsu-
pervised learning, dimensionality reduction, network-based learning, complex net-
works, dynamical processes, random walk, limiting probabilities, stationary states,
consensus time, pinning control, interacting forces.

ix



x



Resumo

A extração de conhecimento útil a partir de conjuntos de dados é um conceito chave
em sistemas de informação modernos. Por conseguinte, a necessidade de técnicas
eficientes para extrair o conhecimento desejado vem crescendo ao longo do tempo.
Aprendizado de máquina é uma área de pesquisa dedicada ao desenvolvimento de
técnicas capazes de permitir que uma máquina "aprenda" a partir de conjuntos de da-
dos. Muitas técnicas já foram propostas, mas ainda há questões a serem reveladas es-
pecialmente em pesquisas interdisciplinares. Nesta tese, exploramos as vantagens da
representação de dados em rede para desenvolver técnicas de aprendizado de máquina
baseadas em processos dinâmicos em redes. A representação em rede unifica a estru-
tura, a dinâmica e as funções do sistema representado e, portanto, é capaz de capturar
as relações espaciais, topológicas e funcionais dos conjuntos de dados sob análise. De-
senvolvemos técnicas baseadas em rede para os três paradigmas de aprendizado de
máquina: supervisionado, semissupervisionado e não supervisionado. O processo
dinâmico de passeio aleatório é utilizado para caracterizar o acesso de dados não ro-
tulados às classes de dados configurando uma nova heurística no paradigma supervi-
sionado, a qual chamamos de facilidade de acesso. Também propomos uma técnica de
classificação de dados que combina a visão de alto nível dos dados, por meio da car-
acterização topológica de rede, com relações de baixo nível, por meio de medidas de
similaridade, em uma estrutura geral. Ainda no aprendizado supervisionado, as medi-
das de rede modularidade e centralidade Katz são aplicadas para classificar conjuntos
de múltiplas observações, e um método de construção evolutiva de rede é aplicado ao
problema de redução de dimensionalidade. O paradigma semissupervisionado é abor-
dado por meio da extensão da heurística de facilidade de acesso para os casos em que
apenas algumas amostras de dados rotuladas e muitas amostras não rotuladas estão
disponíveis. É também proposta uma técnica semissupervisionada baseada em forças
de interação, para a qual fornecemos heurísticas para selecionar parâmetros e uma
análise de estabilidade mediante uma função de Lyapunov. Finalmente, uma técnica
não supervisionada baseada em rede utiliza os conceitos de controle pontual e tempo
de consenso de processos dinâmicos para derivar uma medida de similaridade usada
para agrupar dados. Os dados são representados por uma rede conectada e esparsa
na qual os vértices são elementos dinâmicos. Simulações com dados de referência
e comparações com técnicas de aprendizado de máquina conhecidas são fornecidos
para todas as técnicas propostas. As vantagens da representação de dados em rede e
de processos dinâmicos para o aprendizado de máquina são evidenciadas em todos os
casos.
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Ŵ Modified connection matrix.
Wsim Biased connection matrix.
Wstr Structural connection matrix.
X Data set.
|X | Cardinality of data set X (number of elements)
X (l) Data set composed of labeled items.
X (u) Data set composed of unlabeled items.

∅ Empty set.
B Penalty connection matrix.

CKatz Katz index in matrix form.
E Number of network edges (links).
L Laplacian matrix.
Q Network modularity.

xxv



Notation Description

S Vector of similarities between an unlabeled instance and labeled instances.
S (l) Vector of similarities between a labeled instance and unlabeled instances.
V Number of network vertices.
α Tuning parameter for convex combination in the high-level classification.
β Parameter to control force function width.
δ Labeling neighborhood region.
ε Step size in dynamical pinning control.
γ Threshold for network construction via single-linkage clustering heuristic.
φ Attraction force amplitude parameter.
ψ Linear self-feedback weighting parameter in dynamical pinning control.
c Network clustering coefficient.
ci Clustering coefficient of vertex i (vi).

cKatz
i Katz index of vertex i (vi).
eij Network edge (link) between vertices i and j.
ε Weighting parameter for the composition of the unlabeled bias links.
k Number of nearest neighbors.
ki Degree of vertex i (vi).

< k > Average network degree.
l Data label.
m Number of unlabeled data items.
n Number of labeled data items.
nl Number of items in class l.
p∞ Vector of random walk limiting probabilities.

oi(p) An observation (transformation) of pattern p.
q Number of data features (attributes).
r Network assortativity.
si Similarity between an unlabeled node and a labeled node vi.
t Time index.
v Network vertex (node).

x(l) Labeled data item.
x(u) Unlabeled data item.
ẋ(t) Dynamical oscillator.

z Control gain in dynamical pinning control.



CHAPTER

1
Introduction

The main goal of this thesis is to develop new machine learning techniques by ex-
ploring advantages of dynamical processes on complex networks. Therefore, three
main research areas are involved: machine learning, complex networks and dynami-
cal processes.

Machine learning

Researches on machine learning techniques and applications have been increas-
ing more and more in diverse areas such as computer science, engineering, medicine,
physics, biology etc (Theodoridis and Koutroumbas, 2008). Consequently, there are
many different approaches to perform learning tasks. The groups of supervised
and unsupervised learning paradigms are examples of a traditional categorization
(Mitchell, 1997). The supervised learning aims to find a rule which predicts the output
of a given input data, that is, it tries to find relationships between input-output data
pairs in a way that the prediction rule is more accurate as more labeled examples are
given. Labeled examples are those for which some information is known such as their
classes or groups. On the other hand, the unsupervised learning paradigm seeks un-
derlying structures in a given data set, working specifically with unlabeled instances,
that is, data of which classes or groups are unknown. There is also a more recent and
intermediate paradigm called semi-supervised learning, which is characterized by the
usage of the information extracted from just a few labeled data samples, while the
majority of the input data is unlabeled (Chapelle et al., 2006).

The supervised learning comprises the construction of a predicting model by using
information extracted from a training data set. The constructed model defines decision
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2 Chapter 1 - Introduction

borders that are used to classify unlabeled data (Duda et al., 2000). An unlabeled in-
stance is classified depending on its relative position to the decision borders. Due to
their importance in various real applications, many classification techniques have been
developed, such as Linear Discriminant Analysis (LDA) (Duda et al., 2000), Neural
Networks (Haykin, 1998), k-Nearest Neighbors (k-NN) (Tan et al., 2005), Naive-Bayes
(Friedman et al., 1997), Support Vector Machines (SVM) (Burges, 1998) and Decision
Trees (Alpaydin, 2009).

However, a problem can arise when a supervised technique requires labeled in-
stances that are hard to provide. For instance, if one wants to classify a group of web
pages over the Internet accordingly to their areas of interest, such as news, literature,
movies, sports etc, it becomes an arduous task to provide many labeled examples be-
cause the Internet hosts billions of pages, and the initial categorization of each web
page must be performed by a human or expert. In this case, the labeling task becomes
expensive and time-consuming (Chapelle et al., 2006).

Consequently, the semi-supervised paradigm arose to alleviate or even overcome
this problem. The main idea behind this paradigm is to classify data by using the
information extracted from just a few labeled instances and from a large amount of
unlabeled data (Chapelle et al., 2006). Many semi-supervised algorithms have been
proposed, which are mainly developed from generative models, including the Gaus-
sian mixture model (Shahshahani and Landgrebe, 1994), mixture of experts (Miller and
Uyar, 1996) and extensions (Fujino et al., 2005; Nigam et al., 2000a), transductive and
semi-supervised support vector machines (Chapelle and Zien, 2005; Collobert et al.,
2006), and boosting algorithms (Loeff et al., 2008; Mallapragada et al., 2009). Another
important methodology is called co-training (Blum and Mitchell, 1998).

Data clustering is the most prominent branch of unsupervised learning. It consists
in dividing an input data set in groups by following a specific criterion: data items
within the same group are more similar among them than to data items belonging to
other groups. This is an unsupervised learning task because data items are not labeled
and the number of groups is usually unknown a priori (Mitchell, 1997). Data clustering
has been used for the following three main purposes: i) discovering the underlying
structure: to obtain insight into data, generate hypotheses, detect anomalies and iden-
tify salient features; ii) performing natural classification: to identify the degree of sim-
ilarity among forms or organisms (phylogenetic relationship); and iii) realizing data
compression: as a method for organizing the data and summarizing it through clus-
ter prototypes (Jain, 2010). The practical applications of data clustering includes the
characterization of groups of customers based on purchasing patterns, categorization
of Web documents, clustering of genes and proteins sharing similar features, image
analysis, among many others (Duda et al., 2001). As representative techniques, we can
cite k-Means (Jain, 2010; MacQueen, 1967), CLARANS (Ng and Han, 2002), DBSCAN
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(Kryszkiewicz and Skonieczny, 2005), CURE (Guha et al., 1998), ROCK (Guha et al.,
2000) and Expectation Maximization (Dempster et al., 1977).

Complex networks 1

In recent years, a tremendous interest has been devoted to the study of statistical
and dynamical properties of large-scale graphs with complex structures. This research
field, known as complex networks, usually considers large scale graphs with nontriv-
ial connection patterns (Albert and Barabási, 2002; Newman, 2003a). Such graphs have
emerged as a unified representation of complex systems in various branches of science
(Bornholdt and Schuster, 2003). This is motivated by the fact that complex networks
occur commonly in nature and are essential for the infrastructure of a modern society.
Examples of such networks include the Internet, the World Wide Web, telecommuni-
cation systems, power grids, social networks, traffic networks and biological networks
such as neural networks, gene regulatory networks and protein-protein interactions
etc (Newman, 2003b).

The first study on large networks was carried out by Erdös and Rényi, who ana-
lyzed randomly connected networks rigorously (Erdös and Rényi, 1961). They pro-
posed a model to generate random graphs with V vertices and E edges, called ER
graphs, where for large V and fixed average degree < k >, the degree distribution is
well approximated by a Poisson distribution. Nevertheless, real networks are rarely
pure random networks. The study of several dynamical processes over real networks
has pointed out the existence of shortcuts, that is, bridging links that connect differ-
ent areas of the networks, thus speeding up the communication among distant nodes,
which is called the small-world effect. For this reason, in the seminal paper of Watts
and Strogatz (1998), they have proposed to define small-world networks as those net-
works having both a small value of average shortest path length like random graphs,
and a high clustering coefficient like regular lattices. A few months later, Barabási and
Albert (1999) discovered that the degree distribution of many complex networks obeys
a power law P(k) ≈ k−γ, where k is the number of links or the degree of a randomly
chosen node and γ is the scale exponent, henceforth the term scale-free networks.

After those seminal works, complex networks have become an active field in non-
linear science and extensive research has been carried out on the following non-
exhaustive topics: network growth and self-organization, degree and betweenness
distribution, complex network resilience and cascading breakdown, epidemiological
process, community structure, and network stability and synchronization (Albert and
Barabási, 2002; Boccaletti et al., 2006; Cohen and Havlin, 2010; Newman, 2003b).

1The words network and graph are used interchangeably in this thesis by convention.
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Dynamical processes on complex networks

The research field about dynamical processes on complex networks is vast. The re-
cent discovery of the relevance of network representations in many areas of science has
stimulated the study of models in which node interactions occur in networks whose
topologies are more complex than in previously described cases (Barrat et al., 2012). A
first motivation for such studies stems from the fundamental interest in understand-
ing how the topology of the interactions change the nature of phase transitions. These
phenomena can be understood as the change occurred in the macroscopic behavior
(network level) after some modification in a microscopic property at node level (Barrat
et al., 2012).

There are two main modeling schemes when dealing with dynamical processes on
networks. In the first one, each node of the network is considered as a single individual
or element of the system. The second model regards the processes as dynamical entities
such as people, information packets, energy or matter flowing through a network of
which nodes identify locations where the dynamical entities transit. In both cases, the
dynamical description of the system can be achieved by introducing for each node
the notion of a corresponding variable characterizing its dynamical state (Barrat et al.,
2012).

As an example of dynamical process considering each node as a single element
of the system, we can cite the synchronization of coupled oscillators (Boccaletti et al.,
2002). When a large number of elements is coupled through interactions in a com-
plex network, various types of synchronization behaviors can occur. The equality of
all internal variables is called complete synchronization and it is the most commonly
studied synchronization phenomenon (Pecora and Carroll, 1990). When there is a lock-
ing of phases while the correlation between amplitudes is weak, we face a phase syn-
chronization, a weaker form of synchronization (Pikovsky and Kurths, 2001). Another
kind of synchronization that is harder to be observed is the generalized synchroniza-
tion where, in the case of two oscillators, the output of one unit is constantly equal
to a certain function of the output of the other unit (Barrat et al., 2012; Rulkov et al.,
1995). Specific studies about synchronization on networks include time-discrete maps
(Dirickx, 2004), synchronization in small-world systems (Barahona and Pecora, 2002),
the paradox of heterogeneity in power-law degree distributions (Motter et al., 2002),
non-linear coupling with fire and pulse neurons (Timme et al., 2002), synchronization
in general network topology (Belykh et al., 2006), and so on.

The second scheme of dynamical processes on networks, which considers dynam-
ical entities flowing through a network, includes diffusion processes like epidemic
spreading (Colizza and Vespignani, 2008; Vogels and Birman, 2003), rumor and infor-
mation propagation (Moreno and Pacheco, 2004; Zanette, 2002), packets traffic analysis
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(Cupertino and Zhao, 2011; Guimerà et al., 2002; Zhao et al., 2005a, 2007), cascading fail-
ures (Motter and Lai, 2002; Zhao et al., 2004, 2005b), random walks (Burioni and Cassi,
2005; Noh and Rieger, 2004), among others (Barrat et al., 2012).

1.1 Objectives

The goal of this thesis includes the research on machine learning techniques and
heuristics based on complex networks and dynamical processes on networks. The
investigation efforts are threefold: we are going to explore and formulate applications
for supervised, semi-supervised and unsupervised learning paradigms. The specific
objectives for each paradigm are described next.

Objectives for network-based supervised learning

1. To develop a new supervised classification technique which takes into account
the ease of access of unlabeled instances to training classes through an underly-
ing network with the following features:

• differently from traditional classification heuristics, the proposed scheme
uses random walk limiting probabilities to measure the limiting state tran-
sitions among training nodes;

• due to the dynamical property of the technique, both local and global rela-
tionships among data instances are taken into account in the classification
phase.

2. To develop a new supervised classification technique which combines the ease
of access heuristic and the network topological structure to characterize data
classes with the following features:

• generally speaking, traditional data classification techniques share the same
approach: to divide the data space into non-overlapped or slightly over-
lapped subspaces (classes) according to physical features of the training
data, such as distance, similarity or distribution. In contrast, network-based
learning techniques allow one to understand classification problems accord-
ing to both physical features and semantic meanings of the input data;

• under the hypothesis that data classes can be characterized by the under-
lying network topological structure, the previous scheme is extended to a
quite general framework in such a way that one can put various network
measures of interest in the connection matrix of the underlying data net-
work to guide the random walker.
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3. To develop network-based techniques applied to the classification of multiple
observation sets as follows:

• multiple observations of an object may be produced and stored in a
database. For example, in the case of sensor networks the images of an ob-
ject are captured from different viewpoints for further analysis. A car being
tracked via a road camera system or a person having his/her images stored
by an internal vision sensors network are examples of objects captured at
different time instants or at different angles and geometric transformations;

• a set of observations consists of different transformations, possibly including
rotation, perspectives and projections. Each set belongs to a single pattern,
that is, the pattern is considered invariant under such transformations;

• we pursue the development of efficient network-based methods with the
abilities to characterize topological structure of input patterns, to explore
these multiple views of invariant patterns to predict and to correctly extract
relevant information in classification tasks.

4. To study the usage of different network formation methods into a graph em-
bedding framework to perform supervised dimensionality reduction with the
following characteristics:

• some kinds of data, specially images, are often high-dimensional patterns.
Dimensionality reduction can enhance processing and also increase classifi-
cation accuracy;

• the developed technique maps data into networks and constructs two ad-
jacency matrices to convey information about intra-class components and
inter-class penalty connections. The penalty network conveys information
about which data samples (class components) should not be close together
in the reduced feature space.

Objectives for network-based semi-supervised learning

1. To extend the previous ease of access heuristic to the semi-supervised setting as
follows:

• instead of constructing a training network from the labeled instances, the
set of unlabeled instances is used to create a network, and the link weight
composition takes into account the information provided by the labeled in-
stances;
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• each label is propagated through a network of unlabeled instances via a bi-
ased random walk. The random walk process measures the label propa-
gation from labeled vertices to the remainder unlabeled vertices of the net-
work.

2. To develop a nature-inspired semi-supervised classification technique based on
attraction forces as follows:

• data instances are represented as points in a q-dimensional space and the
movement of data points is modeled as a dynamical system. As the system
runs, data items with the same label cooperate with each other and data
items with different labels compete among them to attract unlabeled points
by applying a specific force function;

• the use of attraction forces between labeled and unlabeled instances can pro-
vide a model for semi-supervised learning that fits well into the smoothness
and cluster assumptions. Labeled instances are considered as fixed attrac-
tion points that apply attraction forces on unlabeled instances. In turn, the
unlabeled instances are expected to move towards the resultant force direc-
tion and, eventually, to converge to an attraction point.

Objectives for network-based unsupervised learning:

1. To develop a data clustering technique based on synchronization and pinning
control of networked dynamical oscillators with the following features:

• in order to overcome some limitations of classical data clustering methods
such as the assumption of clusters with hyper-spherical shapes and similar
sizes, we study a new network-based data clustering method;

• a dissimilarity measure is computed via a dynamic system in which ver-
tices are expected to reach a consensus state regarding a reference trajectory
forced into the system via pinning control. The resultant dissimilarity pro-
vides a set of features for the data items allowing the detection of clusters
with different shapes and sizes.

1.2 Motivations

Networks are powerful tools for complex systems modeling and for data represen-
tation and analysis due to the following salient features. i) Networks are ubiquitous
in nature and everyday life. Many are the networked systems such as the Internet,
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World Wide Web, telecommunication networks, transportation networks, biological
networks and social networks. Nevertheless, many other types of data sets can be
transformed into networks. For example, a vector-based data set can be transformed
into a network by simply connecting to each node its k most similar neighbors. ii)
Network representation unifies the structure, dynamics and functions of the system it
represents. Besides describing the interaction among nodes (structure) and the evolu-
tion of such interactions (dynamics), it also reveals how the pair "structure + dynamics"
affects the overall function of the network (Boccaletti et al., 2006). For instance, it is well
known that there is a strong correlation between the structure of protein-protein inter-
action networks and the protein functions (Palla et al., 2005; Spirin and Mirny, 2003).
iii) One of the main motivations of graph theory research is its ability to describe topo-
logical structures of complex systems. Such representation emphasizes the physical
distances among nodes and captures from local to global relations among data.

In the machine learning domain, the topological structure is quite useful to detect
diverse cluster or class shapes via a data clustering or classification algorithm, respec-
tively. As a consequence, the application of network-based methods in learning tasks
has been increasing over the past years and has become a active research area with a
myriad of applications such as semi-supervised learning (Breve et al., 2012; Chapelle
et al., 2006; Nguyen and Mamitsuka, 2011; Silva and Zhao, 2012a), clustering (Karypis
et al., 1999; Schaeffer, 2007; Silva and Zhao, 2012b; Silva et al., 2013), regression (Ni et al.,
2012), feature selection (Bunke and Riesen, 2011), dimensionality reduction (Riesen
and Bunke, 2009), among others.

For instance, traditional clustering techniques are very efficient in some cases, al-
though they may be not suitable for some other cases. As an example where such algo-
rithms are not appropriate is the clustering of data sets that contains groups of different
spatial shapes, sizes and densities, as those methods generally assume that the clusters
are hyper-spherical and have similar sizes. On the other hand, network-based data
clustering methods are able to detect groups with arbitrary shapes because networks
are powerful tools to represent topological relations among objects. These methods
usually consist of two stages: construction of a network from the original vector-based
data set, and partition of the network into sub-networks, each one representing a data
cluster.

In a network, the concept of cluster is regarded as a densely connected group of
vertices, while the connections among different clusters are sparse. A representative
method for data clustering based on networks is called Chameleon (Karypis et al.,
1999), which uses the concept of k-NN on a sparse network representing the data set.
The algorithm searches for the topological structure of the input data, and so it is able
to identify data clusters with different shapes. However, the network formation by
using k-NN presents two main drawbacks: 1) the resulting network is not necessarily
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connected, and 2) the resulting network may be dense. In these cases, it is difficult to
correctly divide the network into meaningful sub-networks.

There are other methods for detecting clusters and/or communities in complex
networks that have been showing good results. A well-known method is based on
an iterative removal of edges that present high value of a measure called betweenness
(Freeman, 1977; Newman and Girvan, 2004), resulting in a divisive hierarchical tree
of communities. Also, the method of optimal modularity (Newman, 2006) considers
the community structure as a statistical arrangement of edges, which can be quantified
by using a measure known as modularity (Newman, 2004). Another method of com-
munity detection is based on the concept of collective intelligence (Oliveira and Zhao,
2008). In this method, all vertices are randomly arranged in a circle, so that the angles
of each vertex are gradually updated according to the angles of their neighbors. At end
of the process, the vertices reach a stationary state in which vertices belonging to the
same community lie grouped together. In (Quiles et al., 2008), the authors proposed
a method based on particle competition dynamical process in which particles move
through the vertices and compete among themselves to dominate as many vertices as
possible. Eventually, each particle will dominate a single community. In (Silva et al.,
2013), the authors applied the same concept of agents competition to cluster handwrit-
ten images of alphanumeric digits. Another method of community detection (Zhou,
2003a,b) uses a distance measure of complex networks based on the random walk of a
Brownian particle through the network. Methods that use the idea of synchronization
of coupled oscillators in a network (Zhao et al., 2008a) consider that each group of ver-
tices that synchronize in similar times represent a data cluster. When the synchroniza-
tion is achieved via pinning control (Li et al., 2008), the communities are synchronized
to a common state either in the phase space or in time by controlling some vertices of
the network.

The motivations for the research in the supervised learning paradigm is mainly
due to the possibility of different classification heuristics. Traditional classification
techniques divide the data space according to physical features of the training data
(similarity, distance, or distribution). They divide the data space into subspaces, each
one representing a data class. These subspaces are not overlapped in the case of crisp
classification, but they can be slightly overlapped in the case of fuzzy classification.
In either way, strong twisting or largely overlapped subspaces are not permitted. In
this way, many intrinsic and semantic relations among data items are ignored as, for
example, topological structures. On the other hand, a relevant advantage when using
networks in learning tasks is that it can perform quite different classification heuristics.
For example, it can take into account topological structures and pattern formation.

Furthermore, the number of network-based supervised techniques reported so
far is still small (Bertini et al., 2011). At a first glance, several network-based semi-
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supervised methods, which are more expressive in numbers than the supervised ones,
such as those presented in (Belkin et al., 2006; Sindhwani et al., 2005), could be con-
verted to the supervised setting if a reasonable number of labeled instances was pro-
vided. However, these methods consider unlabeled instances during the training
phase, and a graph-based approach is employed to model the data into a manifold,
in order to first propagate the labels to all unlabeled instances. Thus, if the majority
of instances in the data set is labeled, a regular supervised approach, using labeled
instances only, would be preferable (Bertini et al., 2011).

Interestingly, supervised dimensionality reduction can also be performed by using
a network embedding framework (Yan et al., 2007). The purpose of network embed-
ding is to represent each node (data sample) of a network as a low-dimensional vector
that preserves similarities between the node pairs, where similarity is measured by a
network similarity matrix that characterizes certain statistical or geometric properties
of the data set. The usage of network embedding for dimensionality reduction can
overcome some limitations of the LDA technique such as the number of available pro-
jection directions lower than the number of classes, and the assumption that data is
approximately Gaussian distributed (Yan et al., 2007).

In the real world, there is a necessity of capturing and storing in a database dif-
ferent observations of a given pattern. For example, in a sensor network, signals of
an object are captured via sensors positioned at different places, resulting in different
observations of the same object. Also, a car being tracked via a road camera system
or a person having his/her images stored by an internal vision sensors network are
examples of objects captured at different time instants or by different angles and geo-
metric transformations (Zhao et al., 2008b). Thus, efficient methods must be developed
to exploit these multiple views of invariant patterns to predict and correctly extract
relevant information.

In this scenario, a network-based scheme permits the detection of subnetworks
which represent each group of observations, and the classification process takes into
account the overall link strength between two subnetworks. For example, the topol-
ogy of a network may dictate some intrinsic importance for different vertices and this
importance can be measured by using different measures (Cohen and Havlin, 2010). A
centrality measurement called Katz centrality is an example (Katz, 1953). This metric
is capable of accounting the importance of a vertex considering the paths of differ-
ent lengths starting at it to the other vertices over the network. Thus, regarding each
vertex of the network as a stored pattern or a pattern transformation, it is possible to
measure the relation degree between an original pattern and its transformations: the
more strong is the centrality of a transformation in respect to the original patterns, the
more is the transformation related to that pattern’s class.

In summary, network-based techniques presents some salient advantages over
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other traditional techniques for all the three categories of machine learning.

1.3 Organization of this thesis

The remainder of this thesis is organized as follows. In Chapter 2, we review the
theoretical basis for the developments presented in the subsequent chapters. Namely,
we review concepts related to machine learning, complex networks and dynamical
processes on networks, as well as some relevant network-based techniques applied
to machine learning that use concepts of dynamical processes. Chapter 3 starts in-
troducing the research results. There, four new network-based supervised techniques
are presented: a classification technique based on the concept of ease of access to data
classes by using random walk, and its extension which considers the network topo-
logical structure in a general classification framework called high-level classification; a
technique for classification of multiple observations sets based on network measures;
and an application of a specific network construction method into an embedding di-
mensionality reduction framework. In Chapter 4, we present an extension of the su-
pervised random walk ease of access to a semi-supervised transductive setting, and
a semi-supervised technique based on interacting forces, in which data samples are
modeled as points in a networked interaction scheme. The results concerning unsuper-
vised learning are presented in Chapter 5. Specifically, we introduce a data clustering
network-based technique which uses the concept of pinning control of dynamical pro-
cesses. The conclusions are shown in Chapter 6, as well as some directions for future
studies and a list of the published articles during the doctorate period.
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CHAPTER

2
Review of essential concepts

This chapter introduces the fundamental concepts related to the developments pre-
sented in this thesis. Three major areas are introduced: machine learning, complex
networks and dynamical processes on networks. Machine learning deals with the es-
sential ideas and heuristics to develop algorithms capable of extracting useful knowl-
edge from data sets. It is commonly divided into three sub-areas: supervised learning,
when there is information about data classes involved in the learning process; semi-
supervised learning, when there is just a little bit of relevant information about data
classes in comparison to the whole data set; and unsupervised learning, when there is
no a priori knowledge about the data classes we are dealing with.

Complex networks is a research field dedicated to the study of systems represented
by large scale graphs. The studied systems are called complex due to their non-trivial
connection pattern and evolution of the network structure. Many real-world systems
are complex networks, such as biological networks, telecommunication networks, In-
ternet pages and social networks. The main topics include the characterization of
topological structures of a given family of networks, the study of dynamical processes
through the nodes and edges, how nodes and links relate to each other and what is
their role or function in a given topological structure.

The third section reviews some relevant studies concerning dynamical processes
on networks. It presents a detailed introduction about random walk processes and
the related touristic walk. The dynamical processes known as node synchronization
and consensus are also introduced. These concepts are the basis for the techniques
presented in the last section of this chapter, where label propagation and supervised
network construction are also described. These essential ideas on dynamical processes
and network-based techniques form the theoretical foundations for the developments
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described in the next chapters.

2.1 Machine learning

The learning skill can be naturally found and perceived in human beings. We are
born with this amazing ability which is further developed by accumulated experience
during our lives. Machine learning is a research area of computer science that seeks to
develop methods and techniques capable of learning with experience (Bishop, 2007).
By representing data from diverse domains in a computer environment, machine learn-
ing techniques can generate models capable of organizing the intrinsic knowledge
found in the data, or even imitating the behavior of a specialist in the considered do-
main (Duda et al., 2000). The goal is to develop techniques which enable a computer,
or a machine, to learn from the data under analysis.

Generally speaking, the machine learning techniques are classified into one of two
distinct paradigms: supervised learning and unsupervised learning (Mitchell, 1997). In
supervised learning, the goal is to infer data labels by using some labeled data samples
from a priori known classes, that is, the learning process aims at constructing a mapping
function by using the information provided by training labeled data. When labels
are discrete, the problem is called classification and, when labels are continuous, it is
called regression (Bishop, 2007). In the case of unsupervised learning, the main task
is to cluster data by following a similarity criterion where the whole process is guided
solely by the data, given that there is no prior knowledge about data classes (Bishop,
2007; Mitchell, 1997).

The supervised learning techniques can be further categorized into inductive and
transductive. In inductive learning, the goal is to learn a function that makes predic-
tions on the whole data space. On the other hand, transduction asks for less - it only
concerns itself with predicting the values of the function at the test points of interest,
that is, not on the whole data space. This can be viewed as an easier problem, since an
inductive solution implies a transductive one - by evaluating the function at the given
test points - but not vice versa (Chapelle et al., 2006).

Recently, another learning paradigm called semi-supervised learning has received
attention in the research community (Chapelle et al., 2006). Techniques belonging to
this learning paradigm try to overcome the problem arisen when a supervised tech-
nique requires labeled instances that are hard to provide. For instance, if one wants
to classify a group of web pages over the Internet according to their areas of inter-
est such as news, literature, movies, sports etc, it becomes arduous to provide many
labeled examples because the Internet hosts billions of pages, and the initial catego-
rization of each web page is usually performed by an expert human. In this case, the
labeling task becomes expensive and time-consuming. Thus, the main idea behind the
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semi-supervised learning is to perform classification tasks by using both: a few labeled
instances and the information provided by a large amount of unlabeled instances. This
approach can provide higher accuracies along with less human effort by exploiting the
unlabeled massive group of data (Seeger, 2002; Zhu and Goldberg, 2009).

In the following, we provide a brief review of each of the learning paradigms and
some of their most relevant techniques.

2.1.1 Supervised learning

Formally, the supervised learning paradigm can be posed as follows (Bishop, 2007;
Mitchell, 1997). The problem requires a labeled data set, X (l) = {x(l)i , i = 1, . . . , n},
where each training instance has a single assigned label l ∈ L, where L is the set of
labels and is described by q attributes x(l)i = {xi1, xi2, . . . , xiq}. The available labels,
or classes, are disjoint. The goal is to learn a classifier capable of mapping unlabeled
instances x(u) to their related labels l, that is, x(u) 7→ l. The phase in which the classifier
is induced is called training phase. Oftentimes, the constructed classifier is tested by
using an unlabeled test data set X (u) = {x(u)j , j = 1, . . . , m}, for which labels are
known but are not provided. Thus, the second step is called test phase and it aims
at enabling a measure for the accuracy rate of the trained classifier. Furthermore, to
avoid biased learning, X (l) ∩ X (u) = ∅. Figure 2.1 depicts both phases. In Fig. 2.1a,
the labeled data is used to infer decision borders and, in Fig. 2.1b, the trained classifier
labels unlabeled data.

Some assumptions concerning the training and the test sets must be fulfilled in
order to learn a classifier with good generalization performance. Two important ex-
amples are: i) Representative training set - the training set must be a representative
sample concerning the distribution or population that generated it. Since the classi-
fier induction is based upon the training set, if it is not a representative sample of the
data distribution, it is likely to mislead classification to predict in accordance with a
different distribution; ii) Unbiased test set - the test set should be unbiased towards
the training set in order to achieve a valid estimation, but it must be sampled from the
same distribution that generates the training set. This assumption makes clear that,
since the classifier has been trained in accordance with the distribution of the training
set, it is fair enough that it will be capable of inferring unseen examples of the same dis-
tribution. This assumption is often violated to a certain degree in practice, and strong
violations results in poor classification rate accuracies (Bishop, 2007; Mitchell, 1997).

As examples of traditional supervised classification techniques, we list the follow-
ing:

• Instance based learning: it comprises the nearest neighbor decision rule (k-NN),
which assigns a label from a set of nearest neighbors to an unlabeled sample
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(a) Training phase.

(b) Test phase.

Figure 2.1: Illustration of training and test phases in supervised classification. (a) The train-
ing phase is responsible for using the labeled data to learn decision borders. (b) The trained
classifier labels unlabeled data.
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point. This rule is independent of the underlying joint distribution on the sample
points and their classifications and, hence, the probability of error R of such a
rule must be at least as great as the Bayes probability of error R∗ - the minimum
probability of error over all decision rules taking underlying probability structure
into account (Cover and Hart, 1967). This classification rule is strongly based on
the distance function used to calculate similarity between data instances;

• Decision trees: a decision tree is a simple recursive structure for expressing a
sequential classification process in which a case, described by a set of attributes,
is a assigned to one of a disjoint set of classes. Each leaf of the tree denotes a
class. An interior node denotes a test on one or more attributes with a subsidiary
decision tree for each possible outcome of the test. To classify a case, we start at
the root of the tree. If this is a leaf, the case is assigned to the nominated class; if it
is a test, the outcome for this case is determined and the process continued with
the subsidiary tree appropriate to that outcome (Quinlan, 1986, 1992);

• Production rules: these rules are often expressed as a group of IF-THEN clauses.
The IF part contains conjunctions and disjunctions of conditions composed by
the predictive attributes of the learning task, and the THEN part contains the pre-
dicted class for the samples that satisfy the IF part (Quinlan, 1987). Production
rules of decision trees are vehicles for representing knowledge in expert systems
and improving classification performance by eliminating tests in the decision tree
attributable to peculiarities of the training set and by making it possible to com-
bine different decision tress for the same test (Quinlan, 1987);

• Probabilistic graphical models (Bayesian networks): a Bayesian network is a
acyclic graph in which nodes correspond to variables and edges denote a prob-
abilistic dependency between two connected nodes. The graph needs to be di-
rected to describe a directionality between two node variables. These networks
represent the joint probability distribution over a set of random variables tak-
ing into account conditional independencies among them. A Bayesian network
consisting of a class variable and feature variables is applicable to the classifica-
tion task because the conditional probability distribution can be calculated from
the joint probability distribution (Koller and Friedman, 2009). The class labels
are predicted by using the maximum a posteriori estimate obtained by the Bayes
rule. These networks require parameter learning (Pernkopf et al., 2012; Roos et al.,
2005). A special case of Bayesian networks is when there are strong (naive) in-
dependence assumptions on the predictive variables. In this case, the classifier is
best known as naive Bayes (Neapolitan, 2003);

• Artificial neural networks: neural networks are a connectionistic approach for
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supervised learning. Each processing unit, a neuron (Rosenblatt, 1957), is con-
nected to other neurons via weighted links (synapses). As the information flows
from the input to the output of the network, the synaptic weights changes in
order to adapt the connections to learn an input-output mapping. A very pop-
ular training algorithm is the backpropagation, a generalization of the gradient
descent learning rule. In a multi-layered neural network, it acts by propagating
errors from the output layer back to the input layer, so the synaptic weights can
be updated in order to decrease the error. Important decisions when projecting a
artificial neural network include the number of layers, the network structure, the
neurons threshold, and the learning algorithm (Haykin, 2008);

• Statistical learning theory: let X ∈ Rq denote a real valued random output vari-
able with joint distribution Pr(X, Y). The goal is to find a function f (X) for
predicting Y given values of the input X. This theory requires a loss function
L(Y, f (X)) for penalizing errors in prediction, and by far the most common and
convenient is squared error loss: L(Y, f (X)) = (Y − f (X))2 (Hastie et al., 2009).
As classical statistical learning techniques, we can cite Support Vector Machines
(SVM) and Linear Discriminant Analysis (LDA). SVM techniques seek for an op-
timal separating hyperplane, where the margin between two different classes is
maximal. The solution is based only on those data points, the support vectors,
that are at this margin. The linear SVM can be extended to a nonlinear one when
the problem is transformed into a feature space using a set of nonlinear basis
functions. In this feature space - which can have a high dimension - the data
points can be separated linearly (Vapnik, 1998). LDA uses the class label informa-
tion of the input data samples. LDA finds a projection matrix that maximizes the
trace of the between-class scatter matrix and minimizes the trace of the within-
class scatter matrix in the projected subspace simultaneously (Fukunaga, 1991).

2.1.2 Semi-supervised learning

Somewhat similarly to the supervised learning paradigm, the semi-supervised
paradigm can be stated as follows (Chapelle et al., 2006). The problem requires a la-
beled data set, X (l) = {x(l)i , i = 1, . . . , n}, where each training instance has a sin-
gle assigned label l ∈ L, and an unlabeled data set, X (u) = {x(u)i , i = 1, . . . , m}, in
which instances have no associated labels. Data samples are described by q attributes:
xi = {xi1, xi2, . . . , xiq}. The available labels, or classes, are disjoint. The goal is to learn

a classifier capable of mapping unlabeled instances x(u)i to their related labels l, that is,
x(u)i 7→ l. To characterize a semi-supervised task and to differ it from the supervised
paradigm, the number of labeled samples is usually much smaller than the number of
unlabeled samples, that is, n� m. Figure 2.2 depicts an example of a semi-supervised



2.1 - Machine learning 19

Figure 2.2: Illustration of semi-supervised transductive classification. (a) Labeled and unla-
beled data. (b) Regions of influence showing that all data, labeled and unlabeled, are taken
into account in the classification process. (c) Classification result.

transductive classification.
As it is mentioned before, in the semi-supervised setting, all data, including labeled

and unlabeled, are used either in the training phase (in case of inductive classification)
or in the classification phase (in case of transductive classification) (Chapelle et al.,
2006). Due to this peculiar characteristic, some assumptions concerning the data dis-
tribution must be taken into account in order to conduct the learning process (Chapelle
et al., 2006). These assumptions can be stated as follows:

• Manifold assumption: the high-dimensional data lies on a low-dimensional mani-
fold whose properties ensure more accurate density estimation and more appro-
priate similarity measures. This assumption is often used when dealing with the
curse of dimensionality that occurs with high-dimensional spaces. In these cases,
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as the dimension increases, the data space volume increases exponentially and
distances between data samples become large and similar to each other, hamper-
ing the classification results (Duda et al., 2000);

• Smoothness assumption: if two points are close to each other in a high-density
region, then their correspondent labels should be close to each other as well. In
other words, this assumption states that the variations of data labels in high-
density regions should be smooth;

• Cluster assumption: if two points are in the same cluster, then they are likely to
belong to the same class (or, in other words, to have the same label). This as-
sumption complements the smoothness assumption when considering clusters
as well-defined or high-density regions.

As examples of the categories in which the semi-supervised techniques are com-
monly grouped (Chapelle et al., 2006), we list the following:

• Generative models: the inference via generative models involves the estimation
of a conditional density. The Expectation Maximization (EM) technique is the
most known technique pertaining to this approach (Nigam et al., 2000b). Besides
that, a myriad of techniques proposed so far in the literature can be encoun-
tered in Alpaydin (2009); Chapelle et al. (2006); Gärtner (2008); Zhu and Goldberg
(2009);

• Cluster-and-label models: the label inference is done based on the results ob-
tained by a clustering task subjected to some restrictions regarding the pre-
labeled data set. Some representative methods are given in Dara et al. (2002);
Demiriz et al. (1999).

• Low-density region separation models: the label inference is based on the de-
velopment of decision boundary functions that are created as far as possible from
the high-density regions. Undoubtedly, the most known method of this approach
is the Transductive SVM (TSVM) (Cortes and Vapnik, 1995; Vapnik, 1998). More
related techniques can be found in Alpaydin (2009); Chapelle et al. (2006); Cortes
and Vapnik (1995); Zhu and Goldberg (2009);

• Self-training: in self-training, a classifier is first trained with the small amount
of labeled data. The classifier is then used to classify the unlabeled data. Typi-
cally, the most confident unlabeled points, together with their predicted labels,
are added to the training set. The classifier is re-trained and the procedure is
repeated. In this way, the classifier uses its own predictions to teach itself. Self-
training is a wrapper algorithm, and is hard to analyze in general (Zhu, 2008).
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• Co-training: it assumes that (i) features can be split into two sets; (ii) each sub-
feature set is sufficient to train a good classifier; and (iii) the two sets are condi-
tionally independent given the class. Initially, two separate classifiers are trained
with the labeled data on the two sub-feature sets respectively. Each classifier
then classifies the unlabeled data, and "teaches" the other classifier with the few
unlabeled examples (and the predicted labels) they feel most confident. Each
classifier is retrained with the additional training examples given by the other
classifier, and the process repeats (Blum and Mitchell, 1998; Mitchell, 1999).

• Graph-based methods: these methods define a graph where the nodes are la-
beled and unlabeled samples in the dataset, and edges (may be weighted) re-
flect the similarity amongst data samples. These methods usually assume label
smoothness over the graph. Graph methods are nonparametric, discriminative,
and transductive in nature (Zhu, 2008).

In Zhu (2008), the author addresses the issue of which semi-supervised method
one should use. Ideally, one should use a method whose assumptions fit the problem
structure. In view of that, Zhu (2008) proposes some questions in form of a checklist in
order to help finding the best method for the data at hand:

• if the classes produce well-clustered data, EM with generative mixture models
may be a good choice;

• if the features naturally split into two sets, co-training may be appropriate;

• if two points with similar features tend to be in the same class, graph-based meth-
ods can be used;

• if SVM is already being used, TSVM is a natural extension;

• if the existing supervised method is hard to modify, self-training is a practical
wrapper method.

2.1.3 Unsupervised learning

In contrast to the previously introduced supervised and semi-supervised learning
paradigms, the unsupervised learning does not use any label information in its orig-
inal form (Mitchell, 1997). Given an unlabeled data set, X (u) = {x(u)i , i = 1, . . . , m},
in which instances have no associated labels and are described by q attributes, xi =

{xi1, xi2, . . . , xiq}, the objective is to find hidden structures within the unlabeled data
set. Typically, it is assumed that the points are independently and identically dis-
tributed in accordance with a common distribution. As there is no information about
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Figure 2.3: Illustration of data clustering process. Unlabeled data set in (a) is clustered into two
groups in (b).

labels or classes, an unsupervised technique must be guided solely by the intrinsic in-
formation of the data sets to infer useful knowledge (Bishop, 2007; Mitchell, 1997). As
a consequence, there is no training phase for these kind of algorithms.

The most known application of unsupervised learning is data clustering. Cluster-
ing is ubiquitously used in data mining as a method for discovering novel and ac-
tionable subsets within a set of data. Figure 2.3 shows a simple clustering example.
The process of clustering is important since, being completely unsupervised, it allows
the addition of structure to previously unstructured items such as free-form text docu-
ments (Davidson and Basu, 2007). However, the result of a clustering process depends
on the assumptions made about the data (Bishop, 2007; Gan, 2007).

Data clustering techniques are usually grouped into two distinct categories:

• Hierarchical clustering: this kind of clustering finds successive clusters by using
previously established ones and can be divided into agglomerative ("bottom-up")
and divisive ("top-down"). Agglomerative clustering starts with the same num-
ber of clusters as is the number of data samples, that is, each data sample is a sin-
gle cluster, and proceeds by grouping clusters to each other to form larger groups.
On the other hand, the divisive clustering starts with a large cluster containing
all data and proceeds by dividing it into successively smaller clusters. Some of
the well-known agglomerative techniques are single-linkage, complete-linkage,
average-linkage and Ward methods (Alpaydin, 2009; Mitchell, 1997). Basically,
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these techniques differ in the way distances among clusters are calculated. For
example, single-linkage considers the distance between two clusters C1 and C2

as the minimum distance between x and y, being x ∈ C1 and y ∈ C2. A draw-
back of this method is the so-called chaining phenomenon, which refers to the
gradual growth of a cluster as one element at a time gets added to it. In contrast,
complete-linkage considers the distance between C1 and C2 as the maximum dis-
tance between x and y. It tends to find compact clusters of approximately equal
diameters (Alpaydin, 2009).

• Partitional clustering: given a data set X (u), the typical aim of partitional clus-
tering is to form a k-block set partition Πk of the data at once. The k-Means
method is one of the most studied partitional clustering technique (Alpaydin,
2009; Mitchell, 1997). Basically, given an initial set of k-Means, it works by alter-
nating between two steps: 1) assign each observation to the cluster whose mean
yields the least within-cluster sum of squares, and 2) calculate the new means to
be the centroids of the observations in the new clusters. These two steps are per-
formed until the algorithm converges to k distinct clusters. Some of its drawback
are the strong dependence of the initial conditions and the bias to find circular-
shaped clusters. Trying to overcome these disadvantages, several derivations
have been developed by the research community such as k-Medoids and Fuzzy
c-Means (Alpaydin, 2009; Jain et al., 1999).

Another classical and very useful example of unsupervised techniques is the Prin-
cipal Component Analysis (PCA) (Jolliffe, 2002). When data lies in a high-dimensional
space, problems can arise when computing similarities among data often due to the
"curse of dimensionality" (Duda et al., 2000). PCA is an orthogonal transformation that
represent data by using the so-called principal components. Usually, a small number
of principal components is sufficient to account for most of the structure in the data.
It maximizes the mutual information between the original high-dimensional Gaussian
distributed data features and the projected low-dimensional features. In the unsuper-
vised setting, PCA does not use the class label information of the input data. In the
supervised setting, data instances are marked with label information that guides the
formation of the low-dimensional space. The labels often take discrete class values,
indicating which data points have to be grouped together (same class) or set far apart
from the other (different classes) in the embedded space (Jolliffe, 2002).

2.2 Complex networks

Graphs are used in order to study and mathematically describe the concepts of
complex networks. Graphs represent the topological properties of a network by using
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the representation with vertices and links. In a social network, for example, the vertices
represent individuals and links represent the relationship that may exist between each
pair of individuals. This concise and uniform representation allows the same tools and
mathematical methods to be applied equally on both very simple systems and systems
that exhibit high complexity (Cohen and Havlin, 2010).

The study of graph theory began in the eighteenth century with the works of Euler
while he studied the famous problem of the bridges of Königsberg (now Kaliningrad,
Russia). The problem posed the question: could one go through all the seven city
bridges without going through a bridge more than once? Euler understood that the
major factor was the underlying network topological structure, and thus the problem
could be simplified into a study of graph routes in which the vertices represent parts of
the city and the links represent bridges between them. The mathematician solved the
problem concluding that such path exists if each vertex has an even number of links
connected to it, except possibly the first and last vertex visited, which does not occur in
the Königsberg graph. Nowadays, such a path is known as the Eurelian path (Lovász
et al., 2003).

Still receiving some attention from a branch of mathematicians, the study of graphs
showed no substantial advances until the 60s when two mathematicians, Paul Erdös
and Alfred Rényi, introduced the theory of random graphs. Basically, their idea was to
combine previously developed graph concepts with tools of probability theory, aiming
at enable the study of a family of graphs instead of specific samples (Barabási, 2003).
Two sets of extensively studied graphs are: GV ,E , the set of all graphs with V vertices
and E edges, and Gn,p, the set of graphs with V vertices in which each possible edge
between two vertices exists with probability p. These two sets of graphs are similar if
E = (V

2)p and p is not too close to 0 or 1 (Bolobás, 1985). A well-known result is that
they follow a Poisson distribution.

Some decades after, at the end of the 20th century, the advances of computational
power and the consequent possibility to analyze large data sets attracted the attention
of researchers to real world network structures that would not be properly described
by the Erdös and Rényi graph theory. Such networks had link distributions that fol-
lowed nonuniform probability distributions, so far the only ones considered in the
graph theory. The discoveries led to further studies and to the emergence of a new
research field called complex networks (Barabási, 2003). These networks encompass
new and different topologies such as small-world, scale-free and modular, which best
represent the networks found in the real world. Additionally, a large and growing
number of measures has been developed to describe them.

The study of several dynamical processes over real networks has pointed out the
existence of shortcuts, that is, bridging links that connect different areas of the net-
works, thus speeding up the communication among distant nodes, which is called the
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small-world effect. This feature is found, for example, in social networks, where, virtu-
ally, all people of the world can be reached by a small chain of shared contacts (Watts,
2003; Watts and Strogatz, 1998). At the same time, the scale-free networks emerged
in a study conducted by Barabási and Albert (Barabási and Albert, 1999), who noted
some networks have a small number of vertices with high degree, while the majority of
the vertices has very low degrees. Such networks exhibit a degree distribution known
as scale-free which obeys the power-law distribution. Furthermore, there are also the
modular networks. Generally, modular structures reveal similarities among vertices
belonging to the same group accordingly to some criterion. In social networks, for
example, the presence of communities can reveal groups of individuals with similar
interests, friendships, professional relationships etc. Therefore, the identification of
communities in complex networks is essentially a clustering task in a networked data.

In the next sections, some of the most essential concepts and measures of graph
theory and complex networks relevant to this work are formalized.

2.2.1 Basics from graph theory

Some of the most basic and key concepts from graph theory are reviewed in this
section. These concepts are important in the study of complex networks since such
networks are modeled with the same formulation of graph theory, that is, by using the
representation of nodes and edges (or vertices and links). For this reason, we use the
terms graph and network interchangeably in this thesis. In several references, such as
(Diestel, 2006) and (Lovász et al., 2003), deeper discussions about graphs can be found.

A graph G = (V , E) is composed of a set of vertices V = {v1, . . . , vn} and a set of
edges E . In a directed graph, also called a digraph, every edge has a direction, that
is, a source and a destination. An edge with origin in vertex vi ∈ V and destination
in vertex vj ∈ V is represented by an ordered pair (vi, vj). In non-directed graphs,
the edges have no direction and an edge that connects vi to vj is represented by eij =

(vi, vj) = (vj, vi). Graphs that present both directed and undirected edges are called
mixed graphs. It may happen that the set of edges E contains multiple instances of the
same edge, that is, more than one edge connecting vertices vi to vj. In this case, E is
considered a multiset. If an edge occurs more than once in E , copies of the edge are
called parallel edges. Graphs with parallel edges are called multigraphs. When every
edge occurs only once in the set E , the graph is simple.

The edges eij ∈ E can be associated to weights. Such weights may be represented
by a function f : E → R that assigns to each edge eij a weight f (eij). Depending on
the context, these weights describe different properties such as time or distance costs,
communication skills, interaction strength, similarity, among others. A non-weighted
graph is equivalent to a graph with unit weight, f (eij) = 1, ∀eij ∈ E .
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A graph G ′ = (V ′, E ′) is a subgraph of G = (V , E) if V ′ ⊆ V and E ′ ⊆ E . In this
case, G is called a supergraph of G ′. An edge induced subgraph corresponds to a graph
G ′ formed by a subset of edges of the graph G together with the vertices connected to
those edges. Conversely, a vertex induced subgraph, or simply a induced subgraph,
refers to a graph G ′ formed by a subset of vertices along with their connected edges, of
which connected vertices belong to that subset.

Two vertices vi and vj are adjacent or neighbors if there is an edge eij, f (eij) 6= 0,
connecting them. Two edges e1 = e2 are adjacent if they connect to a common vertex.
If every vertex in G is adjacent to all other vertices, then the graph G is called complete.
An induced complete subgraph is called a click. The set of neighbors of vi is denoted
by Λvi , and λvi is its number of neighbors.

In an undirected graph G = (V , E), the degree of a vertex vi, denoted by ki, is
the number of edges in E that connects to vi. If G is a multigraph, parallel edges are
counted according to their multiplicity in the set E . A vertex vi with ki = 0 is said to
be isolated. Being V = |V| the number of vertices, the average degree of a graph G
quantifies the overall local measures ki and it is calculated as follows:

< k >=
1
V

V

∑
i=1

ki. (2.1)

When the degrees of the vertices are added up, each vertex is counted two times so
that the number of edges, E = |E |, can be calculated by:

E =
1
2

V

∑
i=1

ki =
1
2
< k > V,

where the second equality is based on Eq. 2.1.

The density of a graph is defined as the ratio between the number of edges and the
total number of possible edges. In an undirected graph, this ratio is given by:

δ(G) = 2E
V(V − 1)

.

A route starting from a vertex v0 and ending at a vertex vk corresponds to a se-
quence < v0, e1, v1, e2, v2, . . . , vk−1, ek, vk > composed of vertices and edges. The path
length is defined by the number of covered edges. A route is called a path if ei = ej for
i = j, and a path is simple if vi = vj for i = j. A path with v0 = vk is a cycle, and a
cycle is simple if vi = vj for 0 ≤ i < j ≤ k− 1. An acyclic graph is called a tree, and a
disjoint union of trees is called a forest.

An undirected graph G = (V , E) is said to be connected if every vertex can be
reached from every other vertex. A graph consisting of only one vertex is considered
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connected. Graphs that are not connected are called disconnected. For a disconnected
graph G = (V , E), a connected component of G is a induced subgraph G ′ = (V ′, E ′)
connected and maximal, that is, there is a subgraph G ′′ = (V ′′, E ′′), so that V ′ ⊂ V ′′.
To check whether a graph is connected and find all of its connected components, it can
be used a breadth or depth search, with computational complexity of order O(V + E).
Graphs in which the number of edges is linearly comparable to the number vertices
are called sparse graphs, that is, O(E) = V.

2.2.2 Network measures

The complex networks research area have a number of measures to characterize
different network structures and properties. In this section, the most relevant measures
for this work are described.

Average degree

The average degree of a network is a relatively simple measure that statistically
quantifies the average degree of vertices in a network, as is described in section 2.2.1
by Eq. 2.1.

Clustering coefficient

The clustering coefficient is a measure related to network clusters represented by
local structures. Basically, this coefficient measures the number of edges forming tri-
angles in a network. Its has high value if two vertices that share a common neighbor
vertex have high probability of being connected. Formally, the global clustering coeffi-
cient is defined as:

c =
3 x number of triangles in the network

number of connected triples
, (2.2)

where "connected triples" mean a vertex connected to two other different vertices.

A second definition of the clustering coefficient is a local measurement for each
vertex vi. The clustering coefficient for a vertex is defined as the ratio between the
number of connected pairs of neighboring vertices and the total amount of possible
connections. For an undirected network:

ci =
2|ejk|

ki(ki − 1)
, (2.3)

where ki is the degree of vertex vi and ejk = 1 if the vi neighbor vertices vj and vk

are connected, and ejk = 0 otherwise. Figure 2.4 depicts a simple example of both
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Figure 2.4: A small network to illustrate the clustering coefficient measure. In this network,
there are 1 triangle and 8 connected triples resulting in a global clustering coefficient of 3×
1/8 = 3/8. From left to right, the local coefficients are 1, 1, 1/6, 0 and 0.

measures.

Assortativity

The vertex preferences to connect to other vertices in the network that present
similarities or dissimilarities in relation to their degree, in the structural sense, is nu-
merically translated by the assortativity or the assortative mixing measure (Newman,
2003a). It is essentially the Pearson correlation between two linked nodes concerning
their degrees. In general, the assortativity r is restricted to the interval [−1, 1]. When
r = 1, it is said that the network has perfect assortativity standards, whereas when
r = −1, it is said that the network is completely disassortative, which occurs when
high-degree vertices tend to connect to low-degree vertices. The network assortativity
can be calculated by the following equation:

r =
e−1 ∑eij∈E kik j −

[
e−1 ∑eij∈E

1
2

(
ki + k j

)]2

e−1 ∑eij∈E
1
2

(
ki

2 + k j
2
)
−
[
e−1 ∑e∈E

1
2

(
ki + k j

)] , (2.4)

where ki and k j are the degrees of both vertices at each end of edge eij, and e is the
number of edges.

Modularity

Given a network composed of g subgroups of densely connected vertices such
that the connections between different subgroups are sparse, the modularity measure
(Newman and Girvan, 2004) is defined as:

Q =
g

∑
i
(gii − gi

2) = Tr(G)− ||G2||, (2.5)
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where G is a symmetric matrix whose element gij is the fraction of all edges that con-
nect vertices of subnetworks i and j, ||G|| represents the sum of all elements of matrix
G, Tr(G) is the trace of the matrix G, and gi is defined as the column sum gi = ∑j gij.

The modularity quantifies the fraction of edges that connect vertices within a same
group and subtract the expected value of the same quantity measured on a network
hypothetical division with the same groups but considering random connections be-
tween the vertices. The trace of the matrix B computes the fraction of edges in the
network that connect vertices to the same densely connected subnetwork. Therefore,
a good modular division of the network should result in a high value for this calcula-
tion. The variable ai informs about the fraction of edges connecting vertices within the
subgroup i. Thus, if the number of connections within a subgroup are no better than
random connections, then Q = 0. On the other hand, when Q is approaching 1, it can
be considered that the network has a clear division concerning the g subgroups.

Betweenness

Betweenness is a centrality measure which quantifies the number of shortest paths
passing through a specific vertex or edge in the network. When analyzing the traffic in-
formation of a network, for example, it describes the load on a vertex or an edge (Zhao
et al., 2005a, 2007). Similarly, it describes the centrality importance of certain vertices
or edges in events of cascading failures (Zhao et al., 2004, 2005b). The betweenness
measure can be calculated by using the algorithm introduced by Newman (2001):

Algorithm 1 Calculation of vertex betweenness
Input:
G : a graph
Output:
bi : betweenness of each vertex vi
for i = 1→ V do

1. calculate all the paths from every vertex vj to vi by using the width search
algorithm;

2. associate to every vertex vj a variable bj with initial value equals to 1;
3. starting from the farthest vertex vj, follow the shortest paths to vi by adding the

current value of bk to the variable of the next vertex of the path bk+1. When there is
more than one vertex at the same stage of the path, the value of bk is equally divided
among the vertices;
end for
4. the betweenness of each vertex is the value of the associate variable bi
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Katz index

Similarly to the betweenness measure, the Katz index (Katz, 1953) is also a centrality
measure. However, in this case, the concept of centrality is perceived differently: the
more central is a vertex as the more central are its neighbors. Thus, the neighboring
vertices directly influence the centrality of a given vertex. As a practical example, it
can be considered a voting situation where each person is a network vertex. If only the
vertices vj and vk vote on the vertex vi, and all other vertices of the network vote on vk

and vj then, probably, vi is the most important vertex.

The influence of a neighboring vertex vi decreases as the distance from the reference
vertex increases. Hence, the Katz measure includes a factor, α < 1, for weighting
distances. The Katz index of vi can be written as:

cKatz
i =

∞

∑
k=1

n

∑
j=1

αk(Ak)ji, (2.6)

where A is the network adjacency matrix and n is the number of vertices. It should
be noted that the calculation Ak

ij results in the total weight of paths of length equals
to k, considering the weights of edges between vertices vj and vi. In matrix form, this
equation can be rewritten as:

CKatz =
∞

∑
k=1

αk(AT)k1n, (2.7)

where 1n is a unitary n-dimensional vector. This equation is convergent if α is smaller
than the reciprocal of the largest eigenvalue of the adjacency matrix A, and, in this
case, it can be reduced to:

CKatz = ((I − αAT)−1 − I)I, (2.8)

where I is the identity matrix of size n.

PageRank centrality

Page rank centrality attempts to model the behavior of visiting web pages (Brin and
Page, 1998). Most of the time, Internet users visit Web pages by clicking on hyper-links
(network edges) from a page that is currently being visited, or visit the pages through
bookmarks and by typing addresses. In a network, this process can be modeled by a
combination of a random walk and occasional jumps to certain vertices. This model
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can be described by the following relationship:

p(i) =
q
n
+ (1− q) ∑

j:j→i

p(j)
kout j

, i = 1, 2, . . . , n, (2.9)

where p(i) is the page rank of the vertex vi, k jout is the degree of vertex vj considering
only the outgoing edges, and the sum is performed on the vertices vj of which edges
connect to vi. The parameter q weight the mix between random walk and page jumps.

Eigenvalue centrality

This measure is also based on the principle that the significance of a vertex depends
on the importance of its neighbors (Phillip and Bonacich, 2007). In this case, the rela-
tionship is straightforward: the prestige xi of vertex vi is proportional to the sum of the
prestiges of its neighbors:

λxi = ∑
j:j→i

xj = ∑
j
Ajixj = (ATx)i, (2.10)

where it can be noted that xi is the i-th component of the transposed adjacency matrix
A with eigenvalue λ.

2.2.3 Constructing networks from data sets

Many are the ways to construct networks from data sets. In this section, we
briefly discuss the most common network construction methods. Given a data set,
X = {xi, i = 1, . . . , V}, each instance xi is represented by a network node. The links
among nodes are created by one of the following methods.

Fully connected networks: these kind of networks are constructed by inserting
links between all pairs of nodes, in a way that similar nodes have large link weights
between them. The disadvantage of these networks is the computational cost, given
that the network is dense. On the other hand, the advantage of fully connected net-
works is in weight learning - with a differentiable weight function, one can easily take
the derivatives of the graph. Empirically, it has been observed that fully connected
networks perform worse than sparse networks (Zhu, 2005).

Sparse networks: differently from fully connected networks, sparse networks have
fewer connections by avoiding links between dissimilar nodes. Because the smaller
number of links, they are computationally fast. They also present good empirical per-
formance, which can be due to the inexistence of links between dissimilar nodes which
usually belong to different classes. The links in such networks can be weighted or un-
weighted. One disadvantage is weight learning - a change in weight hyperparameters
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will likely change the neighborhood, making optimization awkward.

k-NN networks: by following this network construction method, nodes i and j are
connected if i is in j’s k-nearest-neighborhood or vice-versa. k is a hyperparameter that
controls the density of the network. These networks may result asymmetric because, in
the case i is in j’s k-nearest-neighborhood, j may not be in i’s k-nearest-neighborhood.
kNN networks present the property of adaptive scales, because the neighborhood re-
gion is different in low and high data density regions.

k-Associated Optimal Graphs (kAOG): as an extension of the previous k-NN net-
works, kAOG is a method developed by Bertini et al. (2011) which has been applied
to supervised learning. It uses a measure called purity to construct graph components
while maximizing this measure. In the process for constructing the kAOG, k is in-
creased while keeping the best components found so far starting from the 1-associated
graph. For each k and component, the purity measure is calculated and is used to com-
pare among components of different k-associated graphs formed with different values
of k. The component with the highest purity value is held, and the others are discarded.
This method is reviewed with more details in section 2.4.4.

ε-NN networks: in this network construction method, there is a link between nodes
i and j if the distance (or dissimilarity) between them are smaller than a threshold
ε, d(i, j) < ε. The hyperparameter ε controls the neighborhood radius, and, despite
being continuous, the search for its optimal value is discrete and the search space size
is bounded by the total number of links O(n2).

Figure 2.5 depicts the resulted network for a 2-dimensional Gaussian data sets by
using different construction methods. Figure 2.5a shows the two classes. Figure 2.5b
shows the vertices connected to their 3-nearest neighbors of the same class. Figure 2.5c
depicts the kAOG, where it can be noted that this construction method has the sparse-
ness property, that is, the resulted network is composed by many isolated components.
The ε-NN network is showed in Fig. 2.5d, where some isolated components are due to
the absence of neighbor vertices in the specific ε-region.

2.3 Dynamical processes on networks

This section gives a brief review of the main dynamical processes on networks re-
lated to this thesis.

2.3.1 Random walk

The basics of the random walk theory are revised in this subsection. Random walks
can be understood in terms of Markov chains (Gallager, 1995). It is usual to think of a
Markov chain as the sequence of states entered by a system evolving in time, or the se-
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(a) (b)

(c) (d)

Figure 2.5: Examples of networks constructed by using different methods. (a) Artificial data set
composed of two mixed Gaussian-distributed labeled sets. (b) Network constructed by using
the k-NN technique with k = 3. (c) Network constructed by the kAOG method. (d) Network
constructed by using the ε-radius technique, where ε = 30% of the average distance among all
vertices.



34 Chapter 2 - Review of essential concepts

quence of positions occupied by a moving particle. The theory of Markovian processes
comprises the largest and the most important chapter in the theory of stochastic pro-
cesses; this importance is further enhanced by the many applications it has found in
the physical, biological, and social sciences, and in engineering and commerce (Çinlar,
1975).

Consider a stochastic process Ω with a finite state space Γ, and P a probability
measure on it. For each n ∈ N = {0, 1, 2, . . .}, Ωn ∈ Ω is an element from Γ. It is
customary to say the process is in state j at time n to mean Ωn = i. The stochastic
process Ω = {Ωn} is called a Markov chain if P(Ωn+1 = i|Ω0, . . . , Ωn) = P(Ωn+1 =

i|Ωn), i ∈ Γ, that is, the process is independent of past states provided that the current
state Ωn is known. In this work, time-homogeneous chains are considered, that is,
when P(Ωn+1 = j|Ωn = i) = pij is independent of n. The probabilities pij can be
arranged into a Markov square matrix P = {pij}.
P is called a Markov matrix provided that: i) for any i, j ∈ Γ, P(i, j) ≥ 0; and ii) for

each i ∈ Γ, ∑j∈Γ P(i, j) = 1. Thus, the transition matrix of a Markov chain is a Markov
matrix. The probability that the chain moves from state i to state j in m steps is the
(i, j)-entry of the mth power of the transition matrix P . For any m, n ∈ N:

Pm+n(i, j) = ∑
k∈Γ
Pm(i, k)Pn(k, j),

which is called the Chapman-Kolmogorov equation. It states that starting at state i, in
order for the process Ω to be in state j after m + n steps, it must be in some interme-
diate state k after the mth step and then move from that state k into state j during the
remaining n steps.

The states of a Markov chain can be classified concerning some properties. Let T be
the time of first visit to state j, and let Nj be the total number of visits to state j. Some
of the properties are as follows:

• state j is called recurrent if Pj{T < ∞} = 1; otherwise, if Pj{T < +∞} > 0, then j
is called transient;

• a recurrent state j is called null if Ej[T] = ∞; otherwise, it is called non-null;

• a recurrent state j is said to be periodic with period δ if δ ≥ 2 is the largest integer
for which Pj{T = nδ for some n ≥ 1} = 1; otherwise, if there is no such δ ≥ 2, j
is called aperiodic.

• a set of states is said to be closed if no state outside it can be reached from any
state in it;

• a state forming a closed set by itself is called an absorbing state;
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Figure 2.6: Transition graph of the Markov matrix in Eq. 2.11. Vertices represent states, and a
directed link from state i to state j exists if pij > 0.

• a closed set is irreducible if no proper of it is closed;

• a Markov chain is called irreducible if its only closed set is the set of all states.

In other words, a Markov chain is irreducible if and only if all states can be reached
from each other. As an example, consider the following Markov matrix:

states

P =



1/4 0 3/4 0 0

0 1/2 0 1/2 0

0 0 2/5 0 3/5

1/2 1/4 0 1/4 0

1/3 0 1/3 0 1/3



a

b

c

d

e,

(2.11)

which is composed of five states, namely a, b, c, d and e. For an easy visualization,
the above matrix can be mapped into the network depicted in Fig. 2.6, where vertices
represent states, and a link between states i and j exists if pij > 0. From this figure
we see that from set {b, d} the set {a, c, e} can be reached but not vice-versa. Thus,
once the process leaves the states {b, d}, neither b nor d can ever be visited again. The
closed sets are {a, b, c, d, e} and {a, c, e} and, since there are more than one closed set,
this chain is not irreducible. Deleting the second and the fourth rows and columns (set
{b, d}), we have:

states

P ′ =


1/4 3/4 0

0 2/5 3/5

1/3 1/3 1/3


a

c

e,

which is the Markov matrix P restricted to the closed set {a, c, e}.
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If all states are rearranged, the two closed sets can be easily identified:

states

P =



1/4 3/4 0 0 0

0 2/5 3/5 0 0

1/3 1/3 1/3 0 0

0 0 0 1/2 1/2

1/2 0 0 1/4 1/4



a

c

e

b

d,

where states a, c and e are recurrent non-null aperiodic, and states b and d are transient.
The probability for a random walker starting at state i0 end at a state im is given

by the probability of the chain P(i0, im) = P(i0, i1)P(i1, i2) . . . P(im−1, im). If an infinite
number of transitions, m → ∞, is considered, then the limiting probabilities need to
be calculated, also called invariant distributions or steady states. It can be shown that
the limiting probability P∞(j) = limn→+∞ Pn(i, j) exists given a recurrent, non-null
and aperiodic state j, and the limiting probability of the final state j is independently
of the initial state i (Çinlar, 1975). Moreover, if Ω is an irreducible aperiodic Markov
chain with finitely many states, then

pP = p, (2.12)

has a unique solution, where p is a normalized row vector, p1 = 1, and p(j) is the
limiting probability of state j, p(j) = P∞(j).

The limiting probabilities can be calculated by finding the eigenvector correspond-
ing to the unit eigenvalue of matrix PT , the transpose of matrix P , with computational
cost of O(n3) due to matrix inversion, or by iterating the system

pi+1 = PT pi (2.13)

to the stationary state, with computation cost of O(n2).

2.3.2 Tourist walk

Similarly to random walk (section 2.3.1), a tourist walk is composed of a walker
(tourist) aiming at visiting sites (network vertices) in an underlying network. At each
discrete time step, the tourist follows a simple deterministic rule: it visits the nearest
site which has not been visited in the previous µ steps. In other words, the walker
performs partially self-avoiding deterministic walks, where the self-avoiding factor is
limited to the memory window size µ− 1. Therefore, it is prohibited that a trajectory to
intersect itself inside this memory window. In spite of being a simple rule, it has been
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Figure 2.7: A simple example of a tourist walk with memory window size µ = 1, transient
length t = 3 and cycle length c = 5.

shown that this kind of movement possesses complex behavior when µ > 1 (Lima
et al., 2001).

A tourist walk can be decomposed into two distinct terms: the initial transient part
of length t, and the cycle part (attractor) with period c. For illustration, Fig. 2.7 depicts a
simple example of a tourist walk with µ = 1, transient part length t = 3, and cycle part
period c = 5. However, the attractor or cycle period is not easily detectable. Given that
a cycle begins and ends at a same vertex, one may think that, if the walker revisit a ver-
tex, a cycle is configured. But this simple reasoning is probably a wrong approach for
detecting attractors. In fact, during a walk, a vertex may be revisited without configur-
ing an attractor, and the tourist’s finite memory µ allows revisitations to non-attractor
vertices. For instance, if we choose µ = 5 for the network in Fig. 2.7, the revisitation
performed by the tourist on the vertex 4 would have not configured an attractor, since
the site 5 would still be in the memory µ and so forbidden to be revisited, and the
tourist would be compelled to visit another vertex. This characteristic enables sophis-
ticated trajectories through the network, at cost of increasing the difficulty to detect
attractors.

The possibility of a tourist to visit any other site other than the ones contained in
its memory window is considered in most of the works related to tourist walks (Ki-
nouchi et al., 2002; Lima et al., 2001; Stanley and Buldyrev, 2001). As memory window
µ increases, the chance of the walker to perform large jumps in the data set also in-
creases, since its neighborhood is most likely to be already entirely visited within the
time frame µ. In situations in which this characteristic is undesired, a specific network
structure can be constructed a priori, and the walker is only permitted to visit vertices
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that are in its directly connected neighborhood. With this mechanism, it also can occur
that, for large values of µ, the walker gets trapped within a vertex, being unable to
visit other vertices of the neighborhood. In this scenario, we say that the walk has a
transient part t and a null cycle period (c = 0).

2.3.3 Chaotic synchronization

Chaotic synchronization is a basic feature in nonlinear science (Pikovsky and
Kurths, 2001). It is defined as the complete coincidence of the trajectories of coupled
individual chaotic systems in the phase space, where each individual system is rep-
resented by a network vertex. Mathematically, given state variable vectors x and y
representing two dynamical systems, they are said to be completely synchronized if
|x(t) − y(t)| → 0 as t → ∞. Since the early 1990s, there have been strongly increas-
ing interests in the synchronization of chaotic systems. The phenomenon was first
discovered by Fujisaka and Yamada (Fujisaka and Yamada, 1983). The seminal paper
by Pecora and Carroll (Pecora and Carroll, 1990) triggered much interest in this topic
(Pikovsky and Kurths, 2001). Up to now, chaotic synchronization has been extensively
studied by researchers of applied sciences, such as electrical and mechanical engineer-
ing, biology and laser systems, etc. Mathematical methods to study synchronization
among coupled chaotic systems were presented in (Gameiro and Rodrigues, 2001) and
(Rodrigues et al., 2001), and studies on synchronization of a large number of coupled
chaotic elements in general network topologies were performed in (Belykh et al., 2006).

In Zhao et al. (2008a), the authors considered the synchronization role in networks
of general topology of coupled continuous chaotic elements with parameter mismatch.
Each element in the network can be one of a class of chaotic oscillators, which has a
stable linear part perturbed by a bounded nonlinear function. Sufficient conditions to
obtain synchronization of the oscillators are as follows. Consider the following system:

ẋi = Axi + f (t, xi, µi) + κ
n

∑
j=1

γij(xj − xi), i = 1, . . . , n, (2.14)

‖ f (t, xi, µi)‖ ≤ L1,

max{ f ′(t, xi, µi)} = L2,

where µi is a parameter of vertex i, the real part of the largest eigenvalue of A is neg-
ative, Re(λmax) < 0, λmax is the largest eigenvalue of matrix A, κ ≥ 0 is the coupling
strength, L1 and L2 are positive constants, n is the number of oscillators in the network
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and γij defines whether there is a connection between oscillator i and j:

γij =

{
1, if element i is connected to j,

0, otherwise.

The synchronization analysis with parameter mismatch requires that the solution of
the coupled system is bounded. In such a network, the Neumann boundary conditions
are assumed. All elements represented by Eq. 2.14 with arbitrary γij configuration can
be synchronized by providing sufficiently large coupling strength. The basic idea to
prove boundedness consists in constructing a Lyapunov function U(x) and showing
that U̇(x) ≤ 0 as U(x) = D > D0 where D0 is a sufficiently large positive constant
(Afraimovich et al., 1997). Then, the synchronization state (x1 = x2 = . . . = xn) is
asymptotically stable if the following condition holds:

κ >
1
n

(
‖A‖+ L1 +

ρ

2

) n

∑
j>i,q∈Pij

Ω
(

Pij
)
. (2.15)

where ρ is a positive constant, Pij is the set of vertices on a shortest path connecting
nodes i and j, and Ω(Pij) is the length of the shortest paths.

2.3.4 Consensus and pinning control

In a network of coupled dynamical systems, the term "consensus" stands for reach-
ing an agreement regarding a certain quantity of interest that depends on the states
of all agents (vertices) (Olfati-Saber et al., 2007). The basic idea of consensus is that
each agent updates its own state based on the states of its neighbors. At the end of the
process, all agents reach a common value (Chen et al., 2009a).

LetA = [aij] be the adjacency matrix of a networkN = (V , E), where V = {1, ..., V}
is the set of vertices and E = {1, ..., E} is the set of edges. If there is an edge between
vertices i and j, then aij 6= 0. If there is no edge, aij = 0. The set of direct neighbors of
vertex i is described by λi = {j | aij 6= 0}. The continuous evolution rule for the state
of each vertex i is defined by the following equation:

ẋi(t) = ∑
j∈λi

aij[xj(t)− xi(t)], (2.16)

where xi(t) represents the dynamics of vertex i.

The linear system represented by Eq. (2.16) is the distributed consensus algorithm
proposed in (Olfati-Saber and Murray, 2004). This system converges to a common
state via local interactions. Assuming that the network is undirected, the sum of the
states of all vertices is invariant and the consensus is reached asymptotically; thus, the
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collective decision α is equal to the average of the initial states of all vertices, that is,
α = 1

V ∑V
i=1 xi(0). Consensus algorithms with such a property of invariant sum of the

states of the vertices are called average-consensus algorithms.
There have been attempts to control the dynamics of a complex network to an arbi-

trarily desired state, as an equilibrium point or a periodic orbit of the network (Xiang
et al., 2007). One of the approaches, called pinning control, consists in injecting only
a small number of local feedback controllers in the network. Considering that the net-
work N represents a communication network of n coupled oscillators, the continuous
time evolution of the ith oscillator can be described by:

ẋi(t) = f (xi(t))− c
V

∑
j=1

aijh[xj(t)− xi(t)], (2.17)

where xi(t) represents the state vector of the ith oscillator, f (xi(t)) describes the oscil-
lator’s individual dynamics, c > 0 is the overall coupling strength and h is the inner
coupling function that characterizes the interactions between neighboring oscillators.

In pinning control, only a small fraction of vertices in the network is expected to be
controlled. Without loss of generality, let the first p vertices be selected to be pinned.
Thus, adding control and using the Laplacian matrix1 L, Eq.(2.17) can be rewritten as
follows:

ẋi(t) = f (xi(t))− c
n

∑
j=1

lijh(xj(t)) + ui(t), (2.18)

where ui(t) = gi{h[s(t)− xi(t)]} is the local feedback controller, s(t) is the reference
trajectory and gi quantifies the pinning control gain for vertex i. Derivation from Eq.
(2.17) to Eq. (5.1) requires that function h be linear, as it is considered in this work. The
reference trajectory is described by an independent oscillator ṡ(t) = f (s(t)). Therefore,
gi = 0 if vertex i is not pinned. The task here is to drive the dynamic complex network
to s(t) as t→ ∞ by pinning some vertices.

2.4 Relevant network-based techniques in machine learn-

ing

In this section, we describe some of the most relevant techniques related to the
works presented in this thesis. All techniques share one important aspect: they are
network-based. The application areas range from unsupervised to supervised learn-
ing, including semi-supervised extensions. The main concepts involved are random
walk, label propagation, dynamical synchronization and network construction. These

1Network N can be described via its Laplacian matrix L = [lij] = D −A, where D = diag(d1, ..., dn)
is the degree matrix of N and di = ∑j∈ηi

aij.



2.4 - Relevant network-based techniques in machine learning 41

concepts served as inspiring ideas for the techniques presented in the next chapters.

We start with a brief of the vast applications of random walk theory. In image anal-
ysis, for example, a random walk process can be executed through pixels represented
by network nodes. Texture discrimination and edge detection were performed by com-
paring boundary distributions of such a process (Wechsler and Citron, 1980; Wechsler
and Kidode, 1979). As an alternative way to perform edge detection and image seg-
mentation, other measures were derived. In (Grady, 2006), first time passage probabil-
ities are computed when a random walker passes through a labeled node (pixel) after
starting from an unlabeled node. The probabilities are compared and the label with the
highest probability is assigned to the unlabeled pixel. A similar approach, applied to
content-based image retrieval, can be found in (Bulò et al., 2011), in which relevant and
non-relevant images labeled by a specialist are seed nodes. A ranking score for each
unlabeled image is computed from the probability that a random walker starting at
that image will reach a relevant seed before encountering a non-relevant one. Random
walk has also been extensively applied to unsupervised learning, such as community
detection (Fortunato, 2010) and data clustering. In the next subsection, a specific clus-
tering technique based on random walk and particle competition is detailed.

2.4.1 Particle competition for unsupervised and semi-supervised

learning

In (Quiles et al., 2008; Silva and Zhao, 2012a,b; Silva et al., 2013), random walk is
used in combination with preferential walk in competitive processes. Competing parti-
cles walk through nodes in a network and the number of passages of a particle through
a node determines its domination over that node. The cluster to which a node pertains
is determined by the particles with the highest domination.

A particle, denoted by ρj, is mathematically expressed by two scalar variables: (i)
ρv

j (t) - which represents the vertex vi being currently visited by particle ρj at time t -
and (ii) ρω

j (t) ∈ [ωmin, ωmax] - which indicates the exploration potential of particle ρj

at time t. The update rules that govern the movement and the exploration potentials
of the particles are given by:

ρv
j (t + 1) = vi,

ρω
j (t + 1) =


ρω

j (t) if vρ
i (t) = 0

ρω
j (t) + (ωmax − ρω

j (t))∆ρ if vρ
i (t) = ρj 6= 0

ρω
j (t)− (ρω

j (t)−ωmin)∆ρ if vρ
i (t) 6= ρj 6= 0

,
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where ∆ρ controls the exploration level variation that each particle gains or loses, de-
pending on the nature of the vertex which it visits. Specifically, if it visits an already
dominated vertex, then the particle’s exploration level is strengthened; otherwise, it is
decremented.

Each vertex vi in the network is represented by three scalar variables: (i) vρ
i (t),

which defines the proprietary particle of the vertex vi at time t; (ii) vω
i (t), which in-

dicates the level of domination imposed by particle ρj on vertex vi at time t; and (iii)
vγ

i (t), which symbolizes whether the vertex vi is being visited by any of the particles
at time t. With the help of these variables, the dynamical behavior of the vertices is
governed by the following set of equations:

vρ
i (t + 1) =

 vρ
i (t) if vγ

i (t) = 0

ρj if vγ
i (t) = 1 and vω

i (t) = ωmin
,

vω
i (t + 1) =


vω

i (t) if vγ
i (t) = 0

max{ωmin, vω
i (t)− ∆v} if vγ

i (t) = 1 and vρ
i (t) 6= ρj

ρω
j (t + 1) if vγ

i (t) = 1 and vρ
i (t) = ρj

,

where ∆v denotes the exploration level fraction lost by a vertex, if a rival particle visits
it.

The detection algorithm begins by putting K particles into random vertices. At the
beginning of the dynamical process, each particle ρj and each vertex vi have their po-
tentials set to ρω

j (0) = ωmin and vω
i (t) = ωmin, respectively. At each iteration, each

particle travels to a neighboring vertex, in accordance with a movement policy con-
sisted in a combination of deterministic and random walks. In the former, the particle
randomly visits the neighbors of the currently visited vertex, while, in the latter, the
particle prefers to visit vertices that are being dominated by the same particle. In the
following, we illustrate the cases which may occur when a particle is on the process of
choosing the next vertex to visit:

1. if the visited vertex vi does not belong to a particle: vρ
i (t) = 0, the vertex starts to

be dominated by the visiting particle, i.e., vρ
i (t) = ρj. The particle’s potential ρj is

not altered and the vertex’s potential vi receives the particle’s potential: vω
i (t) =

ρω
j (t);

2. if the visited vertex is dominated by the same particle, the visiting particle’s
potential, ρj, is incremented and vi receives the new potential of the particle:
vω

i (t) = ρω
j (t);
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3. if the visited vertex belongs to a rival particle, then the particle’s and the vertex’s
potentials are weakened. If the particle’s potential ρω

j (t) reaches a value lower
than ωmin, then this particle is reset to a new randomly chosen vertex. If the
potential of the vertex vω

j (t) reaches a value lower than ωmin, then the vertex
becomes no longer owned by the previous particle, i.e., it regresses to the free,
non-dominated state: vω

j (t) = 0.

Thus, the vertex’s level of domination increases if it is visited by the same particle
that dominates it at the present moment. On the other hand, during the visit of a ri-
val particle, the domination level imposed by the current dominating particle on that
vertex is weakened. If this domination is not strong enough, the particle loses its dom-
ination over that vertex. In an extensive period of time, it is expected that each particle
will dominate a community in the network.

The model proposed in Quiles et al. (2008) has two salient features: (i) high com-
munity detection rates and (ii) low computational complexity. However, in its original
work, only a procedure of particle competition is effectively introduced, without any
formal definition. A rigorous model of particle competition via a stochastic competi-
tive dynamical system is introduced in Silva and Zhao (2012b); Silva et al. (2013).

As an illustrative example, consider Fig. 2.8, where there are M = 4 communi-
ties. The black stars represent vertices that do not have an owner particle. K = 4
particles are inserted in a random manner (following a uniform distribution), namely
the red (circle-shaped), the blue (square-shaped), the green (diamond-shaped), and the
magenta (triangle-shaped). Figure 2.8a shows the initial particle placement. The own-
ership of a vertex is given by its color and shape. Figure 2.8b shows the ownership of
the vertices after 300 iterations, Fig. 2.8c, after 800 iterations, and Fig. 2.8d, after 1700
iterations, when all 4 communities have been properly discovered.

In Silva and Zhao (2012a), the authors extend the unsupervised particle compe-
tition to a semi-supervised version. In contrast to the unsupervised learning model,
where the particles are randomly spawned in the network because no prior analysis
of the groups is available, the semi-supervised learning version does have some ex-
ternal knowledge by definition. The main difference of the semi-supervised version
is that each particle represents a labeled data item, and its main goal is to spread the
label of its represented vertex by visiting and dominating the neighborhood in a com-
petitive way. In this case, each particle always represents a labeled vertex, called the
home vertex. In the reanimation procedure of a particle, it no more randomly chooses
a dominated vertex to properly recharge its energy level; rather, it always regresses to
its home vertex, which is always strongly dominated by it, in order to become active
again.
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(a) (b)

(c) (d)

Figure 2.8: Illustration of community detection via particle competition in an artificial network.
The total number of vertices is n = 128, and the total number of balanced communities is
M = 4, 〈k〉 = 16, and zout/〈k〉 = 0.3. K = 4 particles are inserted in a random manner. Snapshot
of the network when: (a) t = 0; (b) t = 300; (c) t = 800; and (d) t = 1700. Figure extracted from
Silva and Zhao (2012b).
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2.4.2 Unsupervised scene segmentation via synchronization of lo-

cally coupled chaotic oscillators

The chaotic synchronization studies introduced in subsection 2.3.4 have been ap-
plied by Zhao et al. (2008a) to the scene segmentation problem. In scene segmentation,
each object in a given scene can be of any form. Consequently, the corresponding oscil-
lators representing each object may have arbitrary connection topology, which means
that the synchronization conditions obtained on regular lattice (1D, 2D, or even higher
dimension) do not cover the segmentation application. Zhao et al. (2008a) consider the
synchronization role in networks of general topology of coupled continuous chaotic
elements with parameter mismatch. Neumann boundary condition is assumed. Each
element in the network can be one of a class of chaotic oscillators, which has a sta-
ble linear part perturbed by a bounded nonlinear function. A network of coupled
Wilson-Cowan neural oscillators is used to solve image segmentation problems by
rapid chaotic synchronization and desynchronization.

The segmentation strategy introduced by Zhao et al. (2008a) is as follows. Consider
a scene image containing several objects. A network is constructed so that each element
corresponds to a pixel of the image. As the system runs, the vertices or oscillators self-
organize according to a predefined similarity criterion as, for example, the connections
between pairs of neighboring oscillators with similar gray level or color are kept, while
oscillators of very different gray level or color are not connected to each other. Con-
sequently, all vertices belonging to the same segment will be synchronized to form a
unique trajectory, and each object is represented by a synchronized chaotic orbit. In
this way, objects can be segmented.

The model for scene segmentation is a two dimensional network governed by the
following equations:

ẋi,j = − axi,j + G(cxi,j + eyi,j + Ii,j − θx) + k ∑
(p,q)∈∆i,j

γp,q;i,j(xp,q − xi,j) (2.19)

ẏi,j = − byi,j + G(dxi,j + f yi,j − θy) + k ∑
(p,q)∈∆i,j

γp,q;i,j(yp,q − yi,j)

G(v) =
1

1 + e−(v/T)

where (i, j) and (p, q) are lattice points, k is the coupling strength, and ∆i,j = {(i −
1, j − 1), (i − 1, j), (i − 1, j + 1), (ij − 1), (i, j + 1), (i + 1, j − 1), (i + 1, j), (i + 1, j + 1)}.
γi,j;p,q = 1 if element (i, j) is coupled to (p, q). Otherwise, γi,j;p,q = 0.

Figure 2.9 shows a color image containing eight objects. These patterns are simul-
taneously presented on a network where each pixel is represented by an oscillator. The
initial conditions of all of the oscillators on the grid are random. The coupling strength
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Figure 2.9: Sample image for segmentation. Figure extracted from Zhao et al. (2008a).

Figure 2.10: Segmentation result when Fig. 2.9 is an input. Figure extracted from Zhao et al.
(2008a).
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Figure 2.11: Temporal activities of oscillator blocks when Fig. 2.9 is an input. Each trace in the
figure is a synchronized chaotic orbit corresponding to an object in the input pattern. Verti-
cal scale of second to eighth oscillator blocks (a group of synchronized oscillators) are shifted
downwards by 0.5. The coupling strength is set to k = 2. Figure extracted from Zhao et al.
(2008a).
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is k = 2. Here, we employ the following simple segmentation criteria, although more
complex rules can be projected to get better segmentation results by modifying the
γi,j;p,q terms. In this simulation, two oscillators, say (i, j) and (p, q), which represent
two pixels in the image, will be coupled together (γi,j;p,q = 1) if and only if the gray-
level or color difference between them is less than a constant (30 is used in this simu-
lation). Otherwise, the coupling between them is cut (γi,j;p,q = 0). Figure 2.10 shows
the segmentation result, while Fig. 2.11 shows the temporal activities of the oscilla-
tor blocks. We can see the appearance of eight synchronized chaotic orbits, each one
representing an object.

2.4.3 Semi-supervised label propagation: local and global consis-

tency

Label propagation methods typically assume that the data lie on a low-dimensional
manifold from a high-dimensional space. They rely upon the smoothness assumption,
which states that if two data samples are close, then their labels should be close as
well. The main idea of these methods is to build a graph that captures the geometry
of this manifold as well as the proximity of the data samples. Test samples are labeled
by the propagation of the labels of the labeled data along this manifold, while making
use of the smoothness property. The pioneer network-based technique proposed by
Zhou et al. (2003) has the problem showed in Fig. 2.12 as one of its main motivations.
Traditional techniques such as k-NN and SVM (Fig. 2.12(b) and (c), respectively) search
for spherical-shaped classes and fail to learn different shapes, which could be correctly
detected by network-based techniques.

In their work, Zhou et al. (2003) consider a set of (n × L)-dimensional matrices
M composed of non-negative entries. A matrix F = [FT

1 , . . . , FT
n ]

T ∈ M associates
each unlabeled item x(u)i to a corresponding label in accordance with the expression
yi = arg max

j∈L
Fij. One can think F as a vectorial function that associates each unla-

beled instance x(u)i to the maximum value of Fj, j ∈ L. Moreover, it is used a (n× L)-

dimensional matrix Y where Yij = 1 if the labeled instance x(l)i is associated to label
yi = j ∈ L, and Yij = 0, otherwise. The computational steps of the technique is as
follows:

1. generate the affinity matrix W given by Wij = exp(
‖xi−xj‖2

2σ2 ) if i 6= j, and Wii = 0,
otherwise;

2. construct the matrix S = D−
1
2 WD−

1
2 , in which D is a diagonal matrix and

D(i, i) = ∑n
j W(i, j);

3. iterate the system F(t + 1) = αSF(t) + (1− α)Y until convergence, where α ∈
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Figure 2.12: The two-moons problem setting to illustrate semi-supervised classification. (a)
Two unlabeled classes with just one labeled sample each. (b) Incorrect result achieved by SVM
with RBF kernel. (c) Incorrect result achieved by k-NN technique. (d) Ideal classification result.
Figure extracted from Zhou et al. (2003).
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(0, 1);

4. being F∗ the limit of the sequence {F(t)}, each unlabeled vertex x(u)i is associated
to the label yi = arg max

j∈L
F∗ij .

Moreover, it has been shown in Zhou et al. (2003) that the sequence S = {F(t)} is
convergent and can be promptly calculated by the following equation:

F∗ = lim
t→∞

F(t) = (I − αS)−1Y. (2.20)

Furthermore, the authors have found a regularization framework that satisfies the
aforementioned dynamics. This framework aims at minimizing a cost function or an
energy expression. It is given by:

C(F) =
1
2

 n

∑
i=1,j∈L

Wij

∥∥∥∥∥ 1√
Dii

Fi −
1√
Djj

Fj

∥∥∥∥∥
2

+ µ
n

∑
i=1
‖Fi −Yi‖2

 , (2.21)

where µ > 0 is a regularizer parameter. In this case, the optimal values for the classifi-
cation function become:

F∗ = arg min
F∈=

C(F).

Equation (2.21) can be analyzed in function of its two distinct terms. The fist term
enforces a smoothness decision of the classifier, meaning that a good classification
function must not have large derivatives in high-density areas. This defines a regu-
larizer function, which is responsible for modeling the cost of propagating labels to
unlabeled vertices. Given that many algorithms rely on the smoothness assumption,
this function must be smooth in dense regions of the network. On the other hand, the
second term symbolizes the adjustment restriction, revealing that a good classification
function should not exchange the labels from already labeled data. This constraint de-
termines the loss function, which leads the algorithm to penalize decisions that flip
the labels of previously labeled vertices. Practically, to minimize this term, it is enough
to prevent the change of those vertices. Finally, the parameter µ is responsible for bal-
ancing the weight between these two opposite conditions.

In this technique, the propagation is performed by a linear update rule, and the
convergence analysis have been fully described. However, the linear propagation rule
may mislead correct treatment of nonlinearities present in data. Moreover, since a
matrix inversion is required to find the optimal solution, the algorithm computational
complexity is bounded by O(n3), resulting unfeasible for large-scale networks.

Kokiopoulou and Frossard (2010) proposed an application of the label propagation
algorithm to the discrete problem of multiple observation sets. The problem is to assign
multiple observations of the test objects to a single class of objects. It can be viewed
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as a special case of semi-supervised learning, where the unlabeled data represents the
multiple observations with the extra constraint that all unlabeled data examples belong
to the same class (Kokiopoulou and Frossard, 2010). The goal is then to estimate the
single unknown class, while generic semi-supervised learning problems attribute the
test examples to different classes.

The discrete algorithm called Manifold-based Smoothing under Constraints
(MASC) can be summarized by the Alg. 2, where the weight matrix H is calculated by
some sort of distance function among data samples and matrix F associates each unla-
beled item to a corresponding label. In matrix Y, Yij = 1 if the labeled instance x(l)i is
associated to label yi = j ∈ L, and Yij = 0, otherwise. Vector el is the lth canonical basis
vector and 1∈ Rm is the vector of ones. The step 5 can be viewed as a discretization of
Eq. 2.21. Actually, the search space in the for loop is small because it consists of the fol-
lowing L vectors (∈ Rm): [1, 0, 0, . . . , 0], [0, 1, 0, . . . , 0], [0, 0, . . . , 1, 0], . . . , [0, 0, . . . , 0, 1].
Since all test samples belong to the same class, the optimal solution can be obtained
with a full search, as long as the number of classes stays reasonable (Kokiopoulou and
Frossard, 2010). The computational cost of this method is O(n2 + kmL).

Algorithm 2 Manifold-based smoothing under constraints
Input:
X (l) : labeled data
X (u) : unlabeled observations set
|L| : number of classes
m : number of unlabeled observations
n : number of labeled data samples
Parameters:
k : number of nearest neighbors for network construction
Output:
l̂ : estimated class for the unlabeled observations
Initialization:
1. construct a k-NN network N = (V , E)
2. compute the weighted adjacency matrix W ∈ Rn×n and the diagonal matrix D,
where Dii = ∑n

j=1 Wij

3. compute S = D−
1
2 WD−

1
2

for l = 1→ |L| do

4. F =

[
Yl

1eT
l

]
5. q(l) = ∑i≤L;j>L Sij||Fi − Fj||2 + ∑i<L;j≤L Sij||Fi − Fj||2

end for
6. l̂ : = argminpq(l)
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2.4.4 Supervised k-associated graphs

The nonparametric technique for network-based supervised learning known as
k-associated graphs has been proposed by Bertini et al. (2011). The proposed tech-
nique uses the k-Associated Optimal Graph (kAOG), whose construction relies on
two concepts: (i) a purity measure which, in short, uses the graph representation to
measure mixing levels of the original data set samples regarding its classes given a
k-neighborhood; and (ii) the k-associated graph, which can be considered as an im-
proved adaptive k-nearest neighbor graph. Given a set of labeled vector-based data as
the training set, the training process consists of building the kAOG representing the
data set as a sparse graph in which components (a connected subgraph) carry local
information about the underlying data distribution. This graph structure is used by
the kAOG classifier to estimate the probability an unlabeled sample belongs to a given
component, and thus inferring its class.

The process for building the kAOG is divided into three steps. First, the technique
represents the training set as a directed graph (network), referred to as k-associated
graph. Such a graph is built from a vector-based data set by abstracting data items
to vertices and similarities to edges. To create this graph, each vertex is connected to
its neighbors that lie in a k-neighborhood and belong to the same vertex’s class. This
particular way to wire vertices produces a directed graph which will be used to define
a purity measure. At the end of this process, for a given k, each class is represented by
one or more components, in other words, the number of components is larger than or
equal to the number of data classes presented in the training set. The second step is
responsible for computing the purity measure for each graph component. Given the
parameter k, a vertex can receive 2k connections at most. In an undirected graph, this is
always true because if vertex j is one of the k-nearest neighbors of i, then the reciprocal
is true. However, in the technique proposed in (Bertini et al., 2011), the networks are
considered as digraphs. Therefore, it is expected that vertices have degrees ranging
from k to 2k. The purity measure quantifies the proportion of edges that has effectively
been created among vertices from the same class over the total number of possible
edges, 2k. In mathematical terms, the purity φ of component α, φα, is defined as:

φα =
Dα

2k
, (2.22)

where Dα denotes the average degree of component α. A purity value close to 1 indi-
cates that a large portion of edges exist among vertices in a class component, resulting
in high compactness of that component. Lower values reveal high mixing between
data from different classes in a k-neighborhood and, in the extreme case where φα = 0,
a vertex in that component does not make any connections and is kept isolated. Figure
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Figure 2.13: Calculation of the purity measure in 3-nearest neighbors networks. (a) A complete
component where all vertices share the same label. (b) Two different classes grouped into two
components with intermediary purity values. (c) A component surrounded by noise. Figure
extracted from Bertini et al. (2011).

2.13 depicts three small networks to exemplify the purity measure: a complete compo-
nent, two neighbor components and a component surrounded by noise.

The third and last step to construct the kAOG is by adapting each component to get
its best purity for a specific k value. The rationale behind this operation is described in
(Bertini et al., 2011) as follows. A graph obtained by a unique value of k rarely produces
the best configuration of vertices into components for a given data set. A single value
of k produces components with nearly the same size, therefore structure and purity are
restrained to only one possible value of k at a time. Consequently, it would be better
to allow multiples values of k to represent the same data space in order to best fit the
data regarding to component size and purity. Bearing this in mind, each component
must has its own optimal k. As a result, all components reach their respective highest
purity and form the kAOG. In the process for constructing the kAOG, k is increased
while keeping the best components found so far starting from the 1-associated graph.
For each k and component, the purity measure is calculated and is used to compare
among components of different k-associated graphs formed with different values of k.
The component with the highest purity value is held, and the others are discarded.

With the kAOG at hand, a nonparametric Bayes classifier is used in order to pre-
dict unlabeled data. Since each component in the constructed graph contains vertices
(cases) of the same class, it is possible to compute the probability of a new vertex to be
classified to a given class by determining the probability of the same vertex to belong
to each of the components. Specifically, the a priori probabilities are calculated by using
a normalized purity value of each of the class components.



CHAPTER

3
Development of network-based techniques

for supervised learning

The techniques presented in this chapter deals with supervised classification prob-
lems. As it is described in section 2.1.1, in this situation there are available data labels
which the classification process can rely on. The labeled set can be used to train and ad-
just the classifier which is further applied to classify unlabeled data. In the area of the
network-based techniques, few efforts have been made in the supervised paradigm,
since the majority of the techniques is unsupervised or semi-supervised. Here, we in-
troduce four supervised techniques based on networks which have been developed
during the doctorate period.

The first technique uses the random walk process to classify data. A new classifi-
cation heuristic is introduced: instead of spreading labels or defining decision borders
for the classifier, the labeling process is viewed as the ease of access unlabeled instances
have to each available class. Basically, a set of labeled instances is mapped as the state
space set for a random walker. The space set configures a network in which links rep-
resent transition probabilities. This network is further modified by a link weight com-
position which takes into account the bias information of the unlabeled instance to be
classified. The limiting probabilities are calculated for the modified network structure
resulting in label probabilities for the unlabeled instance. Due to the network repre-
sentation, this technique is able to identify and distinguish classes presenting different
shapes, and the random walk dynamical process is able to take both local and global
label information into account during the classification process.

The second technique performs high-level data classification. Traditional super-
vised classification techniques define decision borders in the attribute space and the

53
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unlabeled sample is associated to a class depending on its position in relation to these
borders. Thus, the process is mainly based on the physical features of the data sets,
and here we call this heuristic as low-level classification. In another way, a differ-
ent classification heuristic is introduced in this section. It takes into account the net-
worked structural information of the data sets. To be able to capture this structural
information, the labeled data are mapped into underlying networks and specific net-
work measures calculate modifications in network structure when an unlabeled vertex
is inserted. Hence, the classification is performed by using both low-level (similarity
measures) and high-level (structural measures) information.

The third technique deals with the problem of multiple observation sets. In this
problem, a group of observations of a same pattern must be classified at once, that is,
the whole group must receive the same class label. A labeled data set provides labeled
observations of groups of patterns to train the classifier. The network-based scheme
permits the detection of subnetworks which represent each group of observations, and
the classification process takes into account the overall link strength between two sub-
networks. The unlabeled subnetwork receives the label of the most related labeled
subnetwork. The relationship strength is measured by two methods: modularity and
Katz measures. The modularity measures how modular are two subnetworks when
they are connected together: the most modular they are, the weaker is the label re-
lationship between them. The Katz measure computes how central the nodes of an
unlabeled subnetwork are in relation to a labeled network: the more central the nodes
are, the stronger the label relationship between the subnetworks is.

The last technique presented in this section is an application of network-based
methods to the problem of dimensionality reduction. Many applications in data min-
ing, machine learning and pattern recognition face problems when computing similar-
ities among data samples. When data lies in a high-dimensional space, these problems
are often due to the “curse of dimensionality”. In this situation, similarity measures
among data suffer from distortions, that is, when the dimensionality increases, the
volume of the space increases so fast that the available data samples become sparse.
Specifically, this situation is often found when dealing with images, which possess a
large dimensional feature space, that is, images are high-dimensional patterns. One
way to alleviate this problem is by performing dimensionality reduction, which aims
at reducing the dimension of the input data in order to achieve a small set of fea-
tures that keeps the most important original relationships among data samples. In the
technique described in this chapter, the kAOG construction method is used to create
networks that are embedded into a graph-embedding general network for dimension-
ality reduction. A new algorithm is proposed for the kAOG method to be able to create
penalty networks required by the general framework. The technique is then compared
to other network formation methods when using this same framework.
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3.1 Measuring ease of access to data classes by using

random walk

The general idea of the technique proposed by Cupertino and Zhao (2013a) is ex-
plained as follows. Random walk theory can be understood in terms of Markov chains.
A Markov chain is formed by a sequence of states visited by a random walker, in which
the probability to visit a given state is independent of past visits given that the current
state is known (Gallager, 1995). The probability of moving from one state to another is
called transition probability. It can be shown that, under some conditions and after an
infinite number of transitions, the random walk process reaches a stationary state, also
called limiting probabilities, which is independent of the initial state (Çinlar, 1975). In
this situation, states that have larger incoming transition probabilities comparing to
other states result in larger limiting probabilities, that is, the random walker has some
preference to visit them. In other words, by representing the states as network nodes
and the transition probabilities as link weights, we can say that nodes which are better
linked to other nodes (have stronger link weights) result in larger limiting probabil-
ities. In this case, the random walker prefers to visit some nodes in the network in
detriment of others, that is, some nodes are easier accessed than others.

By following the previous reasoning, it is possible to classify unlabeled instances
by using limiting probabilities. A set of labeled instances is mapped as network nodes,
or as the state space set, that is, each node (labeled instance) is a possible state for
the random walker. This network of labeled nodes is then modified by a specific link
weight composition which takes into account the bias information of the unlabeled
instance. The bias information changes the network structure by affecting the link
weights among nodes resulting in a structure such that, after the calculation of the
limiting probabilities, the most easily reached labeled nodes represent the class label
of the unlabeled instance.

3.1.1 Technique description

The classification problem concerned within this section requires a given labeled
data set, X (l) = {x(l)i , i = 1, . . . , n}. Each instance in this set has a single assigned
label l ∈ L. It is also given an unlabeled data set, X (u) = {x(u)i , i = 1, . . . , m}, con-
taining instances that will be labeled after classification. Each instance is described by
q attributes x(l)i = {xi1, xi2, . . . , xiq}, and X (l) ∩ X (u) = ∅. The proposed technique can
then be divided into two phases, training and classification, as it is described next.
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Training phase:

In the training phase, a weighted and undirected network N = {V , E} is con-
structed. Nodes represent data instances, V = X (l), and link weights represent sim-
ilarities among instances, E = [Wij], i, j = 1, . . . , n. The similarity between any pair

of instances x(l)i and x(l)j is denoted by wij. The network similarity matrixW = {wij}
can be calculated by using any distance function. Specifically, we use the Euclidean
distance in all experiments in this section. The resulting network is called training
network.

Classification phase:

To classify an unlabeled instance x(u), a vector S = [s1, s2, . . . , sn] containing the
link weights between x(u) and all other nodes x(l)i is calculated. The link biases of node
x(u) are inserted into the training networkN by calculating its link weights to all other
nodes into this network. Then, an asymmetric and n× n modified similarity matrix Ŵ
is constructed by the following composition:

Ŵ =W + εŜ , (3.1)

where ε is a non-negative parameter and Ŝ is the following n× n matrix:

Ŝ =


S (1)

S (2)
...

S (n)

 .

Remark 1. It can be observed in Eq. 3.1 that the link weight biases of the unlabeled instance
x(u), encoded in matrix Ŝ , are applied over all linksW of the training network N , that is, the
weight of each link is linearly added up with its corresponding weight bias. The idea behind
this operation is that the distance between any pair of nodes is modified due to the new network
routes introduced by the insertion of the weight biases of the unlabeled instance. The larger is
the similarity between the unlabeled instance and a node, say node i, the more strengthened the
connections from all other nodes to node i are after this operation. The parameter ε controls the
influence of the weight biases. The larger is the value of parameter ε, the larger is the influence
of the weight bias of x(u).

The steps described above can be easily understood by using the toy example de-
picted in Fig. 3.1. In this example, a training network is formed by 4 labeled instances
belonging to 2 distinct classes, green disks and orange squares, each one containing 2 rep-
resentative instances, {1, 2} and {3, 4}, respectively (Fig. 3.1a). In this initial training
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Figure 3.1: Illustration to calculate the modified connection matrix Ŵ when classifying the
unlabeled instance xu. a) An undirected network N is formed by using 4 training instances
of 2 classes: green and yellow; b) the vector of similarities S are calculated between xu and all
training nodes; c) modified networkN , directed with self-loops, after the bias composition (Eq.
3.1).

network, the links are undirected and the similarity matrixW is symmetric. Given an
unlabeled instance xu, the similarity vector S between xu and all other nodes is com-
puted (Fig. 3.1b). After this computation, the link weight biases of xu are added up
to the original similarity matrix to form a biased similarity matrix for the same net-
work (Eq. 3.1). It can be seen from Fig. 3.1c that the network becomes directed, with
self-loops, and the biased weight matrix is no more symmetric.

After the preceding operations, we have at hand a biased similarity matrix Ŵ or, in
other words, the adjacency matrix of the modified training networkN , which is called
classification network. By using this network, it is now possible to apply the random
walk limiting probabilities through the states represented by the network nodes. The
transition probabilities can be found by means of the matrix Ŵ . To compute the entries
of the transition matrix P = [Pij], the entries of matrix Ŵ are normalized:

pij = ŵij/
n

∑
j=1

ŵij.
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With the above matrix P at hand, the limiting probabilities can be calculated by
finding the eigenvector corresponding to the unit eigenvalue of matrix PT , the trans-
pose of matrix P , or by iterating the system

pi+1 = PT pi (3.2)

to the stationary state, where p is an n-dimensional normalized vector. The limiting
probabilities result in the form of the following vector:

p∞ = [p1 p2 . . . pn],

where each element represents a state, and each entry pi can be interpreted as the
probability that x(u) belongs to the class of state i. As the final step, the classification of
x(u) is accomplished by assigning it the most representative label from the set of states.
A set T containing the τ states with the largest limiting probabilities are selected and
the most representative class in T is associated to x(u).

3.1.2 Algorithm and complexity analysis

In a concise form, the proposed supervised inductive classification technique can
be summarized by Algorithm 3.

Algorithm 3 Network-based classification by random walk ease of access
Input:
X (l) : training data set
x(u) : unlabeled instance
Parameters:
ε : weighting for bias link composition
τ : number of largest probabilities
Output:
l : estimated label for x(u) (l ∈ L)
Training:
1 : N = Create a training network from X (l)

Classification:
2 : Ŵ = Compose bias link weights into N (Eq. 3.1)
3 : p∞ = Compute limiting probabilities (Eq. 3.2)
4 : T = Select the τ largest limiting probabilities from p∞

5 : l = Assign x(u) the most representative label in T

The computational complexity of the proposed technique is analyzed considering
the steps from 1 through 4 of Alg. 3. The creation of a training network in step 1
requires a computation of O(n2) since the similarities between all pair of instances is
calculated. The weight biases composition needs O(n2) operations since each matrix
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entry must be added in step 2. The limiting probabilities in step 3 can be promptly
calculated by the iterating the system of Eq. 3.2 to the stationary state in O(n2) com-
putations. Step 4 of Alg. 3 is O(n log n) by using an efficient sorting algorithm such as
the Quicksort algorithm (Cormen et al., 2003). Putting it all together, the computational
complexity of the proposed technique is O(n2 + n2 + n2 + n log n). Taking the highest
order term, it results in O(n2).

Nevertheless, this complexity can be reduced by dealing with sparse networks such
as the k-nearest neighbor networks, in which connection matrices are sparse (all net-
works constructed in the simulations of this section fall into this category). In this case,
the complexity of steps 2 and 3 are reduced to O(n < k >), being < k > (< k ><< n)
the average degree of the network (average number of links). In addition, by using
the graph construction method based on Lanczos bisection (Chen et al., 2009b), step 1
requires O(nt), and the technique complexity reduces to O(nt + n < dg > +n < k >

+n log n). Furthermore, according to (Chen et al., 2009b), a small value for parame-
ter t (1.06 <= t <= 1.33) is sufficient to achieve high quality networks. Thus, the
computational complexity order of the proposed technique lies in O(n1.06) to O(n1.33).

The complexity comparison with the optimized implementations of the simulated
techniques shown next (section 3.1.3) is as follows: i) kAOG requires from O(n1.06)

to O(n1.33) computations (Bertini et al., 2011); ii) standard k-NN-based techniques re-
quires O(n) (it can be O(n0.5) when optimized with kd tree methods (Grother et al.,
1997)); iii) for C4.5, tree induction requires O(n(log n)2) (Quinlan, 1992) (O(cn) in spe-
cific cases (Su and Zhang, 2006)); iv) finally, standard SVM is O(n3), and state-of-the-art
implementations have empirically a training time that scales between O(n) and O(n2.3)

(Platt, 1999; Tsang et al., 2005).

3.1.3 Experimental results

In this section, we show some numerical results of the proposed supervised tech-
nique as well as a comparative study with some well-known classification techniques.
In the experiments, 15 data sets were selected from the UCI machine learning repos-
itory (Bache and Lichman, 2013), and a large data set was selected from the MNIST
database of manuscript digits (LeCun et al., 1998). Table 3.1 shows the metadata for all
data sets. As can be seen in this table, the selection was made to encompass diversity on
data domains as well as to consider different number of classes (from 3 to 15), attributes
(from 4 to 784) and data set sizes (from 101 to 10, 000). The Euclidean distance was
used in all simulations as the distance measurement. Eventual categorical attributes,
in data sets such as Balance and Zoo, were treated as numerical. As a data preparation,
each attribute vector was normalized to have a magnitude of 1. Individual cases were
normalized by dividing each attribute of an instance by the square root of the sum of
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Table 3.1: Metadata of data sets used in simulations.

Domain Instances Attributes Classes

Zoo 101 16 7
Hayes-Hoth 132 5 3

Iris 150 4 3
Teaching 151 5 3

Wine 178 13 3
Image 210 19 7
Glass 214 9 6

E. Coli 336 8 8
Libras 360 91 15

Balance 625 4 3
Vehicle 846 18 4
Vowel 990 13 11
Yeast 1,484 8 10

Wine Q. (Red) 1,599 12 6
Segment 2,310 19 7
MNIST 10,000 784 10

the squares of the individual attributes. Thus, an instance xi = (xi1, xi2, . . . , xiq) was
normalized by dividing each attribute xij by ∑

q
j=1 x2

ij.
The parameter optimization for the proposed technique was done as follows. Train-

ing networks N (step 1 of Alg. 3) were created by using the Euclidean measurement
as a distance function to determine the initial link weights between neighbor nodes.
Parameter τ (Step 4 of Alg. 3) ranged from 1 to the number of instances in the largest
class of the training set. Parameter ε (Eq. 3.1) was evaluated by using the grid method
in the interval {0, 0.1, 0.2, . . . , 10}.

As it is stated in section 3.1.1, ε is responsible for weighting the biases provided
by the unlabeled instance to the training network. Figure 3.2 depicts the classification
accuracy in function of parameter ε for some simulated data sets. The results were
averaged over 50 runs. Each run was performed by using a 10-fold stratified cross-
validation process (Kim, 2009). In this process, the data set is split into 10 disjoint
sets and, in each run, 9 sets are used as the training set and 1 set is used as the test
data, resulting in a total of 10 runs. Therefore, 50× 10 runs were executed. It can be
seen on Fig. 3.2 that next to value 0 - where the link bias influence is very reduced
- the classification accuracies are poor. On the other hand, as ε becomes larger, the
accuracies increase and stabilize. In this case, the link biases of the unlabeled instance
play a main role due to the large weight applied to them (Eq. 3.1). These scenarios
configure a convergent behavior for parameter ε and can help in the experiments by
restricting the search space.

The proposed technique was compared to other 6 well-known and established
classification algorithms: k-Nearest Neighbors (kNN) (Tan et al., 2005), Weighted
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kNN (WkNN), Prototype-based kNN (kNN) (Hastie et al., 2009), Decision Tree C4.5
(Quinlan, 1992), Multi-Class SVM (MSVM) (Vapnik, 1999) and the network-based k-
Associated Optimal Graph (kAOG) (Bertini et al., 2011). For the parametric algorithms
(all algorithms except kAOG), a repeated cross-validation (Kim, 2009) was done in
order to optimize their respective parameters. For the MSVM algorithm, we used
the one-against-one multi-class version, in which L(L − 1)/2 binary classifiers distin-
guishes between every pair of classes by using a voting scheme. To avoid ties, the out-
put of each MSVM corresponded to the real valued decision functions. For reducing
the parameter search space in MSVM model selection, the only kernel in considera-
tion was the radial basis function, K(xi, xj) = e−γ||xi−xj||2 , and the stopping criterion
for the optimization method was defined as the Karush-Kuhn-Tucker violation to be
less than 10−3, the same condition used in (Hsu and Lin, 2002). For kNN algorithms,
the only parameter is the number of neighbors k, which ranged from 1 to the num-
ber of instances in the largest class of the training set. In the WkNN technique, the
classification process was performed by using the sum of the weights between the in-
stance to be labeled and its k-nearest neighbors. Specifically, the weight between two
instances xi and xj was defined as 1/||xi, xj||, where || � || is the Euclidean distance. For
the C4.5 algorithm, two parameters were adjusted: the confidence factor that took the
values c f ∈ {0, 0.1, 0.25, 0.5, 0.8, 1}, where smaller values incur more pruning (1 is for
no pruning), and the minimum number of instances that a set must have in order to be
further partitioned, m ∈ {0, 1, 2, 3, 4, 5, 10, 15, 20, 50}.

Table 3.2 shows the classification accuracy on the test set followed by the standard
deviation, and Table 3.3 shows the rank of the techniques for each data set. The cal-
culation procedure for the rank measurement is as follows: i) for each data set, the
algorithms were ranked according to their average classification accuracy, that is, the
best algorithm was ranked as first, the second best was ranked as second, and so on;
and ii) for each algorithm, the average rank was based on the rank values on all the
data sets. It can be seen that the proposed technique achieved the best average ranking
among all simulated techniques.

To complete the experimental analysis, a statistical test proposed in (Demšar, 2006)
was used to compare the proposed technique to the other techniques over the multi-
ple data sets. According to the statistical test, the average rank of each technique is
used in the non-parametric Friedman test to check whether they are significantly dif-
ferent from the average value of the overall ranks (3.91 from the results in Table 3.3).
The Friedman test uses the F-distribution to calculate a critical value in order to re-
ject the null-hypothesis (that is to say, all techniques are equivalent) under a defined
confidence level. Being Na the number of tested techniques and Nb the number of sim-
ulated data sets, the critical value is determined by the degrees of freedom (Na − 1)
and (Na − 1) × (Nb − 1). In our simulations, Na = 7 and Nb = 16, and so the de-
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grees of freedom are 6 and 90. For a significance level of 5%, the critical value for the
experiments is F(6, 90) ≈ 2.20. So, any result of the Friedman test larger than this
critical value rejects the null-hypothesis. For the presented numerical results, the null-
hypothesis was rejected because the Friedman test resulted in FF ≈ 5.04 and, therefore,
the simulated techniques are not equivalent.

In the next step, the pairwise accuracy comparison of our technique in relation to
the others is done following the Bonferroni-Dunn test (Demšar, 2006; Dunn, 1961). This
test consists in comparing a control technique against the others. Here, the control tech-
nique is the proposed technique. A critical difference measure (CD) is calculated for a
given critical value (qβ) for a significance level β. Any average rank difference larger
than CD confirms that two techniques are significantly different. Thus, by using a sig-
nificance level of β = 0.05, the critical value is q0.05 = 2.64, resulting in CD = 2.01.
So, any ranking difference larger than 2.01 justifies the superiority of the best ranked
algorithm. Using pairwise comparisons in Table 3.3, we see that our technique is better
than PkNN and C4.5 (rank differences of 4.07 and 2.75 respectively) with a significance
level of 5%, and presents no significant difference to kNN, WkNN, MSVM and kAOG.
Thus, we can conclude that the proposed technique is at least comparable to the sim-
ulated techniques. It should also be noted that in the comparisons all techniques have
been optimized with respect to their parameters for model selection.

3.2 High-level inductive classification

Due to the importance of the supervised learning paradigm in various real appli-
cations, many classification techniques have been developed, such as the k-Nearest
Neighbors (kNN) (Tan et al., 2005), Linear Discriminant Analysis (LDA) (Duda et al.,
2000), Naive-Bayes (Friedman et al., 1997), Neural Networks (Haykin, 1998), Support
Vector Machines (SVM) (Burges, 1998), Decision Trees (Quinlan, 1992) and so on. Al-
though each of them has its own features, all these traditional classification techniques
share the same heuristic: the trained classifier defines decision borders in the data
space and the label induction phase verifies the relative position of each unlabeled
instance to these borders. Therefore, the data space, usually the Euclidean space, is di-
vided into subspaces, each one representing a data class. These subspaces are not over-
lapped in the case of crisp classification, but they can be slightly overlapped in the case
of fuzzy classification. In either way, strong twisting or largely overlapped subspaces
are not permitted. In other words, traditional classification divides the data space ac-
cording to physical features (similarity, distance, or distribution) of the training data,
ignoring many other intrinsic and semantic relations among data items, which usually
generate complex shaped classes in the data space. On the other hand, it is well known
that the human (animal) brain is able to identify patterns according to semantic mean-
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ings of the input data. Thus, it can be useful to perform data classification beyond
the usual data space division concept. In this context, network-based techniques can
provide new contributions to this research area by performing data classification from
quite different viewpoints other than the traditional data space division way.

For instance, the authors in (Silva and Zhao, 2012c) propose a method to classify un-
labeled instances by means of static network structural measures. In their technique,
an unlabeled instance receives the label from the data network of which structure is
kept unmodified or is barely modified after the insertion of the unlabeled instance.
This approach permits one to understand a class as a data pattern, and the classifica-
tion process is conducted by checking the pattern conformation, that is, a data item
is classified into a given class if it confirms the pattern formed by that class no matter
how far it is from the class centroid. This method can generate complex shaped data
subspaces and reveal some semantic meaning of the training data. Alternatively, in
(Cupertino et al., 2012) (see subsection 3.3.2), we consider that unlabeled instances be-
long to a sub-network (class) which results in the lowest modularity value (Newman
and Girvan, 2004) after connecting them to a network constructed from the unlabeled
set. In that approach, the classification process is performed by considering the con-
nectivity pattern of the training data. In this case, low modularity values mean that
a network is well connected, that is, node instances are strongly related to each other
and likely belong to the same class. In another recent study (Cupertino and Zhao,
2012b) (see subsection 3.3.3), we propose the use of node centrality for data classi-
fication. Their technique is capable of classifying multiple observations where each
pattern is represented by a group of invariant transformations. The classifier must pre-
dict the pattern this group belongs to. In this approach, the classification is conducted
by analyzing how central or how important a test instance is to each class. Instead of
classifying a data instance by similarity or distribution, as it is done in traditional tech-
niques, the test instance receives the label from the class where it acts as an important
piece. Hence, the classification is made by using the heuristic of node importance.

Following this basis of reasoning, we introduced a new network-based classifica-
tion technique which considers the ease of access heuristic and network structure
measurements to perform high-level classification (Cupertino and Zhao, 2013c). The
proposed technique uses a measure for the dynamical process called random walk lim-
iting probabilities through an underlying network that combines both data similarity
and structural measures. The training data set is used to construct the network, in
which instances (nodes) represent the states a random walker visits during the ran-
dom walk process. An instance is considered to belong to the class most easily reached
by the random walker, that is, the limiting transition probability of a random walker
to that class is the largest. In this way, both local and global node relationships are
taken into account. Moreover, the proposed approach is actually a general classifi-
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cation scheme in such a way that one can put any new classification criteria in the
weight matrix to guide the random walk process. We show how the low level classi-
fication term, represented by similarities between data items, and the high level term,
represented by a network structural measure, are combined in this scheme. As a con-
sequence, the proposed approach can classify data not only using physical features,
but also checking the structural pattern formation via the network constructed from
the training data. We also show that such a combination can improve the classification
results in real applications, such as image recognition. Another interesting finding of
this work is that the high level term embedded in the connection matrix of the data
network is specially useful in complex situations where the low level term fails such
as when there is a high mixture of data classes.

3.2.1 The general classification framework

As a general framework, the limiting probabilities are calculated through the fol-
lowing modified connection weight matrix Ŵ :

Ŵ = αWsim + (1− α)Wstr, (3.3)

whereWsim is the similarity connection weight matrix,Wstr is the structural connection
weight matrix, and α ∈ [0, 1] is a tuning parameter of the convex combination.

Each term of Eq. 3.3 has a distinct and specific role. The similarity weight matrix
(Wsim) takes into account the similarities among instances in the attribute space, that
is, each element wij inWsim represents the similarity between data samples xi and xj.
By adopting the cluster assumption, instances lying close to each other in the attribute
space should belong to the same class. So, this term provides similarity bias values to
the classification process. In other words, this matrix considers the physical features
of the training data and it alone leads to the low-level classification. Although any
distance function could be applied to measure the similarity between data samples,
the Euclidean distance is used in all simulations presented in this section.

On the other hand, the structural weight matrix (Wstr) also provides a classification
bias, but considering information from a different nature: it complements the similarity
weight matrix by providing structural information, which is a measure of how the
network structure of each class is affected after the insertion of an unlabeled node. By
adopting this scheme, an instance should belong to the network presenting the smallest
structural change, that is, the new inserted node keeps the conformity of that network.
This matrix considers the pattern formation of the training data, providing high-level
classification results.

Furthermore, as a general framework, Eq. 3.3 does not fix how the similarity weight
matrix should be composed neither which structural network measure or a combina-
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tion of measures should be taken into account. Actually, both terms can be arbitrar-
ily defined by considering the classification interests. Our proposed choices for this
framework are explained in details in the next subsections.

The classification problem concerned within this section requires a labeled data set,
X (l) = {x(l)i , i = 1, . . . , n}, where each instance has a single assigned label l ∈ L. It is
also given an unlabeled data set, X (u) = {x(u)i , i = 1, . . . , m}, containing instances that
will be assigned to labels after classification. Each sample is described by q attributes,
xi = {xi1, xi2, . . . , xiq}, and X (l) ∩ X (u) = ∅.

The classification process can be divided into the phases of training and classifica-
tion as follows:

Training phase

The training phase consists in creating a weighted and undirected network N =

{V , E} without self-loops. In this network, nodes represent labeled data instances in
the set V = X (l), and similarities among instances are represented by edge weights
in E = {wij}, i, j = 1, . . . , n. The similarity matrix W = [wij] is calculated by some
sort of distance function (e.g., Euclidean), and each entry wij is the similarity between

a pair of instances x(l)i and x(l)j . In this step, a single network is generated using all data
samples in the training set, that is, data samples from different classes are mixed into a
single network.

Classification phase

To classify an unlabeled instance x(u), the limiting probabilities of the random walk
process are calculated through matrix Ŵ (Eq. 3.3). These probabilities are found by
means of a transition matrix P of which entries correspond to the scaled entries of Ŵ :

pij = ŵij/
n

∑
j=1

ŵij.

With the above matrix P at hand, the limiting probabilities can be calculated by
two ways: by finding the eigenvector corresponding to the unit eigenvalue of matrix
PT, the transpose of matrix P , or by iterating the following system:

pi+1 = PTpi, (3.4)

to the stationary state, where p is an n-dimensional normalized vector. The iterating
way is faster and results in a vector p∞ of which entry p∞

i represents the probability x(u)

belongs to the class of node i. As the final step, a set T comprising the τ-largest node
probabilities is constructed, and x(u) receives the label from the most representative
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class in T .
The construction of the modified connection weight matrix Ŵ (Eq. 3.3) is detailed

in the next subsections.

3.2.1.1 Similarity weight matrix

The similarity weight matrix provides a bias to the random walk process in the clas-
sification phase based on similarities among data. It conveys physical information of
an unlabeled instance x(u) in relation to the labeled instances in the training set. Simi-
larly to Eq. 3.1 with ε = 1 (see subsection 3.1.1), the similarities si computed between
x(u) and each training instance x(l)i are calculated to form a vector S = [s1, s2, . . . , sn],
andWsim is constructed by the following operation:

Wsim =W + Ŝ , (3.5)

whereW is the similarity matrix resulted from the training phase and Ŝ is the follow-
ing n× n matrix:

Ŝ =


S (1)

S (2)
...

S (n)

 .

For a detailed explanation of these operations, see Remark 1 and Fig. 3.1 in section
3.1.1.

3.2.1.2 Structural weight matrix

The structural term provides a bias to the classification process by taking into ac-
count the network structural information. It computes the change that a structural
measure suffers after inserting node x(u) into an initial training network. To compute
this variation, a network Gl is constructed for each class separately (resulting in |L|
connection weight matrices, Wl, where |L| is the number of available labels), and a
structural measure m(�) is calculated for all nodes of each network Gl separately:

Vl = m(Wl), (3.6)

where Vl is an nl-dimensional vector, being nl the number of instances (nodes) in the
class (network) Gl.

The unlabeled instance x(u) is then inserted into each network Gl. Again, the
same measure m(�) is computed for these new networks (Eq. 3.6), resulting in nl-
dimensional vectors V ′l (disregarding the measure for the unlabeled node that would
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result in a nl + 1 dimension). As large networks are more robust to structural changes,
both measures Vl and V ′l are multiplied by their respective size factors nl/n, and so a
small structural change is counterbalanced by a large network size.

Finally, the structural measure vectors Vl and V ′l are grouped into two normalized
vectors V = [V1

T, . . . ,VLT] and V ′ = [V ′1
T, . . . ,V ′L

T], and the structural variations for
all labeled nodes, before and after the insertion of x(u), are calculated by the following
absolute difference:

∆V = |V − V ′|.

The proposed network structure heuristic states that x(u) should belong to the net-
work presenting the smallest structural change. So, we compose the n× n matrixWstr

by the following operation:

Wstr =


∆V (1)comp

∆V (2)comp
...

∆V (n)comp

 , (3.7)

where ∆Vcomp is the complementary vector: ∆Vcomp = 1− ∆V .

Remark 2. Eq. 3.7 encompasses the structural change regarding the network measure m(�)

on each labeled node. For example, if node i suffers a large change on its structural measure
after the insertion of node x(u) into the network of node i, then ∆V(i) will be large, but the
complementary ∆Vcomp(i) will be small. As a consequence of the composition given by Eq. 3.3,
each edge on Ŵ that links to node i will receive a small bias value, and so the influence on the
random walker will be small. Conversely, if node i suffers a small structural change after the
insertion of x(u), then ∆V(i) will be small, but the complementary ∆Vcomp(i) will be large. As
a consequence, each edge on Ŵ that links to node i will receive a large bias value (according
to Eq. 3.3), and the influence on the limiting probabilities will be large, guiding the random
walker in direction of node i.

Many network measures can be used to characterize the structural information of
the input data. For the sake of application, in this study we used the clustering coef-
ficient (Watts and Strogatz, 1998) as the local structural measure m() in Eq. 3.6. This
network measure is described in section 2.2.2. It is a convenient measure to be used
within the general framework of Eq. 3.3 due to the following reason: while the similar-
ity termWsim in Eq. 3.5 provides a global measure, taking into account the similarities
among all nodes and configuring the whole network topology, the clustering coeffi-
cient acts as a complementary structural measure by computing the local information
for each node.
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3.2.2 Algorithm and complexity analysis

In a concise form, the proposed supervised classification process can be summa-
rized by Algorithm 4. Steps 2 and 3 are responsible for computing the similarity and
the structural matrix terms, respectively, which compose the general framework in Eq.
3.3. As have been described in the last subsections, both matrices are calculated us-
ing information from the labeled data in the training set X (l). However, the way in
which this information is extracted is different for each matrix. For the similarity ma-
trix,Wsim, all training data are treated together in a single network in order to extract
global information of the entire set. Thus, all classes are mixed into this single net-
work. On the other hand, the structural term,Wstr, has a different purpose: to extract
and measure the pattern formation of each class. Thus, instances of different classes
must be treated separately. After composing the modified weight matrix in step 4,
the limiting probabilities of the random walk process are calculated (step 5) and x(u)

receives the label from the class with the largest probability (steps 6 and 7).

Algorithm 4 High-level network-based data classification
Input:
X (l) : training data set
x(u) : unlabeled instance
Parameters:
α : parameter for the convex combination in Eq. 3.3
τ : number of largest probabilities used for classification
Output:
l : estimated class label for x(u) (l ∈ L)
Training:
1 : W = Create a network using X (l)

Classification:
2 : Wsim = Compute similarity matrix (Eq. 3.5)
3 : Wstr = Compute structural matrix (Eq. 3.7)
4 : Ŵ = Compose modified weight matrix (Eq. 3.3)
5 : p∞ = Compute limiting probabilities (Eq. 3.4)
6 : T = Select the τ-largest probabilities from p∞

7 : l = Assign x(u) the most representative class in T

The computational complexity of the proposed technique can be analyzed in terms
of steps 1 through 6 of Alg. 4 as follows. The creation of a graph in step 1 requires
a computation of O(n2) since the similarity between all pair of instances must be cal-
culated. In step 2, the weight biases composition needs O(n2) operations since each
matrix entry must be added. The computation of clustering coefficient in step 3 is
O(n< k >2), where < k > is the average degree of the network. In step 4, all ma-
trix entries must be added up, requiring O(n2) computations. The limiting proba-
bilities in step 5 can be promptly calculated by the iterating the system of Eq. 3.4
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to the stationary state in O(n2) computations. Step 6 requires O(n log n) by using
an efficient sorting algorithm such as the Quicksort algorithm (Cormen et al., 2003).
Putting it all together, the computational complexity of the proposed technique is
O(n2 + n2 + n< k >2 + n2 + n2 + n log n). Taking the highest order term, it is O(n2).

However, the above complexity can be reduced by optimizing the algorithm to
deal with sparse networks such as the k-nearest neighbor networks (all networks con-
structed in the simulations of this section fall in this category), in which connection
matrices are sparse (< k ><< n). In this case, steps 2, 4 and 5 can be reduced to
O(n < k >) computations. In addition, by using the graph construction method based
on Lanczos bisection (Chen et al., 2009a), step 1 requires O(nt), and the complexity
reduces to O(nt + n < k > +n< k >2 + n < k > +n < k > +n log n). According
to (Chen et al., 2009a), 1.06 <= t <= 1.33 is sufficient to achieve high quality net-
works. Thus, the computational complexity order of the proposed technique varies
from O(n1.06) to O(n1.33).

The complexity comparison with the optimized implementations of the simulated
techniques shown in section 3.2.3 is as follows: i) kAOG requires from O(n1.06) to
O(n1.33) computations (Bertini et al., 2011); ii) standard k-NN-based techniques re-
quires O(n) (it can be O(n0.5) when optimized with kd tree methods (Grother et al.,
1997)); iii) for C4.5, tree induction requires O(n(log n)2) (Quinlan, 1992) (O(cn) in spe-
cific cases (Su and Zhang, 2006)); iv) finally, standard SVM is O(n3), and state-of-the-art
implementations have empirically a training time that scales between O(n) and O(n2.3)

(Platt, 1999; Tsang et al., 2005).

3.2.3 Experimental results

In this subsection, we present simulation results to show some properties and the
performance of the proposed classification scheme. Starting with toy problems, the
behavior of the similarity matrix and of the structural matrix in Eq. 3.3 are illustrated.
The influence of parameters α and τ is also investigated. Finally, we present a compar-
ative study to some well-known classification techniques and an application on image
classification.

3.2.3.1 Toy problems

A simple numerical example is shown to illustrate only the similarity term behav-
ior. Given the similarities in Fig. 3.3, in which S = [0.31 0.36 0.20 0.19], the matrix
composition of Eq. 3.5 results in:
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Figure 3.3: Similarity values among network nodes used in the matrix compositionWsim of the
toy example.

Wsim =


0.31 0.67 0.49 0.46

0.62 0.36 0.44 0.48

0.60 0.60 0.20 0.61

0.58 0.65 0.62 0.19

 .

As we are interested in the behavior of the similarity term, we set α = 1 in Eq. 3.3,
and so Ŵ =Wsim. Finally, the limiting probabilities (Eq. 3.4) are:

p∞ =
[

0.2665 0.2849 0.2242 0.2244
]

.

We are able now to sum up the τ-largest limiting probabilities (from 1 to 4) of the
unlabeled instance x(u). The classification results are compiled in Table 3.4. The fol-
lowing two observations can be made for the results. First, in this simple example,
the technique correctly classifies x(u) as pertaining to blue squares class for all values
of the parameter τ. The similarity biases introduced by x(u) and propagated by the
random walk process reduced the distances in the blue squares region and, as a con-
sequence, strengthened the limiting probabilities, making them more representative in
that region. Second, at the beginning, x(u) is more similar to node 3 (S3 = 20) than
to node 4 (S4 = 19), but it turned out to be slightly more similar to node 4 than to
node 3 at the end of the process (with limit probability of 0.2244 against 0.2242). This
behavior is due to the biased paths among nodes on the underlying network, of which
global structure is taken into account by the similarity term. As can be noted in Fig.
3.3, x(u) makes the strongest bias in the region of node 2 (0.36), which in turn has a
direct link to node 4. Therefore, the random walker is influenced by the biases in the
connection weight matrix. As a consequence, the transition probabilities among nodes
are changed accordingly.
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Table 3.4: Classification results for the toy example showed in Fig. 3.3. Results in boldface are
the most representative class for each number of τ-largest probabilities selection.

τ 1 2 3 4

Corresponding nodes {2} {2, 1} {2, 1, 4} {2, 1, 4, 3}

Probability Blue 0.2665 0.5514 0.5514 0.5514
per class Red 0.000 0.000 0.2244 0.4486

Estimated class Blue Blue Blue Blue
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Figure 3.4: Artificial data set composed of two classes forming specific patterns. The red trian-
gle class contains 50 training instances. The green discs class contains 5 training instances. The
objective is to classify the black squares as belonging to the straight line including the green
discs class.

The next toy example depicts a situation in which the structural term,Wstr, plays a
key role in classification. Figure 3.4 shows a specific scenario, where two classes (green
discs and red triangles) correspond to two distinct data patterns. The class represented
by the green discs forms a straight line, while the class of red triangles compose a
spherical shape. The objective is to classify the black squares. In this example, they
complement the straight line started by the green discs, and so they should belong to
that class (Fig. 3.5).

For the sake of clarity in this toy example, the classification procedure takes into
account only the structural term. First, a network Gi is constructed for each class sep-
arately. In the construction, a link is generated between a node and its neighbors that
lie in a region limited by radius ε. In this example, the value ε = 0.77 is used so that



3.2 - High-level inductive classification 75

−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Figure 3.5: Correct classification for the data set in Fig. 3.4.

in the straight line each node can connect to its two nearest neighbors on each side
(border nodes can have at most 2 connections and interior nodes, at most 4). Once
the networks are constructed, the clustering coefficient (Eq. 2.3) is computed for all
nodes. Second, links are created between the test instance and its neighbors that lie in
the ε-radius, and the clustering coefficient is computed again. Finally, the test instance
receives the class label i which corresponds to the label of network Gi presenting the
smallest variation of clustering coefficients after insertion of the unlabeled instance. In
the case when a class has no instance in the ε-region, it is considered to have the largest
coefficient variation. After being classified, the test instance is inserted into the training
set of its corresponding class.

Figure 3.6 shows the total clustering coefficient variation (L1-norm) for each class
caused by the insertion of a test instance. The black squares in Fig. 3.4 are classified
one by one, from left to right, and so test instance number 1 corresponds to the leftmost
square. It can be seen in Fig. 3.6 that the test instances caused abrupt changes in the
structural measure on the red triangles class. The changes lied approximately in the
interval 0.09 (4th instance) to 0.5 (7th instance). On the other hand, the changes in the
green discs class were very small, varying approximately from 0.01 (first instance) to
0.09 (last instance). Hence, this example demonstrates that the pattern conformity of
the green class can be kept after the insertion of the unlabeled instances.
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Figure 3.6: Structural changes caused by the insertion of test instances on each class in Fig. 3.4.
The bottom line represents total changes (L1 − norm) on the green discs class (|∆Vgd|1). The
middle line represents changes on the red triangles class (|∆Vrt|1). The top line is the relative
change |∆Vrt|1/(|∆Vrt + ∆Vgd|1), where the two border points on each extremity accounts for
the case when the test instances does not link to the red triangles class.

3.2.3.2 Effectiveness of the structural term

We assess here the effectiveness of the structural term in Eq. 3.3, that is, how this
term can improve classification accuracy concerning parameter α. In the experiments,
15 real data sets were selected from the UCI machine learning repository (Bache and
Lichman, 2013), and the test set of the MNIST database was used as a large data set
(LeCun et al., 1998). Table 3.1 (section 3.1.3) shows the metadata for all data sets. As
can be seen in this table, the selection encompassed diversity on data domains as well
as considered different number of classes, attributes and sizes (they vary from 3 to
15, 4 to 784 and 101 to 10, 000, respectively). Eventual categorical attributes, such as
in Balance and Zoo, were treated as numerical. The attribute values of all data sets
were normalized to the interval [0, 1]. Individual cases were normalized by dividing
each attribute by the square root of the sum of the squares of the individual attributes.
Thus, an instance xi = (xi1, xi2, . . . , xiq) was normalized by dividing each attribute xij

by ∑
q
j=1 xij

2.

In the simulations, parameter α was optimized in the interval
{0.00, 0.05, 0.10, 0.15, . . . , 1.00} by the grid method. Parameter τ was optimized
in the interval from 1 to the number of instances of the largest class in the training
data set. The networks were constructed by using the k-nearest neighbor rule, where
each node links to its k-most similar neighbors, and parameter k was optimized in the
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Table 3.5: Classification accuracy (%) followed by standard deviation. Each result shows the
adjusted parameters for the model selection. The best results are in boldface.

Data set Similarity term: α = 1 (τ) Combined terms (α, τ) Boost (%)

Zoo 93.5 ± 0.6 (1) 97.0 ± 0.1 (0.90, 1) 3.7
Hayes-Hoth 59.2 ± 1.6 (7) 61.7 ± 2.3 (0.40, 1) 4.2
Iris 98.0 ± 5.8 (27) 98.0 ± 0.6 (0.95, 27) 0.0
Teaching 64.1 ± 2.1 (1) 65.3 ± 2.0 (0.40, 1) 1.9
Wine 82.9 ± 1.1 (1) 87.1 ± 1.6 (0.45, 1) 5.1
Image 74.8 ± 0.9 (1) 75.6 ± 0.8 (0.60, 15) 1.1
Glass 67.2 ± 1.0 (5) 72.8 ± 1.1 (0.75, 1) 8.3
E. Coli 84.1 ± 0.6 (7) 85.5 ± 0.6 (0.65, 5) 1.7
Libras 81.6 ± 0.8 (1) 85.0 ± 0.8 (0.05, 1) 4.2
Balance 95.5 ± 0.5 (1) 97.2 ± 0.6 (0.25, 24) 1.8
Vehicle 65.5 ± 0.7 (1) 67.7 ± 0.6 (0.00, 43) 3.4
Vowel 96.8 ± 0.4 (1) 97.5 ± 0.3 (0.00, 1) 0.7
Yeast 56.7 ± 0.4 (8) 57.2 ± 0.5 (0.60, 8) 0.9
Wine Q. Red 59.7 ± 0.6 (1) 61.6 ± 0.5 (0.45, 1) 3.2
Segment 92.8 ± 0.3 (1) 93.2 ± 0.2 (0.80, 1) 0.4
MNIST 94.8 ± 0.1 (1) 95.1 ± 0.1 (0.85, 4) 0.3

interval {2, 3, 4, . . . , 10}. Each experiment was performed by using a 10-fold stratified
cross-validation process (Kim, 2009). In this process, the data set is split in 10 disjoint
sets and, in each run, 9 sets are used as training data and 1 set is used as the test data,
resulting in a total of 10 runs. The results are averaged over 30 simulations, totaling
10× 30 = 300 runs.

Table 3.5 shows the best classification rates, the corresponding standard deviations
and the optimal parameter values. Specifically, the second column shows results with
α = 1, that is, only the similarity weight matrix is used; the third column shows the
results with α < 1, that is, both the similarity and the structural weight matrix are
used in the classification. It can be observed that the best classification accuracies for
all simulated data sets are achieved when α < 1. This means that the structural weight
matrix improves the classification performance. The boost in classification accuracy is
showed in the fourth column. We can see that significant large boosts, up to 8.3% for
the Glass data set, were achieved.

3.2.3.3 Influence of parameter α

As have been previously showed, a mix between the similarity and the structure
terms results in a better classification accuracy. So, we provide here an analysis to
guide the choice of parameter α with regarding to data set features. We took 3 rep-
resentative data sets from Table 3.1 to check the required α values for achieving the
highest classification accuracy. Figure 3.7 shows the classification accuracy for Iris,
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Figure 3.7: Classification accuracy in function of parameter α for Iris, Segment and Vehicle data
sets.

Segment and Vehicle data sets in function of α. It can be observed that a very large
value (α = 0.95) resulted in the best accuracy for the Iris data set. In this case, the
similarity term of Eq. 3.3 played the main role. For the Segment data set, a value of
α = 0.80 implied the mixing of both similarity and structural terms. Finally, for the
Vehicle data set, the best accuracy required a very small value (α = 0.00), which means
that, in this case, the structural term dominated.

Now we show how data sets features influence the optimal value of parameter α.
Figure 3.8 shows the class distribution for the Iris data set by using the first three largest
PCA components. Clearly, the 3 classes are well defined in this case. As a consequence,
the technique can rely on the similarity structure because only a small overlap occurs
between any two classes. This can be achieved by setting α with a large value to give a
large weight to the similarity term. As a slightly different situation, Fig. 3.9 shows the
first three PCA components for the Segment data set. As can be seen, this data set is
composed by 4 almost well defined classes (blue, red, light green and brown), while the
other 3 classes are strongly mixed. In this case, the technique can not rely completely
in the similarity structure of the data set because of the expressive overlapping cases.
To avoid this situation, the technique achieved the best result by using α = 0.80, which
gives 20% of weight to the high level structural term, increasing the weight of the local
measure. As the last situation, Fig. 3.10 shows the first three PCA components for the
Vehicle data set. It can be observed that the 4 classes are highly overlapped with each
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Figure 3.8: Class distribution of the Iris data set using the first three most representatives PCA
components. The classes are well defined.

other. As a consequence, the technique can not rely on the similarity matrix because
the links among nodes would be links among a mix of different classes. Therefore, the
structural term is more reliable as the mix among classes would be decreased in this
case. This is achieved by a small value for α (0.00). This study shows that the structural
term is specially useful in the complex situation of classification, that is, when the low
level physical feature fails to distinguish different classes.

To complete the analysis, Fig. 3.11 shows the class dispersion and the optimal α

values for all data sets in Table 3.1. The data set dispersion was calculated in terms of
the Fisher ratio: the ratio of the between-class scatter to the within-class scatter in the
feature space. Fig. 3.11 shows the results normalized in the interval [0, 1]. Here, the
same evidence as in the study of the three representative data sets (Iris, Segment and
Vehicle) can be found. In Fig. 3.11, the Pearson’s correlation coefficient between both
curves is 0.52 in the interval [−1, 1], being −1 a total anticorrelation and 1 a perfect
linear dependency. The value 0.52 means a high correlation between the α value and
the data set class dispersion.

3.2.3.4 Influence of parameter τ

In order to analyze the influence of parameter τ in the classification accuracy, we
simulated three artificial data sets as depicted in Fig. 3.12. These three Gaussian data
sets are composed of two classes with 500 instances each, with different levels of over-
lapping. In all cases, it can be seen that relatively small values (τ ≈ 30, representing
3% of the data set size) are sufficient to achieve the optimal or sub-optimal results. The
same evidence was found for the real data sets shown in the next subsection 3.2.3.5, in
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The correlation coefficient between both curves is 0.52, indicating a high linear dependency
between them.

which simulation accuracies achieved the best results by using small values for param-
eter τ, most of them lying in the range of approximately 0.04% to 7.14% of the number
of instances. Hence, a good heuristic is to choose small values for parameter τ in the
range of optimization. Actually, since τ is a discrete parameter and it defines the num-
ber of neighbors used for classification, it is reasonable to assume that the parameter
range of τ is very small, that is, τmax = constant << n, and so finding out the opti-
mal value of τ by exhaustive searching does not change the complexity order of the
algorithm and, in practice, it is a very quick process.

3.2.3.5 Comparative study

The proposed technique was compared to other 6 representative multi-class classi-
fication algorithms. Three of them are nearest neighbors algorithms (Tan et al., 2005),
namely k-Nearest Neighbors (kNN), Weighted kNN (WkNN) and Prototype-based
kNN (PkNN) (Hastie et al., 2009). The other three are Decision Tree C4.5 (Quinlan,
1992), Multi-Class SVM (MSVM) (Vapnik, 1999) and the network-based k-Associated
Optimal Graph (kAOG) (Bertini et al., 2011).

The preprocessing of data sets and the parameter adjustment for the proposed tech-
nique are described previously (subsection 3.2.3.2). For the parametric algorithms (all
algorithms except kAOG), a repeated cross-validation (Kim, 2009) was performed to
optimize their respective parameters. For the SVM algorithm, we used the one-against-
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Figure 3.12: Classification accuracy in function of parameter τ. On the left column, there are
three distinct artificial data sets with two classes of 500 instances each. Class distribution range
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small values (τ ≈ 30, representing 3% of the data set size) are sufficient to achieve the best
results, around 99.2%, 96.4% and 87.5% top-down.
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one multi-class version, in which L(L − 1)/2 binary classifiers distinguish between
every pair of classes by using a voting scheme. To avoid ties, the output of each SVM
corresponds to the real valued decision functions. The one-against-one SVM is prefer-
able over other multi-class methods and yields the best results among them (Hsu
and Lin, 2002). To reduce the parameter search space in the SVM model selection,
the kernel in consideration was only the radial basis function, K(xi, xj) = e−γ||xi−xj||2 ,
and the stopping criterion for the optimization method was defined as the Karush-
Kuhn-Tucker violation to be lower than 10−3, the same condition used in (Hsu and
Lin, 2002). The model selection was performed by considering the kernel parameter
γ ∈ {24, 23, . . . , 2−10} and the cost parameter cp ∈ {212, 211, . . . , 2−2}, resulting in 125
combinations for each data set. For kNN algorithms, the only parameter is the number
of neighbors k, which ranged from 1 to the number of instances in the largest class
of the training set. In the WkNN, the classification was performed by summing the
weights between the instance to be labeled and its k-nearest neighbors. Specifically, the
weight between two instances xi and xj was defined by 1/||xi, xj||, where || � || is the
Euclidean distance. For the PkNN, the prototypes were obtained by using the k-means
algorithm (Hastie et al., 2009), and the number of prototypes per class was selected in
the interval [1, 30]. For the C4.5 algorithm, two parameters were adjusted: the con-
fidence factor, which assumed the values c f ∈ {0, 0.1, 0.25, 0.5, 0.8, 1}, where smaller
values incurred more pruning (1 is for no pruning); and the minimum number of in-
stances µ that a set must had to be further partitioned (µ ∈ {0, 1, 2, 3, 4, 5, 10, 15, 20, 50}).

Table 3.6 presents the classification accuracies achieved by the algorithms for each
data set as well as the optimized parameter values. Table 3.7 shows the corresponding
rank. The ranking measure was calculated as follows: i) for each data set, a rank value
is determined according to the accuracy of the technique, that is, the best technique on
a given data set is ranked as 1, the second best is ranked as 2, and so on; and ii) for each
algorithm, the final rank is the average rank values on all data sets. From Table 3.7, it
can be seen that the proposed technique achieves the best rank among all techniques
under comparison. Moreover, as it can be seen in Table 3.6, the proposed technique
also exhibited the smallest deviation values.

For the sake of completeness, the statistical method proposed in (Demšar, 2006)
(and references therein for the ahead mentioned tests) was used to compare multiple
classifiers over multiple data sets. Following this method, the average rank of each
algorithm is used in the non-parametric Friedman test to check whether they are sig-
nificantly different from the average value of the overall ranks (3.93 in our simulations).
The Friedman test uses the F-distribution to calculate a critical value in order to reject
the null-hypothesis (all techniques are equivalent) under a defined confidence level.
Being Na the number of tested algorithms, and Nb the number of data sets, the critical
value is determined by the degree of freedom (Na − 1, (Na − 1)(Nb − 1)). In our case,
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(7− 1, (7− 1)(16− 1)) = (6, 90). For a significance level of 5%, the critical value for our
experiments is Fdist(6, 90) ≈ 2.20. So, any result of the Friedman test larger than this
critical value rejects the null-hypothesis. For the presented numerical results, the null-
hypothesis was rejected because the Friedman test resulted in FF ≈ 5.12 and, therefore,
the simulated techniques are not equivalent.

In the next step, the performance comparison of our technique in relation to the
others is conducted by following the Bonferroni-Dunn test (Dunn, 1961). This test con-
sists in comparing a control technique against the others. Here, the control technique
is the one proposed in this paper. A critical difference (CD) is calculated for a given
critical value (qβ) determined for a significance level β. Any rank difference larger
than CD confirms that two techniques are significantly different. Thus, by using a sig-
nificance level of β = 0.05, the critical value is q0.05 = 2.64, resulting in CD = 2.02. So,
any ranking difference larger than 2.02 justifies the superiority of the best ranked al-
gorithm. Using pairwise comparisons in Table 3.7, we see that our technique is better
than PkNN and C4.5 with a significance level of 5% and presents no significant dif-
ference to kNN, WkNN, MSVM and kAOG. Thus, we can conclude that the proposed
technique is at least comparable to the simulated techniques. It should also be noted
that in the present comparison all techniques have been optimized with respect to their
parameters for model selection.

3.2.3.6 Application to image classification

As a practical application, the proposed technique was applied to classify images
from the ETH-80 collection (Leibe and Schiele, 2003). This data set comprises a collec-
tion of 3280 images of 8 categories: apple, car, cow, cup, dog, horse, pear and tomato
(Fig. 3.13). For each category, there are 10 objects that span large in-class variations
while still clearly belonging to the category. Each object is represented by 41 images
from viewpoints spaced equally over the upper viewing hemisphere (at distances from
22.5◦ to 26.0◦). For illustration, Fig. 3.14 shows the 41 images of the yellow race car
class from car category.

In the simulations, the images were down-sampled from 128× 128 (original size)
to 32× 32 to speed up processing. The image features were extracted by using the spa-
tiogram measure (Conaire et al., 2007). Spatiograms are able to capture higher-order
spatial moments. A 2nd-order spatiogram model of an object is identical to a histogram
of its features, except that it also stores additional spatial information, namely the mean
and covariance of the spatial position of all pixels that fall into each histogram bin.
To compute similarities among images using spatiograms, we used the discrete Bhat-
tacharyya coefficient (Bhattacharyya, 1943; Djouadi et al., 1990). Similar to the previous
subsection, the results were averaged over 30 experiments, each one consisting of a 10-
fold stratified cross-validation process.
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Figure 3.13: ETH-80 images collection. Each line corresponds to a category of objects. Each
category comprises 10 distinct classes.

Figure 3.14: The 41 instances of the yellow race car class in the ETH-80 images collection.
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Table 3.8: Classification accuracy (%) followed by standard deviation. Each result shows the
parameters adjusted for the model selection. The best results are in boldface.

Category Only similarity term: α = 1 (τ) Combined terms (α, τ) Boost (%)

Apple 85.8 ± 0.6 (1) 86.8 ± 0.8 (0.50, 1) 1.2
Car 85.2 ± 1.1 (1) 89.1 ± 0.6 (0.50, 1) 4.6
Cow 61.2 ± 1.1 (4) 65.3 ± 1.3 (0.50, 41) 6.7
Cup 75.4 ± 0.8 (1) 81.1 ± 1.0 (0.40, 47) 7.6
Dog 79.3 ± 0.8 (1) 82.1 ± 1.0 (0.50, 39) 3.5
Horse 74.4 ± 1.1 (1) 75.4 ± 0.9 (0.45, 1) 1.3
Pear 69.8 ± 1.0 (1) 74.3 ± 0.9 (0.55, 47) 6.4
Tomato 89.9 ± 0.9 (1) 89.9 ± 0.8 (0.95, 1) 0.0
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Figure 3.15: Classification accuracy of the categories Cow, Cup and Pear, in function of param-
eter α. As each of these categories contains very similar classes, an intermediate value for α
between 0.40 and 0.60 results in the best accuracy rates.

Table 3.8 shows the simulation results. The efficacy of the technique is verified on
each category separately. As each category comprises very similar classes, the classi-
fication process is a hard task. The results show that a combination of the similarity
and the structural weight matrices resulted in the best classification accuracies. For
illustration purpose, Table 3.9 shows some representative cases in which the usage of
the structural weight matrix can correct the misclassification made by using the simi-
larity weight matrix alone. For example, in the 2nd line of this table (Cup category), the
incorrect class is very similar to the correct class of the sample image. However, when
a value of α = 0.40 was used, this error was corrected. Fig. 3.15 shows the curves of
classification accuracy for the categories in Table 3.9 as a function of parameter α. We
can see that, for these data sets, intermediate values of α, corresponding to a strong
influence of the structural term, resulted in the best accuracies.
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3.3 Classification of multiple observation sets

In this section, we introduce two network-based techniques which are able to clas-
sify multiple observation sets. One of the techniques is based on the modularity mea-
sure (Cupertino et al., 2012) and the other is based on the Katz centrality index (Cu-
pertino and Zhao, 2012b). The assumption considered in both techniques is that when
two groups of different pattern observations are linked together into a network, the
network results in a modular structure, that is, both groups can be discriminated as
subnetworks. In this situation, the modularity measure is applied directly to quantify
the link strength between the subnetworks, and the Katz index measures the centrality
of unlabeled observations in one subnetwork in relation to the labeled nodes in the
other subnetwork.

3.3.1 The problem of multiple observation sets

The problem of multiple observation sets can be stated as follows (Kokiopoulou
and Frossard, 2010). Consider a pattern p has m multiple observations of the following
form:

xi
(u) = oi(p), i = 1, . . . , m, (3.8)

where oi represents a transformation of the pattern p such as rotation, scaling, per-
spective projection etc. Superscript u denotes that the set of observations is unla-
beled, that is, the pattern the group of observations belongs to is not known. The
task here is to classify p into one of |L| classes by using its unlabeled set of observa-
tions X (u) = {x(u)i = oi(p), i = 1, . . . , m} and a group of labeled sets X (l)

j = {x(l)i =

oi(pj), i = 1, . . . , n}, j = 1, . . . , |L|, where superscript l denotes that the set of observa-
tions is labeled.

3.3.2 Classification via modularity measure

The classification technique introduced in this subsection consists of two main
steps: network construction and modularity calculation (Cupertino et al., 2012). The
network construction is responsible for mapping the pattern observations into an un-
derlying network structure, where links represent the similarities between two neigh-
bor patterns, which are represented by the network vertices. The classification task is
based on the modularity measure (see subsection 2.2.2). The modularity measure is
capable of quantifying, based on a network scheme, the similarity between the repre-
sentations of the original pattern and the set of pattern transformations. Therefore, the
classification is performed by taking into account the set of transformations which is
better related to the original pattern via the modularity measure.
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Figure 3.16: An example of a k-NN patterns network formation. The central pattern is linked
with its two nearest neighbors, 1NN and 2NN.

Networks are constructed from the data sets by using the k-NN method (see section
2.2.3). This method consists in creating a link between a vertex i and its k most similar
neighbors. It is equivalent to finding the k most similar patterns of a reference pattern.
Consider the labeled data set X (l) of a specific pattern p. First, the similarities among
all patterns must be calculated, for instance, by using the Euclidean distance. As an
illustration, Fig. 3.16 shows a pattern that is linked to its two nearest neighbors. In
this kind of network, if a pattern i has pattern j as its nearest neighbor, the reciprocal
is not true, that is, pattern i could not be the nearest neighbor of pattern j. Therefore,
in this work the edges are directed, representing only one direction of similarity. The
constructed networkN = {V , E} does not contain self-loops. In this network, vertices
represent the patten observations in the set V = {xi}, and E = {wij}, i, j = 1, . . . , n,
represent links among patterns. If there is a link between patterns xi and xj then wij =

1, otherwise, wij = 0.

Each pattern set is represented by one exclusive network. Hence, if we are given |L|
different pattern groups, the classification technique constructs |L| different networks,
each one corresponding to a single labeled class X (l)

j . This step can be viewed as the
training phase.

The technique then computes the modularity measurement associated with the un-
labeled set X (u) concerning each one of the |L| labeled networks. The unlabeled set
X (u) joins into each labeled network, forming |L| new networks, using the same k-
NN network formation method: each unlabeled pattern observation x(u)i is connected
to its k-most similar neighbors. These similar neighbors can be selected from the set
of labeled vertices X (l)

j as well as from the unlabeled observations set X (u), but self-
connections are forbidden. Next, the modularity measure is calculated for each one of
the |L| new networks, according to Eq. 2.5 in the subsection 2.2.2, by setting g = 2
densely connected subgroups, that is, one is the group of the vertices corresponding
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to the initial constructed labeled network (X (l)
j ) and the other group corresponds to

the unlabeled vertices in X (u) that has been joined into the labeled network. This pro-
cess is performed for each one of the |L| labeled networks. At the end of the process,
the unlabeled group is classified as belonging to the pattern network whose modular-
ity measure has presented the lowest value, indicating that the unlabeled patterns are
more similar to the patterns in that network. This process is described in Algorithm 5.

3.3.3 Classification via Katz index

The technique for classification of multiple observation sets via Katz index, intro-
duced in Cupertino and Zhao (2012b), performs similar steps to the modularity tech-
nique previously described in the last subsection: first, the training networks are con-
structed by the k-NN method; second, the unlabeled observations X (u) are joined into
each labeled network, forming |L| new networks; finally, the Katz index is calculated
for each new network according to Eq. 2.8 in section 2.2.2. At the end of the process,
the unlabeled group is classified as belonging to the same class of the network of which
CKatz has presented the largest value, indicating that the unlabeled patterns are more
similar to the patterns in that network or, in other words, that the unlabeled patterns
are more central in that network. This process is described in Algorithm 6.

Given the special case of the problem at hand, just some elements of the matrix
CKatz are taken into account. These elements correspond to the unlabeled set of trans-
formations X (u). Only the centralities of the vertices that represent these elements are
considered: considering two subgroups in the network, that is, the group of labeled
vertices of the labeled network and the group of the unlabeled vertices joined into the
labeled network, the centralities taken into account are those which compute the paths
from the labeled to the unlabeled subnetworks.

3.3.4 Algorithm and complexity analysis

In a concise form, the technique for classification of multiple observation sets via
modularity measure can be summarized by Algorithm 5.

The computational complexity of Alg. 5 is determined mainly by the k-NN network
construction in the training phase (step 1). It takes O(n2), where n is the number of
labeled observations, due to the similarity calculation among all patterns. In the classi-
fication phase, each network construction takes O(nm) (step 2), where m is the number
of unlabeled observations. The modularity calculation (step 3) runs in logarithmic time
(O(log kmax)), where kmax is the maximum vertex degree in the network (Dasgupta and
Desai, 2013). Therefore, the algorithm runs in O(n2) + O(nm) + O(log kmax). On the
other hand, as the training phase must run only once before usage, the method takes
O(nm) + O(log kmax) to classify a new set of multiple observations.
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Algorithm 5 Classification of multiple observation sets via modularity
Input:
X (l)

j : labeled pattern sets (j = 1, . . . , |L|)
X (u) : unlabeled observations set
Parameters:
k : number of nearest neighbors
Output:
l : estimated class for the unlabeled observations (l ∈ L)
Training:
for j = 1→ L do

1 : Net(l)j = create k-NN network from labeled set X (l)
j

Classification:
for j = 1→ |L| do

2 : Net(l+u)
j = join unlabeled set X (u) into Net(l)j

3 : Qj = compute modularity of Net(l+u)
j

4 : l = argminj(Qj)

The technique for classification of multiple observation sets via Katz index can be
summarized by Algorithm 6.

The computational complexity of Algorithm 6 is determined mainly by the k-NN
network construction in the training phase and by the Katz index calculation in the
classification phase. The k-NN network construction takes O(n2) (step 1), where n
is the number of labeled patterns, due to the similarity calculation among all pat-
terns. In the classification phase, each joined network runs in O(nm) (step 2), where
n is the number of unlabeled patterns. In the step 3, the matrix inversion required
to calculate the Katz centrality takes O((n + m)3). Hence, the algorithm runs in
O(n2) + O(nm) + O((n + m)3). However, there are some methods that can reduce
this cubic complexity as, for example, by taking advantage of the matrix symmetry or
making approximations and decompositions to achieve an order of O(n + E), where E
is the total number of links in the network (Foster et al., 2001).

3.3.5 Experimental results

We tested the previously introduced techniques, classification via modularity and
via Katz, on two data sets. First, the results on a manuscript digits database are shown.
This collection contains 20× 16 binary images of handwritten digits from “0” to “9”.
Each of these 10 classes contains 39 examples. Some examples can be seen in Fig. 3.17.
The simulation settings was configured as follows (the same setting as in Kokiopoulou
and Frossard (2010)). The data sets were split into training and test sets on each run.
The training sets were composed of two examples per class. Each example was aug-
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Algorithm 6 Classification of multiple observation sets via Katz centrality
Input:
X (l)

j : labeled pattern sets (j = 1, . . . , |L|)
X (u) : unlabeled observations set
Parameters:
k : number of nearest neighbors
Output:
l : estimated class for the unlabeled observations (l ∈ L)
Training:
for j = 1→ L do

1 : Net(l)j = create k-NN network from labeled set X (l)
j

Classification:
for j = 1→ |L| do

2 : Net(l+u)
j = join unlabeled set X (u) into Net(l)j

3 : CKatz
j = compute Katz centrality of Net(l+u)

j

4 : l = argmaxj(CKatz
j )

mented by four new virtual examples generated by successive rotations of the original
example. The rotation angles were sampled regularly in the interval [−40◦, 40◦]. The
test sets were composed of m randomly chosen examples and each one was rotated
by a randomly angle in the same interval, [−40◦, 40◦], uniformly. These virtual exam-
ples were generated to account for the robustness to pattern transformations. The use
of these examples can reinforce the transformation invariance into classification algo-
rithms. Therefore, the classification method becomes more robust to transformations
of the test instances. Values of m = 10, 30, 50, 70, 90, 110, 130 and 150 were considered
for the test set size.

Figure 3.18 shows the classification error on the test set by varying parameter k
of the k-NN network formation method. It can be seen that the higher the value for
parameter k, the higher the classification error. When k takes small values, the subnet-
works are well defined, meaning that the techniques identify more easily the subgroup
of unlabeled observations in relation to the labeled observations group. On the other
hand, when k takes large values, it is hard to discriminate the two groups. In other
words, the proposed techniques must use small values for k to achieve the best results.

We compared the proposed techniques to two other network-based methods: Label
Propagation (LP) (Zhou et al., 2003) and Manifold-Based Smoothing under Constraints
(MASC) (Kokiopoulou and Frossard, 2010). The LP algorithm forms a k-NN network
with weighted edges, and computes a real-valued label matrix via a regularization
framework function with a cost function (Zhou et al., 2003). The idea is to find a label
matrix which is smooth along the edges of similar pairs of vertices and, at the same
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Figure 3.17: Examples from the handwritten digit images data set. Each class, from “0” to “9”,
corresponds to a single pattern.
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Figure 3.18: Classification error rates (%) using different values for parameter k of network
construction on the handwritten digits data set. Each value was averaged over 50 runs. The
number of observations for the test set is m = 30.
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Figure 3.19: Classification error rates (%) for the handwritten digit images data set. All tech-
niques used k = 5 for the network construction. Each point was averaged over 1000 runs.

time, close to the initial labels. The MASC algorithm is a specialized version of the
LP algorithm to deal with the problem of multiple pattern observations sets. Since all
test samples belong to the same class, the optimal solution can be obtained with a full
search, as long as the number of classes stays reasonable (Kokiopoulou and Frossard,
2010). MASC has been formulated as a discrete optimization problem.

The results are shown in Fig. 3.19. For each value of m, 1000 runs were averaged,
corresponding to 100 runs for each of the 10 classes. For all algorithms, we set k = 5,
the value for which the LP algorithm achieved its best results. The proposed tech-
niques achieved the best results for most numbers of observations m of the test sets.
Furthermore, the results were even better when k took smaller values (Fig. 3.18).

The second data set used in simulations was the image collection of multiple views
of objects called ETH-80 data set (Leibe and Schiele, 2003). All patterns of this set are
shown in Fig. 3.13 in subsection 3.2.3.6. In total, there are 80 different classes, each
one composed of 41 different views, totaling 3280 instances. Each class belongs to one
of the following categories: apple, pear, tomato, cow, dog, horse, cup and car; and
each category has 10 different classes. As an example, multiple observations of the
class “yellow race car” can be viewed in Fig. 3.14. It must be stressed that the invari-
ant patterns in this data set suffer from different rotation angles in three dimensions,
configuring occlusions and projective distortions. See subsection 3.2.3.6 for a more
detailed description about the usage of this data set.

For the ETH-80 data set, the proposed techniques were compared to four meth-
ods specialized in multiple image observations: MASC (Kokiopoulou and Frossard,
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Table 3.10: Classification accuracy average (%) and standard deviation for the ETH-80 images
data set.

MASC MSM KMSM KLD Katz Modularity
88.88± 1.71 74.88± 5.02 83.25± 3.40 52.50± 3.95 92.79± 5.85 92.71± 2.65

2010) - previously described, Mutual Subspace Method (MSM) (Fukui and Yamaguchi,
2005), Kernel Mutual Subspace Method (KMSM) (Sakano and Mukawa, 2000) and KL-
divergence (KLD) (Shakhnarovich et al., 2002). In a few words, the last three methods
work as follows:

• MSM: A subspace analysis method. It represents each image set by a subspace
spanned by the principal components, i.e., eigenvectors of the covariance matrix.
The comparison of a test image set with a training one is then achieved by com-
puting the principal angles between the two subspaces. In the experiments, the
number of principal components has been set to nine, which has been found to
provide the best performance (Kokiopoulou and Frossard, 2010).

• KMSM:A nonlinear extension of the MSM method. Instead of using the PCA to
compute the image principal components, it uses kernel PCA to take into account
nonlinearities.

• KLD: It formulates the problem of classification of multiple observations of im-
ages as a statistical hypothesis test. Each set is assumed to fit a Gaussian distri-
bution and the method computes the KL-divergence among the sets. The energy
cut-off, which determines the number of principal components used in the regu-
larization of the covariance matrices, has been set to 0.96. Since the KLD method
relies on density estimation, it is sensitive to the number of the available data.

Table 3.10 shows the results. Both techniques, modularity and Katz, achieved the
best accuracies. As in the previous experiments, k = 5 was used in the simulations.

3.4 kAOG embedding for dimensionality reduction

Techniques for dimensionality reduction often lie in the unsupervised or in the
supervised learning. A classical example of unsupervised technique is the Principal
Component Analysis (PCA) (Jolliffe, 2002). PCA is an orthogonal transformation that
represent data by using the so called principal components. Usually, a small number
of principal components is sufficient to account for most of the structure in the data.
It maximizes the mutual information between the original high-dimensional Gaussian
distributed measurements and the projected low-dimensional measurements. As an
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unsupervised technique, PCA does not use the class label information of the input
data. In the supervised setting, data instances are marked with label information that
guides the formation of the low-dimensional space. The labels often take discrete class
values, indicating which data points have to be grouped together (same class) or set
far apart from the other (different classes) in the embedded space. In the group of su-
pervised techniques, Linear Discriminant Analysis (LDA) (Fukunaga, 1991) plays an
important role. As a supervised technique, it uses the class label information of the
input data. LDA finds a projection matrix that maximizes the trace of the between-
class scatter matrix and minimizes the trace of the within-class scatter matrix in the
projected subspace simultaneously.

The network-based technique introduced in Cupertino et al. (2013a) comprises two
complementary parts: a general graph-embedding framework for dimensionality re-
duction (Yan et al., 2007) and the kAOG network formation method (Bertini et al., 2011).
Specifically, the kAOG method is extended to provide both a must-link network and
a penalty network from the labeled data set X (l) that is embedded into the general
framework for dimensionality reduction.

Consider that it is given a training data set X (l) = {x(l)i , i = 1, . . . , n}, con-
taining labeled instances, and a test data set X (u) = {x(u)i , i = 1, . . . , m}, contain-
ing unlabeled instances. Each instance is described by q attributes, that is, a vector
xi = [xi1, xi2, . . . , xiq]

T, and belongs to a single class l ∈ L, where |L| is the number
of classes. The goal of the proposed technique is to perform dimensionality reduction
by using the information provided by the labeled data set X (l) in order to improve
classification accuracy or, at least, to speed up the classification process of the unla-
beled data set X (u) without decreasing the accuracy, given that a small number q′ of
projected attributes is used (q′ < q).

3.4.1 The Yan’s graph-preserving criterion

Usually, the feature dimension q in real data is very high, and transforming the data
from the original high-dimensional space to a low-dimensional space can alleviate the
curse of dimensionality (Duda et al., 2000). To accomplish that, a technique should
find a mapping function F that transforms x into the desired low-dimensional repre-
sentation y, so that y = F(x) (y ∈ Rq′). By using an underlying network to find such
function F, the dimensionality reduction process can be viewed as a graph-preserving
criterion of the following form (Yan et al., 2007):

Y∗ = arg min ∑
i 6=j
||yi − yj||2Wij = arg min YT LY, (3.9)
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constrained to YTBY = d. In this formulation, d is a constant vector, Wij is the adja-
cency matrix of the network, B is the penalty matrix and L is the Laplacian matrix. The
Laplacian matrix can be found via the following operation:

L = D−W, Dii = ∑
i 6=j

Wij, ∀i.

The penalty matrix B can be viewed as the adjacency matrix of a penalty network
WP, so that B = LP = DP −WP. The penalty network conveys information about
which vertices should not be linked together, that is, which instances should be far
apart after the dimensionality reduction process. The similarity preservation property
from the graph-preserving criterion has a two-fold explanation. For larger similarity
between instances xi and xj, the distance between yi and yj should be smaller to mini-
mize the objective function. Likewise, smaller similarity between xi and xj should lead
to larger distances between yi and yj for minimization (Yan et al., 2007).

It is assumed that the low-dimensional attribute space can be found by using a
linear projection such as Y = XTw, in which w is the projection vector. The objective
function in Eq. 3.9 becomes:

w∗ = arg min ∑
i 6=j
||wTxi −wTxj||2Wij

= arg min wTXLXTw, (3.10)

constrained to wTXLXTw = d. By using the Marginal Fisher Criterion (Yan et al., 2007)
and the penalty network constraint, Eq. 3.10 becomes:

w∗ = arg minw
wTXLXTw

wTXLPXTw
, (3.11)

which can be solved by the generalized eigenvalue problem by using the equation
XLXTw = λXLPXTw.

3.4.2 kAOG into the graph-embedding framework

In this technique, the previous Laplacian matrix L in Eq. 3.11 is calculated for the
kAOG created using the labeled data set X (l). The penalty network B, for which the
Laplacian Lp is calculated to be used in Eq. 3.11, is constructed by a modification of
the kAOG network formation method described in section 2.4.4. This penalty graph
conveys information about which data instances should not be close together in the
reduced feature space when they belong to different classes.

Algorithm 7 shows the construction of kAOG. After the initial setup, a loop starts
to merge the subsequent k-Associated Graphs (kAG) by increasing k, while improving
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Algorithm 7 k-Associated Optimal Graph

Require: data set X (l)

k⇐ 1
G(op) ⇐ k-associated graph(k, X) (Algorithm 8)
repeat

lastAvgDegree⇐ D(k)

k⇐ k + 1
G(k) ⇐ k-associated graph(k, X)

for all C(k)
β ⊂ G(k) do

if Φ(k)
β ≥ Φ(op)

α for all C(op)
α ⊆ C(k)

β then

G(op) ⇐ G(op) −∪
C(op)

α ⊆C(k)
β

C(op)
α

G(op) ⇐ G(op) ∪ {C(k)
β }

until D(k) − lastAvgDegree < D(k)/k return G(op)

Algorithm 8 k-Associated Graph

Require: k and a data set X (l)

E, B⇐ ∅
for all i ∈ V do

if j ∈ Λi,k & ci = cj then
E⇐ E ∪ ei,j

else if ci 6= cj then
B⇐ B ∪ ei,j

C ⇐ f indComponents(E)
for all α ∈ C do

Φα ⇐ Eq. (2.22)
G(k) ⇐ G(k) ∪ {(α(V′, E′, B′); Φα)}

return kAG G(k)

the purity of the network encountered so far, until the optimal network measured by
the purity degree is reached. Basically, the kAG algorithm links a vertex i to all its
k-nearest neighbors that belong to the same class of i (the set denoted by Λi,k). More
details about the algorithm are presented in Bertini et al. (2011).

Here, we propose a fast way to obtain the penalty matrix B for the kAOG as follows.
Create a penalty link between i and j in B if j is one of the k-nearest neighbors of i and
belong to a different class of i. Algorithm 8 shows how the links of the adjacency matrix
E and the penalty matrix B are created for the kAG. It is worth noting that the penalty
matrix is optimized by the purity measure too.

With the Laplacian of the data network L and the penalty network Lp at hand, we
are able to calculate the projection vector w∗ by following Eq. 3.11 to find the reduced
dimension by a linear projection.
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Table 3.11: Metadata of the simulated data sets.

Data set # Instances Dimension

sonar 208 60
libras 360 90
hill 606 100
musk1 476 166
CNAE 1080 856

3.4.3 Experimental results

The technique’s performance was compared to other two well-known network
formation methods, k-NN and ε-radius (subsection 2.2.3), into the general graph-
embedding framework. After the dimensionality reduction step, the projected data set
was classified by using the 1-nearest neighbor classification rule. In the experiments,
we used 5 high-dimensional data sets comprising data from diverse and different na-
ture from the UCI machine learning repository (Bache and Lichman, 2013): sonar, libras,
hill, musk1 and CNAE. The first data set, sonar, contains patterns obtained by bouncing
sonar signals off a metal cylinder at various angles and under various conditions. The
transmitted sonar signal is a frequency-modulated chirp, rising in frequency. Each pat-
tern is a set of 60 numbers in the range 0.0 to 1.0. Each number represents the energy
within a particular frequency band, integrated over a certain period of time. The libras
data set contains movements from the visual language of hear-impaired people. From
recorded videos, the movements were mapped in a representation with 90 features,
with representing the coordinates of the movements. In the hill data set, each record
represents 100 points on a two-dimensional graph. When plotted in order (from 1
through 100) as the y co-ordinate, the points create either a Hill or a Valley. The musk1
data set describes a set of 92 molecules of which 47 are judged by human experts to
be musks and the remaining 45 molecules are judged to be non-musks. To generate
this data set, the low-energy conformations of the molecules were generated and then
filtered to remove highly similar conformations, resulting in 476 conformations. The
last data set, called CNAE, contains 1080 documents of free text business descriptions
of Brazilian companies categorized into a subset of 9 categories cataloged in a table
called National Classification of Economic Activities. Each document was represented
as a vector, where the weight of each word is its frequency in the document. Table 3.11
shows their corresponding metadata.

For the k-NN network formation method, parameter k was optimized in the in-
terval from 1 to the number of instances of the largest class in the training data set.
For the ε-radius network formation method, parameter ε was optimized in the inter-
val 5%, 10%, . . . , 100% of the average distance among instances in the training data set.
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Table 3.12: Classification accuracy (%) using the reduced projected attribute space after di-
mensionality reduction performed by 3 underlying networks: kAOG, k-NN and ε-radius. The
accuracy by using the original dimension is showed for comparison purposes. The best results
are in boldface.

Data set kAOG k-NN ε-radius Original dimension

sonar 84.90 ± 20.90 79.01 ± 24.44 84.65 ± 9.57 83.30 ± 10.60
libras 85.06 ± 9.26 73.93 ± 17.94 84.89 ± 7.24 84.89 ± 5.76
hill 100.00 ± 0.15 100.00 ± 0.00 100.00 ± 0.15 100.00 ± 0.00
musk1 86.23 ± 11.25 80.21 ± 13.57 85.93 ± 8.66 85.93 ± 8.17
CNAE 87.30 ± 9.08 83.63 ± 10.02 86.19 ± 5.34 86.24 ± 5.61

Table 3.13: Projected low-dimension used for classification after dimensionality reduction for
the results in Table 3.12. The percentages of the number of projected attributes compared to the
original feature space are in parenthesis.

Data set kAOG (%) k-NN (%) ε-radius (%)

sonar 44 (73.33) 50 (83.33) 38 (63.33)
libras 90 (100.00) 86 (95.56) 90 (100.00)
hill 89 (89.00) 24 (24.00) 89 (89.00)
musk1 126 (75.90) 165 (99.40) 126 (75.90)
CNAE 473 (55.26) 729 (85.16) 473 (55.26)

The kAOG method is non-parametric. Each experiment was performed by using a 10-
fold stratified cross-validation process (Kim, 2009). In this process, the data set is split
in 10 disjoint sets and, in each run, 9 sets are used as training data and 1 set is used
as the test data, resulting in a total of 10 runs. The results are averaged over 30 runs,
totaling 10× 30 = 300 runs.

Table 3.12 shows the results of classification accuracy after dimensionality reduc-
tion by using 3 different network formation methods. In the last column of this table,
it is showed the classification accuracy without any dimensionality reduction process
for comparison purposes. It can be seen that the proposed technique achieved the best
accuracy rates in all tested data sets by using a smaller feature space of the input data.
Table 3.13 shows the number of attributes after dimensionality reduction for the re-
sults in Table 3.12. The proposed technique achieved dimensionality reductions up to
55.26% (CNAE data set) of the number of the original feature space. The other net-
work formation methods also achieved good dimensionality reduction rates, but with
a smaller classification accuracy (see Table 3.12).

A visual comparison of the proposed technique results to the original number of
attributes can be seen in Fig. 3.20. For the sake of completeness, Fig. 3.21 shows
the classification accuracy after dimensionality reduction performed by the proposed
technique by using from 1 to the number of attributes of the original feature space. It
can be seen that the highest accuracy is achieved by using a small number of projected
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Figure 3.20: Results of the proposed dimensionality reduction technique for the 5 data sets
and comparison to the original attribute space size. It can be seen that for the largest data set
(CNAE) the reduction is relevant, almost half the original space.

attributes, specially for data sets sonar (44 attributes) and CNAE (473 attributes).

We also applied the proposed technique to classify a data set of images called bi-
nary alphadigits available online1. This data set contains binary 20× 16 digits from "0"
through "9" and capital letters from "A" through "Z", with 39 sample images in each
class. Figure 3.22 shows some images of this data set. In the simulations, each image
was mapped as a vertex into an underlying a network.

Initially, we performed a preliminary experiment using only the images of num-
bers. The goal was to evaluate the potential of our technique in comparison to the
other network-based algorithms. Figure 3.23 shows the results. It can be seen that the
kAOG embedding dimensionality reduction technique outperformed both k-NN and
ε-radius techniques. Also, the kAOG technique is better comparing to the classification
using the original image features. For example, when using the first 150 transformed
image features, out of 320, the kAOG achieved an accuracy around of 80%, against
75%, 74% and 43% when using the original features, the ε-radius and the k-NN respec-
tively.

In the next experiment, the techniques were analyzed on all images (numbers +
letters) from binary alphadigits data set, resulting totaling a size of 1014 images. Despite
the higher complexity of the data set, the kAOG technique was able to perform well,
according to Figure 3.24. Again, one can see that the kAOG embedding dimensionality
reduction technique outperformed the other techniques, including the classification
using the original image features. For example, when using the first 100 transformed
image features, out of 320, the kAOG technique achieved an accuracy around of 54%,

1http://www.cs.nyu.edu/~roweis/data.html
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Figure 3.21: Classification accuracy by using different numbers of projected dimensions. It can
be seen that the highest accuracy is achieved by using a small number of projected attributes,
specially for data sets sonar (44 attributes) and CNAE (473 attributes).

against 33%, 33% and 17% when using the original features, the ε-radius and the k-NN
respectively. These results have showed our technique based on kAOG method can be
applied to dimensionality reduction problem with good results in the considered data
sets.
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Figure 3.22: Image examples from the binary alphadigits data set.
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Figure 3.23: Classification accuracy on images of numbers from binary alphadigits data set in
function of the number of transformed attributes used in classification.
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Figure 3.24: Classification accuracy on all images available into binary alphadigits data set in
function of the number of transformed attributes used in classification. By using the kAOG
network formation, the accuracy increased when using just a small number of transformed
features.



CHAPTER

4
Development of network-based techniques

for semi-supervised learning

This chapter presents two techniques developed during the doctorate period which
are related to the semi-supervised paradigm. This learning paradigm is introduced in
subsection 2.1.2. As it is explained there, the problem requires a large group of unla-
beled data and just a few information about labeled data. The process relies on both
the massive unlabeled group and on the few labeled instances to classify the unlabeled
data. In this way, the classification could achieve high accuracies even with just little
knowledge about the labels.

The first technique is based on the ease of access measured by random walk limiting
probabilities as it is explained in subsection 3.1, but, here, the rationale evolves on
the other way round. Instead of calculating the limiting probabilities in a network of
labeled vertices, the process measures the access from the unlabeled vertices to a few
labeled vertices. In other words, a network is constructed from the set of unlabeled
data and the few labeled data are inserted into this network to provide label biases.
These biases change the network structure in a way that it influences the result of the
stationary limiting probabilities: the stronger the label bias weight is over the links of
a given node, the larger the limiting probability for that node is and, consequently, the
greater the influence of that label is over the given node. The classification process
ends by averaging the influences of all labeled vertices.

We also introduce a nature-inspired semi-supervised technique based on attrac-
tion forces. The technique models data instances as dimensionless points in a q-
dimensional space and performs their motion according to the resultant force applied
over them. The labeled instances act as attraction points while the unlabeled instances

107
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receive the forces and move towards the attraction points. At a certain moment of the
dynamic, the unlabeled instances receive a label that is propagated from the labeled
points and become new attraction points. The model is effective and provides good
classification results.

4.1 Semi-supervised transductive classification via ran-

dom walk limiting probabilities

In the last subsections 3.1 and 3.2, the usage of random walk limiting probabilities
to classify data was introduced. In that scheme, each node (labeled instance) is a pos-
sible state for the random walker, and the network of labeled nodes is modified by a
specific link weight composition which takes into account the bias information of an
unlabeled instance. The bias information changes the network structure by affecting
the link weights among nodes resulting in a structure such that, after the calculation
of the limiting probabilities, the most easily reached labeled nodes represent the class
label of the unlabeled instance.

In this section, the above supervised classification scheme is extended to the semi-
supervised paradigm. In the technique introduced in (Cupertino and Zhao, 2013b),
instead of constructing a network from the labeled instances, the network uses the set
of unlabeled instances to compose its nodes, and the link weight composition takes
into account the information provided by the labeled instances. Here, it can be said
that the random walk process measures the label propagation from labeled vertices to
the remainder unlabeled vertices of the network. At the convergence, the propagation
is measured by the limiting probabilities. As a smooth labeling process, each unlabeled
node receives the most representative label after averaging the convergence measure.

4.1.1 Technique description

Given a data set composed of unlabeled data, X (u) = {x(u)i , i = 1, . . . , m}, the
objective is to classify all these data samples by using a data set composed of just a few
labeled instances X (l) = {x(l)i , i = 1, . . . , n}, l ∈ L, where X (l) ∩ X (u) = ∅, and each
instance is described by q attributes xi = {xi1, xi2, . . . , xiq}. Moreover, to characterize a
semi-supervised learning task, n� m.

In the first step, an undirected network N = {V , E} without self-loops is created
by using the unlabeled data. In this network, instances are represented by vertices,
V = X (u), and similarities among instances are represented by link weights, E =

[Wij], i, j = 1, . . . , m. The network connection matrixW = {wij} is calculated by using
some sort of distance function as, for example, the Euclidean distance. The entries wij
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represents the similarity between a pair of instances x(u)i and x(u)j , and wij = 0 when

there is no link between x(u)i and x(u)j .

In the following step, the similarity biases of the labeled instance x(l)j are used to

change the structure of the network N . To accomplish that, the similarities S (l)j =

[sj1, sj2, . . . , sjm] between x(l)j and all other vertices x(u)i ∈ V are calculated by using a

distance function, and a new m×m asymmetric connection matrix Ŵ (l)
j is composed

from the initial connection matrixW and the matrix of similarity biases Ŝ (l)j :

Ŵ (l)
j =W + εŜ (l)j , (4.1)

where ε is a non-negative parameter and Ŝj is the following m×m matrix:

Ŝ (l)j =



S (l)j

(1)

S (l)j

(2)

...

S (l)j

(m)


.

Remark 3. In Eq. 4.1, it can be observed that the weight biases of the labeled instance x(l)j ,

encoded in matrix Ŝ (l)j , are applied over all edges wij of network N , that is, the weight of each
edge is linearly added up with the corresponding weight bias. The idea behind this operation is
that the distance between any pair of vertices is reduced because of the new route introduced by
the insertion of the labeled data instance. The higher the proximity between the labeled instance
and a vertex, say vertex i, the more strengthened the connections from all other vertices to
vertex i are. The parameter ε controls the influence of weight bias provided by matrix Ŝ (l)j on
the original network. The larger is the value of parameter ε, the greater will be the influence of
the bias weights provided by x(l)j .

After the weight biases composition, x(l)j is effectively inserted into networkN . An
(m + 1)× (m + 1) weighted adjacency matrix Aj = {aij} is constructed:

A(l)
j =

 Ŵ (l)
j S (l)j

S (l)j

T
0

 . (4.2)

In this formulation, x(l)j is inserted as the last entry (m + 1) of matrix A(l)
j , without loss

of generality.
The two steps described above can be easily understood by using the toy example

depicted in Fig. 4.1. In this example, a network is formed by 4 unlabeled instances
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Figure 4.1: Composition process of the modified connection matrix
ˆW (l)
j . a) An undirected

and complete network N is formed by using 4 unlabeled instances; b) the similarities S (l)j are

calculated for the labeled instance x(l)j ; c) modified network A(l)
j , directed with self-loops, after

bias composition (Eq. 4.1) and insertion of the labeled vertex x(l)j (Eq. 4.2).

(Fig. 4.1a). In this initial network, the links are undirected and the connection matrix
is symmetric. Next, the similarity vector Sj between x(l)j and all other vertices is com-

puted (Fig. 4.1b). After this computation, the weight biases of x(l)j are added up to the
original connection matrix to form a biased connection matrix for the same network
(Eq. 4.1), and x(l)j is effectively inserted into the network (Fig. 4.1c). It can be seen from

Fig. 4.1c that the network becomes directed and with self-loops (except for x(l)j , that
has no self-loops) and the biased connection matrix is asymmetric.

After the insertion of x(l)j into network N , we are able to compute the entries of the

transition Markov matrix P (l)
j by normalizing the rows of A(l)

j :

pjik = ajik/
m+1

∑
k=1

ajik, i, k = 1, 2, . . . , m + 1.
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With the matrix P (l)
j at hand, the random walk limiting probabilities can be cal-

culated. This procedure can be performed by two ways: by finding the eigenvector
corresponding to the unit eigenvalue of matrix P (l)

j , or by iterating the system

p(l)
j (t + 1) = P (l)

j p(l)
j (t), (4.3)

to the stationary state, where p(l)
j is an (m + 1)× (m + 1) normalized vector. It results

in the following vector:
∞
p
(l)
j = [p1 p2 . . . pm+1],

where each entry entry pi represents the probability x(u)i belongs to the class l of the
labeled vertex x(l)j . The probability pm+1 is ignored as it represents the labeled vertex

x(l)j .

The above steps (Eq. 4.1 through 4.3) are repeated for each labeled instance x(l)j ∈
X (l), and each label probability is averaged:

∞
p
(l)

= ∑
j/l=k

∞
p
(l)
j , k = 1, 2, . . . ,L. (4.4)

Finally, the classification of all unlabeled instances in X (u) is accomplished by as-
signing the most representative label to each unlabeled instance x(u)i : label(x(u)i ) =

argmax l
∞
pi

(l)
.

4.1.2 Algorithm and complexity analysis

In a concise form, the proposed semi-supervised transductive technique can be
summarized by Alg. 9.

The computational complexity of the proposed semi-supervised technique can be
analyzed in terms of the steps 1 through 5 of the Alg. 9. The creation of a network
in step 1 requires a computation of O(m2) since the similarities between all pair of
instances must be calculated. The weight biases composition needs O(m2) operations
since each matrix entry must be added in step 2. Step 3 requires a linear element
insertion O(1). The limiting probabilities in step 4 can be promptly calculated by the
iterating the system of Eq. 4.4 to the stationary state in O(m2) computations. Step 5 of
Alg. 9 is O(n) in the worst case, when there is just a single available label. Putting it
all together, the computational complexity of the proposed technique is O(m2 + m2 +

m2 + n). Taking the highest order term and having in mind that n << m, it results in
O(m2).

However, this complexity can be reduced by dealing with sparse networks such as
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Algorithm 9 Semi-supervised transductive classification via random walk limiting
probabilities

Input:
X (u) : unlabeled data set
X (l) : labeled data set
Parameters:
ε : bias weighting parameter
Output:
l : estimated class label for x(u)i (l ∈ L)
Training:
1 : N = create a network from X (u)

Classification:
for x(l)j ∈ X

(l) do

2 : Ŵ (l)
j = compose weight biases into N (Eq. 4.1)

3 : A(l)
j = insert x(l)j into N (Eq. 4.2)

4 : p(l)
j = compute limiting probabilities (Eq. 4.3)

5 :
∞
p
(l)

= average
∞
p
(l)
j (Eq. 4.4)

6 : Assign x(u)i the most representative label in
∞
p
(l)
(argmax l

∞
pi

(l)
)

the k-nearest neighbor networks, in which connection matrices are sparse (all networks
constructed in the simulations of this section fall into this category). In this case, the
complexity of steps 2 and 4 are reduced to O(m < k >), being < k > (< k ><< m)
the average degree of the network (average number of links). Moreover, by using
the graph construction method based on Lanczos bisection (Chen et al., 2009b), step
1 requires O(mt), and the technique complexity reduces to O(mt + m < k > +m <

k > +n). Furthermore, according to (Chen et al., 2009b), a small value for parameter t
(1.06 <= t <= 1.33) is sufficient to achieve high quality networks. Thus, the compu-
tational complexity order of the proposed technique lies in O(m1.06) to O(m1.33).

4.1.3 Experimental results

In this subsection, we illustrate the efficacy of the proposed technique by presenting
two simulation groups. The first group comprises a toy example in which the classifi-
cation task is hampered due to a mix of different shaped and mixed classes. The second
group encloses some benchmark data sets used in literature for comparison purposes.

4.1.3.1 Toy example

In this subsection, we present simulation results using a toy example. A toy data
set (Fig. 4.2) that captures different class characteristics, such as different shapes and
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Figure 4.2: Mix of different cluster shapes from artificial data for semi-supervised classification.
This artificial data set is composed of 2500 instances divided into 5 balanced and distinct clus-
ters shapes: Gaussian, Highleyman and Lithuanian. Each cluster contains 10 labeled instances.
Black-filled stars represent labeled instances.

densities, was used to encompass a challenging classification task and to illustrate the
behavior of the semi-supervised technique. This data set is composed of 3 different
class distributions (from left to right): Gaussian, Highleyman and Lithuanian. The data
was generated by using the PRTools toolbox (Duin, 2000). Each class has 500 instances,
totaling 2500 instances for the entire data set. In addition, each class comprises 10
labeled instances, representing 2% of all data. Figure 4.3 shows that the proposed
technique satisfactorily labeled the 5 different classes.

4.1.3.2 Benchmark data sets

The proposed semi-supervised technique was tested and compared using 7 bench-
mark data sets. Table 4.1 shows a brief description of them. Three artificial sets (g241c,
g241d and Digit1) encompass some of the semi-supervised assumptions: manifold,
smoothness and cluster. The other four data sets (USPS, COIL, BCI and Text) are de-
rived from real data. The benchmarks were developed to evaluate the power of dif-
ferent algorithms as neutral as possible (Chapelle et al., 2006). For each data set, 24
independent splits of labeled data for the training set are available. 12 splits contain 10
labeled instances for each data set and the other 12 splits contain 100 labeled instances.
For each split, at least 1 instance of each class is labeled. A more detailed explanation
of each data set can be found in (Chapelle et al., 2006).

The proposed technique was compared to 16 well-known and established semi-
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Figure 4.3: Classification achieved by the proposed technique for the data set depicted in Fig.
4.2.

Table 4.1: Meta-data of the data sets composing the SSL benchmark.

Data Set Classes Dimension Points Type

g241c 2 241 1500 artificial
g241d 2 241 1500 artificial
Digit1 2 241 1500 artificial
USPS 2 241 1500 unbalanced
COIL 6 241 1500
BCI 2 117 400
Text 2 11960 1500 sparse discrete
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supervised techniques. Table 4.2 shows a brief description of them and their related
references. All simulation results were extracted from (Chapelle et al., 2006), where it
can be found values for parameter optimization and model selection in order to mini-
mize test errors. For LGC, LP and LNP, σ was selected from the set {0, 1, . . . , 100} and
α was fixed to α = 0.99 (the same setup done in (Zhou and Schölkopf, 2004) and (Wang
and Zhang, 2008)). For the LNP, k was evaluated for the values in {1, 2, . . . , 100}. The
configuration and parameter optimization for the proposed technique were done as
follows. For the network construction (Step 1 of Alg. 9), the k-nearest neighbor tech-
nique was used: each vertex was linked with its k most similar neighbors. Parameter k
was evaluated for the values in {1, 2, . . . , 100} and parameter ε was evaluated for the
values in {0, 0.1, 0.2, . . . , 10}. In all simulations, no data preprocessing was performed
by the techniques and the Euclidean distance was used to measure the similarities
among data.

Tables 4.3 and 4.4 show the simulations results for 10 and 100 labeled instances,
respectively, and the average rank for each technique. The ranking measure was cal-
culated as follows: i) for each data set, a rank value is determined according to the
accuracy of the technique, that is, the best technique on a given data set is ranked as 1,
the second best is ranked as 2, and so on; and ii) for each algorithm, the final rank is
the average rank values on all data sets. It can be seen that, for 10 labeled instances, the
proposed technique achieved an average rank of 5.86 (2nd place) and, for 100 labeled
instances, an average rank of 9.29 (11th place). Overall, it achieved an average rank of
7.57 (5th place) - preceded by LP (7.21), LDS (6.93), Laplacian RLS (5.43) and SGT (5.33).
Interestingly, the proposed technique achieved a very high position (2nd) in the case of
only 10 labeled instances, a very challenging semi-supervised task in which as only as
a small portion of 0.67% of the data set is labeled. Hence, concerning the 17 techniques
and the 7 benchmark data sets, the proposed technique is at least comparable to the
best known semi-supervised techniques.

4.2 Semi-supervised classification based on interacting

forces

The technique based on interacting forces introduced in (Cupertino and Zhao,
2012a; Cupertino et al., 2013b) can be viewed as a complete network where attraction
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Table 4.2: References for the simulated semi-supervised techniques.

Abbreviation Technique Ref.

MVU + 1-NN Maximum Variance Unfolding (Sun et al., 2006)
LEM + 1-NN Laplacian Eigenmaps (Belkin and Niyogi, 2003)
QC + CMR Quadratic Crit. and Class Mass Reg. (Delalleau et al., 2005)
Discrete Reg. Discrete Regularization (Zhou and Schölkopf, 2006)
TSVM Transductive Support Vector Machines (Chapelle and Zien, 2005)
SGT Spectral Graph Transducer (Joachims, 2003)
Cluster-Kernel Cluster Kernels (Chapelle et al., 2003)
Data-Dep. Reg. Data-Dependent Regularization (Corduneanu and Jaakkola, 2006)
LDS Low-Density Separation (Chapelle and Zien, 2005)
Laplacian RLS Laplacian Regularized Least Squares (Sindhwani et al., 2005)
CHM (normed) Conditional Harmonic Mixing (Burges and Platt, 2006)
LGC Local and Global Consistency (Zhou and Schölkopf, 2004)
LP Label Propagation (Zhu and Ghahramani, 2002)
LNP Linear Neighborhood Propagation (Wang and Zhang, 2008)

forces represent link strength among vertices. It uses the initial labeled instances in-
formation to propagate their labels to the attracted vertices which, in turn, after being
labeled, propagates their label to the subsequent attracted vertices and so on. In other
words, this dynamic makes use of unlabeled data, the attracted neighbor vertices, to
perform the classification task which is, in turn, the main idea of a semi-supervised
technique. Even more, the model allows fine adjustment as one can use any attraction
force function and adjust its parameters.

Despite the simplicity of the model, two considerations are necessary to accom-
plish the above mentioned behavior. One of them is to guarantee that the process is
stable, and the other is to certify that the labels propagate adequately through the un-
labeled instances, allowing the algorithm to converge and achieve good classification
accuracy. The stability issue can be treated using similar approaches from swarm ag-
gregation works (Gazi and Passino, 2003; Liu et al., 2003), while the label propagation
dynamics can be analyzed in terms of the attraction force function parameters. Both
considerations are explained in the next subsections.

4.2.1 Technique description

Given a data set composed of unlabeled data, X (u) = {x(u)i , i = 1, . . . , m}, the
objective is to classify all these data samples by using a data set composed of just a few
labeled instances X (l) = {x(l)i , i = 1, . . . , n}, l ∈ L, where X (l) ∩ X (u) = ∅, and each
instance is described by q attributes xi = {xi1, xi2, . . . , xiq}. Moreover, to characterize a
semi-supervised learning task, n� m.

The instances are modeled as dimensionless points. We assume synchronous mo-
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tion and no time delays, that is, all points move simultaneously and know the exact
position of each other. The motion of unlabeled points x(u)i is governed by the follow-
ing system:

ẋ(u)i (t) =
n

∑
j=1,j 6=i

f [x(l)j (t)− x(u)i (t)], i = 1, . . . , m, (4.5)

where f is the attraction force function among instances.
As it is described by Eq. 4.5, each unlabeled instance x(u)i receives attractive forces

from all labeled instances, and the resultant force is the sum of all individual forces.
Thus, the direction and magnitude of the motion of x(u)i is determined by the forces
applied by the labeled instances.

The attraction function is defined as a Gaussian field with parameters φ and β:

f [x(l)j (t)− x(u)i (t)] = [x(l)j (t)− x(u)i (t)]
φ

eβ‖(x(l)j (t)−x(u)i (t))‖2
. (4.6)

This attraction function is chosen in order to guarantee that the closer a point is
to an attractor point, the stronger the force is. Moreover, its parameters provide an
easy way to adjust the function amplitude and range, which is necessary to the correct
functioning of the process. In the next subsections, the heuristics used to adjust these
parameters are described in details.

4.2.2 Algorithm

In a concise form, the proposed technique can be summarized by Algorithm 10.
The technique is performed iteratively in 4 steps (from 2 to 5), until all instances are
labeled. The parameter initialization (step 1) is discussed in section 4.2.4.

Algorithm 10 Semi-supervised classification based on interacting forces
Input:
X (u) : unlabeled data set
X (l) : labeled data set
Output:
li : estimated class label for x(u)i (li ∈ L)
Initialization:
1 : (φ, β, δ) = initialize parameters
Classification:
repeat

2 : calculate distances among points
3 : calculate attraction forces
4 : update points’ positions
5 : propagate labels

until X (u) = ∅
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4.2.3 Stability analysis

For the sake of completeness, the stability of the system in Eq. 4.5 is analyzed by
using the Lyapunov stability method (Hangos et al., 2004). Based on this method, a
system f (x(t)) is called stable if there is a candidate function V(x) ≥ 0 positive def-
inite, that is, V(x) = 0 if and only if x = 0, and its derivative V̇(x) = d

dt V(x) ≤ 0 is
negative definite, that is, the equality holds if and only if x = 0. The problem is to find
a suitable candidate function so that the above constraints are satisfied.

Given that in the proposed system the labeled instances are fixed because they do
not receive any attraction force and so do not move, we turn our attention to the unla-
beled points, which compose the system dynamics. Consider an unlabeled point x(u)i
has been attracted by the resultant force function in the direction of a specific labeled
point x(l)p . In this case, x(u)i will putatively enter into the neighborhood of x(l)p , δ, and

become labeled. By using the difference variable ei(t) = x(u)i (t)− x(l)p , the Lyapunov
candidate function is defined as:

Vi =
1
2

ei
T(t)ei(t),

and its derivative is given by:

V̇i = ‖ei(t)‖
ei(t)

T

‖ei(t)‖
ẋ(u)i (t) = ei(t)

Tẋ(u)i (t).

Substituting
˙

x(u)i by the expressions in Eq. 4.5 and 4.6, and dropping the time and
label indexes for clarity, it results in:

V̇i = −ei
T

n

∑
j=1,j 6=i

φ(xi − xj)

eβ‖xi−xj‖2 =

−ei
T

[
φ(xi − xp)

eβ‖xi−xp‖2 +
n

∑
j=1,j 6=i,j 6=p

φ(xi − xj)

eβ‖xi−xj‖2

]
=

− φ‖ei‖2

eβ‖xi−xp‖2 + (xp − xi)
n

∑
j=1,j 6=i,j 6=p

φ(xi − xj)

eβ‖xi−xj‖2 ≤

− φ‖ei‖2

eβ‖xi−xp‖2 +

∥∥∥∥∥(xp − xi)
n

∑
j=1,j 6=i,j 6=p

φ(xi − xj)

eβ‖xi−xj‖2

∥∥∥∥∥ =

− φ‖ei‖2

eβ‖xi−xp‖2 + ‖ei‖
∥∥∥∥∥ n

∑
j=1,j 6=i,j 6=p

φ(xi − xj)

eβ‖xi−xj‖2

∥∥∥∥∥ =

−φ‖ei‖
(
‖ei‖

eβ‖xi−xp‖2 −
∥∥∥∥∥ n

∑
j=1,j 6=i,j 6=p

(xi − xj)

eβ‖xi−xj‖2

∥∥∥∥∥
)

.
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Following the previously mentioned situation, x(u)i is closer to x(l)p than to all other

points. Once inside the neighborhood of x(l)p , x(u)i gets trapped, that is, it receives the

corresponding label and do not move anymore. Therefore, one can consider that x(l)p is

applying the strongest force over x(u)i . So, we have:

‖ei‖
eβ‖xi−xp‖2 ≥

∥∥∥∥∥ n

∑
j=1,j 6=i,j 6=p

(xi − xj)

eβ‖xi−xj‖2

∥∥∥∥∥ , (4.7)

which results in V̇i < 0, assuring that the system achieves a local asymptotic stable
equilibrium.

4.2.4 Parameter analysis

Preventing the system to undergo some undesired situations can facilitate conver-
gence and provide better classification accuracy. First, consider the situation when a
point x(u)i is approximating towards a labeled attractor point x(l)j and getting very close

to its neighborhood δ, where the attraction force is at its highest amplitude before x(u)i
enters the neighborhood and becomes labeled. In this case, due to discretization in
the simulations, it can occur that instead of entering the neighborhood, x(u)i overpasses
it and start oscillating around x(l)j . In this case, it is necessary to weaken the force

function so that x(u)i take smaller steps. Other undesired situation occurs when x(u)i is
between two opposite forces and gets stuck in a dynamical equilibrium. In this case,
it is necessary to adjust the labeling neighborhood in a way that it can be possible to
label x(u)i . Hence, to avoid these situations we need to adjust the attraction function
parameters φ, β and δ.

4.2.4.1 Parameters β and δ

The force function of Eq. 4.6 has the shape depicted in Fig. 4.4. The force source
point is located at the origin of the system. It can be observed that, for a certain region,
−y∗ < distance < y∗, as an unlabeled instance approaches the labeled point, the force
decreases. When |distance| > |y∗|, the force increases if an instance approaches the
labeled point at origin.

With that in mind, consider the case in which there are two labeled points, x1 and
x2, and an unlabeled point xi between them as it is depicted in Fig. 4.5. As all labeled
points apply the same attraction force, xi should converge to the nearest labeled point.
However, in the specific scenario showed in Fig. 4.5, xi gets stuck in the dashed region
because the attraction force by one labeled point is counterbalanced by the attraction
force of the other point, characterizing a dynamical equilibrium. Moreover, as the
labeling regions are smaller than the maximum force amplitude y∗, it is impossible to
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Figure 4.4: 2-dimensional visualization of the force function shape showing its maximum am-
plitudes at points y* and -y*. The force source point is located at the origin of the system.

assign xi any label.

Therefore, a solution is to increase the area of the labeling region so that when xi

enters the dashed region, it receives the closest label (Fig. 4.6). We set the labeling
region δ to be larger than the maximum force amplitude y∗. To accomplish that, the
information of the first derivative is used as following:

ḟ (y) = φ
1− 2βy2

eβy2 ,

in which, after calculating ḟ (y) = 0, y∗ is found to be:

y∗ = 1√
2β

.

With this result in hand, we are able to specify the region in which the technique
could not converge and set the constraint δ > y∗. So, the allowed combination of
values for parameters β and δ is the following:

δ− 1√
2β

> 0. (4.8)

4.2.4.2 Parameter φ

The dynamical system in Eq. 4.5 is discretized in order to perform the simulations
in this section. Such a discretization may lead the following convergence problem: an
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Figure 4.6: Labeling neighborhood δ is larger than the region of maximum amplitude force y∗.



124 Chapter 4 - Development of network-based techniques for semi-supervised learning

unlabeled object can come close to a labeled one, but not close enough to be labeled
(outside the labeling region δ). So, the unlabeled object receives a strong force because
of the small distance and, instead of entering inside the δ neighborhood, overpasses
that region and starts to oscillate around the labeled object. Another undesired situ-
ation happens when all attraction forces become too weak then leading the system to
demand too many steps before it reaches a solution, if it finds one. To avoid such situ-
ations, we adjust the amplitude parameter φ regarding the amplitude of the resultant
forces applied over the unlabeled instances.

First, a precision p which scales the movements of instances at each time step is
defined. The control parameter p is used in each iteration as follows:

1. Compute all forces that act over unlabeled instances (using φ = 1 in Eq 4.6);

2. Calculate the resultant displacement of each unlabeled instance;

3. Normalize all displacements in such a way that the maximum displacement is
equal to the precision p.

By applying this normalization, the system becomes smooth when it would be too
violent, avoiding oscillations, and becomes faster when it would be too slow, requiring
a smaller number of steps. In fact, p dictates the smoothness of the dynamical system:
the smaller the value of p, the smoother is the system convergence.

Second, there may be another problem when classes are unbalanced. Such situation
causes an undesired behavior: classes containing a large number of labeled instances
apply the strongest forces, leading to wrong solutions because a unique or just a few
labels propagate. Then, we have to normalize the attraction forces based on the amount
of labeled instances in each class. We simply do that by dividing the force between an
unlabeled point x(u)i (t) and a labeled point x(l)j (t) by the number of labeled instances

of class of l (|N (l)|).
The two heuristics above can be summarized by the following:

φ
(l)
i (t) =

di(t)
dmax(t)

p
|N (l)(t)|

, (4.9)

where di(t) is the displacement of x(u)i (t) at iteration (t), and dmax is the largest dis-
placement in a time step. Thus, the parameter φ could be thought of as a composition
of the two aforementioned normalizations: the effect of applying precision p and the
normalization in terms of the amount of labeled instances. Thus φ changes at each time
step t and may be different for labeled instances from different classes.
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Figure 4.7: Data set composed of 2 classes, blue and red, with 500 instances each one. There are
20 initially labeled instances (darker points).

4.2.5 Experimental results

In this section, we analyze the behavior of the proposed technique on different sce-
narios. To conceptually illustrate the technique overall behavior, it is shown a semi-
supervised example composed of 1000 instances equally divided into 2 classes, blue
(upper class) and red (lower class) in Fig. 4.7. The blue class has 9 initially labeled
instances, and the red class has 11. Figure 4.8 shows the classification result when ap-
plying 1-NN technique. The magenta points were incorrectly classified with the blue
label and purple points were incorrectly classified with the red label. It can be seen
that this technique, which relies only on the distances between the instances, can not
achieve an adequate result. On the other hand, the proposed technique is capable of
using the information provided by the unlabeled instances to guide the classification
process, as it can be seen in Fig. 4.9, where satisfactory results were achieved.

Now, we proceed with an analysis of parameters influence. First, the influence of
parameters β and δ on classification accuracy and convergence time are investigated
using the data set depicted in Fig. 4.10. This data set is composed of 500 instances
divided into 2 slighted mixed classes (250 instances in each class). To characterize the
semi-supervised setting, only 5% of each class are initially labeled. Figure 4.11 shows
the results for accuracy (left column) and convergence time (right column). Each line
corresponds to different data set dimensions: 2 (Fig. 4.11(a),(b)), 10 (Fig. 4.11(c),(d))
and 50 (Fig. 4.11(e),(f)). Avoiding the region constrained by Eq. 4.7, it can be observed
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Figure 4.8: Classification result for the 1-NN technique. Magenta points are incorrectly clas-
sified with the blue label and purple points are incorrectly classified with the red label. The
classification error is 31.8%.

Figure 4.9: Classification result of the technique based on interacting forces. Magenta points
are incorrectly classified with the blue label and purple points are incorrectly classified with
the red label. The classification error is 1.2%. In this example, it can be seem that the proposed
technique uses the information provided by the unlabeled instances to achieve a satisfactory
classification accuracy.
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Figure 4.10: Example of a 2-dimensional artificial data set used in simulations. Small crosses
and small circles represent unlabeled objects. Big stars and filled circles represent the initially
labeled instances. This data set contains 500 objects (250 for each class) and 5% of them are
initially labeled. Each Gaussian-class has unitary covariance and the centers are distant 2.5
units from each other along the first dimension.

that small values of parameter δ (small labeling neighborhood, when labeling is more
selective) achieves slightly better accuracies. However, in this case, the convergence
time is increased. This behavior is even more evident in the high-dimensional case
(Fig. 4.11(e),(f)).

Furthermore, since the technique is highly dependent on the distances among data
due to the dynamical movement of the instances, the data set dimension clearly affects
accuracy. On the left column of Fig. 4.11, it can be observed that when the dimension
increases, the accuracy decreases. For example, from a classification error of 16.9% in
the 2-dimensional case, the error increased to 49.6% in the 50-dimensional case. This
behavior is due to the curse of dimensionality, where an increase in the number of
attributes makes the data set more sparse and decrease the variance among distances.
The increase in the convergence time observed in the right column (Fig. 4.11(b), (d) and
(f)) is due to the increase in number of calculations when considering a larger number
of attributes.

The influence of the data set size and of the number of initially labeled instances
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Figure 4.11: Analysis of the influence of parameters β and δ on accuracy and convergence time
for Gaussian artificial data sets (see Fig. 4.10). Data set dimensions vary from (a), (b): 2; (c), (d):
10; (e), (f): 50. (a), (c), (e): classification error rate. (b), (d), (f): number of iterations to label all
objects. The hatched region corresponds to δ− 1/

√
2β < 0. Precision p = δ/2. 30 simulations

were averaged.
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Figure 4.12: Analysis of the data set size and the number of initially labeled objects for 10-
dimension Gaussian artificial data sets (see Fig. 4.10). (a): classification error rate. (b): number
of iterations to label all instances. Parameters: beta = 5, δ = 0.75, p = δ/2. 30 simulations were
averaged.

were also investigated. Figure 4.12 shows the results for data set sizes increasing from
250 instances to 2000 instances, and for number of initially labeled instances increasing
from 2 to 20%. As it could be expected, when the number of initially labeled instances
is large, the accuracy increases (Fig. 4.12(a)). For instance, with a set size of 250, the
classification error decreased from 33.0% to 22.7%, for 2 and 20 labeled instances, re-
spectively.

Another interesting behavior can be observed also concerning the data set size. In
these simulations, the larger was the size, the better was the accuracy. For example,
with 2 initially labeled instances, the error decreased from 33.0% to 22.7%, for sizes of
250 and 200, respectively, an improvement of 31.2%; with 20 initially labeled instances,
the error decreased from 22.7% to 19.6%, for sizes of 250 and 200, respectively, an im-
provement of 13.7%. This behavior is due to the fact that the information provided by
the unlabeled instances is used in the classification processes in the semi-supervised
technique. Hence, the larger is the number of unlabeled instances (given that the cor-
rect class representation is kept), the better should be the accuracy.

The proposed semi-supervised technique was also evaluated and compared using
some benchmark data sets. Table 4.1 in subsection 4.1.3 shows a brief description of
them. In order to evaluate the influence of parameters β and δ using a benchmark data
set, we selected Digit1, which encompasses the semi-supervised assumptions. As it
is evidenced in the previous simulations on artificial Gaussian data sets, in this case,
a more selective neighborhood - small values for parameter δ - also increases the ac-
curacy. In Fig. 4.13, it can be seen that for 100 initially labeled instances the error
decreases from 6.9% to 5.9% for δ = 1 and 0.1, respectively, an improvement of 14.5%.
Figure 4.14 shows the results by using the first 5 PCA components to avoid the influ-
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Figure 4.13: Analysis of parameters β and δ on the Digit1 benchmark data set. (a), (c): averaged
classification error rate. (b), (d): number of iterations to label all instances. (a), (b): 10 initially
labeled instances. (c), (d): 100 initially labeled instances. The hatched region corresponds to
δ− 1/

√
2β < 0. Precision p = δ/2. 30 simulations were averaged.

ence of dimension. In this case, when 10 initially labeled instances were used, the error
decreased from 21.4% to 20.6%, for δ = 0.5 and 0.05, respectively. When 100 initially
labeled instances were used, the error decreased from 6.8% to 6.6%, for δ = 0.5 and
0.05, respectively. The improvement in the latter case is smaller because a error of 6.8%
is already very small for the data set under analysis.

We compared the proposed technique to 8 well-known and established classifica-
tion techniques: k-Nearest Neighbors (k-NN), Maximum Variance Unfolding (MVU)
+ k-NN, Laplacian Eigenmaps (LEM) + k-NN, Support Vector Machines (SVM) with
linear, Radial Basis Function - RBF, quadratic and polynomial kernels, Transductive
SVM (TSVM), Spectral Graph Transducer (SGT), Low-Density Separation (LDS) and
Laplacian Regularized Least Squares (LRLS). Table 4.2 in subsection 4.1.3 shows a brief
description and their related references. The first 5 PCA components computed from
the instances of each data set were used in all simulations and for all techniques (ex-
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Figure 4.14: Analysis of parameters β and δ on the Digit1 benchmark data set. (a), (c): averaged
classification error rate. (b), (d): number of iterations to label all instances. (a), (b): 10 initially
labeled instances. (c), (d): 100 initially labeled instances. The hatched region corresponds to
δ − 1/

√
2β < 0. Precision p = δ/2. The first 5 PCA components were used to avoid the

influence of data set dimension. 30 simulations were averaged.
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cept for MVU and LEM, which are dimensionality reduction techniques). Due to the
information loss when applying dimensionality reduction, some techniques perform
better in the original feature space. However, since the proposed technique is highly
sensitive to the data dimensionality, we report here the results using PCA to conduct a
fair analysis.

All techniques were optimized according to their parameters. The configuration
and parameter optimization for the proposed technique was done as follows. Let d
denote the average distance among all pairs of instances from the data set. We set the
intervals of parameters δ (δmin, δmax) and β (βmin, βmax) as: δmin = d/6, δmax = d/3,
βmin = 1.05 · 1

2δ2
min

, βmax = 500 · βmin.
Table 4.5 shows the results for 10 and 100 initially labeled instances, and Tables 4.6

and 4.7 show the corresponding rank. The ranking measure was calculated as follows:
i) for each data set and for each technique, a rank value is determined according to its
performance, that is, the best technique on a given data set is ranked as 1, the second
best is ranked as 2 and so on; ii) for each technique, the final rank is averaged over
all data sets. It can be observed that for 10 initially labeled instances (Table 4.6) the
proposed technique resulted in the 3rd position with a rank of 5.0± 3.3, preceded by
LRLS (3.8± 2.2 - 1st) and by SGT (4.8± 4.3 - 2nd). For 100 initially labeled instances, the
proposed technique resulted in the 4th position (5.6± 2.9) preceded by LRLS (3.4± 1.1
- 1st), LDS (4.6 ± 4.0 - 2nd) and SGT (5.2 ± 3.7 - 3rd). These results suggest that the
proposed technique is at least comparable to the well-known and most competitive
semi-supervised classification techniques.
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Table 4.6: Rank of results for 10 initially labeled instances (see Table 4.5).

g241c g241d Digit1 USPS BCI Average rank

1-NN 7 3 8 7 6 6.2 ± 1.9
MVU + 1-NN 12 12 1 5 1 6.2 ± 5.5
LEM + 1-NN 10 11 9 4 3 7.4 ± 3.6
SVM (linear) 4 5 7 12 2 6.0 ± 3.8
SVM (RBF) 11 10 12 3 12 9.6 ± 3.8
SVM (quad) 9 7 10 8 10 8.8 ± 1.3
SVM (poly) 8 8 11 9 8 8.8 ± 1.3
TSVM 3 6 6 11 4 6.0 ± 3.1
SGT 2 1 2 10 9 4.8 ± 4.3
LDS 1 9 5 6 5 5.2 ± 2.9
Lapl. RLS 5 2 3 2 7 3.8 ± 2.2

Prop. Method 6 4 4 1 10 5.0 ± 3.3

Table 4.7: Rank of results for 100 initially labeled instances (see Table 4.5).

g241c g241d Digit1 USPS BCI Average rank

1-NN 8 7 10 7 7 7.8 ± 1.3
MVU + 1-NN 12 12 1 1 9 7.0 ± 5.6
LEM + 1-NN 11 11 6 2 1 6.2 ± 4.8
SVM (linear) 2 9 9 12 5 7.4 ± 3.9
SVM (RBF) 7 4 5 8 10 6.8 ± 2.4
SVM (quad) 6 6 7 5 12 7.2 ± 2.8
SVM (poly) 10 8 11 10 8 9.4 ± 1.3
TSVM 3 10 12 9 3 7.4 ± 4.2
SGT 4 1 4 6 11 5.2 ± 3.7
LDS 1 3 2 11 6 4.6 ± 4.0
Lapl. RLS 5 2 3 3 4 3.4 ± 2.9

Prop. Method 9 5 8 4 2 5.6 ± 3.3



CHAPTER

5
Development of network-based techniques

for unsupervised learning

The unsupervised learning paradigm is introduced in subsection 2.1.3. In this ma-
chine learning area, there is no external sources to guide the learning process, that is,
information about data labels or cluster structures is unavailable. The algorithm must
guide itself solely by the information extracted from the data into analysis. A partic-
ular application of this paradigm is data clustering, in which the technique must find
data clusters that comprise data items more related to each other in a same cluster than
to data items belonging to other clusters. Network-based techniques are a common
approach because the data structures can be conveniently revealed by the underlying
networks.

This chapter presents the data clustering technique introduced by Cupertino et al.
(2013c). This network-based technique makes use of pinning control and consensus
time to derive a dissimilarity measure used to cluster data. The data are represented by
a connected and sparse network where nodes are dynamical elements. These elements
are pinned one by one into a fixed trajectory while the remainder of the nodes try
to achieve a consensus, that is, to reach the same trajectory of the pinned node. The
consensus dissimilarity is the total amount of time nodes take to reach the desired
trajectory. It provides a set of features for the data items and allows the detection
of clusters with different shapes and sizes. An analysis on the convergence of the
technique is also carried out.

135
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5.1 Data clustering via consensus dissimilarity

In pinning control, only a small fraction of vertices in the network is expected to be
controlled as follows:

ẋi(t) = f (xi(t))− c
n

∑
j=1

lijh(xj(t)) + ui(t), (5.1)

where ui(t) = gi{h[s(t)− xi(t)]} is the local feedback controller, s(t) is the reference
trajectory and gi quantifies the pinning control gain for vertex i. A dissimilarity mea-
sure is derived from this concept as it is explained in the next subsections.

5.1.1 Dissimilarity measure based on consensus time

A dissimilarity measure among vertices on a network can be directly derived from
the consensus time concept. Given a pinned vertex i with an arbitrary fixed trajectory,
xi = x̄, the dissimilarity dji between vertices j and i is defined as the total amount of
time it takes vertex j to reach the stationary state x̄. In other words, in a discrete system,
the number of time steps dji.

From Eq. 5.1, the pinning control can be reduced to the consensus problem in the
presence of some pinned vertices with a fixed reference trajectory s(t) = x̄, where x̄ is
the desired stationary state. Such a system, with internal coupling function h(x) = x
and linear self-feedback f [xi(t)] = ψxi(t), ψ > 0, is defined by the following discrete-
time equation:

xi(t + 1) = ψxi(t)− ε
n

∑
j=1

lijxj(t) + εui(t), (5.2)

where ε > 0 is the step size and ui(t) = gi[x̄− xi(t)]. For the controlled vertex, gi =

z > 0 is the control gain; for all other vertices, gi = 0.
By using the discretization procedure from Eq. (5.1) to Eq. (5.2), one must assure

that the convergence is achieved within a time t < ∞. As stated in the previous section,
the reference trajectory s(t) is achieved as t → ∞ for continuous systems. However,
in this work, we consider the discrete system as in Eq. (5.2) and set a discretization
error, for example e = 10−3, to achieve consensus in a reasonable amount of time. This
process, although can be seem too rough, is effective for clustering as it is shown in the
section of experimental results.

Each vertex in a network is likely to converge to the desired state x̄ at different
and finite times by pinning a single vertex (for example, x1(0) = x̄ and g1 = z > 0)
and satisfying the parameters constraints which are further addressed in the sec-
tion of convergence analysis. All other vertices must start at the same initial state:
x2(0), x3(0), . . . , xn(0) = β, β 6= x̄.
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Figure 5.1: A small network composed of 8 vertices used to illustrate the calculation of the
consensus dissimilarity.

As an example, consider the toy network consisting of 8 vertices depicted in Fig.
5.1. Figure 5.2 shows the state evolution for the vertices using a single pinned vertex
x1 = x̄ = 0, β = 1, ψ = 0.05, ε = z = 0.2. In this simple example, it can be seen
that each vertex reaches x̄ at different times. Specifically, vertices that lie in the same
densely connected group as vertex 1 (1 to 4) represented by green and magenta lines,
converge faster than the other densely connected group (5 to 8), which is represented
by blue and red lines.

Figure 5.3 shows the consensus dissimilarities between some pairs of neighbor ver-
tices. It must be noted that the calculations result in asymmetric values. In subsection
5.1.3.2, this issue is concerned because matrix D must be symmetrized before being
used in the data clustering task.

5.1.2 Convergence analysis

In order to achieve the desired results when calculating the consensus time dis-
similarity, the proposed system in Eq. (5.2) must be asymptotically convergent. Some
works concerning the use of transversal Lyapunov exponents to prove synchroniza-
tion (Li and Chen, 2003) or control (Li and Wang, 2004) of coupled chaotic maps can be
found in the literature. However, the parameter’s constraints to achieve an asymptoti-
cal stable behavior have showed to be too strong for discrete-time systems, hampering
the pin control task (Zhang et al., 2010). On the other hand, for the linear system pro-
posed in this work, we are able to establish some specific conditions on the parameter’s
values in order to guarantee the desired asymptotic behavior.

Theorem 1. Consider a pinned discrete-time system with n coupled elements (in which only a
single element is pinned) whose dynamics are governed by Eq. (5.2). The origin of the system
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Figure 5.2: State evolution of vertices of the network depicted in Fig. 5.1. All vertices reach a
consensus in the presence of a pinned vertex x1 = x̄ = 0.

Figure 5.3: Consensus dissimilarities between some pairs of neighbor vertices of the network
depicted in Fig. 5.1. The parameter setting is x1 = x̄ = 0, β = 1, ψ = 0.05, ε = z = 0.2.
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is asymptotically stable for any initial condition xi(0) if, and only if, the following constraints
hold:

0 < ε <
C
|li,jmax

| , (5.3)

εli,imax − C < ψ < εli,imin + C, (5.4)
ψ

ε
− li,imin −

C
ε
< z <

ψ

ε
− li,imax +

C
ε

, (5.5)

in which li,jmax
is the maximum edge weight, li,imin and li,imax are the smallest and the largest

vertex degrees, respectively, and C is either
√

2/n or 2/
√

2n2 − 1, for n even or odd, respec-
tively.

Proof. The system in Eq. (5.2) can be rewritten as X(t + 1) = AX(t), where X ∈ Rn

is a state vector containing all vertices, and A ∈ Rn×n is a symmetric matrix of the
following form:

A =


ψ− ε(l1,1 + z) εl1,2 . . . εl1,n

εl2,1 ψ− εl2,2 . . . εl2,n
...

... . . . ...

εln,1 εln,2 . . . ψ− εln,n

 , (5.6)

in which the pinned vertex was given index 1 without loss of generality.

The origin of the discrete system in Eq. (5.2) is asymptotically stable, that is, the
system converges to zero, if, and only if, A is stable or, in other words, if, and only if,
r(A) < 1, where r(A) = λimax is the spectral radius of A (LaSalle, 1986).

The spectral radius of matrix A can be limited if the matrix entries are constrained
in some interval [a, b]. Let A be a real and symmetric n× n matrix, n ≥ 2, with entries
lying on the interval [−a, a], a > 0. Being λmax and λmin the largest and the smallest
eigenvalues, respectively, and s(A) = λmax − λmin, the spread of A, then, when s(A) is
symmetric to the origin (Zhan, 2005),

s(A) ≤
{

an
√

2 if n is even,

a
√

2n2 − 1 if n is odd.
(5.7)

Therefore, the spectral radius of A can be limited to r(A) < 1 by doing λmax < 1
and λmin > −1, that is, s(A) < 2.

So, to guarantee r(A) < 1, the condition of Eq. 5.7 is applied to confine each ele-
ment of the matrix in Eq. 5.6. Considering the case in which n is even (s(A) ≤ an

√
2),

and using C =
√

2/n, the following results are found for each matrix entry:
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For a = εli,j:

εli,jn
√

2 < 2

ε <
C
|li,jmax

| ,

retrieving Eq. 5.3.

For a = ψ− εli,i:

(ψ− εli,i)n
√

2 < 2

ψ < εli,imin + C,

and the negative case:

(ψ− εli,i)n
√

2 > −2

ψ > εli,imax − C,

retrieving Eq. 5.4.

For a = ψ− ε(li,i + z):

(ψ− ε(li,i + z))n
√

2 < 2

z >
ψ

ε
− li,imin −

C
ε

,

and the negative case:

(ψ− ε(li,i + z))n
√

2 > −2

z <
ψ

ε
− li,imax +

C
ε

,

retrieving Eq. 5.5.

Equivalently, the same results hold for C = 2/
√

2n2 − 1 when n is odd.

Remark 4. The above theorem gives sufficient conditions for the discrete-time system in Eq.
(5.2) to be convergent. However, the implications of different possible values to the parameters
when applying the system to compute the consensus time dissimilarities and performing data
clustering should be discussed. Parameter ε is responsible for the speed of convergence: the
greater its value, the faster is the convergence of the system. If the system converges too fast,
all dissimilarities between all pairs of vertices may be very similar. In this case, the consensus
measure will be inappropriate for clustering, once in the clustering task one expects low dis-
similarity between close vertices and high dissimilarity between far vertices. Parameter ψ acts
in the same way. When applying this method, convenient values should be chosen for these
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parameters accordingly to the intervals of convergence. In all simulations performed in this
work, the parameters’ values are chosen to achieve high clustering accuracies, that is, by setting
small values for ε and ψ while, at the same time, setting relative large values for parameter z to
perform a strong pinning control.

As an illustrative example, for the network depicted in Fig. 5.1, where li,imax = 0.28,
li,imin = 0.22 and li,jmax

= 0.05, the following limits have been found:

0 < ε < 3.54,

−0.12 < ψ < 0.22, for ε = 0.2,

−0.85 < z < 0.85, for ψ = 0.05.

5.1.3 Technique description

This subsection introduces the network-based data clustering technique by using
the previously explained consensus time dissimilarity. The technique consists of two
main steps:

1. Building a network from the original data set by using the method described in
subsection 5.1.3.1;

2. Detection of data clusters on the constructed network as described in subsection
5.1.3.2.

5.1.3.1 Network construction

A data set can be mapped into a network by using one of the following methods:
i) each vertex, representing a data item, is connected to its k-nearest neighbors (the k-
most similar data items); ii) each vertex is connected to all vertices within a predefined
distance; iii) more similar vertices have higher probability to be connected than fewer
similar vertices. However the drawback of these methods is that they may construct
either disconnected or densely connected networks. As a consequence, they cannot
be suitable for reproducing reliable network clusters that correspond to the expected
data clusters. In order to overcome this problem, we propose a method of network
construction based on the Single-Linkage (SL) clustering heuristic (Sibson, 1973) that
is capable of constructing connected and sparse networks which, at the same time,
tend to keep the cluster structure of the original data set. The steps of the proposed
algorithm are described as follows:

1According to the SL heuristic, the dissimilarity between two groups is computed as the dissimilarity
between the two closest vertices that connect both groups.

2The threshold value is based on the assumption that vertices of the same group generally form a
uniform density of dissimilarities. If no pair satisfies the threshold condition, an edge is created between
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Algorithm 11 Network construction based on the single-linkage clustering heuristic
Input:
X : unlabeled data set
Output:
N : clustered and sparse network
Parameters:
k : number of node pairs to connect
γ : threshold value
Network construction:
1 : start with each vertex i into a different group Gi (n initial groups)
2 : calculate the distances among all groups by using a distance measure, for exam-
ple, the Euclidean distance
repeat

3 : find the two closest groups1 and denote them by G1 and G2
4 : calculate the average dissimilarity among vertices inside each group G1 and

G2, and denote them by d1 and d2, respectively
5 : select the k-most similar pairs of vertices that connect G1 and G2, and create

an edge between each selected pair if its dissimilarity is smaller than a threshold2

defined as dthr = γ max(d1, d2), where γ > 0. This step joins G1 and G2 into a larger
group

6 : update the adjacency matrix by calculating the dissimilarities between the
group formed in step 6 and all other groups
until there is a single group of vertices

As an example of the application of the Alg. 11 for network construction, Fig. 5.4
shows the results for an artificial data set composed of 3 clusters of different sizes and
densities. In this example, 3 different values for parameter k are used: k = 3, 5 and 20.
It can be observed that for all cases it results in a connected network with a fair dis-
tribution of links among clusters, that is, the connections inside the clusters are dense
while the connections inter-clusters are sparse.

Remark 5. As it has been mentioned, the Alg. 11 for network construction uses a combina-
tion of the SL and kNN heuristics. These specific choices have two main purposes. First, the
SL heuristic states that the distance between two groups of vertices is given by the distance
between their two closest vertices. By doing so, it is guaranteed that when two groups are being
connected, the connection starts by the closest vertices, that is, the border vertices of each group.
As it is reasonable to consider border vertices as a natural division or frontier among different
groups, we assume that, when joining different groups, instead of connecting far away vertices,
it is better to connect border vertices. Second, it is necessary to define how many vertices will
be connected. As in most common clustering cases one may not have the data distribution for
each cluster, nor even the real number of clusters, we use a parameter k to set the number of

the most similar pair to guarantee a connected network. A connected network is necessary for the
convergence of all vertices when the dissimilarity measure is computed by using the consensus time
dissimilarity as it is explained in section 5.1.1.
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Figure 5.4: Networks constructed by using the Alg. 11 from the artificial data set in (a). The
value of parameter k is (b) k = 3, (c) k = 5 and (d) k = 20. In all cases, γ = 3.

vertices to be connected. As it can be seen in Fig. 5.4, k is responsible for strengthening the
intra-cluster connections, while keeping inter-cluster connections sparse. Thus, parameter k is
used for model selection.

5.1.3.2 Cluster detection

After creating a network by applying the Alg. 11 of the previous subsection, data
clusters can be detected. First, the consensus time dissimilarity (section 5.1.1) is cal-
culated for the given network to construct a dissimilarity matrix D. The basic idea
is that, for the same cluster, it takes vertices similar time to reach a common state,
resulting in similar values in D. Thus, applying a clustering algorithm in D, a hierar-
chical structure of clusters is obtained. For this purpose, matrix D must be transformed
into a symmetric matrix because most hierarchical data clustering techniques need a
symmetric dissimilarity matrix as input. A simple approach to do that is to take the
average dissimilarity between dij and dji. Therefore the symmetric dissimilarity matrix
Ds is defined as:

Ds = (D + DT)/2. (5.8)

In a brief, the steps to detect clusters by using the proposed dissimilarity measure
are described as follows:
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1. Calculate the asymmetric dissimilarity matrix D as described in section 5.1.1;

2. Transform D into Ds, according to Eq. (5.8);

3. Apply a hierarchical clustering method on Ds;

4. Choose a partition from the dendrogram.

5.1.4 Experimental results

The effectiveness of the proposed clustering technique has been evaluated by simu-
lating 13 real and diverse data sets selected from the UCI machine learning repository
as shown in Table 3.1 (Bache and Lichman, 2013). As can be seen in this table, the selec-
tion encompassed diversity on data domains as well as considered different number of
classes, attributes and set sizes (they vary from 3 to 15, 4 to 91 and 132 to 2310, respec-
tively). These data sets contain multi-cluster data, and many of them present complex
data distribution with high mixing among clusters. In the simulations, eventual cate-
gorical attributes, such as in Balance data set, were treated as numerical.

Before proceeding to parameter analysis and comparison to other techniques,
different techniques for hierarchical clustering were tested in the step 3 of subsec-
tion 5.1.3.2. To cluster data on matrix Ds, we tested many hierarchical techniques
such as SL, Weighted-Linkage (WL) (Jain and Dubes, 1988), Average-Linkage (AL)
(Chehreghani et al., 2008) and Complete-Linkage (CL) (Boberg and Salakoski, 1997).
The accuracy was measured by using the Adjusted Rand Index (ARI) (Hubert and Ara-
bie, 1985; Vinh et al., 2009). Basically, the ARI is the Rand index (Rand, 1971) corrected
for chance. Given two clusterings, say U and V, it take values nij from a contingency
table, where nij denotes the number of instances common to clusters Ui and Vj. It has
the following form:

Adjusted_Index =
Index− Expected_Index

Max_Index− Expected_Index

or, specifically,

ARI =
∑ij (

nij
2 )− [∑i (

ai
2)∑j (

bj
2 )]/(

n
2)

1
2 [∑i (

ai
2) + ∑j (

bj
2 )]− [∑i (

ai
2)∑j (

bj
2 )]/(

n
2)

,

where ai and bj are marginal sums, and n is the total number of instances. To retrieve
the clusters from the dendrograms, we have cut at the smallest height at which a hor-
izontal cut through the tree left C or fewer clusters, being C the number of clusters
known in advance. From Table 5.1, it can be seen that the AL resulted in the best
clustering accuracies for the proposed technique.
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5.1.4.1 Influence of parameter k

The influence of parameter k for network construction, in step 7 of Alg. 11, was
analyzed. As has been stated before, parameter k is used for model selection as one
may not known a priori the distribution of the data set he/she is dealing with. To
analyze its influence on the proposed technique, we simulated the data sets in Table 3.1
by optimizing k in the set [1, 2, . . . , 30] by the grid method. The hierarchical technique
used for clustering (step 3 of subsection 5.1.3.2) was the AL. In all simulations, x̄ = 0,
β = 1, γ = 3, ε = 0.0025, ψ = 0.02 and z = 0.2.

We compared the optimal values of parameter k to the cluster distribution of each
data set. The data set dispersion was calculated in terms of the Fisher ratio: the ratio
of the between-cluster scatter to the within-cluster scatter in the feature space. The
larger the Fisher ration, the more well-defined are the clusters. The optimal value for
parameter k was taken from the above mentioned interval that resulted in the largest
ARI value.

Figure 5.5 shows the normalized results in the interval [0, 1]. It can be noted that
there is a high dependency between the cluster dispersion and the optimal value for
parameter k. Actually, the Pearson’s correlation coefficient between both curves is
0.60. This measure lies in the interval [−1, 1], being −1 a total anticorrelation and 1
a perfect linear dependency. Therefore, the value 0.60 means a high correlation be-
tween the k value and the data set cluster dispersion. In other words, when clusters
are separated, the usage of a high value for parameter k can construct networks with
well-defined clusters, that is, a large number of connections inside clusters and sparse
connections among different clusters. On the other hand, when clusters are less sepa-
rated or present a mixture among them, the usage of a small value for parameter k can
alleviate the construction of networks with high mixing among clusters.

5.1.4.2 Comparisons

Eight well-known clustering techniques were simulated for comparison purposes.
Five of them are traditional techniques: AL, WL, CL, SL and k-means (Chiang et al.,
2011; Linde and Buzo, 1980); the other three are based on eigenanalysis of graph-
Laplacian: unnormalized spectral clustering (Spec1) (Luxburg, 2007), normalized spec-
tral clustering according to Shi and Malik (Spec2) (Shi and Malik, 2000) and normalized
spectral clustering according to Ng et al. (Spec3) (Ng et al., 2001).

In all experiments, the proposed technique was simulated with the following pa-
rameter setting: x̄ = 0, β = 1, ε = 0.0025, ψ = 0.02 and z = 0.2. Networks were
constructed using the method described in subsection 5.1.3.1 with parameters γ = 3
and k varying from 1 to 30. We reported here the results using AL, which resulted the
best accuracies. For the k-means technique, the results were averaged over 100 simu-
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Figure 5.5: Relation of parameter k to the data set cluster dispersion. The Pearson’s correlation
coefficient between both curves is 0.60, indicating a high linear dependency between the two
values.

lations and each simulation was optimized by selecting randomly and uniformly 10%
of data to the initial seed setting. For the spectral techniques, the Alg. 11 for network
construction in subsection 5.1.3.1 was applied.

Table 5.2 shows the results in terms of ARI with the optimal value of parameter k
for model selection. Table 5.3 shows the rank of the techniques for each data set. To
compute the rank, the accuracy achieved by a technique in a data set is ranked among
all other methods for the same set. The averaged rank over all data sets can be found
at the last row. The smaller the average rank, the better were the accuracies achieved
by the technique. In the tested data sets, the proposed clustering method achieved the
best rank (2.38), followed by Spec2 (2.92) and Spec3 (3.54).



148 Chapter 5 - Development of network-based techniques for unsupervised learning

Ta
bl

e
5.

2:
C

lu
st

er
in

g
ac

cu
ra

cy
ca

lc
ul

at
ed

by
th

e
A

R
I.

Th
e

va
lu

e
in

pa
re

nt
he

si
s

sh
ow

s
th

e
op

ti
m

al
va

lu
e

of
pa

ra
m

et
er

k
us

ed
in

ne
tw

or
k

co
ns

tr
uc

-
ti

on
.F

or
k-

m
ea

ns
it

is
sh

ow
ed

th
e

av
er

ag
ed

re
su

lt
s

ov
er

10
0

si
m

ul
at

io
ns

fo
llo

w
ed

by
th

e
st

an
da

rd
de

vi
at

io
n.

Th
e

be
st

re
su

lt
s

ar
e

in
bo

ld
fa

ce
.

D
at

a
se

t
C

on
se

ns
us

+
A

L
Sp

ec
1+

A
L

Sp
ec

2+
A

L
Sp

ec
3+

A
L

k-
m

ea
ns

W
L

A
L

SL
C

L

H
ay

es
-H

ot
h

0.
10

(1
)

0.
10

(1
0)

0.
10

(2
3)

0.
10

(1
5)

0.
10
±

0.
07

0.
20

0.
08

0.
01

-0
.0

1
Ir

is
0.

94
(1

1)
0.

88
(2

7)
0.

90
(4
)

0.
90

(3
)

0.
68
±

0.
11

0.
75

0.
76

0.
56

0.
64

Te
ac

hi
ng

0.
03

(2
)

0.
01

(7
)

0.
01

(7
)

0.
01

(5
)

0.
00
±

0.
01

0.
01

0.
01

0.
00

0.
01

W
in

e
0.

43
(1

9)
0.

38
(1

0)
0.

40
(2

3)
0.

41
(7
)

0.
36
±

0.
01

0.
32

0.
29

0.
01

0.
37

Im
ag

e
0.

51
(5
)

0.
42

(5
)

0.
53

(1
2)

0.
55

(1
7)

0.
35
±

0.
05

0.
19

0.
18

0.
10

0.
17

G
la

ss
0.

26
(3
)

0.
26

(3
)

0.
28

(2
2)

0.
28

(2
8)

0.
26
±

0.
03

0.
05

0.
02

0.
01

0.
23

E.
C

ol
i

0.
51

(7
)

0.
68

(6
)

0.
67

(3
)

0.
42

(3
)

0.
42
±

0.
07

0.
68

0.
74

0.
04

0.
62

Li
br

as
0.

41
(6
)

0.
36

(4
)

0.
38

(4
)

0.
39

(4
0)

0.
30
±

0.
02

0.
30

0.
29

0.
00

0.
23

B
al

an
ce

0.
18

(3
)

0.
18

(4
)

0.
18

(4
)

0.
13

(4
)

0.
14
±

0.
04

0.
08

0.
19

0.
00

0.
14

V
ow

el
0.

21
(3
)

0.
19

(1
4)

0.
19

(4
)

0.
19

(1
0)

0.
21
±

0.
01

0.
22

0.
16

0.
00

0.
18

Ye
as

t
0.

17
(1

3)
0.

12
(1
)

0.
23

(4
)

0.
16

(6
)

0.
14
±

0.
01

0.
11

0.
01

0.
01

0.
08

W
in

e
Q

.R
ed

0.
03

(1
)

0.
02

(7
)

0.
02

(1
)

0.
02

(2
)

0.
00
±

0.
00

-0
.0

2
0.

01
0.

00
0.

00
Se

gm
en

t
0.

62
(2

1)
0.

39
(1

1)
0.

47
(2

4)
0.

55
(1
)

0.
36
±

0.
05

0.
00

0.
00

0.
00

0.
10



5.1 - Data clustering via consensus dissimilarity 149

Ta
bl

e
5.

3:
R

an
k

of
te

ch
ni

qu
es

fo
r

th
e

re
su

lt
s

in
Ta

bl
e

5.
2.

Th
e

be
st

re
su

lt
s

ar
e

in
bo

ld
fa

ce
.

D
at

a
se

t
C

on
se

ns
us

+
A

L
Sp

ec
1+

A
L

Sp
ec

2+
A

L
Sp

ec
3+

A
L

k-
m

ea
ns

W
L

A
L

SL
C

L

H
ay

es
-H

ot
h

5
3

2
5

4
1

7
8

9
Ir

is
1

4
2

2
7

6
5

9
8

Te
ac

hi
ng

1
5

5
4

8
7

2
9

3
W

in
e

1
4

3
2

6
7

8
9

5
Im

ag
e

3
4

2
1

5
6

7
9

8
G

la
ss

3
4

1
2

5
7

8
9

6
E.

C
ol

i
6

2
4

8
7

3
1

9
5

Li
br

as
1

4
3

2
6

5
7

9
8

B
al

an
ce

4
2

2
7

5
8

1
9

6
V

ow
el

2
4

6
5

3
1

8
9

7
Ye

as
t

2
5

1
3

4
6

8
9

7
W

in
e

Q
.R

ed
1

2
4

3
7

9
5

6
8

Se
gm

en
t

1
4

3
2

5
7

9
7

6

A
vg

.r
an

k
2.

38
3.

62
2.

92
3.

54
5.

54
5.

62
5.

85
8.

54
6.

62



150 Chapter 5 - Development of network-based techniques for unsupervised learning



CHAPTER

6
Conclusions

The results reported in this thesis have joined three main research areas: machine
learning, complex networks and dynamical processes. The main goal has been to en-
hance and develop machine learning techniques by exploring the advantages of net-
work representation and dynamical processes on networks. The motivations came
from the fact that network representation unifies the structure, dynamics and functions
of the system it represents, and it is able to evidence topological structures. These char-
acteristics make networks suitable for machine learning tasks by revealing intrinsic
structures and their evolutions within data set relationships. For instance, it is possible
to perform classification tasks by using the heuristic of ease of access as it is described
in this thesis. This method differs from traditional classification in which decision bor-
ders are defined to separate groups in the attribute space. In another way, the method
uses random walk in the network where classes are identified by network connections
between data instances. More interestingly, a high-level approach for classification has
been explored. In this paradigm, the data are not classified by using only its physical
attributes, but also using the semantic structure formed by the data in a network. In
this case, even if different classes are overlapped in the attribute space, they can be
correctly identified by taking into account the semantic structure each class forms. The
network representation feature has also been evidenced in the problem of classifica-
tion of multiple observation sets, where similar groups of observations are evidenced
by the network connections between them. Moreover, the network representation has
provided good results in supervised dimensionality reduction in which the intra-class
connection matrix and the inter-class penalty matrix have been defined in terms of
networked data.

In the semi-supervised paradigm, two techniques have been investigated. The first
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one, based on the heuristic of ease of access and on random walk process, has been de-
rived as an extension of the supervised version. In the semi-supervised case, the tech-
nique performs transductive classification by propagating labels from a few labeled
nodes to unlabeled ones through the underlying network. The second technique, based
on interacting forces, can be understood as a dynamical network in which nodes move
respecting interaction forces among them. The link strength or force amplitude are cal-
culated in terms of node distance. The network feature evinced in both techniques is
the possibility of spreading labels through data disregarding the class shapes, size or
densities. The balancing of class sizes and the positioning of labeled data are still open
issues, but the network representation can alleviate those challenging problems.

The last investigation reported in this thesis has been on a technique belonging to
the unsupervised learning paradigm. As a network-based technique, the data clusters
can be detected by the inspection of network subgroups of densely connected nodes.
The technique makes usage of consensus time among nodes, which is guided by the
network link structure and link weights. In this case, the network helped to derive
indirect similarity measures among data.

The reported results have made contributions to the three areas of machine learn-
ing. Each of them is specifically commented in the following subsection.

6.1 Conclusions and future studies

In this section, we list the conclusions and future studies for the results reported in
the previous chapters.

Conclusions and future works of the network-based supervised learn-

ing studies

1. Development a new supervised classification technique which takes into account
the ease of access of unlabeled instances to training classes through an underlying
network:

• traditional data classification techniques divide the data space into sub-
spaces (classes) according to physical features of the training data. This
work has presented an effort towards a new classification heuristic based on
ease of access. Instead of dividing the data attribute space within the train-
ing classes, the proposed technique classifies an unlabeled instance with the
most easily reached label through an underlying network. To accomplish
that, the network-based scheme applies limiting probabilities from random
walk theory, which serves as a measure of access to training classes after the
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insertion of the unlabeled instance bias into the network link weights. Sim-
ulations suggest that the proposed technique is competitive with some well-
known and traditional classification techniques. We expect this research can
contribute to the network-based learning area, specially to the development
of new supervised classification heuristics;

• as future works, special attention should be given to describe and shed more
light to the proposed technique behavior, specially to the bias weight com-
position. This first study considered a linear weight composition between
the connection matrices, but a nonlinear combination can be studied to take
into account the link densities for example.

2. Development a new supervised classification technique which takes into account
the ease of access of unlabeled instances to training classes and the network topo-
logical structure to characterize data classes:

• by using the new classification heuristic based on ease of access and consid-
ering also the structural pattern formation of each data class, this work has
presented a hybrid network-based classification technique. The proposed
method is quite general in the sense that different classification criteria can
be considered when constructing the corresponding connection weight ma-
trix of the underlying network. Specifically, we have showed a concrete
formulation of the connection weight matrix by combining the physical fea-
tures (data attributes) and the structural information (network measure) of
each class in the training data. We can state that the mixed connection
weight matrix provides a comprehensive view of the input data. Further-
more, increasing in accuracy rates has been verified when such a combina-
tion is applied. Simulations have suggested that the proposed technique is
competitive with some well-known classifiers;

• in future studies, other measures to describe network structures can be ana-
lyzed as well as a mixture among complementary measures. Different net-
work formation techniques can also be explored.

3. Development of network-based techniques applied to the classification of multi-
ple observation sets:

• this work has presented two new network-based techniques for the classifi-
cation of multiple observation sets. In this context, each set of multiple ob-
servations corresponds to a single pattern or class. To classify an unlabeled
set, the techniques first perform two initial stages: network construction and
measure calculation (modularity or Katz index). The network construction
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provides a topological representation of the relations among the different
patterns. The modularity measure numerically represents the connected-
ness of the constructed network: the more the network was close to a single
densely connected component, the more likely the objects could belong to
the same pattern. The Katz centrality measure numerically represents the
centrality of the unlabeled observations according to some data class: the
more the unlabeled vertices were centrally arranged into a given network,
the better the observations, represented by these vertices, were related to
that network class. The simulation results have showed that the proposed
techniques perform well in handwritten digits and multiple object views
collections, overcoming many recent and state-of-the-art multi-view classi-
fication methods;

• as future extensions, we suggest the study of different network measures,
which can take into account different characteristics of the topological net-
worked representations.

4. Application of different network formation methods into a graph embedding
framework to perform supervised dimensionality reduction:

• we have used a modified version of the recently proposed KAOG network
formation method to perform supervised dimensionality reduction. The
proposed technique calculates two connection matrices which represent the
information of input data about both intra-class and inter-class connections.
Both matrices are used into a graph embedding framework which is opti-
mized in terms of a projection vector. Experimental studies have showed
that the proposed technique achieves competitive results compared to some
other classical network formation methods when applied to dimensionality
reduction. It has been shown that the technique enhances data processing
by reducing the feature dimension and also increases the classification accu-
racy;

• as future studies, more sophisticated methods can be explored in order to
create the penalty connection matrix.

Conclusions and future works of the network-based semi-supervised

learning studies

1. Extension of the ease of access heuristic to the semi-supervised setting:

• this work has presented a new network-based semi-supervised classifica-
tion technique. The set of unlabeled instances compose a network in which
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vertices represent the state space for a random walker. Via a specific matrix
composition, each labeled instance is inserted into the network to provide
a bias to the classification process. This label bias is propagated through
the unlabeled vertices by means of the limiting probabilities. The local and
global topology are taken into account by the random walk process and thus
both clustering and smoothness assumptions are satisfied, making the usage
of the unlabeled instances information effective. Simulations have showed
that the proposed technique is capable of detecting classes that present dif-
ferent shapes and distributions. The technique has also been demonstrated
to be competitive with some well-known semi-supervised techniques using
benchmark data sets;

• similarly to the supervised approach, as future works for the semi-
supervised extension, special attention should be given to describe and shed
more light to the proposed technique behavior, specially to the bias weight
composition.

2. Development of a nature-inspired semi-supervised classification technique based
on attraction forces:

• this work has presented a new semi-supervised learning technique based
on attraction forces among data instances. Labeled instances are considered
as fixed attraction points that apply attraction forces on unlabeled instances.
In turn, the unlabeled instances are expected to move towards the resul-
tant force direction and, eventually, to converge to an attraction point. Once
close enough, the label from the attraction point propagates to the unlabeled
neighbor, which becomes a new fixed attraction point. It has been verified
that the technique is highly sensitive to the radius of the labeling region
and to the dimension of the data set feature space. However, the proposed
technique has achieved good classification results in comparison to some
well-established classification techniques, even when the semi-supervised
smoothness and cluster assumptions were not completely satisfied;

• as future studies, it will be interesting to analyze the behavior of the system
when different distance functions are taken into account. Also, different
heuristics and refinements for the parameters adjustment, and mechanisms
to reduce incorrect labeling during the classification process can be explored.
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Conclusions and future works of the network-based unsupervised

learning studies

1. Development of a data clustering technique based on synchronization and pin-
ning control of networked dynamical oscillators:

• this work has presented a new network-based clustering technique con-
sisting of 2 steps: network construction and cluster detection. Networks
are constructed by an algorithm which results in connected and sparse net-
works. Both characteristics improve clustering accuracy by evidencing sub-
groups in the networks. For cluster detection, the dissimilarities among all
vertices are computed via the consensus time dissimilarity, that is, how long
it takes vertices to reach a consensus in the presence of a pinned vertex.
Finally, the network clusters, that correspond to data clusters, are identi-
fied by using the computed dissimilarities. A rigorous mathematical anal-
ysis was carried out to provide sufficient conditions on the convergence of
the consensus dynamic system. The simulations have showed that the pro-
posed method performs well in the presence of clusters with different sizes
and shapes, and is competitive with some classical clustering methods and
methods based on spectral analysis. The usage of consensus in networks is
a new approach in the field of network-based data clustering and it can be
widely explored;

• as future studies we suggest the analyses of pinning several vertices at the
same time, as well as their optimal distribution through the network ver-
tices. The behavior of nonlinear systems representing the vertex dynamics
can also be explored.

6.2 List of publications

The investigations reported in this thesis have been published in form of scien-
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