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RESUMO

GUALDRON, H.. Block-based and structure-based techniques for large-scale graph pro-
cessing and visualization. 2016. 80 f. Master dissertation (Master student Program in Computer
Science and Computational Mathematics) – Instituto de Ciências Matemáticas e de Computação
(ICMC/USP), São Carlos – SP.

Técnicas de análise de dados podem ser úteis em processos de tomada de decisão, quando
padrões de interesse indicam tendências em domínios específicos. Tais tendências podem
auxiliar a avaliação, a definição de alternativas ou a predição de eventos. Atualmente, os
conjuntos de dados têm aumentado em tamanho e complexidade, impondo desafios para recursos
modernos de hardware. No caso de grandes conjuntos de dados que podem ser representados
como grafos, aspectos de visualização e processamento escalável têm despertado interesse.
Arcabouços distribuídos são comumente usados para lidar com esses dados, mas a implantação e
o gerenciamento de clusters computacionais podem ser complexos, exigindo recursos técnicos e
financeiros que podem ser proibitivos em vários cenários. Portanto é desejável conceber técnicas
eficazes para o processamento e visualização de grafos em larga escala que otimizam recursos de
hardware em um único nó computacional. Desse modo, este trabalho apresenta uma técnica de
visualização chamada StructMatrix para identificar relacionamentos estruturais em grafos reais.
Adicionalmente, foi proposta uma estratégia de processamento bimodal em blocos, denominada
Bimodal Block Processing (BBP), que minimiza o custo de I/O para melhorar o desempenho
do processamento. Essa estratégia foi incorporada a um arcabouço de processamento de grafos
denominado M-Flash e desenvolvido durante a realização deste trabalho.Foram conduzidos
experimentos a fim de avaliar as técnicas propostas. Os resultados mostraram que a técnica
de visualização StructMatrix permitiu uma exploração eficiente e interativa de grandes grafos.
Além disso, a avaliação do arcabouço M-Flash apresentou ganhos significativos sobre todas as
abordagens baseadas em memória secundária do estado da arte. Ambas as contribuições foram
validadas em eventos de revisão por pares, demonstrando o potencial analítico deste trabalho em
domínios associados a grafos em larga escala.

Palavras-chave: StructMatrix, M-Flash, visualizaço de grafos em larga escala, processamento
de grafos em larga escala, processamento bimodal em blocos (BBP).





ABSTRACT

GUALDRON, H.. Block-based and structure-based techniques for large-scale graph pro-
cessing and visualization. 2016. 80 f. Master dissertation (Master student Program in Computer
Science and Computational Mathematics) – Instituto de Ciências Matemáticas e de Computação
(ICMC/USP), São Carlos – SP.

Data analysis techniques can be useful in decision-making processes, when patterns of interest
can indicate trends in specific domains. Such trends might support evaluation, definition of
alternatives, or prediction of events. Currently, datasets have increased in size and complexity,
posing challenges to modern hardware resources. In the case of large datasets that can be
represented as graphs, issues of visualization and scalable processing are of current concern.
Distributed frameworks are commonly used to deal with this data, but the deployment and
the management of computational clusters can be complex, demanding technical and financial
resources that can be prohibitive in several scenarios. Therefore, it is desirable to design efficient
techniques for processing and visualization of large scale graphs that optimize hardware resources
in a single computational node. In this course of action, we developed a visualization technique
named StructMatrix to find interesting insights on real-life graphs. In addition, we proposed a
graph processing framework M-Flash that used a novel, bimodal block processing strategy (BBP)
to boost computation speed by minimizing I/O cost. Our results show that our visualization
technique allows an efficient and interactive exploration of big graphs and our framework M-
Flash significantly outperformed all state-of-the-art approaches based on secondary memory.
Our contributions have been validated in peer-review events demonstrating the potential of our
finding in fostering the analytical possibilities related to large-graph data domains.

Key-words: StructMatrix, M-Flash, large-scale graph visualization, billion-scale graph process-
ing, bimodal block partition strategy (BBP).
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CHAPTER

1
INTRODUCTION

1.1 Motivation
The computational technology in the XXI century has provided powerful resources to generate
digital content, massive access to information, and connectivity between systems, people and
electronic devices. This technology produces data in unprecedented scale, having received
different denominations: big data, web scale, massive data, planetary or large scale 1. It is
not easy to measure the size of the digital information currently being produced, but some
works suggest its size and growth. The Twitter company, for instance, publicly demonstrated the
evolution of its social network in 2011 [3]; according to which the time between the first and the
billion-th message was of only three years. Recently, a work of Gudinava et al. [4] estimates that
just a small share of 1 petabyte of the data currently produced is public; and that only 22 percent
of this data can be considered useful. This data contains intrinsic and valuable information, and
companies like General Electric and Accenture have shown that data analysis techniques are a
differential factor in industrial competitiveness [5].

1.2 Problem
A relevant set of the data produced in planetary scale describes relations that can be represented
using graphs. Graph representations are useful to analyze and optimize problems in domains such
as public politics, commercial decisions, security and social networks. Usual graph processing
and visualization systems assume that the graph data fit entirely in the main memory; however,
the current size of big graphs can be equivalent to a whole disk or even an array of disks with
storage needs up to 100x larger than RAM. For instance, the Twitter graph [6] can be measured
in terabyte units; the Yahoo Web graph [7] has more than 1 billion nodes and almost 7 billion
edges; and the clickstreams graph [8] reaches petabyte magnitude. Such graphs are a challenge

1 In this work, we use these terms interchangeably, we emphasis on planetary and large scale.
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for data analysis because they require powerful resources for processing, and complex models
to achieve tasks with limited resources. This issue happens because graph algorithms usually
are based on depth or on breadth processing techniques that are not parallelizable. Existing
frameworks, based on vertex-centric [9] [10] and edge-centric [11] processing, tackle with those
limitations; but they do not optimize resource utilization, failing in sub-optimal approaches for
processing planetary-scale graphs.

1.3 Hypotheses
Considering optimization of resources as a cornerstone for processing planetary-scale graphs, and
for interactive visualization as a desirable tool in decision-making, we explored two possibilities:

1. we researched on how to detect macro features of very large graphs, mining recurrent
patterns like cliques, bi-partite cores, stars and chains; we also analyzed relevant graph
domains, characterizing them according to the cardinality, distribution, and relationship
of their patterns, leading to the following hypothesis: relations between recurrent and
simple patterns characterize graph domains providing interesting insights through
exploratory visualization;

2. we designed an algorithmic framework that minimizes disk and memory access during
vertex-centric and edge-centric processing using only one computational node. We fo-
cused on how to minimize I/O communication, taking advantage of hardware capabilities
and advanced algorithm design. Accordingly, we worked on validating the following
hypothesis: a framework focused on minimizing I/O communication is able to boost
the processing speed of planetary-scale graphs that do not fit in RAM.

1.4 Rationale
Large graph visualization is a research area widely studied [12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23]; however, there are not optimal solutions considering scalability and interaction for
many visual tasks [24]. In this research area, visual analysis has two predominant paradigms:
top-down (global views) and bottom-up (local-views). The top-down approaches are based on the
Shneiderman’s mantra overview, zoom and filter, details-on-demand” [25] and they have shown
good applicability in many domains [26, 27, 28, 29]; notwithstanding, the creation process of
global views is computationally expensive for graphs with millions or billions of vertices and
edges. Thus, global views can be cluttered for screens with limited resolution [30] in such a way
that simple tasks, like edge navigation or counting, become difficult for users [31]. On the other
hand, bottom-up approaches [32, 33, 34, 35, 36] have better scalability to show specific regions
of the graph, but the selection of initial vertices is a complex task [37]. Addressing the gaps found
in these works, one of the lines of this work was to search for approaches considering scalability
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(both visual and computational) and interactivity in order to make sense of planetary-scale graphs,
as delineated in our first hypothesis. We detail this work in Chapter 2 along with further literature
review.

Graph visualization techniques usually require efficient algorithms for graph partitioning,
summarization, filtering, clustering or some other task related to graph mining. The computation
of such patterns properties, considering planetary-scale graphs, demands distributed and parallel
frameworks. The work of Pregel [9], for example, defines a seminal framework that provides a
simple programming interface based on message passing; it uses the paradigm “think like vertex”
hiding the complexity of distributed systems. Another framework, named GBase [38], uses a
MapReduce [39]/Hadoop[40] implementation for graph processing through a block compress
partition scheme; in turn, GraphLab [10] introduces an asynchronous, dynamic and graph-parallel
scheme for machine learning that permits implementations of many algorithms for graphs; and
PowerGraph [41] improves the approach of GraphLab by exploiting power-law distributions –
common in graphs of many domains. There are other distributed implementations as the Apache
Giraph [42], Trinity [43] and GraphX [44]; but, in general, distributed approaches may not
always be the best option, because they can be expensive to build [45] and hard to maintain and
optimize.

In addition to the distributed frameworks, single-node processing solutions have recently
reached a comparative performance to distributed systems for similar algorithms [46]. These
frameworks use secondary memory as an extension of main memory (RAM). GraphChi [45]
was one of the first single-node approaches to avoid random disk/edge accesses; it uses a vertex-
centric model improving the performance for mechanical disks. Another solution, X-Stream
[11] introduced an edge-centric model that achieved better performance over the vertex-centric
approaches, it did so by favoring sequential disk access over unordered data. In another way,
the FlashGraph framework [47] provides an efficient implementation that considers enough
RAM memory for storing vertex values, but its scalability is limited. Among the existing works
designed for single-node processing, some of them are restricted to SSDs. These works rely on
the remarkable low-latency and improved I/O of SSDs compared to magnetic disks. This is the
case of TurboGraph [48] and RASP [49], which rely on random accesses to the edges — not
well supported over magnetic disks. In the current research, we have extensively studied these
framework in order to design a new methodology that surpasses the performance of all of the
previous single-node processing frameworks. In Chapter 3, we provide further details and results
that demonstrate our second hypothesis.

1.5 Contributions

This work describes our main contributions for a better understanding of graph relations through
efficient processing and visualization techniques – as introduced in Section 1.3.
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Firstly, we proposed a visualization technique concerning the principle that graphs can be
characterized using simple structures, common in many graph domains. Instead of node relations,
we represented the graph using an upper level of abstraction where sets of nodes and edges are
associated with chains, stars, cliques and bipartite-cores. We designed an efficient algorithm that
cuts power-law graphs iteratively. It removes hubs progressively to detect connected components
in the graph; at once, it classifies each connected component in a simple structure when is
possible and, when not, it applies the same cut process for each one. After detection of structures,
as detailed in chapter 2, our algorithm visualizes the structures using a dense-matrix layout in
which we can study the distribution of structures, their size, and how they are related.

Our second contribution was a framework for processing billion-scale graphs through
a bimodal block processing strategy. Our framework reduces I/O operations on secondary
memory by analysis of sparsity in subregions of the graph. For processing each subregion, it
chooses between two strategies, one optimized for sparse regions and other for dense ones.
In consequence, our framework minimizes disk utilization increasing sequential access, what
overcomes many of the critical issues in existing frameworks. Additionally, It includes a flexible
programming interface to implement popular and essential graph algorithms like PageRank,
Connected Component, Sparse Matrix-Vector Multiplication, eigensolver and belief-propagation.

The rest of the document is organized as follows: Chapter 2 presents our first contribution
on large graph visualization; Chapter 3 presents our bimodal block processing model for large
graphs using secondary memory, and Chapter 4 presents further results that were obtained in the
course of this research. Chapter 5 concludes this work.
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CHAPTER

2
MILLION-SCALE VISUALIZATION OF

GRAPHS BY MEANS OF STRUCTURE
DETECTION AND DENSE MATRICES

2.1 Initial considerations

Large graph visualization has been a prolific research area for years, and new techniques
for processing, interaction and visualization of big graphs are usually proposed to deal with
sensemaking and scalability. Given a large-scale graph with millions of nodes and millions of
edges, how to reveal macro patterns of interest, like cliques, bi-partite cores, stars, and chains?
Furthermore, how to visualize such patterns altogether getting insights from the graph to support
wise decision-making? Although there are many algorithmic and visual techniques to analyze
graphs, none of the existing approaches are able to present the structural information of graphs at
million scale; hence, in this chapter, we present our first contribution StructMatrix, a methodology
aimed at high-scale visual inspection of graph structures with the goal of revealing macro patterns
of interest.

2.2 Introduction

Large-scale graphs refer to graphs generated by contemporary applications in which users or
entities distributed along large geographical areas – even the entire planet – create massive
amounts of information; a few examples of those are social networks, recommendation networks,
road nets, e-commerce, computer networks, client-product logs, and many others. Common to
such graphs is the fact that they are made of recurrent simple structures (cliques, bi-partite cores,
stars, and chains) that follow macro behaviors of cardinality, distribution, and relationship. Each
of these three features depends on the specific domain of the graph; therefore, each of them
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characterizes the way a given graph is understood.

While some features of large graphs are detected by algorithms that produce hundreds
of tabular data, these features can be better noticed with the aid of visual representations. In
fact, some of these features, given their large cardinality, are intelligible, in a timely manner,
exclusively with visualization. Considering this approach, we propose StructMatrix, a method-
ology that combines a highly scalable algorithm for structure detection with a dense matrix
visualization. With StructMatrix, we introduce the following contributions:

1. Methodology: we introduce innovative graph processing and visualization techniques to
detect macro features of very large graphs;

2. Scalability: we show how to visually inspect graphs with magnitudes far bigger than those
of previous works;

3. Analysis: we analyze relevant graph domains, characterizing them according to the cardi-
nality, distribution, and relationship of their structures.

The rest of the paper presents related works in Section 3.3, the proposed methodology
in Section 2.4, experimentation in Section 2.5, and conclusions in Section 2.6. Table 1 lists the
symbols used in our notation.

2.3 Related works

2.3.1 Large graph visualization

There are many works about graph visualization, however, the vast majority of them is not suited
for large-scale. Techniques that are based on node-link drawings cannot, at all, cope with the
needs of just a few thousand edges that would not fit in the display space. Edge bundling [50]
techniques are also limited since they do not scale to millions of nodes and also because they
are able to present only the main connection pathways in the graph, disregarding potentially
useful details. Other large-scale techniques are visual in a different sense; they present plots
of calculated features of the graph instead of depicting their structural information. This is the
case of Apolo [51], Pegasus [52], and OddBall [53]. There are also techniques [54] that rely on
sampling to gain scalability, but this approach assumes that parts of the graph will be absent;
parts that are of potential interest.

Adjacency matrices in contrast to Node-Link diagrams are the most recommended
techniques for fine inspection of graphs in scalable manner [55]; this is because they can
represent an edge for each pixel in the display. However, even with one edge per pixel, one
can visualize roughly a few million edges. Works Matrix Zoom[56] and ZAME[14] extend the
one-edge-per-pixel approach by merging nodes and edges through clustering algorithms, creating
an adjacency matrix where each position represents a set of edges on a hierarchical aggregation.
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The main challenge of using clustering techniques is to find an aggregation algorithm that
produces a hierarchy that is meaningful to the user. There are also matrix visualization layouts
as MatLink [57] and NodeTrix [58] combining Node-Link and adjacency representations to
increase readability and scalability, but those approaches are not enough to visualize large-scale
graphs.

Net-Ray [30] is another technique working at large scale; it plots the original adjacency
matrix of one large graph in the much smaller display space using a simple projection: the
original matrix is scaled down by means of straight proportion. This approach causes many edges
to be mapped to one same pixel; this is used to generate a heat map that informs the user of how
many edges are in a certain position of the dense matrix.

In this work, we extend the approach of adjacency matrices, as proposed by Net-Ray,
improving its scalability and also its ability to represent data. In our methodology, we introduce
two main improvements: (1) our adjacency matrix is not based on the classic node-to-node
representation; we first condense the graph as a collection of smaller structures, defining a
structure-to-structure representation that enhances scalability as more information is represented
and less compression of the adjacency matrix is necessary; and (2) our projection is not a
static image but rather an interactive plotting from which different resolutions can be extracted,
including the adjacency matrix with no overlapping – of course, considering only parts of the
matrix that fit in the display.

2.3.2 Structure detection

The principle of StructMatrix is that graphs are made of simple structures that appear recurrently
in any graph domain. These structures include cliques, bipartite cores, stars, and chains that we
want to identify. Therefore, a given network can be represented in an upper level of abstraction;
instead of nodes, we use sets of nodes and edges that correspond to substructures. The motivation
here is that analysts cannot grasp intelligible meaning out of huge network structures; meanwhile,
a few simple substructures are easily understood and often meaningful. Moreover, analyzing
the distribution of substructures, instead of the distribution of single nodes, might reveal macro
aspects of a given network.

Partitioning (shattering) algorithms
StructMatrix, hence, depends on a partitioning (shattering) algorithm to work. Many algorithms
can solve this problem, like Cross-associations [59], Eigenspokes [60], and METIS [61], and
VoG [62]. We verified that VoG overcomes the others in detecting simple recurrent structures
considering a limited well-known set.

Vog relies on the technique introduced by graph compression algorithm Slash-Burn
by Kang and Faloutsos [63]. The idea of Slash-Burn is that, in contrast to random graphs or
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Figure 1 – The vocabulary of graph structures considered in our methodology. From (a) to (g), illustrative examples
of the patterns that we consider; we process variations on the number of nodes and edges of such patterns.

lattices, the degree distribution of real-world networks obeys to power laws; in such graphs, a
few nodes have a very high degree, while the majority of the nodes have low degree. Kang and
Faloutsos also demonstrated that large networks are easily shattered by an ordered “removal” of
the hub nodes. In fact, after each removal, a small set of disconnected components (satellites)
appear, while the majority of the nodes still belong to the giant connected component. That
is, the disconnected components were connected to the network only by the hub that was
removed and, by progressively removing the hubs, the entire graph is scanned part by part.
Interestingly, the small components that appear determine a partitioning of the network that is
more coherent than cut-based approaches [64]. The technique works for any power-law graph
without domain-specific knowledge or specific ordering of the nodes.

For the sake of completeness and performance, we designed a new algorithm that,
following the Slash-Burn technique, extends algorithm Vog with parallelism, optimizations, and
an extended vocabulary of structures, as detailed in Section 2.4.2. Our results demonstrated
better performance while considering a larger set of structures.

2.4 Proposed method: StructMatrix
As we mentioned before, StructMatrix draws an adjacency matrix in which each line/column is a
structure, not a single node; besides that, it uses a projection-based technique to “squeeze” the
edges of the graph in the available display space, together with a heat mapping to inform the user
of how big are the structures of the graph. In the following, we formally present the technique.

2.4.1 Overview of the graph condensation approach
For this work, we use a vocabulary of structures that extends those of former works; it considers
seven well-known structures – see Figure 1 – found in the graph mining literature: false stars (fs),
stars (st), chains (ch), near and full cliques (nc, fc), near and full bi-partite cores (nb, fb). Shortly,
we define the vocabulary of structures as ψ = { f s,st,ch,nc, f c,nb, f b}.
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Notation Description
G(V,E) graph with V vertices and E

edges
S,Sx structure-set
n, |S| cardinality of S
M,mx,y StructMatrix
f c, nc full and near clique resp.
f b, nb full and near bipartite core

resp.
st, f s, ch star, false star and chain resp.
ψ vocabulary (set) of structures
D(si,s j) Number of edges between

structure instances si and s j
Table 1 – Description of the major symbols used in this work.

False stars are structures similar to stars (a central node surrounded by satellites), but
whose satellites have edges to other nodes, indicating that the star may be only a substructure
of a bigger structure – see Figure 1. A near-clique or ε-near clique is a structure with 1− ε
(0 < ε < 1) percent of the edges that a similar full clique would have; the same holds for near
bipartite cores. In our case, we are considering ε = 0.2 so that a structure is considered near

clique or near bipartite core, if it has at least 80 percent of the edges of the corresponding full
structure.

The rationale behind the set of structures ψ is that (a) cliques correspond to strongly
connected sets of individuals in which everyone is related to everyone else; cliques indicate
communities, closed groups, or mutual-collaboration societies, for instance. (b) Chains corre-
spond to sequences of phenomena/events like those of “spread the word”, according to which
one individual passes his experience/feeling/impression/contact with someone else, and so on,
and so forth; chains indicate special paths, viral behavior, or hierarchical processes. (c) Bipartite
cores correspond to sets of individuals with specific features, but with complementary interac-
tion; bipartite cores indicate the relationship between professors and students, customers and
products, clients and servers, to name a few. And, (d) stars correspond to special individuals
highly connected to many others; stars indicate hub behavior, authoritative sites, intersecting
paths, and many other patterns.

Considering these motivations, our algorithm condenses the graph in a dense adjacency
matrix. To do so, it produces a set with the instances of structures in ψ that were found in the
graph; this set of instances contains the same information as that of the original graph but with
vertices and edges grouped as structures. Beyond that, the algorithm detects the edges in between
the structures, so that it becomes possible to build a condensed adjacency matrix that informs
which structure is connected to each other structure.
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2.4.2 StructMatrix algorithm
As mentioned earlier, our algorithm is based on a high-degree ordered removal of hub nodes
from the graph; the goal is to accomplish an efficient shattering of the graph, as introduced
in Section 2.3.2. As we describe in Algorithm 1, our process relies on a queue, Φ, which
contains the unprocessed connected components (initially the whole graph), and a set Γ that
contains the discovered structures. In line 4, we explore the fact that the problem is straight
parallelizable by triggering threads that will process each connected component in queue Φ. In
the process, we proceed with the ordered removal of hubs – see line 5, which produces a new set
of connected components. With each connected component, we proceed by detecting a structure
instance in line 7, or else, pushing it for processing in line 10. The detection of structures and
the identification of their respective types occur according to Algorithm 2, which uses edge
arithmetic to characterize each kind of structure.

Algorithm 1 StructMatrix algorithm

Require: Graph G = (E,V )
Ensure: Array Γ containing the structures found in G

1: Let be queue Φ = {G} and set Γ = {}
2: while Φ is not empty do
3: H =Pop(Φ) /*Extract the first item from queue Φ*/
4: SUBFUNCTION Thread(H) BEGIN /*In parallel*/
5: H ′ = “H without the 1% nodes with highest degree”
6: for each connected component cc ∈ H ′ do
7: if cc ∈ ψ using Algorithm 2 then
8: Add(Γ, cc)
9: else

10: Push(Φ, cc)
11: end if
12: end for
13: END Thread(H)
14: end while

Algorithm 2 Structure classification

Require: Subgraph H = (E,V ); n = |V | and m = |E|
1: if m = n(n−1)

2 then return fc
2: else if m > (1− ε)∗ n(n−1)

2 then return nc
3: else if m < n2

4 and H = (E,Va∪Vb) is bipartite then
4: if m = |Va| ∗ |Vb| then return fb
5: else if m > (1− ε)∗ |Va| ∗ |Vb| then return nb
6: else if |Va|= 1 or |Vb|= 1 then return st
7: else if m = n−1 then return ch
8: end if
9: end ifreturn undefined structure

The StructMatrix algorithm, different from former works, maximizes the identification
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of structures rather than favoring optimum compression; it uses parallelism for improved per-
formance; and considers a larger set of structures. In Section 2.5, we demonstrate these aspects
through experimentation.

2.4.3 Adjacency Matrix Layout

A graph G = 〈V,E〉 with V vertices and E edges can be expressed as a set of structural instances
S = {s0,s2, . . . ,s|S|−1}, where si is a subgraph of G that is categorized – see Figure 1 and Table 1
– according to the function type(s) : S→ ψ . To create the adjacency matrix of structures, first we
identify the set S of structures in the graph and categorize each one. Following, we define n = |S|
to refer to the cardinality of S.

As depicted in Figure 2, each type of structure defines a partition in the matrix, both
horizontally and vertically, determining subregions in the visualization matrix. In this matrix, a
given structure instance corresponds to a horizontal and to a vertical line (w.r.t. the subregions)
in which each pixel represents the presence of edges (one or more) between this structure and
the others in the matrix. Therefore, the matrix is symmetric and supports the representation
of relationships (edges) between all kinds of structure types. Formally, the elements mi, j of a
StructMatrix Mn×n, 0 < i < (n−1) and 0 < j < (n−1) are given by:

mi, j =

{
1, i f D(si,s j)> 0;
0 otherwise.

(2.1)

where D : S×S→ N is a function that returns the number of edges between two given structure
instances. For quick reference, please refer to Table 1.

In this work, we focus on large-scale graphs whose corresponding adjacency matrices
do not fit in the display. This problem is lessened when we plot the structures-structures matrix,
instead of the nodes-nodes matrix. However, due to the magnitude of the graphs, the problem
persists. We treat this issue with a density-based visualization for each subregion formed by two
types of structures (ψi,ψ j),ψi ∈ ψ and ψ j ∈ ψ – for example, ( f s, f s),( f s,st), ..., and so on. In
each subregion, we map each point of the original matrix according to a straight proportion. We
map the lower, left boundary point (xmin,ymin) to the center of the lower, left boundary pixel;
and the upper, right boundary point (xmax,ymax) to the center of the upper, right boundary pixel.
The remaining points are mapped as (x,y)→ (ρx,ρy) for:

ρx = R(ψi,ψ j)+
⌈
(Resx−1) x−xmin

xmax−xmin
+ 1

2

⌉

ρy = R(ψi,ψ j)+
⌈
(Rexy−1) y−ymin

ymax−ymin
+ 1

2

⌉ (2.2)

where R : ψ×ψ → N is a function that returns the offset (left boundary) in pixels of the region
(ψi,ψ j) and Resx,Resy are the target resolutions. The more resolution, the more details are
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Figure 2 – Adjacency Matrix layout.

presented, these parameters allow for interactive grasping of details.

Each set of edges connecting two given structures is then mapped to the respective
subregion of the visualization where the structures’ types cross. Inside each structure subregion
we add an extra information by ordering the structure instances according to the number of edges

that they have to other structures; that is, by
|S|−1

∑
i=0

D(s,si).

Therefore, the structures with the largest number of edges to other structures appear first
– more at the bottom left, less at the top right, of each subregion as explained in Figure 2.

In the visualization, each horizontal/vertical line (w.r.t. the subregions) corresponds to a
few hundred or thousand structure instances; and each pixel corresponds to a few hundred or
thousand edges. We deal with that by not plotting the matrix as a static image, but as a dynamic
plot that adapts to the available space; hence, it is possible to select specific areas of the matrix
and see more details of the edges. It is possible to regain details until reaching parts the original
plot, when all the edges are visible.

We plot one last information using color to express the sum of nodes of two given
connected structures. We use a color map in which the smaller number of nodes is indicated with
bluish colors and the bigger number of nodes is indicated with reddish colors. In addition, we
use the same information as used for color encoding to determine the order of plotting: first we
plot the edges of the smaller structures (according to the number of nodes), and then the edges of
the bigger structures. This procedure assures that the hotter edges will be over the cooler ones,
and that the interesting (bigger) structures will be spotted easier. At this point the elements mi, j
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(a) Normal scale. (b) Log scale.

Figure 3 – StructMatrix in the WWW-barabasi graph with colors displaying the sum of the sizes of two connected
structures; in the graph, stars refer to websites with links to other websites.

(c) Normal scale. (d) Log scale.

Figure 4 – StructMatrix in the Wikipedia-vote graph with values displaying the sum of the sizes of two connected
structures; in this graph, stars refer to users who got/gave votes from/to other users.

of a StructMatrix Mn×n, 0 < i < (n−1) and 0 < j < (n−1) are given by:

mi, j =





C(NNodes(si)+NNodes(s j)),

i f D(si,s j)> 0;

0 otherwise.

(2.3)

where NNodes : S→N is a function that returns the number of nodes of a given structure
instance; and C : N→ [0.0,1.0] is a function that returns a continuous value between 0.0 (cool
blue for smaller structures) and 1.0 (hot red for bigger structures) according to the sum of the
number of nodes in the two connected structures. In our visualization, we map the function C to
a log scale and then we apply a linear color scale to the data.
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Graph fs st ch nc fc nb fb
DBLP 122,983 (76%) 7,585(5%) 3,096(2%) 2,656(2%) 24,551(15%) 14(<1%) -
WWW-barabasi 4,957(32%) 8,146(52%) 851(5%) 541(3%) 283(2%) 556(4%) 318(2%)
cit-HepPh 11,449(79%) 1,948(13%) 840(6%) 120(1%) 44 (4<1%) 35(<1%) 43(<1%)
Wikipedia-vote 1,112(65%) 564(33%) 29 (2%) - - 1(<1%) -
Epinions 4,518(52%) 2,725(31%) 1,247(14%) 28 (%) 21(%) 150(2%) 3(<1%)
Roadnet PA 11,825(23%) 22,934(45%) 13,748(27%) - - 2,668(5%) -
Roadnet CA 24,193(27%) 34,781(39%) 26,236(29%) - - 3,763(4%) -
Roadnet TX 15,595(25%) 27,094(43%) 17,457(28%) - - 2,468(4%) -

Table 3 – Structures found in the datasets considering a minimum size of 5 nodes.

2.5 Experiments
Table 2 describes the graphs we use in the experiments.

Name Nodes Edges Description
DBLP 1,366,099 5,716,654 Collaboration network
Roads of PA 1,088,092 1,541,898 Road net of Pennsylvania
Roads of CA 1,965,206 2,766,607 Road net of California
Roads of TX 1,379,917 1,921,660 Road net of Texas
WWW-barabasi 325,729 1,090,108 WWW in nd.edu
Epinions 75,879 405,740 Who-trusts-whom network
cit-HepPh 34,546 420,877 Co-citation network
Wiki-vote 7,115 100,762 Wikipedia votes

Table 2 – Description of the graphs used in our experiments.

2.5.1 Graph condensations

Table 3 shows the condensation results of the structure detection algorithm over each dataset,
already considering the extended vocabulary and structures with minimum size of 5 nodes – less
than 5 nodes could prevent to tell apart the structure types. The columns of the table indicate
the percentage of each structure identified by the algorithm. For all the datasets, the false star
was the most common structure; the second most common structure was the star, and then the
chain, especially observed in the road networks. The improvement of the visual scalability of
StructMatrix, compared to former work Net-Ray, is as big as the amount of information that
is “saved” when a graph is modeled as a structure-to-structure adjacency matrix, instead of a
node-to-node matrix.

2.5.2 Scalability

In order to test the processing scalability of StructMatrix, we used a breadth-first search over the
DBLP dataset to induce subgraphs of different sizes – we created graphs ranging from 50K edges
up to 1.000K edges. For the scalability experiment, we used a contemporary commercial desktop
(Intel i7 with 8 GB RAM). We compared the performance between VoG and StructMatrix to detect
simple recurrent structures from a limited well-known set. Figure 5 shows that StructMatrix and
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Figure 5 – Scalability of the StructMatrix and VoG techniques; although VoG is near-linear to the graph edges,
StructMatrix overcomes VoG for all the graph sizes.

VoG are near-linear on the number of edges of the input graph, however StructMatrix overcomes
VoG for all the graph sizes.

2.5.3 WWW and Wikipedia

In Figures 3 and 4, one can see the results of StructMatrix for graphs WWW-barabasi (325,729
nodes and 1,090,108 edges) and Wikipedia-vote (7,115 nodes and 100,762 edges) condensed as
described in Table 3. For graph WWW-barabasi, Figure 3a shows the StructMatrix with linear
color encoding, and Figure 3b shows the StructMatrix with logarithmic color encoding. For the
Wikipedia-vote graph, the same visualizations are presented in Figures 3c and 3d. We observe
the following factors in the visualizations:

• the share of structures: WWW-barabasi presents a clear majority of stars, followed by false
stars, and chains, while the Wikipedia-vote presents a majority of false stars, followed by
stars, and chains; in both cases, stars strongly characterize each domain, as expected in
websites and in elections;
• the presence of outliers in WWW-barabasi, spotted in red; and the presence of structures

globally and strongly connected in Wikipedia-vote, depicted as reddish lines across the
visualization;
• the notion that the bigger the structures, the more connected they are – reddish (the

bigger) structures concentrate on the left (the more connected), especially perceived in
Wikipedia-vote;
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• the effect of the logarithmic color scale; its use results in a clearer discrimination of the
magnitudes of the color-mapped values, what helps to perceive the distribution of the
values; more skewed in WWW and more uniform in Wikipedia.

The stars and false stars of the WWW graph in Figure 3b refer to sites with multiple pages
and many out-links – bigger sites are reddish, more connected sites to the left. The visualization
is able to indicate the big stars (sites) that are well-connected to other sites (reddish lines), and
also the big sites that demand more connectivity – reddish isolated pixels. The chains indicate
site-to-site paths of possibly related semantics, an occurrence not so rare for the WWW domain.
There is also a set of reasonably small, interconnected sites that connect only with each other
and not with the others – these sites determine blank lines in the visualization and their sizes are
noticeable in dark blue at the bottom-left corner of the star-to-star subregion. Such sites should
be considered as outliers because, although strongly connected, they limit their connectivity to a
specific set of sites.

While the Wikipedia graph is mainly composed of stars, just like the WWW graph,
the Wikipedia graph is quite different. Its structures are more interconnected defining a highly
populated matrix. That means that users (contributors) who got many votes to be elected as
administrators in Wikipedia, also voted in many other users. The sizes of the structures, indicated
by color, reveal the most voted users, positioned at the bottom-left corner – the color pretty much
corresponds to the results of the elections: of the 2,794 users, only 1,235 users had enough votes
to be elected administrators (nearly 50% of the reddish area of the matrix). There are also a few
chains, most of them connected to stars (users), especially the most voted ones – it becomes
evident that the most voted users also voted on the most voted users. This is possibly because, in
Wikipedia, the most active contributors are aware of each other.

2.5.4 Road networks

On the road networks, if we consider the stars segment (“st”), each structure corresponds to a city
(the intersecting center of the star); therefore, the horizontal/vertical lines of pixels correspond
to the more important cities that act as hubs in the road system. Its StructMatrix visualization –
Figure 7 – showed an interesting pattern for all the three road datasets: in the figure, one can
see that the relationships between the road structures is more probable in structures with similar
connectivity. This fact is observable in the curves (diagonal lines of pixels) that occur in the
visualization – remember that the structures are first ordered by type into segments, and then by
their connectivity (more connected first) in each segment.

Another interesting fact is the presence of some structures heavily connected to nearly
all the other structures; these structures define horizontal lines of pixels in the visualization and,
due to symmetry, they also define vertical lines of pixels. The same patterns were observed for
roadnets from California, Texas, and Pennsylvania. According to the visualizations, roads are
characterized by three patterns:
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(a) All types of structures. (b) Only the fc-fc sub region with details.

Figure 6 – DBLP Zooming on the full clique section.

Figure 7 – StructMatrix with colors in log scale indicating the size of the structures interconnected in the road
networks of Pennsylvania (PA), California (CA) and Texas(TX). Again, stars appear as the major structure
type; in this case they correspond to cities or to major intersections.

1. cities that connect to most of the other cities acting as interconnecting centers in the road
structure; these cities are of different importance and occur in small number – around 6 for
each state that we studied;

2. there is a hierarchical structure dictated by the connectivity (importance) of the cities; in
this hierarchy, the connections tend to occur between cities with similar connectivity; one
consequence of this fact is that going from one city to some other city may require one to
first “ascend” to a more connected city; actually, for this domain, the lines of pixels in the
visualization correspond to paths between cities, passing through other cities – the bigger
the inclination of the line, the shorter the path (the diagonal is the longest path);

3. road connections that are out of the hierarchical pattern – the ones that do not pertain to
any line of pixels; such connections refer to special roads that, possibly, were built on
specific demands, possibly not obeying to the general guidelines for road construction.
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From these visualizations and patterns, we notice that the StructMatrix visualization
is a quick way (seconds) to represent the structure of graphs on the order of million-nodes
(intersections) and million-edges (roads). For the specific domain of roads, the visualization
spots the more important cities, the hierarchy structure, outlier roads that should be inspected
closer, and even, the adequacy of the roads’ inter connectivity. This last issue, for example, may
indicate where there should be more roads so as to reduce the pathway between cities.

2.5.5 DBLP

In the StructMatrix of the DBLP co-authoring graph – see Figure 6a – it is possible to see a
huge number of false stars. This fact reflects the nature of DBLP, in which works are done by
advisors who orient multiple students along time; these students in turn connect to other students
defining new stars and so on. A minority of authors, as seen in the matrix, concerns authors
whose students do not interact with other students defining stars properly said. The presence
of full cliques (fc) is of great interest; sets of authors that have co-authorship with every other
author. Full cliques are expected in the specific domain of DBLP because every paper defines a
full clique among its authors – this is not true for all clique structures, but for most of them.

In Figure 6b, we can see the full clique-to-full clique region in more details and with
some highlights indicated by arrows. The Figure highlights some notorious cliques: k1 refers to
the publication with title “A 130.7mm 2-layer 32Gb ReRAM memory device in 24nm technology"
with 47 authors; k2 refers to paper “PRE-EARTHQUAKES, an FP7 project for integrating

observations and knowledge on earthquake precursors: Preliminary results and strategy" with
45 authors; and k3 refers to paper “The Biomolecular Interaction Network Database and related

tools 2005 update" with 75 authors. These specific structures were noticed due to their colors,
which indicate large sizes. Structures k1 and k3, although large, are mostly isolated since they
do not connect to other structures; k2, on the other hand, defines a line of pixels (vertical and
horizontal) of similarly colored dots, indicating that it has connections to other cliques.

2.6 Conclusions

We focused on the problem of visualizing graphs so big that their adjacency matrices demand
much more pixels than what is available in regular displays. We advocate that these graphs
deserve macro analysis; that is, analysis that reveal the behavior of thousands of nodes altogether,
and not of specific nodes, as that would not make sense for such magnitudes. In this sense,
we provide a visualization methodology that benefits from a graph analytical technique. Our
contributions are:

• Visualization technique: we introduce a processing and visualization methodology that
puts together algorithmic techniques and design in order to reach large-scale visualizations;
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• Analytical scalability: our technique extends the most scalable technique found in the
literature; plus, it is engineered to plot millions of edges in a matter of seconds;
• Practical analysis: we show that large-scale graphs have well-defined behaviors concern-

ing the distribution of structures, their size, and how they are related one to each other;
finally, using a standard laptop, our techniques allowed us to experiment in real, large-scale
graphs coming from domains of high impact, i.e., WWW, Wikipedia, Roadnet, and DBLP.

Our approach can provide interesting insights on real-life graphs of several domains
answering to the demand that has emerged in the last years. By converting the graph’s properties
into a visual plot, one can quickly see details that algorithmic approaches either would not detect,
or that would be hidden in thousand-lines tabular data.

2.7 Final considerations
In this chapter, we presented StructMatrix, an innovative approach that combines algorithmic
structure detection and adjacency matrix visualization to present cardinality, distribution, and
relationship of the structures found in a given graph. We performed experiments in real, million-
scale graphs with up to millions of nodes and over 5 million edges. StructMatrix revealed that
graphs of high relevance (e.g., Web, Wikipedia and DBLP) have characterizations that reflect the
nature of their corresponding domains; our findings have not been seen in the literature so far.
We expect that our technique will bring deeper insights into large graph mining, leveraging their
use for decision making.
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CHAPTER

3
M-FLASH: FAST BILLION-SCALE GRAPH

COMPUTATION USING A BIMODAL BLOCK
PROCESSING MODEL

3.1 Initial considerations

Recent graph computation approaches such as GraphChi, X-Stream, TurboGraph and MMap
demonstrated that a single PC can perform efficient computation on billion-scale graphs. While
they use different techniques to achieve scalability through optimizing I/O operations, such
optimization often does not fully exploit the capabilities of modern hard drives. In this chapter,
we present our novel and scalable graph computation framework called M-Flash, which uses a
new, bimodal block processing strategy (BBP) to boost computation speed by minimizing I/O
cost.

3.2 Introduction

Large graphs with billions of nodes and edges are increasingly common in many domains
and applications, such as in studies of social networks, transportation route networks, citation
networks, and many others. Distributed frameworks have become popular choices for analyzing
these large graphs (e.g., GraphLab [41], PEGASUS [65] and Pregel [9]). However, distributed
approaches may not always be the best option, because they can be expensive to build [45], hard
to maintain and optimize.

These potential challenges prompted researchers to create single-machine, billion-scale
graph computation frameworks that are well-suited to essential graph algorithms, such as
eigensolver, PageRank, connected components and many others. Examples are GraphChi [45]
and TurboGraph [48]. Frameworks in this category define sophisticated processing schemes
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to overcome challenges induced by limited main memory and poor locality of memory access
observed in many graph algorithms [66]. For example, most frameworks use an iterative, vertex-
centric programming model to implement algorithms: in each iteration, a scatter step first
propagates the data or information associated with vertices (e.g., node degrees) to their neighbors,
followed by a gather step, where a vertex accumulates incoming updates from its neighbors to
recalculate its own vertex data.

Recently, X-Stream [11] introduced a related edge-centric, scatter-gather processing
scheme that achieved better performance over the vertex-centric approaches, by favoring sequen-
tial disk access over unordered data, instead of favoring random access over ordered and indexed
data (as it occurs in most other approaches). When studying this and other approaches [67][45],
we noticed that despite their sophisticated schemes and novel programming models, they often
do not optimize for disk operations, which is the core of performance in graph processing
frameworks. For example, reading or writing to disk is often performed at a lower speed than
the disk supports; or, reading from disk is commonly executed more times than it is necessary,
what could be avoided. In the context of single-node, billion-scale graph processing frame-
works, we present M-Flash, a novel scalable framework that overcomes many of the critical
issues of the existing approaches. M-Flash outperforms the state-of-the-art approaches in large
graph computation, being many times faster than the others. More specifically, our contributions
include:

1. M-Flash Framework & Methodology: we propose the novel M-Flash framework that
achieves fast and scalable graph computation via our new bimodal block model that
significantly boosts computation speed and reduces disk accesses by dividing a graph and
its node data into blocks (dense and sparse), thus minimizing the cost of I/O. Complete
source-code of M-Flash is released in open source: https://github.com/M-Flash.

2. Programming Model: M-Flash provides a flexible, and deliberately simple programming
model, made possible by our new bimodal block processing strategy. We demonstrate how
popular, essential graph algorithms may be easily implemented (e.g., PageRank, connected
components, the first single-machine eigensolver over billion-node graphs, etc.), and how
a number of others can be supported.

3. Extensive Experimental Evaluation: we compared M-Flash with state-of-the-art frame-
works using large real graphs, the largest one having 6.6 billion edges (YahooWeb [7]).
M-Flash was consistently and significantly faster than GraphChi [45], X-Stream [11],
TurboGraph [48] and MMap [67] across all graph sizes. And it sustained high speed even
when memory was severely constrained (e.g., 6.4X faster than X-Stream, when using 4GB
of RAM).
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3.3 Related work

A typical approach to scalable graph processing is to develop a distributed framework. This
is the case of PEGASUS [65], Apache Giraph (http://giraph.apache.org.), Powergraph
[41], and Pregel [9]. Differently, in this work, we aim to scale up by maximizing what a single
machine can do, which is considerably cheaper and easier to manage. Single-node processing
solutions have recently reached a comparative performance with distributed systems for similar
tasks [46].

Among the existing works designed for single-node processing, some of them are
restricted to SSDs. These works rely on the remarkable low-latency and improved I/O of SSDs
compared to magnetic disks. This is the case of TurboGraph [48] and RASP [49], which rely on
random accesses to the edges — not well supported over magnetic disks. Our proposal, M-Flash,
avoids this drawback at the same time that it demonstrates better performance over TurboGraph.

GraphChi [45] was one of the first single-node approaches to avoid random disk/edge
accesses, improving the performance for mechanical disks. GraphChi partitions the graph on
disk into units called shards, requiring a preprocessing step to sort the data by source vertex.
GraphChi uses a vertex-centric approach that requires a shard to fit entirely in memory, including
both the vertices in the shard and all their edges (in and out). As we demonstrate, this fact makes
GraphChi less efficient when compared to our work. Our M-Flash requires only a subset of the
vertex data to be stored in memory.

MMap [67] introduced an interesting approach based on OS-supported mapping of disk
data into memory (virtual memory). It allows graph data to be accessed as if they were stored in
unlimited memory, avoiding the need to manage data buffering. This enables high performance
with minimal code. Inspired by MMap, our framework uses memory-mapping when processing
edge blocks, but with an improved engineering, our M-Flash consistently outperforms MMap, as
we demonstrate.

Our M-Flash also draws inspiration from the edge streaming approach introduced by
X-Stream’s processing model [11], improving it with fewer disk writes for dense regions of the
graph. Edge streaming is a sort of stream processing referring to unrestricted data flows over a
bounded amount of buffering. As we demonstrate, this leads to optimized data transfer by means
of less I/O and more processing per data transfer.

3.4 M-Flash

In this section, we first describe how a graph is represented in M-Flash (Subsection 3.4.1). Then,
we detail how our block-based processing model enables fast computation while using less RAM
(Subsection 3.4.2). Subsection 3.4.3 explains how graph algorithms can be implemented using
M-Flash’s generic programming model, taking as examples well-known, essential algorithms.
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Figure 8 – Organization of edges and vertices in M-Flash. Left (edges): example of a graph’s adjacency matrix
(in light blue color) organized in M-Flash using 3 logical intervals (β = 3); G(p,q) is an edge block
with source vertices in interval I(p) and destination vertices in interval I(q); SP(p) is a source-partition
contaning all blocks with source vertices in interval I(p);DP(q) is a destination-partition contaning all
blocks with destination vertices in interval I(q). Right (vertices): the data of the vertices as k vectors (γ1
... γk), each one divided into β logical segments.

Finally, system design and implementation are discussed in Section 3.4.4.

The design of M-Flash considers the fact that real graphs have varying density of edges;
that is, a given graph contains dense regions with more edges than other regions that are sparse.
In the development of M-Flash, and through experimentation with existing works, we noticed
that these dense and sparse regions could not be processed in the same way. We also noticed that
this was the reason why existing works failed to achieve superior performance. To cope with
this issue, we designed M-Flash to work according to two distinct processing schemes: Dense
Block Processing (DBP) and Streaming Partition Processing (SPP). Hence, for full performance,
M-Flash uses a theoretical I/O cost to decide the kind of processing for a given block, which
can be dense or sparse. The final approach, which combines DBP and SPP, was named Bimodal
Block Processing (BBP).

3.4.1 Graphs Representation in M-Flash

A graph in M-Flash is a directed graph G = (V,E) with vertices v ∈ V labeled with integers
from 1 to |V |, and edges e = (source,destination), e ∈ E. Each vertex has a set of attributes
γ = {γ1,γ2, . . . ,γK}.

Blocks in M-Flash: Given a graph G, we divide its vertices V into β intervals denoted by I(p),
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G (3,3) 

Source I(2) 

Source I(1) 

Source I(3) 

Destination I(3) Destination I(2) Destination I(1) 

G (2,3) 

G (1,3) 

G (3,2) 

G (2,2) 

G (1,2) 

G (3,1) 

G (2,1) 

G (1,1) 

Figure 9 – M-Flash’s computation schedule for a graph with 3 intervals. Vertex intervals are represented by vertical
(Source I) and horizontal (Destination I) vectors. Blocks are loaded into memory, and processed, in a
vertical zigzag manner, indicated by the sequence of red, orange and yellow arrows. This enables the
reuse of input (e.g., when going from G(3,1) to G(3,2), M-Flash reuses source node interval I(3)), which
reduces data transfer from disk to memory, boosting the speed.

where 1 ≤ p ≤ β . Note that I(p) ∩ I(p′) = ∅ for p 6= p′, and
⋃

p I(p) = V . Thus, as shown in
Figure 8, the edges are divided into β 2 blocks. Each block G(p,q) has a source node interval
p and a destination node interval q, where 1 ≤ p,q ≤ β . In Figure 8, for example, G(2,1) is
the block that contains edges with source vertices in the interval I(2) and destination vertices in
the interval I(1). In total, we have β 2 blocks. We call this on-disk organization of the graph as
partitioning. Since M-Flash works by alternating one entire block in memory for each running
thread, the value of β is automatically determined by equation:

β =

⌈
2φT |V |

M

⌉
(3.1)

in which, M is the available RAM, |V | is the total number of vertices in the graph, φ is the
amount of data needed to store each vertex, and T is the number of threads. For example,
for 1 GB RAM, a graph with 2 billion nodes, 2 threads, and 4 bytes of data per node, β =

d(2×8×2×2∗109)/(230)e= 30, thus requiring 302 = 900 blocks.

3.4.2 The M-Flash Processing Model

This section presents our proposed M-Flash. We first describe two strategies targeted at processing
dense and sparse blocks. Next, we explain the cost-based optimization of M-Flash to take the
best of them.

Dense Block Processing (DBP): Figure 9 illustrates the DBP processing; notice that vertex
intervals are represented by vertical (Source I) and horizontal (Destination I) vectors. After
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Figure 10 – Example I/O operations to process the dense block G(2,1).

partitioning the graph into blocks, we process them in a vertical zigzag order, as illustrated in
Figure 9. There are three reasons for this order: (1) we store the computation results in the
destination vertices; so, we can “pin” a destination interval (e.g., I(1)) and process all the vertices
that are sources to this destination interval (see the red vertical arrow); (2) using this order
leads to fewer reads because the attributes of the destination vertices (horizontal vectors in the
illustration) only need to be read once, regardless of the number of source intervals. (3) after
reading all the blocks in a column, we take a “U turn” (see the orange arrow) to benefit from the
fact that the data associated with the previously-read source interval is already in memory, so we
can reuse that.

Within a block, besides loading the attributes of the source and destination intervals
of vertices into RAM, the corresponding edges e = 〈source,destination,edge properties〉 are
sequentially read from disk, as explained in Fig. 10. These edges, then, are processed using a
user-defined function so to achieve a given desired computation. After all blocks in a column are
processed, the updated attributes of the destination vertices are written to disk.

Streaming Partition Processing (SPP): The performance of DBP decreases for graphs with
very low density (sparse) blocks; this is because, for a given block, we have to read more data
from the source intervals of vertices than from the very blocks of edges. For such situations, we
designed the technique named Streaming Partition Processing (SPP). The SPP processes a
given graph using partitions instead of blocks. A graph partition can be a set of blocks sharing
the same source node interval – a line in the logical partitioning, or, similarly, a set of blocks

sharing the same destination node interval – a column in the logical partitioning. Formally, a
source-partition SP(p) =

⋃
q G(p,q) contains all blocks with edges having source vertices in the

interval I(p); a destination-partition DP(q) =
⋃

p G(p,q) contains all blocks with edges having
destination vertices in the interval I(q). For example, in Figure 8, DP(3) is the union of the blocks
G(1,3), G(2,3) and G(3,3).
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Figure 11 – Example I/O operations for step 1 of source-partition SP3. Edges of SP1 are combined with their source
vertex values. Next, the edges are divided by β destination-partitions in memory; and finally, edges are
written to disk. On Step 2 ,destination-partitions are processed sequentially. Example I/O operations
for step 2 of destination-partition DP(1).

For processing the graph using SPP, we divide the graph in β source-partitions. Then,
we process partitions using a two-step approach (see Fig. 11). In the first step for each source-

partition, we load vertex values of the interval I(p); next, we read edges of the partition SP(p)

sequentially from disk, storing in a temporal buffer edges together with their in-vertex values until
the buffer is full. Later, we shuffle the buffer in-place, grouping edges by destination-partition.
Finally, we store to disk edges in β different files, one by destination-partition. After we process
the β source-partitions, we get β destination-partitions containing edges with their source values.
In the second step for each destination-partition, we initialize vertex values of interval I(q); next,
we read edges sequentially, processing their values through a user-defined function. Finally,
we store vertex values of interval I(q) on disk. The SPP model is an improvement of the edge
streaming approach used in X-Stream [11]; different from former proposals, SSP uses only one
buffer to shuffle edges, reducing memory requirements.

Bimodal Block Processing (BBP): Schemes DBP and SPP improve the graph performance in
opposite directions.

• how can we decide which processing scheme to use when we are given a graph block
to process?

To answer this question, we propose to join DBP and SSP into a single scheme – the Bimodal
Block Processing (BBP). The combined scheme uses the theoretical I/O cost model proposed by
Aggarwal and Vitter [68] to decide for SBP or SPP. In this model, the I/O cost for an algorithm is
equal to the number of blocks with size B transferred between disk and memory plus the number
of non-sequential seeks.
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For processing a graph G, DBP performs the following operations over disk: one read of
the edges, β reads of the vertices, and one writing of the updated vertices. Hence, the I/O cost
for DBP is given by:

Θ(DBP(G)) = Θ
(
(β +1) |V |+ |E|

B
+β 2

)
(3.2)

In turn, SPP performs the following operations over disk: one read of the vertices and one
read of the edges grouped by source-partition; next, it shuffles edges by destination-partition in
memory, writing the new version Ê on disk; finally, it reads the new edges from disk, calculating
the new vertex values and writing them on disk. The I/O cost for SPP is:

Θ(SPP(G)) = Θ

(
2 |V |+ |E|+2

∣∣Ê
∣∣

B
+β

)
(3.3)

Equations 3.2 and 3.3 define the I/O cost for one processing iteration over the whole
graph G. However, in order to decide in relation to blocks, we are interested in the costs of
Equations 3.2 and 3.3 divided according to the number of blocks β 2. The result, after the
appropriate algebra, reduces to Equations 3.4 and 3.5.

Θ
(

DBP
(

G(p,q)
))

= Θ
(

ϑφ (1+1/β )+ξ ψ
B

)
(3.4)

Θ
(

SPP
(

G(p,q)
))

= Θ
(

2ϑφ/β +2ξ φψ +ξ ψ
B

)
(3.5)

in which, ξ is the number of edges in G(p,q), ϑ is the number of vertices in the interval, and
φ and ψ are, respectively, the number of bytes to represent a vertex and an edge e. Once we
have the costs per block of DBP and SPP, we can decide between one and the other by simply
analyzing the ratio SPP/DBP:

Θ
(

SPP
DBP

)
= Θ

(
1
β
+

2ξ φ
ϑ

)
(3.6)

This ratio leads to the final decision equation:

BlockType
(

G(p,q)
)
=

{
sparse, Θ

(
SPP
DBP

)
< 1

dense, otherwise
(3.7)
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Algorithm 3 MAlgorithm: Algorithm Interface for coding in M-Flash
initialize (Vertex v);
gather (Vertex u, Vertex v, EdgeData data);
process (Accum v_1, Accum v_2, Accum v_out);
apply (Vertex v);

Algorithm 4 PageRank in M-Flash
degree(v) = out degree for Vertex v;
initialize (Vertex v):

v.value = 0;
gather (Vertex u, Vertex v, EdgeData data):

v.value += u.value/ degree(u);
process (Accum v_1, Accum v_2, Accum v_out):

v_out = v_1 + v_2;
apply (Vertex v);

v.value = 0.15 + 0.85 * v.value;

We apply Equation 3.6 to select the best option according to Equation 3.7. With this
scheme, BBP is able to select the best processing scheme for each block of a given graph. In
Section 3.5, we demonstrate that this procedure yields a performance superior than the current
state-of-the-art frameworks.

3.4.3 Programming Model in M-Flash

M-Flash’s computational model, which we named MAlgorithm (short for Matrix Algorithm Inter-

face) is shown in Algorithm 3. Since MAlgorithm is a vertex-centric model, it stores computation
results in the destination vertices, allowing for a vast set of iterative graph computations, such as
PageRank, Random Walk with Restarts (RWR), Weakly Connected Components (WCC), and
diameter estimation.

The MAlgorithm interface has four operations: initialize, gather, process, and apply.
The initialize operation loads the initial value of each destination vertex; the gather operation
collects data from neighboring vertices; the process operation processes the data gathered from
the neighbors of a given vertex – the desired processing is defined here; finally, the apply

operation stores the new computed values of the destination vertices to the hard disk, making
them available for the next iteration.

initialize and apply operations are not mandatory and process operation is used only in
multithreading executions.

To demonstrate the flexibility of MAlgorithm, we show in Algorithm 4 the pseudo code of
how the PageRank algorithm (using power iteration) can be implemented. The input to PageRank
is made of two vectors, one storing node degrees, and another one for storing intermediate
PageRank values, initialized to 1/ |V |. The algorithm’s output is a third nodes vector that stores
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the final computed PageRank values. For each iteration, M-Flash executes the MAlgorithm

operations on the output vector as follows:

• initialize: the vertices’ values are set to 0;

• gather: accumulates the intermediate PageRank values of all in-neighbors u of vertex v;

• process: sums up intermediate PageRank values – M-Flash supports multiple threads, so
the process operation combines the vertex status for threads running concurrently;

• apply: calculates the vertices’ new PageRank values (damping factor = 0.85, as recom-
mended by Brian and Sergei [69]).

The input for the next iteration is the output from the current one. The algorithm runs
until the PageRank values converge; it may also stop after executing one certain number of
iterations defined by the user.

Many other graph algorithms can be decomposed into or take advantage of the same
four operations and implemented in similar ways, including Weakly Connected Component (see
Algorithm 5), Sparse Matrix Vector Multiplication SpMV (Algorithm 6), eigensolver (Algorithm
7), diameter estimation, and random walk with restart [65].

Algorithm 5 Weak Connected Component in M-Flash
initialize (Vertex v):

v.value = v.id
gather (Vertex u, Vertex v, EdgeData data):

v.value = min(v.value, u.value)
process (Accum v_1, Accum v_2, Accum v_out):

v_out = min(v_1 , v_2)

Algorithm 6 SpMV for weighted graphs in M-Flash
initialize (Vertex v):

v.value = 0
gather (Vertex u, Vertex v, EdgeData data):

v.value += u.value * data
process (Accum v_1, Accum v_2, Accum v_out):

v_out = v_1 + v_2

3.4.4 System Design & Implementation
This section details the implementation of M-Flash. It starts processing the input graph stored in
standard file formats, then, it transforms the graph to one flat array format in which each edge has
a constant size. At the same time of graph preprocessing, M-Flash divides the edges in β source-

partitions and it counts the number of edges by block. An edge e = (vsource,vdestination,data)
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Algorithm 7 Lanczos Selective Orthogonalization

Require: Graph G(V,E)
Require: dense random vector b̂ with size |V |
Require: maximum number of steps m
Require: error threshold ε
Ensure: Top k eigenvalues λ [1..k], eigenvectors Y n×k

// M-Flash provides functions for vector
// operations using secondary memory.
β̂0← 0, v0← 0, v1← b̂/‖b̂‖
for i = 1 to m do

v← Gvi // SpMV using algorithms 8 and 6
α̂i← vT

i v
v← v− β̂i−1vi−1− α̂ivi
β̂i←‖v̂‖ //Orthogonalization using two previous

basis vectors
Ti← (build tri-diagonal matrix from α̂ and β̂ )
QDQT ← EIG(Ti) Eigen decomposition
for j = 1 to i do

if β̂ |Q[i, j]| ≤ √ε‖Ti‖ then
r← selectively orthogonalization using all

previous basis vectors v1 . . .vi and Q[:, j]
v← v− (rT v)r

end if
end for
if v was selectively orthogonalized) then

β̂i←‖v‖ //Recompute normalization constant β̂i
end if
if β̂i = 0 then

break loop
end if
vi+1← v/β̂i

end for
T ← (build tri-diagonal matrix from α̂ and β̂ )
QDQT ← EIG(T ) Eigen decomposition of T
λ [1..k]← top k diagonal elements of D // k eigenvalues
Y ←VmQk // Compute eigenvectors. Qk is the columns

of Q corresponding to λ

belongs to block G(p,q) when vsource ∈ I(p) and vdestination ∈ I(q). Blocks are classified in sparse
or dense using Equation 3.7. Note that M-Flash does not sort edges by source or destination,
it simply splits edges up to β 2 blocks, β 2� |V |. After all edges are preprocessed, whenever
a source-partition contains dense blocks, M-Flash splits this partition between one sparse
partition and dense blocks. The sparse partition contains all edges for the sparse blocks in the
source-partition. The I/O cost for preprocessing is 4|E|

B . Algorithm 8 shows the pseudo-code of
M-Flash. The aforementioned preprocessing refers to Step 4 of the algorithm. Sparse partitions
are processed using SPP and dense blocks are processed using DBP. Algorithm 8 shows the
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overlap between models DBP and SPP, minimizing I/O cost and thus increasing performance.

Algorithm 8 Main Algorithm of M-Flash

Require: Graph G(V,E)
Require: user-defined MAlgorithm program
Require: vertex attributes γ
Require: memory size M
Require: number of iterations iter
Ensure: vector v with vertex results

1: set φ from γ attributes.
2: set β using equation 3.1
3: set ϑ = |V |/β ,
4: execute graph preprocessing and partitioning
5: for i = 1 to iter do
6: Make processing for sparse partitions using SPP
7: for q = 1 to β do
8: load vertex values of destination interval I(q)

9: initialize I(q) of v using MAlgorithm.initialize
10: if exist sparse partition associated to I(q) then
11: for each edge
12: invoke MAlgorithm.gather storing
13: calculations on vector v
14: end if
15: if q is odd then
16: partition-order = {1 to β}
17: else
18: partition-order = {β to 1}
19: end if
20: for p = {partition-order} do
21: if G(p,q) is dense then
22: load vertex values of interval I(p)

23: for each edge in G(p,q)

24: invoke MAlgorithm.gather storing on v
25: end if
26: end for
27: invoke MAlgorithm.process for I(q) of v
28: invoke MAlgorithm.apply for I(q) of v
29: store interval I(q) of vector v
30: end for
31: end for

3.5 Evaluation
Overview: We compare M-Flash with multiple state-of-the-art approaches: GraphChi, Turbo-
Graph, X-Stream, and MMap. For a fair comparison, we use experimental setups recommended
by the authors of the other approaches in the best way that we can. We first describe the datasets
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Table 4 – Real graph datasets used in our experiments.

Graph Nodes Edges Size

LiveJournal 4,847,571 68,993,773 Small
Twitter 41,652,230 1,468,365,182 Medium
YahooWeb 1,413,511,391 6,636,600,779 Large

used in our evaluation (Subsection 3.5.1) and our experimental setup (Subsection 3.5.2). Then,
we compare the runtimes of all approaches for two well-known, essential graph algorithms
(Subsections 3.5.3 and 3.5.4) that are available in the competing works. To demonstrate how
M-Flash generalizes to more algorithms, we implemented the Lanczos algorithm (with selective

orthogonalization) as an example, one of the most computationally efficient approach to com-
pute eigenvalues and eigenvectors [70, 65] (Subsection 3.5.5) — to the best of our knowledge,
M-Flash provides the first design and implementation that can handle graphs with more than
one billion nodes when the vertex data cannot fully fit in RAM (e.g., YahooWeb graph). Next, in
Subsection 3.5.6, we show that M-Flash continues to run at high speed even when the machine
has little RAM (including extreme cases, like when using solely 4GB), in contrast to other
methods that slow down in such circumstance. Finally, through an analysis of I/O operations, we
show that M-Flash performs far fewer read and write operations than other approaches, which
empirically validates the efficiency of our block partitioning model (Subsection 3.5.7).

3.5.1 Graph Datasets

We use three real graphs of different scales: a LiveJournal graph [71] with 69 million edges
(small), a Twitter graph [72] with 1.47 billion edges (medium), and the YahooWeb graph [7]
with 6.6 billion edges (large). Table 4 reports their numbers of nodes and edges.

3.5.2 Experimental Setup

All experiments were run on a standard desktop computer with an Intel i7-4770K quad-core
CPU (3.50 GHz), 16 GB RAM and 1 TB Samsung 850 Evo SSD disk. Note that M-Flash does
not require an SSD to run (neither do GraphChi and X-Stream), while TurboGraph does; thus,
we used an SSD to make sure all methods can perform at their best. Table 5 shows preprocessing
time for each graph using 8GB of RAM.

GraphChi, X-Stream and M-Flash were run on Linux Ubuntu 14.04 (x64). TurboGraph
was run on Windows (x64) since it only supports Windows [48]. MMap was written in Java, thus
we were able to run it on both Linux and Windows; we ran it on Windows, following MMap’s
authors setup [67]. All the reported runtimes were given by the average time of three cold runs,
that is, with all caches and buffers purged between runs to avoid any potential advantage gained
due to caching or buffering effects.



56 Chapter 3. M-Flash: Fast Billion-scale Graph Computation Using a Bimodal Block Processing Model

Table 5 – Preprocessing time (seconds)

Live Journal Twitter YahooWeb

GraphChi 23 511 2781
X-Stream 219 5082 26200
TurboGraph 18 582 4694
MMap 17 372 636
M-Flash 10 206 1265

The libraries are configured as follows:

• GraphChi: C++ version, downloaded from their GitHub repository in February, 2015.
Buffer sizes configured to those recommended by their authors1;

• X-Stream: C++ v0.9. Buffer size desirably configured close to available RAM;

• TurboGraph: V0.1 Enterprise Edition. Buffer size desirably configured to 75% of available
RAM, the limit supported by TuboGraph, as observed by [67]);

• MMap: Java version (64-Bit) with default parameters.

• M-Flash: C++ version. https://github.com/M-Flash.

We ran all the methods at their best configurations since we wanted to truly verify
performance at the most competitive circumstances. As we show in the following sections,
M-Flash exceeded the competing works both empirically and theoretically. At the end of the
experiments, it became clear that the design of M-Flash considering the density of blocks of the
graph granted the algorithm improved performance.

3.5.3 PageRank

Figure 12 shows how the PageRank runtime of all the methods compares.

LiveJournal (small graph; Fig. 12a): Since the whole graph and all node vectors fully fit
in RAM, all approaches finish in seconds. Still, M-Flash was the fastest, up to 3.3X of GraphChi,
and 2.4X of X-Stream and TurboGraph.

Twitter (medium graph; Fig. 12b): The edges of this graph do not fit in RAM (it requires
11.3GB) but its node vectors do. M-Flash had a similar performance, but for a few seconds, if
compared to TurboGraph and MMap for two reasons: (a) the Twitter graph is less challenging as
it has a homogeneous density, with all its blocks being sparse; (b) their implementations were
highly optimized as they do not provide a generic programming model, saving on function calls.
1 When evaluating how GraphChi performs with 8 GB RAM (Section 3.5.6), we doubled GraphChi’s recom-

mended buffer size for 8GB to shrink runtimes.
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(a) (b)

(c)

Figure 12 – Runtime of PageRank for LiveJournal, Twitter and YahooWeb graphs with 8GB of RAM. M-Flash is
3X faster than GraphChi and TurboGraph. (a & b): for smaller graphs, such as Twitter, M-Flash is as
fast as some existing approaches (e.g., MMap) and significantly faster than other (e.g., 4X of X-Stream).
(c): M-Flash is significantly faster than all state-of-the-art approaches for YahooWeb: 3X of GraphChi
and TurboGraph, 2.5X of X-Stream, 2.2X of MMap.

In comparison with GraphChi and X-Stream, the related works that offer generic programming
models, M-Flash was faster, at 1.7X to 3.6X speed.

YahooWeb (large graph; Fig. 12c): For this billion-node graph, neither its edges nor its
node vectors fit in RAM; this challenging situation is where M-Flash significantly outperforms
the other methods. Figure 12(c) confirms this claim, showing that M-Flash is faster, at a speed
that is 2.2X to 3.3X that of the other approaches.

3.5.4 Weakly Connected Component

When there is enough memory to store all the vertex data, the Union Find algorithm [73] is
the best option to find all the Weakly Connected Components (WCC) in one single iteration.
Otherwise, with memory limitations, an iterative algorithm produces identical solutions, as listed
in Appendix A, Algorithm 5. Hence, in this round of experiments, we use Algorithm Union

Find to solve WCC for the small and medium graphs, whose vertices fit in memory; and we use
Algorithm 5 to solve WCC for the YahooWeb graph.

Figures 13(a) and 13(b) show the runtimes for the LiveJournal and Twitter graphs with
8GB RAM; all the approaches use Union Find, except X-Stream. This is because of the way that
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(a) (b)

(c)

Figure 13 – Runtimes of the Weakly Connected Component problem for LiveJournal, Twitter, and YahooWeb
graphs with 8GB of RAM. (a & b): for the small (LiveJournal) and medium (Twitter) graphs, M-Flash
is faster than, or as fast as, all the other approaches. (c) M-Flash is pronouncedly faster than all the
state-of-the-art approaches for the large graph (YahooWeb): 9.2X of GraphChi and 5.8X of X-Stream.

X-Stream is implemented, which handles only iterative algorithms.

In the WCC problem, M-Flash is again the fastest method in respect to the entire
experiment: for the LiveJournal graph, M-Flash ties with GraphChi, it is 9X faster than X-
Stream, 7X than TurboGraph, and 1.5X than MMap. For the Twitter graph, M-Flash’s speed is
only a few seconds behind GraphChi, 74X faster than X-Stream, 5X than TurboGraph, and 2.6X
than MMap.

The results for the YahooWeb graph are shown in Figure 13(c), one can see that M-Flash
was significantly faster than GraphChi, and X-Stream. Similar to the PageRank results, M-Flash
is significantly faster: 9.2X faster than GraphChi and 5.8X than X-Stream.

3.5.5 Spectral Analysis using The Lanczos Algorithm

Eigenvalues and eigenvectors are at the heart of numerous algorithms, such as singular value
decomposition (SVD) [74], spectral clustering [75], triangle counting [76], and tensor decompo-
sition [77]. Hence, due to its importance, we demonstrate M-Flash over the Lanczos algorithm,
a state-of-the-art method for eigen computation. We implemented it using method Selective
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Orthogonalization (LSO). This implementation demonstrates how M-Flash’s design can be
easily extended to support spectral analysis of billion-scale graphs. To the best of our knowledge,
M-Flash provides the first design and implementation that can handle Lanczos for graphs with
more than one billion nodes when the vertex data cannot fully fit in RAM. M-Flash provides
functions for basic vector operations using secondary memory. Therefore, for the YahooWeb
graph, we are not able to compare it with the other competing frameworks using only 8GB of
memory, as in the case of GraphChi.

To compute the top 20 eigenvectors and eigenvalues of the YahooWeb graph, one iteration
of LSO over M-Flash takes 737s when using 8 GB of RAM. For a comparative panorama, to
the best of our knowledge, the closest comparable result of this computation comes from the
HEigen system [78], at 150s for one iteration; note however that, it was for a much smaller
graph with 282 million edges (23X fewer edges), using a 70-machine Hadoop cluster, while our
experiment with M-Flash used a single, commodity desktop computer and a much larger graph.

3.5.6 Effect of Memory Size

As the amount of available RAM strongly affects the computation speed in our context, we study
here the effect of memory size. Figure 14 summarizes how all approaches perform under 4GB,
8GB, and 16GB of RAM, when running one iteration of PageRank over the YahooWeb graph.
M-Flash continues to run at the highest speed even when the machine has very little RAM, 4 GB
in this case. Other methods tend to slow down. In special, MMap does not perform well due to
thrashing, a situation when the machine spends a lot of time on mapping disk-resident data to
RAM or un-mapping data from RAM, slowing down the overall computation. For 8 GB and 16
GB, respectively, M-Flash outperforms all the competitors for the most challenging graph, the
YahooWeb. Notice that all the methods, but for M-Flash and X-Stream, are strongly influenced
by restrictions in memory size; according to our analyses, this is due to the higher number of
data transfers needed by the other methods when not all the data fit in the memory. Despite that
X-Stream worked well for any memory setting, it still has worse performance if compared to
M-Flash because it demands three full disk scans in every case – actually, the innovations of
M-Flash, as presented in Section 3.4, come to overcome such problems, which we diagnosed
with a series of experiments. In Section 3.5.7, we further elaborate on this allegation.

3.5.7 Input/Output (I/O) Operations Analysis

Input/Output (I/O) operations are commonly used as objective measurements for evaluat-
ing frameworks based on secondary memory [45].

Figure 15 shows how M-Flash compares with GraphChi and X-Stream in terms of their
read and write operations, and the total amount of data read from or written to disk2 When
2 We did not compare with TurboGraph because it runs only on Windows, which does not provide readily

available tools for measuring I/O speed.



60 Chapter 3. M-Flash: Fast Billion-scale Graph Computation Using a Bimodal Block Processing Model

180	  

201	  

217	  

193	  

442	  

2703	  

214	  

628	  

1390	  

507	  

507	  

508	  

403	  

676	  

718	  

0	   500	   1000	   1500	   2000	   2500	   3000	  

16GB	  

8GB	  

4GB	  

Run$me	  (s)	  

Yahoo	  Graph	  -‐	  Pagerank	  (1	  iter.)	  	  

Graphchi	  
X-‐Stream	  
TurboGraph	  
MMap	  
M-‐Flash	  

Figure 14 – Runtime comparison for PageRank (1 iteration) over the YahooWeb graph. M-Flash is significantly
faster than all the state-of-the-art for three different memory settings, 4 GB, 8 GB, and 16 GB.

running one iteration of PageRank on the 6.6 billion edge YahooWeb graph, M-Flash performs
significantly fewer reads (77GB) and fewer writes (17GB) than other approaches. Note that
M-Flash achieves and sustains high-speed reading from disk (the “plateau” at the top-right),
while other methods do not. For example, GraphChi generally writes data slowly across the
whole computation iteration, and X-Stream shows periodic and spiky reads and writes.
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Figure 15 – I/O operations for 1 iteration of PageRank over the YahooWeb graph. M-Flash performs significantly
fewer reads and writes (in green) than other approaches. M-Flash achieves and sustains high-speed
reading from disk (the “plateau” in top-right), while other methods do not.

3.5.8 Theoretical (I/O) Analysis

In the following, we show the theoretical scalability of M-Flash when we reduce the available
memory (RAM) at the same time that we demonstrate why the performance of M-Flash improves
when we combine DBP and SPP into BBP, instead of using DBP or SSP alone. Here, we use a
measure that we named t-cost; 1 unit of t-cost corresponds to three operations, one reading of
the vertices, one writing of the vertices, and one reading of the edges. In terms of computational
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complexity, t-cost is defined as follows:

t-cost(G(E,V )) = 2 |V |+ |E| (3.8)

Notice that this cost considers that reading and writing the vertices have the same cost;
this is because the evaluation is given in terms of computational complexity. For more details,
please refer to the work of McSherry et al. [79], who draws the basis of this kind of analysis.

We use measure t-cost to analyze the theoretical scalability for processing schemes DBP

only, SPP only, and BBP (the combination of DBP and SPP). We perform these analyses by
means of MathLab simulations that were validated empirically. We considered the characteristics
of the three datasets used so far, LiveJournal, Twitter, and YahooWeb. For each case, we calculated
the t-cost (y axis) as a function of the available memory (x axis), which, as we have seen, is the
main constraint for graph processing frameworks.

Figure 16 shows that, for all the graphs, DBP-only processing is the least efficient
when memory is reduced; however, when we combine DBP (for dense region processing) and
SPP (for sparse region processing) into BBP, we benefit from the best of both worlds. The
result corresponds to the best performance, as seen in the charts. Figure 17 shows the same
simulated analysis – t-cost (y axis) in function of the available memory (x axis), but now with
an extra variable: the density of hypothetical graphs, which is assumed to be uniform in each
analysis. Each plot, from (a) to (d) considers a different density in terms of average vertex degree,
respectively, 3, 5, 10, and 30. In each plot, there are two curves, one corresponding to DBP-only,
and one for SSP-only; and, in dark blue, we depict the behavior of M-Flash according to the
combination BBP. Notice that as the amount of memory increases, so does the performance of
DBP (in light graph), which takes less and less time to process the whole graph (decreasing
curve). SPP, in turn, has a steady performance, as it is not affected by the amount of memory
(light blue line). In dark blue, one can see the performance of BBP; that is, which kind of
processing will be chosen by Equation 3.7 at each circumstance. For sparse graphs, Figures 17(a)
and 17(b), SSP answers for the greater amount of processing; while the opposite is observed in
denser graphs, Figures 17(c) and 17(d), when DBP defines almost the entire dark blue line of the
plot.

These results show that the graph processing must take into account the density of the
graph at each moment (block) so to choose the best strategy. It also explains why M-Flash
improves the state-of-the-art. It is important to note that no former algorithm considered the
fact that most graphs present varying density of edges (dense regions with many more edges
than other regions that are sparse). Ignoring this fact leads to decreased performance in the form
of higher number of data transfers between memory and disk, as we empirically verified in the
former sections.
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(a)

(b)

(c)

Figure 16 – I/O cost using DBP, SPP, and BBP for LiveJournal, Twitter and YahooWeb Graphs using different
memory sizes. BBP model always performs fewer I/O operations on disk for all memory configurations.

3.6 Conclusions

We proposed M-Flash, a single-machine, billion-scale graph computation framework that uses
a block partition model to maximize disk access speed. M-Flash uses an innovative design that
takes into account the variable density of edges observed in the different blocks of a graph. Its
design uses Dense Block Processing (DBP) when the block is dense, and Streaming Partition
Processing (SPP) when the block is sparse; for taking advantage of both worlds, it uses the
combination of DBP and SPP according scheme Bimodal Block Processing (BBP), which is
able to analytically determine whether a block is dense or sparse and trigger the appropriate
processing. To date, M-Flash is the first framework that considers a bimodal approach for I/O
minimization.
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(a) (b)

(c) (d)

Figure 17 – I/O cost using DBP, SPP, and BBP for a graph with densities k = {3,5,10,30}. Graph density is the
average vertex degree, |E| ≈ k|V |. DBP increases considerably I/O cost when RAM is reduced, SPP has
a constant I/O cost and BBP chooses the best configuration considering the graph density and available
RAM.

M-Flash was designed so that it has possible integrated a wide range of popular graph
algorithms according to its Matrix Algorithm Interface model, including the first single-machine
billion-scale eigensolver. We conducted extensive experiments using large real graphs. M-Flash
consistently and significantly outperformed all state-of-the-art approaches, including GraphChi,
X-Stream, TurboGraph and MMap. M-Flash runs at high speed for graphs of all sizes, including
the 6.6 billion edge YahooWeb graph, even when the size of memory is very limited (e.g., 6.4X
as fast as X-Stream, when using 4GB of RAM).

3.7 Final considerations
In this chapter we presented our framework M-Flash for fast processing of billion-scale graphs.
We performed extensive experiments on real graphs with up to 6.6 billion edges, demonstrating
M-Flash’s consistent and significant speed-up over state-of-the-art approaches. Over our new
methodology, we introduced three contributions: (1) a novel framework solution; (2) a scalable
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approach that works faster that other frameworks when resources are severely constrained (e.g.,
6.4X faster than X-Stream, when using 4GB of RAM; and (3) a flexible and simple programming
interface that allows implementation of popular and essential algorithms, including the first

single-machine billion-scale eigensolver.



65

CHAPTER

4
FURTHER RESULTS

4.1 Initial considerations
On sections 2 and 3, we described the main contributions of this project, proposing algorithms
and a framework for an efficient processing and visualization of large graphs. Additionally,
we got complementary results over a specific domain, the DBLP co-authoring and co-citation
network. We proposed a multimodal analysis that ensembles statistical, algorithmic, algebraic
and topological techniques of data analysis, and we discovered non-evident facts about the
DBLP repository. Hence, this chapter summarizes contributions of two published works in
collaboration: “Supervised-learning link recommendation in the DBLP co-authoring network”
[1] and “Multimodal graph-based analysis over the dblp repository: critical discoveries and
hypotheses” [2].

4.2 Multimodal analysis of DBLP
Scientific collaboration is a type of complex network formed from research relations between
academic and industrial pairs with common motivations to understand and explain natural and
synthetic phenomenons. The behavior and trends of these networks are relevant not only for
authors and editors, but the funding agencies and the society that demands knowledge about how
scientists behave concerning their collective production.

There are plenty of studies on scientific collaboration networks. Newman [80] showed
that scientific communities have “small-world” phenomena and co-authoring networks are highly
clustered, so two scientists are much more likely to have collaborated when they have common
partners; Leydesdorff [81] evaluated the interdisciplinarity found in journals using measures like
degree, betweenness, and closeness; although inconclusive, the author brings light to the problem.
Osiek et al.[82] try to answer whether conferences influence on research collaboration, and
authors lead the conclusion that conferences do not significantly promote collaboration among
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participants (Only 4.61% of collaborations between authors satisfied their supposition). J. Huang
et al. [83] performed a three-level analysis (network level, community level, and individual level)
with a fragment of the Computer Science CiteSeer Digital Library 1; they introduce a stochastic
Poisson model to predict future collaboration behavior. These previous works characterize the
properties of nodes alone or, at least, the global properties of the structure by means of single
metrics. We analyze the DBLP data by drawing statistical distribution for several of its properties,
and by drawing metrics that consider the time dimension.

Relation Description
Co-authorship Authors who published papers together.
Co-participation Authors who had papers in the same conference.
Co-publication Authors who had papers in the same journal.
Co-edition Authors who appeared as editors of the same event or

journal.
Table 6 – Relations extracted from DBLP and used in our analysis. [1]

We used of a number of social network metrics and techniques to inspect the character-
istics of DBLP in complementary fashion. We extracted four datasets that reflect the distinct
relations between researchers (see Table 6). We verified interesting facts about Weakly-connected
component distribution (WCC), figure 18a depicts the case for co-authorship. We observed only
13% of the authors are part of small components with up to 30 relations and 87% of authors
( 106 nodes) define a giant community, sharing scientific expertise. A common property of
co-authoring graphs is significant values of the average clustering coefficient (ACC). We verified
this property (see Figure 18b) and we observed that high values (close to 1) only happens for
nodes with degree up to around 10. Also, we noted the power law ACC ∝ degree−1.06; this ACC
behavior occurs because authors tend to collaborate with co-authors of their co-authors, as was
suggested by Newman [80]. In addition, older authors (advisors) are less likely to be part of one
well-defined and highly interconnected community, and they tend to be connected with multiple
subgraphs with low densification (degree distribution) in time.

From the degree-distribution plot (see Figure 18c), we inspected that DBLP’s degree
distribution obeys a power law with exponent γ ≈ −1.36. However, one might wonder why
this phenomenon occurs in co-authoring networks where edge creation is more expensive than
in other environments like a web network. We presume two facts to explain this tendency.
First, master and Ph.D. titles became regular courses in the last decades with well-defined
time schedules and expected production; therefore, a demand for “where to publish”, rather
than “what to publish”, was created. Second, science-funding agencies have demanded a lot of
divulgation in order to keep their financing. Hence, a straight consequence of this fact is the
increasing number of authors per paper; in some cases, it doesn’t imply an intellectual guidance
and labor, but to co-financing and personal exchange as a means to increase one’s production.

1 http://citeseer.ist.psu.edu
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(a) Co-authorship weakly-connected compo-
nents (WCC) distribution.

(b) Co-authorship Average Clustering Coeffi-
cient (ACC) against node degree.

(c) In-degree distribution of the co-authorship
activity in DBLP – the higher the in-degree
(the co-authorship), the smaller the number
of authors according to power law Count ∝
indegree −1.36.

(d) Co-edition effective diameter evolution.

Figure 18 – This results were published in our paper [1].

From the diameter evolution of the co-edition network (see Figure 18d), we observed that the
effective diameter has started to shrink around the year 1995. A possible explanation is that the
committees of editors tend to have the same members that alternate each year between a small
set of possible committees; thence, the distance between editors tends to decrease along the
time. Additionally, the editing of publications is an activity that demand higher experience and
expertise, characteristics of a limited group of researchers.

Statistical (degree, and weakly-connected component distribution), topological (average
clustering coefficient, and effective diameter evolution) techniques helped us to understand
essential properties of DBLP from a static and dynamic (time-evolve) analysis; however, we
were interested in how predictable is the DBLP using machine learning classifiers. We used
the link recommendation techniques to predict new co-authoring relations using topological
metrics of authors: number of common neighbors, Jaccard’s coefficient, Preferential attachment,
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Adamic-Adar coefficient, Resource allocation index, and Local path. We considered different
profile of authors with at least d existing co-authors. This extra parameter allows a comparison
about the predictability of the less (d ≥ 1) and the more (d ≥ 8) active authors. We compared
the accuracy for supervised machine learning classifiers [84] J48, Naïve Bayes, Multilayer
Perceptron, Bagging, and Random Forest. Please check our work [1] for details. Figure 19 shows
that authors with more collaborations are more predictable than authors with little ones. Less
active authors possibly correspond to researchers with few partners or casual researchers that
abandon the academy after getting their degree.

Figure 19 – AUC visualization of the data generated for a co-authoring snapshot of DBLP between [1995, 2007].
We used collaborations between [1995, 2005] to predict new ones between [2006, 2007].

In our last analysis of the DBLP, we considered an algebraic approach and we proposed
the metric Sao Paulo’s importance as expressed by equation 4.1. Our metric has two variables,
quantifying how active (accomplishment) and constant in time (silence) the author is; researchers
with high accomplishment are more productive in their career (number of publications) and
researchers with high silence (time since the last publication) are less active at the moment of the
measurement. Figure 20 shows the behavior of SP’ importance and the counting (3D histogram)
of authors using silence and accomplishment variables on the DBLP repository. In this figure,
most of the authors have low silence (≤ 5 years) and low accomplishment (≤ 5 years); these
authors are possibly students that are still doing their graduation course, or they have recently
finished it. This finding reveals how Computer Science is dependent on casual researchers, and
also how competitive it is, since just a few authors are able to migrate to the more important
region of the plot.

SP′Importance =
1√

silence+1
∗ log(Accomplishment) (4.1)

4.3 Final considerations
We proposed a multimodal analytical approach assembling statistical (degree, and weakly-
connected component distribution), topological (average clustering coefficient, and effective
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Figure 20 – Plot of metric SP′Importance. (a) Raw curve of Equation 4.1. (b) Counting (3D histogram) of authors
in relation to the possible values of metric Importance. [2]

diameter evolution), algorithmic (link prediction/machine learning), and algebraic techniques to
reveal non-evident features of network-like data, including networks of co-authoring, recommen-
dation, computer routing, social interaction, protein interaction, to name a few. We demonstrated
our process over the DBLP repository of Computer Science publications introducing an innova-
tive course of action based on techniques that, although apart, can be used in complementary
fashion.
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CHAPTER

5
CONCLUSIONS

Processing and visualization of billion-scale graphs are big challenges commonly tackled with
distributed frameworks. However, the deployment and management of computational clusters
can be complex, demanding technical and financial resources that can be prohibitive in a variety
of scenarios. Therefore, it is desirable to have techniques for processing and visualization of
large-scale graphs with resource optimization in a single computational node. In this work,
consequently, we developed an ample set of single-node techniques to support processing and
visualization in analytical tasks over large (million and billion scale) graphs.

In chapter 2 we worked on the hypothesis that relations between recurrent and simple
patterns characterize graph domains providing interesting insights through exploratory
visualization. Accordingly, Section 2.5 showed evidences of the applicability of StructMatrix as
a highly scalable methodology for visual inspection of graph structures. Additionally, our results
revealed macro patterns and interest findings on real-life graphs for several domains.

In chapter 3 we presented a methodology to verify the hypothesis that a framework fo-
cused on minimizing I/O communication is able to boost the processing speed of planetary-
scale graphs that do not fit in RAM, as detailed in the experiments presented in Section 3.5.
Our results demonstrated that, by using the innovative bimodal block processing model (BBP),
our framework was able to outperform all the competitors for single-node processing; our results
soundly demonstrated the flexibility, scalability, and robustness of our solution.

Finally, in chapter 4 we showed our further results about an analytical approach that
ensembles statistical, topological, algorithmic, and algebraic techniques to reveal non-evident
features in co-authoring networks. Although the experiments occurred over a co-authoring
network, our methodology is extensible to other problems, such as product recommendation,
social interaction, computer routing, and protein interaction.

In this work we developed and experimented with visual and analytical techniques for
efficient processing of large-scale graphs. As discussed, we obtained interesting results; still,
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future works are still to be sought:

• In our first contribution, the implementation of StructMatrix considers graphs only in-
memory. Nonetheless, we expect to combine techniques StructMatrix and M-Flash so to
extend visualization capabilities to graphs in secondary memory;

• In our second contribution, it would be interesting to add support for asynchronous
and incremental graph computation in a way similar to GraphChi; with these further
development, we expect to reach even higher performance.
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