• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2016.tde-23032016-111454
Documento
Autor
Nome completo
Pablo Andretta Jaskowiak
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2015
Orientador
Banca examinadora
Campello, Ricardo José Gabrielli Barreto (Presidente)
Delbem, Alexandre Cláudio Botazzo
Lorena, Ana Carolina
Meira Junior, Wagner
Tinós, Renato
Título em inglês
On the evaluation of clustering results: measures, ensembles, and gene expression data analysis
Palavras-chave em inglês
Clustering
Clustering validation
Resumo em inglês
Clustering plays an important role in the exploratory analysis of data. Its goal is to organize objects into a finite set of categories, i.e., clusters, in the hope that meaningful and previously unknown relationships will emerge from the process. Not every clustering result is meaningful, though. In fact, virtually all clustering algorithms will yield a result, even if the data under analysis has no true clusters. If clusters do exist, one still has to determine the best configuration of parameters for the clustering algorithm in hand, in order to avoid poor outcomes. This selection is usually performed with the aid of clustering validity criteria, which evaluate clustering results in a quantitative fashion. In this thesis we study the evaluation/validation of clustering results, proposing, in a broad context, measures and relative validity criteria ensembles. Regarding measures, we propose the use of the Area Under the Curve (AUC) of the Receiver Operating Characteristics (ROC) curve as a relative validity criterion for clustering. Besides providing an empirical evaluation of AUC, we theoretically explore some of its properties and its relation to another measure, known as Gamma. A relative criterion for the validation of density based clustering results, proposed with the participation of the author of this thesis, is also reviewed. In the case of ensembles, we propose their use as means to avoid the evaluation of clustering results based on a single, ad-hoc selected, measure. In this particular scope, we: (i) show that ensembles built on the basis of arbitrarily selected members have limited practical applicability; and (ii) devise a simple, yet effective heuristic approach to select ensemble members, based on their effectiveness and complementarity. Finally, we consider clustering evaluation in the specific context of gene expression data. In this particular case we evaluate the use of external information from the Geno Ontology for the evaluation of distance measures and clustering results
Título em português
Sobre a avaliação de resultados de agrupamento: medidas, comitês e análise de dados de expressão gênica
Palavras-chave em português
Agrupamento de dados
Validação de agrupamentos
Resumo em português
Técnicas de agrupamento desempenham um papel fundamental na análise exploratória de dados. Seu objetivo é a organização de objetos em um conjunto finito de categorias, i.e., grupos (clusters), na expectativa de que relações significativas entre objetos resultem do processo. Nem todos resultados de agrupamento são relevantes, entretanto. De fato, a vasta maioria dos algoritmos de agrupamento existentes produzirá um resultado (partição), mesmo em casos para os quais não existe uma estrutura real de grupos nos dados. Se grupos de fato existem, a determinação do melhor conjunto de parâmetros para estes algoritmos ainda é necessária, a fim de evitar a utilização de resultados espúrios. Tal determinação é usualmente feita por meio de critérios de validação, os quais avaliam os resultados de agrupamento de forma quantitativa. A avaliação/validação de resultados de agrupamentos é o foco desta tese. Em um contexto geral, critérios de validação relativos e a combinação dos mesmos (ensembles) são propostas. No que tange critérios, propõe-se o uso da área sob a curva (AUC Area Under the Curve) proveniente de avaliações ROC (Receiver Operating Characteristics) como um critério de validação relativo no contexto de agrupamento. Além de uma avaliação empírica da AUC, são exploradas algumas de suas propriedades teóricas, bem como a sua relação com outro critério relativo existente, conhecido como Gamma. Ainda com relação à critérios, um índice relativo para a validação de resultados de agrupamentos baseados em densidade, proposto com a participação do autor desta tese, é revisado. No que diz respeito à combinação de critérios, mostra-se que: (i) combinações baseadas em uma seleção arbitrária de índices possuem aplicação prática limitada; e (ii) com o uso de heurísticas para seleção de membros da combinação, melhores resultados podem ser obtidos. Finalmente, considera-se a avaliação/validação no contexto de dados de expressão gênica. Neste caso particular estuda-se o uso de informação da Gene Ontology, na forma de similaridades semânticas, na avaliação de medidas de dissimilaridade e resultados de agrupamentos de genes.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-03-23
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.