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ABSTRACT 

Software Product Line Engineering (SPLE) has been proven to reduce development and 

maintenance costs, improving the time-to-market, and increasing the quality of product variants 

developed from a product family via systematic reuse of its core assets. SPLE has been 

successfully used in the development of safety-critical systems, especially in automotive and 

aerospace domains. Safety-critical systems have to be developed according to safety standards, 

which demands safety analysis, Fault Tree Analysis (FTA), and assurance cases safety 

engineering artefacts. However, performing safety analysis, FTA, and assurance case 

construction activities from scratch and manually for each product variant is time-consuming 

and error-prone, whereas variability in safety engineering artefacts can be automatically 

managed with the support of variant management techniques. As safety is context-dependent, 

context and design variation directly impact in the safety properties changing hazards, their 

causes, the risks posed by these hazards to system safety, risk mitigation measures, and FTA 

results. Therefore, managing variability in safety artefacts from different levels of abstraction 

increases the complexity of the variability model, even with the support of variant management 

techniques. To achieve an effective balance between benefits and complexity in adopting an 

SPLE approach for safety-critical systems it is necessary to distinguish between reusable safety 

artefacts, whose variability should be managed, and those that should be generated from the 

reused safety artefacts. On the other hand, both industry and safety standards have recognized 

the use of model-based techniques to support safety analysis and assurance cases. Compositional 

safety analysis, design optimization, and model-based assurance cases are examples of 

techniques that have been used to support the generation of safety artefacts required to achieve 

safety certification. This thesis aims to propose a model-based approach that integrates model-

based development, compositional safety analysis, and variant management techniques to 

support the systematic reuse and generation of safety artefacts in safety-critical software product 

line engineering. The approach contributes to reduce the effort and costs of performing safety 

analysis and assessment for a particular product variant, since such analysis is performed from 

the reused safety artefacts. Thus, variant-specific fault trees, Failure Modes and Effects Analysis 

(FMEA), and assurance case artefacts required to achieve safety certification can be 

automatically generated with the support the model-based safety analysis and assurance case 

construction techniques. 

Key-words: Software product lines, Compositional safety analysis, Variability management, 

Model-based development, Reuse.  

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

RESUMO 

Engenharia de Linha de Produtos de Software (ELPS) contribui para a redução dos custos de 

desenvolvimento e de manutenção, a melhoria do “time-to-market”, e o aumento da qualidade 

de produtos desenvolvidos a partir de uma família de produtos por meio do reuso sistemático 

dos ativos principais da linha de produtos. A ELPS vem sendo utilizada com sucesso no 

desenvolvimento de sistemas embarcados críticos, especificamente nos domínios de sistemas 

automotivos e aeroespaciais. Sistemas embarcados críticos devem ser desenvolvidos de acordo 

com os requisitos definidos em padrões de segurança, que demandam a produção de artefatos de 

análise de segurança, árvores de falhas e casos de segurança. Entretanto, a realização de 

atividades de análise de segurança, análise de árvores de falhas e construção de casos de 

segurança de forma manual para cada produto de uma linha de produtos é uma tarefa demorada 

e propensa a erros. O gerenciamento de variabilidade em artefatos de análise de segurança pode 

ser automatizado com o apoio de técnicas de gerenciamento de variabilidades. Em virtude de 

“safety” ser uma propriedade dependente de contexto, a variabilidade no projeto e contexto 

inerente uma linha de produtos software impacta na definição de propriedades de segurança do 

sistema, modificando as ameaças à segurança do sistema, suas causas e riscos, medidas de 

mitigação aplicáveis, e resultados de análise de árvore de falhas. Dessa forma, gerenciar 

variabilidades em artefatos relacionados à “safety” em diferentes níveis de abstração aumenta a 

complexidade do modelo de variabilidade mesmo com o apoio de técnicas de gerenciamento de 

variabilidades. Para alcançar o equilíbrio eficaz entre os benefícios e a complexidade da adoção 

de uma abordagem de ELPS para o desenvolvimento de sistemas embarcados críticos é 

necessário fazer a distinção entre artefatos de “safety” reusáveis, em que a variabilidade deve ser 

gerenciada, e artefatos de “safety” que devem ser gerados a partir de artefatos reusáveis. Por 

outro lado, tanto a indústria quanto os padrões de segurança têm reconhecido o uso de técnicas 

dirigidas a modelos para apoiar a análise segurança e a construção de casos de segurança. 

Técnicas de análise de segurança composicional e otimização de projeto, e de construção de 

casos de segurança dirigido a modelos vêm sendo utilizadas para apoiar a geração de artefatos 

de “safety” requeridos para certificação. O objetivo desta tese é a proposta de uma abordagem 

dirigida a modelos que integra técnicas de desenvolvimento dirigido a modelos, análise de 

segurança composicional e otimização de projeto, e construção de casos de segurança dirigido a 

modelos para apoiar o reuso sistemático e a geração de artefatos de “safety” em engenharia de 

linhas de produtos de sistemas embarcados críticos. A abordagem proposta reduz o esforço e os 

custos de análise e avaliação de segurança para produtos de uma linha de produtos, uma vez que 

tal análise é realizada a partir de artefatos de “safety” reusados. Assim, artefatos como análises 

de árvores de falhas e de modos de falha e efeitos, e casos de segurança requeridos para 

certificação podem ser gerados automaticamente com o apoio de técnicas dirigidas a modelos. 

Palavras-chave: Linha de produtos de software, Análise de segurança composicional, 

Gerenciamento de variabilidades, Desenvolvimento baseado em modelos, Reuso. 
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  Chapter 1 

CAPÍTULO 1 -  INTRODUCTION 

1.1 Context 

Software Product Lines (SPL) is as a software development approach where a set of 

software-intensive systems that share a common and managed set of features satisfying the 

specific needs of a particular market segment or mission and that are developed from a 

common set of core assets in a prescribed way (CLEMENTS and NORTHROP, 2001). 

Software Product Line Engineering (SPLE) has been proven to reduce development and 

maintenance costs, improve the time-to-market, and increase the quality of the development 

of product variants from a product family via systematic reuse of its core assets (CMU, 2015; 

ISO, 2011; CLEMENTS and NORTHROP, 2001). It has been reported that SPLE has been 

successfully used in the industry (CMU, 2013; LINDEN et al. 2007). SPLE lifecycle 

comprises domain engineering and application engineering processes (POHL et al. 2005).  

In domain engineering, the scope of the product line is defined comprising common 

and variable requirements specified in a feature model (KANG et al. 1990), and their 

supporting core assets, e.g., component models, class diagram, or test cases, which “realize” 

the product line features in the solution space. In application engineering, concrete product 

variants are defined via systematic reuse of product line core assets. When variant-specific 

requirements are not fully addressed by the product line, after product derivation, variant-

specific assets are added to the generated variant. Product line variant management 

techniques, e.g., BVR toolset (VASILEVSKIY et al. 2015), pure::variants 

(PURE::SYSTEMS, 2016), GEARS (BIG LEVER, 2016), and Hephaestus (BONIFÁCIO et 

al. 2009), use feature models and product variants to define the scope of the product line, and 
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map features to variation points in the core assets, which need to be resolved in application 

engineering. During the application engineering, a product variant is defined by selecting 

variant-specific features from the feature model, and variant management techniques 

automatically resolve the variation points defined in the core assets, to generate the core assets 

for a concrete product variant (DOMIS et al. 2015).  

SPLE and component-based approaches have been considered by the industry in the 

development of safety-critical systems, especially in automotive (SCHULZE et al. 2013; 

WEILAND, 2006) and aerospace domains (DORDOWSKY et al. 2011; HABLI et al. 2007). 

However, safety-critical systems have to be developed according to guidance prescribed by 

safety standards, e.g., IEC 61508 (IEC, 2010) for the functional safety of 

electrical/electronic/programmable electronic safety-related systems, ISO 26262 (ISO, 2011) 

for automotive systems, DO-178C (RTCA, 2012) and SAE ARP 4754A (EUROCAE, 2010) 

for aerospace systems, and EN 50159:2001 (CENELEC, 2001) for railway systems. Safety 

standards establish that safety-related properties of a product should be analyzed and 

demonstrated at different levels of abstraction before releasing the system for operation. At 

functional level, specifically on requirements and earlier stages of the design, Hazard 

Identification and Risk Assessment are performed to identify the potential threats to the safety 

of a product and their risks, e.g., in terms of probability and severity, safety requirements are 

allocated to mitigate hazard effects, and Failure Analysis identifies the hazard causes (i.e., 

safety analysis). At detailed design, Fault Tree Analysis (FTA) identifies the causal chains 

that can lead the system to an unsafe state. At system level, Failure Modes and Effects 

Analysis (FMEA) identify the impact of component failures on the overall safety of the 

system. In addition, safety standards from different domains have recommended or mandate 

the development of an assurance case as a pre-requisite to achieve safety certification (ISO, 

2011; EUROCAE, 2010). Assurance case is a clear, comprehensive and defensible argument, 

supported by a body of evidence, which demonstrates that a system is acceptably safe to 

operate in a particular context (KELLY, 2003). Therefore, to take the benefits of the SPLE 

approach in safety-critical systems development, the systematic reuse of safety properties 

(safety analysis) and generation of safety artefacts should be taken into account.  
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1.2 Motivation/Problem 

Performing system safety analysis, FTA, and FMEA from scratch or in an ad-hoc 

manner, manually and individually for each variant of a product line is a time-consuming and 

error-prone task, whereas variability in safety engineering core assets can be systematically 

and automatically managed with the support of variant management techniques. The ability to 

reuse safety analysis, and not only requirements, design, and implementation assets, is 

important for safety-critical software product line engineering by reducing the effort in 

performing safety analysis for product variants (DOMIS et al. 2015; OLIVEIRA et al. 2014; 

BAUMGART et al. 2014; HABLI et al. 2009). Otherwise, the value of a safety-critical SPL 

can be undermined if there is a need to derive fault trees, FMEA results, and assurance cases 

by performing safety analysis from scratch for each product variant whereas these artefacts 

are potentially expensive. So, SPLE can contribute to reduce the costs of product-specific 

safety analysis through structured and managed reuse. However, in safety-critical SPLE, 

simple asset reuse is not a technically sufficient approach to establish assurance artefacts, i.e., 

safety assessment and assurance cases, for a given product variant.  

As safety is context-dependent, product line context and design variation directly 

impact the safety properties changing hazards, their causes, and the risks posed by these 

hazards to system safety, and risk mitigation measures. Safety properties may change 

according to the selection of product variants, thereby lower-level safety artefacts such as 

FTAs cannot be straightly reused since they may also change according to the selection of 

product variants. In order to achieve the reuse of safety assets, product line safety analysis 

should be performed aware of context and design variation that need to be further mapped to 

variation points on the safety analysis core assets in the product line variability model, with 

the support of a variant management technique. So, safety analysis can be only treated as a 

product line asset only if the variability model contains information about variation points and 

their realization in safety analysis assets. Therefore, safety analysis artefacts should be 

included in the product line core assets, to enable the systematic reuse of safety properties 

together with other product line assets, reducing the costs of generating safety artefacts for a 

larger number of variants built around the product line core assets.   

Although the reuse of safety artefacts provided by an SPLE approach is an attractive 

idea, existing product line approaches for reuse of safety assets are focused on the reuse of 
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safety assets that can be derived from product line safety analysis, e.g. fault trees, FMEA, and 

assurance cases. For example, the extensions of Software Fault Tree Analysis (SFTA) for 

product lines (LIU et al. 2007; DEHLINGER and LUTZ, 2006; FENG and LUTZ, 2005; 

DEHLINGER and LUTZ, 2004) consider the product line FTA and FMEA as a reusable 

asset. These techniques are limited to manage the variability in the fault tree leaf nodes, not 

covering variability in fault tree gates (DEHLINGER and LUTZ, 2007). Other approaches are 

also focused on the reuse of fault trees and FMEA results (SCHULZE et al. 2013; GOMEZ et 

al. 2010; HABLI, 2009). Although Gomez et al. (2010) present an approach to support the 

reuse of component fault trees of similar systems as input for the construction of variant-

specific fault trees, their reuse strategy is based on “clone and own”, which is time-consuming 

and error-prone. Habli and Kelly (2010) provides a systematic approach to support the reuse 

of product line assurance cases, by linking context and design variation to the assurance case. 

This approach has been built upon a catalogue of conceptual safety assessment metamodels 

named “Product Line Safety Metamodel” (HABLI, 2009; HABLI et al. 2009). These 

metamodels define how contextual and design variation are traced to variation on safety 

assessment artefacts, produced at the functional (hazard and risk analysis), architecture (fault 

trees), and component (FMEA) abstraction levels, and the assurance case. These traceability 

links should be addressed by product line assets to support the systematic reuse of safety-

critical components. So, achieving the reuse of safety artefacts at different levels of 

abstraction requires traceability of context and design variations throughout architecture, 

safety analysis, fault trees and FMEA, and assurance case artefacts. However, managing 

variability at different levels of abstraction increases the complexity of the product line 

variability model, even with the support of variant management techniques. Thus, changes in 

a product line core asset are propagated throughout the variability model, whose composition 

rules associated with each affected core asset should be added, modified, or removed.  

In order to achieve an effective balance between benefits and complexity in adopting 

an SPLE approach for safety-critical systems it is necessary to distinguish between reusable 

safety artefacts, in which variability should managed, and safety artefacts that can be 

generated from the reused safety artefacts. Hazard and risk analysis, safety requirements, and 

component failure analysis, which are primary safety artefacts produced early on the design 

during the product line domain engineering, can be considered reusable artefacts in which 

variability should be managed. On the other hand, at detailed design, since the structure of 

safety assessment assets, e.g., fault trees and FMEA, and assurance cases are dependent upon 
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variant-specific architecture and safety analysis, they cannot be reused, but they must be 

generated. However, the manual generation of these artefacts for each individual variant is 

time-consuming and error-prone. In addition, changes in a given product variant demand the 

regeneration of these artefacts, increasing the costs to achieve safety certification. Fortunately, 

these safety artefacts do not need to be manually created. There is a growing field of interest 

in safety-critical systems engineering that has been exploring, for more than twenty years, the 

potential use of model-based techniques to support automated safety assessment (DELANGE 

and FEILER, 2014; BATTEUX et al. 2013; PAPADOPOULOS et al. 2011; JOSHI et al. 

2005; WALACE, 2005; FENELON and McDERMID, 1993), and more recently, assurance 

case construction (HAWKINS et al. 2015; DENNEY et al. 2015; DENNEY et al. 2014). 

With regard to assurance cases, Model-Based Assurance Cases (MBAC) (HAWKINS et al. 

2015) supports the automatic generation of assurance cases for a given system from a diverse 

set of safety assessment and system models. Additionally, both industry and safety standards 

(RTCA, 2012; ISO, 2011; EUROCAE, 2010), especially in aerospace and automotive 

domains, have recognized the maturity of model-based development techniques, and model-

based engineering became a reality in safety-critical systems development (FEILER and NIZ, 

2008; LISAGOR et al. 2006). 

The use of models provides benefits related to unambiguous expression of 

requirements and architecture, and the provision of automated support for development and 

safety assessment (RTCA, 2011). The SAE ARP 4754A has considered the use of model-

based techniques to support the safety assessment process in aerospace systems. Thus, safety 

standards have been recognized the possibility of using model-based safety assessment 

techniques. So, existing model-based safety assessment techniques have been largely adopted 

by the industry. These techniques can be classified in one the following categories: 

compositional safety analysis, e.g., AADL Error Annex (DELANGE and FEILER, 2014), 

HiP-HOPS (PAPADOPOULOS et al. 2011), Failure Propagation and Transformation 

Calculus (FPTC) (WALLACE, 2005), and Failure Propagation and Transformation Notation 

(FPTN) (FENELON and McDERMID, 1993); or extensions of formal verification techniques, 

e.g., AltaRica (BATTEUX et al. 2013), or both, which is the case of AltaRica. In this thesis, 

we are interested on compositional safety analysis techniques. These techniques provide 

formal or semi-formal languages to enable the specification of the system failure behavior by 

characterizing the failure behavior of each individual system component, i.e., failure logic 

modeling.  
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Compositional safety analysis integrate architecture and failure modeling in a single 

model, and automate parts of safety analysis, enabling the automatic synthesis of FTA and 

FMEA from a system model enhanced with failure behavior information. By integrating 

failure analysis into the system model, compositional techniques support the efficient and 

consistent evolution of design and failure models, reducing the costs and improving the 

quality of system safety analysis (DOMIS and TRAPP, 2008; LISAGOR et al. 2006; JOSHI 

et al. 2005). Compositional safety analysis techniques are effective in gathering safety and 

reliability information of a system, which are important factors to be considered to take 

architectural decisions. Since the manual evaluation of multiple choices in the design space 

against optimization objectives such as reliability and cost is time consuming, design 

optimization techniques provide automated analysis of candidate design solutions against 

optimization objectives, returning near optimal solutions. In the context of safety-critical 

systems development, design optimization can be used to support the decomposition of safety 

integrity requirements throughout contributing component failures in order to achieve 

compliance with safety standards without being unnecessarily stringent or expensive. There 

exists a set of design optimization techniques that support the allocation of safety integrity 

requirements in automotive and aerospace systems (SOROKOS et al. 2015; AZEVEDO et al. 

2014; PAPADOPOULOS et al. 2011; BIEBER et al. 2011). This thesis shows how these 

techniques can be used to support the analysis and allocation of safety integrity requirements 

in safety-critical product lines and their instances. 

This thesis demonstrates how adopting a software product line engineering approach 

that integrates compositional safety analysis, variant management, and model-based 

development, supports the systematic reuse of safety analysis and automatic generation of 

fault trees, FMEA, safety integrity requirements, and assurance case safety artefacts. The 

distinction between reusable safety artefacts and safety artefacts that must be generated 

enables the automated traceability of product line variation throughout architecture and safety 

artefacts as defined in “Product Line Safety Metamodel” (HABLI, 2009), whilst it reduces the 

complexity of the variant management on product line core assets related to the variability 

model.  
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1.3 Research Challenges 

Integrating system safety engineering, variability management and model-based 

development disciplines in a Safety-Critical Software Product Line Engineering approach 

poses the following challenges addressed in this thesis: 

 To define means for reusing safety-related domain artefacts in such way that allows 

variant-specific safety analysis to be generated; 

 To link safety analysis artefacts and system models, so that assurance cases can be 

generated for specific product variants; and 

 To establish means of analyzing and optimizing how safety integrity requirements 

should alternatively, be allocated to different product variants in order to achieve 

process-based safety certification, i.e., compliance with safety standards. 

From the analysis of the above challenges, the following general research questions 

have been derived: 

- RQ1: How safety analysis reuse and automated generation of safety assessment and 

assurance case artefacts can be conciliated in safety-critical product line engineering 

processes?  

- RQ2: How to integrate system safety engineering, variant management, and model-

driven development to achieve traceability, reuse, and automation in safety-critical 

product line engineering?  

The following specific research questions have been derived from these two general 

research questions: 

- RQ3: How is context and design variation traced to and managed in product line 

safety analysis (hazard and risk analysis, and functional failure assessment) and 

assurance (safety assessment and assurance cases)? 

- RQ4: How linking assurance case patterns, safety assessment and system models to 

generate assurance cases for a specific product variant? 

- RQ5: How to perform the allocation of safety integrity requirements for product line 

components in order to achieve compliance with safety standards without being 

expensive? 



Chapter 1 - Introduction                                                                                                                                        39 

  

The research questions are addressed by the thesis objectives presented in the 

following section. 

1.4 Thesis Objectives and Hypothesis 

The objective of this thesis is to establish a model-based approach that integrates 

system safety engineering, variability management, and model-based development, to support 

the systematic reuse of safety analysis artefacts and automated generation of assurance 

artefacts in software product line engineering for safety-critical systems.  

This thesis provides contributions for each one of the three areas mentioned in the 

research challenges, and it addresses the following hypothesis: 

Through adopting a model-based approach for managing and tracing variability in 

architectural and safety models it is feasible to support the traceable and systematic 

construction of safety assessment and assurance case artefacts within a product line 

engineering approach for safety-critical systems. 

In the following, the key terms highlighted in the thesis hypothesis are explained: 

- Tracing/Traceable: it is related to the ability of the approach in creating traceability 

links between product line variation, reused safety analysis assets, and generated 

safety assessment and assurance case artefacts; 

- Feasible: regarded the practicability of the approach in supporting reuse and 

automation in product line safety assessment and assurance case construction, 

especially in automotive and aerospace domains;   

- Systematic: it means that the approach is repeatable, i.e., its application in different 

domains, safety standards, and chosen tools and techniques follows the same steps and 

it generates the same output artefacts. 

The hypothesis terms are the criteria adopted to evaluate the thesis contributions.   
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1.5 Thesis Structure  

This thesis is organized into nine chapters:  

Chapter 2 presents the literature review on system safety assessment, traditional and 

modern safety assessment techniques, safety certification, assurance cases, software product 

lines, and the state of the art of research on product line safety assessment and assurance 

cases.  

Chapter 3 presents an overview of the proposed systematic and holistic approach to 

integrate compositional safety analysis, variant management, and model-based development 

techniques to support safety-critical software product line engineering processes. This 

approach extends traditional Software Product Line Engineering methods with the 

incorporation system safety engineering into product line processes. The parts of the approach 

are detailed in Chapters 4 to 7. 

Chapter 4 presents a systematic approach to support variability management in safety 

models, guidelines to adapt existing variant management tools to support variability 

management in safety models, and the development of tooling support.  

Chapter 5 shows the contributions in product line compositional safety assessment: a 

systematic approach to integrate compositional safety analysis into product line processes, 

and a method and tool built upon the HiP-HOPS Tabu Search design optimization tool for 

automated analysis and allocation of safety integrity requirements to product line components 

to support process-based certification.  

Chapter 6 presents a mode-based approach to support the automated generation of 

assurance cases for product line instances, and the results of an experimental study that 

assessed the feasibility of the MBAC approach and tooling (HAWKINS et al. 2015), in terms 

of effort and quality of the generated artefact, in software product line engineering processes.  

Chapter 7 presents the proposed extensions to the MBAC approach to support the 

specification of pattern instantiation constraints in assurance case patterns, and the concept of 

artefact pattern and its integration with assurance case patterns.  

Chapter 8 presents the evaluation of the thesis contributions against the criteria 

defined in the thesis hypothesis (Section 1.4).  
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Finally, Chapter 9 presents a summary of the thesis contributions, their limitations, 

and future research directions. The list of publications resultant from this thesis is presented in 

Appendix E. 

 



 

Chapter 2 

CAPÍTULO 2 -  LITERATURE REVIEW 

2.1 Introduction 

This chapter presents the concepts and a review of the literature on system safety 

engineering, software product line engineering, and supporting model-based techniques used 

through this thesis. Firstly, an overview of system safety assessment, which comprises the 

definition of the safety terminology used through this thesis, hazard identification, risk 

assessment, and allocation of safety requirements processes, is presented (Section 2.2). In the 

following, a review on traditional and compositional safety assessment techniques is 

presented, followed by a review on goal-based and process-based safety certification 

approaches (Section 2.3). Section 2.4 presents how structuring and representing assurance 

arguments and evidence through safety-critical system development lifecycle, and it shows 

existing model-based techniques to support the automated generation of assurance cases. 

Software product line engineering is introduced, and a literature review on variability 

management, product line processes, and existing model-based techniques for product line 

variability management are presented in Section 2.5. Finally, a survey on existing research in 

product line safety assessment, variability management on safety models, and assurance cases 

is presented in Section 2.6. Section 2.7 presents a summary of this chapter. 
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2.2 Safety Assessment 

This section presents the safety terminology used through this thesis, an overview 

functional hazard assessment process: hazard identification, risk assessment, and allocation of 

safety requirements. Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis 

(FMEA) techniques and their relationships with system safety assessment process is also 

presented, followed by an overview of existing model-based safety assessment techniques. 

2.2.1 Safety Terminology 

Although the key safety terms used through this thesis may change depending on the 

domain, standard, and geographic region, in order to avoid ambiguity, the definition of these 

terms are highlighted in the following. Safety in the context of risk assessment is defined as 

“freedom from unacceptable risk” (PAPADOULOS and McDERMID, 1999). Safety can be 

confused with reliability. However, they have different meanings. Reliability relates to “the 

probability that a piece of equipment or component will perform its intended function 

satisfactorily for a prescribed time and under stipulated environmental conditions” 

(LEVESON, 1995). Therefore, reliability relates to all potential failures, whilst safety is only 

associated with hazardous failures (LEVESON, 1996). A hazard is defined as “the potential 

source of harm caused by malfunctioning behavior of the item” (ISO, 2011). An item is 

defined as “a system or an array of systems that implement a function” (ISO, 2011). Whereas 

safety should be considered in the context of a particular system in a given operating 

environment, a system is defined as “a combination, with defined boundaries, of elements that 

are used together in a defined operating environment to perform a given task or achieve a 

specific purpose. Elements may include personnel, procedures, materials, tools, equipment, 

facilities, services and/or software as appropriate” (MoD, 2007). 

In context of hazard analysis and risk assessment processes from system engineering 

for safety-critical systems, a safety risk is defined as the “combination of the likelihood of 

harm and the severity of that harm” (MoD, 2007). Harm can be defined as “death, physical 

injury, damage to the health of people, or damage to property or the environment” (MoD 

2007). A failure is “the inability of a system or system component to perform a required 

function within specified limits”. “A failure may be produced when a fault is encountered” 

(RTCA, 2012). A fault is a “manifestation of an error if it occurs, may cause a failure” 
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(RTCA, 2012). Safety requirements can be allocated to mitigate the effects of a fault. Safety 

requirement is defined as the required risk reduction measures associated with a given 

hazard, or component failure (MoD, 2007). There are three types of safety requirements. 

System safety requirements are allocated to system-level hazards. Design and 

implementation decisions, e.g., system functions, intended to eliminate or minimize the 

effects of failures in the system safety are called functional safety requirements (ISO, 2011) 

or derived safety requirements (MoD, 2007). Finally, safety integrity requirement specifies 

the reliability (risk), e.g., in terms of probability and severity, associated with a given 

component failure, hazard, or functional safety requirement. In safety management, 

assurance is defined as “planned and systematic actions necessary to provide adequate 

confidence and evidence that a product or process satisfies the given safety requirements” in 

order to achieve safety certification (RTCA, 2012). From the analysis of existing definitions 

for evidence, in this thesis, evidence is considered as the “information that serves as the 

grounds and starting-point of (safety) arguments, based on which the degree of truth of the claims 

in arguments can be established, challenged and contextualized” (SUN, 2013). 

2.2.2 Hazard and Risk Analysis 

Hazard identification and risk assessment are preliminary activities in the system 

safety assessment process (RTCA, 2012; EUROCAE, 2010). Hazard identification is intended 

to identify hazardous functional failure conditions, i.e., failure conditions leading the system 

to an unsafe state. At the risk assessment, the risk factors associated with each identified 

hazard is determined, e.g., in terms of severity and probability. However, with regard to 

guidelines for development and safety assessment of safety-critical systems, there is not a 

consensus in a universal approach since safety standards may vary from one industry, domain, 

or region to another (MoD, 2007). For example, military standards (MoD, 2007; MIL-STD-

882E, 2000) tend to accept the consideration of novel techniques and technologies for 

developing safety-critical systems. On the other hand, civil standards, e.g., DO-178C (RTCA, 

2012) and ISO 26262 (ISO, 2011), are highly prescriptive. Although such difference, it is 

common for these standards to cover basic safety engineering activities such as hazard and 

risk analysis, allocation of safety requirements, and provision of safety evidence. Interactions 

between “Hazard Identification”, “Risk Assessment”, and “Allocation of Safety 

Requirements” activities, detailed in the following, represent the core of a safety lifecycle. 

These activities typically occur prior the allocation of the safety requirements to software and 
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hardware items. Figure 2.1 shows the relationships between these safety activities in IEC 

61508 safety standard. 

 

Figure 2.1. IEC 61508 safety lifecycle (IEC, 2010). 

Hazard Identification can be performed after the system and its target operating 

environment is specified and understood. The system should be specified in terms of the 

physical and operational environment, system boundaries, functions and inter-functional 

dependencies. Hazard identification establishes hazards and sequence of events that could 

cause system failures (MoD, 2007). The identified hazards are usually stored into a hazard 

log, which is updated throughout the system development life-cycle. The hazard identification 

can be performed using checklists, “what IF” analysis, Functional Failure Assessment (SAE, 

1994), or HAZard and OPerability Studies (HAZOP) (KLETZ, 1992). Hazard identification 

can be performed interactively as the system design evolves. Thus, the level understanding 

with regard to hazards and their risks evolves in parallel to the evolution of the system 

architecture and its deployment, later evolved based on the information gathered from system 

operation (HABLI, 2009).         

Risk Assessment is performed after hazard identification with the aim to estimate, 

based on probabilistic criteria e.g., likelihood and severity, the risk posed by these hazards 
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(IEC, 2010). In many countries, e.g., United Kingdom and United States, it is necessary to 

establish risk tolerability criteria as well as demonstrating that the risks posed by hazards are 

“As Low As Reasonably Practicable” (ALARP). It means that for a risk to be considered 

ALARP, the cost of additional risk reduction should be “grossly disproportionate to the 

benefit obtained from that Risk Reduction” (HSE, 2016). Determining whether a risk is 

ALARP requires informed judgment and in most cases the adoption of formal decision 

making techniques. According to the ALARP principle illustrated in Figure 2.2, a risk can be 

classified as: 

 Intolerable: this risk does not satisfies ALARP and hence should be reduced; 

 Tolerable: the risk satisfies the ALARP principle; 

 Broadly acceptable: the risk is acceptable as long as the system addresses relevant 

good practices, e.g., formal verification is performed to generate the evidence, which 

demonstrates that the risk posed by a given hazard is acceptable.  

 

Figure 2.2. ALARP principle (HSE, 2016). 

Allocation of Safety Requirements is performed from the analysis of the outputs 

provided by hazard identification and risk assessment. Therefore, risk reduction measures are 

allocated to each identified system hazard in the form functional safety requirements, or 

safety integrity requirements. Safety integrity requirements are defined according to 

quantitative/probabilistic criteria established in the target safety standard (MoD, 2007). Most 

safety standards adopt such criteria to establish safety integrity requirements. In these 

standards, the higher is the importance of the safety requirements to address system safety, 

more stringent the safety integrity requirements are. These standards also establish different 
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quantitative criteria to specify safety integrity requirements. For example, the safety integrity 

can be defined in terms of mean-time-to-failure, probability of fault-free operation, or 

unavailability (LITTLEWOOD and STRIGINI, 1993). IEC 61508 establishes safety integrity 

requirements in terms of two categories of failure rates: probability of failure in performing 

high demand/continuous functions, and probability of failure to perform on demand functions. 

Therefore, each one of the Safety Integrity Levels (SILs), shown in Table 2.1, is associated 

with ranges of failure rates in both categories. The SIL 4 is the most stringent and SIL 1 the 

less stringent. 

Table 2.1 – Probabilistic criteria and safety integrity levels in IEC 61508 (IEC, 2010). 

Safety Integrity Level Continuous 
Probability of dangerous failure per  

Hour 

On Demand 
Probability of failure to perform the  

Function 

4 10
-9

 < P ≤ 10
-8

 10
-4

 < P ≤ 10
-5 

3 10
-8

 < P ≤ 10
-7

 10
-3

 < P ≤ 10
-4 

2 10
-7

 < P ≤ 10
-6

 10
-2

 < P ≤ 10
-3 

1 10
-6

 < P ≤ 10
-5

 10
-1

 < P ≤ 10
-2 

 Safety integrity requirements are allocated to system components within the system 

architecture. If a system component comprises hardware and software components, safety 

integrity requirements are refined and allocated to these components. If multiple safety 

integrity requirements from different stringencies are allocated to components, each one of 

these components should be developed to address the higher stringent SIL (HABLI, 2009). 

Additionally, existing design optimization techniques to support the automatic allocation and 

decomposition of safety integrity requirements (SOROKOS et al. 2015; AZEVEDO et al. 

2014; PARKER et al. 2013; PAPADOPOULOS et al. 2011; BIEBER et al. 2011) can be used 

to provide sufficient separation and partitioning without being stringent or expensive. Design 

optimization techniques (SOROKOS et al. 2015; AZEVEDO et al. 2014; WALKER et al. 

2013) implement SIL allocation and decomposition rules defined in existing safety standards, 

e.g., ISO 26262 ASIL (Automotive Safety Integrity Level) allocation rules in automotive and 

ARP 4754A DAL (Development Assurance Level) allocation rules in aerospace domains.  

Hazard identification, risk assessment, and allocation of safety requirements activities 

are the starting point of a safety lifecycle. The following sections present a review on existing 

traditional and modern safety analysis techniques commonly used to support identification of 

hazards and contributing failures modes of components, and risk assessment.    
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2.2.3 Traditional Safety Analysis Techniques 

Existing safety analysis techniques are usually categorized as inductive and deductive 

(ISO, 2011; EUROCAE, 2010). Inductive analysis techniques are known as bottom-up, which 

the analysis starts from component failure events and it identifies their potential effects on the 

system, i.e., it identifies the hazards in which failure events might directly or indirectly 

contribute. On the other hand, deductive analysis is a top-down technique starting from an 

undesirable top-event (i.e., a hazard) and it searches for failure events which are possibly 

causes for the top-event. Functional Failure Analysis (FFA) (SAE, 1996), Failure Modes and 

Effects Analysis (US MILITARY, 1977), and Event Tree Analysis (ETA) are examples of  

traditional inductive safety analysis techniques, whilst Fault Tree Analysis (NASA, 2002) is 

an example of deductive analysis technique. Although such classification, there no restriction 

in using an inductive technique in a deductive fashion and vice-versa. For example, fault trees 

are largely used in aerospace domain to support Preliminary System Safety Assessment 

(PSSA) (EUROCAE, 2010) to examine whether the system architecture satisfies the safety 

requirements established at the Functional Hazard Assessment (FHA) phase. Fault tree 

analysis is also commonly used to investigate possible causes of an accident (HABLI, 2009). 

The following sections present an overview of FFA, FTA, and FMEA traditional safety 

analysis techniques. 

2.2.3.1 Functional Failure Analysis (FFA) 

Functional failure analysis aims to examine how system functions can impact on, or 

contribute to system safety (SAE, 1996). FFA identifies failure conditions associated with 

system functions and their effects on the overall safety. Failure conditions can be identified 

based on the following deviations: function not provided, function provided when not 

required, or function provided incorrectly. Later, the effects of each failure condition are, then 

identified by defining how failure conditions affect the intended behavior of the system, its 

environment, and users. Effects provide assumptions about the system environment, e.g., 

outside temperature and flight phase in aerospace systems. FFA classifies failure conditions 

based on the severity of their effects where failure conditions leading to death or injuries are 

classified as “Catastrophic” or “Hazardous”. Conversely, less severe failure condition effects 

are typically classified as “Major” or “Minor”. The criteria to classify failure condition effects 

vary according to the target safety standard. Finally, safety integrity requirements are 
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allocated to failure condition effects according to their severity. Table 2.2 shows an excerpt of 

FFA for “Decelerate Aircraft on the Ground” aircraft function (SAE, 1996). 

Table 2.2 – FFA for ‘decelerate aircraft on the ground’ system function (SAE, 1996). 

Function Failure Condition Phase Effects Classification 

(severity) 

DAL 

 

 

 

 

Decelerate 

Aircraft on 

the 

Ground 

Un-annunciated loss of 

Deceleration Capability 

Landing Crew is unable to decelerate the 

aircraft, resulting in a high speed 

overrun. 

 

Catastrophic  A 

Annunciated loss of 

Deceleration Capability 

Landing Crew selects a more suitable 

airport, notifies emergency 

ground support, and prepares the 

occupants for landing overrun. 

 

Hazardous B 

Un-annunciated loss of 

Deceleration Capability 

Taxi Crew is unable to stop the aircraft 

on the taxi way or gate, resulting 

in low speed contact with 

terminal, aircraft or vehicles. 

Major C 

Considering the safety lifecycle, such as defined in ISO 26262, ARP 4754A, and IEC 

61508 standards, and compositional safety analysis, at the hazard identification, FFA 

identifies combinations between functional failure conditions, named hazards, which lead to 

the occurrence of system-level failures. The risks posed by these hazards are further assessed 

based on probabilistic criteria, e.g., likelihood and severity, and safety integrity requirements 

are allocated to each identified hazard. Later on the analysis, FFA identifies failure conditions 

associated with each system function that directly or indirectly contribute to the occurrence of 

hazards (WINKINSON and KELLY, 1998).   

2.2.3.2 Fault Tree Analysis and FMEA 

Fault Tree Analysis (NASA 2002) and FMEA (US MILITARY, 1977) are well-

established safety analysis methods largely used in safety-critical systems engineering in 

aerospace, automotive, rail, and nuclear power domains. These methods are intended to 

support safety analysts in identifying potential faults on the system early on the design, in 

order to use such information to prevent these faults. FTA is a deductive technique by 

considering the analysis of a top-event, typically a system failure, and then deducing its 

causes. At the PSSA phase from ARP 4754A safety assessment process, a top-event of a fault 

tree can be a hazard identified in FFA. Fault tree analysis is performed based on the 

preliminary design of the system architecture in order to identify failure modes of 

components, called basic events, leading to the top-level event. Fault trees are graphical 

representations of logical combinations of component failures that consist in a top-event 
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connected to one or more basic events via logical gates such as AND, OR, or NOT, as 

illustrated in Figure 2.3. Fault tree analysis can be performed qualitatively, by means of 

logical analysis, or quantitatively, via probabilistic analysis. Qualitative analysis is performed 

by considering basic events, their relationships, and their contribution to the top-event. 

Quantitative analysis calculates the probability of occurrence of a given top-event based on 

the analysis of the probability of occurrence of each basic event.  

 

Figure 2.3. Fault tree graphical notation symbols (NASA, 2002).  

Figure 2.4 shows an example of a fault tree for “rupture of the pressure tank” top-

event within pressure tank control system extracted from the Fault Tree Handbook (NASA, 

2002). The top-event can be caused by one or more of the following events: 1) tank rupture 
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due to improper installation (undeveloped event); 2) tank rupture primary failure (basic 

event); or 3) tank rupture secondary failure (intermediary event). The intermediary event can 

be caused by two events (represented as undeveloped events), which are further investigated. 

 

Figure 2.4. Rupture of the pressure tank fault tree (NASA, 2002). 

 Fault tree analysis in PSSA phase aims at refining high-level safety requirements 

allocated to system-level hazards during the FFA, to derive safety requirements to be 

allocated to components of the system architecture. Therefore, component developers should 

produce evidence that demonstrates the satisfaction of the allocated safety requirements, 

which can be functional or safety integrity requirements (HABLI, 2009). Unlike FTA, FMEA 

is an inductive technique where the analysis starts from known failure modes of components 

by inferring the effects of these failures on the overall safety of the system 

(PAPADOPOULOS et al. 2011; PUMFREY, 1999). Thus, FMEA differs from FFA where 

the analysis is based on hypothetical failure modes. An effect in an FMEA corresponds to a 

top-event of a fault tree. Effects can be evaluated based on criteria such as severity, 

probability, and detectability that can be combined to estimate the overall risk. The results of 

an FMEA are usually presented in a tabular form. Independently from the domain, FMEA 

tables basically include the identification of (PUMFREY, 1999):  
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 The component or subsystem under consideration;  

 The known component/subsystem failure modes; and 

 The effects of each failure mode. 

If FMECA (Failure Modes, Effects and Criticality Analysis) (US MILITARY, 1977), 

a variation of FMEA, which classifies the risk posed by each failure mode based on its 

contributions to system-level hazards according to criteria such as severity/probability/risk 

classification, is carried out, columns for criticality information should be included (NASA, 

2002). Although the similarities in the structure and analysis process of component 

FMEA/FMECA and FFA inductive techniques, FFA is a predictive technique commonly used 

early on the safety lifecycle, to identify potential threats to the system safety and allocating 

safety requirements, and FMEA is used late in safety lifecycle to demonstrate that the system 

has addressed the allocated safety requirements (PUMFREY, 1999).  

 Fault trees and FMEA/FMECA provides valuable information about the system failure 

behavior, and can be used complementary to each other. FTAs provide the causal information 

for the system-level failures, and FMEA/FMECA provides a view of the impact of component 

failures on the overall system safety. However, due FTA and FMEA being manual methods, 

their application in complex systems is error prone and time-consuming. Since the system 

architectural design impact the overall safety, changes in the design demand costly reviewing 

of FTAs and FMEA artefacts (PAPADOPOULOS et al. 2011). This occurs because FTA and 

FMEA dot not yield reusable models. In addition, performing FTA and FMEA require the 

knowledge about the whole system, which is not easily done in the context of complex 

systems that combine traditional technologies with computer-based controllers (LISAGOR et 

al. 2006). The deficiencies of traditional FTA and FMEA techniques have been recognized 

not only by researchers but also by aircraft manufacturers with the revision of the SAE ARP 

4761 (SAE, 1996) document that includes a specific section dedicated to model-based 

automated safety assessment. Therefore, a number of tools and techniques have been 

developed to automate the system safety analysis process. These tools and techniques are 

discussed in the following section. 

2.2.4 Model-Based Safety Assessment   

Although existing tools such as Fault Tree+ (ISOGRAPH SOFTWARE, 2016) and 

SETS (WORRELL and STACK, 1978) provide graphical-user interface support for creating 
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fault trees and FMEA, they are purely manual. Modern tools and techniques to support safety 

analysis have shifted towards integrating safety analysis with the system design process, 

enabling automatic synthesis of FTA and FMEA from a system design model with failure 

behavior information (DELANGE and FEILER, 2014; PAPADOPOULOS et al. 2011; JOSHI 

et al. 2005). It enables the reuse of safety information in an iterative design process. These 

safety analysis techniques and tools can be classified as compositional or extensions of formal 

verification techniques (LISAGOR et al. 2006).  

Compositional safety analysis techniques provide formal and semi-formal languages 

to support the specification, composition, and analysis of the system failure behavior based on 

safety information about the system components. Based on a specific language, a failure logic 

model of the system is created by characterizing the failure behavior of each individual 

system component with its output failure modes, input failure modes and internal failures that 

contribute to the occurrence of output failures. The failure logic model connects output failure 

modes of a component with input failure modes of another component, creating flows of 

failure modes. UML/SysML-based failure modeling techniques (KÄβMEYER et al. 2015; 

DAVID et al. 2010), AADL Error Annex (DELANGE and FEILER, 2014), and HiP-HOPS 

(Hierarchically Performed Hazard Origin and Propagation Studies) (PAPADOPOULOS et al. 

2011) are examples of compositional safety analysis techniques. Despite compositional 

techniques are not fully automated, requiring manual input of component failure data, they are 

applicable in the analysis of both hardware and software architectures in the context of model-

based design. Design optimization techniques based on meta-heuristics, such as genetic 

algorithms (AZEVEDO et al. 2014; PARKER et al. 2013; DEB et al. 2002) can be used to 

support compositional safety analysis. Optimization techniques provide the design assessment 

based on optimization objectives such as cost and reliability (PAPADOPOULOS et al. 2011). 

These algorithms automatically generate near optimal candidate solutions that satisfy pre-

defined optimization objectives, supporting safety analysts in taking design decisions to meet 

the safety requirements. Optimization techniques also provide candidate SIL allocation 

solutions based on optimization objectives such as cost and reliability (SOROKOS et al. 

2015; AZEVEDO et al. 2014; PARKER et al. 2013a).    

The second category of model-based safety assessment approaches consists in 

extensions of formal verification techniques to support safety analysis named fault injection 

approaches. It involves the use of formal modeling languages and model-checking techniques 

to automatically deduce abnormal conditions (failure modes) that may lead the system to an 
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unsafe state (LISAGOR et al. 2006). These techniques simulate the normal functioning of the 

system design and then inject faults to determine their effects on the system safety 

(PAPADOPOULOS et al. 2011). Fault injection approaches do not require the specification 

of component failure logic to describe the failure propagation as all required information is 

extracted from the model, based on a library of pre-defined failure types. Examples of 

techniques that fall into this category are AltaRica 3.0 (BATTEUX et al. 2013), Safety 

Analysis Modeling Language (SAML) (GÜDEMANN and ORTMEIER, 2010), and Formal 

Safety Analysis Platform-NuSMV (BOZZANO and VILLAFIORITA, 2007). Specifically, 

AltaRica provides a formal modeling language to specify the system model, and a model 

checker to simulate the system behavior in the presence of injected faults.  

Compositional and extensions of formal verification safety analysis approaches 

provide clear benefits for the system safety assessment process and have reached levels of 

maturity required to be included in industrial processes (LISAGOR et al. 2006). Both 

approaches can be applied complementary to each other at different stages of the system 

development lifecycle. Compositional safety analysis is applicable from early stages of 

system design to provide the basis for incremental safety assessment in order to identify 

safety problems early on the design, driving re-design and allocation of safety requirements. 

Extensions of formal verification techniques are applicable only at later stages of the design, 

e.g., towards the end of PSSA or in SSA phases from SAE ARP 4754A safety assessment 

process, when the design is relatively mature and detailed. These techniques provide 

automated analysis of the detailed system design to verify whether or not the system design 

meets the allocated safety requirements (LISAGOR et al. 2006). In this thesis we are 

interested in compositional model-based safety analysis and design optimization techniques to 

support product line safety assessment. Compositional safety analysis and design optimization 

techniques are detailed in the following two subsections. 

2.2.4.1 Compositional Safety Analysis 

Whereas compositional techniques are based on failure logic modeling approach, it 

allows safety analysts to model the failure behavior of the system incrementally as the design 

progresses from the system architecture to a detailed level. It facilitates the adoption of a 

“divide-and-conquer” approach for safety assessment, where the assessment of a complex 

system is broken down into more manageable tasks of characterization of the failure behavior 

of individual components (LISAGOR et al. 2006). Compositional techniques enable the reuse 
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of safety information, overcoming the limitations related the need to review FTA and FMEA 

artefacts when the system design is changed. Failure Propagation and Transformation 

Notation (FPTN) (FENELON and McDERMID, 1993) and its extension Failure Propagation 

and Transformation Calculus (FPTC) (WALLECE, 2005) are the earliest compositional safety 

analysis techniques. FPTN and FPTC have influenced other techniques such as AADL Error 

Annex, HiP-HOPS, State-Event Fault Trees (SEFTs) (KAISER et al. 2007), and Component 

Fault Trees (CFTs) (GRUNSKE and KAISER, 2005). 

FPTN is a graphical notation to represent the failure behavior of the system based on a 

component module approach to describe the propagation of component failures throughout 

the system architecture. In FPTN, component modules are connected via input and output 

ports to other modules, allowing combination and propagation of failures from one module to 

another. FPTC was developed to overcome the limitations of FPTN related to the construction 

of a failure model separated from the system design model. FPTC links the failure model to 

the architectural model so that dependencies are identified and managed. FPTC defines a set 

of failure classes (omission, commission, value, early/late failure types) that are specified by 

means of annotations directly in the components of the system model. Failure types are used 

to characterize how components, their inputs and outputs can fail. FTPC has also been 

extended to support probabilistic analysis of component failure expressions (GE et al. 2009). 

SEFTs and CFTs were built upon the FPTN. An SEFT makes the distinction between a 

system in a certain state and an event that triggers a state transition. In a CFT, the component 

failure logic is defined as a graph of interconnected fault trees using a specification similar to 

FPTN and HiP-HOPS (PAPADOPOULOS et al. 2011). 

HiP-HOPS and ADDL Error Annex are compositional safety analysis techniques/tools 

built upon FPTN and FTPC concepts. AADL Error Annex adds failure modeling capabilities 

to AADL models that can be developed with the support of Eclipse-based Open Source 

AADL Tool Environment (OSATE) (DELANGE and FEILER, 2014). The HiP-HOPS 

compositional safety analysis tool enables failure modeling in system models developed in 

MATLAB/Simulink (MATHWORKS, 2016), SimulationX (ITI GMBH, 2010), and Eclipse-

based UML tools (i.e. EAST-ADL) (CUENOT et al. 2010). Both AADL Error Annex and 

HiP-HOPS techniques/tools take a set of local component failure data (failure logic model) 

describing how output failures of components are generated from combinations of internal 

failure modes and deviations in component’s inputs, and synthesizes fault trees and FMEA 

artefacts that reflect the propagation of failures throughout the system architecture. HiP-
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HOPS and AADL Error Annex also allow the specification of probabilistic data, e.g., failure 

and repair rates, in the failure logic model. Component failure logic and probabilistic data can 

be stored in a library to allow it to be used in other systems models. 

The component failure logic relates to design components in an intuitive and clear 

fashion. The clear relationship between the system design and the inherent modularity of 

failure logic models allow the systematic reuse of component failure logic whenever design 

components are reused. Therefore, when the system design is changed, the identification of 

the effects of these changes on the failure logic model (FLM) is simplified, and the effort to 

adapt the FLM is proportional to the size of the change. Figure 2.5 illustrates the failure logic 

modeling approach to characterize the failure behavior associated with a hydraulic pump 

component using HiP-HOPS and FPTN techniques. The “pump” component is intended to 

provide a constant level of hydraulic pressure on its output (“o”). The pump has two inputs: 

hydraulic (“hi”) and electrical (“ei”). “hi” supplies the pump with non-pressurized hydraulic 

fluid; and “ei” feeds the motor with electrical power. With regard to the “pump” failure 

behavior, the omission of either hydraulic or electrical input causes an omission of output 

pressure. In this example it is assumed that the pump is not sensitive to any other deviations in 

its hydraulic inputs. At the same time, it is assumed that all relevant failure modes of the 

electrical current (i.e., omission, late provision and wrong - too large or too small, value) 

result in similar failure modes on pump’s output, e.g., low current gives rise to low flow. The 

pump can also fail itself, and it can either become fully non-functional (“broken”) or less res- 

 

Figure 2.5. Failure logic of a hydraulic pump component: HiP-HOPS (left) and FPTN (right) (adapted from 

LISAGOR et al. 2006). 
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ponsive to incoming power (“struggling”), e.g., due to increased impedance in the windings. 

These internal failures may lead to the omission of output pressure or low (insufficient) 

pressure respectively. Finally, a pump that is “struggling” during start-up may provide the 

required hydraulic pressure later than expected (LISAGOR et al. 2006). Additionally, the 

specification the “pump_stuck” and “pump_struggling” internal failure modes contain 

information about their respective failure and repair rates (Figure 2.5 left).  

From the perspective of traditional safety analysis techniques, the failure logic of an 

individual component can be seen as a complete local FMEA or a small fault tree. In terms of 

FTA, output failure modes represent top events, input failure modes are undeveloped events, 

and internal failures are basic events. The failure logic model allows safety analysts to control 

the level of detail of the FTA, which depending on the purpose, more detailed or less detailed 

fault trees can be generated at low cost due the systematic reuse of component failure logic. 

These different FTA views when generated from a failure logic model are consistent by 

construction.  

2.2.4.2 Design Optimization 

Compositional safety analysis techniques are effective in gathering safety and 

reliability information of a system architecture. Safety and reliability are important factors to 

be considered to take design decisions. However, the manual evaluation of multiple choices in 

the design space against multiple and often contradictory optimization objectives such as 

safety, reliability and cost is time-consuming and it can restrict the design candidates to be 

investigated. On the other hand, design optimization techniques support the analysis of 

architectures with higher degree of variability, with hundreds and thousands of candidate 

solutions in the design space, to obtain near optimal design solutions that meet multiple and 

contradictory objectives (PAPADOPOULOS et al. 2011). Different genetic algorithms 

(KULTUREL et al. 2006; DEB et al. 2002; COIT and SMITH, 1996) have been used to 

support the analysis of safety-critical system design space against optimization objectives 

such as cost and reliability. Genetic algorithms mimic the evolution of the biological life in 

nature in which a population of different candidates is evaluated according to their fitness and 

the best are chosen to reproduce and form the basis for the next generation of candidates 

(PAPADOPOULOS et al. 2011). 

Tabu Search (KULTUREL et al. 2006) is a multi-objective and genetic algorithm. It 

explores the design space on the basis of evaluation functions, e.g., if a solution has better 
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characteristics such solution is the basis for the following iteration. In Tabu Search, multiple 

objectives are evaluated by multiple evaluation functions in multiple iterations. Thus, the 

objective “1” is evaluated in the first iteration, objective “2” in the second, and so forth. A 

characteristic of tabu search is that it stores the solutions that have been explored, preventing 

looping or getting stuck in a local optimum, forcing the algorithm to focus on unexplored 

areas of the search space. After a number of iterations, tabu search provides the best near 

optimal solution(s) found.  

Penalty-based (COIT and SMITH, 1996) is other genetic algorithm that combines 

multiple objectives in a single evaluation function. In this algorithm, an objective is 

optimized, e.g., reliability, but constraints on the other objectives, e.g., cost, weight are 

imposed. It means that any infringement of these constraints incurs in a penalty that is 

subtracted from the fitness score of the candidate solution. Therefore, if two candidate 

solutions have the same reliability, but one violates the constraints, the solution that violated 

the constraint is ranked lower than the one that have not violated it. Non-Dominated Sorting 

(NSGA-II) (DEB et al. 2002) is another form of genetic algorithm. Similar to Tabu Search, 

NSGA-II is a multi-objective algorithm that explores the design space more widely in 

comparison with Penalty-based, whereas an evaluation function is provided peer optimization 

objective. In NSGA-II, the analysis starts from a given “X” solution that is compared with 

another solution “Y”. If the “Y” solution is better in at least one objective and no worse in 

any other, then the “X” solution is said to be dominated by “Y”. The set of all non-dominated 

solutions is known as the Pareto front, and it is the set of currently identified optimal 

solutions.  

HiP-HOPS compositional safety analysis tool provides extensions, based on Tabu 

Search, NSGA-II and Penalty-Based genetic algorithms, to support automatic and optimal 

allocation of safety integrity requirements. These algorithms support the safety analysts in 

decision making processes early on the development life-cycle seeking to achieve a design 

solution that meets the safety requirements and minimizes the cost. HiP-HOPS design 

optimization algorithms also support designers to comply with safety standards by automating 

the process of decomposing safety integrity requirements allocated to system-level hazards 

throughout contributing failures modes in the system architecture, and evaluating possible 

allocations, and it determines better allocation solutions based on a given cost heuristic. The 

HiP-HOPS penalty-based algorithm allows to efficiently explore the search space to find 

optimum ASIL allocation solutions for automotive system architectures (PARKER et al. 
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2013). HiP-HOPS Tabu Search optimization algorithms support the automatic decomposition 

of safety integrity requirements in automotive (AZEVEDO et al. 2013) and aerospace 

(SOROKOS et al. 2015) systems. These algorithms allow finding near optimal ASIL/DAL 

allocation solutions based on a given cost heuristic. HiP-HOPS Tabu Search optimization 

algorithms explore the solution space more efficiently, providing near optimal allocation 

solutions within acceptable time spans in comparison with Penalty-Based (PARKER et al. 

2013) and NSGA-II (PAPADOPOULOS et al. 2011) algorithms (AZEVEDO et al. 2013). 

Optimal allocation of safety integrity requirements contributes to achieve process-based 

certification without being stringent or expensive. In this thesis, HiP-HOPS Tabu Search 

optimization algorithms have been used to support process-based certification of automotive 

and aerospace product line architectures and their instances. These implementations of Tabu 

Search support the decomposition of safety integrity requirements in compliance with ISO 

26262 and SAE ARP 4754A safety standards.  

The Tabu Search extensions of HiP-HOPS (SOROKOS et al. 2015; AZEVEDO et al. 

2013) are based on the Steepest Descent Mildest Ascent (SDMA) reliability optimization 

method developed by Hansen and Lih (1996). The method consists of iteratively finding the 

ASIL/DAL that, by being decremented, reduces the cost of a solution (the steepest descent 

direction). The ASILs/DALs allocated to system-level hazards during the Functional Failure 

Assessment, the information about failure propagation in the form of Minimal Cut Sets 

(MCT
1
) generated from fault tree synthesis, and a cost heuristic defined by the analyst are 

inputs to HiP-HOPS Tabu Search performing the analysis to find suitable ASIL/DAL 

allocation solutions for a given system architecture. A cost heuristic is an evaluation function 

that expresses the relative cost jumps of developing a component according to the different 

safety integrity requirements. For example, considering the ISO 26262 standard, the following 

linear cost heuristic establishes that the costs of developing components according to different 

ASILs are: 0 (ASIL QM), 10 (ASIL A), 20 (ASIL B), 40 (ASIL C), and 50 (ASIL D). At the 

end the analysis, HiP-HOPS Tabu Search algorithm outputs near optimal ASIL/DAL 

allocation solutions for a given system architecture in XML format. Multiple allocation 

results are inputs artefacts for the proposed method and tool for automated allocation of safety 

integrity requirements to product line components presented in Chapter 5. The tool is built as 

an extension of HiP-HOPS to support the product line process-based certification. The 

                                                 
1
MCS are combinations of basic events that result in system-level hazards (NASA, 2002). 
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following section introduces the safety certification concepts, and reviews existing safety 

certification approaches. 

2.3 Safety Certification 

The safety certification of safety-critical systems can be achieved by means of 

process-based and goal-based approaches. In domain-specific process-based safety standards 

such as SAE ARP 4754A (EUROCAE, 2010) and DO-178C (RTCA, 2012) (aerospace), ISO 

26262 (ISO, 2011) (automotive), EN 50159 (CENELEC, 2001) (rail), UK Defense Standard 

00-56 (MoD, 2007) (defense), FDA Infusion Pumps (FDA, 2014) (medical devices), IEC 

61513 (nuclear) (IEC, 2001), and more generic standards, e.g., IEC 61508 (IEC, 2010), 

system safety is demonstrated by addressing safety objectives. Addressing these safety 

objectives demand applying a set of development techniques and methods prescribed by the 

standards according to an specific Safety Integrity Level (SIL), Development Assurance 

Level (DAL) or risk classification, as shown in Table 2.3. ISO 26262 prescribes different 

guidance and techniques to develop a system function according to the assigned automotive 

safety integrity level (ASIL). In ISO 26262, the ASIL D is the most stringent. 

Table 2.3 – ASILs and software architecture verification techniques in ISO 26262 (ISO, 2011). 

 

Techniques 

ASIL 

A B C D 

Walk-through of the design ++
2
 +

3
 o

4
 o 

Inspection of the design + ++ ++ ++ 

Simulation of dynamic parts of the design + + + ++ 

Prototype generation O o + ++ 

Formal verification O o + + 

Control flow analysis + + ++ ++ 

Data flow analysis + + ++ ++ 

  

The definition of SILs or risk classifications may vary between different safety 

standards. For example, in DO-178C, ARP 4754A, and IEC 61508 safety standards, the 

allocation of safety integrity levels to the system functions is defined based on the risk 

reduction measures associated with a given probabilistic criteria, e.g., severity and 

probability. ISO 26262 adopts a risk classification scheme based on Severity (S), Exposure 

                                                 
2 ‘++’: Highly Recommended 

3 ‘+’: Recommended 

4 ‘o’: No recommendation for or against its usage for the identified ASIL. 
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(E), and Controllability (C) to allocate safety integrity levels to system functions. IEC 61513 

allocates safety categories to system functions based on deterministic criteria and engineering 

judgement with regard to safety consequences of potential malfunctions (IEC, 2001). Process-

based safety standards also establish rules to decompose SILs allocated to system-level 

failures throughout contributing subsystem and component-level failures. SIL decomposition 

allows a safety-critical system architecture to meet a particular targeted safety integrity level 

assigned to a system failure without all contributing components having to meet that SIL. 

Therefore, whether a system failure can occur only when two independent components fail 

together, these components share the responsibility of meeting the SIL allocated to the given 

system failure, rather than each one having to meet the original SIL. Table 2.4 shows the 

ASIL decomposition rules defined in ISO 26262. Therefore, if an ASIL D is allocated to a 

system failure caused by failures in two independent “C1” and “C2” components, ASIL C 

and ASIL A, or ASIL B and ASIL B, or ASIL D and Quality Management (QM) integrity 

requirements can be respectively allocated to “C1” and “C2” to address ASIL D.  

SILs directly impact in the definition of the required safety objectives to achieve 

process-based certification, which could significantly affect both development and production 

costs. Therefore, higher SILs means higher costs, because meeting more stringent safety 

objectives typically require more safety measures, and development effort to deliver higher- 

quality components. SIL decomposition allows to efficiently allocating SILs so that process-

based certification can be achieved without being unnecessarily stringent or expensive with 

regard to addressing safety objectives. Existing model-based safety assessment techniques  

Table 2.4 – ISO 26262 ASIL decomposition rules (ISO, 2011). 

ASIL Decomposition Rules 

ASIL D requirement  ASIL C(D) requirement + ASIL A(D) requirement 

ASIL D requirement  ASIL B(D) requirement + ASIL B(D) requirement 

ASIL D requirement  ASIL D(D) requirement + QM(D) requirement 

ASIL C requirement  ASIL B(C) requirement + ASIL A(C) requirement 

ASIL C requirement  ASIL C(C) requirement + QM(C) requirement 

ASIL B requirement  ASIL A(B) requirement + ASIL A(B) requirement 

ASIL B requirement  ASIL B(B) requirement + QM(B) requirement 

ASIL A requirement  ASIL A requirement + QM(A) requirement 
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provide frameworks to support SIL decomposition in different safety standards, e.g., ISO 

26262 (PAPADOPOULOS et al. 2010; AZEVEDO et al. 2014; PARKER et al. 2013), IEC 

61508 (DHOUIBI et al. 2014; MADER et al. 2012), DO-178C and ARP 4754A (SOROKOS 

et al. 2015; BIEBER et al. 2011). These techniques support the automated identification of: 

combinations between component failures leading to system failures, and near optimal SIL 

decomposition strategies by means of linear programming (DHOUIBI et al. 2014; MADER et 

al. 2012), exhaustive (PAPADOPOULOS et al. 2010) and genetic algorithms (SOROKOS et 

al. 2015; AZEVEDO et al. 2014; PARKER et al. 2013, PAPADOPOULOS et al. 2011). 

Specifically, genetic algorithms are capable of finding near optimal SIL decomposition 

strategies within acceptable time spans (AZEVEDO et al. 2014).  

Process-based safety standards offer useful guidance on “good practices” related to 

safety engineering methods and techniques and it describes how factors such as independence 

in the development process can improve the confidence (HABLI 2009). However, these 

standards are criticized by being highly prescriptive and restricting the adoption of novel 

methods and techniques to achieve safety certification (McDERMID and PUMFREY, 2001). 

The limitation of process-based certification lies in believing that qualified tools, techniques 

and method are sufficient to achieve a specific level of integrity, and the fact that the 

correlation between prescribed techniques and system failure rate is often infeasible to justify. 

Due the limitations of process-based certification, safety standards such as ARP 4754A, CAP 

670 (CAA, 2014), DO-178C, ISO 26262, UK Defense Standard 00-56, and FDA Infusion 

Pumps, have been changed towards recommending or mandating the development and 

management of well-structured assurance cases as a mean to achieve safety certification. 

Assurance case justifies that the acceptability of system safety is based on product-specific 

and targeted evidence, referred as goal-based or product-based certification (HABLI, 2009). 

The UK Defense Standard 00-56 and FDA Infusion Pumps are examples of goal-based safety 

standards. These standards require the submission of an assurance case that comprises safety 

arguments that contain safety claims, which are supported by a body of evidence that justifies 

that the system is acceptably safe to operate in a given environment, to achieve safety 

certification. In a goal-based safety argument, safety claims address the sufficiency, 

traceability of system safety requirements, and the absence of faults leading the system to an 

unsafe state. Evidence “is information, based on established fact or expert judgement, which 

is presented to show that the Safety Argument to which it relates is valid” (EUROCONTROL, 
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2011). Evidence corresponds to the information that demonstrates the satisfaction of safety 

claims, which can be classified in the following types (SUN, 2013): 

 Analytical evidence: it can be generated from hazard analysis, causal analysis, or 

behavior modeling, which can provide direct evidence that demonstrates the absence 

of dangerous faults, and satisfaction of system safety requirements; 

 Qualitative evidence for “good” design and process: is an indirect/backing form of 

evidence that serves to increase the confidence in the direct evidence, e.g., compliance 

with standards, guidance, and design rules; 

 Empirical evidence: typically quantitative, it can be generated from testing and/or 

operation; 

 Evidence based on engineering judgement: can be generated from review, inspection, 

expert opinion based on personal knowledge, or engineering experience.      

The all early mentioned evidence types can be used to substantiate assurance case 

claims. However, in goal-based certification, the quality and amount of required evidence 

vary accordingly the criticality and safety integrity of the system. Therefore, the degree of 

rigor, coverage, diversity, scrutiny and independence of the evidence, and the degree of 

confidence that can be placed in the evidence should be proportional to the required safety 

integrity. Safety integrity is typically specified quantitatively in terms of failure probability 

and severity. Opposed to process-based certification, in goal-based certification it is 

responsibility of engineers to show the sufficiency of evidence in supporting safety claims 

stated in the assurance case, and to demonstrate that the confidence put into the evidence 

should commensurate with safety integrity requirements. Confidence can be expressed 

quantitatively, via empirical evidence (HABLI, 2009), and qualitatively, via compliance with 

standards and engineering judgment. Quantitative confidence provides strength evidence, and 

qualitative confidence provides qualitative elements to judge the adequacy of the evidence in 

substantiating a given safety claim. 

Although the limitations of process-based certification, studies have shown that if used 

correctly, prescriptive process-based certification approach can be adopted complementary to 

goal-based certification (HAWKINS et al. 2013; KELLY, 2008). Therefore, process-based 

certification approach prescribed by standards such as DO-178C provide clear guidance on 

the processes and techniques to be adopted in a particular domain, and best practices on 

evidence selection. Process-based certification also provides the backing support to justify the 
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confidence in the generated evidence. Additionally, process-based certification provides an 

authoritative definition of “good practices” on selecting and producing the evidence 

referenced in an assurance case. On the other hand, assurance case explains the role of the 

evidence as part of the demonstration of the safety of a particular system under consideration 

(HAWKINS et al. 2013). In this thesis, we have focused on both process-based and goal-

based certification. Model-based techniques for SIL allocation were used and extended to 

support process-based certification of product line components and product line instances 

(Chapter 5). Model-based assurance cases techniques have been used to support the 

generation of assurance cases to achieve goal-based certification of product line instances 

(Chapter 6). Assurance cases and model-based assurance cases are detailed in the following 

section.  

2.4 Assurance cases 

An Assurance Case or Safety Case is defined as “a clear, comprehensive and 

defensible argument, supported by a body of evidence, which demonstrates that a system is 

acceptably safe to operate in a particular context” (MoD, 2007, KELLY, 1998). An 

Argument is a body of information intended to establish the relationships between claims, 

evidence, and contextual information. Claim is a proposition being asserted that is a true or 

false statement. Evidence represents objective artefacts, offered in support of one or more 

claims. OMG defines an Assurance Case as a collection of auditable claims, arguments, and 

evidence created to support the statement that a given system/service is acceptably safe by 

addressing its associated assurance requirements (OMG, 2015a). The relationships between 

claims and evidence are explicitly represented in a structured argument. The submission of an 

assurance case has been required by certifying authorities (FAA, 2016, ANAC, 2016, CAA, 

2016) and safety standards from automotive (ISO, 2011), military (MoD, 2007), aerospace 

(RTCA, 2012; EUROCAE, 2010), rail (CENELEC, 2001), air traffic service (CAA, 2014), 

medical (FDA, 2014), and nuclear (IEC, 2001) domains as a requirement to achieve safety 

certification. This section presents a review on assurance case development lifecycle and 

existing forms of representation, emphasizing Goal Structuring Notation (GSN), and its 

modular and patterns extensions that were used in this thesis, together with existing model-
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based assurance cases technique (HAWKINS et al. 2015), to support the automatic generation 

of assurance cases in safety-critical software product line engineering (Chapter 6).  

2.4.1 Assurance Case Development Lifecycle 

Assurance cases are recommended to be developed incrementally, and in parallel with 

the system design (KELLY, 2003). Thus, the assurance case evolves as more information 

about the development of the system architecture and safety life-cycle is obtained (KELLY, 

1998). Existing safety standards (MoD, 2007) explicitly recommend the production, 

presentation, and issue of at least three versions of assurance cases during the development 

lifecycle that yields: 

 Preliminary Assurance Case: it justifies how safety and integrity requirements 

defined in the safety plan
5
 are addressed. It presents an anticipated outline assurance 

case showing the main safety objectives, the selected approach to argue safety, and 

forms of evidence; 

 Interim Assurance Case: it provides the evidence that justifies the system design 

specification satisfy safety and integrity requirements.  

 Operational Assurance Case: it provides the complete evidence that demonstrates 

the deployed system satisfies safety and integrity requirements.  

Although the absence of design detail, the production of a preliminary assurance case 

is important to: defining the scope of the assurance case, the key safety issues and objectives 

associated with the system such as system hazards, safety requirements, and applicable safety 

standards, the assurance argumentation approach to be adopted to argue safety, provided by 

assurance case patterns, the supporting evidence, e.g., verification, validation, and testing 

artefacts that substantiate assurance claims, and the definition of development procedures to 

be considered during the system development lifecycle, e.g., languages, methods and tools to 

be used to address each Safety Integrity Level. Therefore, the early identification of safety 

objectives at Preliminary Assurance Case enables the system design to be influenced as 

development progresses contributing to establish a more compelling assurance case. The 

adoption of such approach supports the confidence in the feasibility of establishing an 

assurance case that evolves through safety lifecycle. It contributes to reduce potential project 

                                                 
5
It defines the key safety processes, roles and responsibilities to be enacted during the system development 

(KELLY, 2003). 
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risks associated with failure in achieving system certification/safety acceptance (KELLY, 

2003).   

2.4.2 Representation of Assurance Cases 

Argument and evidence constitute the core of an assurance case since “an Argument 

without supporting evidence is unfounded, and therefore unconvincing, and Evidence without 

argument is unexplained, i.e., it is unclear that (or how) safety objectives have been satisfied” 

(KELLY, 1998). An Argument is defined as “a group of propositions which one, i.e., the 

conclusion, is claimed to be asserted by the others, i.e., premises, that provide support or 

grounds for the truth of that one” (COPI et al. 2010). A simple collection of propositions 

cannot be considered an argument. An argument must have a structure showing that some of 

these propositions are premises (claims) from which a conclusion is drawn (GULA, 2002).  

In safety-critical systems domain, initially, safety arguments were represented in free 

text, in the same way as arguments are communicated by means of claims, inference, and 

conclusion in the law field. However, it has been noted that the use of free text in the 

specification of a complex arguments may lead to an ambiguous and unclear safety argument 

(KELLY, 2003), being problematic in ensuring that different stakeholders have a shared 

understanding of the safety argument. In order to address the limitations of free text, different 

approaches, mainly based on tabular structures, Bayesian Believe Networks (BBN) e.g., 

SERENE - SafEty and Risk Evaluation using bayesian NEts (MARSH, 1999), and graphical 

notations have been proposed along with the research progress in safety engineering field. 

Tabular structures represent safety argument using different columns (BISHOP and 

BLOOMFIELD, 1998), which each one covers an argument element such as an attribute, a 

claim, or an evidence item as shown in Table 2.5. Tabular structures have advantages of 

explicit representation of an argument structure in comparison with free text (HABLI 2009; 

KELLY, 1998). However, tabular structures have limitations in representing hierarchical 

safety arguments, i.e., an argument that contain assumptions and evidence, which is further 

supported by another argument (HABLI, 2009). 

Graphical notations such as Goal Structuring Notation from the University of York 

(GSN STANDARD, 2011), and Claim-Argument-Evidence (CAE) (BLOOMFIELD and 

BISHOP, 2010), have been created to improve the expressiveness and management of the 

complex safety arguments. Due the provision of mature tool support (CERTWARE, 2016, 
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THE UNIVERSITY OF YORK, 2011, ADELARD, 2016) both notations have been largely 

used by the industry in the specification of complex and modular argument structures. GSN 

and CAE notations are both based on Toulmin’s (1958) philosophical argumentation 

approach. Thus, these notations share the claim, argument, and evidence concepts. GSN 

distinct from CAE by the inclusion of: the strategy concept used for defining how a claim is 

recursively decomposed into sub-claims; and contextual elements that could be attached to a 

claim, to provide background information to facilitate the understanding of a given claim. 

Table 2.5 – Tabular safety argument (Adapted from Bishop and Bloomfield, 1998). 

Attribute Design Features Claim Evidence 

 

Fail-safety 

 

Fault-tolerant 

architectures 

 

Claim that safety is maintained under stated 

failure conditions, assuming the subsystems are 

correctly implemented. 

 

 

System Hazard Analysis  

 

Fault Tree Analysis 

 

Reliability/ 

Availability 

 

Fault tolerant 

architectures 

 

Design 

simplicity 

 

Reliability claim based on experience with 

similar systems. 

 

Prior field reliability in 

similar applications. 

2.4.2.1 Goal Structuring Notation 

In the GSN core notation shown in Figure 2.6, safety arguments are represented in 

terms of goals, strategies, solutions, context, justifications, and assumptions elements linked 

using “supported by” or “in context of” relationships, forming a goal structure. A goal 

structure shows how goals (claims) are recursively decomposed into sub-goals, using strate- 

 

Figure 2.6. GSN core (Adapted from Kelly, 2003). 
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gies, until reaching the point where goals can be supported by direct references to evidence 

items (solutions). As part of such decomposition, GSN provides elements to make clear the 

adopted argument decomposition approach (strategy), which could be qualitative, 

deterministic, or probabilistic (BLOOMFIELD and BISHOP, 1998), the rationale for the 

adopted argument decomposition approach, and the context in which goals are stated 

(KELLY, 2003). Finally, GSN also supports the specification of claims whose rationale is 

intentionally left in the argument. 

Figure 2.7 shows an example of a GSN-based assurance case that justifies the safe 

operation of a sheet metal press (KELLY, 1998). The press is controlled by an operator via a 

control system based on a Programmable Logic Controller (PLC). In this argument structure, 

the top-level goal is “C/S (Control System) logic is fault free” (G1). This goal is supported by 

“Argument by satisfaction of all C/S safety requirements” (S1) and “Argument by omission of 

all identified software hazards” (S2) argument decomposition strategies. “S2” strategy is 

stated in the context of the “Identified Software Hazards” (C1), which is the backing 

information required to understand the adopted argument decomposition strategy. Further, 

“S2” is supported by “G8” and “G9” sub-goals, which are finally supported by “Sn3” and 

“Sn4” solution elements, referencing “Fault tree analysis cut-sets for event – Hand trapped in 

press due to command error” and “Hazard Directed Test results” evidence items, no 

requiring further support. “S1” is supported by “G2”, “G3”, and “G4” requirements satisfac- 

 

 

Figure 2.7. Example of goal structure (KELLY, 2003). 
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tion sub-goals, which are further supported by solution elements and other sub-goals. “G2” is 

supported by “Sn1” solution, referencing “Black box Testing Results” evidence item, and 

“G5” sub-goal. “G3” is supported by “G7” sub-goal. “G4” is a claim, which the reasoning is 

undeveloped in this argument structure. Finally, “G5” and “G7” are supported by “Sn2” 

solution element. Solution elements refer to artefacts produced throughout the development 

lifecycle, which provide the evidentiary support for claims. 

By following the syntactic and semantic guidance provided by the GSN Standard 

(2011), clear and non-ambiguous hierarchical assurance cases can be created systematically, 

overcoming the limitations of free text and tabular argumentation approaches. GSN notation 

was further extended with patterns and modular extensions to support the assurance case reuse 

throughout product line development lifecycle. These extensions were used through this thesis 

to create assurance case patterns, and generating assurance cases for product lines instances 

with the support of model-based assurance cases technique (HAWKINS et al. 2015). GSN 

patterns and modular extensions are detailed in the following subsection. 

2.4.2.2 GSN Patterns and Modular Extensions 

The concept of assurance case pattern was created based on the principles of design 

patterns proposed by Alexander et al. (1977), and object-oriented software design patterns 

(GAMMA et al. 1995). Assurance case patterns define “means of documenting and reusing 

successful safety argument structures”, by capturing argument structures considered to be 

common in constituting the backbone of an assurance case in a particular domain or across 

different domains (HABLI and KELLY, 2010; KELLY and McDERMID, 1997). GSN core 

was extended with two types of pattern abstractions, shown in Figure 2.8, to support the 

specification of assurance case patterns: 

 Structural abstraction: it supports the specification of n-ary, optional, alternative 

relationships between GSN elements via multiplicity and optionality extensions; and  

 Entity abstraction: it supports generalization/specialization of GSN elements by 

means of “Uninstantiated” and “Undeveloped” entity abstractions. 
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Figure 2.8. GSN pattern extensions (Adapted from Habli and Kelly, 2010). 

GSN modular extensions were created to support the certification of highly-integrated, 

modular, and reconfigurable systems, e.g., systems developed based on Integrated Modular 

Avionics (IMA) (KEELY, 2007; BATE and KELLY, 2002), and safety-critical software 

product lines (HABLI and KELLY, 2010). GSN modular extensions support the development 

of “modular and compositional assurance cases”, reducing the required effort for the 

reassessment of assurance cases after changes in the system. These extensions support the 

specification of an assurance case with well-defined and scoped argument modules, and the 

way as they are composed in a hierarchical argument structure. The specification of an 

“Argument Module” using the GSN modular extensions comprises (FEN et al. 2007; BATE 

and KELLY, 2002): 

1. Goals (claims) addressed by the module; 

2. Evidence (solution) referenced within the module; 

3. Context defined within the module; 

4. Goals requiring support from other modules; 

Inter-module dependencies: 

5. References to goals addressed in other modules; 

6. References to evidence presented within other modules; and 

7. References to context defined within other modules. 
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Inter-modules dependency elements 5, 6, and 7 respectively correspond to “Away 

Goal”, “Away Context”, and “Away Solution” GSN modular extension elements illustrated in 

the Figure 2.9. “Away Goal” is a “goal reference” used to support, or provide contextual 

backing for, an argument presented in one module, which the argument supporting that goal 

reference is presented in another module (HABLI and KELLY, 2010). “Away Context” is a 

reference to contextual information specified in other argument module. “Away Solution” is a 

reference to evidence information that is detailed in another argument module. “Argument 

Contract” aims to preserve the overall integrity of a modular assurance case when argument 

modules are modified. An “Argument Contract” is specified using interfaces from inter-

related argument modules capturing “rely-guarantee” relationships between two argument 

modules (GSN STANDARD, 2011). Thus, goals requiring support from other modules (item 

4), “Away Goal”, “Away Context”, and “Away Solution” elements in a module interface 

define the “rely” conditions, whilst the goals addressed by the module (item 1) define the 

“guarantee” conditions, i.e., “context” and “evidence” within the modules should be kept 

during the composition of two or more argument modules. 

 

Figure 2.9. GSN modular extensions (HABLI and KELLY 2010).   

 In a product line assurance case, the following types of variation can be found: 

intrinsic and extrinsic. Intrinsic variation occurs when there is more than one argumentation 

style to support claims of a particular product line instance. For example, in the Functional 

Decomposition assurance case pattern (KELLY and McDERMID, 1997), shown in Figure 

2.10, the safety of the system functions can be argued by one of the following argumentation 

styles: by arguing that “interactions between system functions are non-hazardous” (G3); or by 

arguing that “system functions are independent” (G4). The source of extrinsic variation is the 

reusable assets referenced in the assurance case such as feature, reference architecture, and 

failure models since these assets are expected to vary in how they are developed, composed 
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Figure 2.10. Functional decomposition assurance case pattern (Adapted from Kelly and McDermid, 1997). 

and configured. Such variation may change the contributions of these assets to safety, 

consequently changing the way in which the safety of the system is justified in the assurance 

case. 

Extrinsic variation can be found in un-instantiated GSN elements from Functional 

Decomposition pattern. The items in the curly brackets represent types of un-instantiated 

information (e.g., “System X” and “Function Y”). These items are associated with reference 

architecture and feature models that are the source of variation. Therefore, considering a 

hybrid braking system automotive product line (OLIVEIRA et al. 2014) discussed throughout 

this thesis, the instantiation of “System X” is restricted by seven architectural choices, e.g., 

“Four Wheel Braking”, “Front Wheel Braking” or “Rear Wheel Braking” system variants, 

provided by the product line reference architecture model. Similarly, the instantiation of 

“Function Y” in “G2” goal is restricted by the number of wheel braking features associated 

with the given product line instance. The cardinality attached to the “supported by” 

relationship between “S1” and “G2” elements in Figure 2.10 indicates that an instance of 

“G2” will be created for each feature specified in the instance model. The manual 

instantiation of assurance case patterns and pattern elements from the system models, to 

create product line assurance cases may be time-consuming and error-prone. Therefore, 

traceability of extrinsic variation in product line assurance cases can be automated with the 
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adoption of the model-based approaches (HAWKINS et al. 2015; DENNEY et al. 2015) to 

support the assurance case construction in product line engineering processes.  

2.4.3 Model-Based Assurance Cases 

Assurance case patterns capture the required structure of an assurance argument in a 

way that is abstract from the details of a particular argument. These patterns are used to create 

specific arguments by instantiating them according to the targeted application. An assurance 

case pattern defines the requirements in terms of the required information to instantiate 

assurance claims and evidence to support these claims (HAWKINS et al. 2015). Assurance 

case patterns are usually instantiated with information obtained from different sources of 

evidence such as design, assessment, analysis, and processes models or directly from an 

engineer. For high complex systems, the manual instantiation of assurance case patterns from 

the generated evidence can be time-consuming and potentially error-prone. Assurance cases 

for these systems are large and complex, with a great amount of explicit and implicit 

dependencies between assurance case pattern elements and the generated evidence. Therefore, 

the lack of integration with, and limited traceability to, development artefacts can undermine 

the confidence in the reasoning and evidence referenced in an assurance case. Existing model-

based techniques (HAWKINS et al. 2015; DENNEY et al. 2015a; DENNEY et al. 2015; 

DENNEY et al. 2014; DENNEY et al. 2012; BASIR et al. 2008) support the automated 

traceability between development artefacts referenced in the assurance case and the assurance 

case itself, supporting the coevolution of the system design and the assurance case. It 

contributes to highlight weaknesses in the design, evidence, and argument early on the 

development lifecycle, improving the validity of the assurance case against the available 

evidence, which is a big challenge for assurance cases as stated in the Nimrod Accident 

Review (CAVE, 2006). Model-based assurance case approaches treat the assurance case as a 

model, bringing the benefits from the model-driven engineering such as automation, 

transformation, and validation for the assurance case construction process (HAWKINS et al. 

2015). 

The Model-Based Assurance Case (MBAC) (HAWKINS et al. 2015) is an approach to 

support the automatic generation of assurance cases based on assurance case patterns and 

model weaving (DEL FABRO et al. 2005). Model weaving links the reference information 

metamodels, i.e., design, assessment, and processes metamodels, to assurance case patterns. 

Model weaving is an approach to model transformation defined as an operation "whose the 
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primary objective is to handle fine-grained relationships between elements of distinct models, 

establishing links between them. These links are captured by a weaving model. It conforms to 

a metamodel that specifies the link semantics” (DEL FABRO et al. 2005). Therefore, MBAC 

allows the interoperation between the assurance case, design, process, and assessment models 

and metamodels. MBAC supports the generation of assurance case models using the GSN 

notation that complies with the OMG Structured Assurance Case Metamodel (SACM) version 

1.0 (OMG, 2013), but it can be adapted to support other notations such as Claim-Argument-

Evidence (BISHOP and BLOOMFIELD, 2010). MBAC uses the models themselves to 

automatically instantiate assurance case patterns. In MBAC, the assurance case pattern 

instantiation involves both instantiating abstract elements, named “terms”, in argument 

patterns, and making instantiation choices. In MBAC, the data required to instantiate 

assurance case pattern elements is automatically extracted from a diverse set of system 

models e.g., design and safety assessment models, based on mapping links defined in a 

weaving model. It ensures the traceability between the sources of information, e.g., in design, 

process and analysis models, and the assurance case. MBAC approach is tool and notation 

agnostic, placing no restrictions in the format of reference information models, it does not 

prescribes how, and with which tool the weaving model should be created, and it does not put 

restrictions on the adopted model management tools (HAWKINS et al. 2015). 

A body of research on model-based assurance cases is focused on defining a formal 

basis for GSN arguments patterns and modules (DENNEY et al., 2015; DENNEY et al. 2013; 

DENNEY and PAI, 2013; DENNEY and PAI, 2012). Denney and Pai propose a formal basis 

for GSN arguments (DENNEY and PAI, 2013) and patterns (DENNEY and PAI, 2012), and 

offer automated means, implemented in the AdvoCATE assurance case tool (DENNEY et al. 

2012), to support the assembly of safety arguments and the instantiation of assurance case 

patterns. In both assembly and instantiation studies, the automatic generation of the assurance 

cases is based on an instantiation table that contains the data entries needed for populating the 

argument. Denney et al. (2013) have proposed the hierarchical assurance cases (hicases) 

technique to overcome the limitations that arise in manipulating large-size industrial 

assurance cases. Hicases consist in a basic hierarchical decomposition represented as 

indentations in a spreadsheet-based argument structure. Hicases work has evolved towards a 

formal basis for modular assurance cases, where the relationships between GSN intra-module 

abstractions (GSN STANDARD, 2011) were explicitly described and formalized (DENNEY 
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et al. 2015; DENNEY et al. 2015a). Such formalization provides a rigorous basis for tool 

implementation, and it was preliminary implemented in AdvoCATE toolset. 

A formal definition of an assurance case query language has also been proposed to 

support the management of complex and larger industrial assurance cases specified in Goal 

Structuring Notation (DENNEY et al. 2014a). Assurance case query language was 

implemented in AdvoCATE toolset, and illustrated in a fragment of assurance case for an 

unmanned aircraft system developed by NASA Ames. A conceptual framework for through-

life cycle safety assurance, called dynamic assurance cases, intended to support the proactive 

safety management has also been established based on the concepts of assurance case query 

language. A formal basis for dynamic assurance cases has also been provided to support its 

implementation in model-based assurance case tooling (DENNEY et al. 2015). Similar to the 

MBAC approach (HAWKINS et al. 2015), dynamic assurance cases allow the coevolution of 

the system design and safety assessment artefacts, and the assurance case. Work on model-

based assurance cases is also focused on a methodology to support the automated generation 

of assurance cases from formal verification (DENNEY and PAI, 2013a) and their integration 

with manually created assurance case fragments derived from system safety analysis 

(DENNEY and PAI, 2014).  

Research in model-based assurance cases also covers a systematic approach to support 

the automatic generation of assurance cases from the information provided by formal 

verification (BASIR et al. 2008). The approach is based on a generic assurance case pattern 

that is instantiated with program-specific formal verification information. The approach is 

independent from the given assurance case argument pattern and program, and it is also 

independent of the underlying code generator. Such approach was evolved towards automatic 

integration of the outputs generated from AutoCert (DENNEY and TRAC, 2009) formal 

verification tool into an “evidence-based argument” (SUN, 2013), by encoding the argument 

reasoning in an assurance case pattern, and instantiating it using the outputs provided by 

formal verification (DENNEY and PAI, 2013a). This approach was implemented in 

AdvoCATE tool and used to generate an evidence-based argument for a real world unmanned 

aircraft system.     

Unlike existing model-based approaches for assurance case construction (DENNEY et 

al. 2015; DENNEY et al. 2013; DENNEY and PAI, 2013; DENNEY and PAI, 2012), which 

the automatic generation of assurance cases is based on a table that should be filled with data 

entry needed for populating the argument, MBAC does not requires to predefine the 
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instantiation data in a table. In MBAC, the assurance case pattern instantiation data is 

automatically extracted from a diverse set of system models, e.g., design and safety models, 

based on the mapping links captured in the weaving model. It contributes to ensure 

traceability between system models, and the assurance case, allowing the coevolution of the 

system design, safety assessment, and the assurance case (HAWKINS et al. 2015). In this 

thesis, the MBAC approach has been adopted to support the generation of assurance cases for 

product line instances into safety-critical software product line engineering. MBAC is built 

upon the GSN metamodel that complies with the OMG SACM specification, and Eclipse 

Modeling Framework platform (ECLIPSE, 2016). The MBAC approach is illustrated in 

Figure 2.11. GSN patterns, reference information models and metamodels (e.g., design, 

process and assessment models), and the weaving model are input artefacts for an 

instantiation program, which generates an instantiation model in compliance with GSN 

patterns, and it outputs a GSN assurance argument. The instantiation program performs the 

automated analysis of the mappings links between abstract terms defined in the GSN pattern 

and the required information to instantiate them provided by reference information models, 

specified in the weaving model. The weaving model is the core element of the MBAC 

approach. The following subsections detail each element of the MBAC approach. 

 

Figure 2.11. Model-based assurance cases approach (Adapted from Hawkins et al. 2015). 

2.4.3.1 GSN Patterns 

Assurance case patterns are intended to capture the structure of an assurance argument 

that abstract the details of an argument for a particular system. Assurance case patterns also 

define the required information to instantiate claims and the supporting evidence. Assurance 
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case patterns can be captured using the GSN notation and its patterns extensions. The required 

information to instantiate assurance case patterns is provided by diverse source models such 

as design, assessment, and process models. The MBAC approach uses the models themselves 

to automatically instantiate these patterns, creating variant-specific assurance cases. It 

involves the instantiation of abstract “terms” specified in assurance case patterns, and the 

definition of instantiation choices. Abstract “terms” are instantiable entities that should be 

replaced with concrete information appropriate for the targeted system (HAWKINS et al. 

2015). Abstract terms can be found in Functional Decomposition assurance case pattern 

shown in Figure 2.10. For example, the “Function Y” abstract term within “G2” claim, is 

represented in curled braces. “Function Y” must be replaced with the name of function 

associated with the targeted system. “G2” comprises a multiplicity relation, indicating that the 

number of required “G2” instances is determined by the number of functions associated with 

the given system. Thus, an instance of “G2” is created for each function specified in the 

system design. Such information can be provided by the system architecture model or feature 

model. Assurance case patterns can also represent instantiation choices for different 

argumentation approaches that may be adopted. “G3” and “G4” pattern elements defined in 

Figure 2.10 represent two argumentation approaches to argue that the system functions 

working together in a given environment are acceptably safe. Therefore, during the 

instantiation, the most appropriate argument approach for the targeted system is chosen. In 

MBAC, GSN assurance case patterns are considered as models that must conform to the 

syntax and semantics of the GSN metamodel (GSN STANDARD, 2011) defined in a 

graphical editor built based on the Graphical Modeling Framework (GMF) (HAWKINS et al. 

2015). The editor outputs GSN pattern specifications in XML and .gsnml formats. 

2.4.3.2 Reference Information Models 

   Reference information models represent a set of system models that provide the 

information required to instantiate assurance case patterns. These models represent different 

views of the targeted system, e.g., design, processes, safety assessment. Patterns specify the 

information required from different system models to instantiate their abstract “terms”. 

Although these models are expected to be diverse, the MBAC approach only requires that 

each one of these models conform to a defined metamodel (HAWKINS et al. 2015). It is 

important to note that each different model intended to be used in the assurance case pattern 

instantiation must conform to a metamodel. This is necessary for mapping correspondence 
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relations between information elements from these models, and abstract “terms” defined in 

GSN assurance case pattern models, in the weaving model.     

Since an assurance case pattern is intended to provide a partial argumentation solution 

and does not typically describe the complete structure of a system assurance argument, an 

assurance case pattern specification for a system may be composed by a set of patterns that 

must be instantiated in sequence. For example, Kelly and McDermid (1997) have presented 

the Hazard Avoidance pattern, which decomposes the “system is acceptably safe” top-level 

claim into sub-claims arguing that the risk posed by each identified system hazard is 

acceptable; and Weaver et al. (2003) has presented a catalogue of argument patterns arguing 

the mitigation of component contributions to a particular hazard. These patterns can be used 

together for structuring an assurance case pattern for a given product line instance. 

Nevertheless, the instantiation of the most assurance case patterns may require information 

from a diverse set of system models. Considering the Hazard Avoidance pattern (KELLY and 

MCDERMID, 1997), regarding the failure behavior of the system, Table 2.6 shows the 

relationships between abstract “terms” and reference information models that provide 

information for instantiating them. For example, the system architecture model provides the 

“system name” information element required to instantiate the “System X” term, and “hazard 

name” information elements from the error behavior model can be used in successive 

instantiations of “Hazard X” abstract term. In the MBAC approach implementation proposed 

by Hawkins et al. (2015), reference information models and their respective metamodels 

should be specified using the EMF platform. 

Table 2.6 – Abstract terms and reference information models. 

Abstract Term Reference Information  

Model Element 

Reference Information Model 

 

System X 

 

System.name 

 

System architecture model (e.g., AADL 

or Simulink model) 

 

Hazard X 

 

Hazard.name 

 

Error behavior model (e.g., AADL Error 

Annex model or HiP-HOPS failure 

model) 

It is important to highlight that for models that are informally defined, e.g., a textual 

hazard analysis document; the instantiation of abstract terms from patterns can be performed 

manually after the instantiation of other terms with the support of MBAC approach and 

tooling (HAWKINS et al., 2015). In addition, inter-relationships between different models 

used in the assurance case pattern instantiation may exist. For example, error behavior model 
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elements may be associated with components of the system architecture model. These inter-

model relationships and mapping links between abstract terms and system models are 

captured in the weaving model. 

2.4.3.3 Weaving Model 

A weaving model represents correspondence relations in terms of elements from 

different models (DEL FABRO et al. 2005). Let’s consider M1 = (V, A), the GSN pattern 

model, and M2 = (V’, A’), the error behavior model, and the given elements “Hazard X” ∈ V 

and “Hazard.name” ∈ V’; the mapping link between “Hazard X” and “hazard.name” 

elements is denoted by the triple (Hazard X, Mw, Hazard.name), where Mw is the weaving 

model. The structure of the weaving model is defined in the weaving metamodel that defines 

the link semantics. Figure 2.12 illustrates the structure of the standard weaving metamodel 

(DEL FABRO et al. 2005) used in the MBAC approach. In this thesis, the standard weaving 

metamodel (DEL FABRO et al. 2005) is extended with the addition of “Property” entity to 

support linking the information contained in attributes from reference information model 

elements to abstract terms defined in assurance case patterns. 

 

Figure 2.12. Weaving metamodel (adapted from Del Fabro et al. 2005). 
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In the following, a brief explanation of each weaving metamodel element shown in 

Figure 2.12 (DEL FABRO et al. 2005) is provided: 

 WElement: it is the base element of the metamodel, which is inherited by all other 

elements. It contains name and description attributes; 

 WModel: is the metamodel root element. It is composed by weaving elements 

(WElement) and references to woven reference information models (WModelRef); 

 WLink: it represents links between model elements. The end reference establishes 

links between an arbitrary number of elements. Weaving links can also be associated 

with other weaving links in a containment relation; 

 WLinkEnd: it indicates the extremity of a link that references the woven reference 

information model elements (i.e., right-hand side elements) through WElementRef; 

 Property: it contains a pair “key/value”. It establishes the reference to an attribute 

from a reference information model element, instead of the whole object, required to 

instantiate a given abstract term. Therefore, a property is linked to, and associated with 

the WLink element, linking an abstract term to an attribute from the given reference 

information model element. Property allows specifying constraints between abstract 

terms, and reference information model elements involved in a model weaving 

operation; 

 WRef: is an abstract class that represents references. WElementRef: represents all 

referenced elements (right-hand side elements) of a woven model. The attribute ref 

contains the identification of the reference information model element (i.e., the model 

entity name). WModelRef: it references a metamodel/model being woven. It allows 

keeping track of woven metamodels/models. It contains references to model elements, 

(WElementRef); 

 WAssociation: is intended to create association relationships between links; 

 WAssociationEnd: it specifies the extremities of an association. 

The weaving metamodel provides the minimal set of constructions to represent 

mapping links between models and association between these links, with no indication about 

what these links mean. Additional weaving semantics are expressed by weaving elements that 

extend the base weaving metamodel (DEL FABRO et al. 2005). Weaving metamodels 

provided by existing weaving modeling tools such as Atlas Model Weaver (AMW) (DEL 
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FABRO et al. 2005a) and yEd (yWORKS, 2016) define the semantics for weaving links. 

These tools provide graphical editors to support the specification of weaving models in 

conformance with a given weaving metamodel.   

In the MBAC approach, the weaving model is used to capture the existing dependence 

relationships between GSN pattern abstract terms and elements from different reference 

information metamodels, and capturing the dependencies between a diverse set of system 

metamodels, e.g., architecture, fault tree, and the error behavior models used to instantiate 

GSN patterns (HAWKINS et al. 2015). The weaving model establishes the link semantics 

between metamodels that is valid for different instances. It allows using the same weaving 

model in multiple model transformations (HAWKINS et al. 2015a). In this thesis, it means 

that the same weaving model can be used to generate assurance cases for different product 

line instances. 

2.4.3.4 Instantiation Program 

The MBAC approach (HAWKINS et al. 2015) has been implemented over Eclipse 

Modeling Framework platform with the support of Epsilon (KOLOVOS et al. 2013) model 

management languages, which the following languages were used to develop the instantiation 

program: 

 Epsilon Object Language (EOL): an imperative language that allows manipulating, 

i.e., creating, querying, and modifying, models specified in the EMF platform; 

 Epsilon Generation Language (EGL): a template-based model-to-text language 

intended to generate code, documentation, and textual artefacts, e.g., a XML file from 

the analysis of a diverse set of models. EGL is used in the instantiation program to 

support the generation of XML and tabular GSN assurance case outputs.  

The instantiation program requires GSN pattern models, reference information models 

and their respective metamodels, and the weaving model to generate an assurance case for the 

targeted system. Firstly, the program identifies the model elements that require instantiation in 

GSN pattern models; it determines which information is required to instantiate each abstract 

“term" defined in the GSN pattern by querying the weaving model; it obtains the information 

from the reference information models, and it outputs the instantiation information. In this 

thesis, the MBAC approach is used to support assurance case construction in product line 
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engineering processes. The following section introduces product line engineering concepts 

and variability management techniques. 

2.5 Software Product Lines 

In the previous sections, safety assessment and assurance cases, and associated 

supporting model-based techniques and tools have been addressed in isolation from a 

particular development lifecycle. This thesis is focused on the provision of a model-driven 

approach to support the systematic reuse of functional hazard analysis and component failure 

analysis, and automated safety assessment and assurance case construction in safety-critical 

software product line engineering. This section presents an overview of software product line 

concepts, variability management, product line processes, and existing tool support.  

A Software Product Line is defined as a set of software-intensive systems that share a 

common, managed set of features satisfying the specific needs of a particular market segment 

or mission, and that are developed from a common set of core assets in a prescribed way 

(CLEMENTS and NORTROPH, 2001). Features represent the desired functionality from the 

user point of view (LEE et al. 2002). Core assets are reusable artefacts and resources that 

form the basis of a software product line. Core assets often include, but are not limited to, the 

architecture, reusable software components, domain models, requirements statements, 

documentation, specifications, performance models, schedules, budgets, test plans, test cases, 

and process descriptions (CLEMENTS and NORTHROP, 2001). In safety-critical product 

line engineering, reusable safety analysis and assessment artefacts are also part of the product 

line core assets (OLIVEIRA et al. 2016; OLIVEIRA et al. 2014; BAUMGART et al. 2014; 

DEHLINGER and LUTZ, 2009; DEHLINGER et al. 2007).  

In a software product line, the architecture is the key asset among the collection of 

core assets. Therefore, a software product line can be seen as an architecture-driven 

development approach, based on a set of core assets produced in domain engineering process, 

and reused in application engineering process (CLEMENTS and NORTHROP, 2001; 

BOSCH, 2000; WEISS and ROBERT, 1999). Variability management is the key concept to 

enable the systematic reuse of core assets in product line engineering. Variability management 

identifies and controls how product line instances may vary in a given product line scope. 
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Variability establishes “how the product line allows for and facilitates the differences” 

(SVAHNBERG and BOSCH, 2000). With regard to variability and reuse, the product line 

architecture captures the commonalities and variability of the design of complex systems of a 

given domain, reducing the effort of further development of systems in the targeted domain. 

Product line architecture also has the role of delimiting the scope of variability by identifying 

points where product line instances can vary. Architectural variation typically occurs in 

functions, data, control flows, the underlying technology, environment and quality goals 

(BACHMANN and BASS, 2001). Variation is not limited to the architecture, but also exists 

in almost all product-line assets such as requirements, safety analysis that can vary from one 

product variant to another. Therefore, variability management is not straightforward; it 

requires explicit traceability of variation expressed in high level models such as feature model 

throughout low level models, e.g., design, safety analysis, verification, validation, and testing 

(POHL et al. 2005).  

2.5.1 Product Line Variability Management 

The development of a software product line is different from a conventional single 

system by the need to consider variability management during the whole lifecycle. Variability 

management distinct from configuration management by controlling variation over “space”, 

i.e., variation between different product line instances, whereas configuration management 

controls variability over “time”, i.e., different versions of the same artefact produced through 

the lifecycle (POHL et al. 2005). Variation in a software product line is manifested by means 

of variation points, which is the representation of variability in domain artefacts such as 

requirements, architectural design, implementation, and test plans where choices have been 

postponed until product instantiation (POHL et al. 2005; JACOBSON et al.1997). A variant 

represents a particular instance of variable artefacts specified in a variation point. A variant 

identifies a single option of a variation point and it can be associated with domain artefacts to 

indicate the artefacts that correspond to a particular option (POHL et al. 2005). A set of 

activities should be carried out to support variability management in software product line 

development lifecycle: 

 Variability identification: it occurs during context and feature modelling. A feature 

model defines common, optional, and alterative functionalities of products in a 

particular domain (KANG et al. 1990). A context model defines variation in the 

environment associated with functional features, e.g., operating environment, 
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hardware platform (HABLI, 2009). Additionally, new variation can be further 

identified in low level artefacts such as design and implementation (JARING and 

BOSCH, 2002; STEPHENSON et al. 2000); 

 Variability analysis: it comprises technical and business analysis of the impact of 

variation. Technical analysis of variation considers the permitted selection of features 

and design strategies. On the other hand, business analysis involves the analysis of 

time and cost required for efficiently exercising and binding variations on design, 

implementation, and integration phases (BASS et al. 2004); 

 Variability representation: it comprises the integration of variability into analysis 

and design models. For example, variability in product line feature model is 

represented by optional and alternative features (GOMAA, 2005);  

 Variability implementation: it involves tactics and patterns related to modifiability 

and configurability used to implement variations. For example, in safety-critical 

system architectural design, variability patterns (WEILAND and MANHART, 2014; 

STEINER et al. 2013; BOTTERWECK et al. 2010) can be used to represent 

variability in the system architecture model; and 

 Variability maintenance: as the requirements and consequently the design of the 

product-line core assets evolve, variation should be updated (BOSCH, 2000). It means 

that the variability model should be updated as products are added to, or removed 

from, the product line. 

2.5.1.1 Product Line Variability Model 

Since variability is the key concept of product line development that can occur in 

different levels of abstractions, e.g., requirements, design, implementation, testing, there are 

in the product line literature different proposals of metamodels to describe variability. Some 

proposals provide generic metamodels (BACHMANN et al. 2003; BECKER, 2003; GEYER 

and BECKER, 2002; BECKER et al. 2002; SALICKI and FARCET, 2001), and other more 

specific metamodels focused on managing variability in a specific level of abstraction such as 

viewpoints (AMERICA et al. 2004), design ((BASS et al. 2004; ZIADI et al. 2004; THIEL 

and HEIN, 2002; MUTHIG and ATKINSON, 2002; BACHMANN et al. 2001), and 

variability representation (GOMAA, 2005; LEE et al. 2002; KANG et al. 1990). Figure 2.13 

illustrates the structure of a generic orthogonal variability metamodel (OVM). A variability 



Chapter 2 - Literature Review                                                                                                                              85 

  

metamodel essentially comprises “variation point” and “variant” concepts. A “variation 

point” describes places where variability can arise, and a “variant” provides a concrete 

instantiation for variable domain artefacts specified in a “variation point”, (POHL et al. 

2005). Interdependencies between “variation points” and “variants” can be specified via 

“requires” and “excludes” constraints. For example, one “excludes” constraint can be used to 

indicate that the instantiation of one “variation point” restricts the instantiation of other 

variation point. A “requires” constraint can be used to indicate that the instantiation of a 

given “variation point” requires the instantiation of a specific “variant” from other “variation 

point”. In safety context, the selection of relevant operation modes and their criticality in the 

context model may determine the instantiation of certain variation points related to the level 

partitioning in the architectural design, specified in the feature model. It may impacts on how 

the instantiated architectural design can contribute to system level hazards identified in the 

safety model (HABLI, 2009), i.e., architectural variation might change hazard causes and 

allocated safety requirements to eliminate or minimize hazard effects. 

 

Figure 2.13. Variability model (adapted from Bachmann et al. 2003). 

2.5.1.2 Product Line Feature Model 

Feature modeling represents the product line variability at highest abstraction levels. 

Features express high-level functional and quality requirements of a given system architecture 

(POHL et al. 2005). A feature represents a distinct characteristic of the system visible to end-

users. A feature model represents the standard features of a family of systems from a 

particular domain and relationships between them. Feature-Oriented Domain Analysis 

(FODA) (KANG et al. 1990) is the first and widely used feature modeling notation. FODA 

notation defines that a feature can be optional, alternative, or mandatory, and structural 

relationships between them such as decomposition, generalization, specialization, and 
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parameterization. Figure 2.14 shows an example of feature model for a car product line, 

which “horsepower” is a mandatory feature, i.e., it is present in all cars, “automatic” and 

“manual” gears are alternative features, and air conditioning is an example of optional feature 

of a car. Constraints in the feature selection can be specified by means of composition rules. 

Whereas product line variation is not limited to features, being applicable to any product line 

asset, Gomaa (2005) has extended the UML with stereotypes to represent product line 

variation expressed in feature, requirements, design, behavioral, and implementation models 

showing how structural and behavioral models can be affected by variation points.          

 

Figure 2.14. Feature model (KANG et al. 1990).  

Context, feature and reference architecture models are the basis for the most product 

lines, even critical or non-critical (KANG et al. 1990). This is mainly because the context 

model defines the “environment” within which product-line instances may be deployed. The 

feature model captures the main system functions offered for reuse in a product line. The 

reference architecture model defines how architectural components are hierarchically 

organized to address the product requirements specified in the feature model, in the scope of 

environmental constraints defined in the context model. Specifically, the context model 

captures information regarding the structure of the physical, operating, support, maintenance 

and regulatory environment in the scope of product line instances (LEE et al. 2002; HABLI, 

2009). The context model defines external constraints on the usage of functional features, i.e., 

system functions in product line instances, restricting the environment where functional 

features can be used. The context model provides the specification of contracts and 

dependencies between system features and their environment, which enable a clear 

understanding of the assumed behavior of product line instances (HABLI, 2009). From the 

perspective of safety-critical product lines, this is important to support the proper 

identification of variable failure behavior and allocated safety requirements during the product 
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line safety analysis. The feature model provides an overview of functions from a particular 

domain and their interactions, which each feature represents a given functionality from the 

perspective of the stakeholders (CLEMENTS, 2002; JACOBSON et al. 1997). Conversely, 

features have explicit associations with other features, and with their operational environment, 

e.g., a functional feature can be deployed only in a specific environment, being not valid in 

other environment that requires, for example, redundant systems. Feature and context models 

capture the permitted functional and environmental variation in the product line scope. These 

models show how product line instance can vary in terms of functions and their nominal and 

failure behavior, according to the environment that these functions are deployed. Feature, 

context, and variability models provide abstractions to manage and trace product line 

variation throughout domain engineering and application engineering processes.  

2.5.2 Product Line Processes  

In software product line engineering, the core assets are developed during the product 

line domain engineering process and reused in application engineering (POHL et al., 2005; 

VAN DER LINDEN, 2002). Product line domain engineering involves domain analysis, 

which identifies commonalities and variability in product line requirements. Domain 

engineering also involves the realization of variation by developing the product line 

architecture and implementing their components. These assets are typically stored in a 

repository, as illustrated in Figure 2.15. In product line application engineering, product line 

applications (instances) are created from the core assets defined in product line domain 

engineering (DEELSTRA et al. 2005). It exploits the product line variability and ensures the 

correct binding of variation points according to the product-specific requirements. Binding a 

variation point involves the choice of permitted/valid design options in the product line scope 

(JACOBSON et al. 1997). 

After defining the product requirements and selecting the required product line 

features, the product architecture model is derived based on the product line reference 

architecture model. Thus, components are selected from the product-line asset base and 

configured according to the permitted variation established in the product line architecture. 

Since products may have specific requirements, after product derivation, product-specific 

components, which are not managed in the asset base, should be developed in the application 

engineering. The derivation of new products is not straightforward, requiring linking product 
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Figure 2.15. Product line processes (POHL et al. 2005). 

line core assets such as design decisions, components, or test cases, to the rationale, 

assumptions, and processes behind their development. To enable the systematic reuse of 

product line core assets, these assets should be linked to the rationale embedded in common 

and variable features specified in the feature model. In safety-critical product line 

engineering, it involves linking functional and context features to their realization in 

architectural and safety analysis artefacts. There are in the literature a set of tools that provide 

automated support for variability management in product line assets. In this thesis, we have 

adapted some of these tools to enable the support for variability management in safety 

analysis models.  

2.5.3 Variability Management Techniques 

Product line variability is typically documented in two types of variability models: 

domain variability model, i.e., the feature model, and application variability model. In domain 

engineering, the product line variability is defined in the feature model. In application 

engineering, the variability defined in the feature model is bound to product line assets, e.g., 

architecture and components, in order to fulfill product-specific requirements (METZGER 

and POHL, 2014; HALMANS et al. 2008; POHL et al. 2005). The variability bindings for a 

specific application are documented in a respective application variability model. An 
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application variability model establishes traceability links between application requirements, 

specified in the feature model, and domain artefacts. In the product line literature, application 

variability model is also known as variability realization model (HAUGEN and OGARD, 

2014) or configuration knowledge (BEUCHE, 2012; KASTNER, 2008; RAATIKAINEN, 

2005). Existing product line variability management techniques can be classified in two 

categories: integrated variability modeling and orthogonal variability modeling techniques 

(METZGER and POHL, 2014). In integrated variability modeling techniques, dedicated or 

specialized modeling concepts are introduced into existing modeling languages, e.g., the use 

of stereotypes to explicitly document variation points and variants in UML class diagrams. 

Integrated techniques are dedicated to document product line variability in the problem space 

(domain analysis), or directly in a specific product line asset such as a UML class diagram. 

On the other hand, in orthogonal variability management techniques the product line 

variability is documented in a dedicated model, i.e., the documentation of the product line 

variability is separated from the software development artefacts. Orthogonal variability 

management techniques relate the variability specified in the feature model with software 

development artefacts, documenting the realization of product line variability within product 

line assets. Orthogonal variability management techniques support the specification of 

variability in the solution space. 

There are in the literature a number of extensions and modeling languages to support 

the specification of integrated variability, including annotations on use cases and test models 

(REUYS et al. 2006), stereotypes for UML class diagrams (HEUER et al. 2013; SHAKER et 

al. 2012), and domain specific languages (VOELTER and VISSER, 2011). Feature modeling 

is the most commonly used technique to support the documentation of product line variability 

(CAPILLA et al. 2013). After the introduction of FODA domain analysis technique (KANG 

et al. 1990), over 40 feature modeling dialects have been proposed (BENAVIDES et al. 

2010). Some of these dialects are supported by graphical editors, e.g., FeatureIDE, 

Cardinality-Based Feature Modeling (CZARNECK et al. 2004). With regard to orthogonal 

variability, Base Variability Resolution (BVR) (VASILEVSKIY et al. 2015), Hephaestus 

(STEINER et al. 2013; BONIFÁCIO et al. 2009), Common Variability Language (CVL) 

(HAUGEN et al. 2008), GEARS (BIG LEVER, 2016), and pure::variants 

(PURE::SYSTEMS, 2016) are examples of existing orthogonal variability management 

techniques and tools. Specifically, BVR and CVL are concrete languages for orthogonal 

variability modeling under “standardization” within OMG. In this thesis we are interested in 
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orthogonal variability management techniques and tools, especially BVR and Hephaestus. In 

this thesis, these tools were adapted to support the variability management in safety analysis 

models developed with the support of compositional safety analysis techniques, e.g., HiP-

HOPS and AADL Error Annex. The following subsections present an overview of BVR and 

Hephaestus/Simulink variant management tools.  

2.5.3.1 Base Variability Resolution 

Base Variability Resolution (BVR) is a domain-specific language and toolset 

(VASILEVSKIY et al. 2015) to support the specification of variability on software product 

line MOF-based models (OMG, 2004). BVR language provides concepts to represent 

variability abstractions, mappings these abstractions to their realization in product line assets, 

and specifying operations to support product derivation. BVR language supports advanced 

feature modeling, reuse and variability realization on product line asset models. BVR tool 

chain comprises tools and graphical editors to support variability modeling on the domain 

problem and solution spaces. The editors and tools work integrated with stand-alone modeling 

tools. Whereas the BVR language defines variability orthogonally, BVR tool chain needs to 

communicate with third-party tools to define mapping links between product line assets, e.g., 

design, safety analysis, developed in a target language, and higher level variability 

abstractions specified in the feature model. Therefore, the BVR tool chain provides an 

abstract interface to enable the communication with third party model editors. The editors 

from the targeted languages should implement this interface to communicate with the BVR 

tool chain.     

BVR defines variability orthogonally via feature trees and fragment substitutions, and 

it specifies means to yield a new product. Figure 2.16 illustrates the BVR variability 

resolution process. Product line engineers define substitution fragments on a base model by 

specifying how abstract features are realized in the target product line asset model (s). A base 

model is a model in which variability is defined in the BVR. A substitution fragment defines a 

set of elements to modify in a base model in order to derive a new product, i.e., places on the 

product line asset models that can vary. Further, these fragment substitutions are bound to 

product line features. Finally, the new product is derived by executing fragment substitutions 

according to a given instance (resolution) model. A resolution model is an abstract 

representation of a desired product configuration. In Figure 2.16, gray shaded features 

represent a car configuration, which the desired car has an engine with 110 horsepower (hp- 
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Figure 2.16. BVR variability modeling process (VASILEVSKIY et al. 2015).  

110), two wheel drive transmission (WD2), and a front sensor (FrontSensor). 

The BVR tool chain supports the following variability modeling activities: feature 

modeling (VSpec - Variability Specification Editor), mapping abstract features to concrete 

product line assets (Variability Realization Editor), and product derivation (Variability 

Resolution Editor and model transformations). BVR editors were developed upon the Eclipse 

Modeling Framework platform (ECLIPSE, 2016), which allows the seamless integration 

between these editors and third-party model editors. The BVR VSpec editor supports the 

product line feature modeling. The resolution editor supports the specification of product 

configurations by selecting features defined in the product line feature model. BVR variability 

realization editor allows the product line engineer to define the binding points, in the form of 

placement and replacement substitution fragments, linking product line asset models to 

abstract features. A fragment substitution removes from the base model elements specified in 

a placement fragment, and substitutes them with elements specified in a replacement 

fragment. To specify these fragments, the product line engineer selects elements in a base 

model that will be further modified to derive a new product. Thereafter, the product line 

engineer defines links between features specified in the feature model, and substitutions by 

attaching substitutions to features. Therefore, traceability links between abstract features and 

their realization in product line assets are established. Figure 2.17a illustrates an example of a 

mapping link between “Engine-hp140” feature from an automotive product line, placement 

and replacement fragments of a fragment substitution in the BVR variability realization model 

editor. When “Engine-hp140” feature is selected in a product configuration, the “Engine” 

class from the “YetiBaseModel” is removed from this model, and “hp140” class specified in 
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Figure 2.17. (a) Features and fragment substitutions in BVR, (b) BVR third-party integration (VASILEVSKIY et 

al. 2015). 

the “YetiLibrary” model is included in the base model to derive a new product.    

The BVR tool requires the following input models: the variability specification model 

(feature model), the resolution model (instance model), variability realization model, and 

product line asset models e.g., UML class diagrams, safety analysis, developed using third-

party editors that implement the “IBVREnabledEditor” interface provided by the BVR tool. 

By implementing this interface, third-party editors are linked to the BVR tool, as shown in 

Figure 2.17b. By default, BVR provides integration with Papyrus UML diagram editor and 

any EMF-based tree editors. To enable a third-party editor to be linked to the BVR tool chain 

it is necessary to create a class (ThirdPartyTreeEditor) that extends the 

“MultiPageEditorPart” class provided by the underlying EMF editor, and implementing the 

“IBVREnabledEditor” interface, by providing concrete definitions for “highlighObject” and 

“getSelectedObjects” abstract methods.  

2.5.3.2 Hephaestus 

Hephaestus is a variant management tool support for product derivation process, 

which comprises a suite of libraries that evaluates product line models and generates artefacts 
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for specific product line instances. The current version of Hephaestus
6
 supports variability 

management in requirements models, use case scenarios, source code, business processes, and 

component models (STEINER et al. 2013; BONIFÁCIO et al. 2009). Hephaestus provides a 

graphical interface that allows application engineers to select the input models for product 

derivation, i.e., product line feature model (FM), instance model (IM), configuration 

knowledge (CK), and product line asset (PLA) models. The feature model describes common 

and variable features of a product line. The IM represents the set of features of a given 

product configuration. PLA represents configurable artefacts of a product line, e.g., 

requirements, design, component models. The CK maps product line feature expressions to 

transformations to be performed in product line assets during the product derivation process 

(BONIFÁCIO et al. 2009). The configuration knowledge provided by the Hephaestus allows 

associating feature expressions to extensible transformations. Therefore, the Hephaestus 

configuration knowledge structure does not need to be changed when new transformations are 

defined in the tool to support variability management in other models. The Hephaestus 

product derivation process starts with the evaluation of each feature expression specified in 

the configuration knowledge against selected features in the instance model. In the following, 

all transformations associated with feature expressions evaluated as true are applied to the 

PLA assets during the product derivation process. These transformations select or modify 

parts of the asset models for the product that is being derived.  

Hephaestus has been further extended to support variability management in 

MATLAB/Simulink models (STEINER et al. 2013). In this extension, the configuration 

knowledge associates each feature expression with a set of pairs, comprising a set of block 

identifiers, and a transformation to be applied to these blocks. The following two 

transformations have been implemented in Hephaestus to enable variability management in 

the Simulink model: “selectSimulinkBlock”, which defines the block identifiers that will be 

selected for product derivation when a given feature or a group of features is selected in the 

instance model, and “clearVariabilityMechanism”, which is associated with model blocks 

that implement variability mechanisms, i.e., similar to the concept of “placement fragment” 

from the BVR language (HAUGEN and OGARD, 2014). Firstly, “selectSimulinkBlock” 

transformations are executed to introduce into the instance model all blocks and their 

connections related to the selected features. After evaluating all “selectSimulinkBlock” 

transformations, “clearVariabilityMechanism” transformations are executed (STEINER et al. 

                                                 
6https://github.com/hephaestus-pl/hephaestus-base 
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2013). This transformation removes a block marked as the variability mechanism and 

connections associated to it from the Simulink model, and it reconnects this block connected 

to its entry in the block connected to its output.  

Figure 2.18 shows an example of Hephaestus “selectSimulinkBlock” and 

“clearVariabilityMechanism” transformations applied to a simple Simulink model (Figure 

2.18a). The “Switch” block is the variability mechanism in this model, and then it is 

associated with the “clearVariabilityMechanism” transformation. “Input Kind A” and “Out1” 

blocks are associated with “selectSimulinkBlock” transformation. This figure illustrates how 

Hephaestus applies the “clearVariabilityMechanism” transformation. The “Switch” 

variability block is removed from the model (Figure 2.18b), and the selected block connected 

to the input port from the block used as variability mechanism (i.e., “Input Kind A”) is 

connected to its output block (i.e., “Out1”) (Figure 2.18c). Thus, product-specific Simulink 

models generated with the support of Hephaestus only contain blocks related to the selected 

features.   

 

Figure 2.18. ClearVariabilityMechanism transformation in the Simulink model (STEINER et al. 2013). 

Extending Hephaestus to support variability management in other product line assets 

requires the creation of data types and a parser for the underlying language of the targeted 

model, and writing model transformations (TURNES et al. 2011). This is necessary to support 

the generation of product-specific models during the product derivation where the selected 

model elements are included in the new product model, and model elements representing 

variability mechanisms are removed from the product model. Therefore, it is not necessary 

changing the structure of the configuration knowledge (i.e., the variability realization 

metamodel). The product derivation process of both BVR and Hephaestus/Simulink tools 

generate product models only with the respective model elements associated with the selected 

features. From the perspective of safety-critical systems development, this is important to 

guarantee the generation of product-specific architecture and implementation models without 

“dead” or “deactivated” elements that may lead to design mismatches, which can introduce 

unexpected errors on system models derived from a reusable system architecture model. This 
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issue is addressed in the following section that presents a review of the related research on 

techniques to support variability management, safety assessment, assurance case construction 

in product line engineering, and certification of reusable components.    

2.6 Existing Work on Safety Assessment, Assurance Cases, and 

Certification of Safety-Critical Product Lines 

Safety standards have acknowledged the economic relevance in considering the reuse 

of previously developed components (RTCA, 2011; ISO, 2011; EUROCAE, 2010). In 

automotive domain, ISO 26262 have considered the use/reuse of commercial of the shelf (i.e., 

out-of-context) components in the development of automotive systems, and the development 

of reusable software components aimed to reduce the production costs. In aerospace domain, 

Federal Aviation Administration (FAA) has created the AC-120: Reusable Software 

Components advisory circular (FAA, 2004), to offer means to address the requirements of the 

aerospace software guidance DO-178C (RTCA, 2012) regarding reusable software 

components. Most safety standards introduce additional constraints on development, 

verification, integration and maintenance of reusable software components in order to ensure 

the safety of the overall system is not compromised by incorporating reusable components. 

For example, when a reusable component was not developed to the safety integrity level of a 

new system, reverse engineering and application of more rigorous techniques may be 

required. Although most safety standards do not explicitly address software product lines, 

they have considered the need of reusing previously developed artefacts. Safety standards 

often require additional activities to assess the impact of a reusable component on the safety 

of the system (HABLI, 2009). 

With the advances and experiences in using model-based development and verification 

techniques, especially in the development of systems in aerospace and automotive domains, 

safety standards have also been considered the incorporation of these techniques in safety-

critical system development lifecycle. This is justified by the fact that models may bring 

benefits of: unambiguous expression of requirements and architecture; the provision of 

automated support for code generation, verification, e.g., compositional model-based safety 

assessment supporting the generation of fault trees and FMEA artefacts, and simulation. 

Therefore, RTCA have published the “Model-Based Development and Verification 
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Supplement to DO-178C” document that provides guidance for incorporating model-based 

development and verification techniques in the development of aerospace software. In 

addition, SAE ARP 4754A has recognized the use of model-based techniques to support the 

safety assessment process. In automotive domain, ISO 26262 has recognized the use model-

based techniques to support architectural design and formal verification guidance required to 

address stringent ASILs. The following sections presents a review of research on product line 

safety assessment, assurance cases and model-driven development. 

2.6.1 Product Line Safety Assessment 

Research in safety-critical product lines comprises safety assessment and assurance 

cases. Initial research efforts in product line safety assessment have focused on adapting 

traditional safety analysis techniques, such as FTA and FMEA to suit product line processes. 

The most notable work on this topic is the extension of Software Fault Tree Analysis (SFTA) 

to address the impact of product line variation in safety analysis (DEHLINGER and LUTZ, 

2006; DEHLINGER and LUTZ, 2004; FENG and LUTZ, 2005). This approach is based on a 

technique for the development of a product line SFTA in the domain engineering phase, and a 

pruning technique to reuse such SFTA for the analysis of product line instances. It offers a 

systematic approach to treat SFTA results as a reusable asset. The product line SFTA 

approach enables semi-automated generation of product fault trees, by means of a pruning 

technique, with the support of domain expert reviews, improving the confidence in the 

resultant fault trees. This approach was later extended to integrate product line SFTA results 

with product line requirements (DEHLINGER et al. 2007) and state-based models (LIU et al. 

2007). Such integration supports the generation of reusable test scenarios for examining the 

validity of the design. The SFTA approach is hierarchical and not sensitive to variation that 

distinguishes different product line instances, i.e., variation in architectural components and 

component failure modes. These studies consider fault trees as a reusable asset, managing 

variation at fault tree and FMEA models that can be auto-generated from Functional Failure 

Analysis (hazard analysis and component failure logic).  

Further research in product line safety assessment (HABLI, 2009) overcomes the 

limitations from product line SFTA approaches related to the lack of mechanisms to manage 

the impact of product line variation on fault tree gates (DEHLINGER et al. 2007; 

STEPHENSON et al. 2004). Therefore, a catalogue of metamodels addressing the traceability 

of product line variation throughout safety assessment and assurance case assets, named 
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“Product Line Safety Metamodel”, has been proposed (HABLI, 2009). This catalogue is 

mainly composed by three safety assessment metamodels that define the conceptual structure 

of the relationships between product line commonalities and variability with safety 

assessment models at different levels of abstraction. At the functional abstraction level, the 

Functional Failure Metamodel (FFM) defines relationships between common and variable 

product line features and contexts with system hazards and contributing component failure 

modes identified during product line safety analysis, e.g., using Functional Failure 

Assessment technique. The FFM define the structural representation for product line 

functional failure assessment. 

At the architectural level, the Architectural Failure Metamodel (AFM) links common 

and variable product line systems/subsystems/components to gates and leaf nodes of a fault 

tree. Finally, at the detailed design, the Component Failure Metamodel (CFM) defines the 

structure of the relationships between product line components, their failure modes and the 

effects of these failure modes on the overall safety (i.e., Failure Mode Effects - hazards). CFM 

establishes relationships between product line components, their failure modes and the 

contribution of these failure modes to the occurrence of system hazards in a FMEA fashion. 

Figure 2.19 shows the AFM elements and their relationships with fault tree elements. The 

“Condition” and “Failure Mode” elements represent events of a fault tree, whereas “Causal 

Relationship” elements correspond to fault tree gates. Fault tree basic events can be specified 

as “Condition” or “Failure Mode” elements with no identified causes. Figure 2.20 illustrates 

an example of relationships between common and variable product line assets and elements of 

a fault tree. Figure 2.20a illustrates the relationship between “Late response” fault tree event  

 

Figure 2.19. Architectural failure metamodel and fault tree elements (HABLI, 2009). 
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and “Asset X” product line asset. It indicates that the instantiation of “Asset X” is required for 

the “Late response” event exist. Whereas the choice of fault tree gates is tightly associated 

with product line context and architecture models, configuration choices on these assets can 

determine the lower-level failures that may contribute to an upper-level failure. Figure 2.20b 

shows the impact of configuration choices, expressed by a fault tree qualifying condition
7
, on 

the relationships between a fault tree gate (“Causal Relationship”) and component failure 

modes (fault tree events). The fault tree qualifying condition is linked to core and variable 

design and contextual assets, representing a valid configuration. This configuration influences 

the causal relationship between failure modes and conditions, defining the structure of the 

fault tree (HABLI, 2009). In this example, the qualifying condition determines that the 

“AND” gate is present in a product-specific fault tree whether an instance of “Asset Y” 

(design asset) is allocated to processors 1 and 2 (contextual asset), otherwise the structure of 

such fault tree does not include the “AND” gate. Therefore, the contribution of basic events to 

upper fault tree events may depend upon variable design or contextual assets associated with 

an upper gate. It confirms the assertion that the impact of product line variation can be 

“dispersed throughout the tree” (DEHLINGER et al. 2007). 

 

Figure 2.20. Relationships between product line assets and fault tree elements (HABLI, 2009) 

The “Product Line Safety Metamodel” provides conceptual relationships to support 

the traceability of product line variation at different levels of abstraction throughout safety 

assessment models. It can be said that the “Product Line Safety Metamodel” provides a 

conceptual framework to support the management of the impact of product line variation 

throughout development, safety assessment and assurance case assets. These metamodels 

were instantiated and validated in case studies from aerospace domain. However, in the same 

way as product line SFTA approaches, the “Product Line Safety Metamodel” considers the 

management of variability in fault trees and FMEA assets, which can be generated from the 

                                                 
7
 It is a condition that should be satisfied before the input produce the output (NASA, 2002). 
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Functional Failure Assessment. This thesis fills the gaps left by previous research with regard 

to automated tool support and instantiation of the concepts defined in the “Product Line 

Safety Metamodel” in a systematic model-based safety assessment and assurance case 

construction approach for product lines (Chapters 3, 4, 5, and 6), supported by the integration 

of existing variant management, compositional safety analysis, and model-based assurance 

cases techniques. Thus, the automated traceability of variation throughout development, 

assessment, and assurance case assets produced across domain engineering and application 

engineering processes is achieved. Therefore, changes in the product line reference 

architecture and context are automatically propagated throughout safety assets and the 

assurance case. 

2.6.2 Product Lines and Assurance Cases 

The “Product Line Safety Metamodel” also defines conceptual relationships for 

linking variation on safety arguments and evidence to variation on product line feature, 

context, and reference architecture models. Thus, Habli and Kelly (2010) have proposed an 

approach to support the development of reusable product line assurance cases using GSN 

patterns and modular extensions. In such approach, GSN patterns extension is used for 

capturing variation in assurance cases and tracing them to their extrinsic source in the 

reference architecture model. GSN modular extension is further used for structuring the 

assurance case into loosely coupled core and variable modules using argument contracts. It 

supports the reuse of the product line assurance case, allowing the derivation of a compelling, 

comprehensive, and traceable assurance case for an individual product line instance. Variation 

in product line assets can impact in the structure of an assurance case. It may change the 

information that could be referenced in a product-specific assurance case, e.g., product 

definition and operating environment contextual elements, identified hazards and risk 

classification, the mitigation measures considered to minimize hazard effects, and risk 

mitigation decisions. Therefore, product line assurance cases should be highly reconfigurable 

in order to support the derivation of an assurance case for each product variant derived from 

the product line core assets.  

Figure 2.21 illustrates the use of GSN patterns and modular extensions to represent 

extrinsic variability and structuring a product line assurance case. GSN argument modules and 

contract are used to contain the impact of design variation in “Function X” top-level argument  
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Figure 2.21. Design variation and argument contract (HABLI and KELLY, 2010). 

module, which can be supported by either “Redundancy” or “Monitoring” alternative 

modules. So, if a new optional module is later added to support the “Function X” module, the 

change is contained within the argument contract and not propagated throughout the top-level 

module. Figure 2.21b shows the internal structure of the “Function X” module. 

“SystemDesign” is the public interface from this module, which is supported by an 

argumentation strategy based on either a claim of adequate redundancy, provided by 

“Redundancy” module, or a claim of adequate monitoring, provided by “Monitoring” module. 

The way that “SysDesign” is supported is dependent upon the binding of “V32” design 

variation point, i.e., denoted by the “Obligation” element attached to the GSN choice, which 

is encapsulated in the argument contract. 

Research in assurance cases has evolved towards model-based assurance cases with 

focus on model weaving (HAWKINS et al. 2015) and formal verification techniques 

(DENNEY et al. 2015; DENNEY et al. 2015a; DENNEY et al. 2013; DENNEY and PAI, 

2013; DENNEY and PAI, 2012). These techniques support the generation assurance cases 
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based on the definition of assurance case patterns, an instantiation program, and a diverse set 

of system models, e.g., development, assessment, and processes models. Particularly, research 

in product line assurance cases has evolved towards a model-based approach to support the 

automated generation of product line assurance cases built upon the “Product Line Safety 

Metamodel”, argument modules and contracts (OLIVEIRA et al. 2015; OLIVEIRA et al. 

2013), and Model-Based Assurance Cases (MBAC) (HAWKINS et al. 2015).  

Oliveira et al. (2015) approach provides systematic guidance to support the generation 

of modular and reusable product line assurance cases from the assurance case patterns, an 

assurance case modeling notation, development and safety assessment models. The approach  

implicitly applies the concepts from model weaving technique (DEL FABRO et al. 2005), 

and it defines five steps to support the generation of product line assurance cases from 

development and assessment models: 1) Functional Failure Modeling, which consists in 

generating multiple FFM instances from the information provided by product line reference 

architecture and failure models created with the support of model-based techniques; 2) Design 

of the Modular Assurance Case, which defines how product line variation expressed in the 

feature model is represented in a modular assurance case architecture; 3 & 4) Architectural 

and Component Failure Modeling produce multiple instances of AFM and CFM from the 

information provided by fault trees and FMEA results; and finally, 5) Argument Module 

Design delivers the internal structure of each argument module, defined in the modular 

assurance case architecture, from the information provided by architecture and component 

failure models. Whereas the assurance case is an artefact that can be generated from a diverse 

set of system models, where variability is already resolved, the MBAC approach and its EMF-

based tool support can be used to generate variant-specific assurance cases. Thus, Oliveira et 

al. (2015) approach has evolved towards MBAC to support the generation of assurance cases 

for product line instances (Chapter 6). 

Since safety standards have considered the systematic reuse of third-party (out-of-

context) components to cope with the reduction of the time-to-market and production costs, 

research in safety-critical component reuse has extended the traditional contract formalism to 

the notion of safety contract. A safety contract captures safety-related information, e.g., 

functional safety requirements, to support the systematic reuse of safety-critical software 

components (SLJIVO et al. 2013). A safety contract specifies strong and weak 

assumption/guarantee contracts for out-of-context reusable components. A strong contract 

captures information that need to hold to allow component reuse in all contexts, i.e., that are 
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out-of-context, and weak contract captures more context-specific information. A safety 

contract comprises strong assumptions and guarantees, and multiple weak 

assumption/guarantee pairs. Strong assumptions/guarantee must be always satisfied to enable 

the component reuse, whereas weak assumption/guarantee pairs offer the information, besides 

strong assumptions, that need to hold to reuse the component in specific contexts. Thus, 

safety contracts allow specifying strong assumptions about the environment (A) and 

functional safety requirements (G) that should be addressed to reuse the component in all 

contexts, and weak assumptions (B) and safety requirements (H) that should be addressed to 

reuse the component in specific contexts. Strong and weak contracts distinguish between 

properties that hold for all contexts and those that are context-specific.  

In order to reduce the cost to achieve safety certification of reusable components, an 

approach to support the automatic generation of argument-fragments for out-of-context 

components from assumption/guarantee safety contracts has been proposed (SLJIVO et al. 

2014). Safety contracts capture safety claims related to the component being reused, including 

safety requirements, and supporting evidence. The approach provides a set of rules to support 

the automatic generation of argument-fragments. Such approach was further evolved towards 

a method to support: the derivation of safety contracts for components from the failure logic 

analysis results (safety analysis), and automated generation, based on the “Absence of 

Hazardous Software Failure Mode” assurance case pattern (WEAVER, 2003), of argument-

fragments that include evidence related to the safety analysis (SLJIVO et al. 2015). Research 

in safety contracts also comprises the definition of a conceptual framework to support the 

management of safety properties of components in order to guarantee their reuse in different 

contexts. In the context of this thesis, safety contracts are defined on the product line 

variability realization model that describes how assumptions about different usage contexts in 

which product line components can be reused are linked to architecture and component failure 

logic models (OLIVEIRA et al. 2014). Thus, context-specific architecture and component 

failure logic are generated during the product derivation phase. In addition, with the support 

of model-based techniques, context-specific assessment artefacts, e.g., fault trees and FMEA, 

and assurance cases can be auto-generated from the reused architecture and safety analysis 

models. 
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2.6.3 Product Line Safety Assessment and Model-Based Development 

Research in product line safety assessment and model-based development have 

focused on safety analysis approaches based on product line feature model and design 

simulation (SIERLA et al. 2015), model-based approaches (DOMIS et al. 2015; SCHULZE 

et al. 2013) and processes (KÄβMEYER et al. 2015; LANDUYT et al. 2014) to support the 

management of the impact product line variation on safety models. Schulze et al. (2013) have 

integrated feature models in pure::variants with elements of architecture, fault trees, FMEAs, 

and safety concepts in medine tool. Whereas both tools are based on the EMF platform, these 

tools are integrated in a single Eclipse product, which uses the EMF feature mapping 

extension from pure::variants to reference safety artefacts created with the support of medine 

toolset. Such approach provides mechanisms to manage variability in fault trees and safety 

goals model elements. In this approach, design and safety analysis information are stored in 

the architecture model, in this case a SysML model. This approach was further evolved 

towards integration of pure::variants within Component Integrated Component Fault Trees 

(C2FT) (ADLER et al. 2010; DOMIS and TRAPP, 2008) models, allowing handling 

variability of C2FTs integrated with variability in components (DOMIS et al. 2015). Similarly 

to HiP-HOPS and AADL Error Annex compositional safety analysis techniques, Domis et al. 

approach’s is based upon a UML model enhanced with C2FT annotations, supported by a 

C2FT UML profile. This approach can be used in any UML tool that supports profiles, and it 

can also be used together with other variant management tools such as GEARS (BIG LEVER, 

2016), or BVR (VASILEVSKIY et al. 2015).  

A model-based approach to support change impact analysis, which  integrates model-

based development, product line engineering, and safety engineering (KÄβMEYER et al. 

2015), has been proposed in the context of “Software Platform Embedded Systems 2020 XT” 

project (SPESXT, 2016). Käβmeyer et al. approach establishes pre-conditions and 

engineering tasks to achieve a product line engineering process to support an integrated 

change impact analysis, and systematic reuse of safety-related artefacts for different product 

variants. Such approach is built upon the ISO 26262 automotive safety standard. In the same 

way as the approach proposed in this thesis, Käβmeyer et al. (2015) approach has recognized 

the need to manage the impact of product line variation on safety-related properties, e.g., 

functions and contexts, malfunctions and corresponding safety integrity requirements, safety 

goals, component failure modes, failure rates, fault tolerance time intervals, and design 
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choices. Käβmeyer et al. change impact analysis process was further evaluated with respect to 

variant management and reuse (KÄΒMEYER et al. 2015a). Such approach was instantiated 

by integrating Enterprise Architect (EA) modeling tool, I-SafE failure modeling plugin built 

upon the EA, which is an implementation of Open Safety Metamodel (HOUDEK and 

LOWEN, 2015), defined in the context of SPES XT project, and pure::variants variant 

management tool. The integration between variant management and safety artefacts is 

achieved by means of an annotative approach where all variants are modeled together in a 

single model. In this model, both architectural and safety analysis model elements are tagged 

with variant constraints, linking these elements to product line features, allowing a product to 

be configured. On the other hand, in this thesis, the integration of variant management and 

safety-related artefacts is achieved externally to the model in the variability realization model 

(see Chapter 4). It contributes to reduce the complexity of the variability model as the product 

line size increases. 

Käβmeyer et al. (2015) have recognized that the approach to support variability 

management in hazard and risk analysis, and component failure analysis proposed in this 

thesis (Chapters 4 and 5), earlier presented in Oliveira et al. (2014), provides a suitable 

solution, in comparison with their approach, to integrate variant management, compositional 

safety analysis, and model-based development to support change impact analysis and 

systematic reuse of safety-related artefacts. Although similarities with Oliveira et al. (2014) 

approach detailed in this thesis, the instantiation of the Käβmeyer et al. approach 

(KÄβMEYER et al. 2015a) is restricted to a particular domain, specific compositional safety 

analysis and variant management techniques.  

Research in model-based safety assessment and variant management also covers 

approaches to support product derivation and formal verification of functional safety 

requirements in product variants (BESSLING and HUN, 2012), and derivation of functional 

safety requirements from fault tree analysis (MARTINS and OLIVEIRA, 2014). With regard 

to safety integrity requirements decomposition and process-based certification, ongoing 

research involves implementations of exhaustive (BIEBER et al. 2011; PAPADOPOULOS et 

al. 2010), linear (DHOUIBI et al. 2014; MADER et al. 2012), genetic (PARKER et al. 2013; 

PAPADOPOULOS et al. 2011), and meta-heuristic (AZEVEDO et al. 2013) optimization 

algorithms to support the automated decomposition of system safety integrity requirements 

throughout component level failures. These algorithms provide near-optimal solutions for the 

allocation of safety integrity requirements design optimization problem in safety-critical 
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system architectures. Design optimization algorithms have the potential to address the 

allocation and decomposition of safety integrity requirements without incurring unnecessary 

development costs. These algorithms were further used in a method and tool proposed in this 

thesis to support near-optimal allocation of safety integrity requirements to product line 

components to address cost-effective process-based certification (OLIVEIRA et al. 2015a).  

2.7 Summary 

This chapter has presented a review of the state-of-art on traditional and model-based 

product line safety assessment and assurance case construction techniques. Although we have 

found studies that separately deal with product line safety assessment and assurance cases, 

variant management, and model-driven development few research effort has targeted to 

integrate these areas in a holistic approach. With regard to model-driven techniques and 

product line safety certification, existing design optimization techniques to support process-

based certification, and model-based assurance cases techniques to support goal-based 

certification are dedicated to single systems. The following chapter presents an overview of 

the proposed systematic approach to integrate compositional safety analysis, variant 

management, model-based development, and model-based assurance cases into safety-critical 

software product line engineering processes. 

 



 

  Chapter 3 

CAPÍTULO 3 -  A MODEL-BASED APPROACH TO 

INTEGRATE SAFETY ASSURANCE INTO 

SOFTWARE PRODUCT LINE ENGINEERING  

3.1 Introduction 

Software Product Lines (SPL) provides the engineering basis for systematic reuse of 

development, assessment, and management assets in safety-critical systems. The development 

of a safety-critical product line differs from conventional software product lines by the 

emphasis on the reuse of safety assets, e.g., hazard and risk analysis, and component failure 

analysis, which are expensive to generate. In addition, reused safety analysis assets provide 

information that allows safety analysts, with the support of model-based techniques, 

generating fault tree analysis and FMEA safety assessment artefacts, and assurance cases. 

These assets are required for assurance and certification of product line instances. Therefore, 

safety-related assets should be managed in a prescribed way together with requirements and 

architectural design.  

This chapter presents an overview of a systematic approach to support the integration 

of variant management, compositional safety analysis, assurance case construction, and 

model-driven development into Safety-Critical software Product Line Engineering (SC-PLE) 

proposed in this thesis. The approach aims to support the systematic variability management 

in the safety analysis model and their impact on safety assessment and assurance case 

construction into safety-critical software product line engineering processes. The approach is 

built upon product line safety assets and processes concepts defined in the “Product Line 

Safety Metamodel” proposed in earlier research on product line safety assessment (HABLI, 
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2009). This metamodel defines abstractions to support the systematic management and reuse 

of safety assets such as safety analysis and fault trees, in safety-critical software product line 

engineering.  

In this thesis we have made a distinction between reusable safety assets, which 

variability should be managed, and those that should be generated from the reused safety 

assets. Hazards and component failure modes identified in domain engineering are reusable 

assets where variability should be managed, whilst fault trees and FMEA assessment assets, 

and assurance cases are considered to be generated for a given product variant in application 

engineering. These assets can be generated from the reused architecture and safety analysis 

assets. Such approach supports the automated traceability of context and design variation 

throughout architecture, safety analysis, safety assessment, and assurance cases in product 

line engineering processes. Thus, variant-specific safety assessment and assurance cases are 

integrated with other product line assets, such as feature model and architectural design, in a 

trustworthy manner, e.g., by addressing the justification of the reuse of product line features 

and their related architectural components along with their safety analysis and assessment 

assets (HABLI, 2009). 

The proposed approach comprises processes definitions to support: the management of 

the impact of context and design variation in architectural and safety analysis assets by 

integrating variant management into compositional safety analysis (Chapter 4), the integration 

of compositional safety analysis and design optimization (Chapter 5), and model-based 

assurance cases (HAWKINS et al. 2015) (Chapter 6) into safety-critical software product line 

engineering processes. This chapter is an introduction to the following three chapters, 

presenting an overview of the proposed approach to support the management of safety-related 

variability, safety assessment and assurance case construction in safety-critical software 

product line engineering. Thus, the following supporting processes are presented: 

management and resolution of variability in product line architecture and safety models, 

product line compositional safety analysis and design optimization, and model-based 

assurance cases. For each supporting process, the phases, input artefacts and milestones
8
, 

dependence relationships between artefacts and relationships with the “Product Line Safety 

Metamodel” (HABLI, 2009) are detailed.  

                                                 
8A milestone describes a significant event in a development project, such as a major decision, completion of a deliverable resultant of the 

completion of a project phase (OMG, 2015a).  
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Section 3.2 presents an overview of the proposed approach and relationships with 

product line processes. Section 3.3 presents the phases of the variability management in 

product line architecture and safety models. Sections 3.4 and 3.5 presents the product line 

compositional safety analysis and design optimization, and model-based assurance cases 

processes. Section 3.6 presents a summary of this chapter.     

3.2 Approach Overview 

This section presents an overview of the proposed approach to integrate system safety 

engineering into software product line engineering processes. The proposed approach differs 

from traditional software product line engineering processes (SEI, 2016; POHL et al. 2005; 

GOMAA, 2005) by considering safety assurance throughout product line processes as 

illustrated in Figure 3.1. The approach integrates variant management, compositional safety 

analysis, and model-based development into safety-critical software product line engineering. 

Thus, hazard and risk analysis, component failure analysis, assurance case construction, and 

variability management in safety analysis artefacts are incorporated into product line domain 

engineering. After product derivation, variant-specific safety analysis, and generation of fault 

trees analysis, FMEA results, and assurance cases are incorporated into product line 

application engineering. The approach defines supporting processes for managing the impact 

of variation in context and functional features in the safety properties, e.g., hazard and 

component failures, early on the product line domain engineering. In application engineering, 

the approach defines processes to support the automated generation of safety assessment 

artefacts and assurance cases. Functional features represent system functions relevant for the 

stakeholders, whereas usage context features represent constraints on the usage of functional 

features, defining how and when they can be used. 

In this thesis, the combination between functional and usage context features have 

been used to define safety-related variants to support the systematic reuse of product line 

safety analysis in the application engineering. In the same way as functional variants are 

linked to product line architectural components in the variability model, safety-related 

variants should also be linked to safety properties defined in product line safety analysis. The 

variability model is a management artefact that contains the specification of mapping links 

between abstract features defined in the feature model, and their realization in the product line 
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Figure 3.1. Integrating system safety engineering into safety-critical software product line engineering processes 

(Adapted from Pohl et al. 2005). 
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assets such as requirements, architecture, components, and test cases. In safety-critical 

software product line engineering, in addition to architecture and components, safety analysis 

assets such as hazards and their causes, and component failure data, should also be considered 

as product line assets that contribute for the realization of product line features. Thus, in 

safety-critical product line variability modeling, features should also be linked to their 

realization in the product line safety analysis, i.e., hazard, risk, and component failure 

analysis. In this thesis, existing variant management techniques and tools, specifically Base 

Variability Resolution (BVR) (VASILEVSKIY et al. 2015) and Hephaestus/Simulink 

(STEINER et al. 2013), have been considered to support variability management in 

architecture and safety models developed using compositional safety analysis techniques, as 

detailed in Chapter 4. In product line application engineering, architectural variants 

represented by functional features and safety-related variants represented by combinations 

between functional and context features are then, selected, and a variant-specific architecture 

and its respective failure model is derived. 

Variation in design and context directly impact in product line safety analysis, which 

different hazards with different causes, allocated safety requirements, and contributing 

component failure modes may arise according the selected product line instance and its 

context. Therefore, in order to support the systematic reuse of safety analysis artefacts 

together with architectural components, a supporting process for product line safety analysis 

aware of interactions between variation in the design and context has also been defined 

(Chapter 5). This process is supported by existing compositional safety analysis techniques, 

which in this thesis we have considered HiP-HOPS (PAPADOPOULOS et al. 2011) and 

OSATE AADL (DELANGE and FEILER, 2014). Thus, variability in hazard and risk 

analysis, and component failure analysis are identified and managed in domain engineering. 

In application engineering, the reused safety analysis data are inputs to generate variant-

specific FTAs and FMEA, and safety integrity requirements decomposition (see Section 

2.2.4.2) assessment artefacts, with the support of compositional safety analysis and design 

optimization techniques. FTA identifies causal chains of failures in components of the system 

architecture that can lead to system-level failures. FMEA identifies the effects of component 

failure modes on the overall safety of the system. Such analysis supports the identification of 

highly critical components where more safety measures are necessary to be applied to address 

system safety. Model-based safety assessment in product line application engineering is also 

intended to support the automatic decomposition of safety integrity requirements, in terms of 
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SILs
9
, allocated to system-level hazards throughout the contributing component failure 

modes, and the automatic generation of assurance cases. The analysis of multiple SIL 

decomposition results, generated with the support of design optimization techniques, when 

performed early on domain engineering, provides feedback to the product line development 

processes in order to achieve process-based certification. Product line compositional safety 

analysis and design optimization approach is detailed Chapter 5. On the other hand, the 

integration of Model-Based Assurance Cases (MBAC) (HAWKINS et al. 2015) into safety-

critical software product line engineering processes allows the automatic generation of 

assurance cases to support goal-based certification of product line instances. 

Development and assessment artefacts represent the evidence of assurance referenced 

in an assurance case. MBAC is intended to generate, from a diverse of set of design and safety 

assessment models, a compelling and justifiable assurance argument linking safety objectives 

of a particular system to their supporting evidence items, e.g., hazard and risk analysis, fault 

trees and FMEA results. The integration of Model-Based Assurance Cases into software 

product line engineering demands assurance case construction activities in domain 

engineering and application engineering processes (Figure 3.1). In domain engineering, it is 

necessary to: define the structure of variant-specific assurance cases to be generated in 

assurance case patterns (see Section 2.4.3.1), and defining mapping links between assurance 

case pattern elements and system model elements that provide information for pattern 

instantiation in the weaving model (see Sections 2.4.3.2 and 2.4.3.3). In application 

engineering, it is necessary to configure the given model-based assurance case tooling with 

the following input artefacts: the reusable assurance case pattern specification and the 

weaving model produced in domain engineering; and variant-specific design and safety 

assessment models e.g., hazard and risk analysis and fault trees. Finally, the tool is executed 

to generate the assurance case model for the given product variant. The integration of Model-

Based Assurance Cases into product line processes is detailed in Chapter 6. 

The proposed approach to support software product line engineering for safety-critical 

systems makes the explicit distinction between safety artefacts in which variability should be 

managed and then reused, and those that should be generated from the reused safety artefacts. 

Product line hazard and risk analysis, and component failure analysis (safety analysis) are 

considered reusable safety artefacts, which variability should be managed in the variability 

model, to enable the systematic reuse of safety assets in application engineering. Whereas 

                                                 
9A SIL represents a range of target likelihood of failures of a safety function (IEC, 2015). 
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fault trees, FMEA, and assurance cases are dependent upon variant-specific architecture and 

safety analysis, these artefacts should be generated in application engineering, with the 

support of model-based techniques, from the reused architecture and safety models (Figure 

3.1). 

The following sections present the Safety-Critical Product Line Engineering (SC-PLE) 

approach showing the phases and artefacts associated with the following supporting 

processes: “Variability Management in Product Line Architecture and Safety Models”, 

“Product Line Compositional Safety Analysis and Design Optimization”, and “Product Line 

Model-Based Assurance Cases”. The Software and System Process Engineering Metamodel 

(SPEM) version 2.0 (OMG, 2008), supported by Eclipse Process Framework Composer
10

, 

was used to specify activity and work product dependence diagrams associated with SC-PLE 

supporting processes. The relationships between the chosen model-based techniques to 

support each process defined in the SC-PLE approach, and the “Product Line Safety 

Metamodel” is also illustrated.  

3.3 Variability Management in Product Line Architecture and Safety 

Models 

Figure 3.2 illustrates the phases of the model-based approach to support the variability 

management in product line architecture and safety models in a SPEM activity diagram. In 

domain engineering, the input artefacts for the “SC-PLE-1: Product Line Requirements 

Elicitation” phase are dependent upon the underlying product line development strategy 

(KRUEGER, 2002). If a proactive strategy is chosen, then, the domain expert knowledge and 

other sources of domain information are inputs to this phase. On the other hand, if a reactive 

or an extractive strategy is adopted, similar systems available in the domain are inputs to this 

phase.  

The requirements document is the input artefact for “SC-PLE-1” phase, in which 

variability in architecture and safety analysis is specified in the form of functional and usage 

context features. A functional feature represents a system function relevant for the 

stakeholders. A system is defined as a “specific purpose or objective to be accomplished, whi- 

                                                 
10https://eclipse.org/epf/  
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Figure 3.2. Model-based variability management in safety-critical product lines. 

ch can be specified or described without reference to the physical means of achieving it” 

(IEC, 2010). The wheel braking is an example of a system function of an automotive hybrid 

braking system (DE CASTRO et al. 2011). Usage context features define the characteristics 

of the operational environment where functional features can operate. This is important 

because different usage context assumed for a particular functional feature may lead to 

different failure conditions, hazards with different causes and allocated safety requirements. 

For example, safety integrity requirements, specified in terms of Development Assurance 

Levels (DALs), allocated to the “Autopilot” feature from the Tiriba UAV flight control 

product line (BRAGA et al. 2012) is level “C” when “Agriculture”, “Light UAV” and 

“Controlled Airspace” usage context is assumed. On the other hand, when “Autopilot” 

feature is assumed to operate in a “Defense” application, with a “Small UAV” in a 

“Controlled Airspace”, DAL level “A” is assigned. Feature modeling tools can be used to 

support this phase. At the end of this phase, product line feature and context models are 

delivered. 
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After specifying product line requirements in functional and usage context features, 

the product line architectural design is defined on the targeted modeling language (SC-PLE-2: 

Product Line Architectural Design phase in Figure 3.2). Existing system modeling languages 

can be used to support this phase. In this thesis we have considered MATLAB/Simulink 

(MATLAB, 2015) and Analysis and Architectural Description Language (AADL) (SAE, 

2012) modeling language supported by OSATE 2 AADL
11

 environment. At this phase, firstly, 

architectural patterns are defined, followed by the specification of architectural components 

for the realization of core functional features. In the following, components representing 

variable functional features are specified, and variability mechanisms are defined. Variability 

mechanisms refer to model elements used to represent variability in the product line 

architecture model. Examples of variability mechanisms are “Switch” blocks, “Enabler 

Subsystems”, and “Variant” blocks in MATLAB/Simulink (BOTTERWECK et al. 2010). 

Variability mechanisms can also be defined outside the product line architecture model with 

the support of existing variant management techniques, e.g., BVR (VASILEVSKIY et al. 

2015), Common Variability Language (HAUGEN et al. 2008), Pure::variants 

(PURE::SYSTEMS, 2016), and Hephaestus/Simulink (STEINER et al. 2013). At the end of 

this phase, the product line architecture model is delivered. 

The “SC-PLE-3: Product Line Safety Analysis” phase intends to identify system-level 

hazards, their causes, allocating safety requirements according to the targeted safety standard, 

and identifying contributing component failure modes associated with design and context 

variations. This phase can be performed from the initial stages of the product line architectural 

design when a preliminary architecture is defined. In this thesis, existing compositional safety 

analysis techniques such as HiP-HOPS and OSATE 2 AADL/Error Annex were considered to 

support this phase. At the end of this phase, the hazard and risk analysis, and component 

failure analysis results in a range of usage scenarios, stored into the product line failure 

model, is delivered. From the product line context and feature models, architecture and failure 

models, mapping links between product line features and their realization in architectural 

components and safety analysis data are defined in the variability model during the “SC-PLE-

4: Variability Realization Modeling” phase. In this thesis, variant management tools 

integrated to model-based development and compositional safety analysis tools can be used to 

provide automated support for this phase. At the end of this phase, the variability realization 

model is delivered. The variability realization model and the integration between variant 

                                                 
11 http://www.aadl.info/aadl/osate/stable/ 
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management, compositional safety analysis, and model-based development support the 

systematic reuse of the product line architecture and safety analysis models. In product line 

application engineering, “Resolution Modeling” and “Product Derivation” phases can be 

performed iteratively. In the “SC-PLE-5: Resolution Modeling” phase, architectural and 

safety-related variants defined in the product line feature model are selected, and an instance 

model is obtained. In “SC-PLE-6: Product Derivation” phase, with the support of variant 

management tools, variant-specific architecture and safety models are derived according to 

the instance model. 

3.3.1 Dependencies between Product Line Development and Management 

Artefacts 

Variability management in product line architecture and safety models phases generate 

a set of development and management work products and deliverables. These artefacts have 

dependence relationships that should be captured and traced throughout product line domain 

engineering and application engineering. Figure 3.3 shows the dependence relationships 

between product line development and management assets. Product line feature and context 

models are primary work products resultant from “Product Line Requirements Elicitation”  

 

Figure 3.3. Development and management work product dependence diagram. 
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phase. The feature model defines functional variants, and the context model defines the 

impact of characteristics of the operational environment and functional variants in the system 

safety properties. The product line feature model impacts in the definition of the context 

model. On the other hand, the product line context model imposes constraints on the usage of 

functional features. For example, the context model might delimit the interactions of a given 

functional feature with other features, limiting the way in which functional features can be 

combined to derive product variants in the product derivation phase. In addition, the product 

line context model might impose safety requirements in the form of functional safety features, 

e.g., redundancy, or safety integrity requirements. The product line architecture model 

represents the realization of functional variants specified in the feature model. The product 

line context model might also impact in the definition of the product line architecture model, 

leading to the addition of architectural components that contribute for the realization of 

functional safety requirements associated with usage context features. Examples of usage 

context features are operating environment, which may require the inclusion of different 

sensors and actuators (BRAGA et al. 2012). 

The product line failure model is resultant from the safety analysis activities such as 

hazard and risk analysis, and component failure analysis. The product line failure model is 

defined based on the targeted safety standard, and from the analysis of functional and usage 

context features, and the product line architecture model. Changes in the context or in the 

product line architecture may lead to different hazards with different causes and effects on the 

overall system safety. Changes on usage context features may also impact in the allocation of 

different safety integrity requirements. The management of variation in design and context, 

expressed in the feature and context models, and their relationships with architectural and 

failure model elements is achieved in the variability realization model. This deliverable is 

resultant from the “SC-PLE-4: Product Line Variability Realization Modeling” phase. The 

variability realization model defines mapping links between functional variants, specified in 

the feature model, and product line architectural model elements and their connections, which 

represent the realization of functional variants at the design level. The variability realization 

model also defines mapping links between safety-related variants defined in the product line 

context model, and product line failure model elements, e.g., hazards, their causes, allocated 

safety requirements, and component failure data. 

In the product line application engineering, the product feature model, i.e., the instance 

model, is a deliverable resultant from the “SC-PLE-5: Resolution Modeling” phase. Product 
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feature model represents the selection of functional and safety-related variants specified in the 

product line feature and context models. Thus, the product feature model is an instance of 

these models defined in the product line domain engineering. Product architecture and failure 

models are deliverables generated as a result of the “SC-PLE-6: Product Derivation” phase. 

The definition of these deliverables is dependent upon the product feature model and the 

product line variability realization model.   

3.3.2 Product Line Development and Management Models and Product Line 

Safety Metamodel 

The “Product Line Safety Metamodel” (HABLI, 2009), shown in Figure 3.4,  

prescribes that “Product Line Management” assets define traceability links between variation 

specified in product line Contextual and Feature assets throughout Design Components and 

Product Line Assessment assets. Examples of assessment assets are hazard and risk analysis, 

and component failure data. In this metamodel, the “Functional Failure Model” defines 

relationships between feature and contextual assets, hazard and risk analysis data such as 

hazards, their causes, effects, risk classification, and allocated safety requirements. The 

“Architectural Failure Model” defines the relationships between system-level hazards and 

contributing component failure modes in a causal chain, in the same way as Fault Tree 

Analysis technique (NASA, 2002). In the product line domain engineering, the “Architectural  

 

Figure 3.4. Variability management in the safety model and product line safety metamodel. 
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Failure Model” represents assumptions about output and input deviations of components, and 

internal failures that can lead to system level failures in a range of usage scenarios. In the 

product line application engineering, the “Architectural Failure Model” represents leaf nodes 

and gates of a fault tree for a given system-level hazard. 

The proposed model-based approach to support variability management in architecture 

and safety models provides guidance to integrate existing variant management, compositional 

safety analysis, and model-based development techniques that comply with the “Product Line 

Safety Metamodel”. In the “SC-PLE-1: Product Line Requirements Elicitation” phase, tool-

specific feature models, e.g., FeatureIDE, Pure::variants, BVR, and Hephaestus/Simulink 

feature models, can be used to specify contextual and functional features. In the “SC-PLE-2: 

Product Line Architectural Design” phase, design components can be specified in AADL or 

MATLAB/Simulink models. The “SC-PLE-3: Product Line Safety Analysis” phase can be 

performed with the support of existing compositional safety analysis techniques, e.g., OSATE 

ADDL Error Annex (DELANGE and FEILER, 2014) and HiP-HOPS (PAPADOPOULOS et 

al. 2011). These techniques provide failure model specifications that comply with “Functional 

and Architectural Failure Models”. Finally, variant management techniques support the 

specification of mapping links between design and context variation, defined in the feature 

model, and their realization in architecture and safety models, providing management assets 

to support the systematic reuse of architecture and safety analysis. For example, the BVR 

variability realization model (HAUGEN and OGARD, 2014) and Hephaestus/Simulink 

configuration knowledge (STEINER et al. 2013) link product line features to references to 

model objects representing architectural design components, failure model elements, and 

other product line assets. The variability realization model defines compositional rules to 

supports the resolution of architectural and safety-related variants in the “SC-PLE-6: Product 

Derivation” phase.    

3.4 Product Line Compositional Safety Analysis and Design Optimization 

The “SC-PLE-3: Product Line Safety Analysis” is the first phase of the product line 

compositional safety analysis and design optimization process illustrated in Figure 3.5. 

Product line safety analysis comprises “Functional Hazard Assessment” and “Component 

Failure Analysis” activities to be performed in product line domain engineering. Functional  
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Figure 3.5. Compositional safety analysis in software product line engineering. 

hazard assessment is performed from the analysis of the relationships between functional and 

context features, and the product line architecture model. From such analysis, a range of usage 

scenarios that impact in the system safety properties are derived, by combining architectural 

and contextual variants. Functional hazard assessment is performed by considering the 

possible threats to system safety, their causes, and allocated safety requirements associated 

with each usage scenario. Further on the analysis, during the “Component Failure Analysis”, 

assumptions about the contributing output and input deviations, and internal failures of 

components are made by considering the usage scenarios earlier defined in functional hazard 

assessment. At the end of this phase, the product line failure model is delivered. 

In the product line application engineering, after the completion of the “SC-PLE-6: 

Product Derivation” phase, fault trees and FMEA results are generated with the support of 

compositional safety analysis techniques in the “SC-PLE-7: Product Fault Tree and FMEA” 

phase. Variant-specific architectural and failure models are input artefacts to generate fault 

trees and FMEA results for a given product variant. For each variant-specific hazard, a fault 

tree provides the failure mode causal chains showing how combinations of failures in 

architectural components contribute to the occurrence of a system-level hazard. FMEA shows 

the component failure modes, their effects, and the required mitigation mechanisms to 

eliminate or minimize the effects of a given component failure mode. Variant-specific FMEA 

is useful to identify highly critical architectural components, supporting architectural 

decisions to increase the fault tolerance of the product line and variant-specific architectures. 

In this thesis, compositional safety analysis techniques, e.g., OSATE AADL Error Annex and 

HiP-HOPS, have been adopted to support the automatic synthesis of fault trees and FMEA 

results from the product-specific architecture and failure models. Fault trees and FMEA are 

input artefacts for the “SC-PLE-8: Product SIL Decomposition” phase.  
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3.4.1 SC-PLE-8: Product SIL Decomposition Phase 

Product safety integrity requirements decomposition is intended to iteratively 

decompose safety requirements allocated to variant-specific hazards into safety requirements 

to be allocated to the contributing component failure modes. Safety integrity requirements 

decomposition allows a safety-critical system architecture meeting a particular target SIL 

allocated to a given system-level failure, i.e., a hazard, without all contributing component 

failures having to meet that target. If a system-level hazard is caused only when two 

independent components fail together, these components can share the responsibility of 

meeting the SIL allocated to that hazard, rather than each one having to meet the original SIL. 

Safety standards in aerospace and automotive domains define “algebras” for safety integrity 

requirements decomposition based on rules about combining failure probabilities defined in 

these standards.  

In SIL algebra, each safety integrity level is equivalent to an integer value. For 

example, in ISO 26262 (EUROCAE, 2010), the Automotive Safety Integrity Level (ASIL) 

algebra is: QM (Quality Management – no effect) = 0, A = 1, B = 2, C= 3, and D = 4 (most 

stringent). ASIL algebra defines that if n components must fail simultaneously to cause a 

given hazard
12

, the total ASIL assigned to these n components must add up to the ASIL 

allocated to the system hazard they originate, as illustrated in Figure 3.6. Thus, two redundant 

components assuring an ASIL D system function might individually only be required to meet 

ASIL B because together they produce the total required ASIL value (2 + 2 = 4). Higher 

ASILs mean higher costs, because meeting stringent safety requirements requires more safety 

measures, more effort, and higher-quality components. Therefore, component SILs could 

significantly impact in both development and production costs. SIL decomposition allows 

safety analysts to efficiently allocating safety integrity requirements so that safety 

requirements can be met without being unnecessarily stringent or expensive. 

 

Figure 3.6. ASIL decomposition example. 

                                                 
12Potential source of harm caused by malfunctioning behavior of the item” in ISO 26262: Road Vehicles - Functional Safety. 
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Existing design optimization techniques support the automatic decomposition of safety 

integrity requirements throughout component failure modes from the potential system fault 

propagation specified in fault trees (SOROKOS et al. 2015; AZEVEDO et al. 2014; 

PARKER et al. 2013; BIEBER et al. 2011). These techniques comply with ISO 26262 

automotive safety standard, and DO-178C (RTCA, 2012) and ARP 4754A (EUROCAE, 

2010) aerospace standards. Design optimization SIL decomposition techniques do not 

guarantee finding optimal solutions, but they are capable of providing near optimal SIL 

decomposition solutions. In this thesis, design optimization techniques were considered to 

support the “SC-PLE-8: Product SIL Decomposition” phase. The output of this phase is the 

decomposition of safety integrity requirements allocated to variant-specific hazards 

throughout contributing component failure modes. At the end of this phase, we can derive 

another product variant, generating fault trees, FMEA, and safety integrity requirements 

decomposition results for that variant, or, if has not more variants to work with, performing 

the analysis of multiple variant-specific SIL decomposition results to identify the required 

safety integrity requirements to support product line process-based certification.  

The analysis of SIL decomposition results from multiple product line instances early 

on the product line design provides feedback to the product line domain engineering process, 

guiding product line engineers in developing components that address safety across a range of 

product variants without being unnecessarily stringent or expensive. Such analysis is 

performed during the “SC-PLE-9: Product Line Component SIL Decomposition” phase with 

the support of the product line component safety integrity requirements decomposition 

method and tool developed in the course of this thesis. The tool performs the analysis of 

multiple SIL decomposition results to find the required SILs for each product line component 

addressing safety across the range of product variants considered in the analysis. The tool was 

developed as an extension of the HiP-HOPS compositional safety analysis tool, and it 

supports the analysis of ASIL and DAL allocation results. Product line compositional safety 

analysis and product line component SIL decomposition method and tool are detailed in 

Chapter 5.   

3.4.2 Dependencies between Product Line Assessment Artefacts 

During the product line compositional safety analysis and design optimization phases, 

a set of assessment work products and deliverables are generated in both domain engineering 

and application engineering processes. Figure 3.7 shows the dependence relationships 
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between these assets in a work product dependence diagram. The product line failure model is 

produced during the safety analysis phase in domain engineering. During the functional 

hazard assessment, hazard and risk analysis data are added to the product line failure model. 

This asset is defined by considering the targeted safety standard, and from the analysis of the 

product line context and architecture models. Such analysis allows safety engineers scoping 

the product line safety analysis to a range of product variants and usage scenarios. After the 

identification of potential hazards that can arise in a range of product variants, it is identified 

how input/output deviations, and internal failures of components, i.e., component failure 

logic, can contribute to the occurrence of hazards in a range of scenarios. The component 

failure logic is defined upon the product line hazard analysis, context and architecture models. 

 

Figure 3.7. Model-based safety assessment work product dependence diagram. 

The product failure model generated in application engineering is a subset of product 

line hazard and risk analysis, and component failure analysis, which represents safety-related 

information of a particular product variant. Product fault trees and FMEA results are 

generated from the product failure model. The SIL allocation result for a given product 

variant is generated from product fault tree analysis. Finally, the product line component SIL 

allocation work product is generated from the analysis of multiple variant-specific SIL 

allocation results. Assessment artefacts produced in the product line application engineering 

provide safety assessment of a variant-specific architecture model. Variant-specific 

development and assessment models are input artefacts to generate assurance cases for a 
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given product variant with the support of model-based assurance cases techniques 

(HAWKINS et al. 2015).   

3.4.3 Product Line Assessment Models and Product Line Safety Metamodel 

As described in Section 3.2.2, tool-specific failure models conforms to “Functional 

and Architectural Failure” metamodels defined in the “Product Line Safety Metamodel” 

(HABLI, 2009), as shown in Figure 3.8. Tool-specific failure models as provided by OSATE 

AADL and HiP-HOPS compositional safety analysis techniques contain abstractions that 

comply with “Functional Failure Metamodel” (HABLI and KELLY, 2009). Figure 3.9 

illustrates how HiP-HOPS Error metamodel conforms to the “Functional Failure 

Metamodel”. In the “Functional Failure Metamodel”, associations between “Failure 

Condition” and “Failure Condition Effect” elements that represent a system-level hazard and 

its causes, is defined via “Causal Relationship” element. The equivalent relationship is 

expressed by associations between “Cause” and “Hazard” elements defined in the HiP-

HOPS Error metamodel (HiP-HOPS TEAM, 2013). Therefore, “Cause” and “Hazard” 

model elements are respectively equivalent to “Failure Condition” and “Failure Condition 

Effect” elements defined in the Functional Failure Metamodel. A “Failure Condition” is 

associated with a “Classification” via “Classification Relationship”. In a safety-critical 

product line, the risk “Classification” of a failure condition is dependent upon functional and 

contextual assets. Thus, a “Failure Condition Effect” might have different “Classifications”, 

i.e. Safety Integrity Levels, according to the selection of functional and usage context features.  

 

Figure 3.8. Model-based safety assessment artefacts and failure metamodels. 
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Figure 3.9. Functional failure and HiP-HOPS error metamodels. 

Equivalent relationships in the HiP-HOPS Error metamodel are expressed by associations 

between “Hazard” and “SIL” elements. 

In the “Functional Failure Metamodel”, “Classification Relationship” informs the 

integrity of a “Failure Condition Effect” via “Requirements Relationship”, which is 

associated with the required “Safety Requirements” to mitigate a “Failure Condition Effect”. 

“Safety Requirement” can be architectural decisions, or a set of development and assessment 

activities prescribed by process-oriented safety standards according to the integrity of a given 

“Failure Condition Effect”. A “SIL” element in the HiP-HOPS Error metamodel is 

equivalent to “Classification” and “Safety Requirement” abstractions defined in the 

“Functional Failure Metamodel”. Fault Tree and FMEA models provided by HiP-HOPS and 

OSATE AADL compositional safety analysis techniques conform to “Architectural Failure 

and Component Failure” metamodels defined in the “Product Line Safety Metamodel”. The 

“Architectural Failure Metamodel” defines the relationships between variation in design and 

context and their impact in fault tree leaf nodes and gates. The “Component Failure 

Metamodel” specifies relationships between product line variation and component “Failure 

Modes” and their “Effects” on the system safety, i.e., it shows how variation in architectural 

components impacts in the component failure modes and their effects. 
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3.5 Product Line Model-Based Assurance Cases 

Assurance Case construction requires a safety argument linking evidence items to 

claims of conformance to dependability requirements (SEI, 2016a). Model-based assurance 

case brings the benefits of automation, transformation, and validation from model-based 

engineering to support the assurance case construction process (HAWKINS et al. 2015). 

Some of the existing model-based assurance case techniques are based on the Model Weaving 

approach (DEL FABRO et al. 2005). Model weaving allows the interoperability between 

design, process, and assessment models and metamodels and the assurance case. Thus, 

changes in design, process, and assessment models are further propagated throughout the 

assurance case. Integrating model-based assurance cases into software product line processes 

demands assurance case construction activities to be performed in domain engineering to 

support the automatic generation of variant-specific assurance cases in application 

engineering. Figure 3.10 shows the model-based assurance case phases in product line domain 

engineering and application engineering.  

In domain engineering, assurance case patterns are defined in the “SC-PLE-10: 

Assurance Case Pattern Modeling” phase. Assurance case patterns represent the structure of 

an assurance case with abstract elements named terms, which represent information elements 

provided by different system models required to instantiate assurance case patterns. In the 

“SC-PLE-11: Asset Metamodeling” phase, the structure of each system model to be 

considered in model weaving transformations (HAWKINS et al. 2015) is defined in a 

metamodel. Assurance case patterns and system metamodels are input artefacts for the “SC-

PLE-12: Weaving Modeling” phase. In this phase, assurance case pattern abstract terms are 

linked to model elements defined in the system metamodels in the weaving model. The 

mapping links specified in the weaving model defines model transformation rules to 

instantiate assurance case patterns, for a given product line instance, from the information 

provided by variant-specific design, process, and safety assessment models. Assurance case 

patterns, asset metamodels, and the weaving model are reusable assurance case construction 

assets used to support model-based assurance cases in product line application engineering. 
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Figure 3.10. Model-based assurance cases in software product line engineering. 

In application engineering, reusable assurance case patterns, asset metamodels, and the 

weaving model, together with variant-specific design, process, and assessment models are 

inputs artefacts for the “SC-PLE-13: Assurance Case Model Generation” phase. In this 

phase, an assurance case model for a given product variant is generated by configuring a 

model-based assurance case tool (HAWKINS et al. 2015) with the input artefacts mentioned 

earlier. The generated assurance case provides the assurance of a given variant-specific 

architecture by linking its associated design, process, and assessment models to claims of 

conformance with dependability requirements. The product line model-based assurance cases 

approach is detailed in Chapter 6. 

3.5.1 Dependencies between Product Line Model-Based Assurance Case Artefacts  

Relationships between product line model-based assurance case artefacts produced in 

domain engineering and application engineering are captured in the work product dependence 

diagram shown in Figure 3.11. In domain engineering, assurance case patterns are defined in 
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conformance with the underlying assurance modeling notation that can be Goal Structuring 

Notation (KELLY, 2003), Claim-Argument-Evidence (BISHOP and BLOOMFIELD, 2010), 

or other notations in compliance with the OMG Structured Assurance Case Pattern 

Metamodel (OMG, 2015a). Asset metamodels are defined according to the structure of design 

and safety assessment (e.g., failure, fault trees and FMEA) output models provided by model-

based development and compositional safety analysis techniques. Mapping links between 

assurance case pattern elements and elements from a diverse set of asset metamodels are 

defined in the weaving model. The weaving model must conform to a weaving metamodel. In 

application engineering, variant-specific asset models, which are input artefacts to model-

based assurance cases, must conform to their respective metamodels. Finally, the product 

assurance case model is generated from the information provided by variant-specific system 

models, e.g., design, process and assessment artefacts. A product assurance case model is an 

instance of assurance case patterns defined in domain engineering. 

 

Figure 3.11. Model-based assurance work product dependence diagram. 

3.5.2 Model Based Assurance Cases and Product Line Safety Metamodel  

Product line model-based assurance cases supports the automated traceability of 

design and context variation throughout design, safety assessment, and the assurance case as 

defined in the “Product Line Safety Metamodel” and illustrated in Figure 3.12. Therefore, 

changes in design and assessment models are further propagated throughout the assurance 

case. It means that references to variant-specific model elements embedded into “Argument” 

and “Evidence” assurance case elements are dynamically linked to “System Assets” e.g., 

feature and reference architecture models, Contextual Assets, and assessment assets, e.g., 

failure model, fault trees and FMEA models. Assessment assets are directly linked to 
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“System” and “Contextual” assets associated with a given product line instance. Changes in 

product-specific “System” and “Contextual” assets are automatically propagated throughout 

failure model, fault trees and FMEA results produced in application engineering. Such 

traceability is specified in the weaving model via mapping links between assurance case 

pattern elements and references to design, process, and assessment model elements that 

contain the information required to instantiate assurance case patterns for a given product line 

instance. 

 

Figure 3.12. Product safety assessment and assurance case metamodels (Adapted from Habli 2009). 

3.6 Summary 

This chapter presented an overview of the proposed systematic approach to integrate 

variant management, compositional safety analysis, and model-based assurance cases into 

safety-critical software product line engineering processes. The approach provides supporting 

processes for managing and resolving variability in architecture and safety models, and 

integrating compositional safety analysis and model-based assurance cases into software 

product line engineering processes. The following three chapters detail the variability 

management in product line architecture and safety analysis models (Chapter 4), product line 



Chapter 3 - A Model-Based Approach to Integrate Safety Assurance into Software Product Line Engineering    129 

 

compositional safety analysis and design optimization (Chapter 5), and product line model-

based assurance cases (Chapter 6) supporting processes. 



 

Chapter 4  

CAPÍTULO 4 -  VARIABILITY MANAGEMENT IN PRODUCT 

LINE ARCHITECTURE AND SAFETY MODELS  

4.1 Introduction 

Safety-critical software product line engineering requires the integration of system 

safety engineering into product line processes. Compositional safety analysis provides the 

automated support for system safety engineering and seamless integration between the system 

design and safety analysis. Thus, architectural design and safety analysis can be performed in 

the same model. It contributes to reduce the complexity of the product line safety analysis. 

Whereas safety-critical software product line engineering involves system safety engineering, 

safety analysis and variability management in the safety model should be considered 

throughout product line processes. Safety analysis should be performed aware of the impact 

of context and design variation in the safety properties to enable the systematic reuse of 

product line architecture and safety analysis assets. For example, context and design variation 

may change hazards, their causes, and the risk they pose for the overall system safety. As 

safety properties may change according to the selection of product variants, variability in the 

safety model should also be managed in safety-critical product line engineering. Thus, 

mapping links between context and design variation and their realization in the safety model 

should be defined in the variability model.  

Existing variant management techniques such as GEARS (BIG LEVER, 2016), BVR 

(VASILEVSKIY et al. 2015), Hephaestus/Simulink (STEINER et al., 2013), pure::variants 

(PURE::SYSTEMS, 2016), and Common Variability Language (CVL) (HAUGEN et al. 

2008), provide support for managing variation on requirements, architecture, components, 
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source code, and test cases. However, these techniques were not originally designed to 

support variability management in safety models developed with the support of compositional 

safety analysis techniques, e.g., OSATE 2.0 AADL/Error Annex
13

, and HiP-HOPS integrated 

to MATLAB/Simulink
14

, and SimulationX
15

. Variability management in the safety model 

enables the traceability of context and design variation throughout safety assessment artefacts 

and systematic reuse of architectural components and safety analysis assets. The reuse of 

safety analysis information in safety-critical product line engineering contributes to reduce the 

complexity, effort and costs in performing safety analysis for a specific product variant, since 

such analysis is not performed from scratch. Therefore, with the support of compositional 

safety analysis techniques, assessment artefacts such as fault trees and FMEA results can be 

generated for a given product variant from the reused safety analysis.    

This chapter presents a model-based approach to support the systematic reuse of 

product line architecture and safety models in safety-critical software product line 

engineering. The approach differs from traditional SPLE approaches by integrating variant 

management into compositional safety analysis. Such integration allows the systematic reuse 

of both product line architecture and safety analysis models (failure model). The approach 

presented in this chapter is part (see Section 3.2) of a systematic approach to integrate safety 

assurance into safety-critical product line engineering presented in Chapter 3. The approach 

comprises variability modeling and management phases in product line domain engineering 

and application engineering processes. This chapter also presents a method to adapt and 

integrating existing variant management techniques into compositional safety analysis. In this 

thesis, this method has been used to adapt BVR tool chain
16

 and Hephaestus/Simulink. The 

variability management approach and tooling is validated in a Hybrid Braking System 

automotive safety-critical product line case study (DE CASTRO et al. 2011).  

Section 4.2 presents the proposed approach to support variability management in 

architecture and safety models in software product line engineering. Section 4.3 presents a 

method for adapting variant management techniques to support variability management in 

safety models, and the adaptations performed into BVR and Hephaestus/Simulink variant 

management tools to support variant management in HiP-HOPS and AADL Error Annex 

                                                 
13 https://wiki.sei.cmu.edu/aadl/index.php/OSATE_2_download_page 

14 http://www.mathworks.com/products/simulink/index-b.html 

15 http://www.simulationx.com/ 

16 http://modelbased.net/tools/bvr-tool/  
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failure models. Section 4.4 illustrates the approach’s instantiation using the BVR toolset and 

its adapters for MATLAB/Simulink and HiP-HOPS compositional safety analysis tools. 

Section 4.5 presents the approach’s limitations, and Section 4.6 presents the summary of this 

chapter. 

4.2 Management and Resolution of Variability in Architecture and Safety 

Models 

This section presents the proposed model-based approach to support the systematic 

variability management in architecture and safety analysis models in safety-critical product 

line engineering. The approach has been defined from the analysis of existing variant 

management techniques covering architectural design (BIG LEVER, 2016; STEINER et al. 

2013; PURE::SYSTEMS, 2016) and safety assessment (KÄβEMEYER et al. 2015; GOMEZ 

et al. 2011; LIU et al. 2007; DELHINGER et al. 2005), and existing product line engineering 

methods: Software Product Line Engineering Framework (SPLEF) (POHL et al. 2015) and 

Product Line UML-based Software Engineering (PLUS) (GOMAA, 2005). 

The variability management approach has been built as an adaptation of SPLEF and 

PLUS methods to incorporate variability management in the safety analysis model into 

software product line engineering processes. The approach is holistic, which means that it is 

applicable with the support of different variant management and compositional safety analysis 

techniques, by adopting a proactive, a reactive or an extractive product line development 

strategy. In a proactive strategy, the product line is developed from scratch. In a reactive 

strategy, the development starts with a small product line, possibly consisting of a single 

product, which is incrementally expanded with new features and implementation artefacts. 

Finally, in an extractive strategy, the development starts with a collection of existing products 

that are incrementally refactored to obtain the product line (KRUEGER, 2002). Figure 4.1 

illustrates the proposed variability management approach. 
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Figure 4.1. Model-based management of safety-related variability in product line engineering. 

The proposed variant management approach distinct from traditional software product 

line engineering methods, e.g., PLUS and SPLEF, by considering: the impact of design and 

context variation in the product line hazard, risk, and component failure analysis; and 

management of variability in the safety model in product line variability modeling to support 

the systematic reuse of architectural and safety assets. The approach comprises four phases in 

domain engineering, and two phases in application engineering, which can be applied 

iteratively and incrementally. In domain engineering, during the “Product Line Requirements 

Elicitation” phase (SC-PLE-1), the product line scope is established, and mandatory, optional 

and alternative functional and context features are defined in the product line feature model. 

In this thesis, Feature-Oriented Domain Analysis (KANG et al. 1990) has been considered to 

support this phase. In the following, product line requirements defined in the feature model 

are used to design the product line architecture (SC-PLE-2), by implementing common and 

variable functional features. The “SC-PLE-3: Product Line Safety Analysis” phase is intended 
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to identify, earlier on the design, potential threats to the system safety and applicable 

mitigation measures to eliminate or minimize their effects, in the scope of a set of different 

product variants (i.e., scenarios). Still in product line safety analysis, the component failure 

analysis is intended to identify how architectural components can fail and contributing to the 

occurrence of system-level hazards in a range of product variants. As the approach is built 

upon model-based design and compositional safety analysis, product line architectural design 

and safety analysis phases can be performed in parallel. After the identification of variability 

in product line architecture and safety analysis, in the “SC-PLE-5: Product Line Variability 

Realization Modeling” phase, design and context variation expressed in the feature model are 

linked to their realization in the architecture and safety analysis models. The variability 

realization model defines how architectural and safety assets are composed to derive a product 

variant. In this thesis, variant management tools integrated to model-based development and 

compositional safety analysis tools were considered to support variability management phases 

in domain engineering and application engineering. With the support of a variant management 

tool, in application engineering, variant-specific requirements are specified by choosing 

product line features to be included in the resolution model (SC-PLE-6), and then, the product 

variant is derived (SC-PLE-7).  

Product line engineers are responsible for conducting “Product Line Requirements 

Elicitation”, “Architectural Design”, and “Variability Realization Modeling” phases. Safety 

analysts are responsible for conducting the “Product Line Safety Analysis” phase. Application 

engineers are responsible for defining product requirements and performing product 

derivation. Each phase defined in the proposed approach is supported by a method that 

describes the activities to be performed and their execution order. Activities are decomposed 

into a set of tasks. Milestones are used to indicate the end of each method and the key 

deliverables. The variability management approach is described with the support of SPEM 

(Software & Systems Process Engineering Metamodel Specification) (OMG, 2008), which is 

a standard notation for process specification. A method plugin has been created in the Eclipse 

Process Framework Composer to enable further instantiation of the approach in a particular 

safety-critical software product line engineering project, integrated with project management 

tools. The proposed approach has been previously validated in a hybrid braking system 

automotive product line case study (OLIVEIRA et al. 2014) used throughout this thesis. The 

approach phases are detailed in the following subsections. 
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4.2.1 SC-PLE-1: Product Line Requirements Elicitation 

The elicitation of safety-critical product line requirements is the starting point of the 

proposed variability management approach. In this phase, product line engineers delimit the 

product line scope, by defining its degree of commonality and variability, and the number of 

product variants (GOMMA, 2005). From the requirements document, product line engineers 

also define core and variable functional features and their usage context in a feature model. 

Functional features represent system functions relevant for the stakeholders such as 

capability, operating environment and domain/implementation technique features (BRAGA et 

al. 2012). Context features define usage constraints for functional features, establishing how 

and where these features can be used. The input artefacts for this phase are dependent upon 

the adopted product line development strategy. In a proactive strategy, the product line 

engineer knowledge together with the target safety standard is input for this phase. If an 

extractive or reactive strategy is chosen, one or a set of systems from the targeted domain, 

together with the targeted safety standard are inputs to this phase. At the end, the product line 

feature and context models are delivered, indicating the completion of this phase. Feature-

Oriented Domain Analysis and supporting feature modeling tools were considered to support 

this phase. Functional and usage context features guide the derivation of safety-critical 

product variants by defining the binding of common and variable architectural and safety 

assets. Figure 4.2 illustrates the set of activities to be performed in the “SC-PLE-1” phase. 

These activities can be performed in an incremental and iterative fashion.  

SC-PLE-1.1: Product Line Scoping: Product line engineers establish the product line 

boundaries where the degree of common and variable functionality is defined, and a 

preliminary number of potential product variants are identified.  

SC-PLE-1.2: Define the Target Safety Standard: Safety-critical systems should 

comply with process requirements/guidance established by safety standards of the targeted 

domain. For example, DO-178C (RTCA, 2012) and ARP 4754a (EUROCAE, 2010) define 

guidance for developing aircraft and aerospace systems, and ISO 26262 (ISO, 2011) defines 

guidance and recommendations to be addressed in the development of automotive electronics 

systems. Therefore, safety standards directly impacts on the development of the safety-critical 

product line architecture. Here, product line engineers and safety engineers analyze and 

choose the target safety standard to be considered throughout the product line development 

lifecycle. This is important to address regulatory requirements imposed by countries, compa- 
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Figure 4.2. SC-PLE-1: product line requirements phase. 

nies, and certifying authorities, and to guide the safety integrity requirements allocation 

process in order to achieve process-based certification.  

SC-PLE-1.3: Product Line Feature Modeling: In this task, common and variable 

functional features are identified. Functional features can be classified into: capability, 

features associated with end-user visible characteristics/functions; operating environment, 

which capture features associated with the targeted environment where features can operate, 

e.g., sensors and actuators; domain/technology, which are features representing specific 

domain techniques or tools that can be used to develop the product line, e.g., real-time 

operational system feature; or implementation technique features representing specific 

implementation strategies, e.g., redundant and non-redundant control system architectures 

(BRAGA et al. 2012). Therefore, product line engineers identify: (i) core, (ii) optional, and 

(iii) alternative features. Product line engineers can also identify parameterized functional 

features. Parameterized features provide a parameter whose value needs to be defined at 

configuration time. The specification of a parameterized feature requires the definition of the 

type of the parameter, the range of allowed values, and a default value (GOMMA, 2005). The 

result of this activity is the Product Line Feature Model (SC-PLE-1 M1). 

SC-PLE-1.4: Product Line Context Modeling: The functional features identified 

during the feature modeling may have architectural and safety-related constraints with regard 

to their usage. Architectural constraints define allowed and prohibited feature interactions. 
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Safety-related constraints define context feature interactions that may impact in the safety 

properties, e.g., changes in hazards and component failure modes. Examples of such 

constraints are: the range of applications in which a product variant can be used, the targeted 

hardware platform and other systems interacting with the variant, characteristics of the 

environment where a product variant can operate (BRAGA et al. 2012), and the targeted 

safety standard already identified in SC-PLE-1.2. Here, product line engineers identify (i) 

usage context features that impact in architectural constraints, and (ii) usage context features 

that impact in the safety properties. By combining functional and usage context features, a set 

of candidate variants can be derived. These variants can be further considered to perform 

product line safety analysis. The relationships between functional and context features 

directly impact in the definition of the product architecture and its safety properties, e.g., the 

safety integrity requirements of components. The result of this activity is a Product Line 

Context Model (SC-PLE-1 M2). 

4.2.2 SC-PLE-2: Product Line Architectural Design 

Safety-critical product line architectural design is intended to specify the realization of 

common and variable functional features resulting in a product line architecture composed by 

hierarchical models representing hardware components, e.g., sensors and actuators, service-

provision software components, and their connections. In this phase, product line engineers 

build the product line architecture by firstly considering architectural patterns to be adopted, 

followed by the definition of components that represent the realization of core, optional, 

alternative, and parameterized functional features, which comprise both hardware and 

software. In the following, product line engineers choose language-specific variability 

mechanisms to represent optional, alternative, and parameterized features in the product line 

architecture model. The product line architecture model is derived indicating the completion 

of this phase.  

Existing model-based development techniques and languages, e.g., Real-Time UML 

(OMG, 2008a), SysML (OMG, 2015), MATLAB/Simulink (MATHWORKS, 2015), and 

AADL (SAE, 2012) are recommended to support the “Product Line Architectural Design” 

phase. In this thesis, we have considered MATLAB/Simulink and AADL, which are mature 

model-based development environments. Architectural patterns for safety-critical systems 

(DOUGLASS et al. 2002), and existing variability patterns (WEILAND and MANHART 

2014; BOTTERWECK et al. 2010; STEINER et al. 2013) can be used to support the design 
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and specification of variability mechanisms in the product line architecture model. In 

addition, variability information can also be expressed externally, i.e., outside the model, with 

the support of variant management techniques (VASILEVSKIY et al. 2015; STEINER et al. 

2013). Figure 4.3 shows the activities associated with “SC-PLE-2: Product Line Architectural 

Design” phase. The design of core and variable functional features comprises both hardware 

and software features and their interactions.  

 

Figure 4.3 - SC-PLE-2: product line architectural design phase. 

SC-PLE-2.1: Design of Core Functional Features: core functional features are 

implemented in the product line architecture model. Firstly, for each functional feature, 

systems/subsystems/components architectural elements, their communication ports and 

connections are specified in the structural model. Examples of language-specific architectural 

models are block diagrams in MATLAB/Simulink and packages in AADL. If applicable, the 

component behavior is specified in finite state machines. State machines define states and 

state transitions that may change the structural model leading to changes in component 

configuration modes and port values. In this activity, as shown in Figure 4.4, product line 

engineers specify: (i) systems, their constituent subsystems and components that represent 

each core functional feature, (ii) interfaces between systems/subsystems/components, i.e., 

data, event, event data ports, (iii) connections between architectural elements, and if 

applicable, (iv) state machines associated with one or a group of functional features.  
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Figure 4.4. SC-PLE-2.1: design of core functional features. 

SC-PLE-2.2: Design of Variable Functional Features: optional, alternative, and 

parameterized features are implemented in the product line architecture model following the 

same steps defined in SC-PLE-2.1 activity. In addition, for parameterized features, data 

components are specified and connected to parameterized systems, subsystems, or 

components. Examples of data components are Constant blocks in MATLAB/Simulink, and 

Data subcomponents in AADL. 

SC-PLE-2.3: Define Variability Mechanisms: variability should be explicitly 

specified inside or outside the model. Internal variability mechanisms can be classified into 

the following types (WEILAND and MANHART, 2014):  

 Model adaptation: model elements representing variation points, where the resolution 

of variability leads to a structural adaptation of the architecture model;  

 Conditional model elements: mechanisms to represent optional (Enabler subsystems), 

alternative (Switch), and inclusive-or (Integrator) features (BOTTERWECK et al. 

2010), variability patterns to configure features with hierarchical and dependency 

relationships (i.e., based on the Enabler subsystem and Comparator blocks); and 

patterns to configure variability in finite state machines based on: Subsystem and 

Constant blocks; Enabler subsystem and Constant blocks; and Switch with Constant 

blocks. These patterns are also applicable to structural and state machine models other 

than Simulink; and 
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 Data variability: variant-specific values for calculations denoted as calibration data. 

External variability mechanisms are specified with the support of a variant 

management tool by defining mapping links between product line features and their 

realization in architectural assets. In this activity, the product line engineers specify variability 

mechanisms to represent optional, alternative and parameterized features. These mechanisms 

can be defined in the architecture model or outside the model with the support of a variant 

management tool. At the completion of this phase, the product line architecture model is 

delivered (SC-PLE-2 M1 in Figure 4.3).  

4.2.3 SC-PLE-3 Product Line Safety Analysis 

The product line safety analysis phase encompasses functional hazard assessment and 

component failure analysis in product line domain engineering. Functional hazard assessment 

should be performed from the perspective of a range of product variants and their usage, 

called scenarios. These scenarios are expected to assist safety analysts to precisely identify the 

threats to the system safety, and applicable mitigation strategies across the product line 

design. Such analysis also guides safety analysts in identifying and managing variability in 

the safety analysis, before the generation of assessment artefacts such as fault trees and 

FMEA results. At end of the analysis, the information about variant-specific hazards, their 

causes, severity, and allocated safety requirements are stored into the product line failure 

model. Since architectural and contextual variability directly affect safety properties, 

component failure analysis is intended to identify how architectural components can fail 

and contribute to the occurrence of hazards in a range of usage scenarios. At the 

completion of this phase, the product line failure model with hazard and risk analysis, 

and component failure data is delivered. 

In this thesis, we prescribe a set of techniques to support product line safety analysis 

phase. Use case-based analysis techniques (ALLENBY and KELLY, 2001) and sequence 

diagrams (FENG and LUTZ, 2005) can be used to support the identification of relevant 

scenarios to perform functional hazard assessment. The ICPL algorithm (JOHANSEEN et al. 

2012) supports combinatorial analysis of feature models for generating relevant product 

variants to be considered in software product line testing. ICPL algorithm can be used to 

perform combinatorial analysis of safety-critical product line feature model to support the 

automatic identification of critical variants to be considered during the product line safety 

analysis. In this thesis, HiP-HOPS (PAPADOPOULOS et al. 2011), and AADL Error Annex 



Chapter 4 - Variability Management in Product Line Architecture and Safety Models                                            141 

 

(DELANGE and FEILER, 2014) compositional safety analysis techniques were considered 

and used to support product line functional hazard assessment and component failure analysis. 

“Product Line Safety Analysis” is detailed in Chapter 5. 

4.2.4 SC-PLE-4: Product Line Variability Realization Modeling 

Variability realization modeling is intended to establish mapping links between 

functional and usage context features and their realization in architectural components and 

safety analysis assets in the product line variability realization model. In safety-critical 

software product line engineering, these mapping links describe how architecture and safety 

assets can be bound to assembly variant-specific architecture and failure models.  

Feature and context models provide the main information required to specify the 

variability realization model for a safety-critical product line. In this phase, as shown in 

Figure 4.5, product line engineers define:  

i) A set of composition rules to derive a range of product variants. These rules consist in 

different combinations between functional and context features grouped into feature 

expressions that represent product variants (SC-PLE-4.1). Each feature expression 

represents an architectural or a safety-related variant, e.g., a variant associated with a 

variation point defined in the product line safety analysis model;  

ii) Mapping links between feature expressions (i.e., design variants) and their realization 

in the product line architecture model such as systems, subsystems, components, their 

ports and connections, data parameters, and finite state machines associated with these 

structural elements, considered to be included (replacement) and excluded (placement) 

when functional variants are selected (SC-PLE-4.2); and  

iii) Mapping links between feature expressions representing safety-related variants and 

safety-related information, such as hazards and their causes, and component failure 

analysis stored into the product line failure model, considered to be included and 

excluded when variability in the safety model is resolved for the chosen safety-related 

variant specified in the resolution model (SC-PLE-4.3). After performing these tasks, 

the binding points for the realization of architectural and safety-related variants are 

stored into the variability realization model and delivered (SC-PLE-4 M1), and this 

phase is completed. These binding points support the derivation of variant-specific 

architecture and failure models. The reused safety model contributes to reduce the 
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complexity of variant-specific safety analysis, and allows the automatic generation 

fault trees and FMEA results from the reused safety assets as detailed in Chapter 5. 

 

Figure 4.5. SC-PLE-4: product line variability realization modeling phase. 

In this thesis, variant management techniques were considered to support the 

variability realization modeling phase. Pure::variants (PURE::SYSTEMS, 2016) provides 

support for negative variability (CLEMENTS and NORTHROP, 2001), i.e. the product 

derivation is based on the activation and deactivation of model elements according to the 

selection of product variants. Model transformation tools, e.g., BVR (VASILEVSKIY et al. 

2015) and Hephaestus/Simulink (STEINER et al. 2013), provide support for positive 

variability, meaning that product derivation yields variant-specific models that contain only 

model elements that correspond to the chosen variants. Existing variant management 

techniques do not provide mechanisms to support variability management in the safety model. 

Therefore, their variability management mechanisms should be adapted by extending the 

variability realization model to support the management of variability in the safety model. 

The steps to integrate variant management into compositional safety analysis are detailed in 

Section 4.3.  

SC-PLE-4.1: Define product variants: from the analysis of functional and context 

features, feature model constraints, and usage scenarios used to conduct product line safety 

analysis, product line engineers define architectural and safety-related variants. These variants 

can be represented by feature expressions. A feature expression can be composed by one or 

more features connected via “AND”, OR”, “NOT” logical operands required to describe a 

given variant. Variants are mapped to transformations to be performed into the product line 
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architectural and failure models during the “SC-PLE-7: Product Derivation” phase. Firstly, 

application engineers define variants associated with functional features, and safety-related 

variants associated with context features are defined later. 

SC-PLE-4.2: Mapping variants to product line architecture model elements: after 

specifying functional variants, product line engineers define, for each functional variant, the 

architectural model elements to be (i) included and/or (ii) excluded, when functional variants 

are resolved during the product derivation phase.  

SC-PLE-4.3: Mapping variants to product line failure model elements: safety-

related variants should be linked to their realization in the product line failure model. In this 

task, product line engineers and safety analysts define how safety-related variants can be 

composed for deriving different product variants. For each usage scenario considered during 

the product line safety analysis, i.e., product variant and its associated usage context, the 

following is defined: (i) the functional hazard assessment data to be included, and (ii) for each 

architectural component that realizes a given functional variant, the corresponding failure data 

associated to that component is considered to be included when safety-related variants are 

resolved in product derivation phase. Thus, the variability realization model is delivered and 

this phase is completed (SC-PLE-4 M1).   

4.2.5 SC-PLE-5: Resolution Modeling 

Resolution modeling is the first variability management phase in application 

engineering. Resolution modeling is intended to choose product line architectural and safety-

related variants that address the requirements of a particular product variant. Based on the 

product requirements, the application engineer creates a product feature model by selecting 

functional and usage context features. Then, the product feature model (i.e., the resolution 

model) is delivered and this phase is completed. 

4.2.6 SC-PLE-6: Product Derivation 

After specifying the rules to bind architectural and safety analysis assets to design 

and context features in the variability realization model, and defining the resolution 

model, variability is resolved with the support of a variant management tool, and a 

product variant is derived. In existing variant management tools such as BVR and 

Hephaestus/Simulink (STEINER et al. 2013), the product line engineer should provide 
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the following input artefacts for product derivation: product line feature model (FM - 

Feature Model), the resolution model (IM - Instance Model), product line architecture and 

failure models (PLA - Product Line Assets), and the product line variability realization 

model (CK - Configuration Knowledge) as illustrated in Figure 4.6. The feature model 

specifies common and variable functional and context features. Instance model defines 

variant-specific functional and context features. Product line assets represent architectural 

model elements, e.g., blocks in MATLAB/Simulink or AADL system components, and failure 

behavior information. The variability realization model establishes mapping links between 

features to their realization in product line architecture and failure models. Whereas existing 

variant management techniques do not provide native support for variability management in 

the safety model, they should be adapted by following a set of guidelines presented in section 

4.3. In this thesis we have adapted the BVR tool to support variability management in HiP-

HOPS and OSATE AADL Error Annex failure models, and Hephaestus/Simulink to manage 

variability in the HiP-HOPS failure model. 

 

Figure 4.6. Product line variability resolution process (Adapted from STEINER et al. 2013). 

Variability resolution in the BVR (VASILEVSKIY et al. 2015) and 

Hephaestus/Simulink (STEINER et al. 2013) tools usually starts with evaluation of features 

specified in the instance model and feature expressions (i.e., variants) specified in the 

variability realization model (CK). Model transformations associated with variants evaluated 

as “true”, i.e., when model elements have to be included in the final product, and variants 

evaluated as “false”, i.e., when model elements have to be excluded in the final product, are 

applied to the product line architecture and failure models. The output of this phase is a 

variant-specific architecture and failure models, e.g., a MATLAB/Simulink model enhanced 

with HiP-HOPS failure annotations, or an AADL model and its respective failure model. 
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Variant-specific compositional safety analysis can be performed from the reused architecture 

and failure models, to generate fault trees and FMEA safety assessment artefacts. 

Variant-specific requirements not covered by product line architecture can be 

developed and integrated to the derived product architecture. The addition of functional 

requirements to a given product variant requires performing safety analysis, in the same way 

as described in the SC-PLE-3 phase, to identify potential hazards that can emerge from the 

interactions between newer system functions and reused architectural components. After that, 

safety assessment artefacts such as fault trees and FMEA results can be generated, with the 

support of compositional safety analysis techniques, from the reused safety analysis 

information. Additionally, variant-specific system functions and their associated safety 

analysis information can be further incorporated to the product line asset base. In this case, 

product line engineers should update the product line feature (SC-PLE-1), architecture (SC-

PLE-2), failure (SC-PLE-3 and SC-PLE-4), and variability realization models (SC-PLE-4) in 

domain engineering to support the systematic reuse of the newer functions and their safety-

related data. 

4.3 Integrating Variant Management into Compositional Safety Analysis 

Existing variant management techniques and tools were not originally designed to 

address variability management in safety analysis models. Therefore, to support the 

management and resolution of safety-related variability found in safety models, variant 

management tools should be adapted to support the specification of mapping links between 

features and their realization in the safety model in the variability model. In addition, it is also 

necessary to adapt their variability resolution process to support the resolution of variability in 

the safety model during product derivation phase. This section presents a method to adapt 

variant management tools to support the variability management in safety models. The 

proposed method was extracted from the analysis of existing variant management tools, which 

it has been identified that they share similar concepts to manage variability in product line 

assets.  

Table 4.1 shows the identified concepts shared by four different variant management 

tools. In both tools, variability is specified in the feature model, mapping links between 
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features and their realization in product line assets are defined in the variability realization 

model, and the instance model is obtained by choosing variants defined in the feature model. 

These tools provide pluggable interfaces to enable support for variability management in 

different product line assets. For example, pure::variants (PURE::SYSTEMS, 2016) provides 

adapters to support variability management in different models such as UML/SysML and 

MATLAB/Simulink. Hephaestus/Simulink is a connector plugin that implements the 

Hephaestus (TURNES et al. 2012; BONIFÁCIO et al. 2009) adapter interface to support 

variability management in MATLAB/Simulink models. BVR (VASILEVSKIY et al. 2015) 

and CVL (HAUGEN et al. 2008) provide adapter interfaces that can be implemented to 

enable variability management in different models from different languages based on the 

Eclipse Modeling Framework platform. 

Table 4.1 – Input models and product line tools. 

Product Line Tool/ 

Model 

Feature 

Model 

Instance 

Model 

Variability 

Realization Model 

Asset Model 

 

BVR/CVL 

 

Variability 

Specification 

Model 

 

Variability 

Resolution 

Model 

 

Variability 

Realization Model 

 

Abstract Asset Model 

Interface, Default 

Connector: Papyrus 

UML2 

 

 

Hephaestus-

Simulink 

Feature Model Instance 

Model 

Configuration 

Knowledge 

Abstract Asset Model 

Interface,  

Simulink Connector 

 

pure:variants Feature Model Instance 

Model 

Variant Model Abstract Asset 

Interface 

Connectors: Simulink, 

C++, Papyrus UML2 

Figure 4.7 shows the core structure of a variant management tool, created based on the 

concepts shared by variant management tools shown in Table 4.1. The core module comprises 

the variability realization model, variability specification model, variability resolution model, 

and asset model components, and a variability resolution control component. The “Variability 

Resolution” component provides a set of transformations to be applied to product line assets 

during product derivation. The “Variability Resolution” component supports product 

derivation by analyzing the information provided by variability specification, resolution, and 

realization models, to apply transformations into product line assets, e.g., requirements, 

architecture, to derive variant-specific models during product derivation phase. The 

“Variability Resolution” component is connected to the variability specification, resolution 

and realization data components via “Data Access” interfaces. “Variability Specification” and  
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Figure 4.7. Extending product line tools to support variability management in the safety model. 

 “Resolution” models conform to a “Feature” metamodel, which may vary from a variant 

management tool to another. For example, in BVR, variability specification and resolution 

models comply with FeatureIDE metamodel (CZARNECKI et al. 2004). The variability 

realization model also conforms to a tool-specific variability metamodel. Variability 

metamodels provided by existing variant management tools conform to the concepts of 

“Variation Point”, “Variant”, and relationships between variants and product line assets 

defined in the generic variability metamodel proposed by Bachmann et al. (2003) detailed in 

Section 2.5.1.1. 

Variant management tools such as BVR, CVL, Hephaestus, and pure::variants provide 

an “Asset Model Connector” interface for interoperability between different product line 

assets. It allows the development of adapters to support variability management in different 

types of product line assets. In general, variant management tools provide connectors for 

requirements, design, architecture (i.e., “Architectural Model Connector” shown in Figure 

4.7), component, source code, or test case artefacts. Implementations of “Asset Model 

Connector” interface provide the structure of the product line assets, which variability should 

be managed, and parsers that allow variant management tools handling these assets during 

product derivation.  
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Adapting a variant management tool requires: defining the structure and a parser for 

the safety analysis model (failure model) in which variability is intended to be managed 

(“Failure Model Connector” in Figure 4.7), and in some cases, e.g., Hephaestus, defining 

model transformations to be applied to the targeted safety model during product derivation 

process (“Safety Variability Resolution” component in Figure 4.7). BVR and CLV variant 

management tools do not require the definition of transformations to be applied to the target 

safety analysis model since their variability resolution mechanisms are capable of interfacing 

with third-party editors via “IBVREnabledEditor” interface. Therefore, the targeted 

compositional safety analysis editor (“Failure Model Connector” in Figure 4.7) has to 

implement this interface or providing adapters for linking the target compositional safety 

analysis editor to the BVR toolset. BVR is detailed in Section 2.5.3.1. The BVR architecture 

supports seamless integration with different model editors in the Eclipse Modeling 

Framework platform, e.g., OSATE AADL/Error Annex, Papyrus UML. The 

“IBVREnabledEditor” adapter interface provided by BVR is equivalent to the “Asset Model 

Connector” interface shown in Figure 4.7. 

The proposed method is applicable to orthogonal variant management techniques 

whose variability is documented in a dedicated model, i.e., in the product line variability 

model (METZGER and POHL, 2014). In this thesis, we have applied the method presented in 

this section to adapt the BVR toolset to support variability management in MATLAB-

Simulink/HiP-HOPS, and OSATE AADL/Error Annex models; and Hephaestus/Simulink to 

support variability management in HiP-HOPS failure model. The following sections describe 

the adaptations performed in BVR and Hephaestus/Simulink variant management tools. BVR 

and Hephaestus/Simulink were chosen by interfacing with MATLAB/Simulink and Eclipse 

Modeling Framework platform and by being open source. 

4.3.1 BVR Adapters 

In this thesis, adapters have been developed to integrate BVR variant management tool 

to manage variability in architectural and safety analysis models developed with the support 

of MATLAB-Simulink/HiP-HOPS and OSATE AADL/Error Annex model-driven 

development and compositional safety analysis tools. Figure 4.8 illustrates the relationships 

between the developed adapters, third-party modeling tools, and the BVR toolset. The BVR 

adapters extend third-party modeling editors by implementing the “IBVREnabledEditor” 

interface to allow the BVR toolset communicating with third-party model editors to manage  
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Figure 4.8. BVR adapters to support variability management in compositional safety analysis. 

variability in architecture and failure models developed with the support of these editors. 

Whereas BVR toolset is built upon the EMF platform (ECLIPSE, 2016), the developed BVR 

adapters were implemented as Eclipse-based plugins. 

Figure 4.9 shows the UML class diagram for the HiP-HOPS BVR adapter. 

“HiphopsEditor” extends “MultipageEditorPart” abstract class provided by the EMF 

platform, which represents the tree view editor for the HiP-HOPS failure model. The 

“HiphopsBVRAdapter” extends the HiP-HOPS model editor by implementing the 

“IBRVEnabledEditor” interface to allow the BVR toolset communicating with HiP-HOPS fai-  

 

Figure 4.9. HiP-HOPS BVR adapter UML class diagram. 
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lure model editor. “HiphopsBVRAdapter” provides concrete implementations for abstract 

methods defined in the BVR adapter interface to allow the BVR toolset handling HiP-HOPS 

model elements during variability modeling and product derivation. The full source code for 

the “HiphopsBVRAdapter” class is available in Appendix A. MATLAB/Simulink and 

OSATE AADL/Error Annex BVR adapters have the same structure defined in the class 

diagram shown in Figure 4.9. The detailed description to develop adapters for the BVR 

toolset can be found elsewhere (VASILEVSKYI et al. 2015). 

4.3.2 Hephaestus/Simulink HiP-HOPS Extension 

The architecture of Hephaestus/Simulink comprises the following modules: “Core”, 

“Feature Modeling”, “Configuration Knowledge”, “SPL Assets” and “Transformations” 

illustrated in Figure 4.10. “Feature Modeling” module defines the structure for the product 

line feature and instance models and also provides a model parser for the feature model. The 

“SPL Assets” module defines the structure for the Simulink model in a data type 

(metamodel), and it provides a parser for this model. The “Configuration Knowledge” module 

defines the structure for the Hephaestus variability model in a data type, and it provides a 

parser for this model. The “Transformations” module defines models transformations to be 

applied to a Simulink model when variability is resolved during product derivation. Finally, 

the “Core” module provides mechanisms for managing variability in the Simulink model. The 

configuration knowledge, feature model, instance model, and the Simulink models are input 

artefacts to the Hephaestus/Simulink core module resolving variability during the product 

derivation process.     

Since HiP-HOPS compositional safety analysis tool is integrated to the 

MATLAB/Simulink tool, both system design and safety analysis is stored into the Simulink 

model. In order to support variability management in the HiP-HOPS failure model, 

represented by annotations in the Simulink model, the Simulink data type and model parser 

defined in the Hephaestus/Simulink were extended with the addition of information about the 

structure of the HiP-HOPS failure model such as identifiers for hazard and component failure 

data. Simulink model transformations, detailed in Section 2.5.3.2, have also been changed to 

support variability management in HiP-HOPS failure model stored into the Simulink model. 

In the same way as in BVR tool, the adaptation of the Hephaestus/Simulink did not require 

changing its variability model and variability resolution process. 
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Figure 4.10. Hephaestus/Simulink variant management tool. 

4.4 Variability Management Case Study: Hybrid Braking System SPL 

The safety-related variability management approach and tooling presented in this 

chapter was validated in a Hybrid Braking System (DE CASTRO et al. 2010) automotive 

product line (HBS-SPL) case study. The HBS-SPL was not originally designed as a product 

line, but it was adapted by adopting an extractive product line development strategy 

(CLEMENTS and NORTHROP, 2001). Three different HBS-SPL variants were considered in 

this case study: four wheel braking (4WB), front wheel braking (FWB), and rear wheel 

braking (RWB). HBS-SPL safety analysis was performed by considering these three variants. 

HBS-SPL architecture and failure models were specified with the support of 

MATLAB/Simulink model-based development environment and HiP-HOPS compositional 

safety analysis tool integrated to MATLAB/Simulink. The BVR variant management toolset, 

together with BVR adapters for MATLAB/Simulink and HiP-HOPS developed in this thesis, 

were used to support variability management in the HBS-SPL architecture and failure models. 

The following sections present the HBS-SPL variability modeling, management and 

resolution phases.  
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4.4.1 SC-PLE Phase 1: HBS-SPL Feature Modeling 

The Hybrid Braking System (HBS) addresses electric vehicles system integration, in 

particular propulsion architectures that integrate one electrical motor per wheel (DE CASTRO 

et al. 2010). The term hybrid comes from the fact that braking is achieved through the 

combined action of the electrical In-Wheel Motors (IWMs) and frictional Electromechanical 

Brakes (EMBs). One of the most important features of this system is that the integration of 

IWM in the braking process enables an increase in the vehicle’s range: while braking, IWMs 

work as generators and transform the vehicles kinetic energy into electrical energy that feed 

the powertrain battery. HBS was developed based on ISO 26262 functional safety for 

automotive passenger cars safety standard. From the analysis of the HBS (DE CASTRO et al. 

2011) MATLAB/Simulink architecture model, by adopting an extractive strategy, common 

and variable wheel braking system functions have been identified. Figure 4.11 shows the 

HBS-SPL feature model in Feature-Oriented Domain Analysis notation specified using the 

Feature IDE
17

 modeling tool. 

The following core features have been identified: “MechanicalPedal”, a hardware 

device aimed to capture the driver presses; “ElectronicPedal”, a hardware device that senses 

and processes the actions from the mechanical pedal; “Bus1” and “Bus2”, which are software 

components that send wheel braking forces to the wheel braking units; “Auxiliary Battery”, a 

hardware device responsible for feeding, with energy, the electromechanical brake units while 

braking; and “Powertrain Battery”, which stores the electrical energy produced by in-wheel 

motors. Variability has been identified in the wheel braking capability denoted by the “Wheel- 

 

Figure 4.11. HBS-SPL feature model. 

                                                 
17 http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/ 
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Braking” feature group, which comprises four wheel braking alternative features: 

“FrontWheelBrakeUnit1” and “FrontWheelBrakeUnit2”, for left and right front wheel 

braking subsystems, and “RearWheelBrakeUnit3” and “RearWheelBrakeUnit4”, for left and 

right rear wheel braking subsystems. Wheel braking features can be composed into different 

ways, deriving different automotive braking system variants. Constraints are present in the 

HBS-SPL feature model to show how wheel braking features can be composed in a product 

variant. For example, ¬
 

FrontWheelBrakeUnit1 ^ (RearWheelBrakeUnit3 v 

RearWheelBrakeUnit4) constraint denotes that “FrontWheelBrakeUnit1” and 

“RearWheelBrakeUnit3” is an invalid configuration choice, and that “FrontWheelBraking1”, 

“FrontWheelBraking2” and “RearWheelBraking3” is a valid configuration choice. These 

constraints delimit the variability scope to a set of product variants. These variants were 

defined in the product line usage context model.  

The definition of product variants and contextual elements that may impact in the 

safety properties is important to achieve the systematic reuse of both architecture and safety 

analysis in application engineering. This is done by associating functional variants, i.e., a 

combination between functional features, to their possible usage defined in context features. 

Such analysis provides a set of variants to be further considered to support the systematic 

reuse of components and safety analysis. For HBS-SPL, seven product variants have been 

identified as shown in Figure 4.12. These variants differ from each other in the number of 

wheel brake units and the way as they are combined. For example, “Front Wheel Braking” 

(FWB) variant differs from “Four Wheel Braking” (4WB) variant by the absence of rear 

wheel brake units. “Rear Wheel Braking” (RWB) variant differs from “4WB” by the absence 

of front wheel brake units. The identified product variants can be deployed in a car, truck, or a 

military automotive vehicle. Such variation was also defined in the usage context model. The 

composition of wheel braking and vehicle variants leads to 21 different HBS-SPL product va- 

 

Figure 4.12. HBS-SPL usage context model. 
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riants, i.e., combinations between system variants and their usage contexts. 

4.4.2 SC-PLE Phase 2: HBS-SPL Architectural Design 

HBS-SPL was designed in MATLAB/Simulink. Figure 4.13 illustrates the HBS-SPL 

architecture model in a SysML block diagram. The HBS-SPL architecture comprises 30 

model components: 4 wheel braking unit subsystems (one per wheel), which each one 

comprises 6 components, 1 electronic pedal component, 1 mechanical pedal component, 2 

battery components, and 2 communication buses components. “Communication buses” 

represent a duplex bus communication system that sends the wheel braking forces to the 

wheel brake units. “Auxiliary Battery” is a hardware device responsible for feeding the 

electromechanical brakes while braking, and “Powertrain Battery” stores the electrical energy  

produced by “In-Wheel Motors”. 
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Figure 4.13. HBS-SPL architecture model. 
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Each wheel “Brake Unit” integrates a “Wheel Node Controller” (Figure 4.14), which 

calculates the amount of braking torque to be produced by each wheel braking actuator, and it 

sends commands to “EMB” and “IWM” power converters that control “EMB” and “IWM” 

braking actuators. “In-Wheel Motor” (IWM) actuator decreases the vehicle kinetic energy 

converting it into electrical energy. IWMs have, however, braking torque availability 

limitations at high wheel speeds or when the “Powertrain Battery” is close to full state of 

charge. Thus, the “Electromechanical Braking” (EMB) actuator is used dynamically with 

IWMs to provide the required braking torque to address the total braking demand. While 

braking, the electric power flows from the “Auxiliary Battery” to “EMB” via “EMB Power 

Converter”; and IWM acts as a power generator providing energy for the “Powertrain 

Battery” via “IWM Power Converter”. Finally, “Add” component outputs the braking torque 

and the generated power while braking. 

The way in which wheel brake unit subsystems are connected to each other, auxiliary 

and powertrain batteries components might change according to the selection of wheel braking 

alternative features specified in the HBS-SPL feature model. Such variation is not expressed 

in the HBS-SPL architecture model; it was defined outside the model with the support of BVR 

(VASILEVSKYI et al. 2015) variant management tool (see section 4.4.4).  
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Figure 4.14. Wheel brake unit subsystem. 

4.4.3 SC-PLE Phase 3: Product Line Safety Analysis 

Functional hazard assessment and component failure analysis were performed by 

considering the following usage scenarios: “4WB”, “FWB”, and “RWB”. The analysis was 

constrained to these scenarios to reduce the complexity, since performing safety analysis by 
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considering all HBS-SPL variants would be prohibitive in the real world. HBS-SPL variants 

were analyzed from the safety perspective by considering the ISO 26262 hazard and risk 

assessment processes. The extended HAZOP (HaZard and OPerability) analysis technique 

supported by the HiP-HOPS compositional safety analysis tool (PAPADOPOULOS et al. 

2011), was used to perform the HBS-SPL safety analysis.  

Variability in the safety analysis model can be found in functional hazard assessment 

data, as shown in Table 4.2. Different failure conditions may cause the “Value braking” 

hazard in “4WB”, “FWB” and “RWB” system variants. This example shows how architectural 

variation might directly impact in the safety properties. In the “4WB” system variant, 

“incorrect values of all brake unit actuator outputs” can cause this hazard. On the hand, 

“incorrect values of front wheel braking actuator outputs” lead to the occurrence of this 

hazard in the “FWB” variant. The impact of architectural variation in the safety properties is 

further propagated throughout component deviations that may contribute to the occurrence of 

system-level failures identified during component failure analysis. Different components may 

contribute to hazards in different product variants, as illustrated in Table 4.3. 

“BrakeUnit3.IWMPowerConverter” component failures contribute to hazards in “RWB” 

variant, and “BrakeUnit1.IWM” failures contribute to hazards in “FWB” variant. Product line 

safety analysis information is stored into the failure model. HBS-SPL safety analysis is 

further detailed in Chapter 5. 

Table 4.2 - Variability in product line functional hazard assessment. 

Variant Hazard ID Failure Condition ASIL 

Four Wheel Braking (4WB) 

Deployed into an Automotive Car 

Vehicle 

 

4WB_Value_braking Incorrect Value of all brake unit actuator 

outputs 

D 

Front Wheel Braking (FWB) 

Deployed into an Automotive  

Car Vehicle. 

FWB_Value_braking Incorrect Value of BrakeUnit1 AND 

BrakeUnit2 actuator outputs. 

D 

Table 4.3 – Variability in product line component failure logic. 

Component Impl/Current Output 

Deviation 

Failure Expression 

 

 

BrakeUnit3.IWMPowerConverter 

 

 

RWB/No 

Omission-Out1 Omission-In1 or OFailure1 or 

Omission-In2 

Omission-Out2 Omission-In1 or OFailure1 

 

Value-Out1 Value-In1 or Value-In2 or VFailure1 

 

Value-Out2 

 

Value-In1 or VFailure1 

 

BrakeUnit1.IWM 

 

FWB/No 

 

Omission-Out1 

 

OFailure1 or Omission-In1 or 

Omission-In2 
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4.4.4 SC-PLE Phase 4: HBS-SPL Variability Realization Modeling 

BVR variability management tool (VASILEVISKIY et al. 2015) and its adapters 

for MATLAB/Simulink and HiP-HOPS were used to support the specification of the 

product line variability realization model. BVR toolset provides a set of tools and editors to 

support standard variability modeling activities: feature modeling, variability realization 

modeling, and product derivation. A full description of how to configure the variability 

realization model in the BVR toolset for a given product line can be found in 

VASILEVISKYI et al. (2015) and HAUGEN and OGRAD (2014). In this phase, 

composition rules describing mapping links between HBS-SPL functional and usage 

context features and their realization in MATLAB/Simulink architecture and HiP-HOPS 

failure models were defined. These mappings were defined from the analysis of the HBS-

SPL feature, architecture and failure models. From the analysis of the HBS-SPL feature 

and context models, the following variation points have been identified: “Wheel 

Braking”, a functional variation point that specifies different ways that wheel brake units 

can be combined to derive a product variant; “Braking”, which defines the product 

variants that impact in the safety properties, and “Automotive Vehicle” variation point, 

which encapsulates variation on the targeted automotive vehicle where “Braking” 

variants can be deployed. The combination of “Braking” and “Automotive Vehicle” 

variation points directly impacts in the definition of the product failure model. For this 

case study, mapping links between feature and their realization in architectural and safety 

analysis models were defined by considering: “4WB”, “FWB”, and “RWB” product 

variants deployed in a car vehicle. 

The specification of the HBS-SPL variability realization model using BVR toolset 

was performed in two steps. Firstly, the variability specification model was defined based 

on the product line feature and context models. Finally, the variability realization model 

was defined by linking variants to placement and replacement fragments referencing 

architectural and failure model elements, via fragment substitutions. Fragment 

substitutions define the architectural and failure model elements to be included and 

excluded when the underlying variant is considered to be bound during product 

derivation. 

Figure 4.15a shows the HBS-SPL variability specification model designed with the 

support of BVR toolset. Core features represent “Auxiliary Battery”, “ComBus1”, 
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“ComBus2”, “ElectronicPedal”, “MechanicalPedal”, and “PowertrainBattery” 

mandatory features shown Figure 4.11. “FourWheelBrakeUnits”, 

“FrontWheelBrakeUnits”, and “RearWheelBrakeUnits” represent wheel braking 

architectural variants, i.e., combinations between wheel brake unit alternative features 

shown Figure 4.11. “4WB_Car”, “FWB_Car”, and “RWB_Car” shown in Figure 4.12, 

respectively represent “FourWB”, “FrontWB”, and “RearWB” variants deployed in a car 

vehicle. These variants impact in the resolution of variability in the product line failure 

model. A fragment substitution was created for each variant defined in the BVR 

variability specification model (Figure 4.15a), as illustrated in Figure 4.15b. Each 

fragment substitution contains one placement and one replacement fragment. Placements 

define model elements to be removed when variability is resolved for a given product 

variant. Placement elements represent variability mechanisms in the model. Replacements 

are used to define model elements to be included when variability is resolved for a given 

product variant (HAUGEN and OGRAD, 2014). Figure 4.15b shows the “Arch_4WB” 

replacement fragment associated with “FourWheelBrakeUnits” architectural variant. This 

fragment indicates that “Brake_Unit1”, “Brake_Unit2”, “Brake_Unit3”, and 

“Brake_Unit4” wheel braking subsystems are included in the product architecture model 

when variability is resolved for “FourWheelBrakeUnits” variant. Therefore, mapping 

links between functional and usage context features and their realization in the 

architecture model are obtained in the variability realization model. 

 

Figure 4.15. HBS-SPL variability specification and realization models in BVR toolset. 
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In the HBS-SPL variability modeling, firstly, a replacement fragment is defined 

for linking “Core” feature to the auxiliary battery, communication buses, electronic 

pedal, mechanical pedal, and powertrain battery MATLAB/Simulink architectural  

components (see Figure 4.12), as shown in Table 4.4. Fragment substitutions for linking 

Wheel Braking variants to architectural model elements were also specified. For each 

variant, fragment substitutions composed by placement and replacement fragments were 

defined. These fragment substitutions define how variability is resolved when “Wheel 

Braking” variants are chosen in the resolution model. Table 4.4 shows placement and 

replacement fragments associated with other wheel braking variants. 

“FrontWheelBraking” replacement fragment defines that “Brake Unit1” and 

“Brake_Unit2” subsystems and their connections with battery components should be included 

in the resolved architecture model when “FrontWheelBrakeUnits” variant is chosen. On the 

other hand, “FrontWheelBraking” placement fragment determines that “Brake Unit3” and 

“Brake Unit4” subsystems and their connections with battery components are variability 

mechanisms that should be removed from the architecture model when variability is 

resolved for this variant. 

Table 4.4 – Wheel braking variants and associated fragments. 

Variation 

Point 

Variant Fragment  

 

Architectural Model Elements 

 

Core 

 

Core 

 

Replacement 

 

Auxiliary Battery, Communication Bus1, 

Communication Bus2, Electronic Pedal, Mechanical 

Pedal model blocks and their connections. 

 

 

 

 

 

 

 

 

Wheel 

Braking 

 

 

 

 

FrontWheelBraking 

 

Placement Brake_Unit1, Brake_Unit2, Brake Unit3, and Brake 

Unit4 subsystems and their connections. 

 

Replacement Brake Unit1 and Brake_Unit2 subsystems and their 

connections with Auxiliary and Powertrain batteries. 

 

 

 

RearWheelBraking 

 

Placement Brake Unit1 and Brake Unit2, Brake Unit3, and Brake 

Unit subsystems and their connections. 

 

Replacement Brake Unit3 and Brake_Unit4 subsystems and their 

connections with Auxiliary and Powertrain batteries. 

 

 

 

FourWheelBraking 

 

Placement Brake_Unit1, Brake_Unit2, Brake Unit3 and 

Brake_Unit4 subsystems and their connections. 

 

Replacement 

 

Brake_Unit1, Brake_Unit2, Brake Unit3, and Brake 

Unit4 subsystems and their connections. 
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After specifying fragment substitutions for HBS-SPL architectural components, 

fragment substitutions were specified to define how variability in the product line failure 

model is resolved when “4WB_Car”, “FWB_Car”, and “RWB_Car” safety-related 

variants, i.e., variants in the product line failure model, are chosen in the resolution 

model. Table 4.5 shows an excerpt of the mappings linking safety variants to their 

realization in the product line safety analysis (failure model). When “4WB_Car” safety 

variant is chosen, hazards and component failure data associated with “FWB_Car” and 

“RWB_Car” variants, specified in a placement fragment, are removed from the failure 

model, and variant-specific safety information, specified in the replacement fragment, are 

included in the resolved model. 

Table 4.5 – Braking/Automotive Vehicle variants and their associated fragments. 

Variation Point 

 

 

Variant Fragment 

 

 

Failure Model Elements 

Hazard and Risk    

Analysis Data 

Failure Data 

 

 

 

 

 

 

 

 

 

 

Braking/ 

Automotive Vehicle 

 

 

 

 

 

 

4WB_Car 

 

 

 

Placement 

No_braking_four_wheels, 

No_braking_three_wheels,  

No_braking_diagonal, 

4WB_No_braking_front, 

4WB_No_braking_rear,  

4WB_Value_braking, 

RWB_No_braking_rear, 

RWB_Value_braking 

RW-BU3WNCImpl, 

RW-U4WNCImpl, 

… 

 

 

Replacement 

No_braking_four_wheels, 

No_braking_three_wheels, 

No_braking_diagonal, 

4WB_No_braking_front, 

4WB_No_braking_rear,  

4WB_Value_braking 

 

BU1WNCImpl, 

BU2WNCImpl, 

BU3WNCImpl, 

BU4WNCImpl, 

… 

 

 

 

 

FWB_Car 

 

Placement No_braking_four_wheels, 

No_braking_three_wheels,  

No_braking_diagonal, 

4WB_No_braking_front, 

4WB_No_braking_rear,  

4WB_Value_braking, 

RWB_No_braking_rear, 

RWB_Value_braking 

 

RW-BU3WNCImpl, 

RW-BU4WNCImpl, 

BU3WNCImpl, 

BU4WNCImpl, 

… 

 

Replacement FWB_No_braking_front, 

FWB_Value_braking 

BU1WNCImpl, 

BU2WNCImpl, 

… 

Figure 4.16 illustrates the relationships between HiP-HOPS failure model elements 

and “FWB_Car” safety-related variant in BVR and HiP-HOPS model editors. When 

placement and replacement fragments are selected in the variability realization model, the 

corresponding HiP-HOPS model elements are highlighted in the HiP-HOPS model EMF-

based editor. Placement fragments are highlighted in red, and replacements in blue. 
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Figure 4.16a shows that when “S_FWB” placement fragment is selected, failure model 

elements representing variability mechanisms are highlighted in red. Figure 4.16b also 

illustrates that when “S_FWB” replacement fragment is selected, failure model elements 

to be included in the product failure model when variability is resolved for the 

“FrontWB” variant are highlighted in blue. The graphical user interface provided by BRV 

toolset, and the developed adapter plugins reduced the complexity to defining mappings 

linking features to their realization in architectural components and safety analysis assets 

in the variability realization model. The delivered HBS-SPL variability realization model 

comprises 6 fragment substitutions, 2 placements and 6 replacement fragments. 3 

fragments substitutions are associated with architectural model elements, and 3 fragment 

substitutions are associated with failure model elements.  

 

Figure 4.16. HBS-SPL variability realization and failure models in BVR tool. 

4.4.5 SC-PLE Phases 5 and 6: Resolution Modeling and Product Derivation 

Phases 

In product line application engineering, the resolution model is defined, with the 

support of the BVR resolution model editor, according to variant-specific requirements. Thus, 

functional and safety-related variants defined in the product line feature model are chosen. 

For this case study, resolution models were defined for: HBS-4WB, HBS-FWB, and HBS-

RWB variants show in Figure 4.17. These variants differ from each other in the number of 
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architectural and failure model elements, and in the way as they are combined when 

variability in architecture and failure models is resolved. HBS-4WB variant contains four 

wheel brake units deployed in a car vehicle, and variant-specific failure data denoted by 

“FourWB” usage context feature in Figure 4.17a. HBS-FWB variant comprises front wheel 

brake units and “FrontWB” variant-specific failure data (Figure 4.17b). Finally, HBS-RWB 

comprises rear wheel brake units and “RearWB” variant-specific failure data (Figure 4.17c). 

 

Figure 4.17. HBS-SPL resolution models. 

For each HBS-SPL system variant, the following models were input to the BVR 

toolset resolving variability in product line architecture and failure models during “SC-PLE-6: 

Product Derivation” phase: variability specification, resolution, and realization models, and 

HBS-SPL MATLAB/Simulink architecture and HiP-HOPS failure models. Finally, for each 

variant, BVR was executed to generate variant-specific MATLAB/Simulink architecture and 

failure models. The HBS-4WB architecture model contains both mechanical pedal, and 

electronic pedal that sends the braking outputs to the communications buses.  

Communication buses send braking commands to “Brake_Unit1”, “Brake_Unit2”, 

“Brake_Unit3”, and “Brake_Unit4” components (see Figure 4.13).  

The HBS-FWB system variant differs from HBS-4WB by the absence of rear 

wheel braking units. The HBS-RWB variant differs from HBS-4WB by the absence of 

front wheel brake units. Hazards, their causes, and component failure logic are different 

in each one of these variants. For each HBS-SPL system variant, hazard and risk 

analysis, and component failure data is stored in the failure model together with Simulink 
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architecture model. Therefore, the systematic reuse of both architectural and safety analysis 

is achieved, and product safety assessment can be performed, with the support of 

compositional safety analysis tools, from a reused architecture model enhanced with failure 

data. The variability management approach has also been further validated in the Tiriba Flight 

Control aerospace product line (BRANCO et al. 2011) case study presented in Chapter 8 and 

detailed in Appendix D. 

4.5 Discussion and Limitations 

The variability management approach presented in this chapter provides systematic 

steps to support variability modeling and management in architecture and safety analysis 

models. Such approach supports the traceability of context and design variation throughout 

architectural and safety assets across product line development and safety processes. 

Therefore, variability in functional and usage context features is traced to architectural design. 

Whereas safety is context-dependent, usage context and architectural variation are further 

traced to safety analysis assets, i.e., functional hazard assessment and component failure 

analysis.  

Achieving the systematic reuse of safety analysis data in safety-critical product line 

engineering requires extending existing variant management tools to support the specification 

of mappings linking product line features to their realization in safety analysis in the 

variability model. This chapter has presented a method to support the adaptation of variant 

management tools to support variability management in safety analysis models. Thus, we 

have extended the BVR variant management tool, by creating adapters to support variability 

management in architecture and failure models specified with the support of 

MATLAB/Simulink and HiP-HOPS, and OSATE AADL/Error Annex model-based 

development and compositional safety analysis tools. We also have adapted 

Hephaestus/Simulink to support variability management in HiP-HOPS failure models. The 

complexity of performing such adaptations is dependent upon the characteristics of the 

targeted variant management tool and the available documentation. 

In addition, the systematic reuse of safety analysis in safety-critical product line 

engineering requires the delimitation of the scope of variability in the safety model, and the 
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definition of mapping links between features and their realization in the safety model into the 

variability model. The success of applying such approach is dependent upon the domain 

knowledge of product line engineers and safety analysts in scoping safety variability and 

establishing mapping links between features and their realization in the failure model. Since 

architectural variants directly impacts in safety properties, mappings between features and 

failure model elements should be performed aware of architectural and contextual variants. 

The complexity of the specification of placement and replacement fragments on the 

variability model may increase as the number of architectural and context variants increases. 

More conflicts in the specification of placement and replacement fragments may arise and 

their resolution could become a time consuming task. The variability realization model 

directly impacts in the variability resolution process, whose errors could lead to the derivation 

of wrong variant-specific architecture and failure models. Although variability realization 

modeling is an error-prone task, graphical editors, as provided by BVR toolset, contribute to 

minimize the errors in this phase.  

Adapting a variant management tool is limited to whether they provide adapter 

interfaces that allow extending them to support variability management in the safety model. In 

addition, it is necessary to be aware of how variability is managed and resolved in the targeted 

tool. When adapter interfaces are provided, e.g., which is the case of BVR, CVL, 

Hephaestus/Simulink, and pure::variants, and variability modeling is orthogonal, i.e., product 

line variability is specified in a dedicated model, the adaptation consists in extending this 

interface to create an adapter plugin to support the management and resolution of variability 

in safety analysis models. When adapter interfaces are not provided, the analysis of the 

available documentation is required to identify how variability management and product 

derivation processes were implemented in the tool, to be able to further extend the target tool. 

The guidance to extend variant management tools presented section 4.2 can be used to support 

the identification of basic elements of a variant management tool.  

4.6 Summary 

This chapter presented a variability management approach and tool support for the 

systematic reuse architecture and safety models in safety-critical product line engineering. 

The approach is applicable to different variant management and compositional safety analysis 
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techniques than used in this thesis. A method to support the adaptation of existing variant 

management tools to support variability management in safety models has also been 

proposed. This method was used to adapt BVR and Hephaestus/Simulink variant management 

tools to support variability management in safety analysis models developed with the support 

of HiP-HOPS and OSATE AADL/Error Annex. The proposed approach and tooling provides 

seamless integration between variant management and compositional safety analysis 

techniques. 

BVR toolset and the developed adapters for MATLAB/Simulink and HiP-HOPS were 

used to support the management and resolution of variability in architectural and safety 

analysis models from the Hybrid Braking System automotive product line. Thus, context and 

design variation were linked to their realization in MATLAB/Simulink architecture and HiP-

HOPS failure models, and then, multiple variant-specific Simulink and failure models were 

automatically generated during the product derivation. The reuse of safety analysis data is 

achieved early on safety assessment process, contributing to reduce the effort of safety 

analysts in performing safety analysis for a specific product variant, as illustrated in 

automotive and aerospace product line compositional safety analysis case studies presented in 

Chapters 5 and 8. With the support of existing compositional safety analysis techniques and 

tools, e.g., HiP-HOPS and OSATE AADL, fault trees and FMEAs results can be generated 

from the reused variant-specific architecture and failure models. The following chapter 

presents the product line compositional safety analysis and design optimization approach. 

 



 

Chapter 5 

CAPÍTULO 5 -  PRODUCT LINE COMPOSITIONAL SAFETY 

ANALYSIS AND DESIGN OPTIMIZATION 

5.1 Introduction 

In safety-critical software product line engineering, variation in design and context 

may impact in safety properties identified during hazard and risk analysis, and component 

failure analysis. Therefore, safety analysis in safety-critical product lines should be performed 

aware of context and design variation earlier in domain engineering in order to support the 

systematic reuse of architectural components in a range of different variants. In a safety-

critical product line, safety properties may change according to the selection of product 

variants. Different variants and context lead to different hazards, associated risks to the 

overall system safety, allocated safety requirements, and contributing component failures. 

Variation in safety analysis directly impact in fault trees, FMEA, and safety integrity 

requirements decomposition assessment artefacts that are built upon safety analysis artefacts.  

With the advance of research in the field of system safety engineering, the benefits 

related to traceability and automation provided by model-based safety assessment techniques 

have been recognized by both industry and safety standards (CMU, 2013; LINDEN et al. 

2007). With evolution of model-based development techniques, system safety analysis can be 

performed integrated with system design with the support of compositional safety analysis 

techniques. Compositional safety analysis integrates system and failure modeling in a single 

model, and automates part of the system safety analysis with the provision of automatic 

synthesis of FTA and FMEA from a system model enhanced with failure behavior 

information. Thus, compositional safety analysis techniques contribute to reduce the 
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complexity and supporting the efficient and consistent evolution of design and failure models, 

reducing the costs and improving the quality of the system safety analysis (DOMIS and 

TRAPP, 2008; LISAGOR et al. 2006; JOSHI et al. 2005).  

Compositional safety analysis is effective in gathering safety and reliability 

information of the system, which can be further used to support safety analysts in taking 

architectural decisions. However, since the evaluation of multiple design choices against 

optimization objectives is time consuming, design optimization techniques can be used to 

automate the analysis of candidate solutions against a range of optimization objectives such as 

reliability and cost. In safety-critical systems development, design optimization can be used to 

support the automatic decomposition of safety integrity requirements throughout contributing 

component failures in order to achieve compliance with safety standards without being 

stringent or expensive. In this thesis we have used design optimization techniques to support 

the automatic decomposition of safety integrity requirements in safety-critical product lines 

and their instances (SOROKOS et al. 2015; AZEVEDO et al. 2014; BIEBER et al. 2011). To 

take the benefits of integrating compositional safety analysis and design optimization into 

product line processes it is necessary to consider to impact of context and design variation in 

performing safety analysis. This is necessary to enable the systematic reuse of safety assets in 

domain engineering, and generation of assessment assets in application engineering.  

This chapter presents a model-based approach to support the systematic integration of 

compositional safety analysis and design optimization techniques into safety-critical software 

product line engineering processes. The approach has been instantiated with the support of 

HiP-HOPS and OSATE AADL/Error Annex compositional safety analysis techniques, HiP-

HOPS design optimization techniques, and extensions of variant management tools to support 

variability management in safety analysis models (detailed in Chapter 4). The proposed 

product line compositional safety analysis and design optimization approach has been built in 

compliance with system safety assessment processes defined in ARP 4754A and ISO 26262 

safety standards. In domain engineering, the approach provides support to perform safety 

analysis aware of variation in design and context to enable the systematic reuse of safety 

assets. In application engineering, the approach supports the automatic generation of safety 

artefacts, e.g., fault trees and FMEA, and safety integrity requirements decomposition, using 

compositional safety analysis and design optimization techniques. In this thesis, we have used 

the BVR toolset to support variant management, HiP-HOPS and OSATE AADL/Error Annex 

to support compositional safety analysis, and HiP-HOPS Tabu Search algorithms 
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(AZEVEDO et al. 2013) to support the product line design optimization. The integration of 

variant management, compositional safety analysis and design optimization techniques 

provide automated support for the proposed product line compositional safety analysis 

approach.  

The approach presented in this chapter differs from existing work on product line 

safety analysis (SCHULZE et al. 2013; GOMEZ et al. 2010; HABLI, 2009; LIU et al. 2007; 

DEHLINGER and LUTZ, 2006; DEHLINGER and LUTZ, 2004; FENG and LUTZ, 2005; 

DINGDING and LUTZ, 2002) by making an explicit distinction between reusable safety 

artefacts, in which variability should be managed, and those that should be generated from the 

reused safety artefacts. Such distinction contributes to reduce the complexity of variability 

management in system safety engineering artefacts, and enables the automated traceability of 

context and design variation throughout safety artefacts produced in domain engineering and 

application engineering processes, e.g., safety analysis, fault trees and FMEA results. In 

domain engineering, hazard and component failure analysis are considered reusable safety 

assets for which variability should be managed. Fault trees, FMEA, safety integrity 

requirements decomposition, and assurance case artefacts, which are dependent upon the 

safety analysis, should be generated in application engineering. The approach defines a 

process to perform product line safety analysis in domain engineering to support the 

systematic reuse and generation of safety artefacts in application engineering. This chapter 

presents a systematic approach to integrate compositional safety analysis and design 

optimization into safety-critical software product line engineering, and a method and tool built 

as an extension to HiP-HOPS design optimization technique to support automatic analysis and 

allocation of safety integrity requirements to product line components.  

Section 5.2 presents the phases, activities, tasks, and their input and output artefacts of 

the proposed approach to support: context aware and reuse-driven safety analysis in domain 

engineering, and automatic generation of safety assessment artefacts, with the support of 

compositional safety analysis and design optimization techniques, in application engineering. 

Section 5.3 presents the proposed method and tool to support the automatic allocation of 

safety integrity requirements to safety-critical product line components, addressing 

automotive and aerospace domains. Section 5.4 presents the evaluation of the proposed 

compositional safety analysis approach and product line SIL decomposition tooling based on 

a hybrid braking system automotive case study. Section 5.5 discusses the results and 

limitations. Section 5.6 presents a summary of this chapter. 
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5.2 Product Line Compositional Safety Analysis and Design Optimization 

Approach  

In safety-critical software product line engineering, safety analysis should be 

considered from earlier stages in the domain engineering to support the systematic reuse of 

safety-critical components. The integration of model-based development and compositional 

safety analysis into software product line engineering allows safety analysis to be performed 

in parallel to the system design. Thus, compositional safety analysis allows safety analysts to 

specify the system failure behavior incrementally as the design progresses from the system 

architecture to detailed component level. Compositional safety analysis reduces the 

complexity of safety analysis by adopting a “divide-and-conquer” approach, by breaking 

down the analysis into the characterization of the failure behavior of individual components. 

Therefore, the component failure behavior relates to design components in a clear fashion, 

enabling traceability and systematic reuse of both components and associated failure 

behavior. However, since safety is context dependent, to achieve the systematic reuse of 

design and component failure logic
18

, product line compositional safety analysis should be 

performed aware of the impact context and design variation in system safety properties as 

proposed in this thesis. Such analysis supports the systematic reuse of product line design and 

safety analysis, and automatic synthesis of fault trees and FMEA in application engineering. 

In addition, the integration of design optimization into product line processes supports safety 

analysts in achieving cost effective process-based certification of both product line and their 

instances. In domain engineering, design optimization supports the automatic allocation of 

safety integrity requirements to product line components. In application engineering, design 

optimization supports the automatic decomposition of safety integrity requirements 

throughout component failure modes of a particular system variant.  

Figure 5.1 illustrates the phases of the proposed for product line component safety 

analysis and design optimization approach, which are divided in domain engineering and 

application engineering. The approach was defined in compliance with safety assessment 

processes defined in ARP 4754A and ISO 26262 safety standards, which were adapted to 

address safety-critical product line engineering (OLIVEIRA et al. 2014). For example, the 

                                                 
18Component failure logic: output and input deviations, internal failures of a component, and their causal relationships (LISAGOR et al. 

2006).   
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“SC-PLE-3: Product Line Safety Analysis” phase in domain engineering corresponds to 

Functional Hazard Assessment (FHA) and Preliminary System Safety Assessment (PSSA) 

processes defined in ARP 4754A/ARP 4761A. In addition, the “SC-PLE-3” phase is 

equivalent to Hazard and Risk Analysis tasks defined in ISO 26262 safety lifecycle. In this 

thesis, HiP-HOPS and OSATE AADL/Error Annex compositional safety analysis techniques 

were considered to provide automated support for safety analysis in product line domain 

engineering and application engineering.  

The approach starts from a preliminary product line architecture model, which 

comprises core, optional and alternative systems, subsystems and components. Architecture 

models can be specified using data-flow oriented languages supported by tools such as 

MATLAB/Simulink, SimulationX, SCADE, or using an architectural description language 

such as AADL (SAE, 2012). During safety analysis, the architecture model is annotated with 

information about potential hazards arising in the class of systems potentially derived from 

the product line and its context, and potential failure conditions in architectural components 

leading the these hazards. Up to this point, the SPL architecture model contains substantial 

safety-related information that can be reused for variant-specific safety analysis. 

 

Figure 5.1. Product line compositional safety analysis and design optimization approach. 

In domain engineering, once the product line architecture model has been annotated 

with hazards and component failure logic, with the support of compositional safety analysis 

techniques, variability in architecture and safety analysis models is managed using variant 

management techniques as detailed in Chapter 4. Thus, mapping links between context and 
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design variation and their realization into architecture and safety analysis are specified in the 

variability model. In application engineering, a product variant (“SC-PLE-5”) is defined by 

selecting product line features, and then, derived (“SC-PLE-6”), with the support of a variant 

management tool. In the following, if specific functions/features are added to a variant-

specific architecture model, variant-specific safety analysis should be performed, with the 

support of compositional safety analysis, in the same way as safety analysis in domain 

engineering (“SC-PLE-3”). This is required to assess the impact of the added functions on the 

overall safety of the system architecture by identifying variant-specific hazards and 

component failure modes. Such information provides feedback to the product line safety 

analysis in domain engineering, thus variant-specific functions and their safety analysis can be 

added to the product line asset base for further reuse. Therefore, the product line feature and 

context, architecture, safety analysis, and variability models should be updated. 

Further on the analysis, compositional safety analysis is used to perform the automatic 

synthesis of fault trees and FMEA results for a given product variant from the reused 

architecture and failure models (“SC-PLE-7” in Figure 5.1). Fault trees are generated for each 

variant-specific hazard. A fault tree shows how component failures can be logically combined 

and propagated throughout the architecture leading to the occurrence of a hazard. Later, 

variant-specific fault trees are combined to create a FMEA showing the contributions of each 

component and associated failure modes to the occurrence of system hazards. Fault trees and 

FMEA for an individual variant allows safety analysts to identify whether product 

requirements are met. In addition, fault tree analysis and FMEA for multiple product variants 

allow safety analysts to draw conclusions about the safety of the product line architecture. For 

example, FMEAs can show the component failure modes that contribute to severe system 

hazards across the product line architecture. The respective components creating these failure 

modes must be developed to the appropriate level of integrity. The analysis of fault trees and 

FMEA results for multiple product variants support safety analysts to take decisions to ensure 

that architectural components meet the safety requirements across different usage scenarios 

covered by the analysis.  

The generated variant-specific fault trees and FMEA results are input artefacts for 

design optimization performing the automatic decomposition of safety integrity requirements 

allocated to variant-specific hazards, in terms of SILs, throughout the contributing component 

failure modes (“SC-PLE-8”). Design optimization provides near optimal SIL allocations 

allowing safety analysts to achieve process-based certification for a given system variant 
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without being stringent or expensive, since stringent SILs demands more effort in terms of 

verification, validation, and testing required to address certification requirements. Design 

optimization techniques are detailed in Section 2.2.4.2, and SIL decomposition process in 

Section 2.2. In this thesis we have used HiP-HOPS Tabu Search design optimization 

algorithms to support the automatic decomposition of automotive SILs and aerospace 

Development Assurance Levels (DALs) (SOROKOS et al. 2015; AZEVEDO et al. 2014). 

After generating variant-specific fault trees, FMEA, and SIL decomposition results another 

variant can be derived (“SC-PLE-5” and SC-PLE-6”), and further analyzed by performing 

FTA, FMEA, and SIL decomposition.  

Whereas variation in design and context directly impact the SIL decomposition results, 

each product variant might have different SIL decompositions. It implies that establishing 

safety integrity requirements for product line components require the analysis of the SILs 

allocated to those components in a range of different product variants (scenarios). If different 

SILs are allocated to a component in different variants, then the highest SIL must be met for 

that component being safely used across the analyzed variants. This type of allocation would 

allow developers to meet their responsibilities in order to ensure the safety of the product line 

architecture, and achieving compliance with safety standards, without incurring unnecessary 

costs of complete reanalysis and reallocation of SILs as traditionally demanded for each 

variant. In this thesis, a method and tool have been development to support the analysis and 

allocation of SILs to product line components (OLIVEIRA et al. 2015a).  

The tool named PL-SILDec (Product Line SIL Decomposition) was developed as an 

extension of HiP-HOPS Tabu Search ASIL/DAL (SOROKOS et al. 2015; AZEVEDO et al. 

2014) optimization tools to address the product line design. The input for the tool is a set of 

variant-specific SIL decomposition results provided by HiP-HOPS SIL decomposition tool. 

PL-SILDec outputs the SILs to be allocated to product line components addressing safety 

across the SPL. Therefore, when the required number of product variants was already 

analyzed, the product line component SIL decomposition (“SC-PLE-9”) is performed, with 

the support of PL-SILDec tool, to support product line process-based certification. The 

following subsections detail the product line compositional safety analysis phases, activities, 

tasks, and their input and output artefacts. 
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5.2.1 SC-PLE-3: Product Line Safety Analysis  

The “Product Line Safety Analysis” phase examines the product line architecture from 

the perspective of different product variants and their context to identify potential hazards, 

failure conditions, and contributing component failures, associated risk classification and 

allocated safety requirements that can arise in different product variants and context. Product 

line safety analysis differs from traditional safety analysis for a single system by considering 

the impact of context and design variation in safety properties. Therefore, safety analysis is 

performed by considering a range of product variants and their context. Combinations 

between functional and usage context features defined in the feature model provide a set of 

scenarios that could be considered in performing product line compositional safety analysis. 

The product line compositional safety analysis phase (“SC-PLE-3”) comprises the following 

activities: identification of usage scenarios (“SC-PLE-3.1”), functional hazard assessment 

(“SC-PLE-3.3”), and component failure analysis (“SC-PLE-3.4”) illustrated in Figure 5.2. 

 

Figure 5.2. SC-PLE-3: Product line safety analysis activities and tasks.  
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5.2.1.1 Identify Usage Scenarios 

The “SC-PLE-3.1: Identify Usage Scenarios” aims to identify product variants and 

their respective context (scenarios) to be considered during product line safety analysis. The 

product line feature, context, and architecture models are input artefacts to identify candidate 

usage scenarios for product line safety analysis. Feature and context models allow safety 

analysts capturing design choices and constraints that should be considered when performing 

product line safety analysis. The product line architecture model shows the interactions 

between components, and data transformations in terms of handling potential variations 

between product variants (FENG and LUTZ, 2005). “SC-PLE-3.1” comprises the following 

tasks: identify functional and contextual variants, and combining functional and contextual 

variants as illustrated in Figure 5.3. Firstly, safety analysts identify combinations between 

functional features, which represent system functions and their interactions, to derive 

functional variants. In the following, for each functional variant, safety analysts identify 

combinations between context features, which define the characteristics of potential contexts 

that the given functional variant can operate. Finally, by combining the identified functional 

variants and their respective contextual variants (functional variant + context variant), 

different usage scenarios can be derived. For example, by considering the Hybrid Braking 

System product line feature and context models presented in Chapter 4 (Section 4.4.1), seven 

braking system variants that could be deployed in a car, truck or military vehicle (context 

variants) have been identified. Therefore, by combining functional and context variants, 21 

usage scenarios can be derived. Scenarios are useful to guide the safety analysis of safety-

critical product lines.   

 

Figure 5.3. SC-PLE-3.1: Identify usage scenarios tasks. 

A scenario-based approach for product line compositional safety analysis, as presented 

in this thesis, allows achieving the balance between the reuse of safety and reliability 

attributes identified from the analysis of feature interactions that may violate safety properties, 

and the management of features and their interactions to avoid the feature explosion problem 

(LIU et al. 2007; FENG and LUTZ, 2005). A scenario-based approach for compositional 

safety analysis allows safety analysts in extracting the required domain knowledge to perform 
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safety analysis for safety-critical product line architectural components, since it would be 

prohibitive performing such analysis covering all product variants. In this thesis, we have 

established that the criteria to access the relevant product variants and context (scenarios) to 

be considered when performing product line safety analysis are dependent upon: safety 

analyst’s domain knowledge, and relevant product variants from the “stakeholders” viewpoint.  

Whereas safety-related scenarios involve sequencing of interactions between 

architectural components that contribute for the realization of product line features, the UML 

Sequence Diagram is useful to capture the dynamic view of the system execution required for 

product line safety analysis (FENG and LUTZ, 2005). In addition to feature, context, and 

architecture models, UML sequence diagrams and Use Case-based analysis techniques 

(ALLENBY and KELLY, 2001) can also be used to guide safety analysts in identifying 

potential product variants to be considered in performing product line safety analysis. Feature 

model combinatorial analysis algorithms (JOHANSEEN et al. 2012) used in software product 

line testing can also be used to support the identification of candidate usage scenarios to be 

considered during product line safety analysis. In this thesis, the analysis of feature, context, 

and architecture models has been used to identify relevant usage scenarios to be considered 

during product line safety analysis. At the end of the “SC-PLE-3.1”, a list of relevant usage 

scenarios for product line safety analysis is delivered. 

5.2.1.2 Functional Hazard Assessment 

After scoping the product line safety analysis to a set of usage scenarios, functional 

hazard and risk assessment, and component failure analysis are performed with the support of 

compositional safety analysis techniques. In this thesis, HiP-HOPS and OSATE AADL/Error 

Annex techniques have been considered to support the product line compositional safety 

analysis. In the proposed approach, functional hazard and risk assessment, and component 

failure analysis are performed incrementally and iteratively by considering each usage 

scenario earlier identified in “SC-PLE-3.1”. After selecting a usage scenario, functional hazard 

and risk assessment are performed to identify potential hazards that can arise in the given 

scenario, the risk they pose to the overall system safety, and allocated safety requirements, as 

illustrated in Figure 5.4. The usage scenario and the product line architecture model are input 

artefacts for the “SC-PLE-3.2: Functional Hazard Assessment” phase, which comprises four 

tasks detailed in the following. 
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Figure 5.4. SC-PLE-3.3: Functional hazard assessment tasks. 

SC-PLE-3.2.1: Hazard Identification: is intended to identify combinations of 

component failures leading to system-level failures. Hazards are specified by means of logical 

expressions involving potential failures in product line architectural components. These 

failures are generally stated in terms of failure types that typically include: omission, 

commission, value, early and late failure modes. Firstly, interactions between core 

architectural components are analyzed in order to identify potential hazards. Later, 

architectural components representing variation defined in the selected usage scenario are 

then, analyzed to identify potential hazards that can arise in a specific usage scenario. For each 

usage scenario, this task outputs a list of identified hazards in the targeted scenario. 

SC-PLE-3.2.2: Risk Assessment: this task aims to estimate, based on probabilistic 

risk tolerability criteria defined in the targeted safety standard, the risk posed by each 

identified hazard. Different contexts may change the risk posed by a given hazard in different 

usage scenarios. Thus, risk assessment is performed aware of the impact of context and design 

variation. At the end of this task, the risk posed by each identified hazard is determined. 

SC-PLE-3.2.3: Allocation of Safety Integrity Requirements: is performed from the 

analysis of the outputs provided by hazard identification and risk assessment. Safety Integrity 
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Levels are allocated to each identified system hazard according to their risk classification. At 

the end this task, safety integrity requirements are allocated to each identified hazard.  

SC-PLE-3.2.4: Allocation of Functional Safety Requirements: is an optional task 

intended to identify potential functional safety requirements that can arise to eliminate or 

minimize the effects of the identified hazards on the overall system safety. A functional safety 

requirement represents a functional requirement intended to mitigate the effects of system 

failures. Redundancy is an example of functional safety requirement. If a functional safety 

requirement is added to the product line architecture, hazard identification, risk assessment, 

and allocation of safety integrity requirements should be performed to evaluate the impact of 

the newer added functionality on the overall safety of a particular usage scenario. At the end 

of the “SC-PLE-3.2: Functional Hazard Assessment” phase, hazards and allocated safety 

requirements are then, delivered.  

5.2.1.3 Component Failure Analysis 

After the identification of the potential hazards that can arise in a particular usage 

scenario, safety analysts identify how architectural components can fail and contributing to 

the occurrence of each identified hazard during component failure analysis (“SC-PLE-3.4”). 

Safety analysts specify the failure behavior associated with each product line architectural 

component by stating what can go wrong with such component and how it responds to 

failures elsewhere in the architecture. Such information is called component failure logic. 

With the support of compositional safety analysis, the component failure behavior is specified 

by means of annotations in the product line architecture model, which comprises a set of 

failure expressions showing how deviations in component output ports can be caused either 

by internal failures in the component or corresponding deviations in the component inputs. 

Component deviations may include unexpected omission of an output or unintended 

commission of output, or incorrect output values, or the output being sent too early or late 

(PAPADOPOULOS et al., 2011). Compositional safety analysis techniques store the 

component failure logic in a library, so that other components of the same type can reuse it. 

Whereas the component failure logic may change according to different product line usage 

scenarios, such variation can be encapsulated into these libraries. Each library contains a 

failure logic implementation that comprises the failure modes of a component addressing a 

specific usage scenario. 
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The component failure analysis is broken down into four tasks as shown in Figure 5.5. 

The product line architecture model and the identified system hazards for a particular usage 

scenario are input artefacts to perform the component failure analysis. Firstly, safety analysts 

select a particular component to be analyzed (“SC-PLE-3.4.1”), followed by the identification 

of potential component output deviations that can contribute to the occurrence of each 

identified hazard in the given scenario (“SC-PLE-3.4.2”). For each identified output deviation, 

safety analysts identify potential combinations between component internal failures and input 

deviations that may contribute to the occurrence of each component output deviation (“SC-

PLE-3.4.3” and “SC-PLE-3.4.4”). The analysis continues whilst there are architectural 

components to be analyzed. At the end, the component failure data for a particular usage 

scenario is delivered.  

 

Figure 5.5. SC-PLE-3.4: Component failure analysis tasks. 

Table 5.1 shows an example of component failure analysis for “C1” component 

addressing three different usage scenarios. Each component failure logic implementation 

contains different output and input deviations, and internal failures, i.e., defined in failure 

expressions, that contribute to the occurrence of hazards in these scenarios. For example, the 

causes for “Omission-Out1” output deviation are different in “Scenario1” and “Scenario2”. 

In the example from Table 5.1, the “Scenario1” is the current failure logic implementation for 

component “C1”. The failure logic inherent to each product line component is stored into the 

product line failure model together with functional hazard assessment information. 

It is important to highlight that the local component failure analysis can reflect either 

real characteristics or simply the design intention for the analyzed architectural components. 

In both cases the analysis is useful. For example, at early stages when components are under 

Table 5.1 – Variation in component failure logic. 

Component Impl/Current Output Deviation Failure Expression 

 

 

C1 

Scenario1/Yes Omission-Out1 OFailure1 or (Omission-In1 and 

Omission-In2) 

Scenario2/No Omission-Out1 OFailure1 or Omission-In2 

Scenario3/No Value-Out1 VFailure1 or Value-In1 or (Omission-In1 

and Value-In2) 
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design and only design intentions are encoded, it is still possible, using compositional safety 

analysis, to evaluate the suitability of the proposed design under these encoded intentions on 

the failure logic, fault propagation, fault mitigation and fault tolerance of various architectural 

components. Such analysis can support safety analysts in the identification of weaknesses and 

to decide how to improve the product line architectural design e.g., by introducing 

components with improved characteristics or fault tolerant features. At the end of the product 

line safety analysis phase, the product line failure model with hazards and component failure 

data associated with each usage scenario considered in the analysis is then, delivered. 

After the product derivation, variant-specific safety analysis in product line application 

engineering can be performed in the same way as defined in domain engineering, with the 

focus in identifying the impact of variant-specific system functions added to the reused 

product architecture model on the overall system safety.       

5.2.2 SC-PLE-7: Product Fault Tree Analysis and FMEA 

The capability of automatic synthesis of fault trees and FMEA provided by 

compositional safety analysis techniques may reduce the effort in performing variant-specific 

safety assessment by reusing not all, but a set of variant-specific hazards and component 

failure logic previously identified in domain engineering. If applicable, after performing 

variant-specific safety analysis to identify variant-specific hazards and component failure 

data, compositional safety analysis techniques are used to automatically generating fault trees 

and FMEA results from a variant-specific architecture model annotated with safety-related 

information. Compositional safety analysis techniques output variant-specific fault trees and 

FMEA in a graphical representation or in XML files. For example, HiP-HOPS outputs 

variant-specific fault trees and FMEA results in an XML file and presents it in the form of 

hyperlinked HTML pages. OSATE AADL/Error Annex outputs graphical representations of 

fault trees. The accuracy of the generated variant-specific fault trees and FMEA is dependent 

upon whether functional hazard assessment and component failure analysis were performed 

aware of the impact context and design variation. 

5.2.3 SC-PLE-8: Product SIL Decomposition 

Variant-specific fault trees and FMEA results generated in the previous phase are 

input artefacts for SIL decomposition optimization algorithms (SOKOROS et al. 2015; 
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AZEVEDO et al. 2014, DHOUIBI et al. 2014, AZEVEDO et al. 2013, PARKER et al. 2013, 

MADER et al. 2012, BIEBER et al. 2011, PAPADOPOULOS et al. 2010, LEE et al. 2009). 

In this phase, SIL decomposition optimization algorithms are used to support the automatic 

decomposition of safety integrity requirements allocated to variant-specific hazards 

throughout the contributing component failure modes. In this thesis, we have used HiP-HOPS 

Tabu Search ASIL/DAL (SOKOROS et al. 2015; AZEVEDO et al. 2014) metaheuristic 

optimization algorithms to support the automatic decomposition of safety integrity 

requirements in automotive and aerospace systems. Metaheuristic algorithms do not guarantee 

finding optimal allocation solutions; however, they are capable of providing near optimal 

allocations within acceptable time spans. In the same way as fault trees and FMEA results, the 

accuracy of variant-specific SIL decomposition results is dependent upon whether product 

line safety analysis was performed aware of the impact of context and design variation. SIL 

decomposition results define the safety objectives for a specific system variant achieving 

process-based certification. 

5.2.4 SC-PLE-9: Product Line Component SIL Decomposition 

After generating SIL decomposition results for a range of product variants considered 

during product line safety analysis, product line component SIL decomposition can performed 

to support product line process-based certification. Multi-variant SIL decomposition results 

are input artefacts for this phase. These artefacts are then analyzed in order to identify the 

safety integrity requirements to be allocated to product line components address certification 

requirements. The output of this phase is a list of product line component SILs. This phase is 

supported by a method and tool, developed in this thesis as an extension to HiP-HOPS design 

optimization tool, to support the automated analysis and allocation of safety integrity 

requirements to product line components. The proposed method and tool are detailed in the 

following section. 

5.3 Product Line Component SIL Allocation Method and Tool 

This section presents the proposed method and tooling support for automatic 

allocation of safety integrity requirements to components of a safety-critical product line 
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(OLIVEIRA et al. 2015a). SIL decomposition in product line design contributes to define 

safety objectives to achieve product line process-based certification without being stringent or 

expensive. The method extends the capabilities of the HiP-HOPS design optimization method 

and tool to address product line design. Whereas product line components and their failure 

modes may receive different safety integrity requirements in different product variants, the 

ability to use an architectural component safely across a range of different variants means 

selecting the highest SIL given by multiple SIL decomposition results. The method describes 

how to perform the analysis of multiple SIL decomposition results to extract the safety 

integrity requirements that should be allocated to architectural components. The method was 

implemented in a prototype tool developed as an extension of HiP-HOPS Tabu Search SIL 

allocation tool. The capability of automatic allocation of safety integrity requirements to 

product line components can also be further incorporated into existing design optimization 

tools other than HiP-HOPS. Section 5.3.1 presents the proposed method, and Section 5.3.2 

presents the implementation of the method in an automated tool support. 

5.3.1 Product Line Component SIL Decomposition Method  

Figure 5.6 shows the steps of the proposed method to support the product line 

component SIL decomposition process. The input artefacts for the proposed method are SIL 

decomposition results for multiple product variants (Figure 5.6a). HiP-HOPS Tabu Search 

SIL decomposition tool outputs SIL decomposition results for an individual product variant in 

a structured XML file. Firstly, each variant-specific SIL decomposition result is parsed to 

allow the manipulation of the information stored into these artefacts (Step 1 in Figure 5.6b). 

In the following, variant-specific SIL decomposition files are analyzed one by one, to obtain 

the SILs allocated to product line components in each product variant (Step 2 in Figure 5.6c). 

This is done for each product line component in the given variant by analyzing the SILs 

allocated to failure modes associated with the given component in an individual product 

variant. Therefore, the most stringent SIL allocated to a failure mode associated with that 

component is, then, the assumed SIL for that component in the analyzed variant. For each 

individual product variant, this is repeated for all components. After obtaining the SILs 

allocated to product line components in each individual product variant, for each product line 

component, the analysis is performed as follows: the SILs allocated to a particular component 

in different product variants are analyzed in order to verify the most stringent SIL allocated to 

that component across the analyzed product variants (Step 3 in Figure 5.6d). Finally, the SIL  
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Figure 5.6. Method for automatic decomposition of SILs to product line components. 

that each product line component should meet to address process-based certification is 

obtained, and the results, i.e., the SILs allocated to all product line components, are then 

exported in a file format such as XML (Figure 5.6e). 

“SIL Decomposition” and “Product Line Component SIL Decomposition” metamodels 

were created to support the method illustrated in Figure 5.6. The “SIL Decomposition” 

metamodel defines the structure for variant-specific SIL decomposition results input artefacts 

provided by design optimization tools. The “Product Line Component SIL Decomposition” 

metamodel defines the structure of the standard output for the product line component SIL 

decomposition results. In safety-critical product line development, SIL decomposition has an 

important role in identifying, early on the design, safety integrity requirements necessary to 

comply with safety standards in order to achieve product line process-based certification. 

Both metamodels were used in the implementation of the automated tool support for product 

line component SIL decomposition that extends the HiP-HOPS capabilities to address product 

lines. These metamodels can be further used to define standard input and output SIL 

decomposition artefacts in extending other existing SIL decomposition tools to support 

product line design.  

Figure 5.7 shows the “SIL Decomposition” and “Product Line Component SIL 

Decomposition” metamodels. The “SIL Decomposition” metamodel has been defined from the 

analysis of the output SIL decomposition artefacts provided by different design optimization 

techniques and tools. Particularly, the “SIL Decomposition” metamodel presented in Figure 



Chapter 5 - Product Line Compositional Safety Analysis and Design Optimization                                                  183 

 

5.7a was built upon the SIL decomposition output format provided by HiP-HOPS SIL 

decomposition optimization tool. A standard SIL decomposition output model comprises a 

root element that stores the reference to the system model from which the SIL decomposition 

results were generated. The “TreeSILDecompositionResults” root element might contain one 

or more “Components”. A component may be associated with zero or more failure modes 

(“BasicEvents”), and a component may contain subcomponents. Finally, a “BasicEvent” 

element refers to a component failure mode and its respective SIL. Component SILs can be 

derived from the information stored into “BasicEvent” elements. 

Figure 5.7b shows the “Product Line Component SIL Decomposition” metamodel. 

“PLSILDecompositionResults” is the root the element of a product line component SIL 

decomposition model that contains references to “PLComponentSIL” elements. A 

“PLComponentSIL” model element stores the information about the required SIL to be 

allocated to a given component addressing process-based certification. A “PLComponentSIL” 

contains one or more “VariantSpecComponentSIL” allocation results, and it may also contain 

subcomponent SIL allocation results. “VariantSpecComponentSIL” element stores a SIL 

allocation result for a product line component in a specific product variant. A 

“VariantSpecComponentSIL” element contains references to one or more failure mode SIL al-  

 

Figure 5.7. SIL decomposition metamodels. 
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location results (i.e., “BasicEvents”) associated with a particular component in a given 

product variant. Finally, a “VariantSpecComponentSIL” may contain zero or more 

subcomponent SIL allocation results. 

5.3.2 Product Line component SIL Decomposition (PL-SILDec) Tool 

Figure 5.8 illustrates the PL-SILDec tool architecture. The tool was developed in Java 

language as an extension of HiP-HOPS Tabu Search ASIL/DAL decomposition optimization 

tooling. The PL-SILDec tool supports the analysis of ASILs for automotive, and DALs for 

avionics safety-critical product lines. The HiP-HOPS ASIL/DAL decomposition tooling 

(SOROKOS et al. 2015; AZEVEDO et al. 2014) outputs SIL decomposition results for a 

particular product variant in an XML file. XML files related to SIL decomposition results for 

multiple product variants are input artefacts for PL-SILDec tool performing the analysis and 

allocation of safety integrity requirements to components of a safety-critical product line. The 

PL-SILDec is mainly composed by the following components:  

- User Interface: it provides the mean for the user input SIL allocation files associated 

with multiple product variants of a safety-critical product line. Currently, the user 

informs the directories of the SIL allocation files required for the analysis via 

command prompt; 

- Parser: it performs the parsing of each SIL allocation XML file to allow the 

manipulation of information stored into these files as Java objects in compliance with 

the “SIL Decomposition” metamodel. Therefore, classes representing the structure of 

the “SIL Decomposition” metamodel were created to manipulate variant-specific SIL 

decomposition information stored into the XML file. XStream
19

 Java library was used 

to manipulate SIL decomposition XML files as objects. This library provides 

mechanisms to serialize and de-serialize objects from/to XML; 

- Configuration SIL Allocation Analyzer: it performs the analysis of a parsed SIL 

decomposition XML file of a particular product variant to allocate SILs to components 

in such variant. For each variant-specific SPL component the analysis is performed as 

follows: the SILs allocated to each failure mode associated to the given component are 

analyzed. The most stringent SIL allocated to a failure mode is, then, the SIL to be 

allocated for that component in the analyzed product variant. Such analysis outputs a  

                                                 
19 http://x-stream.github.io/ 
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Figure 5.8. Product line SIL decomposition tool architecture. 

list of SILs allocated to components in a particular product variant. This module 

performs such analysis for each SIL decomposition XML file under analysis. 

Therefore, a list of SILs to be allocated to product line architectural components in 

each product variant is obtained. Such information is stored as objects as defined in 

“Product Line Component SIL Decomposition” metamodel;  

- Product Line SIL Allocation Analyzer: it performs the analysis of the SILs allocated 

to product line components in multiple product variants to extract the SILs that should 

be allocated to components in order to address certification requirements across 

different product variants. For each component, the analysis is performed as follows: 

the SILs allocated to the given component in each product variant are analyzed, and 

the most stringent SIL is allocated to that component. The analysis outputs a list of 

product line components and their allocated SILs; 

- XML Output Processor: it transforms product line component SIL allocation results 

into a structured output XML file based on the “Product Line Component SIL 

Decomposition” metamodel. XStream library is also used to serialize the object 

structure of the product line component SIL allocation results to output an XML file.  
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5.4 Compositional Safety Analysis Case Study: Hybrid Braking System 

Product Line 

The proposed product line compositional safety analysis and design optimization 

approach was evaluated against safety assessment processes defined in ARP 4754A and ISO 

26262 safety standards. The evaluation is focused on Hazard and Risk Analysis, Preliminary 

System Safety Assessment (PSSA), System Safety Assessment (SSA), and safety integrity 

requirements decomposition processes. The case study presented in this section is based on a 

prototype automotive Hybrid Braking System product line (HBS-SPL) earlier introduced in 

the variability management case study presented in Chapter 4 (Section 4.4).  

HBS-SPL is a prototype automotive braking system product line designed in 

MATLAB/Simulink. It addresses electric vehicles system integration, in particular for 

propulsion architectures that integrate one electrical motor per wheel (DE CASTRO et al. 

2010). From the analysis of the HBS-SPL core features and wheel braking variation point, 

seven different hybrid braking system variants can be derived from HBS-SPL as detailed in 

Chapter 4 (Section 4.4.1). The seven HBS-SPL system variants differ from each other in the 

number of wheel brake units and the way that they are composed. For example, “Front Wheel 

Braking” (FWB) variant differs from “Four Wheel Braking” (4WB) by the absence of rear 

wheel braking units. The “Rear Wheel Braking” (RWB) variant differs from 4WB by the 

absence of front wheel brake units. In addition, these seven HBS-SPL variant can be assumed 

to operate under different usage contexts. For example, a specific product variant can be 

deployed in a car, truck, or a military vehicle. Therefore, the composition between HBS-SPL 

functional features and their usage context generates 21 potential usage scenarios for HBS-

SPL. Whereas the HBS-SPL functional features and their usage context are different in each 

product variant, hazard and risk assessment, and component failure analysis may change 

according to the usage scenario. The product line compositional safety analysis and design 

optimization case study has been performed by considering “4WB”, “FWB” and “RWB” 

braking system variants. The HiP-HOPS compositional safety analysis and design 

optimization tools have been used to support product line safety assessment in both domain 

engineering and application engineering processes. The following sections present the results 

of compositional safety analysis and design optimization phases in domain engineering and 

application engineering. 
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5.4.1 SC-PLE Phase 3: HBS-SPL Safety Analysis 

Hazards can arise from interactions between HBS-SPL components in a range of 

usage scenarios. Different hazards can arise according to how HBS-SPL functional and usage 

context features can be combined in a usage scenario. Although performing the product line 

safety analysis by considering all usage scenarios would be prohibitive, scoping such analysis 

to a set of scenarios has brought some degree of reuse for safety analysis process (OLIVEIRA 

et al. 2014). In order to illustrate the product line safety analysis process, such analysis was 

performed by considering three different HBS-SPL usage scenarios: “4WB”, “FWB”, and 

“RWB” braking system variants deployed in a car vehicle (“SC-PLE-3.1: Identify Usage 

Scenarios”). Each one of these scenarios was analyzed from the safety perspective by 

considering ISO 26262 hazard and risk assessment processes. The following subsections 

show the results of performing functional hazard assessment and component failure analysis 

by considering “4WB”, “FWB”, and “RWB” system variants. 

5.4.1.1 Functional Hazard Assessment 

The product line Functional Hazard Assessment (FHA) was performed based on the 

extended HAZOP (HaZard and OPerability) analysis technique (KLETZ, 1992) where 

omission, commission, value, early, and late guidewords were used to describe system 

hazards. The HiP-HOPS compositional safety analysis tool was used to support functional 

hazard assessment in the HBS-SPL Simulink model. HiP-HOPS tool was chosen as it 

provides integration with MATLAB/Simulink, the target development platform used for 

developing the HBS-SPL. 

For each HBS-SPL usage scenario (product variant + context), functional hazard 

assessment started from the analysis of potential interactions between components in the 

HBS-SPL architecture model that may lead to system-level hazards. Such analysis is 

performed manually by safety analysts based on their domain knowledge. In this case, 

interactions between wheel braking components that can lead to hazardous events have been 

identified. Therefore, hazards and their associated failure conditions have been identified. 

Further on the analysis, risk assessment was performed where each identified hazard was 

classified regarding to its severity. Safety integrity requirements, in terms of Automotive 

Safety Integrity Levels (ASILs) were allocated to eliminate or minimize the hazard effects. 

Functional safety requirements have not been identified for the HBS-SPL. 
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Table 5.2 shows the identified hazards, their associated failure conditions, and 

allocated safety integrity requirements. The hazard term used throughout this case study 

refers to potential source of harm in ISO 26262. Table 5.2 also shows the association 

between the identified hazards and product line usage scenarios by means of the column 

“Usage Scenario”. In order to simplify the case study, ASILs allocated to HBS-SPL hazards 

were not assigned on the basis of the full ISO 26262 (ISO, 2011) risk assessment process. The 

ASILs were derived by only considering the hazard’s severity. Six hazards have been 

identified from the analysis of the “4WB” usage scenario, two hazards have been identified 

from the analysis of the “FWB” scenario, and other two hazards have been identified from the 

analysis of the RWB usage scenario. Common and variable hazards were identified by 

analyzing each HBS-SPL usage scenario. An example of common hazard is “Value_braking”. 

Although the commonality, different failure conditions contribute to the occurrence of this 

hazard and different ASILs were allocated to this hazard in each usage scenario. The failure 

conditions that directly cause the “Value_braking” hazard in the four wheel braking scenario 

is “incorrect value of all brake unit actuators output”, and “incorrect value of rear wheel 

braking actuators output” in the rear wheel braking scenario. In order to differentiate 

common hazards identified across the usage scenarios, each hazard was annotated with a 

prefix, identifying the corresponding usage scenario (see the “Hazard ID” column in Table 

5.2). For example, the “4WB” prefix in “Value_braking” denotes that this hazard was 

identified from the analysis of four wheel braking scenario. The “RWB” denotes that 

“Value_Braking” was identified from the analysis of the rear wheel braking scenario. 

Table 5.2 – Functional hazard assessment for the hybrid braking system product line architecture. 

Usage Scenario Hazard ID Failure Conditions ASIL 

 

 

 

 

 

Four Wheel Braking 

(4WB) Deployed into a 

Car Vehicle.  

No_braking_four_wheels Omission of all brake unit actuators outputs. D 

No_braking_three_wheels Omission of BrakeUnit1 AND BrakeUnit2, AND 

BrakeUnit3 actuators outputs. 

D 

4WB_No_braking_front Omission of BrakeUnit1AND BrakeUnit2 actuators 

outputs. 

D 

4WB_No_braking_rear Omission of BrakeUnit3 AND BrakeUnit4 actuators 

outputs. 

C 

 

No_braking_diagonal 

Omission of BrakeUnit1 AND BrakeUnit4 actuators 

outputs OR Omission of BrakeUnit2 AND BrakeUnit4 

actuators outputs. 

 

C 

4WB_Value_braking Incorrect Value of all brake unit actuators outputs. D 

Front Wheel Braking 

(FWB) Deployed into a 

Car Vehicle. 

FWB_No_braking_front Omission of BrakeUnit1 AND BrakeUnit2 actuators 

outputs. 

D 

FWB_Value_braking Incorrect Value of BrakeUnit1 AND BrakeUnit2 

actuators outputs. 

D 

Rear Wheel Braking 

(RWB) Deployed into a 

Car Vehicle.  

RWB_No_braking_rear Omission of BrakeUnit3 AND BrakeUnit4 actuators 

outputs. 

D 

RWB_Value_braking Incorrect Value of BrakeUnit3 AND BrakeUnit4 

actuators outputs. 

D 
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In the hybrid braking system product line FHA process, different ASILs were 

allocated to the same hazard by considering different usage scenarios for HBS-SPL 

components. For example, ASIL C was allocated to “No braking rear” hazard in the “4WB” 

scenario, and a most stringent ASIL D was allocated to the same hazard in the “RWB” 

scenario. Variable hazards have also been identified by analyzing the HBS-SPL usage 

scenarios. For example, “No_braking_four_wheels”, “No_braking_three_wheels”, and 

“No_braking_diagonal” hazards are specific to the four wheel braking scenario. After 

identifying the potential hazards that can arise in different usage scenarios, component failure 

analysis is performed to identify the potential component failure modes that contribute to the 

occurrence of each identified hazard in the given usage scenario.  

5.4.1.2 Component Failure Analysis 

From the analysis of HBS-SPL functional hazard assessment results for each usage 

scenario, 77 component failure logic expressions inherent to 30 HBS-SPL architectural 

components were added to the product line failure model via HiP-HOPS failure editor. Table 

5.3 shows fragments of the failure logic for six HBS-SPL components considering the 

“4WB”, “FWB”, and “RWB” usage scenarios. The “Usage Scenario/Current” column deno- 

Table 5.3 - Failure logic for HBS-SPL architectural components. 

Component Usage 

Scenario/Current 

Output 

Deviation 

Failure Expression 

 

 

 

BrakeUnit3.WheelNodeController 

 

 

 

 

 

4WB/Yes 

Omission-Out1 OFailure1 or (Omission-In1 and 

Omission-In2) 

Value-Out1 VFailure1 or Value-In1 OR (Omission-

In1 and Value-In2) 

Omission-Out2 OFailure2 or (Omission-In1 and 

Omission-In2) 

Value-out2 VFailure2 or Value-In1 or (Omission-

In1 and Value-In2) 

 

BrakeUnit3.EMBPowerConverter 

 

4WB/Yes 

Omission-Out1 OFailure1 or Omission-In1 or 

Omission-In2 

Value-Out1 VFailure1 or Value-In1 or Value-In2 

 

 

 

BrakeUnit3.IWMPowerConverter 

 

 

 

RWB/No 

Omission-Out1 Omission-In1 or OFailure1 or 

Omission-In2 

Omission-Out2 Omission-In1 or OFailure1 

Value-Out1 Value-In1 or Value-In2 or VFailure1 

Value-Out2 Value-In1 or VFailure1 

 

BrakeUnit4.EMB 

 

RWB/No 

Omission-Out1 OFailure1 or Omission-In1 

Value-Out1 VFailure1 or Value-In1 

 

 

 

BrakeUnit1.IWM 

 

 

 

FWB/No 

Omission-Out1 OFailure1 or Omission-In1 or 

Omission-In2 

Omission-Out2 OFailure1 or Omission-In1 or 

Omission-In2 

Value-Out1 VFailure1 or Value-In1 or Value-In2 

Value-Out2 VFailure1 or Value-In1 or Value-In2 

 

BrakeUnit1.EMB 

 

FWB/No 

Omission-Out1 OFailure1 or Omission-In1 

Value-Out1 VFailure1 or Value-In1 
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tes the usage scenario associated with the failure logic implementation and whether it is 

assumed as the current one for the given component. The failure logic for 

“WheelNodeController” (WNC) subcomponent from “BrakeUnit3” subsystem addresses the 

4WB usage scenario. Two omission and two value failure modes in WNC outputs were 

considered. The omission of the WNC outputs can be caused by an internal failure in WNC or 

omission of its inputs. WNC value output failures can be caused by WNC internal failure or 

incorrect value in one of the WNC inputs. The failure logic for 

“BrakeUnit3.IWMPowerConverter” and “BrakeUnit4.EMB” components are specific to the 

RWB variant. The failure logic for “BrakeUnit1.IWM” and “BrakeUnit1.EMB” components 

are specific to the FWB variant. 

5.4.2 SC-PLE Phase 7: Product Fault Tree Analysis and FMEA 

After deriving HBS-SPL variant-specific architecture models with safety-related 

information, with the support of a variant management tool (Chapter 4), each variant-

specific model was input to HiP-HOPS compositional safety analysis tool performing the 

synthesis of fault trees and FMEA results. As a result, fault trees, failure cut sets, and 

FMEA results were generated for each HBS-SPL system variant. Fault trees were 

generated for each variant-specific hazard shown in Table 5.2. Therefore, 6 fault trees 

were generated for “4WB” product variant, 2 fault trees were generated for the “FWB” 

variant, and 2 fault trees were generated for the “RWB” variant, and FMEA tables were 

generated for each HBS-SPL system variant. Failure rates were not calculated. 

Figure 5.9 shows excerpts of fault trees and failure cut sets generated for 

Value_braking hazard in “4WB” and “FWB” braking system variants. Other fault trees 

generated for the “4WB” system variant are available in Appendix B. The analysis of the 

generated fault trees shows the impact of variation in HBS-SPL architectural components 

on the hazard causes. Therefore, failure conditions that can directly cause the hazard are 

“incorrect value of all brake unit outputs” in the “4WB” fault tree (Figure 5.9a). On the 

other hand, the causes for the same hazard in the “FWB” fault tree (Figure 5.9b) are 

“incorrect value of Brake_Unit1 and Brake_Unit2 outputs”. There are also differences in 

the component failure modes that indirectly may lead to the occurrence of 

“Value_braking” hazard in these system variants. For example, failures modes from 

“Brake_Unit4” subcomponents such as “Brake_Unit4.EMB.VFailure1” and “Brake_ 

Unit4.EMB.PowerConverter.VFailure1” may lead to the occurrence of “Value braking”  
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Figure 5.9. Value braking fault trees for HBS-SPL system variants. 

hazard in the “4WB” but not in the “FWB” variant. Multiple variant-specific fault trees 

provide the variability analysis of the causal chain of system-level hazards showing how 

component choices (i.e., feature selection) may change the component failure modes that 

can contribute to the occurrence of hazards in different product variants. 

FMEA results describe the relationships between direct and further effects of 

component failure modes and the occurrence of system hazards. Tables 5.4 and 5.5 show 

fragments of FMEA results for “4WB” and “FWB” system variants considering the 

“Brake_Unit1.EMB” and “Auxiliary_Battery” component failure modes. These tables 

show the effects of the occurrence of failure modes and whether the failure mode is a 

single point of failure or not. For example, the occurrence of “Brake_Unit1. 

EMB.OFailure1” omission failure mode in the “4WB” variant, as illustrated in Table 5.4, 

indirectly contributes to the occurrence of “No_braking_four_wheels”, 

“No_braking_3_wheels”, “No_braking_diagonal”, “No_braking_front”, and “No_bra- 

king_rear” hazards in conjunction with other failure modes. On the other hand, the 

FMEA table for the “FWB” system variant from Table 5.5 shows that the occurrence of 

“Brake_Unit1.EMB.OFailure1” omission failure mode indirectly contributes to 

“No_braking_front” only in conjunction with other failure modes. The occurrence of an 
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Table 5.4 – Excerpt of FMEA results for 4WB system variant. 

Component Failure Mode System Effect Single Point of 

Failure 

Auxiliary_Battery VFailure1 Value_braking True 

 

 

Brake_Unit1.EMB 

 

OFailure1 (21) 

No_braking_4_wheels False 

No_braking_3_wheels False 

No_braking_diagonal False 

No_braking_front False 

No_braking_rear False 

VFailure1 (22) Value_braking False 

Table 5.5 – Excerpt of FMEA results for FWB system variant. 

Component Failure Mode System Effect Single Point of 

Failure 

Auxiliary_Battery VFailure1 Value_braking True 

Brake_Unit1.EMB OFailure1 (21) No_braking_front False 

VFailure1 (22) Value_braking False 

incorrect value in the “Auxiliary_Battery” component output directly contributes to the 

occurrence of “Value_braking” hazard in both “4WB” and “FWB” system variants, 

denoted by the “true” value in the “Single Point Failure” column in tables 5.4 and 5.5. 

The analysis of the FMEA results for both HBS-SPL variants has shown the impact of 

design variation on the cause-effect relationships between the contributing component 

failure modes and the occurrence of system-level hazards. 

From the analysis of the complete FMEA results for “4WB”, “RWB”, and “FWB” 

braking system variants, 9 single-point and 39 multi-point failure modes were identified 

for the “4WB” variant, 5 single-point and 33 multi-point failure modes were identified for 

the “RWB” variant, and 5 single-point and 33 multi-point failure modes were identified 

for the “FWB” system variant. Such analysis has given insights into the design of the 

HBS-SPL, for instance common points of failure that affect different product variants 

and contribute to significant system hazards that arise across the product line, but also 

more subtle findings on the failures of individual system variants. It should be noted that 

existing design optimization techniques integrated to compositional safety analysis can 

also be used to support the automatic decomposition of safety integrity requirements 

allocated to variant-specific system hazards throughout the contributing failure modes. 

Therefore, from the ASILs allocated to variant-specific hazards, it is possible to 

automatically allocate ASILs to component failure modes, and then determine the safety 

integrity requirements that must be met for those components achieving process-based 

certification requirements for a particular system variant. 
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5.4.3 SC-PLE Phase 8: SIL Decomposition for HBS-SPL System Variants 

The Tabu Search ASIL decomposition optimization algorithm provided by HiP-HOPS 

compositional safety analysis tooling was chosen to support the automatic ASIL 

decomposition in HBS-SPL braking system variants. The HiP-HOPS Tabu Search ASIL 

decomposition optimization algorithm and other existing design optimization techniques for 

SIL decomposition are detailed in Chapter 2 (Section 2.2.4.2). The failure cut sets, i.e., the 

fault trees and FMEA results, generated for a HBS-SPL system variant are input artefacts for 

the HiP-HOPS ASIL decomposition algorithm. The SIL decomposition was performed for 

“4WB”, “FWB”, and “RWB” braking system variants based on the following cost heuristic 

that expresses the relative cost jumps of developing a component according to different 

ASILs: 0 (ASIL QM), 10 (ASIL A), 20 (ASIL B), 40 (ASIL C), and 50 (ASIL D). This cost 

heuristic was used for illustrative purposes, but any other that the safety analyst finds more 

suitable can be used instead. Additional information on ASIL decomposition process can be 

found in ISO 26262 – Road Vehicles Functional Safety standard (ISO, 2011).  

The HiP-HOPS Tabu Search ASIL decomposition algorithm was executed for each 

HBS-SPL system variant using the same cost heuristic. Table 5.6 shows an excerpt of the 

generated ASIL allocation results for “4WB”, “FWB”, and “RWB” system variants. These 

results correspond to the best ASIL decomposition solution found for each HBS-SPL 

system variant and their total ASIL cost. ASILs were allocated to 60 failure modes 

associated with 30 HBS-SPL components into three different product variants. The 

failure modes are stated in terms of omission (OFailureID) and value (VFailureID) 

failure types as shown in Table 5.6.  

Table 5.6 – ASILs allocated to component failure modes across HBS-SPL system variants. 

Component Failure Mode 4WB ASIL FWB ASIL RWB ASIL 

Auxiliary_Battery OFailure1 QM(0) B(2) B(2) 

VFailure1 D(4) D(4) D(4) 

Brake_Unit1.EMB OFailure1 QM(0) B(2) - 

VFailure1 QM(0) B(2) - 

Brake_Unit2.IWM OFailure1 A(1) QM(0) - 

VFailure1 QM(0) B(2) - 

… … … … … 

Brake_Unit3.IWM_Power_Converter OFailure1 QM(0) - B(2) 

VFailure1 B(2) - QM(0) 

 

Brake_Unit4.Wheel_Node_Controller 

OFailure1 B(2) - A(1) 

OFailure2 A(1) - B(2) 

VFailure1 B(2) - B(2) 

VFailure2 B(2) - B(2) 

Mechanical_Pedal OFailure1 D(4) D(4) D(4) 

VFailure1 D(4) D(4) D(4) 

                                                         ASIL Cost: 830 740 740 
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From the analysis of multiple variant-specific ASIL decomposition results, it has 

been found that the ASILs allocated to a particular component failure mode may change 

according to the HBS-SPL product variant. For example, the ASIL allocated to an 

“OFailure1” omission failure mode into the “Auxiliary_Battery” component is QM (0) in 

the “4WB” variant; and B (2) in both “FWB” and “RWB” variants. Such difference 

emphasizes that depending on the different ways in which HBS-SPL architectural 

components are composed in a given product variant, it may change the safety integrity 

of component failures, and the integrity of the component itself. It also impacts in 

changes in the total ASIL cost. The HiP-HOPS Tabu Search ASIL decomposition 

algorithm has calculated the total ASIL cost for each HBS-SPL product variant according 

to the cost heuristic previously explained earlier on this section. The ASIL cost for ASIL 

decomposition solutions were respectively 830 for “4WB”, 740 for “FWB”, and 740 for 

“RWB” product variant, as shown in Table 5.6. Therefore, from the analysis of multiple 

variant-specific ASIL decomposition results, it is possible to automatically allocate ASILs to 

components, and thereby determine the safety integrity requirements to be allocated for those 

components in order to fulfill the safety requirements to achieve product line process-based 

certification. 

5.4.4 SC-PLE Phase 9: HBS-SPL Component SIL Decomposition 

The set of variant-specific ASIL decomposition results generated with the support 

of HiP-HOPS ASIL decomposition optimization algorithm are input artefacts for the 

product line component SIL decomposition tool (PL-SILDec), which automatically 

allocates ASILs to HBS-SPL architectural components early on the design. The tool 

performs the allocation of safety integrity requirements to product line component based 

on the following principle: the most stringent ASIL allocated to a failure mode of a 

component across multiple product variants is the required ASIL to guarantee the safely 

usage of that component across the SPL (i.e., usage scenarios considered during product 

line FHA), in order to achieve product line process-based certification.  

Firstly, the PL-SILDec tool derives the component ASILs in each HBS-SPL 

product variant from the analysis of the ASILs allocated to failure modes of components . 

For each component in the given variant, an analysis is performed to identify the most 

stringent ASIL allocated to a failure mode associated with that component. For example, 

considering the “4WB” system variant, the analysis of the ASILs allocated to 
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“Brake_Unit3.IWM_Power_Converter” component failure modes, (i.e., ASIL QM for 

“OFailure1” and ASIL B for “VFailure1”) shows that the component ASIL for that 

variant should be ASIL B. Finally, for each HBS-SPL component, the tool analyses the 

ASILs allocated for that component in each product variant to extract the highest ASIL 

allocated to such component across the different product variants. ASILs were allocated 

to 30 HBS-SPL components.  

Table 5.7 presents the ASILs allocated to 16 HBS-SPL components into three 

different variants considered to be deployed in a car vehicle. In the same way as ASILs 

allocated to component failure modes, the HBS-SPL component ASILs may change 

according to the product variant. For example, the ASILs allocated to “Brake_Unit1.EMB” 

and “Brake_Unit1.EMB_Power_Converter” components are respectively “QM”, and “A” in 

4WB product variant, and “B” and “B” in FWB variant. From the analysis of the component 

ASILs allocated in multiple product variants, the PL-SILDec tool has derived the ASILs that 

should be allocated to HBS-SPL components, shown in the column “MAX ASIL” in Table 

5.7, in order to achieve product line process-based certification. Thus, the HBS-SPL 

architectural components can be safely used across different product variants considered 

during product line safety analysis. 

The analysis of the results about implications on safety integrity requirements of 

possible usage of safety-critical components early on the design provides useful feedback to 

the product line development process, helping to meet safety requirements, achieving process-

based certification without incurring unnecessary costs. It may guide safety engineers to ta- 

Table 5.7 – HBS-SPL component ASILs. 

HBS-SPL Component 4WB  
ASIL 

FWB  
ASIL 

RWB  
ASIL 

MAX  
ASIL 

Auxiliary_Battery D (4) D (4) D (4) D (4) 

Brake_Unit1.EMB QM (0) B (2) - B (2) 

Brake_Unit1.EMB_Power_Converter A (1) B (2) - B (2) 

Brake_Unit1.IWM A (1) B (2) - B (2) 

Brake_Unit1.IWM_Power_Converter A (1) B (2) - B (2) 

Brake_Unit1.Wheel_Node_Controller A (1) B (2) - B (2) 

… … … … .. 

Brake_Unit4.EMB B (2) - B (2) B (2) 

Brake_Unit4.EMB_Power_Converter B (2) - B (2) B (2) 

Brake_Unit4.IWM B (2) - B (2) B (2) 

Brake_Unit4.IWM_Power_Converter B (2) - B (2) B (2) 

Brake_Unit4.Wheel_Node_Controller B (2) - B (2) B (2) 

Communication_Bus1 B (2) B (2) B (2) B (2) 

Communication_Bus2 B (2) B (2) B (2) B (2) 

Electronic_Pedal D (4) D (4)  D (4) D (4) 

Mechanical_Pedal D (4) D (4) D (4) D (4) 

Powertrain_Battery D (4) B (2) B (2) D (4) 
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ke design decisions in order to achieve process-based certification, ensuring that product 

line architectural components can be safely used across the usage scenarios. Product line 

component SILs may also guide safety engineers in establishing safety objectives for less 

and higher critical product line components in order to achieve process-based 

certification without being stringent or expressive. In traditional safety standards, 

different safety objectives are defined to achieve process-based certification according to 

the component integrity level. Safety objectives demand development and safety 

assessment guidance/activities and output artefacts that should be considered in the 

development process to address certification requirements of a given SIL level. By 

considering “Auxiliary_Battery” and “Brake_Unit4.Whee-lNodeController” components 

and their ASIL levels, Table 5.8 shows a subset of hardware and software development 

activities/guidance required to achieve process-based certification in compliance with 

ISO 26262 safety standard. Whereas the “Auxiliary_Battery” is a high integrity hardware 

and software component (i.e., ASIL D), according to “ISO 26262-5: Product 

Development at the Hardware Level” and “ISO 26262-6: Product Development at the 

Software Level”, the following development and safety assessment activities/guidance are 

prescribed for “Auxiliary_Battery” component achieving process-based certification: 

deductive analysis (e.g., Fault Tree Analysis) and inductive analysis (e.g., FMEA) are 

highly recommended, hierarchical design and development by hardware prototyping are 

recommended, hardware design walk-through is optional (i.e., there is no 

recommendation for or against its usage for the identified ASIL), and the usage of 

established design principles is highly recommended. 

For less-critical components, such as “Brake_Unit4.WheelNodeController” 

software component, less stringent safety objectives and development guidance were 

allocated, as shown in Table 5.8. According to ISO 26262, examples of activities that 

should be allocated to the “Brake_Unit4.WheelNodeController” component are: 

inspection of the design is highly recommended, and semi-formal verification and data-

flow analysis are recommended. Therefore, instead of allocating highly integrity 

development and assessment activities/guidance to all product line components, such 

type of allocation allows safety analysts allocating development and assessment activities 

to a component or a subset of components according to their level of integrity. Less 

stringent activities allocated to low integrity components means a reduction of 

development and safety assessment effort and costs. This type of allocation contributes to 
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address the safety requirements to address process-based certification without 

compromising safety. 

Table 5.8 – Safety objectives allocated to HBS-SPL components per ASIL level. 

HBS-SPL Component ASIL Activity/Guidance Section 

 

 

 

 

Auxiliary_Battery 

 

 

 

 

D 

Hierarchical hardware design 

(recommended) 

ISO-26262-5: 

Section 7.4.1.6  

… … 

Deductive Analysis (highly 

recommended) 

ISO 26262-5: 

Section 7.4.3.1 

Inductive Analysis (highly 

recommended) 

ISO 26262-5: 

Section 7.4.3.2 

Development by hardware 

prototyping (recommended) 

ISO 26262-5: 

Section 7.4.4.1 

Hardware design walk-through 

(optional) 

ISO 26262-5: 

Section 7.4.4.1 

 

 

 

Brake_Unit4.WheelNodeController 

 

 

 

B 

Inspection of the design (highly 

recommended) 

ISO 26262-6: 

Section 7.4.18 

… … 

Semi-formal verification 

(recommended) 

ISO 26262-6: 

Section 8.4.5 

Data-flow analysis (recommended) ISO 26262-6: 

Section 8.4.5 

5.5 Discussion and Limitations 

The product line compositional safety analysis and design optimization approach 

proposed in this thesis was built upon safety assessment processes defined in safety 

standards from automotive and aerospace domains to address the product line safety 

assessment. By applying the proposed approach in automotive and aerospace safety-

critical product lines it has been shown evidence of compliance with ISO 26262 

Functional Safety Road Vehicles and ED-79A/ SAE ARP 4754A and ARP 4761 safety 

standards. The product line safety analysis in both domain and application engineering 

delivers as outputs hazard and risk assessment, and component failure analysis in 

compliance with Hazard Analysis and Risk Assessment processes defined in ISO 26262 – 

Part 3, Sections 7 and 8, and Functional Hazard Assessment phase defined in ARP 4754A 

item 5.1.1.  

In product line application engineering, the automatic synthesis of product fault 

trees and FMEA results from the reused failure model in the proposed approach addresses 

Deductive (e.g., fault trees, Dependence Diagrams, Markov analysis) and Inductive (e.g., 

FMEA, Event Tree Analysis - ETA) analyses techniques prescribed by Safety Analysis 
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process defined in ISO 26262 – Part 9, Section 8. In ARP 4754A, the synthesis of product 

fault trees and FMEA results complies with Preliminary System Safety Assessment 

(PSSA), and System Safety Assessment (SSA) phases defined in items 5.1.2 and 5.1.3 

from ARP 4754A. The outputs of variant-specific SIL decomposition results in product 

line application engineering comply with ISO 26262 – Part 9, Section 5 – “Requirements 

decomposition with respect to ASIL tailoring”, and ARP 4754A item 5.2 – “Development 

assurance level assignment”. In domain engineering, the output of product line 

component SIL decomposition also complies with ISO 26262 ASIL decomposition and 

ARP 4754A DAL assignment processes. The product line FHA and component failure 

data, and product line component SILs generated in domain engineering, and variant-

specific FHA and component failure data, fault trees, FMEA, and SIL decomposition 

generated in application engineering comply with ISO 26262 – Part 9 Sections 5, 6 and 8. 

These safety assessment artefacts also comply with ARP 4754A Functional Hazard 

Assessment (FHA), Preliminary System Safety Assessment (PSSA), and System Safety 

Assessment (SSA) processes.  

Whereas a product line approach provides a range of potential product variants, it 

would be prohibitive performing functional hazard assessment and component failure 

analysis covering all possible scenarios for a target product line. Therefore, product line 

safety analysis cannot be fully automated because it is dependent upon the domain 

knowledge from analysts. To achieve the effective reuse of safety assets in safety-critical 

product line engineering processes it is feasible to consider a set of usage scenarios 

relevant to the target domain addressed by the product line and their stakeholders. The 

precision in the selection of relevant usage scenarios to be considered in product line 

safety analysis is subjective and dependent upon the safety analyst’s domain knowledge. 

This is one limitation of the product line compositional safety analysis and design 

optimization approach that can be minimized with safety analyst knowledge about 

previous safety analysis performed in other systems from the same domain and via 

interactions with stakeholders. Metaheuristics optimization algorithms can be a solution 

to support safety analysts to take decisions in the selection of relevant usage scenarios to 

be considered during product line safety analysis, but it is outside the scope of this thesis 

and subject of future research in product line safety assessment.  
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5.6 Summary 

Achieving the systematic reuse of safety assets in safety-critical product line 

engineering requires performing safety analysis aware of interactions between 

architectural components in a range of usage scenarios and the impact of variation in 

design and context in safety properties. The novelty of the safety analysis approach 

presented in this chapter is the provision of an integrated and systematic method to 

integrate compositional safety analysis and design optimization into product line 

processes. In domain engineering, functional hazard assessment and component failure 

analysis is performed from the perspective of different ways in which common and 

variable architectural components can be combined in a range of scenarios, and 

variability in the product line failure model is managed. In application engineering, 

product line architecture and failure models are then reused, with the support of variant 

management techniques, and compositional safety analysis supports the automatic 

synthesis of variant-specific fault trees, FMEA, and SIL decomposition safety assets. 

Therefore, context and design variation is traced throughout design and safety assessment 

assets. The approach can be adapted to work with a range of model-based development 

and compositional safety analysis tools, e.g., OSATE AADL/Error Annex system 

modeling and compositional safety analysis tool. The approach was validated in safety-

critical product lines from automotive and aerospace (see Chapter 8) domains, but it can 

be generalized to address other safety-critical product lines from different domains such 

as medical and railway. The benefits of the proposed approach are the systematic reuse of  

the failure model and automated generation of fault trees and FMEA safety assets 

provided by seamless integration between model-based development, compositional 

safety analysis and variant management techniques. It contributes to reduce the effort and 

costs of performing variant-specific safety analysis, since such analysis is performed 

from the reused failure model, and automated with the support of compositional safety 

analysis techniques.    

With regard to product line design optimization, a method and tool for automated 

analysis and decomposition of safety integrity requirements in product line design was 

developed in the course of this thesis. The PL-SILDec is a prototype tool built as an extension 

of the HiP-HOPS SIL decomposition tool (AZEVEDO et al. 2014). The tool supports the 
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automatic allocation of SILs to SPL components taking into account their possible usage 

across the product line. It has been discussed both in theory and through automotive and 

aerospace (Chapter 8) case studies, how such a method and tool can potentially reduce the 

cost of safety-critical product line development by allocating less stringent safety integrity 

requirements to architectural components whilst meeting process-based certification safety 

objectives. Through this method, it is possible to establish safety integrity requirements for 

product line components anticipating their potential usage in a number of product variants. 

The product line component SIL decomposition method extends and automates the SIL 

decomposition principles prescribed by safety standards to address process-based certification 

in the product line design. Variant-specific safety assets such as hazard analysis, fault 

trees, and FMEA generated with the support of the proposed approach can be further 

used as certification evidence referenced in the assurance case produced later in 

application engineering to address goal-based certification. Chapter 6 presents the 

integration of model-based assurance cases approach into software product line 

engineering processes to support the automatic generation of variant-specific assurance 

cases from a diverse set of design and safety assessment models. 



 



 

Chapter 6 

CAPÍTULO 6 -  MODEL-BASED ASSURANCE CASES IN 

SOFTWARE PRODUCT LINE ENGINEERING  

6.1 Introduction 

The research contributions presented in the previous two chapters (Chapter 4 – 

Product Line Safety Variability Management, and Chapter 5 – Product Line Compositional 

Safety Assessment) supports establishing the main causal models for hazards in a product 

line. It allows identifying the failure modes of interest for individual components, and 

determining the safety properties of components, e.g., failure rates, and SILs. However, safety 

analysis is not the only form of evidence required for assurance. Other forms of evidence 

comprise: testing, formal verification, and field data. At the core of safety-critical product line 

engineering is the idea that product line assets can be stored in a repository – these are not 

simply the software components themselves, they can be information about the components, 

e.g., requirements document, architecture, safety analysis, test cases. When it comes to 

assurance, we want to store assurance artefacts – e.g., testing results. To show the relationship 

between analysis artefacts generated for product line instances and the required assurance 

evidence, it is necessary to understand how the analysis can be used to shape an assurance 

case for a product line instance that can be linked to product line assurance assets such as 

hazard analysis and risk assessment, fault tree analysis, and FMEA results. 

If we are able to package up and reuse product line components, then, from the 

assurance perspective, we must show how the assurance evidence that can be generated for 

components can adequately support the assurance case for any given product line instance. 

Therefore, the Model-Based Assurance Cases (MBAC) (HAWKINS et al. 2015) approach 
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can be integrated into product line processes to support the automatic generation of assurance 

cases for product line instances from a diverse set of system models. Thus, automated 

traceability between system models and the assurance case can be achieved. This chapter 

presents a systematic approach to integrate the MBAC approach into product line engineering 

processes to support the automatic generation of assurance cases for product line instances 

(Product line Model-Based Assurance Cases in Chapter 3). The approach was validated to 

generate assurance cases for instances of a hybrid braking system product line (HBS-SPL) 

with the support of the MBAC tool.  

Section 6.2 presents a systematic approach to integrate MBAC into product line 

engineering processes. Section 6.3 presents the instantiation of the proposed approach in an 

automotive case study. Section 6.4 presents the results of an experimental study conducted to 

evaluate the feasibility of the MBAC approach in generating assurance cases for product line 

instances. Section 6.5 presents the limitations of the MBAC approach. Section 6.6 presents 

the summary of this chapter.   

6.2 Product Line Model-Based Assurance Cases 

This section presents a systematic approach to integrate model-based assurance cases 

techniques (See Section 2.4.3), specifically techniques based on the model-weaving approach 

(DEL FABRO et al. 2005), into product line engineering processes. The phases, activities, 

and tasks of the proposed approach were defined from the analysis of the required steps to 

prepare the MBAC environment to support the generation of assurance cases for instances of 

automotive braking system and flight control aerospace safety-critical product lines. The 

proposed approach comprises three phases in domain engineering, and two phases in 

application engineering. The proposed product line MBAC approach is not tied to: specific 

assurance case modeling notations, e.g., GSN and CAE, technologies to define system models 

and their mappings to assurance case patterns, e.g., Eclipse Modeling Framework (EMF) or 

Meta Object Facility (MOF), and model-based assurance case tool, e.g., MBAC (HAWKINS 

et al. 2015). In addition, the approach can be applied in an iterative and incremental fashion. 

In domain engineering, the approach defines phases to configure the model-based 

assurance case environment as illustrated in the SADT (ROSS, 1977) diagram in Figure 6.1a. 
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Firstly, assurance case patterns should be defined (SC-PLE-10), followed by the definition of 

the structure of each SPL asset model that provides information to instantiate these patterns in 

a metamodel (SC-PLE-11), and finally, mapping links between pattern elements and 

information elements provided by a diverse set of SPL asset models, required to instantiate 

these patterns, are specified in the weaving model (SC-PLE-12). Assurance case patterns, SPL 

artefact metamodels, and the weaving model created in domain engineering are reusable 

assets used in application engineering, together with input variant-specific design and safety 

assessment models, to support the weaving of assurance case patterns and system models, 

generating assurance cases for product line instances. Figure 6.1b illustrates the approach 

phase (SC-PLE-13) defined in the application engineering to: configure the targeted MBAC 

instantiation program with assurance case patterns, SPL asset metamodels, the weaving model 

and variant-specific input artefacts for automatically generating assurance cases for a 

particular product line instance. The following sections detail each one of these phases. 

 

Figure 6.1. Model-based assurance cases in product line engineering processes. 
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6.2.1 SC-PLE-10: Assurance Case Pattern Modeling 

The Assurance Case Pattern Modeling phase comprises a set of tasks shown in Figure 

6.2. In this phase, safety engineers specify assurance case patterns with the support of an 

assurance case modeling notation and its graphical editor, e.g. GSN editor. Therefore, from 

the analysis of existing assurance case pattern catalogues (OLIVEIRA et al. 2014a; HABLI, 

2009; HABLI and KELLY, 2006; YE, 2005; WEAVER, 2003; KELLY and McDERMID, 

1997) safety engineers define the assurance case pattern architecture for the targeted system 

domain (“SC-PLE-10.1”). The established architecture comprises a hierarch of assurance case 

patterns that defines the structure of variant-specific assurance cases. Such architecture 

defines the assurance case pattern elements, e.g., goals and context elements in GSN, which 

require further instantiation. It defines pattern elements that are optional or that require 

multiple instances when an abstract term associated with the given multiplicity relation is 

bound during pattern instantiation. Section 2.4.2.2 provides a detailed description of 

multiplicity relations in GSN assurance case patterns. 

After establishing the assurance case pattern architecture, safety engineers identify 

abstract terms in assurance case expression patterns, i.e., terms that require further 

instantiation (SC-PLE-10.2). Abstract terms in assurance case expression patterns are 

references to information elements from a diverse set of system models. Thus, abstract terms 

 

Figure 6.2. Assurance case pattern modeling phase. 
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are instantiated from the information provided by different system models. For example, 

“systemX” is an abstract term in the assurance case expression pattern shown in Figure 6.3, 

which refers to the “system name” information element stored into the system architecture 

model. Therefore, in SC-PLE-10.2, assurance case expression patterns are analyzed in order 

to identify terms that require further instantiation. This information is important for further 

linking abstract terms to elements from the system model in the weaving model. The end of 

this phase outputs a structured assurance case pattern hierarch and its associated abstract 

terms. The derived assurance case pattern architecture defines the structure of variant-specific 

assurance cases. 

G1

{systemX} is 

acceptably safe

 

Figure 6.3 Example of an abstract term. 

6.2.2 SC-PLE-11: Asset Metamodeling 

As defined in the MBAC approach (Section 2.4.3.2), a reference information model 

represents a system model that contain information required to instantiate assurance case 

patterns. These models represent different views of a particular system, e.g., design, safety 

assessment and process (evidence) models, referenced in an assurance case. In this phase, 

with the support of a model-based development environment, e.g., EMF, safety engineers 

define the structure of product line assets in metamodels, for each asset intended to be input to 

the MBAC assurance case generation process. The end of this phase delivers a set of product 

line asset metamodels and graphical editors, in the form of plugins, generated from these 

metamodels. This is required to allow the underlying MBAC tool to handle the target product 

line asset models of a particular product line instance to extract the required information to 

generate a variant-specific assurance cases. The EMF platform can be used to support the 

design of these metamodels. Details about how to create metamodels and generate editors for 

domain-specific languages with the support of EMF can be found elsewhere (ECLIPSE, 

2016). 



Chapter 6 - Model-Based Assurance Cases in Software Product Line Engineering                                                  207 

 

6.2.3 SC-PLE-12: Weaving Modeling 

In this phase, abstract terms defined in assurance case patterns are linked to system 

model elements, which contain the required information to instantiate these terms in the 

weaving model. The weaving model concept is detailed in Section 2.4.3.3. The weaving 

model can be specified manually or with the support of graphical editors, e.g., ATLAS Model 

Weaver
20

 (DEL FABRO et al. 2005a), and yEd Graph Editor (YWORKS, 2016). Figure 6.4 

shows the tasks to be performed during the weaving modeling phase. Assurance case patterns 

and product line asset metamodels are input artefacts for this phase. Firstly, elements 

referencing each abstract “term” defined in assurance case patterns should be specified in the 

weaving model (SC-PLE-12.1). Each element should have the same label of the 

corresponding abstract “term” defined in assurance case patterns. In the following, elements 

referencing each “system model element” that provides information to instantiate abstract 

“terms” should be specified in the weaving model (SC-PLE-12.2). Each “system model” 

referencing element comprises the pair “element type, model name”. Referencing elements 

for system model elements should also have the same label of the corresponding element 

defined into the system metamodel. Finally, mapping links between elements referencing abs- 

 

Figure 6.4. Weaving modeling phase. 

                                                 
20 https://projects.eclipse.org/projects/modeling.gmt.amw 
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tract “terms” and “system model” referencing elements are specified (SC-PLE-12.3). A 

mapping link may optionally include two properties: “targetProperty”, used when it is 

necessary referencing an attribute of the given “system model element”, e.g., the attribute 

“name” from “System” model element; and “isMulti”, a Boolean property used control the 

amount of information required to instantiate a given abstract “term”. A “true” value 

indicates that multiple occurrences of a given “system model element” are required to 

instantiate one occurrence of the given abstract “term”, whereas a “false” value indicates that 

each occurrence of a given “system model element” results in a different instance for the 

given abstract “term”. Figure 6.5 illustrates an example of a mapping link between “systemX” 

abstract “term” and “system” model element in the weaving model. This mapping link 

contains a property indicating that “systemX” requires the “name” attribute from “system” 

model element to be instantiated. 

 

Figure 6.5. Linking pattern abstract term and system model element. 

At end of this phase the weaving model is delivered. This model defines a pattern 

describing how assurance case pattern elements should be instantiated from the available 

evidence information provided by a diverse set of system models, by linking pattern elements 

to the evidence. Therefore, traceability between the assurance case and the referenced safety 

evidence is achieved, and changes in variant-specific system models are automatically 

propagated throughout the assurance case.   

6.2.4 SC-PLE-13: Assurance Case Model Generation 

In product line application engineering, assurance case patterns, reference information 

metamodels, and the weaving model defined in domain engineering, together with variant-

specific design, assessment and process models are input artefacts to configure the targeted 

MBAC tool to generate the assurance case. The output of this phase is an assurance case 

model for a particular product line instance. The assurance case patterns, reference 
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information metamodels, and the weaving model are reusable assets that can be used to 

generate assurance cases for multiple product line instances.  

6.3 MBAC Case Study: Hybrid Braking System Product Line 

This section presents a case study in which the proposed product line MBAC approach 

was applied, using the Goal Structuring Notation and its editor, MBAC approach and tooling 

(HAWKINS et al. 2015), to support the automatic generation of assurance cases for instances 

of the HBS-SPL automotive product line presented earlier in Chapter 4 (Section 4.4). The 

MBAC approach and tooling are detailed in Section 2.4.3. The following sections present the 

results obtained in each phase of the proposed approach. 

6.3.1 SC-PLE Phase 10: HBS-SPL Assurance Case Pattern Modeling 

From the analysis of existing assurance case patterns (HABLI 2009; WEAVER, 2003; 

KELLY and McDERMID, 1997), the assurance case pattern architecture was defined based 

on “Hazard Avoidance” (KELLY and McDERMID, 1997), “Risk Argument” (HABLI, 2009), 

and “Absence of Hazardous Software Failure Mode” (WEAVER, 2003) patterns, with the 

support of an EMF-based GSN editor. The assurance case pattern architecture is illustrated in 

Figure 6.6. Each assurance case pattern defined in this architecture is detailed in the 

following: 

 An adapted version of Hazard Avoidance  pattern that decomposes the claim over the 

safety of a given product line instance into sub-claims arguing that the risk posed by 

each hazard associated with the given instance is acceptable;  

 The “Risk Argument” pattern was extracted from the analysis of assurance cases for an 

engine turbine avionics product line (HABLI, 2009). It  decomposes the claim arguing 

the risk posed by a given system hazard into claims arguing the absence of  

contributing failure modes; and  

 Absence of Hazardous Software Failure Mode argument pattern, which decomposes 

the claim arguing the “absence of a given contributing component failure mode” into 

sub-claims arguing the absence of primary, secondary, and control failure modes.  
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Figure 6.6. Assurance case pattern architecture. 

“Hazard Avoidance”, “Risk Argument”, and “Absence of Hazardous Software Failure 

Mode” assurance case patterns define a structure for product-based and hazard directed 

argumentation. In addition, other assurance case patterns can also be added to this structure to 

support the automatic generation of process-based arguments (HABLI and KELLY, 2006) for 

a particular product line instance. A process-based argument pattern defines structure to argue 

the safety of the development processes considered during the development of safety-critical 

systems, in terms of quality of personnel and tools and compliance with safety standards. 

Figure 6.7 illustrates the “Risk Argument” pattern modeled using a GMF-based GSN 

graphical editor. This pattern defines a set of abstract “terms” that require further 

instantiation, denoted by a red rectangle. For example, “hazard”, “SIL”, and “failure 

condition” abstract “terms” require information provided by the Failure Model of the targeted 

product line instance. This pattern also defines that the “G1” claim arguing that the risk posed 

by a given hazard is acceptable is decomposed into multiple sub-claims arguing the absence 

of each contributing component failure mode (i.e., each node of a fault tree). This is indicated 

by “n = # (hazard causes)” expression supported by the relation between “S1” strategy and 
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Figure 6.7. Risk argument pattern in the GSN editor. 

“G2” claim.  

The GSN editor (HAWKINS et al. 2015) generates both graphical and “.gsnml” 

representations of assurance case patterns. The “.gsnml” format provide the required 

information by MBAC tool instantiating GSN assurance case pattern elements and associated 

abstract “terms”. Figure 6.8 shows an excerpt of the “.gsnml” representation of the “Risk 

Argument” pattern. Line 05 indicates that the “G1” claim should be instantiated, and line 07 

indicates that the “hazard” abstract term, referenced in the expression pattern from that claim, 

should be instantiated with the information provided by the hazard analysis asset.  

01 <?xml version="1.0" encoding="UTF-8"?>

02 <gsnmetamodel:Cas e xmi:ve rsion="2.0" xmlns:xmi="http://www.omg.org/XMI"  

03   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:gsnmetamode l="http://gsnmetamodel/1 .0">

04  <contains xsi:type="gsnmetamodel:GSN_ Module" id="RiskHzdX_Module">

05     <ArgumentElements xsi:type="gsnmetamode l:GSN_Goal" id="G1:RiskHzdX" tobeIns tantiated="true">

06       <contents xsi:type="gsnmetamodel:Lite ral" literal="Risk posed by"/>

07       <contents xsi:type="gsnmetamodel:Role " id="hazard" role="hazard"/>

08       <contents xsi:type="gsnmetamodel:Lite ral" literal="is acceptable" />

09     </ArgumentElements>

10                  ...

11  </contains>

12 </gsnmetamodel:Ca se>  

Figure 6.8. Excerpt of .gsnml representation of the risk argument pattern. 
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6.3.2 SC-PLE Phase 11: HBS-SPL Asset Metamodeling 

Considering that both HBS-SPL and Tiriba Flight Control product line case studies 

used throughout this thesis provide the same types of development and assessment assets, the 

following asset metamodels were adopted, and other were created with the support of Eclipse 

Modeling Framework: 

 AADL metamodel (SAE, 2012) and Simulink metamodel
21

: represent the architectural 

view of the system; 

 Feature metamodel: it was created from the analysis of the “Product Line 

Metamodel” (HABLI 2009), and feature metamodels provided by existing Eclipse-

based feature modeling tools, e.g., FeatureIDE, and Feature Modeling Plugin 

(CZARNECKI et al. 2004). The feature model represents the functional view of the 

system; 

 Context metamodel: it was created in the same way as the feature metamodel. A 

context model defines the characteristic of the environment where a given product line 

instance can operate; 

 Failure metamodel: created based on the HiP-HOPS failure metamodel. It represents 

the failure analysis perspective of the system; and 

 Fault Tree-FMEA metamodel: developed from the “Architectural” and “Component” 

failure metamodels (HABLI, 2009). It represents the structure of fault tree and FMEA 

results, i.e., the cause-effect view of the system failure behavior; 

Instances of product line asset metamodels provide the required information for the 

MBAC tool instantiating assurance case patterns. Figure 6.9 illustrates a screenshot of the 

“Failure Metamodel” in EMF platform. EMF provides both graphical and tree view editors to 

support the specification of models and metamodels. The diagram view illustrates that 

“Failure Metamodel” instances can contain zero or more “Hazards”, and the occurrence of a 

“Hazard” can be associated with one or more “Causes”.  

                                                 
21https://github.com/FTSRG/massif/tree/master/plugins/hu.bme.mit.massif.simulink/model 
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Figure 6.9. Failure metamodel in the EMF platform. 

6.3.3 SC-PLE Phase 12: HBS-SPL Weaving Modeling 

Assurance case patterns (Section 6.3.1), and product line asset metamodels (Section 

6.3.2) are input artefacts to define mapping links between assurance case pattern abstract 

“terms” and “system model elements” that provide the required information to instantiate 

them. Assuming the automotive and aerospace product lines used throughout this thesis, the 

following asset metamodels were considered: AADL or Simulink, feature, context, failure, 

and fault tree and FMEA metamodels.  

Figure 6.10 shows an excerpt of the created weaving model to support the instantiation 

of the assurance case patterns defined in Section 6.3.1. A UML class diagram is used to 

illustrate the weaving model. This model was created with the support of yEd graph modeling 

tool (YWORKS, 2016), and a weaving metamodel that extends the standard weaving 

metamodel (DEL FABRO et al. 2005). Firstly, abstract “terms” from assurance case patterns 

are defined in the left-hand side of the model. The abstract terms to be instantiated are: 

“operationalEnvironment”, “systemDefinition”, “system”, “components”, “CSF”, 

“targetSafetyStandard”, “hazard”, “SIL”, “silAllocatedToHzds”, “failureCondition”, and 

“HSFMType”. In the following, from the analysis of the created “terms”, and the information 
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Figure 6.10. Excerpt of the weaving model. 
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provided by product line asset metamodels, references to system model elements that provide 

the required information to instantiate each abstract “term” were defined. For example, the 

“contextFeatures” element from the context metamodel contains the required information to 

instantiate the “operationalEnv” abstract “term” associated with Hazard Avoidance pattern 

shown in Figure 6.7. The “elementType” attribute value from “contextFeatures” element 

determines that the “feature” model element provides the required information to instantiate 

the “operationalEnv” abstract “term”. The relationship between these elements is defined via 

mapping links indicated by dashed arrows connecting the left-hand side elements to right-

hand side elements. 

Mapping links also allow specifying properties for referencing attributes from a given 

“system model element”, which provides the required information for instantiating a given 

abstract “term”. For example, the mapping link connecting the “operationalEnv” abstract 

“term” to the “contextFeature” element indicates that the “name” attribute from the “feature” 

model element provides the required information to instantiate the “operationalEnv” abstract 

“term”. Additionally, it is also possible to define whether multiple occurrences of a given 

“system model element” are required to instantiate a single occurrence of an abstract “term”, 

via “isMulti” Boolean property set with a “true” value. For example, for instantiating the 

“operationalEnv” abstract “term” associated with “C2” context element in “Hazard 

Avoidance” pattern (see Figure 6.7), the “name” of each context feature is required. 

Therefore, the instantiation of “operationalEnv” abstract term is a list of “feature.name” 

information elements separated by commas, e.g., “feature1.name”, “feature2.name”,…, 

“featuren.name”. Considering a given HBS-SPL instance, the instantiation of 

“operationalEnv” “term” requires “Four Wheels”, “OffRoad”, “Rally” feature names 

provided by the context model, as illustrated in Figure 6.11.  

 

Figure 6.11. Mapping links between abstract terms and system model elements. 
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6.3.4 SC-PLE Phase 13: HBS-SPL Assurance Case Model Generation 

The assurance case patterns, reference information metamodels, and the weaving 

model created in domain engineering were reused in application engineering for generating 

assurance case models for three HBS-SPL instances with the support of the MBAC EOL 

instantiation program (see Section 2.4.3.4). Assurance cases were generated for the following 

HBS-SPL instances:  four wheel braking (4WB), front wheel braking (FWB), and rear wheel 

braking (RWB). Appendix D shows the generated assurance cases for instances of the Tiriba 

Flight Control aerospace product line. 

The MBAC tool generated HBS-SPL variant-specific assurance cases in “.gsnml” and 

tabular formats. The “gsnml” file contains the specification of the instantiated assurance case 

pattern elements and their relationships, and the tabular format shows the relationships 

between assurance case pattern abstract terms and their corresponding instantiation 

information in an instantiation table. Figure 6.12 shows an excerpt of the “.gsnml” 

representation of the assurance case generated for the 4WB product line instance. The 

highlighted text represents abstract terms instantiated with information from a diverse set of  

 

Figure 6.12. 4WB assurance case gsnml representation. 
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system models. For example, the “HBS Rear Wheels Braking” information, provided by the 

architecture model, instantiates the “system” abstract term associated with “G1” goal in line 4. 

Figure 6.12a shows the instantiation of Hazard Avoidance pattern. Figure 6.12b illustrates the 

instantiation of the “Risk Argument” pattern for “No braking three wheels” system hazard 

(lines 23-47). For each “4WB” related hazard, an argument module arguing that the “risk 

posed by each hazard is acceptable” has been generated. This claim is further decomposed 

into fault mitigation claims arguing that all causes of each contributing failure mode are 

acceptable.  

Whereas context and design variation directly impact in the variant-specific 

architecture and safety assessment models, which are inputs to MBAC generating an 

assurance case for a given variant, such variation is propagated throughout the assurance case. 

Figure 6.13 shows excerpts of modular views of the assurance cases generated for “4WB” and 

“FWB” hybrid braking system variants. The generated assurance case models for these 

variants share the structure defined in the assurance case patterns (Section 6.3.1). Therefore, a 

variant-specific assurance case comprises a top-level argument module, arguing that the 

system variant is acceptably safe, which is further decomposed into modules arguing that the 

risks posed by the associated hazards are acceptable. Each “Risk Argument” module is further 

decomposed into modules arguing the absence of each contributing component faults. Finally, 

“Absence of Hazardous Software Failure Mode” modules argue that primary, secondary, and 

control faults, which can cause a given hazardous software failure mode, are acceptable. An 

“Absence of Hazardous Software Failure Mode” module is further supported by other fault 

mitigation claims arguing that the causes of failures in other components contributing to 

hazardous software failure mode are acceptable, and optionally, into other “Absence of 

Hazardous Software Failure Mode” modules.  

Variation in architecture and safety models are reflected in the number of risk and 

fault mitigation argument modules in “4WB” and “FWB” variant-specific assurance cases. 

The 4WB assurance case comprises risk argument modules for “Value Braking”, “No 

Braking Rear”, “No Braking Diagonal”,  “No Braking Front”, “No Braking Four Wheels”, 

and “No Braking Three Wheels” hazards (Figure 6.13a), whereas the “FWB” assurance case 

comprises argument modules for “No Braking Front”, and “Value Braking” hazards (Figure 

6.13b). Although the assurance cases for these variants having common risk argument 

modules, variability has also been found in “Absence of Hazardous Software Failure Mode”  
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Figure 6.13.HBS-SPL variant-specific assurance cases. 

modules. For example, the supporting modules for “RiskValueBraking” argument module are 

“AbsBrakeUnit1AddBrakingValue” and “AbsBrakeUnit2AddBrakingAbs” in the “FWB” 

variant. On the other hand, the “RiskValueBraking” module is supported by 

“AbsBrakeUnit1AddBrakingValue”, “AbsBrakeUnit2AddBrakingValue”, “AbsBrakeUnit3- 

AddBrakingValue”, and “AbsBrakeUnit4AddBrakingValue” modules in “4WB” variant-

specific assurance case. Such variation is further propagated throughout other “Absence of 

Hazardous Software Failure Mode” modules and their supporting modules. The following 

subsections detail the “Top-Level Argument”, “Risk Argument”, and “Absence of Hazardous 

Software Failure Mode” modules generated for the “4WB” variant shown in Figure 6.13a.  
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6.3.4.1 HBS-4WB Top-Level Argument 

The “Top-Level Argument” generated for the four wheel braking system variant, 

shown in Figure 6.14, is a hazard and risk-directed module. This module decomposes the 

claim arguing that the four wheel braking system variant is acceptably safe to operate in its 

environment, into sub-claims (“G2”, “G3”, “G4”, “G5”, “G6”, and “G7”) arguing that the 

risk posed by each variant-specific hazard is acceptable. Each risk argument is encapsulated 

in a separated module that justifies the absence of component failures that can cause a given 

hazard, i.e., do not lead the system variant to an unsafe state. Such justification is defined in 

the context of the ASIL allocated to each system hazard stated in “C3” element. 

The “4WB” assurance case shown in Figure 6.14 was generated from the information 

provided by different design and safety assessment models. For example, the information 

provided by feature and context models was used to instantiate “C1” and “C2” context 

elements. The architecture model was used to instantiate “G1” and “C4” elements. Finally, 

safety analysis, fault trees, and FMEA results were used to respectively instantiating “Risk 

Argument” and “Absence of Hazardous Software Failure Modes” modules. Therefore, 

changes in the design and context are automatically propagated throughout these assets and 

the assurance case.  

 

Figure 6.14. Four wheel braking top-level argument module. 
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6.3.4.2 HBS-4WB Risk and Absence of Hazardous Failure Mode Argument Modules 

The “4WB” top-level argument module is supported by six risk argument modules 

arguing that the risk posed by each associated system hazard is acceptable. Each risk module 

is supported by sub-claims arguing the absence of each contributing hazardous software 

failure mode. Figure 6.15 shows the “RiskValueBraking” argument module. “G2” top- level 

claim is stated in the context of ASIL “D” allocated to “Value Braking” system hazard (C5), 

and the top-level failure condition leading to this hazard (C6). This claim is decomposed into 

sub-claims arguing the mitigation of component failures that directly contribute to the 

occurrence of “Value Braking” hazard (“S1”), in this case, incorrect values in 

“Brake_Unit1.Add” (“G8”), “Brake_Unit2.Add” (“G9”), “Brake_Unit3.Add” (“G10”), and  

 

Figure 6.15. Value braking risk argument module. 
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“Brake_Unit4.Add” (“G11”) component outputs, which can cause an incorrect braking 

torque while braking. Such decomposition strategy is defined in the context of the causal 

chain defined in the “Value Braking” fault tree, and “4WB” variant specific components 

defined in the architecture model. “G8”, “G9”, “G10”, and “G11” are references to 

“AbsBrakeUnit1AddBrakingValue”, “AbsBrakeUnit2AddBrakingValue”, “AbsBrakeUnit3A 

ddBrakingValue”, and “AbsBrakeUnit4AddBrakingValue” modules, respectively. These 

modules decompose claims over the absence of value failures in all brake unit outputs into 

sub-claims arguing that the occurrence of primary, secondary, and control failure modes that 

can cause these component failures are acceptable. 

Figure 6.16 illustrates the “AbsBrakeUnit3AddBrakingValue” argument module. This 

module decomposes the claim “G10” into sub-claims arguing that: an internal failure in 

“Brake_Unit3.Add” component is acceptable (“G10.1”), the failure modes of other 

components that contribute to incorrect value of “Brake_Unit3.Add.Braking” output port are 

 

Figure 6.16. Absence of value Brake_Unit3.Add.Braking argument module. 
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acceptable (“G10.2”), and that “Brake_Unit3.Add” component is scheduled and allowed to 

run once” (“G10.3”). “G10.2” is further decomposed into fault mitigation sub-claims arguing 

that incorrect values in “Brake_Unit3EMB” (“G10.2.1”), “Brake_Unit3.EMB_ 

Power_Converter” (“G10.2.2”), and “Auxiliary_Battery” (“G10.2.3”) components, and 

other components, are acceptable. These claims argue that all causes of each failure event 

specified in fault tree leaf nodes do not lead the system to an unsafe state. The claim “G10.2” 

is also decomposed into other “Absence Hazardous Software Failure Mode” fault mitigation 

argument modules, e.g., the “G10.2.4” argument module. An “Absence Hazardous Software 

Failure Mode” fault mitigation module argues that the occurrence of primary, secondary, and 

control failure modes of a given fault tree gate, e.g., AND/OR gates, do not lead the system to 

an unsafe state. 

Table 6.1 illustrates the relationship between “Top-Level Argument” elements, and 

information elements from different system models. For example, the “Four Wheel Braking 

system” information stated in “G1” and “C4” elements in Figure 6.14 is provided by “4WB” 

architecture model. Hazard analysis information elements stated in “G2”, “G3”, “G4”, 

“G5”, “G6”, and “G7” module references are provided by “4WB” safety analysis model. 

Therefore, changes in the system variant are automatically propagated throughout the 

assurance case.  

In order to assess the feasibility of the MBAC approach to support the automated 

generation of assurance cases in software product line engineering, from the perspective of 

product line application engineers and non-safety professionals, an experimental study was 

carried out. The following section presents the planning, execution, and the results of this 

experimental study. 

Table 6.1 – Assurance case pattern instantiation and system model elements. 

Assurance 

Case Model 

Abstract Term Information Element Model Element Source System 

Model 

 

 

 

 

 

 

Top-Level 

Argument 

 

systemX  

 

 

Four Wheel Braking system 

 

Model.name 

 

Simulink model 

 

systemDefinition  

 

Brake_Unit1, Brake_Unit2, 

Brake_Unit3, Brake_Unit4, 

Auxiliary_Battery, …  

 

Feature.name 

 

Feature model 

 

Environment 

 

Car, Four Wheels 

 

ContextFeature.name 

 

Context model 

 

targetSafetyStandard 

 

ISO 26262 

 

Model.description 

 

Failure model 

 

Hazard 

Value Braking, No Braking Four 

Wheels, No Braking Three Wheels, 

No Braking Diagonal, No Braking 

Rear, No Braking Front 

 

Hazard.name 

 

Failure Model 
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6.4 Experimental Study 

This section presents the results of an experimental study carried out to evaluate the 

effectiveness, in terms of quality, and the efficiency, in terms of productivity, of applying the 

MBAC (HAWKINS et al. 2015) approach and tooling to support the automatic generation of 

assurance cases in software product line engineering. The “time” metric is used to assess the 

productivity in terms of the time spent using both the Conventional (C) manual process of 

assurance case construction, and the MBAC (M) to generate an assurance case for a targeted 

product line instance. The “error rate” metric is used to evaluate the quality in terms of the 

number of errors found in the generated assurance case, e.g., wrong information used to 

instantiate assurance case pattern elements. These metrics have been chosen to assess the 

“Efficiency” and “Effectiveness” of both assurance case construction approaches in product 

line engineering. This experimental study has been defined and executed according to 

guidelines established in Empirical Software Engineering (WOHLIN et al. 2000). The 

following sections present the study definition, planning, operation, data analysis 

interpretation, and hypothesis testing.   

6.4.1 Study Definition 

6.4.1.1 Objetives 

The primary objective of this experimental study is to compare the effort in designing 

assurance case models for a safety-critical system variant using the Conventional manual 

process (C) and the MBAC (M) approach. The secondary objective of this study is to compare 

the quality of the generated assurance case models using both approaches. 

The objective statement in the form prescribed by Wohlin et al. (2000) is detailed in 

the following: 

Analyze the Conventional (C) and MBAC (M) approaches  

For the purpose of evaluating the impact of both approaches in assurance case 

construction in terms of effort and quality 

With respect to their Efficiency and Effectiveness 

From the point of view of Safety Engineers  

In the context of Safety-Critical Software Product Line Engineering Processes.  
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6.4.1.2 Experimental Objects 

The experimental objects of this study are: the Hazard Avoidance assurance case 

pattern, and system models from four wheel braking variant from a braking system product 

line (HBS-4WB), and all pilot modes variant from Tiriba Flight Control product line (TFC-

ALL), used to create assurance case models for these variants using conventional and model-

based approaches.   

6.4.1.3 Quantitative Focus 

It involves the identification of effort in terms of “time” spent by each participant to 

conclude the design of an assurance case model for a given product variant, and the 

quantification of quality in terms of the error rate identified in the generated assurance case. 

6.4.1.4 Qualitative Focus 

It is intended to identify the technique that requires less effort to design a variant-

specific assurance case model, and the technique that generates an assurance case model with 

fewer errors. 

6.4.1.5 Perspective 

The experiment was conducted from the perspective of safety engineers concerned in 

designing an assurance case that provides the justification that a given product variant is 

acceptably safe in its environment to achieve goal-based certification. 

6.4.1.6 Study Objects 

The “effort” to generate an assurance case and the “quality” of the generated artefact 

are the study objects. 

6.4.2 Planning 

This experimental study was planned by considering the following questions:  

- Q1: What assurance case construction approach (manual or model-based) requires less 

effort to design an assurance case for a targeted product variant? 
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- Q2: What assurance case construction approach generates a higher quality assurance 

case for a targeted product variant? 

These two questions guided the data analysis to evaluate which assurance case 

construction approach is more efficient and effective. 

6.4.2.1 Participant Selection Criteria 

The participants were selected through a non-probabilistic approach by convenience, 

i.e., the probability of all population elements belonging to the same sample is unknown. 

MSc. and Ph.D. students in Software Engineering from the Institute of Mathematics and 

Computer Science from the University of São Paulo and Federal University of São Paulo 

were invited.  

6.4.2.2 Context Selection 

This experimental study was performed by Software Engineering post-graduate 

students from Institute of Mathematics and Computer Science of the University of São Paulo 

(ICMC-USP) and Federal University of São Carlos, referred here as “participants”. Twenty 

four participants performed the experiment, from which fourteen are PhD. students, and ten 

are MSc. students. All the participants have background on software product line engineering, 

and model-driven development, and no prior experience with system safety engineering and 

assurance cases. The participants were selected by convenience. The participants have 

answered a profile characterization form about their level of experience in software product 

lines, model-driven development, assurance cases, and development of safety-critical systems. 

The information obtained from these questionnaires was further used to allocate the 

participants in groups. During the experiment, the participants created assurance case models 

for two different variants from automotive and aerospace product lines using both 

conventional and MBAC approaches. 

6.4.2.3 Formulation of Hypothesis 

Table 6.2 shows the formulated hypothesis for the “Efficiency” study, used to compare 

the productivity of the product line MBAC approach with the conventional manual process of 

assurance case construction. The “DTc” (i.e., Design Time using the conventional approach) 

and “DTm” (Design Time using the product line MBAC) variables were defined. “DTc” 

represents the overall time to design an assurance case for a given product variant using the 
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conventional approach. “DTm” represents for the overall time to design an assurance case for 

the same variant using product line MBAC. Therefore, there are two hypotheses on Table 6.2: 

“H0dt” and “Hpdt”. “H0” is the null hypothesis, which is true when both techniques are 

equivalent or when the time to design an assurance case model for a given product variant 

using the conventional approach is less than using the product line MBAC. “Hpdt” is the 

positive hypothesis, which is true when product line MBAC takes less time to design an 

assurance case for a given product variant in comparison with the conventional approach. 

Table 6.2 – Hypotheses for the efficiency study. 

 

H0dt 

The time required to design an assurance case for a product variant from the analysis of its design 

and safety assessment models using the conventional approach (C) is less or equal than the time 

required to perform the same task using the product line MBAC (M). 

DTc  < = DTm 

 

Hpdt 

The time required to design an assurance case for a product variant from the analysis of its design 

and assessment models using the conventional approach (C) is greater than the time required to 

perform the same task using the product line MBAC (M). 

DTc  >  DTm 

Table 6.3 shows the formulated hypothesis for the “Effectiveness” study to compare 

the quality of the assurance case models generated using the product line MBAC and 

conventional approaches. The “ERc” (Error Rate using C), and “ERm” (Error Rate using M) 

variables were defined on Table 6.3. “ERc” and “ERm” represent the error rate associated 

with variant-specific assurance case models designed using respectively “C” and “M” 

approaches.  

Since both “Efficiency” and “Effectiveness” hypotheses consider different ranges of a 

single real value, they are mutually exclusive, i.e., only one of them can be true. The “H0dt” 

Table 6.3 – Hypotheses for the effectiveness study. 

 

H0er 

The quality, in terms of number of errors, of assurance case models designed using the conventional 

approach (C) is better or equal to the quality of assurance case models designed using product line 

MBAC (M). 

ERc  <= ERm 

 

Hper 

The quality, in terms of number of errors, of assurance case models designed using the product line 

MBAC (M) approach is better than the quality of assurance case models designed using the 

conventional approach (C). 

ERc > ERm  
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and “H0er” hypotheses have the precedence because the results are dependent upon the error 

margin stipulated in statistical testing. 

6.4.2.4 Variable Selection 

Dependent variables: the time spent to design an assurance case model, and the error 

rate identified in the generated assurance case model. 

Independent variables: the targeted product variants (HBS-4WB and TFC-ALL), and 

the assurance case construction approaches (C and M), which are controlled and manipulated.  

Environmental variables: the level of the experience of the participants. 

6.4.2.5 Study Design 

The participants were divided into two balanced groups, by considering the answers of 

the profile characterization form provided by each participant. Each group is composed by 

twelve participants. A pilot study was conducted prior the experiment to verify possible 

problems in order to guarantee the precise execution of the tasks. Table 6.4 shows the planned 

phases for this experimental study. In the first phase, the participants from “Group 1” had 

designed an assurance case for “TFC-ALL” variant using the conventional approach, while the 

participants from “Group 2” had used the MBAC approach. In the second phase, the 

participants from “Group 1” have used the MBAC approach to design an assurance case for 

“4WB” variant, and the participants from “Group 2” have used the conventional approach.  

Table 6.4 – Experiment design. 

Phase Group 1 Group 2 

Training Concepts of system safety engineering, Goal Structuring Notation, and Assurance Case design 

using GSN graphical editor and MBAC tooling for aircraft braking and pacemaker product 

variants. 

1st 

Phase:  

Treatment Conventional Model-Based 

Factor Tiriba Flight Control ALL Pilot Modes (TFC-ALL) variant. 

2nd 

Phase           

Treatment Model-Based Conventional 

Factor Four Wheels Braking (4WB) variant. 

6.4.2.6 Instrumentation 

The material supplied to the participants performing the assurance case construction 

tasks were: variant-specific Architecture, Feature, Context, and Failure models, a manual 

describing how to use the tooling support for both conventional and MBAC approaches, and a 

document with the description of the “SysSafe” assurance case pattern fragment and a 

mapping table showing the relationships between abstract terms from the pattern and system 
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model elements. The documents used during the experiment preparation and operation are 

available in Appendix C. 

The provided models for “4WB” and “TFC-ALL” variants have the same complexity 

and structure. During the experiment the participants had to identify the following information 

elements in variant-specific design and safety assessment models: “Feature.name”, 

“systemImpl.name”, “systemImpl.description”, a set of “Hazard.name”, and 

“Hazard.SafetyRequirement”. Such information was used to instantiate abstract terms from 

“SysSafe” assurance case pattern fragment using both conventional and MBAC approaches.  

After the participants had designed variant-specific assurance case models using both 

conventional and MBAC approaches, the experiment applicant had analyzed each one of 

these models against the correct template solution, and then, the number of errors associated 

with each variant-specific assurance case model was obtained.  

6.4.3 Operation  

6.4.3.1 Preparation 

A pilot study was executed to simulate the experiment environment, including all 

phases planned in Table 6.4. Later, prior the execution of the experiment phase, training on 

conventional and MBAC approaches and tooling has been provided for the participants. All 

the participants have designed assurance cases for two different product variants using only 

one of the assurance case construction approaches. 

6.4.3.2 Execution 

In each phase, the participants had designed assurance cases for the given product 

variant using different assurance case approaches (C or M). At the end of each phase, the 

participants had delivered assurance case models for the given variant and the filled data 

collection form with the time spent to conclude the phase. Later on the experiment, the 

applicant analyzed the assurance case models developed by each participant against the 

correct solution in order to evaluate the quality, in terms of absence of errors, of the generated 

assurance cases. 
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6.4.3.3 Data Validation 

The profile characterization forms filled by the participants were analyzed prior the 

allocation of the participants in each group. During the pilot study, the experiment applicant 

observed the subjects to verify whether they had gathered the needed data to perform the 

experiment phases. Thus, controllability of the independent variables was achieved, avoiding 

their influence under the dependent variables. The subjects considered in the pilot study did 

not participate of the experiment. The data collection forms were checked after the 

experiment to ensure that the participants correctly filled in. 

6.4.3.4 Data Collection 

For the “Efficiency” study, Table 6.5 shows the time spent by each participant during 

the assurance case construction phases using both conventional and MBAC approaches. Each 

line has five columns: “G” represents the group in which the given participant was allocated; 

“V” represents the product variant from which the assurance case was generated, “A” 

represents the assurance case construction approach used to develop the assurance case, “P” 

refers to the participant identifier, and “Time” represents the time spent to generate an assu- 

Table 6.5 – Timing data for the efficiency study.  

                             Phase 1                                                            Phase 2 

G P V A Time (mm:ss)  G P V A Time (mm:ss) 

1 23 TFC-ALL C 02:54  1 9 4WB M 02:35 

1 3 TFC-ALL C 03:21  1 18 4WB M 02:41 

2 24 TFC-ALL M 04:14  1 2 4WB M 03:39 

2 13 TFC-ALL M 04:39  1 17 4WB M 03:50 

2 19 TFC-ALL M 05:00  1 3 4WB M 04:04 

2 14 TFC-ALL M 05:41  1 11 4WB M 04:42 

1 11 TFC-ALL C 06:12  1 21 4WB M 05:03 

2 20 TFC-ALL M 06:24  1 23 4WB M 05:05 

1 18 TFC-ALL C 06:25  2 5 4WB C 05:10 

2 8 TFC-ALL M 06:27  2 14 4WB C 05:12 

2 5 TFC-ALL M 06:33  1 4 4WB M 05:45 

2 12 TFC-ALL M 06:33  1 1 4WB M 06:07 

1 9 TFC-ALL C 06:38  2 24 4WB C 06:20 

1 21 TFC-ALL C 07:37  1 7 4WB M 06:20 

2 10 TFC-ALL M 08:00  2 8 4WB C 06:21 

1 1 TFC-ALL C 08:08  2 22 4WB C 08:09 

2 6 TFC-ALL M 10:00  1 15 4WB M 08:40 

2 16 TFC-ALL M 10:25  2 20 4WB C 09:29 

2 22 TFC-ALL M 10:26  2 6 4WB C 09:38 

1 4 TFC-ALL C 10:30  2 19 4WB C 10:06 

1 15 TFC-ALL C 15:43  2 10 4WB C 11:00 

1 17 TFC-ALL C 16:08  2 13 4WB C 13:06 

1 7 TFC-ALL C 17:37  2 16 4WB C 26:20 

1 2 TFC-ALL C 27:51  2 12 4WB C 39:47 
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rance case.   

For the “Effectiveness” study, Table 6.6 shows the error rate associated with assurance 

case models designed by each participant using both conventional and MBAC assurance case 

construction approaches. Each line has five columns: the first four columns are similar to 

Table 6.5, and the fifth column (“Error Rate”) refers to the percentage of errors found in the 

delivered assurance case models. The error rate was calculated in the following way: each 

instantiated assurance case pattern term received a value between 0 and 1. Zero indicates that 

the instantiation information is 100% incorrect and 1 indicates that no errors have been found. 

In addition, each instantiated term received a weigh according to its complexity where two 

assurance case pattern terms, which require a single information element to be instantiated 

received 0.125 weigh, and three terms, which require multiple information elements received 

0.25 weigh. Finally, the error rate associated with a given assurance case model is 1 

subtracted by the sum of pairs “error*weigh” associated with each instantiated term, 

multiplied by 100. For example, considering the pairs (“error*weigh”) for the assurance case 

model delivered by the participant “18” in phase 1 we have: 1 – ((1*0.125) + (1*0.125) + 

(1*0.25) + (0*0.25) + (1*0.25)) = 0.25*100 = 25% error rate.  

Table 6.6 – Error rate data for the effectiveness study.  

                             Phase 1                                                           Phase 2 

G P V A Error Rate  G P V A Error Rate 

2 14 TFC-ALL M 0%  1 3 4WB M 0% 

2 6 TFC-ALL M 0%  1 18 4WB M 0% 

2 10 TFC-ALL M 0%  1 1 4WB M 0% 

2 5 TFC-ALL M 0%  1 2 4WB M 0% 

2 12 TFC-ALL M 0%  1 7 4WB M 0% 

2 13 TFC-ALL M 0%  1 15 4WB M 0% 

2 22 TFC-ALL M 0%  1 11 4WB M 0% 

2 8 TFC-ALL M 0%  1 17 4WB M 0% 

2 19 TFC-ALL M 0%  1 21 4WB M 0% 

2 20 TFC-ALL M 0%  1 9 4WB M 0% 

2 24 TFC-ALL M 0%  1 4 4WB M 0% 

2 16 TFC-ALL M 0%  2 14 4WB C 0% 

1 3 TFC-ALL C 0%  2 22 4WB C 0% 

1 17 TFC-ALL C 0%  2 8 4WB C 0% 

1 21 TFC-ALL C 0%  2 19 4WB C 0% 

1 18 TFC-ALL C 25%  2 24 4WB C 0% 

1 7 TFC-ALL C 25%  2 5 4WB C 10% 

1 11 TFC-ALL C 25%  2 10 4WB C 12,50% 

1 9 TFC-ALL C 25%  2 16 4WB C 22,50% 

1 4 TFC-ALL C 25%  2 13 4WB C 25% 

1 15 TFC-ALL C 32,50%  2 12 4WB C 27,50% 

1 2 TFC-ALL C 50%  2 6 4WB C 40% 

1 1 TFC-ALL C 55%  2 20 4WB C 50% 

1 23 TFC-ALL C 75%  1 23 4WB M - 
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From the analysis of the assurance case models delivered by all the participants, it has 

been identified that only the participant “23” has not delivered the “4WB” assurance case 

model created using the MBAC approach. In addition, the “TFC-ALL” assurance case 

delivered by this participant using a conventional approach had the highest error rate in 

comparison with other participants. Therefore, this participant was considered an outlier and 

then, excluded from the data analysis.     

6.4.3.5 Efficiency and Effectiveness Data Analysis and Interpretation 

The “Efficiency” data shown in Table 6.5 is ordered by the time taken by the 

participants to design assurance cases using both conventional and model-based approaches. 

From the analysis of the 23 best results in both phases it has been found that 17 results were 

obtained using the MBAC approach, identified by the letter “M”, and the remaining 6 results 

were obtained with the support of the Conventional approach identified by letter “C”. The 

“Efficiency” data shown in Table 6.5 is also presented in a line graph in Figure 6.17. In this 

graph, the lines for both conventional and MBAC approaches are paired peer each participant 

identifier, where the taller line means more time has been taken to designing an assurance 

case using a specific approach. The time spent by the participants “3”, “8” and “14” were 

similar in both conventional and MBAC approaches due their level of experience with the 

EMF platform. 

 

Figure 6.17. Efficiency line graph. 

Table 6.7 shows the average of the time taken by all the participants designing 

assurance cases using both conventional and MBAC approaches, and their proportions. By 

analyzing the average times of the participants from both groups it was verified that using the 

conventional approach to design assurance cases took approximately 100.87% longer than 

MBAC. 



Chapter 6 - Model-Based Assurance Cases in Software Product Line Engineering                                                  232 

 

Table 6.7. Efficiency average timings. 

Approach Avg.(mm:ss:mil) Percent  

 

Conventional 

 

12:02.0869565 

 

66.76314% 

 

MBAC 

 

05:59.4782609 

 

33.23685% 

 

Total 18:01.5652174 100.00000% 

The “Effectiveness” data shown in Table 6.6 is ordered by the error rate found in the 

assurance cases models developed using both conventional and model-based approaches. 

From the analysis of all assurance case models delivered in both phases, no errors were found 

in the assurance case models developed using the MBAC approach. Also, eight assurance 

case models produced with the support of the conventional approach did not present errors, 

and the remaining fifteen assurance case models presented error rates ranging from 10% to 

55%. The “Effectiveness” data is also presented in a line graph diagram that shows the data 

dispersion (Figure 6.18).    

 

Figure 6.18. Effectiveness line graph. 

Table 6.8 shows the error rate average found in the assurance case models developed 

using both conventional and MBAC approaches. From the data analysis, it has been verified 

that no errors were found in the assurance case models generated with the support of the 

MBAC approach. However, the error rate average found in the assurance case models 

developed using the conventional approach is 20.81%. Considering each group of 

participants, the error rate averages for the conventional approach are respectively 24% for 

“Group 1”, and 15.625% for “Group 2” against 0% for the MBAC approach in both groups.  
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Table 6.8. Effectiveness error rate average. 

Approach Avg. Group Avg. (% error rate) Percent  

 

 

Conventional 

 

Group 1: 24% 

 

Group 2: 15.625% 

 

 

20.81% 

 

 

100% 

 

 

MBAC 

 

Group 1: 0% 

 

Group 2: 0% 

 

 

0% 

 

 

0% 

 

Total 

  

20.81% 

 

100% 

6.4.3.6 Hypothesis Testing 

This section presents the statistical hypothesis testing used to evaluate “Efficiency” 

and “Effectiveness” studies. Paired T-Test was applied to test both effectiveness and 

efficiency hypothesis presented in Section 6.4.2.3, and “Two-sided” unpaired T-Test were 

applied after removing four outliers. The time spent by each participant in developing 

assurance cases using both approaches were processed in the form of “seconds” time unit with 

the support of “R” statistical computing environment (FREE SOFTWARE FOUNDATION, 

2016).  

Table 6.9 shows the “Paired”, and “Two-sided” unpaired T-Test results for the 

“Efficiency” study. The first column indicates the type of T-Test, and the second column the 

source of the data, in this case, the time spent by the participants to design assurance cases. 

The column “Means” indicates the resultant mean for the given T-Test. In a Paired T-Test 

there is one mean, resultant from the average of subtracting each set member from one side by 

its counterpart in the other set. For “Two-sided” T-Test there are two means, one for the 

conventional approach and other for MBAC approach. The column “d.f” indicates the degrees 

of freedom with respect to how many different values can be found in the sets. Finally, “t” 

and “p” are variables considered in the hypothesis testing. The “Paired” T-Test was chosen to 

compare the timing differences between two samples associated with each participant. “Two-

sided” T-Test was used to calculate the means for conventional and MBAC data sets, because 

participants can be outliers in a given approach, breaking the pairs. “Two-sided” means that 

both conventional and MBAC data sets have the same number of elements, which the same 

number of outliers was removed from each set.  
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Table 6.9. T-test results for the efficiency study. 

T-Test Data Means d.f. T P 

Paired Efficiency 362.6087 22 3.3715 0.002752 

 

Two-sided 

 

Efficiency 

 

597.6190 

339.1429 

 

40 

 

3.441 

 

0.00137 

“Chi-squared test” was applied to both “Effectiveness” and “Efficiency” studies to 

detect outliers in the samples from both groups of participants. The outliers were then 

removed before executing the “Two-sided” unpaired T-Test. Table 6.10 shows the results of 

the “Chi-squared test” for the “Efficiency” study. The column “Group” indicates the number 

of the group. The column “X
2
” indicates the result of subtracting each data set value by the 

variance of the complete set, and “p” indicates the p-value associated with “X
2
”. “Position” 

indicates the position of the identified outlier on the set, i.e., highest or lowest. Finally, the 

“Outlier” column indicates the abnormal timings in seconds. Figure 6.19 illustrates the 

visualization of the identified outliers in boxplot diagrams for conventional and MBAC 

samples. The squares represent the range in which the sample values are concentrated. A 

filled square represents the mean of a given sample, and “o” symbols represent the outliers.  

Table 6.10 – Chi-squared testing for the efficiency study. 

Approach Group X
2 

p-value Position Outlier 

Conventional 1 5.2057 0.02251 Highest 1671 

2 7.0119 0.008097 Highest 2387 

MBAC 1 4.5111 0.03367 Highest 520 

2 2.3839 0.1226 Highest 626 

 

Figure 6.19. Boxplots for the efficiency study. 
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From the analysis of the T-Test results for the “Efficiency” study shown in Table 6.9, 

it was verified that “H0dt” hypothesis can be statistically rejected since all p-values from T-

Test results are lower than the margin of error (0.01%), conforming to the established 

significance level of 99.99%. Additionally, since the t-value is positive in both paired and 

unpaired T-Tests, “Hpdt” hypothesis can be accepted. Therefore, the conventional assurance 

case construction approach takes more time than MBAC. 

With regard to the “Effectiveness” study, the results for “Paired” and “Two-sided” 

unpaired T-Tests are presented in Table 6.11. Similarly to the “Efficiency” study, the Paired 

T-Test was executed first, then, two outliers were removed, and the “Two-sided” T-Tests 

were executed. In the “Effectiveness” study, paired and unpaired T-Tests were executed to test 

the effectiveness hypothesis separately in both groups of the participants, i.e., “Group 1” and 

“Group 2”. This is done to verify the effectiveness of both approaches in each group of 

participants. The first column indicates the type of the T-Test, and the second column, the 

source of data, in this case error rates for each delivered assurance case model in each group. 

The column “Means” indicates the resultant mean for the given T-Test. The column “d.f” 

indicates the degrees of freedom with respect to how many different error rates can be found 

in the sets. Finally, “t” and “p” are variables considered in the hypothesis testing. “Chi-

squared test” has also been executed to detect outliers in the “Effectiveness” data sets, as 

shown in Table 6.12. In this table, “X
2
” indicates the result of subtracting each error rate data 

set value by the variance of the complete set, and “Outliers” column indicates abnormal error 

rate values associated with each data set, e.g., error rate data from “Group 1” using the 

conventional approach. Figure 6.20 illustrates the visualization of the identified error rate 

outliers in boxplot diagrams for each group of participants using both conventional and 

MBAC approaches. 

Table 6.11 - T-test results for the effectiveness study. 

T-Test Data Means d.f. T P 

 

Paired 

 

 

Effectiveness/ 

Group1 

 

23.86364% 

 

10 

 

4.266 

 

0.001647 

 

Paired 

 

Effectiveness/ 

Group 2 

 

15.625% 

 

11 

 

3.1184 

 

0.0009779 

 

Two-sided 

 

Effectiveness/ 

Group 1 

 

15.75% 

00.0% 

 

18 

 

3.6232 

 

0.001944 

 

Two-sided 

 

Effectiveness/ 

Group2 

 

17.04545% 

00.00000% 

 

20 

 

3.2383 

 

0.0041119 
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Table 6.12 – Chi-squared testing for the effectiveness study. 

Approach Group X
2 

p-value Position Outlier 

Conventional 1 2.8166 0.00933 Highest 55% 

2 3.9221 0.04766 Highest 50% 

MBAC 1 NaN NA - - 

2 NaN NA - - 

 

Figure 6.20. Boxplots for the effectiveness study. 

By analyzing paired and unpaired T-Test results for the “Effectiveness” study shown in 

Table 6.11, “H0er” can be statistically rejected since all p-values from effectiveness T-Test 

results are lower than the margin of error (0.01%), conforming to the established significance 

level of 99.99%. In addition, since the t-value is positive in both paired and unpaired T-Tests, 

“Hper” hypothesis can be statistically accepted. Therefore, statistically we can conclude that 

the MBAC approach contributes to reduce the errors in the construction of assurance cases for 

product line instances, improving their quality. 

6.4.4 Threats to Validity 

6.4.4.1 Internal Validity  

 Participants experience level: since different levels of knowledge from the participants 

could compromise the data, the participants were allocated into two balanced groups. 

The level of experience of the participants on the techniques involved in the 

experimental study, collected from the analysis of profile characterization forms, was 

considered to allocate them in separated groups. Although some of the participants 
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have prior experience on model-driven techniques and modeling tools, a training 

covering the concepts of safety-critical product lines, assurance cases, and model 

driven development and tools has been provided to all the participants. This is done to 

ensure similar levels of experience of the participants in both conventional and model-

based approaches for assurance case construction; 

  Facilities used during the study: different computers and configurations may affect 

the timings. Therefore, to mitigate this threat, all the participants used the same 

configuration, model, and operating system in equal numbers. During the course of the 

experiment, the participants were not allowed to change their computers when 

performing the tasks. 

6.4.4.2 Construction Validity 

 Hypothesis expectations: some of the participants already knew this research project 

and they were aware that the MBAC approach is supposed to reduce the complexity of 

the assurance case construction process, which reflects one of the hypotheses. 

Therefore, in order to avoid partiality, we have enforced the participants to keep a 

“steady pace” during the whole experimental study. 

6.4.4.3 External Validity 

 Interaction between configuration and treatment: since it could be possible that 

assurance case construction tasks for product line instances are not accurate for real-

world safety-critical systems, we have created assurance case construction tasks with 

real-world prototype systems derived from automotive (Hybrid Braking System) and 

aerospace (Tiriba Flight Control) product lines, using assurance case patterns;  

 Interaction between selection and treatment: since the experimental study was applied 

to Software Engineering post-graduate students, there is a threat that these students are 

not a representative of the population safety-critical systems engineers. In order to 

mitigate this threat, a training showing the concepts needed to develop assurance case 

models for safety-critical product line instances, examples and exercises have been 

provided to all the participants. 
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6.4.4.4 Conclusion Validity  

 Measure reliability: it refers to the metrics used to measure the effort in developing, 

and the quality of assurance case models generated for a particular product line 

instance using both conventional and MBAC approaches. To mitigate this threat, the 

“error rate”, and the “time” taken to design an assurance case were considered; 

 Low statistic power: the ability of a statistical testing in reveal the reliable data. T-

Tests were used for statistically analyzing the collected data to avoid a low statistic 

power. 

The results of this experimental study have shown the effectiveness of the MBAC in 

supporting the automatic generation of correct assurance case models for product line 

instances. No errors were found in 23 assurance cases generated with the support of the 

MBAC approach. The results of this experimental study have also shown that the MBAC 

approach is more efficient in terms of the time spent by safety engineers in developing 

assurance cases. The usability of both conventional and MBAC approaches was qualitatively 

evaluated by means of a post-experiment questionnaire answered by the participants after 

performing the tasks assigned in the experiment. For 18 participants, the MBAC approach and 

tooling provides better usability in comparison with the conventional approach. For 2 

participants, both Conventional and MBAC assurance case construction approaches have the 

same degree of usability, and for 3 participants the Conventional approach provides better 

usability in comparison with MBAC. Such information was extracted from the analysis of the 

answers provided by the participants for questions defined in the post-experiment 

questionnaire available in Appendix C.   

6.5 Discussion and Limitations 

The following limitations of the current model-based assurance cases approach and 

tooling (HAWKINS et al. 2015) have been identified during the generation of assurance case 

models for HBS-SPL product variants: 

 Lack of precedence control in weaving time: there is a lack of mechanisms to 

express and control the order in which abstract terms from assurance case patterns 
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should be instantiated. This is necessary to guarantee the absence of instantiation 

errors caused by data dependence between these terms. For example, considering the 

weaving model presented in Figure 6.10, the instantiation of “hazard” abstract term 

should precede the instantiation of “HSFMType” term because the instantiation of a 

“hazard” term provides the required information to instantiate “HSFMType”;  

 Lack of mechanisms for mapping dependencies between pattern abstract terms: 

dependence relations between abstract terms establish data dependence relationships 

that should be considered during the instantiation of each term. The instantiation of an 

abstract term may require information provided by the instantiation of other abstract 

term in a weaving operation. For example, the instantiation of multiple occurrences of 

“HSFMType” term requires the knowledge about the instantiation of a “hazard” term. 

Therefore, it is not possible instantiating the “HSFMType” abstract “term” without the 

information about the hazard since it determines the component failure mode 

information required to instantiate the “HSFMType”; 

 Lack of mechanisms for specifying and handling constraints in a model weaving 

operation: since the specification of an abstract “term” in an assurance case pattern 

may embed implicit references to additional information that is part of the 

instantiation of an abstract “term”, it should be considered during a model weaving 

operation. For example, the “Identified {systemX} hazards” expression pattern in “C4” 

element shown in Figure 6.6, implicitly refers to the set of hazards associated with an 

instance of “systemX” term. This implies that a “System” object from an architecture 

model, e.g., developed in AADL language, is associated with zero or more “Hazard” 

objects from a failure model. Such reference can be seen as a constraint that should be 

considered during the instantiation of “systemX” abstract term. The current MBAC 

tolling solution does not provides mechanisms to specify and handle this kind of 

constraint in a model weaving operation; 

 Lack of mechanisms to trace claims to evidence items: this is related to the lack of 

means to trace assertions embedded into a claim to the provenance information of 

evidence items that substantiate that claim. By provenance, we mean information 

about how the evidence was built, comprising information about personnel, tools and 

techniques, and activities performed to generate the evidence. Such traceability is 

important for certification purposes. Therefore, a third-part certification authority 

would not gain enough confidence in the safe operation of a given safety-critical 
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system if the evidence is not managed or traced to the assurance case (NAIR et al. 

2014); and 

 Lack of mechanisms for handling pattern choices in a weaving operation: it is 

concerned to handling pattern choices according to the input data provided by 

reference information models (system models). For example, the instantiation of 

assurance case patterns arguing the absence of omission, commission, value, early and 

late failure modes is dependent upon the information provided by system models. 

Therefore, for an omission failure mode, the respective assurance case pattern should 

be instantiated. 

In order to overcome the above limitations, the following changes should be 

incorporated into the MBAC approach: mechanisms for specifying precedence control and 

dependence relations between abstract terms should be added to the weaving modeling; the 

MBAC instantiation program should be modified to support precedence control and 

management of dependencies between abstract terms of assurance case patterns; and 

mechanisms for handling assurance case pattern instantiation choices during weaving 

operations should also be  incorporated into the instantiation program. In addition, the MBAC 

approach should also be restructured to support the specification and handling of constraints 

in a model weaving operation. Some of these modifications have been done in the MBAC 

approach during the course of this thesis and are detailed in Chapter 7.   

6.6 Summary 

This chapter has presented a systematic approach to integrate Model-Based Assurance 

Cases into software product line engineering processes to support the automatic generation of 

assurance cases for product variants. The approach comprises a set of phases to be included 

into product line domain engineering, to support the specification of reusable assurance case 

patterns, asset metamodels, and the weaving model. These artefacts are further used in 

application engineering to support the automatic generation of assurance cases from a diverse 

set of variant-specific design and safety assessment models. The results of an experimental 

study that assessed the feasibility of the MBAC approach to support the generation of 

assurance cases in product line application engineering has also been presented. The analysis 
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of the results has shown the effectiveness, in terms of quality of the generated assurance 

cases, and efficiency, in terms of timing, of the MBAC approach in comparison with the 

conventional manual process of creating an assurance case for a product line instance. In 

addition to the benefits of traceability between design and safety assessment models, and the 

assurance case provided by MBAC approach, allowing the coevolution of the system design 

and the assurance case, its use in software product line engineering automates traceability 

links between variation in design and context and their impact in variant-specific architecture 

and safety-related models (safety analysis), and the assurance case. Thus, changes in a given 

product variant are automatically propagated throughout the assurance case.  

Combining the systematic product line variability management and compositional 

safety analysis approach presented in chapters 4 and 5, and model-based assurance cases has 

brought automation to traceability of context and design variation throughout safety 

assessment and assurance case assets defined in “Product Line Safety Metamodel” (HABLI, 

2009). It filled the gap related to automation left by previous research on model-based safety 

assessment and assurance cases in safety-critical product lines (HABLI and KELLY, 2010, 

HABLI 2009, HABLI et al., 2009). Although the benefits of the MBAC approach in safety-

critical product line engineering, the success of such approach is dependent upon the correct 

specification of assurance case patterns, asset metamodels, and the weaving model in domain 

engineering. The following chapter shows the modifications performed into the MBAC 

approach to support: the specification and management of assurance case pattern instantiation 

constraints in model weaving operations, and the concept of artefact pattern and its 

relationships with assurance case patterns. 

  



 

Chapter 7 

CAPÍTULO 7 -  INSTANTIATION CONSTRAINTS AND 

ARTEFACT PATTERNS IN MODEL-BASED 

ASSURANCE CASES  

7.1 Introduction 

The previous chapter has presented an approach to integrate Model-Based Assurance 

Cases (MBAC) (HAWKINS et al. 2015) into safety-critical software product line engineering 

processes. Such integration allows safety analysts to reuse modeling artefacts required by the 

MBAC, such as assurance case pattern models and the weaving model, to support the 

automatic generation of assurance cases for different product variants. Although there are 

benefits provided by the current MBAC model weaving solution for assurance cases 

(HAWKINS et al. 2015), a set of limitations, aforementioned in Chapter 6, has been 

identified during the conduction of MBAC case studies presented throughout this thesis. The 

lack of mechanisms for handling precedence and dependence relationships between assurance 

case pattern elements that requires instantiation, named abstract terms, may lead to errors 

during the assurance case pattern instantiation. In addition, the lack of explicit traceability 

links between the assurance case, evidence items and their provenance can affect the 

confidence in the generated assurance case. Evidence provenance information describes how 

artefacts used as evidence have been created and managed over their lifecycle, and what 

techniques, resources were used in their generation (OMG, 2015a). The artefact provenance 

information increases the degree of assurance of an artefact referenced as evidence in an 

assurance case, increasing the confidence in the assurance case. Because of that, the current 

MBAC approach and tooling should be adapted to address these limitations. 
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The confidence in the assurance case is dependent upon explicit traceability links 

between assurance claims and provenance information about development and assessment 

artefacts, e.g., requirements, hazard analysis, fault trees and FMEA results, which 

substantiates assurance claims (NAIR et al. 2014). Because of this, it is desirable to automate 

such traceability into the current MBAC approach. The traceability between development 

artefacts used as safety evidence, such as requirements and hazards (RIDDERHOF et al. 

2007), requirements and source code (MASON et al. 2003), requirements and design 

(NEJATI et al. 2012), and requirements and components (LEE et al. 2010), and specifically, 

between assurance case and safety evidence (OMG, 2015a; NAIR et al. 2014) have already 

been addressed in past research. However, there is not an approach to automate the 

traceability between specific claims and the provenance information about the safety evidence 

referenced in the assurance case. Earlier research is focused on the motivation and challenges 

for evidence traceability as well as the proposal of traceability models, and not on the 

automation of traceability links between the assurance case and evidence provenance 

information (NAIR et al. 2014).  

This chapter presents a model-based approach, built upon the MBAC and the OMG 

Structured Assurance Case Metamodel 2.0 (OMG, 2015a), to support the management of 

assurance case pattern instantiation constraints, such as precedence and dependence 

relationships between assurance case pattern abstract terms at weaving time, and the explicit 

traceability between assurance case and safety evidence provenance information. The 

proposed approach provides guidance to integrate into the current MBAC approach: the 

specification of traceability links between assurance claims and evidence provenance 

information; the specification of instantiation constraints in assurance case pattern modeling; 

and changes in the MBAC instantiation program for handling assurance case pattern 

instantiation constraints, and supporting the instantiation of artefact patterns and their links to 

assurance case patterns. The latest version of the OMG Structured Assurance Case 

Metamodel (SACM) (OMG-SACM, 2015a) and Epsilon model management languages 

(KOLOVOS et al. 2013) have been used to support the automated traceability between 

assurance claims and provenance information about artefacts that substantiate these claims.  

The proposed approach was applied to adapt the MBAC approach, which outputs 

assurance case models in Goal Structuring Notation (GSN), towards supporting the 

instantiation of assurance case and artefact patterns in SACM 2.0. Additionally, GSN to 

SACM 2.0 model transformations and an SACM Eclipse-based editor were developed to 
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support the specification of pattern instantiation constraints and artefact patterns in the 

assurance case pattern modeling. Although we have instantiated the proposed approach using 

GSN and Eclipse Modeling Framework platform, the approach is applicable to other notations 

such as CAE and other model-based development technologies.  

The remainder of this chapter is organized as follows. Section 7.2 presents an 

overview of the OMG SACM 2.0 metamodel. Section 7.3 presents the proposed approach and 

tooling to support the specification of artefact patterns and their links to assurance case 

patterns, and pattern instantiation constraints into model-based assurance cases processes 

(HAWKINS et al. 2015). Section 7.4 presents the validation of the approach in an automotive 

Hybrid Braking System product variant. Section 7.5 shows the discussion and limitations of 

the proposed solution. Section 7.6 presents the summary of this chapter. 

7.2 An Overview of OMG SACM 2.0 Metamodel 

This section presents an overview of the newer version of the SACM (SACM 2.0) 

metamodel used in the proposed approach to support the automated traceability between 

assurance case claims and evidence management information. SACM 2.0 defines the 

structural representation for assurance case modeling languages and notations as illustrated in 

Figure 7.1 (OMG, 2015a). The first part of the specification defines common SACM elements 

covering Base Classes (SACM 2.0 - Clause 8), Terminology Classes (SACM 2.0 – Clause 

10), Assurance Case, Terminology, Argument, and Artefact Packages (SACM 2.0 – Clause 

9). The subsequent parts define the Argumentation metamodel (SACM 2.0 – Clause 11) and 

Artefact metamodel (SACM 2.0 – Clause 12). 

7.2.1 SACM 2.0 Argumentation and Artefact Metamodels 

The “Argumentation Metamodel”, denoted by the green area in Figure 7.1, represents 

structured assurance arguments, i.e., a convincing argument that a system meets its assurance 

requirements, which may contain extensive references to the safety evidence. The “Artefact 

Metamodel” represents the evidence and its provenance properties in detail. The 

“Argumentation Metamodel” is intended to allow the interchange between structured 

arguments and diverse assurance case modeling tools provided by different vendors (OMG, 
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Figure 7.1. Structured assurance case metamodel version 2.0 (OMG, 2015a). 
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2015a). In SACM 2.0, the “Argumentation Metamodel” specification is designed to be 

standalone, or used in conjunction with the “Artefact Metamodel”, enabling a simplified 

support for modeling relationships between evidence and a structured argument. 

“Argumentation Metamodel” represents the core concepts for structured argumentation that 

underlies existing argumentation notations such as GSN (KELLY, 2003) and CAE (Claim-

Argument-Evidence) (BLOOMFIELD and BISHOP, 2010).  

The “Artefact Metamodel”, denoted by the purple area in Figure 7.1, is intended to 

communicate the form in which safety artefacts are collected and documented by participants 

using techniques, resources and activities. This metamodel defines a catalogue of elements for 

constructing and interchanging packages of evidence communicating how the evidence was 

collected (evidence provenance). The “Artefact Metamodel” can be used in conjunction with 

the “Argumentation Metamodel” to allow the authors of assurance claims to offer evidentiary 

support for their positions. The detailed specification of the SACM 2.0 metamodel is 

available elsewhere (OMG, 2015a). 

7.2.2 SACM 2.0 Bases Classes and Terminology Metamodel 

The SACM 2.0 metamodel enhancements in Base Classes in comparison with SACM 

1.0 (OMG, 2013), shown in the yellow area in Figure 7.1, and the newer “Terminology 

Metamodel” (the blue area in Figure 7.1) allow rich specification of assurance case patterns. 

Assurance case pattern concepts are detailed in Chapter 2 (Section 2.4.2.2). Patterns support 

the systematic reuse and effective composition of assurance cases along with the underlying 

argumentation supporting claims. Assurance case patterns support the definition of constraints 

conventions to specify assurance cases within a particular domain in order to address 

regulatory requirements or accepted practices in that domain (OMG, 2015a). The 

“ModelElement” is the base element for the majority of the SACM modeling elements, i.e., 

the majority of the SACM elements extend it. “ModelElement” was redefined with the 

inclusion of “isAbstract” Boolean attribute used to indicate whether an element is part of an 

assurance case pattern. In addition, associations to zero or multiple 

“ImplementationConstraint” elements attached to a “ModelElement” allow the specification 

of any implementation constraint associated with the conversion of an SACM element, e.g., 

“ArgumentAsset”, “Expression”, being abstract to being concrete. 

“ImplementationConstraint” element allows specifying detailed pattern instantiation rules 

that should be addressed to instantiate an abstract “ModelElement”, which is a fragment of an 
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SACM 2.0 assurance case pattern. Therefore, “ImplementationConstraints” should only be 

attached to “ModelElements” in which the value for the “isAbstract” attribute is “true” 

(OMG, 2015a).  

The inclusion of “ImplementationConstraint” elements into the assurance case pattern 

specification also allows safety analysts to attach references to information available in 

development artefacts that substantiates assertions specified in argument expression patterns 

(YAMAMOTO, 2014) embedded into assurance claims. For example, considering the “Risk 

Top-Level Argument” pattern shown in Chapter 6 (Section 6.3.1), the “Identified {systemX} 

hazards” argument expression pattern embedded into “C4” context element contain 

references to hazard information available into the product failure model. Therefore, when 

“C4” element is instantiated, references to a set of “Hazard” elements provided by the 

product failure model can be attached to instantiations of “C4” element via “TaggedValue” 

elements. A “TaggedValue” represents a simple “key/value” pair that can be attached to any 

SACM 2.0 “ModelElement” (OMG, 2015a). It allows users to add custom attributes such as 

references to safety evidence into assurance claims. 

The “Terminology Metamodel” provides a set of model elements to organize abstract 

and concrete assurance case pattern “Terms” and “Expressions” that can be used within the 

naming and description of SACM 2.0 arguments and artefacts. “TerminologyPackage” is the 

container element for terminology assets such as “Categories”, “Terms” and “Expressions”. 

“Category” elements define categories for “Term” and “Expression” elements, which can be 

used to group these elements within “TerminologyPackages”. For example, a Category can 

be used to describe the terminology associated with a given safety standard, project or system. 

“Term” is used to model abstract and concrete SACM 2.0 assurance case pattern elements. 

Abstract “Terms” represent assurance case pattern elements that require further instantiation, 

i.e., abstract Terms are placeholders for concrete terms.  In an abstract “Term”, the inherited 

“isAbstract” attribute is set to “true”. In a concrete “Term” this attribute is set to “false”. 

“Expression” elements are used to specify argument expression patterns embedded into 

assurance claims. The definition of an “Expression” element may comprise combinations 

between abstract and concrete “Terms” and other “Expression” elements. Abstract 

“Expressions” are denoted by the “isAbstract” attribute being set to “true” and concrete ones 

by being set to “false”. For example, the “Identified {systemX} hazards” argument 

“Expression” pattern can be defined in the SACM 2.0 as the concatenation of one abstract 

“Term” and two concrete “Expression” elements. 



Chapter 7 - Instantiation Constraints and Artefact Patterns in Model-Based Assurance Cases                     248 

 

SACM 2.0 “Base Classes” and “Terminology Metamodel” provide abstractions that 

allow the specification of instantiation rules for assurance case pattern elements. 

“Argumentation” and “Artefact” elements support the specification of explicit traceability 

links between argument elements, safety evidence and provenance information in assurance 

case patterns. Artefact model elements provide support for the specification of artefact 

patterns linked to assurance case patterns. Artefact patterns define the structure of the safety 

evidence and its provenance. The expressiveness of the SACM 2.0 metamodel provides 

support for adapting the current Model-Based Assurance Cases approach to support the 

automated generation of explicit traceability links between the assurance case, safety evidence 

and their provenance, reducing the complexity and ensuring the consistency of evidence 

traceability. In addition, other types of constraints can be attached to an assurance case pattern 

specification, allowing the specification of pattern instantiation constraints between abstract 

“Terms” from assurance case patterns which require instantiation.  

7.3 Integrating Instantiation Constraints and Artefact Patterns into Model-Based 

Assurance Cases 

Restructuring the current MBAC approach (Hawkins et al. 2015) to support evidence 

traceability and instantiation constraints in assurance case pattern modeling based on SACM 

2.0 requires changes in the assurance case pattern specification and pattern instantiation 

processes. Changes in the assurance case pattern specification comprise additional steps to 

specify: pattern instantiation constraints such as precedence control, i.e., to establish the order 

in which abstract “Terms” defined in the assurance case pattern should be instantiated, and 

data dependencies between assurance case pattern abstract “Terms”; traceability links 

between abstract pattern elements and evidence; and artefact patterns for evidence referenced 

in the assurance case. These changes are propagated throughout the assurance case pattern 

instantiation process with the addition of mechanisms for handling pattern instantiation 

constraints and evidence traceability links defined into assurance case and artefact patterns. 

This section presents the proposed extensions for the MBAC approach and tooling 

(HAWKINS et al. 2015) to support the management of pattern instantiation constraints, and 

traceability between evidence provenance and the assurance case. Section 7.3.1 presents the 
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extensions in the MBAC tooling support and Section 7.3.2 presents the redefined model-

based assurance cases process.  

7.3.1 Extensions in Model-Based Assurance Cases Tool Support 

Figure 7.2 shows the extensions to the Model-Based Assurance Cases tooling 

highlighted in gray. These extensions comprise: the addition of an EMF-based editor for the 

SACM 2.0 assurance case modeling notation; a model transformation plugin, which converts 

a GSN assurance case pattern specification into an equivalent in SACM 2.0, developed with 

the support of EMF and Epsilon Transformation Language (ETL) (KOLOVOS et al. 2013); 

and changes into the MBAC instantiation program. In addition, language specific editors have 

been added to support the manipulation of different design and assessment models such as 

architecture and failure models.  

The GSN editor (HAWKINS et al. 2015) provides abstractions to specify GSN 

assurance case patterns. The GSN assurance case patterns are input artefacts for the 

GSN2SACM model transformation plugin, developed in the course of this thesis, to support 

the transformation of GSN assurance case pattern specifications into an equivalent SACM 2.0 

pattern specification. The SACM 2.0 editor allows safety analysts to specify assurance case 

pattern instantiation constraints in the assurance case pattern itself. Instantiation constraints 

allow safety analysts to establish data dependencies between assurance case pattern elements, 

and defining the order in which patterns elements should be instantiated to avoid errors during 

 

Figure 7.2. MBAC extensions. 
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assurance case pattern instantiation processes. In addition, the SACM 2.0 allows safety 

analysts to specify patterns for artefacts referenced as evidence items in assurance case, which 

is not allowed in the current MBAC approach (HAWKINS et al. 2015). Therefore, the 

addition of support for specifying assurance case pattern instantiation constraints and artefact 

patterns into the current MBAC approach and tooling is the main research contribution in 

model-based assurance cases techniques. In the following, design and assessment models that 

comply with metamodels defined in specific model editors provide the information required 

to instantiate assurance case and artefact pattern elements. No changes were performed in the 

weaving modeling tool that defines how assurance case pattern elements relate to the 

information provided by different system models. Finally, the MBAC instantiation program 

has been changed to support the manipulation and instantiation of assurance case and artefact 

pattern specifications in SACM 2.0. The following subsections present the detailed 

description of the SACM 2.0 model editor, GSN2SACM model transformation plugin, and 

the instantiation program. 

7.3.1.1 SACM 2.0 Notation and Editor 

The SACM 2.0 model editor has been developed upon the OMG SACM 2.0 

metamodel presented in section 7.2, and Eclipse Modeling Framework platform (ECLIPSE, 

2016). The SACM editor supports the specification of assurance case and artefact patterns, 

and their links, and assurance case pattern instantiation constraints. Figure 7.3 shows the 

description of the proposed SACM 2.0 assurance case modeling notation elements and their 

respective icons. The SACM 2.0 notation elements and their respective graphical 

representations were defined from the analysis of SACM 2.0 abstractions and their 

correspondences with GSN assurance case modeling abstractions, and artefact modeling 

abstractions defined in SPEM standard (OMG, 2008). From such analysis, GSN “Module”, 

“Goal”, “Strategy”, “Module Reference” and “AwayGoal/Context/Justification 

/Assumption/Solution” (GSN Standard, 2011) were respectively mapped to the following 

assurance case modeling abstractions in SACM 2.0: “ArgumentPackage”, “Claim”, 

“ArgumentReasoning”, “ArtefactElementCitation” and “ArgumentAssetCitation”. Thus, 

graphical representations for these GSN elements were used to represent their equivalent 

abstractions in SACM 2.0. In addition, the graphical icons used to represent “isAbstract”, 

“toBeSupported”, and “isAbstract and ToBeSupported” constraints associated with an 

SACM 2.0 element are the same used to represent “Undeveloped”, “Uninstantiated”, and 

“Undeveloped and Uninstantiated” GSN entity abstractions (HABLI and KELLY, 2010). 
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Figure 7.3. SACM 2.0 argumentation elements. 

With regard to abstractions for linking assurance case elements into an argument 

structure, a filled arrow is used to represent: the inference that exists between one or more 

assertions (“AssertedInference”); and the declaration that one or more “Evidence” artefacts, 

cited via “Artefact Element Citations”, provide information that helps to establish the truth of 

an assurance “Claim” (i.e., “AssertedEvidence”). A dashed arrow is used to represent: a 

counter-argument that a user declares to exist between one or more “Claims” and another 

“Claim” (“AssertedChallenge”); and an “AssertedCounterEvidence” relationship used to 

associate a safety “Evidence”, cited via “Artefact Element Citations”, to a “Claim”, where the 

evidence which is being asserted infers that the “Claim” is false. The empty arrow represents 

an “AssertedContext” relationship that declares the information cited in an “Artefact Element 
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Citation” and provides the context for the interpretation and definition of an assurance 

“Claim” or “ArgumentReasoning” element. 

GSN multiplicity and optionality structural abstractions (GSN STANDARD, 2011), 

used to respectively represent generalized n-ary, optional and alternative relationships 

between GSN assurance case elements, are represented by “ImplementationConstraint” 

elements in SACM 2.0. A “Multiplicity” implementation constraint is represented by a solid 

ball (meaning zero or more) attached to an “AssertedRelationship” element and a label next 

the ball indicates the assurance case pattern element that determines the cardinality of the 

relationship, e.g., n = “Term”.  The “Optionality” implementation constraint is represented by 

a hollow ball attached to an “AssertedRelationship” element indicating the optionality of the 

relationship. Finally, the GSN Option/Choice element is also represented by an 

“ImplementationConstraint” in SACM 2.0. A “Choice” constraint is used to represent 

possible alternatives that satisfy an “AssertedRelationship” where annotations are used to 

indicate the nature of the choice to be made (e.g., 1-of-n and m-of-n selection). In addition, the 

SACM 2.0 model editor allows users to specify combinations between abstract and concrete 

“Terms” and “Expressions” elements from “Terminology” package to create argument 

expression patterns to be attached to argumentation elements specified in assurance case 

patterns. 

Additionally, SACM 2.0 editor also provides artefact modeling abstractions to support 

the specification of patterns for artefacts, i.e., safety evidence, referenced in assurance case. It 

allows safety analysts to define patterns for linking assurance cases to the safety evidence. 

Figure 7.4 shows the definition of SACM 2.0 artefact elements and their respective graphical 

representations. From the analysis of both SACM 2.0 “Artefact Metamodel” and SPEM 2.0 

metamodel it has been verified that SACM 2.0 “Artefact Metamodel” abstractions have 

similar semantics of the UML stereotypes defined in SPEM 2.0. Thus, some of SPEM 2.0 

graphical representations were used to represent the SACM 2.0 artefact modeling elements. 

The SPEM 2.0 “WorkProductDefinition”, “Process”, “Activity”, “RoleDefinition”, and 

“ToolDefinition” graphical representations were used to respectively represent the following 

SACM 2.0 artefact model elements: “Artefact”, “ArtefactEvent”, “Activity”, “Participant” 

and “Technique”. “ArtefactPackage” is a container for artefact model elements and their 

relationships. 
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Figure 7.4. SACM 2.0 artefact elements. 
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Relationships between artefact assets are represented by a filled arrow connecting 

them. The SACM 2.0 model editor provides abstractions to represent each type of artefact 

asset relationship defined into the SACM 2.0 “Artefact Metamodel” shown in Figure 7.4. 

Whereas the artefacts managed during the development lifecycle do not exist in isolation, 

“ArtefactRelationship” elements record associations between different artefacts such as test 

cases used to validate a system requirement. “Artefacts” are managed in the scope of 

“Activities”, where “Artefacts” can be used as input or output (“ArtefactActivityRelationship”). 

“Artefacts” are the result of applying a given “Technique” and it is usually stored into 

specific “Resources”, e.g., pdf file, source code. An “Artefact” can also be associated with a 

“Participant” that plays a role or function with regard to the artefact. For example, a 

“Participant” can be the owner or the reviewer of an “Artefact” expressed by 

“ParticipantRoleRelationship”. This type of relationship allows associating a “Participant” 

with other artefact assets where a “Participant” can be the executor of an “Activity” or 

having relationships with other “Participants” (e.g., supervisor) (OMG, 2015a). Finally, 

“ActivityRelationship” supports the specification of associations between “Activities” defined 

for a given system/software development process.    

7.3.1.2 The GSN2SACM Model Transformation Plugin 

The GSN2SACM plugin is a model-transformation tool built using the EMF platform 

and ETL during the course of this thesis. The tool provides support for transforming an input 

GSN assurance case pattern specification into an equivalent SACM 2.0 specification. 

Relationships between GSN (GSN STANDARD, 2011) and SACM 2.0 argumentation 

elements (OMG, 2015a) were established from the analysis of their metamodels. Table 7.1 

shows the correspondence relationships between GSN and SACM 2.0 abstractions. These 

relationships were considered to implement model transformations in ETL. For example, 

Case is the root element of a GSN assurance case specification, and 

“AssuranceCasePackage” represents the root element of an SACM 2.0 specification. 

Additionally, GSN “Goal”, “Assumption”, and “Justification” elements are mapped to 

“Claim” elements in SACM 2.0. 
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Table 7.1 – Relationships between GSN and SACM 2.0 abstractions. 

GSN Element SACM 2.0 Argumentation Element 
Case AssuranceCasePackage  

Module ArgumentPackage, ArgumentPackageInterface 

ArgumentPackageContract,  

Goal, Assumption,  Justification Claim 

Strategy ArgumentReasoning 

Context, Solution, ModuleReference ArtefactElementCitation 

InContextOf Context AssertedContext 

InContextOf Justification AssertedInference 

InContextOf Assumption AssertedInference 

SolvedBy Strategy or Goal AssertedInference 

SolvedBy Solution or ModuleReference AssertedEvidence 

ChallengedBy (Solution to Goal) AssertedCounterEvidence  

(ArtefactElementCitation(s) to Claim(s)) 

ChallengedBy (Goal to Goal) AssertedChallenge (Claim(s) to Claim(s)) 

Choice Choice ImplementationConstraint 

Multiplicity Multiplicity ImplementationConstraint 

Optionality Optionality ImplementationConstraint 

AwayGoal, AwayJustification, AwayAssumption,  

AwayContext, AwaySolution 

ArgumentAssetCitation 

Role Term  

isAbstract = true 

Literal Term, Expression 

isAbstract = false 

Table 7.2 shows the GSN to SACM model transformations defined for GSN “Goal” 

and “Strategy” elements. GSN entity abstractions were mapped to SACM 2.0 “isAbstract” 

and “toBeSupported” abstractions. Expressions elements (“Role” and “Literal”) stored in 

GSN “Goal” and “Strategy” elements were mapped to an OCL constraint in SACM 2.0 that 

sets a “refersTo” property of a GSN “ExpressionElement” with the corresponding SACM 2.0 

“Claim” or “ArgumentReasoning” element. 

Table 7.2 – GSN to SACM 2.0 model transformations. 

GSN Element (s) SACM 2.0 Element (s) 

Goal Claim 

toBeInstantiated: EBoolean isAbstract: EBoolean 

toBeSupported: EBoolean toBeSupported: EBoolean 

nodeText: 0..* ExpressionElement For each Expression associated with a Claim 

     context ExpressionElement 

      inv refersToClaim:  

      self.refersTo  r.isTypeOf(Claim) 

… … 

Strategy ArgumentReasoning 

toBeInstantiated: EBoolean isAbstract: EBoolean 

toBeSupported: EBoolean toBeSupported: EBoolean 

nodeText: 0..* ExpressionElement For each Term associated with an ArgumentReasoning 

     context Term 

      inv refersToArgumentReasoning:  

      self.refersTo  r.isTypeOf(ArgumentReasoning) 

- describes: AssertedRelationship  
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7.3.1.3 SACM Instantiation Program  

The MBAC assurance case pattern instantiation program developed by Hawkins et al. 

(2015) has been adapted to support the instantiation of assurance case and artefact pattern 

specifications in compliance with OMG SACM 2.0 metamodel. Therefore, a prototype 

implementation of the SACM Model-Based Assurance Cases (SACM-MBAC) instantiation 

program has been developed in this thesis. The SACM-MBAC instantiation program has 

similarities with the original MBAC instantiation program. The SACM-MBAC program 

executes on the EMF platform and requires the following input artefacts: an SACM 2.0 

assurance case and artefact pattern specification, reference information models and 

metamodels, i.e., system models that provide information to instantiate SACM 2.0 pattern 

elements, and the weaving model, which defines mapping links between abstract “terms” 

from SACM assurance case pattern, and system model elements. The SACM-MBAC 

instantiation process has additional steps (steps 2 and 3) in comparison with the original 

MBAC instantiation program: 

1. Firstly, the instantiation program identifies the SACM assurance case and artefact 

pattern elements that require instantiation; 

2. In the following, from the information provided by SACM pattern specification, the 

SACM-MBAC instantiation program establishes the precedence order and data 

dependencies between abstract “Terms” that should be considered during the pattern 

instantiation. It avoids data dependencies between SACM pattern elements, ensuring 

the correct instantiation of SACM assurance case pattern elements that require 

information available in instances of other pattern elements; 

3.  The SACM-MBAC program also defines the required information from system 

models to instantiate each SACM assurance case and artefact pattern element by 

considering data dependencies between SACM pattern elements, and by querying the 

weaving model;  

4. SACM-MBAC obtains the required information to instantiate SACM assurance case 

and artefact pattern elements from a diverse set of system models; and 

5. Finally, SACM-MBAC outputs the instantiation information in the form of an SACM 

assurance case model enhanced with artefact information (evidence management 

information). This output can be viewed with the Eclipse-based SACM assurance tree 

view and diagram editor.    
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7.3.2 Redefined Model-Based Assurance Cases Process 

The Model-Based Assurance Cases (HAWKINS et al. 2015) process has been 

redefined with modifications in the assurance case pattern modeling to support: the 

specification of dependence relationships between abstract “terms” defined in assurance case 

patterns; the specification of artefact patterns and their relationships with assurance case 

pattern elements; and the addition mapping links between abstract “terms” defined into 

artefact patterns and system model elements in the weaving model. The linking between 

abstract “terms” defined in artefact pattern and system model elements in the weaving model 

is performed in the same way as linking abstract “terms” from assurance case patterns to 

system model elements presented in Chapter 6 (Section 6.2.3). Therefore, the specification of 

the weaving model remains the same in comparison with the original MBAC approach. 

7.3.2.1 Assurance Case Pattern Specification 

The starting point of the SACM assurance case pattern specification is an existing 

GSN assurance case pattern specification, which is transformed in an equivalent SACM 

specification with the support of the GSN2SACM Eclipse-based model transformation tool 

(Section 7.3.1.2) as illustrated in Figure 7.5. After transforming a GSN assurance case pattern 

specification into an equivalent in SACM, precedence and dependence relationships between 

abstract “Terms” defined in the SACM pattern specification should be specified in the form of 

pattern instantiation constraints using SACM 2.0 “ImplementationContraint” model elements. 

The specification of pattern instantiation constraints using the SACM 2.0 model editor is 

detailed in Section 7.4. 

 

Figure 7.5 Assurance case pattern specification steps. 
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Pattern instantiation constraints are intended to prevent instantiation errors caused by 

data dependencies between abstract “Terms” defined in an SACM pattern specification, 

which comprises artefact patterns. For example, considering “HSFMType” and “hazard” 

abstract “Terms” defined in “Risk Argument” pattern shown in Figure 7.6a, the instantiation 

of “HSFMType”, which requires the information of a leaf or gate node of a fault tree model, 

is dependent upon the information about an instance of a “hazard” “Term” in order to 

instantiate the correct “HSFMType”. Therefore, the instantiation of “HSFMType” abstract 

“Term” requires information provided by an instance of a “hazard” “Term”, to perform the 

search in the correct fault tree model in order to find a fault tree leaf or gate node information 

element required to instantiate “HSFMType” “Term” (Figure 7.6b). Thus, pattern instantiation 

constraints ensure that instances of “HSFMType” corresponds to elements of a fault tree 

associated with an instance of a “hazard” “Term” in the assurance case pattern instantiation 

(Figure 7.6c). 

In this thesis, from the analysis of existing assurance case pattern catalogues 

(WEAVER, 2003; HABLI, 2009), two types of recurrent constraints necessary to ensure the 

correct instantiation of assurance case patterns have been identified: precedence control and 

data dependence (also named requires constraints). A precedence constraint aims to establish 

the order in which abstract “Terms” defined in an assurance case pattern specification should 

be instantiated. This is important to reduce the probability of conflicts between assurance case 

pattern “Terms”, which can lead to instantiation errors. Data dependence constraints work 

together with precedence control to prevent errors during the assurance case pattern 

instantiation. They establish, in the assurance case pattern specification, data dependencies 

between abstract “Terms” that require instantiation. These dependencies define that the ins- 

 

Figure 7.6. Data dependency between terms and assurance case pattern instantiation. 
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tantiation of an abstract “Term” referenced in the weaving model, is dependent upon the 

instantiation of other abstract “Term”, as previously explained in Figure 7.6. Figure 7.7 shows 

an excerpt of the weaving model. In this model, the “HSFMType” abstract “Term” has a data 

dependence relationship with “hazard” “Term”. This relationship denotes that the 

instantiation of “HSFMType” is dependent upon the value of an instance of a “hazard” 

“Term” as depicted by the query in Structured Query Language (SQL). Thus, “HSFMType” 

“Term” should be instantiated with the information about the failure modes associated with a 

fault tree that matches with an instance of the “hazard” term.  

 

Figure 7.7. Weaving model and pattern instantiation constraints. 

7.3.2.2 Artefact Pattern Specification 

Artefacts play an important role in the assurance case construction process by 

providing the evidentiary elements for assurance cases. By means of assertions, artefacts are 

used to support claims and arguments of an assurance case (OMG, 2015a). Artefacts can be 

managed in different ways during the software/system development life-cycle. Therefore, 

artefact management might require the specification of patterns in the same way as assurance 

cases. These patterns allow safety engineers to specify artefacts, their relationships with other 

artefacts, development process activities, persons involved in the development process (e.g., 

system analysts, safety engineers), and techniques used to  develop  them. The specification of 

artefact patterns establish the structure of artefacts and their relationships with elements of the 

development process required to provide the assurance of the evidence used to support the 

certification of a safety-critical system.  



Chapter 7 - Instantiation Constraints and Artefact Patterns in Model-Based Assurance Cases                     260 

 

The SACM 2.0 metamodel provides abstractions that allow safety engineers to specify 

artefact patterns and link them to assurance case pattern elements. Figure 7.8 shows the 

required steps to integrate artefact pattern specification into the Model-Based Assurance 

Cases process with the support of the SACM 2.0 assurance case editor. Design and 

assessment models and their respective metamodels, e.g., process, requirements, design, 

architecture, and safety analysis models, are input information to create artefact patterns.  

System/Software development processes and safety standards considered in the development 

of a given safety-critical system provide the information about the required artefacts and their 

relationships to achieve safety certification. Therefore, SACM 2.0 artefact pattern modeling 

elements can be used to define artefact patterns for linking evidence items to their provenance 

provided by a diverse set of design, process, and assessment models. SACM 2.0 artefact 

notation elements are detailed in Section 7.3.1.1. 

 

Figure 7.8. Artefact pattern specification steps. 

Firstly, from the identification of the artefacts used as evidence items to support 

assurance claims defined in assurance case patterns, artefact patterns are specified to define 

structural relationships between artefacts used as evidence items with other artefacts, and 

information elements provided by process models such as techniques, activities, tool support, 

which provides the artefact provenance. Finally, after specifying artefact patterns, they should 

be linked to assurance case pattern elements using “Artefact Element Citation” elements. 

Section 7.4 shows detailed examples of artefact patterns and their links to assurance case 

pattern elements. 
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7.3.2.3 SACM 2.0 Assurance Case and Artefact Pattern Instantiation  

The specification of traceability links between argument and evidence in assurance 

case and artefact patterns provided by the SACM 2.0 notation contributes to increase the 

confidence on assurance case models generated with the support of the MBAC approach 

(HAWKINS et al. 2015). Therefore, the output of assurance case pattern specification is an 

SACM assurance case pattern model enhanced with artefact patterns. This model, a diverse 

set of system models and their respective metamodels, and the weaving model are inputs 

artefacts for the SACM-MBAC instantiation program described in section 7.3.1.3. The 

process of configuring the instantiation program with the input models is the same described 

in Chapter 6 (Section 6.2.4) for the original MBAC approach.  

7.4 Validation 

This section presents the validation of the SACM 2.0 Model-Based Assurance Cases 

(SACM-MBAC) approach and tooling to support: the specification of pattern instantiation 

constraints and artefact patterns, and the generation of assurance cases and evidence 

management information for an automotive braking system product line (HBS-SPL) instance. 

The GSN assurance case pattern specifications presented in Chapter 6 (Section 6.3.1) are used 

as input artefacts to illustrate the proposed SACM-MBAC approach.    

7.4.1 HBS-SPL Assurance Case Pattern Specification in SACM 2.0  

The starting point of the SACM-MBAC approach is a GSN pattern specification, 

which is transformed into an equivalent SACM 2.0 specification with the support of the 

GSN2SACM Eclipse-based model transformation plugin. Figure 7.9 illustrates the GSN 

specification of “Risk Argument” assurance case pattern and its equivalent representation in 

SACM 2.0, after model transformation, in both GSN and SACM 2.0 Eclipse-based model 

editors. “Risk Argument” pattern decomposes the claim arguing that the risk posed by a given 

system hazard are acceptable into sub-claims arguing that the effects of the occurrence of 

each contributing component failure is acceptable. Figure 7.9 also shows mapping links 

between GSN assurance case pattern elements and their representations in the SACM 2.0 

assurance case pattern specification. The following GSN elements: “Case”, “Module”, “Go- 
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Figure 7.9. Risk argument pattern specifications in GSN and SACM 2.0 model editors. 
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al”, “Strategy”, “Context”, “SolvedBy”, “Expression”, and “Role” are respectively mapped 

to “Assurance Case Package”, “Argument Package”, “Claim”, “Argument Reasoning”, 

“Artefact Element Citation”, “Asserted Inference” and “Term” elements in the SACM 2.0 

pattern specification. An SACM 2.0 abstract “Term” represents a GSN “Role” element, and a 

concrete “Term” represents an “Expression” element in GSN. 

The “G12S1” and “S12G2” GSN “SolvedBy” relationships are mapped to “G12G2” 

“Asserted Inference” in the SACM 2.0 specification, which denotes relationships between 

claims and an “Argument Reasoning” element. In addition, GSN “multiplicity” is represented 

by a multiplicity constraint attached to an “Asserted Inference” in the SACM 2.0 pattern 

model. After transforming a GSN assurance case pattern specification into an equivalent in 

SACM 2.0, precedence and data dependencies between SACM 2.0 abstract “Terms”, were 

specified in the form of implementation constraints. Figure 7.10 shows the specification of a 

precedence control constraint into “Risk Argument” assurance case pattern using the SACM 

2.0 model editor. The implementation constraint element named precedence is attached to the 

root node, i.e., the “Assurance Case Package” element, of the assurance case pattern 

specification. The precedence control constraint comprises an expression that defines the 

order of instantiation for SACM 2.0 abstract “Terms” by setting the property “refersTo” or 

 

Figure 7.10. Precedence control constraint specification in SACM 2.0.  
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by setting the “value” attribute with the names of the abstract “Terms” separated by comma. 

This information is further used by the instantiation program to control the instantiation of 

abstract “Terms” during the assurance case and artefact pattern instantiation process.  

The specification of data dependencies relationships between abstract “Terms” in 

SACM 2.0 assurance case patterns is performed by attaching an implementation constraint 

named “requires” into the given “Term”. Figure 7.11 shows a “requires” data dependence 

pattern instantiation constraint attached to the “failureContribution” abstract “Term” which 

determines that the instantiation of “failureContribution” is dependent upon the value 

assigned to an instance of a “hazard” “Term”. At the end of this process, an assurance case 

pattern specification with instantiation constraints is obtained. 

 

Figure 7.11. Data dependence pattern instantiation constraint in the SACM 2.0 assurance case pattern. 

7.4.2 HBS-SPL Artefact Pattern Specification in SACM 2.0 

Considering the Hybrid Braking System automotive product line case study 

(OLIVEIRA et al. 2014) used though this thesis, its development process, and ISO 26262 - 
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Road Vehicles Functional Safety standard, artefacts and their relationships required for 

assurance were defined. From the analysis of such information, artefact patterns related to 

product requirements, architecture, functional hazard assessment, fault trees and FMEA 

results, can be created with the support of the SACM 2.0 model editor. Figure 7.12 shows the 

“Functional Hazard Assessment” artefact pattern specification in the SACM 2.0 model editor. 

This pattern defines that a “Hazard Analysis” artefact is resultant from performing the 

“Hazard Identification” activity with the support of a given “Hazard Analysis Technique” 

and tooling such as HaZOP (Hazard Origin and Propagation) and HiP-HOPS compositional 

safety analysis tool. A “Hazard Analysis” artefact can be owned by one or more safety 

analysts professionals involved in the execution of “Hazard Analysis” activities. Finally, a 

“Hazard Analysis” artefact is associated with a “Hazard Analysis File” resource generated in 

the end of the hazard analysis process. “Hazard Analysis File” element represents the stan- 

 

Figure 7.12. Functional hazard assessment artefact pattern specification in SACM 2.0. 
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dard output associated with a “Hazard Analysis” artefact. The “hazardAnalysis”, “tool”, 

“participant”, and “fileLocation” abstract Terms defined into “Functional Hazard 

Assessment” artefact pattern are respectively associated with “Hazard Analysis”, “Hazard 

Analysis Technique”, “Owner”, and “Hazard Analysis File” artefact pattern elements. 

Abstract “Terms” defined in an artefact pattern specification are referenced in the weaving 

model in the same way as abstract “Terms” defined in assurance case patterns. 

Figure 7.13 illustrates an excerpt of the “Functional Hazard Assessment” artefact 

pattern. It is important to highlight that the SACM 2.0 model editor allow specifying both 

assurance case and artefact patterns in the same model. It supports the specification of 

traceability links between the assurance case pattern and artefact pattern elements via SACM 

“Artefact Element Citation” elements, which enable to reference an artefact that provides the 

supporting evidence for the reasoning embedded in an assurance case argument (OMG, 

2015a). 

 

Figure 7.13. Functional hazard assessment artefact pattern diagram view. 

Figure 7.14 shows the specification of the relationship between “Hazard Analysis” 

artefact and the reasoning embedded in the Hazard Avoidance (KELLY and McDERMID, 

1997) assurance case pattern via "C4: IdentSystem Hzds” artefact element citation. It implies 

that an instance of a “Hazard Analysis” artefact provides the supporting evidence for an 

instance of Hazard Avoidance pattern. 
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Figure 7.14. Linking assurance case pattern elements to artefact patterns. 

7.4.3 HBS Assurance Case and Artefact Pattern Instantiation  

The specification of traceability links between argument and evidence management 

information in SACM 2.0 assurance case and artefact patterns contributes to increase the 

confidence on the system assurance case generated with the support of Model-Based 

Assurance Cases approach (HAWKINS et al. 2015). The output of SACM 2.0 pattern 

instantiation process is an SACM assurance case model enhanced with artefact pattern 

instantiation information, i.e., an assurance case with information about the management of 

safety evidence referenced in the assurance case.  

In the same way as the original MBAC instantiation program, the SACM-MBAC 

instantiation program requires the following input artefacts: an SACM 2.0 assurance case and 
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artefact patterns specification, a set of system models and their respective metamodels, and 

the weaving model. The SACM-MBAC instantiation program was used to generate an SACM 

2.0 assurance case model for the HBS-SPL four wheel braking (4WB) system variant. 

“Hazard Avoidance”, “Risk Argument”, and “Absence of Hazardous Software Failure Mode” 

assurance patterns presented in Chapter 6 (Section 6.3.1) were transformed into equivalent 

SACM 2.0 specifications using the GSN2SACM transformation plugin shown in Section 

7.3.1.2. After performing model transformations, precedence control and data dependence 

constraints were added to the specification of these patterns. In the following, “Functional 

Hazard Assessment” and “Fault Tree Analysis” artefact patterns were added to the SACM 2.0 

assurance case pattern specification. The weaving model shown in Chapter 6 (Section 6.3.3) 

was updated with references to abstract “Terms” required to instantiate artefact patterns and 

their links to system model elements. References to abstract “Terms” associated with artefact 

patterns, e.g., “tool”, “participant”, “hazardAnalysis”, and “fileLocation” shown in Figure 

7.12, and their mappings to system model elements were added to the weaving model. In this 

case, feature, context, architecture, failure, and fault tree and FMEA system models were 

considered. 

Figure 7.15 shows the modular view of the instantiated SACM assurance case model 

for the 4WB braking system variant. The difference between SACM assurance case model 

and its equivalent representation in GSN presented in Chapter 6 (Section 6.3.4) is the explicit 

traceability links between argument and evidence management artefacts that substantiate 

assurance claims embedded in the assurance case. For example, claims arguing the risk posed 

by hazards associated with 4WB system variant embedded into risk argument packages are 

substantiated by “4WB FHA”, “NoBraking4WheelsFTA”, “NoBraking3WheelsFTA”, 

“ValueBrakingFTA”, “NoBrakingFrontFTA”, “NoBrakingRear-FTA”, and “NoBraking-

DiagonalFTA” artefact packages. “4WB FHA” artefact package contains evidence 

management information for the provenance of the “4WB” hazard analysis artefact. This 

artefact package shows the “4WB” hazard analysis artefact and its relationships with safety 

analysis techniques/tools used to support the analysis, e.g., model-based or a manual 

technique, safety assessment activities associated with the construction of the hazard analysis 

artefact, the personnel involved in the process as well as different source formats in which the 

artefact is available, e.g., tables, a file, a html report. 

 



Chapter 7 - Instantiation Constraints and Artefact Patterns in Model-Based Assurance Cases                     269 

 

 

Figure 7.15. 4WB assurance case modular view in SACM 2.0. 

Assurance claims arguing the absence of the identified contributing failure modes to 

the occurrence of each system-level hazard are substantiated by instances of Fault Tree 

Analysis artefact pattern. These claims are embedded into risk argument packages and their 

supporting “Absence HSFM” argument packages, which provide the provenance of fault tree 

analysis evidence items referenced in these argument packages and their sub-packages. The 

provenance information for the evidence referenced in the assurance case is important to 

clearly communicate the evidentiary support for assurance claims, increasing the confidence 

in the assurance case. It contributes to the acceptance of the assurance case by certifying 

authorities in order to obtain certification credits for the target safety-critical system. 

Figure 7.16 illustrates the instantiated Hazard Avoidance argument pattern (Product 

Safe in Figure 7.11) for the “4WB” system variant. The assurance case decomposes the safety 

claim arguing that “4WB” system variant is acceptably safe into sub-claims, based on the 

reasoning that the risk posed by the identified hazards are acceptable (“R: 

ArgOverRiskHzds”). The top level assurance claim is substantiated by “Feature Model” and 

“Context Model” artefact packages, denoted by “Artefact Element Citations” linked to the 

“HBS4WBSafe” top-level claim. The sub-claims arguing the risk posed by the identified sys- 
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Figure 7.16. HBS-4WB argument package. 

tem hazards are substantiated by “4WB FHA” artefact package, as stated in the “IdentHzds” 

“Artefact Element Citation” element. 

The claims arguing that the risk posed by the identified system hazards are acceptable 

are further supported by “Risk” argument packages, which decompose these claims into sub-

claims arguing the absence of the contributing failure modes identified in fault tree analysis 

artefacts. The “IdentHzds” Artefact Element Citation explicitly links sub-claims arguing that 

the risk posed by system hazards are acceptable to the supporting evidence embedded into 

“4WB FHA” artefact package. The “4WB FHA” artefact package, illustrated in Figure 7.17, 

provides the provenance for the hazard log artefact referenced into the top-level argument 

package. This artefact is owned by two safety analysts who developed it with the support of 

“HaZard and OPerability Study analysis” technique and “HiP-HOPs” compositional safety 

analysis tool. The hazard log artefact was created during the “Hazard Identification” activity 
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Figure 7.17. 4WB FHA artefact package. 

initiated by the owners in “10 Set of 2015” and finished in “14 Set 2015”. The hazard log 

artefact is available in the form of hyperlinked web pages.   

Following the reasoning of the top-level argument package, “RiskNoBraking4Wheels” 

claim is supported by “Risk No Braking 4 Wheels” argument package shown in Figure 7.18. 

In this argument package, the top-level claim is stated in the context of ISO 26262 ASIL 4 

safety integrity requirement, and “omission of four wheel brake unit outputs” failure 

condition. The “4WB FHA” artefact package provides the evidentiary support for this claim. 

Therefore, the “Claim 1”is decomposed into sub-claims (claims 2, 3, 4, and 5) arguing the 

absence of failure modes of components which contribute to the occurrence of “No Braking 4 

Wheels” system hazard. For example, “Claim 2”argues the absence of value failure into 

“Brake_Unit1” component outputs. This claim is supported in another argument package, 

which decomposes the “Claim 2” into sub-claims arguing the absence of primary, secondary, 

and control failure modes that contribute to an incorrect value in “Brake_Unit1” component 

outputs.  

The “4WB FTA” artefact package provides the supporting evidence for the top-level 

claim from “RiskNoBraking4Wheels” argument package. Finally, the “NoBraking4Wheels-

FTA” artefact package referenced into “C3” artefact element citation provides the supporting 

evidence for assurance of the sub-claims stated into this argument package. 
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Figure 7.18. Risk no braking four wheels argument package. 

7.5 Discussion and Limitations 

Although there are benefits related to the management of constraints in assurance case 

and artefact pattern instantiation, and traceability between assurance case and evidence 

management artefacts provided by the proposed SACM Model-Based Assurance Cases 

approach, the following limitations have been identified: 

 Weaving modeling: whereas the correct definition of the weaving model is crucial to 

the success of both original and SACM-MBAC approaches, and the manual 

specification of the weaving model is error prone, further work needs to be done to 

develop a weaving modeling tool integrated to assurance cases, and system modeling 

in a single platform, e.g., EMF;  

 Assurance case pattern instantiation: the lack of mechanisms for handling choices in 

the SACM assurance case and artefact pattern instantiation. For example, the 

“Contributions to Hazardous Software Failure Modes” assurance case pattern 

catalogue (WEAVER, 2003) comprises pattern choices in which one or more patterns 

are chosen, according to the value provided to instantiate abstract “Terms” defined in 

these patterns; 
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 Advanced model management: the lack of mechanisms for assurance case model 

validation against predefined internal constraints, e.g., the coverage of a claim by the 

available evidence, and external constraints related to the faithfulness of the referenced 

evidence against actual project data (HAWKINS et al. 2015);  

 Scalability: the evaluation presented in this chapter is focused in showing the 

feasibility of the proposed SACM-MBAC approach to generate explicit traceability 

links between assurance claims and evidence management artefacts. Further work 

should be done to evaluate the SACM-MBAC within other safety-critical systems 

(e.g., Tiriba Flight Control System), assurance case patterns (e.g., MISRA Working 

Group on Automotive Safety Cases and ISO 26262), and artefact patterns (e.g., 

architecture, test cases); and 

 Tooling support: the SACM-MBAC prototype tool is limited to handle a subset of data 

dependence pattern instantiation constraints, and further work must be done to 

improve the assurance case and artefact pattern instantiation processes implemented in 

its current version.  

7.6 Summary 

This chapter has presented the SACM-MBAC approach to overcome the limitations 

from the original GSN model-based assurance cases approach related to the management of 

assurance case pattern instantiation constraints and integration of evidence management 

patterns into the MBAC process. The SACM-MBAC supports explicit traceability between 

assurance claims and evidence management information associated with artefacts referenced 

in the assurance case. Such traceability supports clear communication of the evidentiary 

support for assurance claims, increasing the confidence in the assurance case and contributing 

for its acceptance as certification evidence by certifying authorities. The following chapter 

presents the overall evaluation of the thesis contributions, and a case study that provides 

further validation for the thesis contributions presented in Chapter 4 (Variability Management 

in Product Line Architecture and Safety Models), Chapter 5 (Compositional Safety Analysis 

and Design Optimization), and Chapter 6 (Product Line Model-Based Assurance Cases).     



 

Chapter 8 

CAPÍTULO 8 -  EVALUATION 

8.1 Introduction 

This chapter presents the evaluation of the thesis contributions presented in chapters 4, 

5, 6 and 7 and a case study in the aerospace domain. This evaluation was performed on the 

basis of the thesis hypothesis defined in Chapter 1:   

Through adopting a model-based approach for managing and tracing variability in 

architectural and safety models it is feasible to support the traceable and systematic 

construction of safety assessment and assurance case artefacts within a product line 

engineering approach. 

The terms feasible, tracing/traceable, and systematic provide the criteria to evaluate 

the thesis contributions related to model-based approaches to support: management and 

resolution of variability in architecture and safety models (Chapter 4), compositional safety 

analysis and design optimization (Chapter 5), and  model-based assurance cases in product 

line engineering for safety-critical systems (Chapters 6 and 7). This chapter examines the 

feasibility of applying these model-based approaches to support software product line 

engineering in automotive and aerospace domains. This chapter also examines the potential of 

the proposed approaches in tracing product line context and design variation throughout 

architecture and safety analysis models in domain engineering to support the systematic reuse 

of these assets in application engineering. In application engineering, it is examined whether 

the proposed model-based approaches can support: the traceability of variant-specific 

requirements throughout architecture and safety analysis models, and the systematic 

generation of safety assessment artefacts from the reused variant-specific architecture and 
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safety analysis assets. This chapter also examines whether the product line compositional 

safety analysis and design optimization approach (Chapter 5) can systematically support 

allocation and decomposition of safety integrity requirements throughout product line 

components in order to reduce the effort and costs of safety-critical product line development 

processes, contributing to achieve product line process-based certification. By systematic it is 

also examined whether the product line model-based assurance cases (Chapter 6) addresses 

the requirements for trustworthy product safety assessment and assurance cases in application 

engineering by supporting the automatic generation of a variant-specific assurance case from 

a diverse set of variant-specific development and safety assessment models, thus, linking 

assurance case claims to evidence. 

In addition to the aerospace case study presented in this chapter, different forms of 

evaluation ranging from peer review to case studies were considered throughout this thesis to 

assess the research contributions. These forms of evaluation are detailed in the following 

section, followed by the description of the aerospace case study phases (Sections 8.3 and 8.4) 

and their outcomes (Section 8.5), the analysis of the thesis contributions (Section 8.6), and the 

summary of this chapter (Section 8.7). 

8.2 Forms of Evaluation 

The following forms of evaluation were used to assess the research contributions 

throughout this thesis: 

 Case Studies; 

 Peer Review; 

 Tool Support; 

 Experimental Study. 

The forms of evaluation mentioned above address one or more of the following 

research criteria: feasibility, traceability, and systematic defined in Section 8.1. Table 8.1 

shows the relationships between the forms of evaluation and the thesis contributions. Peer 

review was considered to evaluate the technical consistency of the phases, activities and tasks 

defined in the proposed model-based approaches to support management and resolution of va- 
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Table 8.1 – Forms of evaluation and thesis contributions. 

 Thesis Contrib./Evaluation Case 

Studies 

Peer Review Tool-Support Experiment 

 

Variability Management in 

Product Line Architectural 

and Safety Models (Chapter 

4) 

 

Yes 

 

Yes 

 

Yes 

 

N/A 

 

Product Line Compositional 

Safety Analysis and Design 

Optimization (Chapter 5) 

 

Yes 

 

Yes 

 

Yes 

 

N/A 

 

Product Line Model-Based 

Assurance Cases  

(Chapter 6) 

 

Yes 

 

Yes 

 

Yes 

 

Yes 

     

Pattern Instantiation 

Constraints and Artefact 

Patterns in Model-Based 

Assurance Cases (Chapter 7) 

Yes Yes Yes N/A 

riability in architectural and safety analysis models, product line compositional safety analysis 

and design optimization, and assurance case construction. On the other hand, case studies 

outcomes have shown the feasibility of the thesis contributions in supporting software product 

line engineering of safety-critical systems. 

8.2.1 Case Studies 

The following case studies were carried out during the course of this research: 

 Hybrid Braking System Product Line Variability Management Case Study (Chapter 

4); 

 Hybrid Braking System Product Line Compositional Safety Analysis and Design 

Optimization Case Study (Chapter 5); 

 Hybrid Braking System Product Line Model-Based Assurance Cases Case Study 

(Chapters 6 and 7). 

These case studies are detailed along with the mentioned chapters and are considered 

as the first evaluation for the corresponding research contributions. 
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8.2.2 Aerospace Case Study 

This case study has shown the feasibility of applying the thesis contributions in an 

aerospace flight control product line. The case study provides strong evidence of the 

feasibility of the proposed model-based approaches to support the management and resolution 

of architectural and safety-related variability, compositional safety analysis and design 

optimization, and assurance case construction in safety-critical software product line 

engineering processes. Section 8.3 presents the aerospace case study. 

8.2.3 Peer Review 

The research contributions presented in this thesis were reviewed by academic 

researchers and system engineers in the industry. The research contributions were presented 

and discussed with researchers from: Software Engineering Group at Mathematics and 

Computer Science Institute from the University of São Paulo, High-Integrity System 

Engineering (HISE) research group from the University of York, and Dependable Systems 

research group from the University of Hull. Further, the research was presented and discussed 

with system engineers and safety engineers from the University of Hull who developed the 

HiP-HOPS compositional safety analysis tool.  

8.2.4 Tool Support 

In this thesis, the following tools were developed to support the research contributions 

presented in chapters 4, 5, 6, and 7: 

 Adapters to BVR variant management tool (VASILEVSKIY et al. 2015) were 

developed to integrate the management and resolution of variability into 

MATLAB/Simulink/HiP-HOPS, and OSATE AADL/Error Annex models. 

Hephaestus/Simulink tool was also extended to support the management and 

resolution of variability in safety analysis embedded into Simulink models enhanced 

with HiP-HOPS failure annotations (Chapter 4). 

 Product Line Component SIL decomposition (PL-SILDec) tool was developed as an 

extension of HiP-HOPS ASIL and DAL decomposition tools (SOROKOS et al. 2015; 

AZEVEDO et al. 2014) to support the allocation of safety integrity requirements to 
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product line components from the analysis of multiple variant-specific SIL 

decomposition results. Such analysis supports product line engineers and safety 

engineers in establishing the safety objectives, development and safety assessment 

processes according to the integrity of individual product line components in order to 

achieve process-based certification (Chapter 5); 

 A set of metamodels and models were created to support model-based assurance cases 

into software product line engineering. The Eclipse Modeling Framework platform 

was used to create the following metamodels: MATLAB/Simulink metamodel, HiP-

HOPS Failure metamodel, Feature and Context metamodel, Fault Tree/FMEA 

metamodel, and SIL Allocation metamodel (Chapter 6); 

 The Eclipse Modeling Framework was also used to create a diagram editor for the 

OMG Structured Assurance Case Metamodel version 2.0 (OMG, 2015a), and Epsilon 

Transformation Language (KOLOVOS et al. 2013) was used to implement a GSN to 

SACM 2.0 model transformation tool. These tools were developed to support the 

specification of pattern instantiation constraints in assurance case patterns, and the 

specification of artefacts patterns and their relationships with assurance case patterns 

into Model-Based Assurance Cases process (Chapter 7). 

8.2.5 Experimental Study 

An experimental study was conducted to evaluate the feasibility of applying the 

product line Model-Based Assurance Cases approach to support the automatic generation of 

variant-specific assurance cases in software product line engineering processes. The results of 

this experimental study have shown that model-based assurance cases approach is more 

effective and efficient in supporting assurance case construction into safety-critical software 

product line engineering than conventional techniques for assurance case construction. The 

experimental study is detailed in Chapter 6.  
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8.3 Case Study: Tiriba UAV Flight Control Product Line 

8.3.1 Scope  

The aerospace case study encompasses the flight control system from Tiriba 

Unmanned Aircraft System (BRANCO et al. 2011). Tiriba is a small-size electrical unmanned 

aircraft vehicle developed by AGX
22

 Company and the National Institute of Science and 

Technologies for Critical Embedded Systems (INCT-SEC) (INCT-SEC, 2014). Tiriba system 

was developed using MATLAB/Simulink environment. An extractive product line 

development strategy was adopted to transform the Tiriba flight control system architecture 

into a software product line. The Tiriba Flight Control product line (TiribaFC-SPL) comprises 

four system variants related to the pilot mode: “Manual Pilot”, which comprises a human 

operator sending commands to the unmanned aircraft from a ground control station; 

“Autopilot”, which executes a pre-defined route; “Assisted Mode” that allows the operator to 

send commands to the UAV configured with “Autopilot” mode; and “Autonomous Pilot” 

intended to perform actions according to the current environmental conditions. With the 

exception of “Manual Pilot” mode, both pilot modes are optional. Such variation allows the 

derivation of several different system variants for the provision of the aircraft flight control 

capability. The pilot modes considered for the aircraft control may change according to the 

UAV size (e.g., small or light), the target application, which in the case of Tiriba UAV can be 

agriculture, environment monitoring, or defense, and the target airspace, which can be 

controlled or uncontrolled. Whereas different failure conditions may lead or contribute to the 

occurrence of hazards related to flight control capability in different product variants, the 

Tiriba flight control is considered a safety-critical product line. In this case study, the safety 

analysis was delimited to four TiribaFC-SPL system variants considered to operate into two 

different contexts defined by combining application, UAV size, and airspace contextual 

elements. This case study was performed by the author over an effort of a three months 

period. 

                                                 
22 http://www.agx.com.br/n2/pages/index.php 
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8.3.2 Problem Statement 

With the increase of the complexity of safety-critical systems in automotive and 

aerospace domains, achieving the systematic reuse of the product line architecture and safety 

analysis demands the automated traceability of context and design variation specified in 

functional and context features to their realization in architectural and safety analysis assets. 

The correct management of variability in architecture and safety models in product line 

domain engineering is required to enable the systematic reuse of product line architecture and 

safety analysis in application engineering. The reused safety assets contribute to reduce the 

effort and complexity in performing safety analysis for a specific product variant in 

application engineering. Integrating compositional safety analysis into product line 

engineering processes should contribute to reduce the effort in generating expensive safety 

assessment artefacts such as fault tree analysis and FMEA results required for certifying a 

given product variant. Achieving the automated traceability between development and 

assessment artefacts, and the assurance case is also required in safety-critical systems product 

line engineering processes. Therefore, context and design variation should be traced to 

architecture, safety analysis and assessment assets, and assurance cases. Changes in product 

requirements should be further propagated throughout architectural and safety models. This is 

necessary because ignoring the impact the context and design variation in safety assessment 

and assurance cases may weaken the confidence or invalidate the assurance case (HABLI, 

2009).  

8.3.3 Objectives 

The objective of the TiribaFC-SPL case study is to evaluate whether the proposed 

model-based approaches for variability management, safety assessment, assurance case 

construction in safety-critical product lines provide automated support for: management and 

resolution of variability into TiribaFC-SPL architectural and safety models in domain 

engineering, and systematic reuse and generation of safety artefacts in product line application 

engineering.  
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8.3.4 Methodology 

This section presents the notations, tools, and model-based techniques used to carry 

out the TiribaFC-SPL case study. 

8.3.5 Notations 

 Feature-Oriented Domain Analysis (KANG et al. 1990) was used to specify product 

line feature and context models;  

 SysML (OMG, 2015) was used to represent the product line architecture model by 

means of Block Definition Diagram; 

 HiP-HOPS (PAPADOPOULOS et al. 2011) notation was used to specify the product 

line failure model; 

 GSN and its Pattern and Modular extensions were used to support the specification of 

variant-specific assurance cases. 

8.3.6 Tooling 

 Feature IDE Eclipse-based modeling tool was used to support product line feature and 

context modeling; 

 Microsoft Visio and its SysML Stencil and GSN plug-ins were used to support the 

specification of product line architecture model and assurance cases; 

 MATLAB/Simulink model-based development environment was used to support the 

design of the product line architecture; 

 HiP-HOPS compositional safety analysis tool was used to support the specification of 

the product line failure model in domain engineering. In application engineering, HiP-

HOPS was used to support variant-specific failure modeling, and automatic synthesis 

of fault trees and FMEA results. The HiP-HOPS Tabu Search SIL decomposition 

optimization tool was used to support automatic decomposition of safety integrity 

requirements in different product variants;  
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 Product line component SIL decomposition (PL-SILDec) tool developed in the course 

of this thesis was used to support the decomposition of SILs to product line 

components early on the design; 

 BVR variant management tool was used to support the management and resolution of 

variability in architecture and safety analysis embedded into MATLAB/Simulink and 

HiP-HOPS failure models; 

 Model-Based Assurance Cases (MBAC) tool (HAWKINS et al. 2015) was used to 

support the generation of variant-specific assurance cases from a diverse set of system 

models. 

8.4 Case Study Phases 

The TiribaFC-SPL case study was carried out into three major phases 1) management 

and resolution of variability into architectural and safety models, 2) product line 

compositional safety analysis and design optimization, and 3) product line model-based 

assurance cases. Each major phase encompasses a set of phases performed in product line 

domain engineering and application engineering. 

8.4.1 Management and Resolution of Variability in Architecture and Safety 

Models 

In domain engineering, during the “SC-PLE-1: Product Line Requirements 

Elicitation” phase, by adopting an extractive product line development strategy, product line 

feature and context models were defined from the analysis of the Tiriba flight control system 

and its usage context. Feature and context models define the permitted functional and 

contextual variation for the Tiriba flight control system. In the “SC-PLE-2: Product Line 

Architectural Design” phase, no changes were performed into the original Tiriba flight 

control system, since its architecture model already provides variability mechanisms for pilot 

mode functions, represented by MATLAB/Simulink “Switch” blocks (BOTTERWECK et al. 

2010). Still in domain engineering, hazards and their risk associated with Tiriba pilot mode 

variants in a range of usage context were identified during the “SC-PLE-3: Product Line 
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Safety Analysis” phase. Safety integrity requirements, in terms of ARP 4754a Development 

Assurance Levels (EUROCAE, 2010), were also allocated minimize the effects of the 

occurrence of each one of these hazards. Contributing component failures to the occurrence of 

these hazards were also identified during component failure analysis. Thus, the product line 

failure model was obtained. In the “SC-PLE-4: Variability Realization Modeling” phase, 

functional and context features were linked to their realization in architectural components 

and safety analysis data, with the support of the BVR variant management tool integrated to 

compositional safety analysis techniques (VASILEVSKIY et al. 2015). Therefore, the 

automated traceability between product line feature, architecture, and failure models is 

achieved in the variability realization model. In application engineering, the resolution model 

was obtained by selecting functional and context features from the TiribaFC-SPL feature 

model, and variant-specific flight control architecture and failure models were automatically 

derived with the support of the BVR toolset. The detailed description of the artefacts 

produced in this major phase is available in Appendix D. 

8.4.2 Product Line Compositional Safety Analysis and Design Optimization 

Compositional safety analysis and design optimization into product line domain 

engineering aim to identify the threats to the TiribaFC-SPL safety (i.e., hazards), their causes, 

and allocating safety requirements to eliminate or minimize the effects of system-level 

failures in the “SC-PLE-3: Product Line Safety Analysis” phase, as aforementioned in Section 

8.4.1. TiribaFC-SPL safety analysis activities were performed from the perspective of the 

following pilot mode variants: “Manual and Autonomous Pilot” (TFC-MAT), “Manual and 

Assisted Pilot” (TFC-MAS), “Manual and Autopilot” (TFC-MAP), and “All Pilot Modes” 

(TFC-ALL). TFC-MAT and TFC-MAS system variants were assumed to be deployed into a 

Light UAV, to operate in an “Uncontrolled Airspace”, and to be used in “Environment 

Monitoring” applications. TFC-MAP and TFC-ALL system variants were assumed to be 

deployed into a Light UAV, to operate in a “Controlled Airspace”, and to be used in 

“Defense” applications. For each one of these scenarios, hazards, their causes, safety integrity 

requirements, and contributing component failure modes were identified. The analysis was 

constrained to these variants and context to reduce the complexity and facilitate the 

understanding of the concepts presented in the product line compositional safety analysis and 

design optimization approach proposed in this thesis. 
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In application engineering, after the “SC-PLE-6 - Product Derivation” phase, from the 

generated variant-specific architecture and failure models, fault trees and FMEA results were 

generated with the support of HiP-HOPS compositional safety analysis tool 

(PAPADOPOULOS et al. 2011). At the “SC-PLE-8 - Product SIL Decomposition” phase, for 

each system variant, safety integrity requirements allocated to hazards associated with a given 

TiribaFC-SPL system variant were automatically decomposed throughout contributing 

component failure modes with the support of the HiP-HOPS Tabu Search DAL 

decomposition optimization extension (SOROKOS et al. 2015). This tool is an extension of 

HiP-HOPS Tabu Search ASIL decomposition algorithm (AZEVEDO et al. 2014) to address 

aerospace systems. DAL decomposition was performed for each one of the following four 

TiribaFC-SPL system variants: TFC-MAT, TFC-MAS, TFC-MAP, and TFC-ALL assumed in 

the usage context mentioned earlier in this section. These multiple DAL decomposition 

results are input artefacts to the “Product Line Component SIL Decomposition” phase.  

The extension to HiP-HOPS design optimization tooling to support the allocation of 

safety integrity requirements to product line components developed in this thesis (see Chapter 

5) was used to automate the analysis of multiple DAL decomposition results to derive the 

DALs to be allocated to TiribaFC-SPL components to address product line process-based 

certification. The allocated DALs guide product line engineers and safety analysts in 

establishing safety objectives, and defining development, verification, validation, testing, and 

safety assessment processes, to achieve product line process-based certification in compliance 

with ARP 4754a and DO-178C (RTCA, 2011) standards. These activities were allocated to 

TiribaFC-SPL components according to their integrity. Product line component SIL 

decomposition allows achieving process-based certification for TiribaFC-SPL components 

without being expensive or stringent.  

8.4.3 Product Line Model-Based Assurance Cases 

The integration of Model-Based Assurance Cases approach (HAWKINS et al. 2015) 

into product line engineering processes supports the automated traceability between TiribaFC-

SPL variant-specific assurance cases and their respective development and assessment 

models. Thus, changes in the TiribaFC-SPL product variant are automatically propagated 

throughout the assurance case. In product line application engineering, the assurance case 

pattern specification, the weaving model, and product line asset metamodels described in 

Chapter 6, together with TiribaFC-SPL variant-specific models are input artefacts to 
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configure the model-based assurance cases tooling (HAWKINS et al. 2015) to generate an 

assurance case for the given TiribaFC-SPL system variant. This process was repeated to 

generate assurance case models for each one of the following TiribaFC-SPL variants: 

“Manual and Autonomous Pilot”, “Manual and Assisted Pilot”, “Manual and Autopilot”, and 

“All Pilot Modes”. The traceability of assurance case elements to variant-specific models 

provided by model-base assurance cases increased the confidence of the generated assurance 

case model. Such traceability complies with ARP 4754a and DO-178C guidance related to the 

traceability between development, assessment assets, and the assurance case. Therefore, 

variant-specific system models and assurance cases can be used as evidentiary documentation 

to support goal-based and process-based certification of TiribaFC-SPL system variants 

against ARP 4754A and DO-178C aerospace safety standards.  

8.5 Tiriba UAV Case Study Outcomes 

The following deliverables were produced during the management and resolution of 

variability in architectural and safety models, compositional safety analysis and design 

optimization, and model-based assurance cases major phases of the TiribaFC-SPL case study: 

- Domain Engineering: 

- TiribaFC-SPL Feature and Context Models; 

- TiribaFC-SPL Architecture Model; 

- TiribaFC-SPL Failure Model (i.e., Hazard and Risk, and Component Failure 

Analysis); 

- Variability Realization Model; and 

- TiribaFC-SPL Component DAL Decomposition Results. 

- Application Engineering: 

- TiribaFC-SPL Variant-Specific Feature Models; 

- TiribaFC-SPL Variant-Specific Architecture and Failure models; 

- Variant-Specific Fault Trees and FMEA Models; 

- Variant-Specific DAL Decomposition Results; and 
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- Variant-Specific Assurance Cases. 

Traceability links between product line variation expressed in functional and context 

features, and their realization into architectural components, and safety analysis were 

established in the variability realization model produced with the support of BVR variant 

management toolset. The variability realization model provides support for further resolution 

of variability in architectural and safety models in the product derivation phase. Therefore, 

changes into variant-specific feature and context models are automatically propagated 

throughout the reused architecture and failure models, and generated safety assessment 

artefacts such as product fault trees, FMEA results, DAL Decomposition results, and the 

assurance case. The deliverables produced in each phase of the TiribaFC-SPL case study are 

detailed in Appendix D. 

8.6 Analysis of the Thesis Contributions 

This section presents the analysis and evaluation of the following research 

contributions resultant from this thesis: 

 Variability Management in Product Line Architecture and Safety Models (Chapter 4); 

 Product Line Compositional Safety Analysis and Design Optimization (Chapter 5); 

 Product Line Model-Based Assurance Cases (Chapter 6); and 

 Pattern Instantiation Constraints and Artefact Patterns in Model-Based Assurance 

Cases (Chapter 7). 

Each research contribution was evaluated against the thesis hypothesis, presented in 

Section 8.1, using at least two forms of evaluation as shown in Table 8.1. The evaluation 

results for each thesis contribution are presented in the following sections. 

8.6.1 Variability Management in Product Line Architecture and Safety Models 

The contributions of this thesis regarding variability management in product line 

architecture and safety models have shown how context and design variation, defined in 

feature and context models, can be automatically traced to their realization into product line 
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architectural and safety analysis. This was achieved by means of a domain and tool 

independent systematic approach to integrate variant management and compositional safety 

analysis techniques into software product line engineering processes. Applying such approach 

in automotive and aerospace case studies allowed the systematic reuse of architectural and 

safety analysis information, and automatic generation of safety assessment artefacts in 

product line application engineering, contributing to reduce the effort and costs of variant-

specific safety assessment. Research contribution in this area has described how to adapt 

existing variant management techniques/tools to support the management and resolution of 

variability in safety models. Therefore, adapters for BVR variant management tool have been 

developed to integrate variant management into MATLAB-Simulink/HiP-HOPS and OSATE 

AADL/Error Annex model-based development and compositional safety analysis tools. 

Hephaestus/Simulink has also been adapted to support variability management in Simulink 

models with HiP-HOPS failure annotations. The contributions in this area were evaluated 

through: academic peer review, development of tool support by means of adapters to 

Hephaestus/Simulink and BVR variant management tools supporting variability management 

in safety models, Hybrid Braking System automotive product line case study, and Tiriba 

Flight Control product line aerospace case study.  

The automated traceability of variation in functional and usage context features 

throughout architecture and safety analysis models has been shown by carrying out 

automotive and aerospace variability management case studies with the support of the BVR 

toolset and the developed adapters. The feasibility of the approach is shown by the 

development of tool support, in the form of adapters to BVR and Hephaestus/Simulink variant 

management tools. Feasibility has also been indicated by conducting automotive and 

aerospace variability management case studies, where it has been shown that variability in 

architectural and safety models were managed in the variability realization model produced in 

domain engineering, and variant-specific architecture and failure models were generated in 

application engineering. The reused architectural and safety analysis artefacts contributed to 

reduce the effort in performing variant-specific safety assessment to generate fault trees and 

FMEA artefacts with the support of compositional safety analysis techniques (Chapter 5). 

Automotive and aerospace case studies have shown that the approach is domain independent. 

Although this thesis has not presented a case study covering other representations for 

architectural and failure models, it was verified that the proposed approach is applicable to 

other model representations and variant management techniques. To evidence this claim, 
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adapters to the BVR toolset were developed to support the management and resolution of 

variability in architectural and failure models specified in AADL/Error Annex languages with 

the support of Eclipse-based OSATE development environment (DELANGE and FEILER, 

2014). The developed BVR adapters for AADL/Error Annex were tested to manage variation 

into an AADL/Error Annex version of the Hybrid Braking System product line architecture 

and failure models discussed throughout this thesis. Finally, peer review analysis of the 

variability management in automotive and aerospace case studies has shown that the proposed 

variability management approach can be systematically applied to other safety-critical product 

lines. The variability management and resolution phases and their respective activities were 

executed sequentially and produced equivalent deliverables in both automotive and aerospace 

case studies. 

From the feedback provided by the analysis of the case studies and the developed tool 

support, the following remarks can be made: 

 Traceability of product line variation throughout system and safety assets  is 

achieved by adapting and integrating existing variant management techniques to 

compositional safety analysis techniques to enable support for handling variation 

in safety models. These adapters were used to support variant management into 

automotive and aerospace product line case studies, which are instantiations of the 

proposed approach. Therefore, it shows that variation in design and context 

identified in domain engineering is traced to their realization in both architectural 

and failure models. Thus, the proposed approach supports the automated integration 

between model-based development, compositional safety analysis, and variant 

management assets as prescribed by Habli’s “Product Line Safety Metamodel” 

(HABLI 2009). The systematic reuse of architecture and safety assets and 

traceability of product requirements throughout these assets is achieved in 

application engineering. In application engineering, changes in product 

requirements are automatically propagated throughout architecture, failure models, 

and safety assessment and assurance cases, which are generated from the reused 

architecture and failure models;    

 The Safety-Critical Product Line Engineering (SC-PLE) approach is generic 

and systematic: the term generic means that the approach presented in this thesis 

is domain and tool independent. Domain independence means that the approach 

does not address a specific domain, e.g., not specific to military, automotive, 
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aerospace or nuclear domains. Tool independence means that the approach is not 

tied to specific model-based development, compositional safety analysis, or 

variant management tools. Systematic means that the variability management 

phases, activities and deliverables defined in the approach are repeatable, in which 

the execution of the approach in different case studies follow the same steps and 

produce equivalent deliverables. Automotive and aerospace case studies and the 

tooling support for managing variability into HiP-HOPS and AADL Error Annex 

safety models provide indications to appeal that the approach is generic and 

systematic. 

The feasibility of the proposed approach is limited to the development of adapters for 

existing variant management tools to support variability management in safety analysis 

models. The complexity of adapting a variant management tool is dependent upon the 

characteristics of the tool and its available documentation. With regard to variability 

management, the precision in identifying the impact of context and design variation into 

architectural and safety analysis models in variability realization modeling is limited to 

product line engineers domain knowledge and experience. In addition, the conduction of 

automotive and aerospace variability management case studies has shown that the 

complexity of variability realization modeling may increase as the size of the product 

line scope increases. Therefore, variability realization modeling may become a time-

consuming and error-prone task. Such complexity can be reduced with the adoption of 

graphical editors, as provided by BVR toolset, to support the variability realization 

modeling. 

8.6.2 Product Line Compositional Safety Analysis and Design Optimization 

Regarding product line compositional safety analysis and design optimization, it has 

been proposed an approach to integrate compositional safety analysis and design optimization 

into safety-critical software product line engineering processes. This approach supports the 

systematic reuse of product line safety analysis and automatic generation of safety assessment 

artefacts in application engineering. In domain engineering, the proposed approach has shown 

that performing compositional safety analysis aware of the impact of context and design 

variation supports the systematic reuse of functional hazard assessment and component failure 

analysis. In application engineering, the proposed approach has shown that integrating 

compositional safety analysis and design optimization techniques into product line safety 
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processes allows the automatic synthesis of variant-specific fault trees, FMEA, SIL 

decomposition assessment artefacts from the reused safety analysis.  

The product line design optimization approach presented in this thesis comprises the 

provision of methodological and tooling support for automatic analysis and decomposition of 

safety integrity requirements to product line components addressing process-based 

certification early on domain engineering (OLIVEIRA et al. 2015a). Product line component 

safety integrity requirements is useful to guide safety engineers in establishing safety 

objectives, development and safety assessment processes for product line components in order 

to achieve process-based certification. The allocation of safety integrity requirements to 

product line components can contribute to reduce the effort and costs of developing safety-

critical product line components since “expensive” safety objectives, in terms of time and 

budget, are allocated only to highly critical components and not to all product line 

components. The research contributions in this area were mainly validated through academic 

peer review, the development of tool support for automated analysis and allocation of product 

line component safety integrity requirements, and case studies: Hybrid Braking System 

automotive case study, and the Tiriba Flight Control product line aerospace case study.  

The product line compositional safety analysis and design optimization case studies 

conducted in automotive and aerospace domains have shown the automated and explicit 

traceability between variation in design and context, product line architecture and failure 

models, and variant-specific safety assessment assets. Feasibility has been indicated by 

instantiating the product line compositional safety analysis and design optimization approach, 

with the support of HiP-HOPS compositional safety analysis and design optimization toolset 

(PAPADOPOULOS et al. 2011), in automotive and aerospace case studies. Feasibility has 

also been shown by developing an extension to HiP-HOPS Tabu Search ASIL/DAL 

decomposition optimization tool to support the automated analysis and decomposition of 

safety integrity requirements to product line components (OLIVEIRA et al. 2015a) and its 

validation in automotive and aerospace case studies. Finally, peer review analysis performed 

by academic researchers and safety engineers domain experts from the industry (HiP-HOPS 

tool developers), and automotive and aerospace case studies have shown that the product line 

compositional safety analysis and design optimization approach can be systematically applied 

in different safety-critical domains, with the support of different model-based development, 

compositional safety analysis and design optimization techniques. From the analysis of case 
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study results against the principles defined in Habli’s Product Line Safety Metamodel, the 

following observations can be made:  

 Explicit focus on causality and product line variation principle is addressed in 

the product line safety analysis phase, where the identified conditions leading the 

system to unsafe states, their causes and allocated safety requirements are 

explicitly traced to the usage scenarios considered to perform functional hazard 

assessment and component failure analysis. Therefore, the impact of context and 

design variation in the safety analysis is captured and traced, allowing the 

systematic reuse and generation of safety artefacts in application engineering;    

 Instantiation of the product line compositional safety analysis and design 

optimization approach and Safety Metamodels: automotive and aerospace 

product line compositional safety analysis and design optimization case studies 

have shown the effectiveness of the integration of variant management and 

compositional safety analysis techniques in automating the traceability of context 

and design variation throughout product line safety analysis, and variant-specific 

fault trees and FMEA results. It means that traceability links between system and 

contextual assets, and safety assets defined into “Functional Failure”, 

“Architectural Failure”, and “Component Failure” metamodels can be automated 

with the support of the integration between variant management and compositional 

safety analysis techniques; 

 Integration of compositional safety analysis and design optimization within 

product line domain engineering and application engineering: in domain 

engineering, product line safety analysis is performed aware of variation in design 

and context to support the systematic reuse of safety analysis data in application 

engineering. In application engineering, the reused variant-specific safety analysis 

data is the input for compositional safety analysis techniques, e.g., HiP-HOPS, 

OSATE AADL/Error Annex, generating fault trees, FMEA, and safety integrity 

requirements decomposition safety assets. Therefore, changes in the product 

requirements are directly propagated throughout architecture, safety analysis and 

safety assessment assets; 

 Consideration of Product Line Component Safety Integrity Requirements and 

Process factors: in this thesis we have considered the impact of product line 
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component safety integrity requirements in the allocation of prescriptive safety 

objectives, development activities, and output artefacts required to achieve product 

line process-based certification. The proposed method and tool support for 

automatic analysis and allocation of safety integrity requirements to product line 

components (see Chapter 5) fills the gap in this area left by earlier research in 

product line safety assessment (HABLI, 2009). It is important to highlight that the 

proposed product line component safety requirements allocation tool addresses 

safety requirements in terms of Safety Integrity Levels.  

8.6.3 Product Line Model-Based Assurance Cases 

The product line model-based assurance cases approach has shown how to integrate 

model-based assurance cases into software product line engineering processes to support the 

automatic generation of assurance cases from variant-specific design and assessment models. 

Therefore, a model-based approach has been defined to integrate assurance case construction 

into product line domain engineering and application processes. The research contributions in 

this area were evaluated through automotive and aerospace case studies. Automated 

traceability of variation in product requirements throughout development, safety assessment, 

assurance case models is shown by carrying out automotive and aerospace assurance case 

construction case studies. The feasibility of the approach has also been shown by case studies 

where the Model-Based Assurance Cases (HAWKINS et al. 2015) tool was used to support 

the generation of assurance cases in product line application engineering. Academic peer 

review and the conduction of case studies in different domains have shown that the approach 

defines systematic guidance and deliverables applicable to other safety-critical domains.     

Model-Based Assurance Cases in product line engineering supports the automated 

traceability of variation in development and assessment models throughout the assurance 

case. Therefore, changes in product requirements are automatically propagated throughout the 

assurance case. Model-based assurance cases technique provides the automated generation of 

the evidence required for certifying product variants by linking assurance case argument 

elements to system models (evidence). 



Chapter 8 - Evaluation                                                                                                                                         293 

 

8.6.4 Pattern Instantiation Constraints and Artefact Patterns in Model-Based 

Assurance Cases 

The SACM-MBAC approach proposed in this thesis has shown that the OMG SACM 

2.0 (OMG, 2015a) metamodel abstractions are effective in: specifying instantiation 

constraints in assurance case patterns, and artefact patterns and their links to assurance case 

patterns. The specification of instantiation constraints in assurance case patterns contributes to 

resolve data dependencies between pattern elements during the assurance case pattern 

instantiation process. The specification of artefact patterns supports tracing assurance claims 

to the provenance information of artefacts referenced in these claims, contributing to increase 

the confidence in the assurance case. This area of contribution was evaluated through 

academic peer review, tool support, and case study. The feasibility of research contribution in 

this area has shown by peer review analysis performed by academic members from the OMG 

SACM 2.0 committee, the development of SACM 2.0 model editor and GSN2SACM 2.0 

model transformation tool, and by SACM 2.0 assurance case and artefact patterns for a hybrid 

braking system variant. 

The analysis of the SACM 2.0 assurance case and artefact patterns has shown the 

effectiveness of SACM 2.0 in specifying instantiation constraints in assurance case patterns, 

and linking artefact patterns to assurance case patterns. These findings contributed to 

overcome the limitations related to the specification and weaving of assurance case pattern 

instantiation constraints from the current model-based assurance cases approach (HAWKINS 

et al. 2015). Although we have defined the structure of an SACM 2.0 Model-Based 

Assurance Cases approach, more effort is  required to fully adapt the current model-based 

assurance cases tooling (HAWKINS et al. 2015) to support the SACM 2.0 metamodel (OMG, 

2015a).  

8.7 Summary 

This chapter presented the evaluation of the four main thesis contributions. The 

evaluation was performed via peer review, development of tooling support, case studies, 

and one case study in aerospace domain, which generated the results that supported the 

thesis hypothesis. The following chapter presents the final conclusions of this thesis.   



 

Chapter 9 

CAPÍTULO 9 -  CONCLUSIONS 

This chapter presents a summary of the conclusions obtained from the research 

contributions of the thesis. Future research directions are also presented and discussed. 

9.1 Thesis Contributions 

A model-based approach to support the systematic reuse and generation of safety 

artefacts in safety-critical product line engineering has been defined in this thesis. The 

approach provides systematic and holistic guidance to integrate compositional safety analysis, 

variant management, and model-based development techniques to support safety-critical 

product line engineering processes. The research contributions in the context of the proposed 

approach provide answers for research questions defined in the introduction (Section 1.3). 

The contributions of this thesis are focused in the following areas: 

 Safety Aware Software Product Line Engineering Processes: the definition of a 

systematic and holistic approach, which comprises a set of processes, activities, and 

tasks, to support the management of the impact of variation in design and context in 

safety models to enable the systematic reuse of these models, and generation of safety 

assurance artefacts in product line engineering for safety-critical systems (OLIVEIRA 

et al. 2016; OLIVEIRA et al. 2014) (RQ1, RQ2); 

 Product Line Safety Variability Management: the provision of a systematic 

approach to manage the impact of variation in design and context in architecture and 

safety models, guidance to integrate variant management into compositional safety 



Chapter 9 - Conclusions                                                                                                                                      295 

 

analysis to support variability management in the safety analysis model, and the 

development of adapters for existing variant management tools, e.g., the BVR toolset 

(RQ2, RQ3);  

 Product Line Compositional Safety Analysis: the definition of a systematic 

approach to support compositional safety analysis aware of variation in design and 

context in product line domain engineering. Such approach supports the systematic 

reuse of the safety model, and automatic generation of safety artefacts in product line 

application engineering (OLIVEIRA et al. 2016; OLIVEIRA et al. 2014) (RQ2, RQ3);  

 Product Line Design Optimization and Safety Certification: the definition of a 

method and tool for automated analysis and allocation of safety integrity requirements 

to product line components to support cost-effective process-based certification 

(OLIVEIRA et al. 2015a) (RQ5); and 

 Product Line Model-Based Assurance Cases: the definition of a systematic 

approach to integrate model-based assurance case techniques into product line 

engineering processes to support the automatic generation of variant-specific 

assurance cases required to achieve goal-based certification (OLIVEIRA et al. 2015) 

(RQ4).  

The conclusions in each one of these contributions are presented in the following 

sections. 

9.1.1 Safety Aware Software Product Line Engineering Processes 

The research contribution in this area comprises the definition of a holistic and 

systematic approach to integrate compositional safety analysis, variant management, and 

model-based development into safety-critical software product line engineering processes. 

This thesis has shown that applying such approach provides the fully integration of variability 

management in safety analysis, safety assessment and assurance case construction activities, 

with the support of model-based techniques, into software product line engineering processes. 

By using compositional safety analysis, variant management, and model-based assurance case 

techniques, automated traceability of product line variation throughout hazard and risk 

analysis, component failure analysis, fault trees analysis, FMEA results and the assurance 

case defined through a new “Product Line Safety Metamodel” (HABLI, 2009) is achieved.  
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The proposed approach differs from existing work on product line safety assessment 

by establishing a clear distinction between reusable safety artefacts, where variability should 

be managed, and those that can be auto-generated with the support of compositional safety 

analysis techniques. In domain engineering, product line variation is linked to their realization 

in architecture and safety analysis models to be systematically reused in application 

engineering, where safety assessment and assurance case artefacts can be generated from the 

reused architecture and safety analysis. Thus, changes in a product variant are automatically 

propagated throughout the reference architecture, safety assessment assets and the assurance 

case. Whereas traditional software product line engineering processes (SEI, 2016; GOMAA, 

2005; POHL et al. 2005) do not suite safety processes established in safety standards for the 

development of safety-critical systems, product line engineering processes can be adapted by 

following the guidance defined in the proposed approach. By taking a software product line 

engineering process, and adapting it to suite safety processes, by following the guidance 

defined in the proposed approach, it results in the thesis contributions detailed in the 

following sections. 

The model-based approach presented in this thesis was built upon, and to comply with, 

safety assessment processes defined in normative safety standards, e.g., IEC 61508, ISO 

26262, SAE ARP 4754A, and SAE ARP 4761. The results obtained from automotive and 

aerospace case studies and the development of extensions for variant management tools have 

shown that the approach is domain and tool independent. Domain independence means that 

the approach is applicable to other domains and safety standards, e.g., to support product line 

safety assurance in industrial and medical domains. Tool independence means that the 

approach can be supported by integrating compositional safety analysis, variant management, 

and model-based development tools other than the chosen in this thesis. The results from the 

cases studies have shown that the approach is systematic (repeatable), which the same 

activities were performed and the same output artefacts were generated in both case studies. 

The approach’s feasibility and traceability have been shown through the seamless integration 

between variant management, compositional safety analysis and model-based development 

tools.  

9.1.2 Product Line Safety Variability Management 

The research contributions in this area are: a systematic approach to support the 

management of the impact of context and design variation in architecture and safety analysis 
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models, and resolution of variability on these models; the provision of guidance to integrate 

variant management into compositional safety analysis to support variability management in 

safety models developed in the targeted compositional safety analysis tool; and the 

development of tooling support. This thesis has shown that the proposed variability 

management approach supports the automated traceability of product line variation 

throughout product line assets, and systematic reuse of product line architecture and safety 

models when variability is resolved for a particular product variant. Thus, changes in a given 

product variant are automatically propagated throughout variant-specific architecture and 

safety assets. This is achieved by the provision of seamless integration between variant 

management, compositional safety analysis, and model-based development tools. Such 

integration is provided by adapters for variant management tools developed in this thesis to 

support variability management in MATLAB/HiP-HOPS and OSATE AADL & Error Annex 

models, which are mature compositional safety analysis tools. The guidance presented in this 

thesis to adapt variant management tools to support safety models was applied to develop 

adapters for Hephaestus/Simulink and BVR variant management tools. Specifically, the BVR 

adapter for OSATE AADL & Error Annex provides seamless integration between OSATE 

AADL modeling environment and BVR toolset, allowing engineers performing system 

modeling, failure modeling, and variability modeling in a single platform. It contributes to 

reduce the effort and learning curve to apply the approach whereas separated training and 

dedicated support to handle different tools is not required. Finally, the complexity of adapting 

a particular variant management tool using the guidance proposed in this thesis is dependent 

upon the characteristics of the tool and its available documentation.  

9.1.3 Product Line Compositional Safety Analysis 

The research contribution in this area was the provision of a systematic approach to 

perform, with the support of compositional techniques, safety analysis that recognizes the 

impact of context and design variation in domain engineering. The approach supports the 

systematic reuse of architecture and safety models, and automatic generation of safety 

assessment assets from the reused safety model in the application engineering. This approach 

automates traceability links between product line variation and safety assessment artefacts 

defined in the “Product Line Safety Metamodel” (HABLI, 2009) with the support of 

compositional safety analysis and variant management tools. At functional level, context and 

design variation is linked to hazards and their causes, risk assessment, allocated safety 
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requirements, and component failure logic as defined in a Functional Failure Model. At 

architectural and component levels, traceability links between product line variation and 

safety analysis information are automatically propagated throughout variant-specific fault 

trees and FMEA results, generated from the reused safety model as defined in Architecture 

and Component Failure Models.  

In this thesis we have extended compositional safety analysis by considering the 

impact of context and design variation in the definition of safety properties as defined in 

previous research (HABLI, 2009; HABLI et al., 2009). This is important to support the 

systematic reuse of product line components in different scenarios. The proposed approach 

has shown that performing safety analysis aware of variation in design and context allows 

safety analysts to identify how different product variants, usage context, product line 

evolution and reuse scenarios impact in the definition of system hazards, their causes and 

associated risks, allocated safety requirements, and component failure logic (BAUMGART et 

al. 2014). Different product variants might have different architectures and components 

changing safety properties, e.g., redundant and non-redundant architectures might have 

different hazards, with different causes, allocated functional and integrity safety requirements. 

Variation in the usage scenarios within which product variants operate may also lead to 

different safety properties. Therefore, different contexts assumed for a given variant can result 

in different hazards and causes, allocated safety integrity requirements, and component failure 

logic. Considering context and design variation in safety analysis also makes it possible to 

identify the impact of the evolution of the product line architecture on the safety properties. 

For example, the addition, modification, or removal of a component might change hazards, 

safety requirements, and component failure logic. It also allows safety analysts to identify the 

impact of different reuse scenarios for product line features on their safety properties, 

supporting the reuse of these features across product lines. For example, different hazards and 

safety goals may arise when a given feature from an aircraft flight control product line is 

assumed to be reused in another product line. 

The adoption of compositional safety analysis techniques to support the product line 

safety processes allows safety analysis to be performed integrated with the architectural 

design in a modular fashion. It allows the safety analysis to be performed in a manner that is 

aware of product line variation, and modular reuse of both components and their safety 

analysis information is achieved when variability is resolved with support of variant 

management tools. The resultant product line architecture and failure models are integrated in 
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a single model. Compositional safety analysis techniques use fault modeling languages to 

integrate failure analysis with architecture modeling, e.g., HiP-HOPS failure modeling can be 

integrated with MATLAB/Simulink and SimulationX, and the AADL Error Annex can be 

integrated with AADL. This approach supports the traceability between architectural 

components and their failure data, allowing the systematic reuse of architectural components 

and their failure data. Therefore, variant management tools are further used to link design and 

context variation expressed in the feature model to their realization in the product line 

architecture and failure models. By performing safety analysis that is aware of context and 

design variation, it is possible to clearly identify the safety analysis information that can be 

safely reused when variability is resolved for a given functional variant and its context.  

Product line compositional safety analysis approach increases the potential for the 

reuse of safety analysis artefacts in safety-critical software product line engineering, thereby 

reducing the effort and complexity of performing safety analysis for a specific variant. 

Therefore, if no variant-specific component is added to the architecture, safety assessment 

artefacts such as fault trees and FMEA results, can be auto-generated for a given variant from 

the reused architecture and failure models. On the other hand, if a new component is added to 

the variant architecture, variant-specific safety analysis should be performed by considering 

the impact of the new component on the safety of a given variant, and later, variant-specific 

fault trees and FMEA can be generated. The proposed approach to support compositional 

safety analysis in product line processes complies with normative requirements defined in 

traditional safety standards such as ISO 26262 and SAE ARP 4754A. For example, 

compositional safety analysis, fault tree analysis, and FMEA activities defined in the 

proposed approach address the Functional Hazard Assessment (FHA), Preliminary System 

Safety Assessment (PSSA), and System Safety Assessment (SSA) phases defined in SAE ARP 

4754A safety assessment process (EUROCAE, 2010). Considering ISO 26262 (ISO, 2011), 

Hazard and Risk Analysis, Derivation of Safety Goals from Hazard Analysis, System Safety 

Analysis (FTA and FMEA), Safety Assessment, and Assurance Case construction activities 

defined in its safety lifecycle are addressed by the model-based approach proposed in this 

thesis.  

9.1.4 Product Line Design Optimization and Safety Certification 

A method and tool built upon the HiP-HOPS optimization algorithms for 

decomposition of ASILs and DALs was developed to support the automatic allocation of 
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safety integrity requirements to product line components from the analysis of allocation 

results for multiple product line instances. Given that allocating stringent safety integrity 

requirements to all product line components would increase the development effort and costs 

in terms of verification, validation, and testing, the proposed method supports near-optimal 

allocation of safety integrity requirements to product line components. Therefore, cost-

effective product line process-based certification is achieved by allocating stringent integrity 

requirements only to highly critical components of the product line architecture and less 

stringent integrity requirements to less critical components. Although existing design 

optimization techniques and tools for automatic decomposition of safety integrity 

requirements were not originally designed to address product lines, this thesis has shown how 

these techniques can be adapted to the product line design optimization approach defined in 

the proposed method (Chapter 5).   

9.1.5 Product Line Model-Based Assurance Cases 

A novel and systematic approach to integrate model-based assurance cases techniques, 

built upon the model-weaving concept, into product line processes is the main contribution in 

this area. This approach was instantiated with the support of MBAC tooling to support the 

automatic generation of variant-specific assurance case from a diverse set of system models 

(HAWKINS et al. 2015). Traceability links between safety assessment models and the 

assurance case defined in the “Product Line Safety Metamodel” are used. Thus, changes in a 

given product variant and its system models are automatically propagated throughout the 

assurance case. The contribution in this area also comprises the extension of MBAC to enable 

the specification of instantiation constraints in assurance case patterns, artefact patterns and 

their integration with assurance case patterns. Pattern instantiation constraints make it 

possible to define dependence relationships between assurance case pattern elements. An 

artefact pattern defines the relationship between the provenance information associated with 

an evidence item (a development artefact) referenced in the assurance case. Artefact pattern 

instances integrated with the assurance case contributes to increase the confidence on the 

evidence items referenced in the assurance case. 
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9.2 Limitations 

This section highlights the limitations of the thesis contributions. Notice that specific 

limitations have already been discussed in the previous chapters. Here, we present the overall 

limitations of the thesis contributions. It is worth to highlight that we intend to deal with some 

of these issues in future work. 

Evaluation of the integration of variant management into compositional safety 

analysis: the integration of variant management into compositional safety analysis presented 

in Chapter 4 is limited to medium sized case studies and HiP-HOPS (PAPADOPOULOS et 

al. 2011) compositional safety analysis tool. Case studies with different and more complex 

safety-critical product lines should be conducted to obtain more evidence regarding the 

scalability of the proposed solution for integrating variant management into compositional 

safety analysis. In addition, other case studies should be conducted to further evaluate the 

integration of variant management into OSATE AADL Error Annex compositional safety 

analysis tool (DELANGE and FEILER, 2014).   

Limitations of variant management and product line compositional safety 

analysis: case studies presented throughout this thesis (Chapters 4, 5, and 8) are limited to 

managing variability in hazards, safety integrity requirements, and component failure 

analysis. Probabilistic properties of components and functional safety requirements may 

change from a product variant to another. Therefore, further work aims to investigate the use 

of the proposed integration between variant management and compositional safety analysis 

techniques to manage variability in probabilistic safety assessment and functional safety 

requirements. 

The evaluation of the product line compositional safety analysis approach: 

presented in Chapters 5 and 8 is limited to case studies in automotive and aerospace domains, 

and HiP-HOPS compositional safety analysis technique. Further evaluation of the product line 

compositional safety analysis approach should be done to address product lines from different 

domains, e.g., medical and nuclear power plant systems, and other compositional safety 

analysis techniques such as OSATE AADL/Error Annex. 

Limitations of product line design optimization approach: the proposed method 

and tool to support design optimization into product line engineering presented in Chapter 5 is 

limited to support the allocation and decomposition of safety integrity requirements to product 
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line components. Further research in this area aims to investigate the potential of using design 

optimization techniques to support architectural decisions in product line development 

process. 

Limitations of the product line MBAC approach: the current product line MBAC 

approach presented in Chapter 6 is limited to support the generation of product-based 

arguments, not covering process-based arguments (HABLI and KELLY, 2006). Process-

based arguments provide backing support for the justification of the process in which safety 

evidence referenced in the assurance case have been developed. Therefore, further work aims 

to adapt the current MBAC approach to support the generation of process-based arguments 

from the information provided by design optimization (safety integrity requirements) and 

safety standards. 

Limitations in the experimental study: the experiment conducted to evaluate the 

product line MBAC approach in generating assurance cases for product variants involved 24 

participants (see Chapter 6). The obtained results provide evidence of the effectiveness and 

efficiency of the product line MBAC approach, but the scope is limited to post-graduate 

students in computer science. Further replications of this experiment involving professionals 

from the industry could be performed to obtain stronger evidence to generalize the results.   

Limitations of the SACM-MBAC approach: the current support for the SACM-

MBAC approach presented in Chapter 7 is limited to a prototype tool. Additional effort is 

required to evolve it towards a more stable version. With regard to evaluation, other case 

studies using different assurance case and artefact patterns, and safety-critical systems should 

be performed to obtain more evidence regarding the benefits provided by the SACM-MBAC 

approach. 

The following section details the future research. 

9.3 Future Research 

The following areas have been identified as subject of future research: 

 Probabilistic Safety Assessment and Management of Functional Safety Requirements; 

 Product Line Design Optimization; 
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 Model-Based Assurance Cases and Process-Based Arguments; 

 Assurance Case Pattern-Based Approach and Model-Driven Development; 

 Variability Management and Compositional Safety Analysis in System of Systems 

Architectures;  

Further research in each one of these areas is detailed in the following sections. 

9.3.1 Probabilistic Safety Assessment and Management of Functional Safety 

Requirements  

In this thesis, we have focused on using compositional safety analysis and variant 

management techniques to manage the impact of design and context variation on qualitative 

safety properties such as hazards, their causes, allocated safety integrity requirements, and 

component failure logic. However, product line variation also impacts in the probability of a 

failure in an architectural component. Therefore, a component failure condition might have 

the same causes in different variants and contexts, but the failure rate associated with that 

condition might vary from one variant/context to another. Since failure rates are dynamically 

calculated based on the instantiation of variation points in the product line architecture and 

failure model, context and design variation may lead to different failure rates for the same 

failure mode of a component. Further research in this area is intended to manage the impact of 

variation in design and context on the probabilistic attributes of components.  

Functional safety requirements represent architectural decisions intended to mitigate 

the effects of failures in the overall safety of the system. Functional safety requirements are 

strongly connected to safety properties such as hazards and component failure modes. 

Variation in safety properties may require the allocation of different functional safety 

requirements. In a safety-critical product line, the addition of newer system functions and 

their associated failure behavior lead to new functional safety requirements. In addition, a 

functional safety requirement may be associated with one or more safety conditions, and the 

mitigation of a given safety condition might be associated with multiple functional safety 

requirements. Thus, the management of the impact of variation in design and context on the 

relationships between functional safety requirements and safety conditions provide supports 

for the systematic reuse of functional safety requirements and it ensures the safety of product 

variants. Further research in this area intends to explore the potential use of the integration 
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between variant management, compositional safety analysis, and model-based development 

tools to support the management and systematic reuse of functional safety requirements in 

product line safety processes. 

9.3.2 Product Line Design Optimization 

This thesis has shown the benefits in extending design optimization techniques to 

support the identification of near-optimal solutions for allocation of safety integrity 

requirements to product line components to achieve cost-effective process-based certification. 

Further research in this area should investigate the potential of design optimization techniques 

to support engineers in taking decisions based on optimization objectives such as reliability, 

safety, and cost, in developing the product line architecture.  

9.3.3 Model-Based Assurance Cases and Process-Based Arguments 

In this thesis we have focused in supporting the automatic generation of product-based 

arguments to product line instances. Whereas process-based arguments provide backing 

support for justifying the confidence on the process under which the evidence referenced in 

the assurance case have been developed, it would also be useful to consider process-based 

arguments using an MBAC approach. Process-based arguments can be generated from the 

information provided by product line design optimization and prescriptive safety standards. 

Design optimization provides the safety integrity requirements associated with components 

and safety standards provide the normative requirements to be addressed according to the 

given integrity level. Further research in this area could be focused on integrating process-

based arguments within the product line MBAC approach to support the automated generation 

of process-based arguments integrated with product-based arguments.    

9.3.4 Assurance Case Pattern-Based Approach and Model-Driven Development 

Identifying how different assurance case patterns can be generated from a diverse set 

of design, assessment, and processes models contributes to improve the understanding about 

assurance case patterns and their instantiation. In addition, reusing relationships between 

assurance case patterns and system models, usually stored into the weaving model in the 

MBAC approach, has the potential to reduce the complexity of the assurance case generation 
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process. The definition of patterns that describe how assurance case patterns can be generated 

from system models in a model weaving operation, as established in the Structured Patterns 

Metamodel Standard (SPMS) (OMG, 2015b), has the potential to fully automate the 

specification of the weaving between assurance case pattern and system model elements. 

SPMS is a standard for the definition and description of patterns used in architecture, design, 

and implementation of software systems. SPMS provides metamodels to store pattern 

specifications, pattern instances and their relationships, suitable for use in tooling and pattern 

repositories (OMG, 2015b). On the other hand, the OMG SACM 2.0 metamodel (OMG, 

2015a) defines abstractions that improve the representation of assurance cases patterns and 

their relationships with development artefacts (evidence items).      

Further research in this area aims to extend the traditional assurance case pattern-based 

approach with the definition of weaving patterns that describe how existing assurance case 

patterns are instantiated from the information provided by a diverse set of system models. 

Weaving patterns to establish how assurance case patterns for COTS (YE, 2005), software 

systems (WEAVER, 2003), and process-based arguments (HABLI and KELLY, 2006) are 

linked to system models should be created. Further work in this area is focused on 

investigating how OMG SACM 2.0 (OMG, 2015a) and SPMS (OMG, 2015b) metamodels 

can be used to integrate weaving patterns and assurance case patterns to evolve the MBAC 

(HAWKINS et al. 2015) approach to support the weaving of assurance cases patterns from a 

weaving pattern catalogue. 

9.3.5 Variability Management and Compositional Safety Analysis in System of 

Systems 

Systems of Systems (SoS) are complex, large scale software systems which 

operationally and managerially independent systems cooperate to provide new, unique 

functionalities that cannot be provided by any constituent system separately (DAGLI and 

KILICAY-ERGIN, 2008). SoS architectures are highly configurable large scale and complex 

systems that emerge different behaviors in interacting with multiple and different contexts 

(CAMPBELL et al. 2005). In the same way as large-scale safety-critical product lines, 

Systems of Systems Engineering has to deal with variability and evolution, and software 

product line concepts can be useful. Bosch (2002) has defined a taxonomy for product line 

approaches in which “Program of Product Lines” goes into the direction of SoS, which 
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product line engineering can be seen as a techniques to develop components in a SoS 

approach (BOTTERWECK, 2013).  

In a SoS architecture, any given constituent software system may interact with 

multiple actors (systems) in multiple contexts (MENON and KELLY, 2010). Thus, behaviors, 

which are explicitly required by one actor within the SoS may contribute to hazardous 

behavior manifested by other actor. In addition, different contexts assumed for an actor may 

emerge different behaviors that can contribute to different hazardous behaviors manifested by 

other actors. Performing safety analysis in SoS architectures is complex and challenging. 

Whereas the SoS approach has similarities with the SPLE approach with regard to variability, 

further research in this area aims to investigate the potential of the seamless integration 

between compositional safety analysis, variant management and context aware safety analysis 

in supporting safety analysis of highly configurable and complex SoS architectures.  
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Appendix A 

CAPÍTULO 11 -  HIP-HOPS BVR ADAPTER 

This document presents the source code for the BVR adapter developed for HiP-HOPS 

compositional safety analysis editor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure A.1. HiP-HOPS BVR adapter source code part 1. 

 

01 package org.icmc.usp.br.labes.bvr.hiphopsdiagram.adapter2.editors; 
02 
03 import java.util.HashMap; 
04 import java.util.Iterator; 
05 import java.util.List; 
06 import java.util.Map; 
07 import org.eclipse.draw2d.ColorConstants; 
08 import org.eclipse.draw2d.IFigure; 
09 import org.eclipse.emf.ecore.EObject; 
10 import org.eclipse.gef.EditPart; 
11 import org.eclipse.gmf.runtime.diagram.ui.parts.IDiagramGraphicalViewer; 
12 import org.eclipse.gmf.runtime.diagram.ui.parts.IDiagramWorkbenchPart; 
13 import org.eclipse.jface.viewers.ISelection; 
14 import org.eclipse.jface.viewers.StructuredSelection; 
15 import org.eclipse.swt.graphics.Color; 
16 import org.eclipse.ui.IEditorPart; 
17 import hiphops.presentation.HiphopsEditor; 
18 import no.sintef.bvr.thirdparty.interfaces.editor.IBVREnabledEditor; 
19 
20 public class HipHopsBVREditor extends HiphopsEditor implements IBVREnabledEditor{ 
21    /** The foreground color. */ 
22 private Map<IFigure,Color> foregroundColor = new HashMap<IFigure,Color>(); 
23 
24 /** The background color. */ 
25 private Map<IFigure,Color> backgroundColor = new HashMap<IFigure,Color>(); 
26  
27 @Override 
28 public void clearHighlighting() { 
29        for (Iterator<IFigure> it = foregroundColor.keySet().iterator(); 
30         IFigure figure = (IFigure) it.next(); 
31            figure.setForegroundColor((Color)foregroundColor.get(figure)); 
32        figure.repaint(); 
33     } 
34        for (Iterator<IFigure> it = backgroundColor.keySet().iterator();     
35             it.hasNext();) { 
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Figure A.2. HiP-HOPS BVR adapter part 2. 

36         IFigure figure = (IFigure) it.next(); 
37      figure.setBackgroundColor((Color)backgroundColor.get(figure)); 
38          figure.repaint(); 
39    
40    } 
41       foregroundColor.clear(); 
42   backgroundColor.clear(); 
43 } 
44 
45 @Override 
46 public List<Object> getSelectedObjects() { 
47  ISelection selection =      
48           getSite().getSelectionProvider().getSelection(); 
49  StructuredSelection structuredSelection = (StructuredSelection)  
50           selection; 
51  return structuredSelection.toList(); 
52 } 
53 @Override 
54 public void highlightObject(Object object, int type) { 
55  if(!(object instanceof EObject)) 
56   return; 
57   
58  EObject eObject = (EObject) object; 
59  Color c = ColorConstants.black; 
60  switch (type) { 
61   case IBVREnabledEditor.HL_PLACEMENT :  
62    c = IBVREnabledEditor.PLACEMENT; break; 
63   case IBVREnabledEditor.HL_PLACEMENT_OUT :  
64    c = IBVREnabledEditor.PLACEMENT_OUT; break; 
65   case IBVREnabledEditor.HL_PLACEMENT_IN :  
66    c = IBVREnabledEditor.PLACEMENT_IN; break; 
67   case IBVREnabledEditor.HL_PLACEMENT_IN_OUT :  
68    c = IBVREnabledEditor.PLACEMENT_IN_OUT; break; 
69   case IBVREnabledEditor.HL_REPLACEMENT :  
70    c = IBVREnabledEditor.REPLACEMENT; break; 
71   case IBVREnabledEditor.HL_REPLACEMENT_OUT :  
72    c = IBVREnabledEditor.REPLACEMENT_OUT; break; 
73   case IBVREnabledEditor.HL_REPLACEMENT_IN :  
74    c = IBVREnabledEditor.REPLACEMENT_IN; break; 
75   case IBVREnabledEditor.HL_REPLACEMENT_IN_OUT :  
76    c = IBVREnabledEditor.REPLACEMENT_IN_OUT; break; 
77   default :  
78    throw new UnsupportedOperationException("coloring of  
79                       this type is not supported " + type); 
80  } 
81  setColor(eObject, c, getActiveEditor()); 
82 } 
83 @Override 
84 public void selectObjects(List<Object> objects) { 
85  throw new UnsupportedOperationException("not implemented"); 
86 } 
87     public void setColor(EObject obj, Color fg, IEditorPart editor) { 
88      IDiagramGraphicalViewer gv =    
89          ((IDiagramWorkbenchPart)editor).getDiagramGraphicalViewer(); 
90          List<?> editParts =      
91          gv.findEditPartsForElement(IDProvider.getXMIId(obj), EditPart.class); 
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Figure A.3. HiP-HOPS BVR adapter part 3. 

 

92       for (Object object : editParts) { 
93  if(object instanceof IFigure){ 
94     IFigure ep = (IFigure) object; 
95            if (!foregroundColor.containsKey(ep)){ 
96     foregroundColor.put(ep, ep.getForegroundColor()); 
97       } 
98       ep.setForegroundColor(fg); 
99       ep.repaint(); 
100          } 
101   } 
102   } 
103 
104 @Override 
105 public List<EObject> getModelObjects(List<Object> objects) { 
106  return null; 
107 } 
108 
109 @Override 
110 public List<Object> getGraphicalObjects(List<EObject> objects) { 
111  return null; 
112 } 
113 } 



 



 

Appendix B 

CAPÍTULO 12 -  HBS-SPL CASE STUDY OUTCOMES 

This document presents the fault trees and FMEA results generated for the four wheel 

braking system variant with the support of HiP-HOPS compositional safety analysis tool. 

Figures B.1 and B.2 shows excerpts of the six fault trees generated for the four wheel braking 

(4WB) variant. Figures B.3, B.4, and B.5 shows the FMEA results for the 4WB system 

variant. 

 

Figure B.1. 4WB fault trees part 1. 
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Figure B.2. 4WB fault trees part 2. 
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Figure B.3. 4WB failure modes and effects analysis results part 1. 
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Figure B.4. 4WB failure modes and effects analysis results part 2. 
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Figure B.5. 4WB failure modes and effects analysis results part 3. 

 

 

 



 



 

Appendix C 

CAPÍTULO 13 -  EXPERIMENTAL STUDY DOCUMENTS 

The documents used throughout the preparation and operation of the experimental 

study presented in Chapter 6 are detailed in this appendix. 

C.1 Preparation 

Figure C.1 shows the profile characterization, and Figure C.2 shows the consent form 

provided to the participants during the preparation of the experimental study. 
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Figure C.1 Profile characterization form. 

 

 

 

PROFILE CHARACTERIZATION FORM 

Personal Information 

Name: _________________________________________________________ Age: ___ 

Position: 

(  ) MS student 

(  ) Ph.D. student 

(  ) Research staff 

(  ) Lecturer/Professor 

(  ) Professional 

(  ) Other: ________________________________________________________ 

Institution/Company: _____________________________________________________ 

Date: _ _ / _ _ / _ _ _ _ 

Questionnaire: 

Scale: 

Very low:  you haven’t heard about it before. 

Low: you have heard about it before. 

Regular: you know the basic concepts. 

High: you know and have applied these concepts sometimes in academia, industry, or both. 

Very high: you know and have applied these concepts very often in academia, industry or both. 

 

1) What is your knowledge on Software Product Line Engineering concepts (e.g., variability, feature 

modeling)? 

(  ) Very low (  ) Low (  ) Regular   (  ) High   (  ) Very high 

 

2) What is your knowledge on Safety Case concepts and Goal Structuring Notation (GSN)? 

(  ) Very low (  ) Low (  ) Regular   (  ) High   (  ) Very high 

 

3) What is your level of experience with Eclipse-based diagram editors (e.g, Papyrus UML, SysML)? 

(  ) Very low (  ) Low (  ) Regular   (  ) High   (  ) Very high 

 

4) What is your level of experience with Model-Based Development techniques and tools (e.g., Eclipse 

Model Framework)? 

(  ) Very low (  ) Low (  ) Regular   (  ) High   (  ) Very high 
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Figure C.2. Consent form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.2. Consent form. 

 

Consent Form 

Research Title: Quantitative Assessment of Effectiveness and Efficiency of Conventional and Model-Based 

assurance cases construction approaches in the context of Safety-Critical Software Product Line Engineering.  

Purpose:  

The primary objective of this study is to compare the effort in designing assurance case models for a safety-

critical product line instance using conventional and model-based approaches. The secondary objective of this study 

is to compare the quality, in terms of errors; of the generated assurance case models designed using both approaches. 

Age Statement 

I______________________________________ states that I’m over 18 years old and I want to participate 

of the experimental study to be conducted by André Luiz de Oliveira Ph.D. student in Computer Science from the 

Institute of Mathematics and Computer Science – University of São Paulo, São Carlos, Brazil. 

Procedures  

The experimental study involves two phases. At the first phase, a training covering the concepts of software 

product lines, model-driven development, and assurance cases, and instructions to use the Eclipse-based GSN Editor 

to design an assurance case model will be provided to the participants. After the 1st training section, half of the 

participants will design an assurance case model for the “4WB” product line instance using the Eclipse-based GSN 

Editor, while the other half will design an assurance case for the Tiriba All Pilot Modes product line instance using 

the same tool. At the second phase, a training covering the instructions to use the Model-Based Assurance Cases 

(MBAC) tool will be provided to the participants. After the 2nd training section, half of the participants will design an 

assurance case for the Tiriba All Pilot Modes product line instance using the MBAC tool, while the other half will 

design an assurance case for the “4WB” using the same tool. 

Confidence 

The information collected during the experiment is confidential and anonymous. 

Benefits and freedom to withdraw anytime 

I’m aware that I’ll not receive any payment to participate of this experiment. I understand that I have 

freedom to withdraw the experiment anytime without punishment and that I’ll have access to the experiment results.  

Responsible 

André L. de Oliveira 

University of São Paulo 

São Carlos, São Paulo, Brazil 

   Profa. Dra. Rosana T. V. Braga 

   University of São Paulo 

   São Carlos, São Paulo, Brazil 

       Prof. Dr. Paulo Cesar Masiero  

       University of São Paulo 

       São Carlos, São Paulo, Brazil 

 

Participant name and signature 
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C.2 Operation 

The instructions to perform the assurance case construction tasks (Figures C.3, C.4 

and C.6), the data collection forms (Figures C.5 and C.7), the supporting manuals for the 

Eclipse-based GSN editor (Figures C.8 and C.9) and MBAC tool (Figures C.10, C.11 and 

C.12), and the post-experiment questionnaire (Figures C.13 and C.14) used by the participants 

during the execution of the experiment, are presented in the following. 

 

“All 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.3. Instructions to perform the assurance case construction task using the conventional approach Part 1. 

 

CONVENTIONAL APPROACH: ASSURANCE CASE CONSTRUCTION TASK 

 

Group: ___ 

Phase: ___ 

Participant ID: ____   

 

Task: Based on the design and safety assessment models from the targeted product variant, (  ) “All Pilot Modes” Tiriba 

flight control variant or (  ) “Four Wheel Braking” hybrid braking system variant, and a fragment of “Hazard Avoidance” 

assurance case pattern (KELLY and McDERMID, 1997), create an assurance case that argues the safety of the targeted 

product variant using the Conventional Approach with the support of the Eclipse-based GSN Editor.  

Instructions to perform the assurance case construction task described above: 

The fragment of “Hazard Avoidance” pattern shown in Figure 1 provides the template structure to design an 

assurance case model for the “All Pilot Modes” variant. 

 

Figure 1. Hazard avoidance pattern in GSN. 
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Figure C.4. Instructions to perform the assurance case construction task using the conventional approach Part 2. 

 

 

 

 

 

 

Figure C.5. Data collection form for the conventional approach. 

 

 

 

 

 

 

 

 

The elements between “{}” represent for the data required from the system models to instantiate the 

placeholders/abstract terms from the pattern. This data can be found in feature (.featureModel file extension), context 

(.context file extension), architecture (i.e., .core file extension), and failure (.hiphops file extension) models associated to 

the targeted product line instance. These models are located on the targeted project, e.g., 

“GSNEditor_TiribaAllPilotModes” project or “GSN_EditorHBS4WB” project, in the experiment workspace. 

Table B.1 shows the mapping links between assurance case pattern abstract terms, the data required for their 

instantiation, and the system model name where the data can be found. This information should be considered for the 

assurance case construction task using the Eclipse-based GSN editor tooling support. 

Table B.1 – Mapping links between abstract terms and system models. 

Pattern Role Data Model 

system AadlSpec.name aadlModel (.core) 

safetyStandard Model.description errorModel (.hiphops) 

systemDefinition A set of Feature.name featureModel (.featureModel) 

operationalEnvironment A set of ContextFeature.name contextModel (.context) 

systemHazards A set of Hazard.Name errorModel (.hiphops) 

 

 

CONVENTIONAL APPROACH: DATA COLLECTION FORM 

 

Pattern Element Start Time (min:sec) End Time (min:sec) Total Time (min:sec) 

system    

safetyStandard    

systemDefinition    

operationalEnvironment    

systemHazards    

Total Time:  
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Figure C6. Instructions to perform the assurance case construction task using the MBAC approach. 

 

 

 

 

 

 

Figure C.7. Data collection form for the MBAC. 

 

 

MBAC APPROACH: ASSURANCE CASE CONSTRUCTION TASK 

 

Group: ___ 

Phase: ___ 

Participant ID: ____   

 

Task: Based on the design and safety assessment models from the “Four Wheel Braking” hybrid braking system 

variant, a fragment of the “Hazard Avoidance” assurance case pattern (KELLY and McDERMID, 1997), and the 

weaving model; configure the MBAC Eclipse-based tool to generate an assurance case that argues the safety of the 

“Four Wheel Braking” product variant.  

 

Instructions to configure the MBAC instantiation program to perform the task described above: 

 

Table 1 shows the variables with their respective values that should be created to configure the MBAC 

instantiation program to generate an assurance case arguing the safety of the “Four Wheels Braking” variant. 

Table 1 – Configuration settings for the instantiation program. 

Type of 

Model 

Variable Name Aliases Model File Path Metamodel 

GraphML 

Muddle 

Weaving - /SPL/weaving_hbs.graphml - 

EMF 

Model 

errorModel design /SPL/models/HBS_4WB.hiphops http://hiphops 

EMF 

Model 

contextModel design /SPL/models/HBS_4WB.context http://context 

EMF 

Model 

featureModel design /SPL/models/HBS_4WB.featuremodel http://featuremodel 

EMF 

Model 

aadlModel design /SPL/models/HBS_4WB.core http://core 

Plaim XML patternInstantiation pattern /SPL/patterns/Sys_Safe.gsnml - 

 

 

 

MBAC APPROACH: DATA COLLECTION FORM 

 

Variable Name Start Time (min:sec) End Time (min:sec) Total Time (min:sec) 

weaving    

errorModel    

contextModel    

featureModel    

aadlModel    

patternInstantiation    

Total Time:  
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Figure C.8. Eclipse-based GSN editor manual part 1. 

 

 

 

ECLIPSE-BASED GSN EDITOR USER MANUAL 

 

 

Figure 1. GSN editor main window, objects, and connections. 

 

 

 

Figure 2. Assurance case pattern in the GSN editor. 
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Figure C.9. Eclipse-based GSN editor manual part 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.10. MBAC tool manual part 1. 

 

Figure 3. Mapping table and search in the system model. 

 

MBAC TOOL USER MANUAL 

Design and safety assessment models and their respective metamodels, the “Hazard Avoidance” assurance 

case pattern model specified in the GSN editor, and the weaving model are the inputs to configure the MBAC 

(HAWKINS et al. 2015) instantiation program. The “argument.xml” and “table.xml” are empty files used by the 

instantiation program output the results. Since the instantiation program uses variables to manipulate the input models to 

output the assurance case, its configuration requires performing the following steps:  

1) Create a variable for referencing the weaving model: the variable should be named “weaving” and it refers to the 

weaving model file, i.e., a “.graphml” extension file, as illustrated in Figure 1. 

 
Figure 1. Referencing the weaving model in the instantiation program. 
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Figure C.11. MBAC tool manual part 2. 

2) For each system model, create a variable linking the model and its respective metamodel. Figure 2 shows the variable 

“errorModel” referencing the “AircraftBraking.hiphops” EMF file, which conforms to the error metamodel. It is 

important to note that the alias “design” should be assigned to each one of these variables to allow the MBAC 

instantiation program manipulating the systems models to generate the assurance case; and 

 

Figure 2. Referencing an artefact model in the instantiation program. 

3) Create a variable to refer the assurance case pattern specified in the “.gsnml” file. Figure 3 shows the variable 

“patternInstantiation” with the alias “pattern” referencing “Sys_Safe.gsnml” file. 

 

Figure 3.   Referencing an assurance case pattern specification in the instantiation program. 
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Figure C.12. MBAC tool manual part 3. 

 

 

 

 

 

 

 

 

 

 

 

 

4) After configuring the MBAC instantiation program with the input models for a given product line instance, the 

program is executed, as illustrated in Figure 4. 

 

Figure 4. Executing the instantiation program. 
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Figure C.13. Post-experiment questionnaire part I. 

 

 

 

 

Post-Experiment Questionnaire – Part I 

Participant ID: ___ 

Technique/Tool: GSN Editor 

 

1) How easy was to use the GSN editor to instantiate assurance case patterns? 

( ) Very easy 

( ) Easy 

( ) Average 

( ) Not easy 

( ) Very difficult 

 

2) How easy was to search the required information to instantiate the assurance case pattern in different 

source models? 

( ) Very easy 

( ) Easy 

( ) Average 

( ) Not easy 

( ) Very difficult 

 

3) With regard to the usability attribute, how do you classify the user interface provided by GSN editor 

tool? 

( ) Highly usable 

( ) Usable 

( ) Average 

( ) Low usable 

( ) Not usable 

 

4) With regard to the usability attribute, how do you classify the user interface provided by Eclipse-based 

model editors (feature, context, error, architecture models)? 

( ) Highly usable 

( ) Usable 

( ) Average 

( ) Low usable 

( ) Not usable 
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Figure C.14. Post-experiment questionnaire part II. 

 

 

Post-Experiment Questionnaire – Part II 

Technique/Tool: Model-Based Assurance Cases (MBAC) 

 

1) How easy was to understand how MBAC tool works and to use it to instantiate assurance case patterns? 

( ) Very easy 

( ) Easy 

( ) Average 

( ) Not easy 

( ) Very difficult 

 

2) How easy was to configure MBAC tool with the input models and execute it to generate an assurance case 

for a given product line instance? 

( ) Very easy 

( ) Easy 

( ) Average 

( ) Not easy 

( ) Very difficult 

 

3) With regard to the usability attribute, how do you classify the user interface provided by MBAC tool? 

( ) Highly usable 

( ) Usable 

( ) Average 

( ) Low usable 

( ) Not usable 

 



 

 

Appendix D 

CAPÍTULO 14 -  TIRIBA FLIGHT CONTROL CASE STUDY 

OUTCOMES 

This document details the management, development, safety assessment, and 

assurance case deliverables produced during the Tiriba Flight Control Product Line 

(TiribaFC-SPL) case study. Section D.1 presents the TiribaFC-SPL feature and context 

models. Section D.2 shows the TiribaFC-SPL architecture model. Section D.3 presents the 

functional hazard assessment and component failure analysis using HiP-HOPS compositional 

safety analysis technique and tool. Section D.4 presents the mapping links between functional 

and context features and their realization in architecture and safety analysis models in the 

variability realization model created with the support of BVR toolset and its adapters 

developed in this thesis. Section D.5 shows the variability resolution and product derivation 

processes in TiribaFC-SPL. Section D.6 illustrates the fault trees and FMEA results generated 

for four Tiriba flight control system variants with the support of HiP-HOPS compositional 

safety analysis tool. Section D.8 shows the results of applying HiP-HOPS Tabu Search design 

optimization technique to support the automatic decomposition of safety integrity 

requirements in each TiribaFC-SPL system variant. Section D.9 presents the results applying 

the Product Line component SIL Decomposition (PL-SILDec) method and tool (OLIVEIRA 

et al. 2015) proposed in this thesis to support the automatic analysis and decomposition of 

safety integrity requirements to TiribaFC-SPL components. Finally, Section D.10 shows the 

generated variant-specific assurance cases with the support of Model-Based Assurance Cases 

tool.      
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D.1 SC-PLE Phase 1: TiribaFC-SPL Requirements Elicitation 

The Tiriba Flight Control System (TiribaFC) is part of Tiriba UAV system, which 

comprises four subsystems: Navigation, Control, Inertial, and Barometric Units, where each 

unit is assigned to a dedicated microprocessor (microcontrollers PIC32 80 MHz). The 

“Navigation” unit subsystem guides the aircraft along a route, according to the rules defined 

by the mission planner, e.g., the accomplishment of tasks associated with each waypoint such 

as taking pictures from a specific GPS location. The “Control” unit subsystem, i.e., the flight 

control system, is intended to start the flight mode (direct, stabilized, and autonomous), 

processing and setup flight commands, keeping the flight conditions and executing commands 

sent by the “Navigation” subsystem. The “Inertial” unit subsystem estimates the real-time 

aircraft position based on the information received from inertial sensors and Global 

Navigation Satellite System. Finally, the “Pressure” unit subsystem provides altitude, vertical 

speed, and aero-dynamical speed based on air pressure (BRANCO et al. 2011). The TiribaFC 

system was developed in compliance with ARP 4754A (EUROCAE, 2010) and DO-178C 

(RTCA, 2012) aerospace standards.  

From the analysis of TiribaFC system MATLAB/Simulink model, common and 

variable flight control system functions were identified by adopting an extractive product line 

development strategy. Figure D.1 shows the TiribaFC feature model that comprises the 

“Manual Pilot” mandatory feature, and three optional pilot mode features. The “Manual 

Pilot” core feature consists in a human operator sending commands to the unmanned aircraft 

from a ground control station. The “Autopilot” feature executes a pre-defined route. The 

“Assisted Mode” feature allows the operator sending commands to the UAV configured with 

“Autopilot” feature. The “Autonomous Pilot” mode feature allows the UAV to perform 

actions according to its current environmental conditions captured by pressure sensors. 

“Assisted Pilot”, “Autonomous Pilot”, and “Autopilot” features can be combined into several 

different ways, allowing the derivation of seven different flight control system variants. These 

variants are specified in the “Mode” feature group from the TiribaFC-SPL context model 

shown in Figure D.2. These variants differ from each other in the number of pilot modes that 

provide the flight control capability and the way as they are combined. For example, “Manual 

and Autopilot” variant differs from “Manual”, “Autopilot”, and “Autonomous” variant by the 

absence of autonomous pilot mode.  
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Figure D1. TiribaFC-SPL feature model. 

 

Figure D.2. TiribaFC-SPL context model. 

Tiriba flight control variants can operate in a range of different contexts determined by 

combinations between “Airspace”, “Application”, and “UAV Size” contextual elements. A 

Tiriba flight control product variant can operate in controlled or uncontrolled “Airspace”, it 

can be deployed into a ‘Light” or a “Small” UAV, and it can be used in “Agriculture”, 

“Environment Monitoring”, or military “Defense” applications. Therefore, the composition of 

pilot mode and other contextual variants lead to 84 Tiriba flight control product variants. Pilot 

mode variants together with “Application”, “UAV Size”, and “Airspace” contextual features 

directly impact in the definition of safety properties, changing hazards, their causes, and 

allocated safety requirements. For example, different safety requirements can be allocated to 

mitigate the effects of a given hazard associated with “Manual and Autopilot” variant 

assumed to operate in controlled or uncontrolled airspaces. Therefore, context and design 

variation is considered in performing the TiribaFC-SPL safety analysis. 

D.2 SC-PLE Phase 2: TiribaFC-SPL Architectural Design   

Figure D.3 illustrates an excerpt of the TiribaFC-SPL architecture model in a SysML 

block diagram. TiribaFC-SPL mainly comprises 4 subsystems, and 14 components. These 

subsystems and components are composed by 252 model blocks and subcomponents. The 

“Switch block” variability mechanism (BOTTERWECK et al. 2010) was used for 

implementing the pilot mode variation point in the original Tiriba flight control system model. 
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The “Mode Switch” block encapsulates the pilot mode variation point, whilst the “Command 

Switch” block encapsulates the variation point inherent to the source of the pilot commands, 

e.g., autopilot, manual pilot subsystems, sent to the Tiriba UAV. The “PWM
23

 Decoder” 

component output port connected to the “Command Switch” block is the realization of the 

“Manual Pilot” feature. The “Autopilot” subsystem, the “Flight Controls” output port from 

the “PWM Decoder” component connected to: the “Pilot Commands” input port from the 

“Flight Stabilizer” subsystem, and the “Command Switch” block, and the Flight Stabilizer 

component output port (i.e., Autopilot Settings) connected to the “Assisted Mode Switch” 

block represent the realization of the “Autopilot” feature. The “Basic Command Processor” 

subsystem output port connected to the “Assisted Mode Switch’ block represents the 

realization of the “Autonomous Pilot” feature. Finally, the “Control Mode” output port from 

the “Mode Switcher” component connected to both “Assisted Mode Switch” and “Command 

Switch” blocks represents the realization of the “Assisted Pilot” feature.  

The “Inertial Measure Unit” (IMU), “Pressure” sensors, and the “Navigation” system 

provide input data for “Basic Command Processor” and “Flight Stabilizer” sub systems. The 

“Altitude Sensor” also provides input data for the “Flight Stabilizer” subsystem. The “Pilot 

Joystick” component provides input data for the “PWM Decoder” component, which 

represents the manual pilot mode. The “Command Switch” is a decision block that receives 

flight commands from different pilot modes and it sends them to the “PWM Encoder” 

component. The “PWM Encoder” component performs the processing and outputs the flight 

commands that are further decoded and executed in flight. 
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Figure D.3 Tiriba flight control product line architecture model. 
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D.3 SC-PLE Phase 3: TiribaFC-SPL Safety Analysis 

In an ARP 4761 Functional Failure Assessment fashion, product line functional hazard 

assessment and component failure analysis were performed by considering the following four 

Tiriba flight control variants: “Manual and Autonomous Pilot” (TFC-MAT), “Manual and 

Assisted Pilot” (TFC-MAS), “Manual and Autopilot” (TFC-MAP), and “All Pilot Modes” 

(TFC-ALL). TFC-MAT and TFC-MAS variants were assumed in the following usage 

context: deployment in a “Light UAV”, to operate in an “Uncontrolled Airspace”, and to be 

used in “Environment Monitoring” applications. TFC-MAP and TFC-ALL variants were 

assumed to be deployed in a “Light UAV”, to operate in a “Controlled Airspace”, and to be 

used in military “Defense” applications. The safety analysis was constrained to these variants 

and usage context to reduce its complexity, since performing such analysis by considering all 

potential Tiriba flight control variants would be prohibitive. These variants were analyzed 

from the perspective of the SAE ARP 4754A risk assessment process. The extended HAZOP 

analysis technique supported by HiP-HOPS compositional safety analysis tool integrated to 

MATLAB/Simulink was used to support the TiribaFC-SPL safety analysis phase.  

Firstly, by considering each system variant and its associated context, functional 

hazard assessment started by identifying interactions between product line architectural 

components that may lead to hazardous events. From the analysis of these interactions, 

hazards and their potential causes have been identified for each flight control system variant. 

In the following, during risk assessment, these hazards were classified with regard to their 

severity and probability of occurrence, and safety integrity requirements, in terms of DALs, 

were allocated to mitigate the hazard effects. Table D.1 shows the identified hazards, their 

potential causes, and allocated DALs associated with each product variant. The “No pilot 

commands” and “Value pilot commands” hazards were identified from the analysis of these 

variants. It has been considered that the “No pilot commands” is being produced in a Tiriba 

flight control variant whenever both pilot modes, e.g., manual pilot and autopilot, are omitting 

their outputs. An incorrect value for the pilot commands happens when at least one of the 

pilot modes provide wrong flight commands, e.g., wrong coordinates. 
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Table D.1 – Variability in TiribaFC-SPL functional hazard assessment. 

Variant Usage Context Hazard ID Failure Conditions DAL 

 

 
TFC-

MAT 

 

 

Env. Monitoring, 

Light UAV, 

Uncontrolled 

airspace 

 

MAT_No_pilot_commands 

 

Omission of 

FailSafeController.FilteredControls 

AND PWMDecoder.FlightCommands 

outputs. 

 

A(4) 

 

MAT_Value_pilot_commands 

 

Incorrect Value of FailSafeController. 

FilteredControls AND PWMDecoder. 

FlightCommands outputs. 

 

C (2) 

 

 

 

 

TFC-

MAS 

 

 

Env. Monitoring, 

Light UAV,      

Uncontrolled 

airspace 

 

MAS_No_pilot_commands 

 

Omission of 

PWMDecoder.FlightCommands AND 

ModeSwitcher.ControlMode AND Fail 

SafeController.FilteredControls 

outputs. 

 

A(4) 

 

MAS_Value_pilot_commands 

 

Incorrect Value of PWMDecoder. 

FlightCommands AND ModeSwitcher. 

ControlMode AND FailSafeController. 

FilteredControls outputs. 

 

B (3) 

 

 

TFC-

MAP 

 

 

Defense,  

Light UAV,  

Controlled airspace  

 

MAP_No_pilot_commands 

 

Omission of 

FailSafeController.FilteredControls 

AND PWMDecoder.FlightCommands 

outputs. 

 

A (4) 

 

MAP_Value_pilot_commands 

 

Incorrect Value of FailSafeController. 

FilteredControls AND PWMDecoder. 

FlightCommands outputs. 

 

A (4) 

 

 

 

 

 

TFC-

ALL 

 

 

 

Defense,  

Light UAV,  

Controlled airspace 

 

ALL_No_pilot_commands 

 

Omission of PWMDecoder.Flight 

Commands AND 

ModeSwitcher.Control Mode AND 

FailSafeController.FilteredControls 

outputs. 

 

B(3) 

 

ALL_Value_pilot_commands 

 

Incorrect Value of 

PWMDecoder.FlightCommands AND 

ModeSwitcher.Control Mode AND 

FailSafeController.FilteredControls 

outputs. 

 

B(3) 

Hazard causes and allocated safety integrity requirements may change according to the 

TiribaFC-SPL product variant. For example, the causes for the “No pilot commands” hazard 

in TFC-ALL variant is the omission of flight command outputs provided by “PWM Decoder” 

(i.e., manual pilot), “Mode Switcher” (i.e., assisted pilot), and “Fail Safe Controller’ (i.e., 

autonomous or autopilot) components. On the other hand, omission failures in autonomous 

and manual pilot flight commands are the causes for this hazard in the TFC-MAT variant. The 

causes for “Value pilot commands” in the TFC-ALL variant are different from the causes for 

this hazard in TFC-MAT and TFC-MAP variants, as shown in Table D.1. With regard to 

variation in the allocated safety integrity requirements, DALs from different stringencies were 

assigned to the identified hazards in different flight control system variants. For example, 

DAL “A”, i.e., the most stringent, was allocated to the “No pilot commands” hazard in the 



Appendix D - Tiriba Flight Control Case Study Outcomes                                                                                356 

 

TFC-MAT, TFC-MAS, and TFC-MAP variants, and DAL “B”, less stringent, was assigned to 

this hazard in the TFC-ALL variant. A less stringent DAL “C” was assigned to the “Value 

pilot commands” in the TFC-MAT variant, whereas most stringent DALs “A”, “A”, and “B” 

were respectively assigned to mitigate this hazard in the TFC-MAS, TFC-MAP, and TFC-

ALL system variants.  

Whereas different component failures may contribute to the occurrence of system 

hazards in different TiribaFC-SPL variants, from analysis of the identified hazards in different 

variants and context, component failure analysis was carried out. From such analysis, 106 

failure logic expressions were added to 47 components and model blocks. Table D.2 

illustrates the failure logic for three components by considering the TFC-MAT, TFC-MAS, 

and TFC-ALL variants and their associated usage context. The “Usage Scenario/Current” 

column denotes the variant/usage context failure logic implementation and whether it is 

assumed as the current one for a given component. This table presents two failure logic 

expressions associated with “Basic Command Processor” component addressing TFC-MAT 

and TFC-ALL variants and their respective usage context. TFC-MAT failure logic states that 

one omission failure in the “AutopilotSettings” output port from the “Basic Command 

Processor” component caused by an internal failure or omissions in one of its input ports, 

contributes to the occurrence of hazards. On the other hand, the TFC-ALL failure logic states 

that two omission failures in “Basic Command Processor” component outputs caused by 

different failures in component inputs contribute to the occurrence of hazards. Therefore, the 

causes of an omission failure in the “AutopilotSettings” output port from the “Basic Command 

Processor” component are different in TFC-MAT and TFC-ALL variants, as shown in the 

“Failure Expression” column from Table D.2. When variability in the safety model is 

resolved for the TFC-ALL variant, the TFC-ALL failure logic is set as the current one in the 

product failure model. At the end of this phase, the TiribaFC-SPL failure model, in the form 

of HiP-HOPS failure annotations in the Tiriba Simulink model, is delivered. 

Variation in the DALs allocated to Tiriba flight control hazards is further propagated 

throughout the DALs allocated to mitigate the effects of contributing failure modes of 

components. Additionally, different component failure data lead to different fault 

propagations (fault trees), i.e., different combinations of component failures leading to the 

occurrence of hazards in different TiribaFC-SPL product variants. Therefore, variation 

identified in functional hazard assessment and component failure analysis is then, propagated 

throughout Fault Trees and FMEA results. Thus, different TiribaFC-SPL variants have fault 
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trees with different fault propagations and FMEA results. In order to support the systematic 

the reuse of TiribaFC-SPL safety analysis data specified in the failure model, the impact of 

context and design variation into safety properties is managed in the variability realization 

modeling phase.    

Table D.2 – Variability in TiribaFC-SPL component failure analysis. 

Component Impl/Current Output Deviation Failure Expression 

 

 

 

Basic               

Command 

Processor 

                                                   

TFC-MAT + Env. Monitoring, 

Light UAV, Uncontrolled 

airspace/No 

                          

Omission-

AutopilotSettings 

 

OFailure1 or (Omission-

BasicCommand or Omission-

SensorData) 

 

 

 

TFC-ALL  + Defense, Light UAV, 

Controlled airspace/Yes 

 

Omission-

AutopilotSettings 

 

OFailure1 or (Omission-

BasicCommand and 

Omission-SensorData) 

 

Omission-Mode 

 

OFailure2 or (Omission-

BasicCommand and 

Omission-SensorData) 

 

 

 

 

 

 

 

Mode Switcher 

 

TFC-MAT + Env. Monitoring, 

Light UAV, Uncontrolled 

airspace/No 

 

Omission-ControlMode 

 

OFailure1 or Omission-

PilotMode 

 

Value-ControlMode 

 

VFailure1 or Value-

PilotMode 

 

 

 

 

 

 

TFC-ALL  + Defense, Light UAV, 

Controlled airspace/Yes 

 

Omission-ControlMode 

 

OFailure1 or Omission-

PilotMode 

 

Value-ControlMode 

 

VFailure1 or Value-

PilotMode 

 

Omission-AssistedMode 

 

OFailure2 or Omission-

NavSysModde 

 

Value-AssistedMode 

 

VFailure2 or Value-

NavSysMode 

 

 

 

 

 

 

 

PWM Decoder 

 

 

 

TFC-MAT + Env. Monitoring, 

Light UAV, Uncontrolled 

airspace/No 

 

Omission-

FlightCommands 

 

OFailure1 or Omission-

RCCommands 

 

Value-FlightCommands 

 

VFailure1 or (Omission-

RCCommands or Value-

RCCommands)  

 

 

 

 

 

 

TFC-MAS + Env. Monitoring, 

Light UAV, Uncontrolled 

airspace/No 

 

Omission-

FlightCommands 

 

OFailure1 or Omission-

RCCommands 

 

Value-FlightCommands 

 

VFailure1 or (Omission-

RCCommands or Value-

RCCommands)  

 

Omission-

PilotCommands 

 

OFailure2 or Omission-

RCCommands 

 

Value-PilotCommands 

 

VFailure2 or (Omission-

RCCommands or Value-

RCCommands) 
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D.4 SC-PLE Phase 4: TiribaFC-SPL Variability Realization Modeling  

The BVR toolset (VASILEVISKIY et al. 2015), and BVR adapters for 

MATLAB/Simulink and HiP-HOPS developed in the course of this thesis (see Chapter 4, 

Section 4.3.1) were used to support the specification of the variability realization model 

for the TiribaFC-SPL. In this phase, mapping links between functional and usage context 

features and their realization in MATLAB/Simulink architectural model components, and 

failure model elements were defined. From the analysis of the product line feature and 

context models, the following variation points were identified: “Pilot Mode”, a functional 

variation point that defines different ways in which pilot mode functions can be combined 

to derive a product variant; “Mode” defines the Tiriba flight controls variants that impact 

the safety properties, and “Airspace”, “Application”, and “UAV Size” contextual 

variation points, encapsulate the variation in the usage context where “Pilot Mode” 

functional variants can operate. In this case study, mapping links between features and 

their realization in architectural and safety analysis were specified by considering the 

TFC-MAT, TFC-MAS, TFC-MAP, and TFC-ALL variants in their respective usage 

context, as described in Section D.3. 

The definition of the variability realization model was performed in two steps: the 

variability specification model was defined based on the TiribaFC-SPL feature and 

context models, followed by the definition of the variability realization model, where 

features representing functional and contextual variants were linked to placement and 

replacement fragments referencing TiribaFC-SPL architecture and failure model 

elements, via fragment substitutions. Fragment substitutions define architectural and 

failure model elements to be included and excluded when a particular system variant is 

resolved during product derivation. Details about how to specify placement, replacement, 

and fragment substitutions into BVR variability realization model can be found elsewhere 

(VASILEVSKYI et al. 2015).   

Fragment substitutions were created for each functional and safety-related variant 

specified in the TiribaFC-SPL variability specification model (feature model). Table D.3 

shows the placement, replacement, and fragment substitutions associated with three 

TiribaFC-SPL variants. The placement fragment associated with each flight control 

system variant, represents the variability mechanisms in the TiribaFC-SPL architecture 

model, i.e., model elements that may change according to different product variants. The- 
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Table D.3 – Pilot mode functional variants and associated fragments.  

Variation 

Point 

Variant Fragment  

 

Architectural Model Elements 

 

 

 

 

 

 

 

 

 

Pilot 

Mode 

 

 

Manual_Autopilot 

 

 

Placement 

 

Basic Command Processor, Mode Switcher 

components, their ports and connections. 

Replacement PWM Decoder, Mode Switcher, FlightStabilizer, 

Autopilot, FlightControlMixer, 

FailSafeController, Command Switch, and 

PWM Encoder components, their ports and 

connections. 

 

 

Manual_Autonomous_Pilot 

 

Placement Basic Command Processor, Mode Switcher 

components, their ports and connections. 

Replacement Basic Command Processor, Mode Switcher, PWM 

Decoder, Mode Switcher, FlightStabilizer, 

Autopilot, FlightControl Mixer, 

FailSafeController, Command Switch, and 

PWM Encoder components, their ports and 

connections. 

 

 

Manual_Assisted_Pilot 

 

Placement Basic Command Processor, Mode Switcher 

components, their ports and connections. 

 

Replacement Basic Command Processor, Mode Switcher, PWM 

Decoder, Mode Switcher, FlightStabilizer, 

Autopilot, FlightControlMixer, 

FailSafeController, Command Switch, and 

PWM Encoder components, their ports and 

connections. 

refore, “Basic Command Processor” and “Mode Switcher” components, their ports and 

connections are variability mechanisms in the TiribaFC-SPL architecture model, which should 

be removed when variability is resolved for a given system variant. The replacement 

fragment associated with “Manual_Autopilot” variant indicates that “PWM Decoder”, 

“Mode Switcher”, “FlightStabilizer”, “Autopilot”, “FlightControlMixer”, 

“FailSafeController”, “CommandSwitch”, and “PWM Encoder” components, their ports 

and connections should be included in the product model when variability in the 

architecture model is resolved. On the other hand, “Basic Command Processor” subsystem, 

their connections, “NavSysMode” and “AssistedMode” ports from “Mode Switcher” 

component should be removed from the final product when architectural variability is resolved 

for the “Manual_Autopilot” variant, as shown in Table D.3. 

Fragment substitutions were also specified to define how variability in the 

TiribaFC-SPL failure model is resolved when “MAT_Env_Light_Uncontrolled”, 

“MAS_Env_Light_Uncontrolled”, “MAP_Defense_Light_Controlled”, and “ALL_Defen 

se_Light_Controlled” safety-related variants are chosen in the resolution model. Table 
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D.4 shows an excerpt of the mapping links between safety-related variants and their 

realization in the failure model. When “MAT_Env_Light_Uncontrolled” variant is 

chosen, functional hazard assessment and component failure data associated with 

“MAS_Env_Light_Uncontrolled”, “MAP_Defense_Light_Controlled”, and “ALL_Defen-

se_Light_Controlled” variants specified as variability mechanisms in a placement 

fragment, should be removed. In the following, variant-specific failure data specified in 

the replacement fragment should be included in the resolved failure model. Placement 

and replacement fragments for “MAS_Env_Light_Uncontrolled” and “MAP_Defense_ 

Light_Controlled” variants show the failure model elements to be included and excluded 

when variability in the failure model is resolved for these variants.  

Table 8.4 – Pilot Mode/usage context safety-related variants and associated fragments. 

Variation Point Variant Fragment Failure Model Elements 

FHA Data Failure Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mode/Application, 

Airspace, and  

UAV Size 

 

 

 

 

 

 

MAT_Env_ 

Light_ 

Uncontrolled 

 

 

 

Placement 

MAS_No_pilot_commands, 

MAS_Value_pilot_commands, 

MAP_No_pilot_commands, 

MAP_Value_pilot_commands, 

ALL_No_pilot_commands, 

ALL_Value_pilot_commands 

TFC-ALL-BCPImpl, 

TFC-ALL-MSImpl, 

TFC-MAS-PWDImpl, 

… 

 

Replacement 

 

MAT_No_pilot_commands, 

MAT_Value_pilot_commands 

TFC-MAT-BCPImpl, 

TFC-MAT-MSImpl, 

TFC-MAT-PWDImpl, 

… 

 

 

 

 

MAS_Env_ 

Light_ 

Uncontrolled 

 

 

 

Placement 

MAT_No_pilot_commands, 

MAT_Value_pilot_commands, 

MAP_No_pilot_commands, 

MAP_Value_pilot_commands, 

ALL_No_pilot_commands, 

ALL_Value_pilot_commands 

TFC-MAT-BCPImpl, 

TFC-MAT-MSImpl, 

TFC-ALL-PWDImpl, 

… 

 

Replacement 

 

MAS_No_pilot_commands, 

MAS_Value_pilot_commands  

 

TFC-ALL-BCPImpl, 

TFC-ALL-MSImpl, 

TFC-MAS-PWDImpl, 

… 

 

 

 

 

MAP_Env_ 

Light_ 

Controlled 

 

 

 

Placement 

MAT_No_pilot_commands, 

MAT_Value_pilot_commands, 

MAS_No_pilot_commands, 

MAS_Value_pilot_commands, 

ALL_No_pilot_commands, 

ALL_Value_pilot_commands 

TFC-MAT-BCPImpl, 

TFC-ALL-MSImpl, 

TFC-MAS-PWDImpl, 

… 

 

 

Replacement 

 

MAP_No_pilot_commands, 

MAP_Value_pilot_commands  

 

TFC-ALL-BCPImpl, 

TFC-MAT-MSImpl, 

TFC-ALL-PWDImpl, 

… 

D.5 SC-PLE Phases 5 and 6: Resolution Modeling and Product Derivation 

The delivered TiribaFC-SPL variability realization model comprises 8 fragment 

substitutions, 2 placements and 8 replacements fragments. 4 fragments substitutions are 
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associated with variability in architectural model elements, and 4 fragment substitutions 

are associated with variability in failure model elements.  

In application engineering, resolution models were created for four Tiriba flight 

control system variants with the support of the BVR resolution model editor. For this case 

study, resolution models were defined for: TFC-MAT, TFC-MAS, TFC-MAP, and TFC-ALL 

variants as shown in Figure D.5. These variants differ from each other in the number of pilot 

mode subsystems and components, functional hazard assessment and component failure data. 

The TFC-MAT (Figure D.5a) variant comprises manual and autonomous pilot features, and 

TFC-MAS (Figure D.5b) variant comprises manual pilot and assisted pilot features. These 

variants are considered to be deployed in a light UAV, to be used in environment monitoring 

applications, and operating in an uncontrolled airspace. The TFC-MAP (Figure D.5c) variant 

comprises manual and assisted pilot features, and TFC-ALL (Figure D.5d) variant comprises 

 

Figure D.5. TiribaFC-SPL resolution models. 
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manual, assisted, autonomous, and autopilot features. TFC-MAP and TFC-ALL systems 

variants are considered to be deployed in a light UAV, to be used in military defense 

applications operating in a controlled airspace. 

For each system variant shown in Figure D.5, the following models were input to the 

BVR variant management tool (VASILEVSKYI et al. 2015) resolving variability in 

architectural and safety models during “Product Derivation” phase: BVR variability 

specification, resolution, and realization models, and the TiribaFC-SPL MATLAB/Simulink 

architecture and HiP-HOPS failure models. Thus, variant-specific MATLAB/Simulink 

architecture models with HiP-HOPS failure annotations were generated. The TFC-ALL 

variant-specific architecture model comprises all pilot mode subsystems and components 

shown in Figure D.3. The TFC-MAT architecture differs from TFC-ALL by the absence of 

autopilot and assisted pilot components. The TFC-MAS architecture comprises assisted pilot 

component and it does not contains autonomous and autopilot components. The TFC-MAP 

architecture comprises autopilot mode components. Tiriba flight control variant-specific 

models also comprise variant-specific safety analysis data. These models were further input to 

HiP-HOPS (PAPADOPOULOS et al. 2011) compositional safety analysis tool performing 

the automatic synthesis of fault trees, FMEA results, and DAL decomposition for each Tiriba 

flight control system variant.  

D.6 SC-PLE Phase 7: Variant-Specific Fault Tree Analysis and FMEA  

This section presents the fault trees and FMEA results generated for each 

TiribaFC-SPL variant with the support of HiP-HOPS compositional safety analysis 

technique/tool. Fault trees were generated for each one of the 8 variant-specific hazards 

shown in Table D.1, and variant-specific FMEA results were synthesized from the fault 

trees. Figure D.6 shows excerpts of the “No pilot commands” fault trees generated for 

each variant. The analysis of these fault trees shows the impact of TiribaFC-SPL variation 

on hazard causes. Therefore, failure conditions that directly contribute to the occurrence 

of “No pilot commands” hazard in TFC-ALL and TFC-MAS fault trees (Figures D.6a and 

D.6b) are omission of flight commands in PWM Decoder, Mode Switcher, and 

FailSafeController output ports. On the other hand, the causes for this hazard in TFC-

MAT and TFC-MAP fault trees (Figures D.6c and D.6d) are omission of flight commands 

in “PWM Decoder” and “Fail Safe Controller” output ports. Such variation is further 

propagated throughout component failure modes that indirectly contribute to the 
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occurrence of hazards. For example, different component failures contribute to cause the 

omission of “HighLevelControls” output port from the “Autopilot” component in TFC- 

 

Figure D.6. No pilot commands fault trees for Tiriba flight control variants.  
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MAT and TFC-MAP variants, as shown in Figures D.6c and D.6d. An omission failure 

into “DefaultOut1” output port from the “AssistedModeSwitch” component and its 

associated causal chain contribute to the occurrence of an omission failure in the 

“HighLevelControls” output port from the “Autopilot” component in the TFC-MAT 

variant. On the other hand, the omission of the “AutopilotSettings” output port from the 

“Flight Stabilizer” component and its associated causal chain contribute to the 

occurrence of omission of “HighLevelControls” output port from the “Autopilot” 

component in the TFC-MAP system variant. 

Variability was also found in the number of failure cut sets associated with each 

TiribaFC-SPL product variant, as shown in Table D.5. A cut set is a combination of basic 

events that can cause the top event of a fault tree, i.e., a system failure (NASA, 2002). For 

example, “No pilot commands” and “Value pilot commands” fault trees associated with TFC-

ALL variant have respectively 108 and 154 cut sets, whereas the same fault trees associated 

with TFC-MAT variant contain respectively 60 and 88 cut sets. Such variation is further 

propagated throughout variant-specific FMEA results where different component failure 

modes contribute directly or indirectly to the occurrence of system hazards in each one of 

these variants. FMEA results show the relationships between the occurrence of component 

failures and their effects into the overall system safety. 

Table D.5 – Variability in Tiriba flight control variant-specific fault trees. 

Product Variant Fault Tree Cut Sets 

TFC-ALL No pilot commands 108 

Value pilot commands 154 

TFC-MAT No pilot commands 60 

Value pilot commands 88 

TFC-MAS No pilot commands 108 

Value pilot commands 154 

TFC-MAP No pilot commands 60 

Value pilot commands 88 

Tables D.6 and D.7 show fragments of FMEA results for the TFC-ALL and TFC-

MAT variants, considering the “PWM Decoder” component failures. These tables show 

the effects of the occurrence of component failures and whether each given component 

failure is a single point of failure or not. For example, the occurrence of “OFailure1” and 

“OFailure2” omission failure modes, and “VFailure1” and “VFailure2” value failure 

modes in the TFC-ALL variant (see Table D.6) indirectly contribute to the occurrence of 
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“No_pilot_commands” and “Value_pilot_commands” hazards in conjunction with other 

component failure modes. On the other hand, in the FMEA results for the TFC-MAT 

variant shown in Table D.7, only one omission failure (i.e., “OFailure1”), and one value 

failure (i.e., “VFailure1”) in the “PWM Decoder” component outputs indirectly 

contribute to the occurrence of “No_pilot_commands” and “Value_pilot_commands” 

hazards in conjunction with other component failure modes. The analysis of multiple 

variant-specific FMEA results provides the evidence of traceability of context and design 

variation throughout cause-effect relationships between component failures and the 

occurrence of system level hazards. 

Table D.6 – Excerpt of FMEA results for the TFC-ALL variant. 

Component Failure Mode System Effect Single Point of Failure 

 

 

PWM Decoder 

OFailure1 (1029) No_pilot_commands False 

 

OFailure2 (1030) 

No_pilot_commands False 

Value_pilot_commands False 

VFailure1 (1031) Value_pilot_commands False 

VFailure2 (1032) Value_pilot_commands False 

Table D.7 – Excerpt of FMEA results for the TFC-MAT variant. 

Component Failure Mode System Effect Single Point of Failure 

 

PWM Decoder 

OFailure1 (947) No_pilot_commands False 

VFailure1 (948) Value_pilot_commands False 

From the analysis of the complete FMEA results associated with each TiribaFC-

SPL variant it has been identified that: 30 component failure modes indirectly contribute 

to the occurrence of hazards in the TFC-ALL system variant, 24 component failure modes 

were identified in the TFC-MAT variant, 30 component failure modes were identified in 

TFC-MAS variant, and 24 component failure modes, which indirectly contribute to the 

occurrence of hazards, were identified in the TFC-MAP system variant. Such analysis 

provides insights about how TiribaFC-SPL components can fail and contributing to the 

occurrence of hazards across different system variants, providing feedback for product 

line engineers to address safety of components across the product line.  

D.7 SC-PLE Phase 8: TiribaFC Variant-Specific DAL Decomposition 

This section presents the results of using design optimization techniques to 

automatically decompose the DALs allocated to system hazards associated with each 

TiribaFC product variant, throughout their contributing component failure modes. Such 

analysis allows safety analysts in establishing safety objectives to mitigate these 

component failures, and then, addressing the safety requirements of a particular product 
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variant. The HiP-HOPS Tabu Search DAL decomposition optimization tool (SOROKOS et 

al. 2015) has been used to support the “Product SIL Decomposition” phase from the variant-

specific fault tree analysis and FMEA results. Variant-specific failure cut sets stored into fault 

trees and FMEA results (i.e., an xml file) generated with the support of HiP-HOPS are input 

artefacts to the Tabu Search DAL decomposition algorithm performing the automatic 

decomposition of DALs allocated to variant-specific hazards throughout the contributing 

failure modes. The DAL decomposition was performed for each one of the following 

TiribaFC-SPL variant: TFC-ALL, TFC-MAT, TFC-MAS, and TFC-MAP. The DAL 

decomposition was performed based on the following cost heuristic that expresses the relative 

cost jumps of developing Tiriba flight control components according to different 

Development Assurance Levels (DALs): 0 (DAL E), 10 (DAL D A), 20 (DAL C), 40 (DAL 

B), and 50 (DAL A). This cost heuristic was used for illustrative purposes, but any other that 

safety analysts find more suitable can be used instead. Additional information on the DAL 

decomposition process can be found in the SAE ARP 4754A – Guidelines for Development 

of Civil Aircraft and Systems (EUROCAE, 2010). 

Table D.8 shows an excerpt of the DAL decomposition results for TFC-MAT, 

TFC-MAS, TFC-MAP, and TFC-ALL system variants. These results correspond to the 

best DAL decomposition solution found and its total DAL cost found for each TiribaFC-

SPL variant. DALs were allocated to 127 component failure modes into four different 

product variants. The failure modes are stated in terms of omission (OFailureID) and 

value (VFailureID) failure types. The DAL allocated to a given component failure mode 

may change according to the product variant. For example, the DAL allocated to a 

“value” failure mode of the “PWM Decoder” component is “E” (0) in the TFC-MAT  

Table D.8 - DALs allocated to component failure modes in different TiribaFC-SPL variants. 

TFC-SPL Component 

 

Failure Mode TFC-MAT 

DAL 

TFC-MAS 

DAL 

TFC-MAP 

DAL 

TFC-ALL 

DAL 

Barometric Processor OFailure1 C(2) C(2) C(2) C(2) 

OFailure2 C(2) C(2) C(2) C(2) 

 

 

PWM Decoder 

 

OFailure1 

 

A(4) 

 

A(4) 

 

A(4) 

 

C(2) 

OFailure2 - A(4) E(0) C(2) 

VFailure1 E(0) C(2) A(4) C(2) 

VFailure2 - C(2) E(0) C(2) 

Pilot Joystick OFailure1 A(4) A(4) A(4) C(2) 

OFailure2 A(4) A(4) A(4) C(2) 

 

… 

 

… 

 

… 

 

… 

 

… 

 

… 

Pressure Sensor OFailure1 C(2) C(2) C(2) B(3) 

OFailure2 C(2) C(2) C(2) C(2) 



Appendix D - Tiriba Flight Control Case Study Outcomes                                                                                367 

 

variant and “A” (4) in the TFC-MAP variant. Such difference emphasizes that different 

ways in which the TiribaFC-SPL components are combined in a product variant may 

change the stringency of the component DAL. Such difference also impact in changes in 

the total DAL cost associated with a given variant-specific system architecture. The HiP-

HOPS Tabu Search DAL decomposition optimization algorithm has calculated the total 

DAL cost associated with each system variant according to the cost heuristic previously 

explained at the beginning of this subsection. The final DAL cost was: 620 for TFC-

ALL, 530 for TFC-MAT, 860 for TFC-MAS, and 780 for TFC-MAP. 

The analysis of multiple DAL decomposition results generated with the support of 

HiP-HOPS DAL decomposition optimization tool allows safety analysts to allocate safety 

integrity requirements to components, and establishing safety objectives to address safety 

across a range of product variants without being unnecessarily expensive or stringent. It 

allow safety analysts to assign expensive, in terms of costs and effort, safety objectives, 

development and safety assessment activities such verification, validation, testing only to 

highest critical components instead of all product line components.  

D.8 SC-PLE Phase 9: TiribaFC-SPL Component DAL Decomposition 

Variant-specific DAL decomposition results generated with the support of HiP-

HOPS DAL decomposition optimization tool are input artefacts for the product line 

component SIL decomposition tool (OLIVEIRA et al. 2015), performing the automatic 

allocation of DALs to TiribaFC-SPL components. The tool performs such analysis on the 

basis of the following principle: the most stringent DAL allocated to a given failure mode 

of a component across multiple system variants is the DAL required to guarantee the safe 

usage of that component across the analyzed system variants. Firstly, the tool has derived 

the DALs that should be allocated to the product line components in each individual 

system variant. For each component associated with the given variant, the most stringent 

DAL allocated to a failure mode associated with that component is then, identified. For 

example, considering the TFC-ALL system variant, the analysis of the DALs allocated to 

the “Pressure_Sensor” component failure modes (DAL B for the “OFailure1” and DAL 

C for “OFailure2”) shows that the component DAL for that variant should be DAL B. 

Finally, for each TiribaFC-SPL component, the tool analyses the DALs allocated the 

given component in each system variant to extract the most stringent DAL allocated to 
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such component across the analyzed variants. As a result, DALs were allocated to 47 

TiribaFC-SPL components.  

Table D.9 shows the DALs allocated to 5 TiribaFC-SPL components into four 

different system variants analyzed from the perspective of two different usage scenarios: 

TFC-MAT and TFC-MAS system variants used in environment monitoring applications, 

deployed in a light UAV, operating in an uncontrolled airspace; and TFC-ALL and TFC-

MAP variants used for defense applications, deployed a light UAV and operating in a 

controlled airspace. Analogously to the DALs allocated to component failure modes, the 

TiribaFC-SPL component DALs may change according to the system variant. For 

example, the DALs allocated to the “PWM Decoder”, “Pilot Joystick”, and “Pressure 

Sensor” components are respectively “A”, “A”, and “C” in the TFC-MAT variant, and “C”, 

“C”, and “B” in the TFC-ALL variant. From such analysis, the tool has generated the DALs 

to be allocated to TiribaFC-SPL components (column MAX DAL in Table D.9) to achieve 

product line process-based certification in compliance with ARP 4754A and DO-178C safety 

standards. 

The analysis of the DAL decomposition results and their implications on the safety 

integrity requirements of potential usage of components provides useful feedback to the 

product line development process, contributing to meeting safety requirements without 

incurring unnecessary costs. The TiribaFC-SPL component DAL allocation results may guide 

product line engineers to take design decisions in order to address safety of product line  

components across the analyzed variants. It may also guide safety analysts in establishing 

safety objectives and structuring development and safety assessment processes for 

product line components in order to achieve process-based certification without being 

stringent or expressive. Therefore, by considering “PWM Decoder” and “Fail Safe 

Controller” components and their safety integrity requirements, Table D.10 shows a 

subset of safety objectives and their respective activities required for these components  

Table 8.9 – TiribaFC-SPL component DAL decomposition results. 

TFC-SPL Component TFC-MAT  

DAL 

TFC-MAS 

DAL 

TFC-MAP 

DAL 

TFC-ALL 

DAL 

MAX DAL 

Barometric Processor C(2) C(2) C(2) C(2) C 

Basic Command Processor E(0) E(0) E(0) - E 

Fail Safe Controller C(2) C(2) C(2) C(2) C 

Mode Switcher E(0) A(4) E(0) C(2) A 

PWM Decoder A(4) A(4) A(4) C(2) A 

… … … … … … 

Pressure Sensor C(2) C(2) C(2) B(3) B 
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achieving process-based certification in compliance with SAE ARP 4754A and DO-178C 

safety standards.  

Whereas “PWM Decoder” is a highly critical component, safety objectives with 

independence such as: “aircraft functional hazard assessment” (SAE ARP 4754A), and 

“verification of additional code is achieved” (DO-178C) should be addressed. Less 

critical components, such as “Fail Safe Controller”, requires less stringent safety 

objectives that do not require independence. Instead of allocating highly stringent safety 

objectives to all TiribaFC-SPL components, product line component DAL decomposition 

allows safety analysts to assign safety objectives to a given component or a subset of 

components according to their integrity. Therefore, less stringent safety objectives 

assigned to less critical components means less development and safety assessment effort 

and costs to be considered for developing product line components in order to achieve 

process-based certification. Such analysis contributes to reduce the effort and costs of 

developing Tiriba flight control components, addressing safety requirements without 

compromise safety. 

Table 8.10 – Component DALs and process-based certification safety objectives. 

Component DAL Safety Objectives Activities 

 

 

 

 

 

 

PWM Decoder 

 

 

 

 

 

 

A 

The aircraft/system functional 

hazard assessment is performed 

with independence. 

SAE ARP 4754A sections: 

5.1.1, 5.2.3, 5.2.4. 

… … 

 

High level requirements should 

comply with system requirements 

with independence. 

DO-178C section 6.3.1: 

Analysis of compliance with 

system requirements. 

Verification of additional code 

that cannot be traced to the 

source code is achieved. 

DO-178C section 6.4.4d: 

analysis to confirm that all the 

test cases are traceable to 

requirements.  

 

 

 

Fail Safe Controller 

 

 

 

C 

The aircraft/system functional 

hazard assessment is performed. 

SAE ARP 4754A sections: 

5.1.1, 5.2.3, 5.2.4. 

… … 

 

High level requirements should 

comply with system 

requirements. 

DO-178C section 6.3.1: 

Analysis of compliance with 

system requirements. 

D.9 TribaFC-SPL Variant-Specific Model-Based Assurance Cases 

The Model-Based Assurance Case (MBAC) approach and tooling (HAWKINS et al. 

2015) was used to support the automatic generation of assurance cases for: “Manual and 

Autonomous Pilot”, “Manual and Assisted Pilot”, “Manual and Autopilot”, and “All Pilot 
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Modes” Tiriba flight control variants. For each system variant, the hazard-directed assurance 

case pattern models, the reference information models, and the weaving model artefacts 

presented in Chapter 6, together with variant-specific development and assessment models 

were input to configure the MBAC tool to generate a variant-specific assurance case. The 

MBAC tool generates variant-specific assurance cases in “.gsnml” and tabular formats. The 

“gsnml” file contains the description of argument elements and their relationships, and the 

tabular format shows the relationships between assurance pattern elements and their 

instantiation information in an instantiation table.  

Figure D.7 shows excerpts of the modular view of the assurance cases generated for 

the TFC-MAT and TFC-ALL system variants. A variant-specific assurance case model 

comprises a top-level argument module, arguing that the system variant is acceptably safe to 

operate in its environment. This module is further supported by argument modules addressing 

the hazards posed by the given variant, called Risk Argument modules. Each risk argument 

module is further supported by modules addressing specific component faults that contribute 

to the occurrence of hazards, e.g., “AbsOmissionPWMDecoderFlightControls” module in 

Figure D.7a. These modules, named “Absence of Hazardous Software Failure Mode” 

modules argue that primary, secondary, and control failure modes, which can lead to the 

occurrence of a given hazardous software failure mode, are acceptable. 

TiribaFC-SPL variant-specific assurance cases differ from each other in the number of 

argument modules, addressing component faults that contribute to the occurrence of hazards, 

called “Absence of Hazardous Software Failure Mode” modules and their supporting 

modules. Such variation is resultant of the impact of context and design variation in 

architecture and safety analysis models. Figure D.7 shows the variability in assurance case 

models generated for “Manual and Autonomous Pilot” (TFC-MAT), and “All Pilot Modes” 

(TFC-ALL) system variants. Although these variants have common “Risk Argument” 

modules, variability has been found in the “Absence of Hazardous Software Failure Mode” 

supporting modules. For example, the supporting modules for “RiskNoPilotCommands” 

argument module are “AbsFailSafeControllerFilteredControlsOmission” and “AbsPWM-

DecoderFlightControlsOmission” in the TFC-MAT system variant (Figure D.7a). On the 

other hand, the “RiskNoPilotCommandsOmission” module is supported by these two modules 

and an additional “AbsModeSwitcherControlModeOmission” module in the TFC-ALL 

variant, as shown in the Figure D.7b. Such variation also occurs in the supporting modules for 

the “RiskValuePilotCommands” module in the TFC-MAT and TFC-ALL system variants. 
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Figure D.7. TiribaFC-SPL variant-specific assurance cases
24

. 

Variation in “Absence of Hazardous Software Failure Mode” modules are further 

propagated throughout their supporting claims. These claims argue that all causes of failures 

in other components, i.e., secondary failures, leading to the occurrence of a given hazardous 

software failure mode are acceptable. The following subsections show the detailed description 

of the “Top-Level Argument”, “Risk Argument”, and “Absence of Hazardous Software 

Failure Mode” argument modules generated for the TFC-MAT system variant shown in 

Figure D.7a.  

 

 

                                                 
24 Only certain parts of the Tiriba flight control variant-specific assurance cases are presented this thesis due to commercial sensitivity of the 

Tiriba UAV system. 
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D.7.1 Top-Level Argument 

The top-level argument, shown in Figure D.8, is a hazard and risk-directed module. 

This module argues that the TFC-MAT system variant is acceptably safe to operate in its 

environment by addressing and showing the risk posed by each variant-specific hazard is 

acceptable. Each risk argument is encapsulated into a separated module, which justifies that 

the component failures that can cause a given hazard are acceptable, i.e. do not lead the given 

system variant to an unsafe state. Such justification is defined on the basis of the DAL 

allocated to each hazard, according to the SAE ARP 4754A risk classification as stated in 

“C3” context element in Figure D.8. 

 

Figure D.8. TFC-MAT top-level argument module. 

D.7.2 Risk and Absence of Hazardous Software Failure Mode Argument Modules 

The TFC-MAT top-level argument module is supported by “RiskNoPilotCommands” 

and “RiskValuePilotCommands” modules. In both modules, the claim arguing that “the risk 

posed by the given system hazard is acceptable” is supported by sub-claims arguing that each 

contributing “hazardous software failure mode is acceptable”. Figure D.9 shows the structure 

of the “NoPilotCommandsRisk” argument module. The “G2” top-level level claim is stated in 

the context of “DAL A” allocated to the “No pilot commands” system hazard (“C5”), and the  
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Figure D.9. No pilot commands risk module. 

top-level failure condition leading to this hazard (“C6”). This claim is decomposed into sub-

claims arguing the absence of component failures contributing to the occurrence of “No pilot 

commands” hazard (“S1”), in this case, omission failures in “PWMDecoder” and 

“FailSafeController” component outputs, which contribute to the occurrence of the omission 

of UAV flight control commands. Such decomposition strategy is defined in the context of 

the hazard causal chain defined in the “No pilot commands” fault tree (see Figure D.6c), and 

the TFC- MAT variant-specific components defined in its architecture model (“C8”). “G4” 

and “G5” are references to “AbsPWMDecoderFlightControlsOmission” and “AbsFailSafe-

ControllerFilteredControlsOmission” modules. In these modules, claims arguing the absence 

of omission failures in “PWMDecoder” and “FailSafeController” components are 

decomposed into sub-claims arguing that primary, secondary, and control failure modes that 

can cause these failures are acceptable. Figure D.10 shows the 

“AbsPWMDecoderFlightControlsOmission” module. This module decomposes the claim 

“G4” into sub-claims arguing that: an internal failure in PWMDecoder component is 

acceptable (“G4.1”), failure modes of other components that contribute to the omission of 

“PWMDecoder.FlightControls” output are acceptable (“G4.2”), and that the “PWMDecoder”  
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Figure 8.10. Absence of omission of PWMDecoder.FlightControls module. 

component is scheduled and allowed to run once” (“G4.3”). “G4.2” claim is further 

decomposed into fault mitigation modules arguing the absence of omission failures in 

BusCreator1, PilotJoystick, and PWMDecoder.BusCreatorX component outputs. 

The argument modules presented in Figures D.8, D.9, and 8.10 are instances of 

“Hazard Avoidance” (KELLY and McDERMID, 1997), “Risk Argument” (HABLI, 2009), 

and “Absence of Hazardous Software Failure Mode” (WEAVER, 2003) assurance case 

patterns. These argument modules contain references to information elements provided by 

different TFC-MAT variant-specific models. Table D.11 shows the relationship between 

“Top-Level Argument” elements shown in Figure D.8, and information elements from 

different system models. For example, the “TiribaFC-MAT” information stated in 

“TFC_MAT_SysSafe” and “IdentHzds” argument elements is provided by the TFC-MAT 

architecture model. “No_Pilot_Commands” and “Value_Pilot_Commands” hazard 

information elements stated into “G2” and “G3” module references are provided by the TFC-

MAT failure model. Therefore, changes in the Tiriba flight control variant are automatically 
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propagated throughout the assurance case. In addition, the automated traceability between the 

assurance case and evidence items, i.e., development and assessment artefacts, referenced in 

the assurance case, is achieved. Therefore, the generated assurance cases contribute to goal-

based certification of Tiriba flight control system variants. 

Table D.11 – Assurance case pattern and system model elements. 

Assurance 

Case Model 

GSN 

Element (s) 

Information Element Model Element Source 

System Model 

 

 

Top-Level 

Argument 

G1, C4 TiribaFC-MAT Model.name Simulink model 

C1 Manual_Pilot, Autonomous_Pilot  Feature.name Feature model 

C2 Manual_Autonomous, Uncontrolled, 

Environment_Monitoring, Light_UAV 

ContextFeature.name Context model 

C3 SAE ARP 4754a Model.description Failure model 

G2, G3 

module ref. 

No_Pilot_Commands, 

Value_Pilot_Commands 

Hazard.name Failure Model 
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