

Data mining in large sets of complex data

Robson Leonardo Ferreira Cordeiro

	

Data mining in large sets of complex data1

Robson Leonardo Ferreira Cordeiro	

Advisor: Prof. Dr. Caetano Traina Jr.
Co-advisor: Prof. Dr. Christos Faloutsos	

Doctoral dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação - ICMC-USP,
in partial fulfillment of the requirements for the degree
of the Doctorate Program in Computer Science and
Computational Mathematics. REVISED COPY.

USP – São Carlos
October 2011	

1 This work has been supported by FAPESP (Process Number 2007/01639-4), CNPq and CAPES.

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito: 27/10/2011

Assinatura:________________________

Ficha Catalográfica elaborada pela Seção de Tratamento da Informação da Biblioteca
Prof. Achille Bassi- Instituto de Ciências Matemáticas e de Computação – ICMC/USP.

 Cordeiro, Robson Leonardo Ferreira
 C794d Data mining in large sets of complex data / Robson
 Leonardo Ferreira Cordeiro. São Carlos, 2011.
 135 p.

 Tese (Doutorado – Programa de Pós-Graduação em
 Ciências de Computação e Matemática Computacional). - -
 Instituto de Ciências Matemática e de Computação,
 Universidade de São Paulo, 2011.
 Orientador: Caetano Traina Jr.
 Co-orientador: Christos Faloutsos
 1. Correlation Clustering. 2. Moderate-to-high

dimensionality data. 3. Terabyte-scale data mining. 4.
MapReduce. 5. Labeling and Summarization. I. Traina Jr.,
Caetano, orient. II. Faloutsos, Christos, co-orient. III. Título.

Abstract

Due to the increasing amount and complexity of the data stored in the enterprises’

databases, the task of knowledge discovery is nowadays vital to support strategic decisions.

However, the mining techniques used in the process usually have high computational

costs that come from the need to explore several alternative solutions, in different

combinations, to obtain the desired knowledge. The most common mining tasks include

data classification, labeling and clustering, outlier detection and missing data prediction.

Traditionally, the data are represented by numerical or categorical attributes in a table

that describes one element in each tuple. Although the same tasks applied to traditional

data are also necessary for more complex data, such as images, graphs, audio and long

texts, the complexity and the computational costs associated to handling large amounts

of these complex data increase considerably, making most of the existing techniques

impractical. Therefore, especial data mining techniques for this kind of data need to be

developed. This Ph.D. work focuses on the development of new data mining techniques for

large sets of complex data, especially for the task of clustering, tightly associated to other

data mining tasks that are performed together. Specifically, this Doctoral dissertation

presents three novel, fast and scalable data mining algorithms well-suited to analyze

large sets of complex data: the method Halite for correlation clustering; the method

BoW for clustering Terabyte-scale datasets; and the method QMAS for labeling and

summarization. Our algorithms were evaluated on real, very large datasets with up to

billions of complex elements, and they always presented highly accurate results, being at

least one order of magnitude faster than the fastest related works in almost all cases. The

real data used come from the following applications: automatic breast cancer diagnosis,

satellite imagery analysis, and graph mining on a large web graph crawled by Yahoo! and

also on the graph with all users and their connections from the Twitter social network.

Such results indicate that our algorithms allow the development of real time applications

that, potentially, could not be developed without this Ph.D. work, like a software to aid on

the fly the diagnosis process in a worldwide Healthcare Information System, or a system

to look for deforestation within the Amazon Rainforest in real time.

i

ii

Resumo

O crescimento em quantidade e complexidade dos dados armazenados nas organizações

torna a extração de conhecimento utilizando técnicas de mineração uma tarefa ao mesmo

tempo fundamental para aproveitar bem esses dados na tomada de decisões estratégicas

e de alto custo computacional. O custo vem da necessidade de se explorar uma grande

quantidade de casos de estudo, em diferentes combinações, para se obter o conhecimento

desejado. Tradicionalmente, os dados a explorar são representados como atributos

numéricos ou categóricos em uma tabela, que descreve em cada tupla um caso de

teste do conjunto sob análise. Embora as mesmas tarefas desenvolvidas para dados

tradicionais sejam também necessárias para dados mais complexos, como imagens, grafos,

áudio e textos longos, a complexidade das análises e o custo computacional envolvidos

aumentam significativamente, inviabilizando a maioria das técnicas de análise atuais

quando aplicadas a grandes quantidades desses dados complexos. Assim, técnicas de

mineração especiais devem ser desenvolvidas. Este Trabalho de Doutorado visa a criação

de novas técnicas de mineração para grandes bases de dados complexos. Especificamente,

foram desenvolvidas duas novas técnicas de agrupamento e uma nova técnica de rotulação

e sumarização que são rápidas, escaláveis e bem adequadas à análise de grandes bases de

dados complexos. As técnicas propostas foram avaliadas para a análise de bases de dados

reais, em escala de Terabytes de dados, contendo até bilhões de objetos complexos, e

elas sempre apresentaram resultados de alta qualidade, sendo em quase todos os casos

pelo menos uma ordem de magnitude mais rápidas do que os trabalhos relacionados mais

eficientes. Os dados reais utilizados vêm das seguintes aplicações: diagnóstico automático

de câncer de mama, análise de imagens de satélites, e mineração de grafos aplicada a um

grande grafo da web coletado pelo Yahoo! e também a um grafo com todos os usuários

da rede social Twitter e suas conexões. Tais resultados indicam que nossos algoritmos

permitem a criação de aplicações em tempo real que, potencialmente, não poderiam ser

desenvolvidas sem a existência deste Trabalho de Doutorado, como por exemplo, um

sistema em escala global para o aux́ılio ao diagnóstico médico em tempo real, ou um

sistema para a busca por áreas de desmatamento na Floresta Amazônica em tempo real.

T́ıtulo: Mineração de Dados em Grandes Conjuntos de Dados Complexos
Tese apresentada ao Instituto de Ciências Matemáticas e de Computação - ICMC-USP,
como parte dos requisitos para obtenção do t́ıtulo de Doutor em Ciências - Ciências de
Computação e Matemática Computacional. VERSÃO REVISADA.

iii

iv

Contents

List of Figures ix

List of Tables xi

List of Abbreviations and Acronyms xiii

List of Symbols xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition and Main Objectives 2
1.3 Main Contributions of this Ph.D. Work . 3
1.4 Conclusions . 5

2 Related Work and Concepts 7
2.1 Processing Complex Data . 7
2.2 Knowledge Discovery in Traditional Data 9
2.3 Clustering Complex Data . 11
2.4 Labeling Complex Data . 15
2.5 MapReduce . 17
2.6 Conclusions . 18

3 Clustering Methods for Moderate-to-High Dimensionality Data 19
3.1 Brief Survey . 20
3.2 CLIQUE . 21
3.3 P3C . 23
3.4 LAC . 26
3.5 CURLER . 28
3.6 Conclusions . 30

4 Halite 35
4.1 Introduction . 35
4.2 General Proposal . 37
4.3 Proposed Method – Basics . 40

4.3.1 Building the Counting-tree . 40
4.3.2 Finding β-clusters . 43
4.3.3 Building the Correlation Clusters 49

4.4 Proposed Method – The Algorithm Halite 50
4.5 Proposed Method – Soft Clustering . 51
4.6 Implementation Discussion . 55

v

4.7 Experimental Results . 55
4.7.1 Comparing hard clustering approaches 56
4.7.2 Scalability . 63
4.7.3 Sensitivity Analysis . 64
4.7.4 Soft Clustering . 66

4.8 Discussion . 67
4.9 Conclusions . 69

5 BoW 71
5.1 Introduction . 71
5.2 Proposed Main Ideas – Reducing Bottlenecks 73

5.2.1 Parallel Clustering – ParC . 74
5.2.2 Sample and Ignore – SnI . 75

5.3 Proposed Cost-based Optimization . 77
5.4 Finishing Touches – Partitioning the Dataset and Stitching the Clusters . . 81

5.4.1 Random-Based Data Partition . 82
5.4.2 Location-Based Data Partition . 83
5.4.3 File-Based Data Partition . 85

5.5 Experimental Results . 86
5.5.1 Comparing the Data Partitioning Strategies 88
5.5.2 Quality of Results . 89
5.5.3 Scale-up Results . 90
5.5.4 Accuracy of our Cost Equations . 92

5.6 Conclusions . 94

6 QMAS 95
6.1 Introduction . 95
6.2 Proposed Method . 97

6.2.1 Mining and Attention Routing . 97
6.2.2 Low-labor Labeling (L3) . 102

6.3 Experimental Results . 104
6.3.1 Results on our Initial Example . 105
6.3.2 Speed . 106
6.3.3 Quality and Non-labor Intensive . 107
6.3.4 Functionality . 108
6.3.5 Experiments on the SATLARGE dataset 109

6.4 Conclusions . 110

7 Conclusion 115
7.1 Main Contributions of this Ph.D. Work . 116

7.1.1 The Method Halite for Correlation Clustering 116
7.1.2 The Method BoW for Clustering Terabyte-scale Datasets 116
7.1.3 The Method QMAS for Labeling and Summarization 117

7.2 Discussion . 117
7.3 Difficulties Tackled . 119
7.4 Future Work . 119

7.4.1 Using the Fractal Theory and Clustering Techniques to Improve the
Climate Change Forecast . 119

7.4.2 Parallel Clustering . 120

vi

7.4.3 Feature Selection by Clustering . 121
7.4.4 Multi-labeling and Hierarchical Labeling 122

7.5 Publications Generated in this Ph.D. Work 123

Bibliography 125

vii

viii

List of Figures

2.1 x-y and x-z projections of four 3-dimensional datasets over axes {x, y, z}. . 13

3.1 Examples of 1-dimensional dense units and clusters existing in a toy database
over the dimensions A = {x, y}. 22

3.2 Examples of p-signatures in a database over the dimensions A = {x, y}. . . 25
3.3 Examples of global and local orientation in a toy 2-dimensional database. . 29

4.1 Example of an isometric crystal system commonly found in the nature –
one specimen of the mineral Halite that was naturally crystallized. 36

4.2 x-y and x-z projections of four 3-dimensional datasets over axes {x, y, z}. . 38
4.3 Examples of Laplacian Masks, 2-dimensional hyper-grid cells and the cor-

responding Counting-tree. 42
4.4 A mask applied to 1-dimensional data and the intuition on the success of

the used masks. 44
4.5 The Counting-tree by tables of key/value pairs in main memory and/or disk. 51
4.6 Illustration of our soft clustering method Halites. 52
4.7 Comparison of hard clustering approaches – Halite was in average at least

12 times faster than 7 top related works, always giving high quality clusters. 61
4.8 Results on memory consumption for synthetic data. 62
4.9 Subspace Quality for synthetic data. 62
4.10 Quality versus run time in linear-log scale over 25-dimensional data for

breast cancer diagnosis (KDD Cup 2008). 64
4.11 Scalability of Halite and Halites on synthetic data of varying sizes and

dimensionality. 65
4.12 Sensitivity analysis. It led to the definition of our default configuration

α = 1E − 10 and H = 4. 65
4.13 Comparing Halite and Halites with STATPC on data with cluster overlap

(best viewed in color). 66
4.14 Ground truth number of clusters versus the number of β-clusters found by

Halite over synthetic data. 68

5.1 Parallel run overview for ParC (left) and SnI (right - with sampling). . . . 75
5.2 Overview of the Multi-phase Sample-and-Ignore (SnI) Method. 78
5.3 Clustering examples for the three data partitioning approaches. 83
5.4 Merging and Stitching for the Location-based data partitioning approach. . 85
5.5 Quality versus run time for ParC using distinct data partitioning ap-

proaches (File-based, Random-based and Location-based). 89
5.6 Quality versus number r of reducers for ParC, SnI and BoW. 90
5.7 Scale-up results regarding the number of reducers r. Our method exhibits

the expected behavior: it starts with near-linear scale-up, and then flattens. 91

ix

5.8 Scale-up: our method is linear on the dataset size. Wall-clock time (average
of 10 runs) versus data size for random samples of the YahooEig dataset. 91

5.9 Results provided by BoW for real data from Twitter. Wall-clock time
versus number of reducers in log-log scale. 92

5.10 BoW’s results on the TwitterEig and on the Synthetic 100 million datasets.
Time (average of 10 runs) versus number of reducers in log-log scale. . . . 93

6.1 One example satellite image of Annapolis (USA), divided into 1, 024 (32x32)
tiles, only 4 of which are labeled with keywords (best viewed in color). . . . 96

6.2 Examples of representatives spotted in synthetic data. 100
6.3 Top-10 outliers for the example dataset in Figure 6.2a, considering the

QMAS representatives from Figure 6.2c (top). 101
6.4 The Knowledge Graph G for a toy dataset. 103
6.5 Our solution to Problem 1 – low-labor labeling and to Problem 2 – mining

and attention routing on an example satellite image (best viewed in color). 106
6.6 Time versus number of tiles for random samples of the SAT1.5GB dataset. 107
6.7 Comparison of the tested approaches using box plots – quality versus size

of the pre-labeled data. 108
6.8 Clustering results provided by QMAS for the GeoEye dataset (best viewed

in color). 109
6.9 NR = 6 representatives found by QMAS for the GeoEye dataset, colored

after their clusters (best viewed in color). 110
6.10 Top-3 outliers found by QMAS for the GeoEye dataset based on the 6

representatives of Figure 6.9 (best viewed in color). 111
6.11 Example with water: labeled data and the corresponding results of a query

for “Water” tiles (best viewed in color). 111
6.12 Example with houses: labeled data and the corresponding results of a query

for “House” tiles (best viewed in color). 112
6.13 Example with trees: labeled data and the corresponding results of a query

for “Trees” tiles (best viewed in color). 112
6.14 Example with docks: labeled data and the corresponding results of a query

for “Dock” tiles (best viewed in color). 112
6.15 Example with boats: labeled data and the corresponding results of a query

for “Boat” tiles (best viewed in color). 113
6.16 Example with roads: labeled data and the corresponding results of a query

for “Roads” tiles (best viewed in color). 113
6.17 Example with buildings: labeled data and the corresponding results of a

query for “Buildings” tiles (best viewed in color). 113

x

List of Tables

3.1 Properties of clustering algorithms well-suited to analyze moderate-to-high
dimensionality data. 32

5.1 Environmental parameters. 79
5.2 Other parameters. 79
5.3 Summary of datasets. TB: Terabytes; GB: Gigabytes. 87
5.4 Environmental parameters for M45. 88

6.1 Summary of datasets. MB: Megabytes; GB: Gigabytes. 104

7.1 Properties of methods aimed at clustering moderate-to-high dimensionality
data, including our methods Halite and BoW. 118

xi

xii

List of Abbreviations and Acronyms

Halite Method Halite for Correlation Clustering

BoW The Best of both W orlds Method

QMAS Method forQuerying, M ining And Summarizing

Multi-dimensional Databases

KDD Knowledge Discovery in Databases

DB Database

HDFS Hadoop Distributed File System

RWR Random Walk with Restart

MDL Minimum Description Length

SDSS Sloan Digital Sky Survey

API Application Programming Interface

I/O Input / Output

MBR Minimum Bounding Rectangle

MAM Metric Access Methods

CPU Central Processing Unit

PB Petabyte(s)

TB Terabyte(s)

GB Gigabyte(s)

MB Megabyte(s)

RAM Random-Access Memory

GHz Gigahertz

GBdI Databases and Images Group

USP University of São Paulo

CMU Carnegie Mellon University

xiii

xiv

List of Symbols

dS A d-dimensional space.

�
�S� A set of d-dimensional points. ��S� ⊂ dS

dS - A full d-dimensional dataset.

δ
γSk - Points of cluster δ

γCk.
δ
γSk ⊆ dS

�E� A set of axes.

E - Full set of axes for dS.

E = {e1, e2 . . . ed}, |E| = d

γEk - Axes relevant to a cluster δ
γCk.

γEk ⊆ E, |γEk| = δ

d Dimensionality of dataset dS.

η Number of points in dataset dS. η =
∣∣dS∣∣

si A point of dataset dS. si ∈ dS

sij Value in axis ej of point si. sij ∈ [0, 1)

δ
γCk A correlation cluster. δ

γCk =
〈
γEk,

δ
γSk
〉

δ Dimensionality of δγCk.

�k Number of clusters in dataset dS.

γk - Number of correlation clusters.

k - Number of clusters regardless of their types.

T A Counting-tree.

H Number of resolutions in T

h Each level of T .

ξh Side size of cells at level h in T .

ah A cell at level h in T .

α Significance level for the statistical test.

r Number of reducers for parallel run.

m Number of mappers for parallel run.

xv

Fs Database file size in bytes.

Ds Disk speed, i.e. disk transfer rate in bytes per second.

Ns Network speed, i.e. network transfer rate in bytes per second.

Dr Dispersion ratio.

Rr Reduction ratio.

Sr Sampling ratio.

start up cost(t) Start-up cost for t MapReduce tasks.

plug in cost(s) Serial clustering cost regarding the data size s.

I An input collection of complex objects.

Ii One object from I. Ii ∈ I
NI The number of objects in I. NI = |I|
L A collection of known labels.

Ll One label from L. Ll ∈ L
NL The number of labels in L. NL = |L|
NR The desired number of representatives.

NO The desired number of top outliers.

G The Knowledge Graph. G = (V,X)

V The set of vertexes in G.

X The set of edges in G.

V (Ii) Vertex that represents object Ii in G.

V (Ll) Vertex that represents label Ll in G.

c The restart probability for the random walk.

xvi

Chapter

1

Introduction

This chapter presents an overview of this Doctoral dissertation. It contains brief

descriptions of the facts that motivated the work, the problem definition, our main

objectives and the central contributions of this Ph.D. work. The following sections

describe each one of these topics.

1.1 Motivation

The information generated or collected in digital formats for various application areas

is growing not only in the number of objects and attributes, but also in the complexity

of the attributes that describe each object [Fayyad, 2007b, Fayyad et al., 1996, Kanth

et al., 1998, Korn et al., 2001, Kriegel et al., 2009, Pagel et al., 2000, Sousa, 2006]. This

scenario has prompted the development of techniques and tools aimed at, intelligently

and automatically, assisting humans to analyze, to understand and to extract knowledge

from raw data [Fayyad, 2007b, Fayyad and Uthurusamy, 1996, Sousa, 2006], molding the

research area of Knowledge Discovery in Databases – KDD.

The increasing amount of data makes the KDD tasks especially interesting, since they

allow the data to be considered as useful resources in the decision-making processes of

the organizations that own them, instead of being left unused in disks of computers,

stored to never be accessed, such as real ‘tombs of data’ [Fayyad, 2003]. On the other

hand, the increasing complexity of the data creates several challenges to the researchers,

provided that most of the existing techniques are not appropriate to analyze complex

data, such as images, audio, graphs and long texts. Common knowledge discovery tasks

are clustering, classification and labeling, identifying measurement errors and outliers,

inferring association rules and missing data, and dimensionality reduction.

1

2 1. Introduction

1.2 Problem Definition and Main Objectives

The knowledge discovery from data is a complex process that involves high computational

costs. The complexity stems from a variety of tasks that can be performed to analyze

the data and from the existence of several alternative ways to perform each task. For

example, the properties of the various attributes used to describe each data object, such

as the fact that they are categorical or continuous, the cardinality of the domains, and

the correlations that may exist between different attributes, etc., they all make some

techniques more suitable or prevent the use of others. Thus, the analyst must face a wide

range of options, leading to a high complexity in the task of choosing appropriate mining

strategies to be used for each case.

The high computational cost comes from the need to explore several data elements

in different combinations to obtain the desired knowledge. Traditionally, the data to be

analyzed are represented as numerical or categorical attributes in a table where each tuple

describes an element in the set. The performance of the algorithms that implement the

various tasks of data analysis commonly depend on the number of elements in the set,

on the number of attributes in the table, and on the different ways in which both tuples

and attributes interact with their peers. Most algorithms exhibit super-linear complexity

regarding these factors, and thus, the computational cost increases fast with increasing

amounts of data.

The discovery of knowledge from complex data, such as images, audio, graphs and

long texts, usually includes a preprocessing step, when relevant features are extracted

from each object. The features extracted must properly describe and identify each object,

since they are actually used in search and comparison operations, instead of the complex

object itself. Many features are commonly used to represent each object. The resulting

collection of features is named the feature vector.

This Ph.D. work aims at the development of knowledge discovery techniques

well-suited to analyze large collections of complex objects described exclusively by their

feature vectors, especially for the task of clustering, tightly associated to other data mining

tasks that are performed together. Thus, we have explored the following thesis:

Thesis: Although the same tasks commonly performed for traditional data are generally

also necessary for the analysis of feature vectors from complex objects, the complexity of

the analysis and the computational cost associated increase significantly, preventing the use

of most of the traditional techniques. Thus, knowledge discovery techniques well-suited to

analyze large, complex datasets described exclusively by feature vectors need to be created.

As specific properties of feature vectors can be taken into account, it is possible to reduce

the complexity and the computational cost involved, which, in the case of high dimensional

vectors, are naturally higher than those involved in traditional data.

1.3 Main Contributions of this Ph.D. Work 3

Therefore, this work is focused on developing techniques well-suited to analyze large

collections of complex objects represented exclusively by their feature vectors, automat-

ically extracted by preprocessing algorithms. Nevertheless, the proposed techniques can

be applied to any kind of complex data, from which sets of numerical attributes of equal

dimensionalities can be extracted. Thus, the analysis of multi-dimensional datasets is the

scope of our work. The definitions related to this kind of data, which are used throughout

this Doctoral dissertation, are presented as follows.

Definition 1 A multi-dimensional dataset dS = {s1, s2, . . . sη} is a set of η points

in a d-dimensional space dS, dS ⊂ dS, over the set of axes E = {e1, e2, . . . ed}, where d

is the dimensionality of the dataset, and η is its cardinality.

Definition 2 A dimension (also called a feature or an attribute) ej ∈ E is an axis of

the space where the dataset is embedded. Every axis related to a dataset must be orthogonal

to the other axes.

Definition 3 A point si ∈ dS is a vector si = (si1, si2, . . . sid) that represents a data

element in the space dS. Each value sij ∈ si is a number in R. Thus, the entire dataset

is embedded in the d-dimensional hyper-cube Rd.

1.3 Main Contributions of this Ph.D. Work

With regard to the task of clustering large sets of complex data, an analysis of the

literature (see the upcoming Chapter 3) leads us to come to one main conclusion. In

spite of the several qualities found in the existing works, to the best of our knowledge,

there is no method published in the literature, and well-suited to look for clusters

in sets of complex objects, that has any of the following desirable properties: (i)

linear or quasi-linear complexity – to scale linearly or quasi-linearly in terms of

memory requirement and execution time with regard to increasing numbers of points

and axes, and; (ii) Terabyte-scale data analysis – to be able to handle datasets

of Terabyte-scale in feasible time. On the other hand, examples of applications with

Terabytes of high-dimensionality data abound: weather monitoring systems and climate

change models, where we want to record wind speed, temperature, rain, humidity,

pollutants, etc; social networks like Facebook TM, with millions of nodes, and several

attributes per node (gender, age, number of friends, etc); astrophysics data, such as the

SDSS (Sloan Digital Sky Survey), with billions of galaxies and attributes like red-shift,

diameter, spectrum, etc. Therefore, the development of novel algorithms aimed at

overcoming these two aforementioned limitations is nowadays extremely desirable.

This Doctoral dissertation focuses on overcoming both limitations. Specifically, it

presents three novel, fast and scalable data mining algorithms well-suited to analyze large

sets of complex data:

4 1. Introduction

1. The Method Halite for Correlation Clustering: the algorithm Halite is a fast

and scalable density-based clustering algorithm for multi-dimensional data able to

analyze large collections of complex data elements. It creates a multi-dimensional

grid all over the data space and counts the number of points lying at each hyper-cubic

cell provided by the grid. A hyper-quad-tree-like structure, called the Counting-tree,

is used to store the counts. The tree is thereafter submitted to a filtering process

able to identify regions that are, in a statistical sense, denser than its neighboring

regions regarding at least one dimension, which leads to the final clustering result.

The algorithm is fast and it has linear or quasi-linear time and space complexity

regarding both the data size and the dimensionality. Therefore, Halite tackles the

problem of linear or quasi-linear complexity.

2. The Method BoW for Clustering Terabyte-scale Datasets: the method

BoW focuses on the problem of finding clusters in Terabytes of moderate-to-high

dimensionality data, such as features extracted from billions of complex data

elements. In these cases, a serial processing strategy is usually impractical. Just

to read a single Terabyte of data (at 5GB/min on a single modern eSATA disk)

one takes more than 3 hours. BoW explores parallelism and can treat as plug-in

almost any of the serial clustering methods, including our own algorithm Halite.

The major research challenges addressed are (a) how to minimize the I/O cost,

taking care of the already existing data partition (e.g., on disks), and (b) how to

minimize the network cost among processing nodes. Either of them may become

the bottleneck. Our method automatically spots the bottleneck and chooses a good

strategy, one of them uses a novel sampling-and-ignore idea to reduce the network

traffic. Specifically, BoW combines (a) potentially any serial algorithm used as a

plug-in and (b) makes the plug-in run efficiently in parallel, by adaptively balancing

the cost for disk accesses and network accesses, which allows BoW to achieve a very

good tradeoff between these two possible bottlenecks. Therefore, BoW tackles the

problem of Terabyte-scale data analysis.

3. The Method QMAS for Labeling and Summarization: the algorithm QMAS

uses the background knowledge provided by the clustering algorithms designed in

this Ph.D. work to focus on two distinct data mining tasks – the tasks of labeling and

summarizing large sets of complex data. Specifically, QMAS is a fast and scalable

solution to two problems (a) low-labor labeling – given a large collection of complex

objects, very few of which are labeled with keywords, find the most suitable labels

for the remaining ones, and (b) mining and attention routing – in the same setting,

find clusters, the top-NO outlier objects, and the top-NR representative objects.

The algorithm is fast and it scales linearly with the data size, besides working even

with tiny initial label sets.

1.4 Conclusions 5

Our algorithms were evaluated on real, very large datasets with up to billions of

complex elements, and they always presented highly accurate results, being at least one

order of magnitude faster than the fastest related works in almost all cases. The real

life data used come from the following applications: automatic breast cancer diagnosis,

satellite imagery analysis, and graph mining on a large web graph crawled by Yahoo!1 and

also on the graph with all users and their connections from the Twitter2 social network. In

extreme cases, the work presented in this Doctoral dissertation allowed us to spot in only

two seconds the clusters present in a large set of satellite images, while the related works

took two days to perform the same task, achieving similar accuracy. Such results indicate

that our algorithms allow the development of real time applications that, potentially,

could not be developed without this Ph.D. work, like a software to aid on the fly the

diagnosis process in a worldwide Healthcare Information System, or a system to look for

deforestation within the Amazon Rainforest in real time.

1.4 Conclusions

This chapter presented an overview of this Doctoral dissertation with brief descriptions

of the facts that motivated the work, the problem definition, our main objectives and

the central contributions of this Ph.D. work. The remaining chapters are structured as

follows. In Chapter 2, an analysis of the literature is presented, including a description

of the main concepts used as a basis for the work. Some of the relevant works found

in literature for the task of clustering multi-dimensional data with more than five or so

dimensions are described in Chapter 3. Chapters 4, 5 and 6 contain the central part

of this Doctoral dissertation. They present the knowledge discovery techniques designed

during this Ph.D. work, as well as the experiments performed. Finally, the conclusions

and ideas for future work are given in Chapter 7.

1 www.yahoo.com
2 twitter.com

6 1. Introduction

Chapter

2

Related Work and Concepts

This chapter presents the main background knowledge related to the doctoral project. The

first two sections describe the areas of processing complex data and knowledge discovery

in traditional databases. The task of clustering complex databases is discussed in Section

2.3, while the task of labeling such kind of data is described in Section 2.4. Section 2.5

introduces the MapReduce framework, a promising tool for large scale data analysis, which

has been proven to offer a valuable support to the execution of data mining algorithms

in a parallel processing environment. The last section concludes the chapter.

2.1 Processing Complex Data

Database systems work efficiently with traditional numeric or textual data, but they

usually do not provide complete support for complex data, such as images, videos, audio,

graphs, long texts, fingerprints, geo-referenced data, among others. However, efficient

methods for storing and retrieving complex data are increasingly needed [Mehrotra et al.,

1997]. Therefore, many researchers have been working to make database systems more

suited to complex data processing and analysis.

The most common strategy is the manipulation of complex data based on features ex-

tracted automatically or semi-automatically from the data. This involves the application

of techniques that aim at obtaining a set of features (the feature vector) to describe the

complex element. Each feature is typically a value or an array of numerical values. The

vector resulting from this process should properly describe the complex data, because

the mining algorithms rely only on the extracted features to perform their tasks. It is

common to find vectors containing hundreds or even thousands of features.

7

8 2. Related Work and Concepts

For example, the extraction of features from images is usually based on the analysis

of colors, textures, objects’ shapes and their relationship. Due to its simplicity and low

computational cost, the most used color descriptor is the histogram, that counts the

numbers of pixels of each color in an image [Long et al., 2002]. The color coherence

vector [Pass et al., 1996], the color correlogram [Huang et al., 1997], the metric histogram

[Traina et al., 2003] and the cells histogram [Stehling et al., 2003] are other well-known

color descriptors. Texture corresponds to the statistical distribution of how the color varies

in the neighborhood of each pixel of the image. Texture analysis is not a trivial task and

it usually leads to higher computational costs than the color analysis does. Statistical

methods [Duda et al., 2001, Rangayyan, 2005] analyze properties, such as granularity,

contrast and periodicity to differentiate textures, while syntactic methods [Duda et al.,

2001] perform this task by identifying elements in the image and analyzing their spatial

arrangements. Co-occurrence matrices [Haralick et al., 1973], Gabor [Daugman, 1985,

Rangayyan, 2005] and wavelet transforms [Chan and Shen, 2005] are examples of such

methods. The descriptors of shapes commonly have the highest computational costs

compared to the other descriptors, and therefore, they are used mainly in specific

applications [Pentland et al., 1994]. There are two main techniques to detect shapes:

the geometric methods of edge detection [Blicher, 1984, Rangayyan, 2005], which analyze

length, curvature and signature of the edges, and the scalar methods for region detection

[Sonka et al., 1998], which analyze the area, “eccentricity”, and “rectangularity”.

It is possible to say that, besides the feature extraction process, there are still two

main problems to be addressed in order to allow efficient management of complex data.

The first is the fact that the extractors usually generate many features (hundreds or

even thousands). As described in the upcoming Section 2.2, it impairs the data storage

and retrieval techniques due to the “curse of dimensionality” [Beyer et al., 1999, Korn

et al., 2001, Kriegel et al., 2009, Moise et al., 2009, Parsons et al., 2004]. Therefore,

dimensionality reduction techniques are vital to the success of strategies for indexing,

retrieving and analyzing complex data. The second problem stems from the need to

compare complex data by similarity, because it usually does not make sense to compare

them by equality, as it is commonly done for traditional data [Vieira et al., 2004].

Moreover, the total ordering property does not hold among complex data elements -

one can only say that two elements are equal or different, since there is no explicit rule

to sort the elements. This fact distinguishes complex data elements even more from the

traditional elements. The access methods based on the total ordering property do not

support queries involving comparisons by similarity. Therefore, a new class of access

methods was created, known as the Metric Access Methods (MAM), aimed at allowing

searches by similarity. Examples of such methods are the M-tree [Ciaccia et al., 1997], the

Slim-tree [Traina Jr. et al., 2000], the DF-tree [Traina Jr. et al., 2002] and the DBM-tree

2.2 Knowledge Discovery in Traditional Data 9

[Vieira et al., 2004], which are considered to be dynamic methods, since they allow data

updates without the need to rebuild the structure.

The main principle for these techniques is the representation of the data in a metric

space. The similarity between two elements is calculated by a distance function acting as

a metric applied to the pair of elements in the same domain. The definitions of a metric

space and the main types of queries applied to it are as follows.

Definition 4 A metric space is defined as a pair 〈S,m〉, where S is the data domain

and m : S × S → R+ a distance function acting as a metric. Given any s1, s2, s3 ∈ S,

this function must respect the following properties: (i) symmetry, m(s1, s2) = m(s2, s1);

(ii) non-negativity, 0 < m(s1, s2) < ∞,∀ s1 6= s2; (iii) identity, m(s1, s1) = 0; and (iv)

triangle inequality, m(s1, s2) ≤ m(s1, s3) +m(s3, s2),∀ s1, s2, s3 ∈ S.

Definition 5 A range query in a metric space receives as input an object s1 ∈ S and

one specific range ε. It returns all objects si, provided that m(si, s1) ≤ ε, based on the

distance function m.

Definition 6 A k nearest neighbor query in a metric space receives as input an object

s1 ∈ S and an integer value k ≥ 1. It returns the set of the k objects closest to s1, based

on the distance function m.

One particular type of metric space is the d-dimensional space, for which a distance

function is defined, denoted as
〈
dS,m

〉
. This case is especially interesting for this Doctoral

dissertation, since it allows posing similarity queries over complex objects represented by

feature vectors of equal cardinality in a multi-dimensional dataset.

2.2 Knowledge Discovery in Traditional Data

The task of Knowledge Discovery in Databases - KDD is defined as: “The nontrivial

process of identifying valid, novel, potentially useful, and ultimately understandable

patterns in data.” [Fayyad et al., 1996]. This process is commonly partitioned into three

steps: Preprocessing, Mining and Result Evaluation [Rezende, 2002]. In order to obtain

high-level information from raw data, the data to be analyzed is usually represented as a

set of points in a d-dimensional space for which a distance function acting as a metric is

specified, as described in Section 2.1. The attributes of the dataset indicate dimensions

and the data objects represent points in the space, while the similarity between pairs of

objects is measured in terms of the respective distance function applied to the data space.

With the increasing quantity and complexity of the data generated or collected in

digital systems, the task of Preprocessing has become essential to the whole KDD process

[Sousa et al., 2007]. In this step, the data are reduced and prepared by cleaning,

integrating, selecting and transforming the objects to the subsequent mining step. A

10 2. Related Work and Concepts

major problem to be minimized is the “curse of dimensionality” [Beyer et al., 1999,

Korn et al., 2001, Kriegel et al., 2009, Moise et al., 2009, Parsons et al., 2004], a term

referring to the fact that increasing the number of attributes in the objects quickly leads to

significant degradation of the performance and accuracy of existing techniques to access,

store and process data. This occurs because data represented in high dimensional spaces

tend to be extremely sparse and all the distances between any pair of points tend to

be very similar, with respect to various distance functions and data distributions [Beyer

et al., 1999, Kriegel et al., 2009, Parsons et al., 2004]. Dimensionality reduction is the

most common technique applied to minimize this problem. It aims at obtaining a set of

relevant and non-correlated attributes that allow representing the data in a space of lower

dimensionality with minimum loss of information. The existing approaches are: feature

selection, which discards among the original attributes, the ones that contribute with less

information to the data objects; and feature extraction, which creates a reduced set of

new features, formed by linear combinations of the original attributes, able to represent

the data with little loss of information [Dash et al., 1997].

The mining task is a major step in the KDD process. It involves the application

of data mining algorithms chosen according to the goal to be achieved. Such tasks are

classified as: predictive tasks, which seek a model to predict the value of an attribute

based on the values of other attributes, by generalizing known examples, and descriptive

tasks, which look for patterns that describe the intrinsic data behavior [Sousa, 2006].

Classification is a major predictive mining task. It considers the existence of a training

set with records classified according to the value of an attribute (target attribute or class)

and a test set, in which the class of each record is unknown. The main goal is to predict

the values of the target attribute (class) in the database records to be classified. The

algorithms perform data classification by defining rules to describe correlations between

the class attribute and the others. Examples of such algorithms are genetic algorithms

[Ando and Iba, 2004, Zhou et al., 2003] and algorithms based on decision trees [Breiman

et al., 1984], on neural networks [Duda et al., 2000] or on the Bayes theorem (Bayesian

classification) [Zhang, 2004].

Clustering is an important descriptive task. It is defined as: “The process of grouping

the data into classes or clusters, so that objects within a cluster have high similarity

in comparison to one another but are very dissimilar to objects in other clusters.”

[Han and Kamber, 2006]. Traditional clustering algorithms are commonly divided into:

(i) hierarchical algorithms, which define a hierarchy between the clusters in a process

that may be initiated with a single cluster, recursively partitioned in follow-up steps

(top-down), or considering at first that each data object belongs to a distinct cluster,

recursively merging the clusters latter (bottom-up); or (ii) partitioning algorithms, which

divide η objects into k clusters, k ≤ η, such that each object belongs to at most one cluster

and each cluster contains at least one object. Examples of well-known clustering methods

2.3 Clustering Complex Data 11

are k-Means [Lloyd, 1982, MacQueen, 1967, Steinhaus, 1956], k-Harmonic Means [Zhang

et al., 2000], DBSCAN [Ester et al., 1996] and STING [Wang et al., 1997].

The last step in the process of knowledge discovery is the result evaluation. At this

stage, the patterns discovered in the previous step are interpreted and evaluated. If

the patterns refer to satisfactory results (valid, novel, potentially useful and ultimately

understandable), the knowledge is consolidated. Otherwise, the process returns to a

previous stage to improve the results.

2.3 Clustering Complex Data

Complex data are usually represented by vectors with hundreds or even thousands of

features in a multi-dimensional space, as described in Section 2.1. Each feature represents

a dimension of the space. Due to the curse of dimensionality, traditional clustering

methods, such as k-Means [Lloyd, 1982, MacQueen, 1967, Steinhaus, 1956], k-Harmonic

Means [Zhang et al., 2000], DBSCAN [Ester et al., 1996] and STING [Wang et al., 1997],

are commonly inefficient and ineffective for these data [Aggarwal and Yu, 2000, Aggarwal

et al., 1999, Agrawal et al., 1998, 2005]. The main factor that leads to their inefficiency

is that they often have super-linear computational complexity on both cardinality and

dimensionality. Traditional methods are also often ineffective, when applied to high

dimensional data, as the data tend to be very sparse in the multi-dimensional space

and the distances between any pair of points usually become very similar to each other,

regarding several data distributions and distance functions [Beyer et al., 1999, Kriegel

et al., 2009, Moise et al., 2009, Parsons et al., 2004]. Thus, traditional methods do not

solve the problem of clustering large, complex datasets [Aggarwal and Yu, 2000, Aggarwal

et al., 1999, Agrawal et al., 1998, 2005, Domeniconi et al., 2007, Kriegel et al., 2009, Moise

et al., 2009, Parsons et al., 2004, Tung et al., 2005].

Dimensionality reduction methods minimize the effects of the dimensionality curse

by finding a new set of orthogonal dimensions, of cardinality smaller than the original

set’s one, composed of non-correlated dimensions relevant to characterize the data. The

elements of this set can be original dimensions, in the case of feature selection methods,

or linear combinations of them, for feature extraction methods. Notice however that

only global correlations are identified by such methods. In other words, dimensionality

reduction methods look for correlations that occur for all dataset elements regarding a

set of dimensions. Nevertheless, high dimensional data often present correlations local

to subsets of the data elements and dimensions [Domeniconi et al., 2007, Tung et al.,

2005]. Thus, distinct groups of data points correlated with different sets of dimensions

may exist. Many of these correlations can also be non-linear. Therefore, it is clear that

traditional dimensionality reduction techniques do not identify all possible correlations,

as they evaluate correlations in the entire dataset, and thus, when used as a preprocessing

12 2. Related Work and Concepts

step for traditional clustering, they do not solve the problem of clustering large, complex

datasets. [Aggarwal and Yu, 2000, Aggarwal et al., 1999, Agrawal et al., 1998, 2005,

Domeniconi et al., 2007].

Since high dimensional data often present correlations local to subsets of elements

and dimensions, the data are likely to present clusters that only exist in subspaces of

the original data space. In other words, although high dimensional data usually do not

present clusters in the space formed by all dimensions, the data tend to form clusters when

the points are projected into subspaces generated by reduced sets of original dimensions

or linear combinations of them. Moreover, different clusters may be formed in distinct

subspaces. Several recent studies support this idea and a recent survey on this area is

presented at [Kriegel et al., 2009].

Figure 2.1 exemplifies the existence of clusters in subspaces of four 3-dimensional

databases over the axes E = {x, y, z}. Figure 2.1a shows a 3-dimensional dataset

projected onto axes x and y, while Figure 2.1b shows the same dataset projected onto axes

x and z. There exist two clusters in this data, C1 and C2. None of the clusters present

a high density of points in the 3-dimensional space, but each cluster is a dense, elliptical

object in one subspace. Thus, the clusters exist in subspaces only. Cluster C1 exists in the

subspace formed by axes x and z, while cluster C2 exists in the subspace {x, y}. Besides

elliptical clusters, real data may have clusters that assume any shape in their respective

subspaces. The clusters must only be dense in that subspace. To illustrate this fact, we

present ‘star-shaped’ and ‘triangle-shaped’ clusters in another dataset (Figure 2.1c: x-y

projection; Figure 2.1d: x-z projection) and ‘curved’ clusters in one third example dataset

(Figure 2.1e: x-y projection; Figure 2.1f: x-z projection).

Such clusters may also exist in subspaces formed by linear combinations of original

axes. That is, clusters like the ones in our previous examples may be arbitrarily rotated

in the space, thus not being aligned to the original axes. For example, Figures 2.1g and

2.1h respectively plot x-y and x-z projections of one last 3-dimensional example dataset.

Similarly to clusters C1 and C2, the clusters in this data are also dense, elliptical objects in

subspaces, but, in this case, the subspaces are planes generated by linear combinations of

the axes {x, y, z}. Traditional clustering is likely to fail when analyzing this data, as each

cluster is spread over an axis (generated by linear combinations of the original axes) in the

3-dimensional space. Also, dimensionality reduction applied to the entire dataset does not

help, as no 1- or 2-dimensional projection, axis aligned or not, keeps the clusters apart.

This problem tends to be even worse in spaces of higher dimensionality. In fact, there is an

interdependence between traditional clustering and dimensionality reduction that prevents

them from solving the problem of clustering complex data. It is a fact that traditional

clustering depends on a prior dimensionality reduction to analyze this kind of data. On

the other hand, dimensionality reduction treats only global correlations, the ones that

happen with regard to all data elements. Correlations local to subsets of the data cannot

2.3 Clustering Complex Data 13

x

y

C1

(a)

C2

x

z

(b)

C1

C2
Example Dataset 1

x

y

(e)
x

z

(f)

C5
C6

C5

C6

Example Dataset 3

x

z

(d)
x

y

(c)

C3

C4 C3

C4

Example Dataset 2

x

z

(h)

C7

C8

x

y

(g)

C7

C8

Example Dataset 4

Figure 2.1: x-y and x-z projections of four 3-dimensional datasets over axes {x, y, z}.
From (a) to (f): clusters in the subspaces {x, y} and {x, z}. (g) and (h):
clusters in subspaces formed by linear combinations of {x, y, z}.

be identified without knowing the respective subsets. In other words, clustering complex

data is not possible due to the high dimensionality, but the dimensionality reduction is

incomplete without the prior knowledge of the data clusters where local correlations occur.

The most common strategy used to untangle this knotty problem is to unify both

tasks, clustering and dimensionality reduction, creating a single task. Several methods

have used this idea in order to look for clusters together with the subspaces where the

clusters exist. According to a recent survey [Kriegel et al., 2009], such methods differ

from each other in two major aspects: (i) the search strategy used in the process, which

can be top-down or bottom-up, and (ii) the characteristics of the clusters sought.

The Bottom-up algorithms usually rely on a property named downward closure or

monotonicity. This property, valid for some criteria of clustering characterization,

warrants that: if there is at least one cluster in a d-dimensional dataset, at least one

cluster will stand out when the data are projected into each of the possible subspaces

formed by the original dimensions [Agrawal et al., 2005, Kriegel et al., 2005, 2009, Parsons

et al., 2004]. As an example, this property is valid when the criterion used for clustering

characterization is the minimum density threshold. By this criterion, a part of the data

space contains a cluster if its density of points meet or exceed the specified minimum

bound. The density of points never reduces when data are projected onto subspaces of

the original space. Thus, if there is one part of a d-dimensional space, whose density

of points is sufficient to characterize a cluster, it is possible to affirm that at least one

14 2. Related Work and Concepts

cluster will stand out, i.e. at least one space region will be dense enough, when the data

are projected into any subspace formed by the original dimensions.

Based on a clustering characterization criterion in which the downward closure

property applies, bottom-up algorithms assume that: if a cluster exists in a space of

high dimensionality, it has to exist or to be part of some cluster in all subspaces of

lower dimensionality formed by original dimensions [Agrawal et al., 2005, Kriegel et al.,

2009, Parsons et al., 2004]. These methods start analyzing low dimensional subspaces,

usually 1-dimensional ones, in order to identify the subspaces that contain clusters. The

subspaces selected are then united in a recursive procedure that allows the identification of

subspaces of higher dimensionality in which clusters also exist. Various techniques are used

to spot and to prune subspaces without clusters so that they are ignored in the process,

minimizing the computational cost involved, but, in general, the main shortcomings of

bottom-up methods are: (i) they often have super-linear computational complexity or even

exponential complexity regarding the dimensionality of the subspaces analyzed, and (ii)

fixed density thresholds are commonly used, assuming that clusters in high dimensional

spaces are as dense as clusters in subspaces of smaller dimensionality, which is unlikely to

be true in several cases.

The Top-down algorithms assume that the analysis of the space with all dimensions

can identify patterns that lead to the discovery of clusters existing in lower dimensional

subspaces only [Parsons et al., 2004]. This assumption is known in literature as the locality

assumption [Kriegel et al., 2009]. After identifying a pattern, the distribution of points

surrounding the pattern in the space with all dimensions is analyzed to define whether

or not the pattern refers to a cluster and the subspace in which the possible cluster is

better characterized. The main drawbacks of top-down algorithms are: (i) they often have

super-linear computational complexity, though not exponential complexity, with regard

to the data dimensionality, and; (ii) there is no guarantee that the analysis of the data

distribution in the space with all dimensions is always sufficient to identify clusters that

exist in subspaces only.

Clustering algorithms for high dimensional data also differ from each other in the

characteristics of the clusters that they look for. Some algorithms look for clusters that

form a dataset partition, together with a set of outliers, while other algorithms partition

the database regarding specific subspaces, so that the same data element can be part of

two or more clusters that overlap with each other in the space with all dimensions, as

long as the clusters are formed in different subspaces [Parsons et al., 2004]. Finally, the

subspaces analyzed by these methods may be limited to subsets of the original dimensions

or may not be limited to them, thus including subspaces formed by linear combinations

of the original dimensions [Kriegel et al., 2009].

Subspace clustering algorithms aim at analyzing projections of the dataset into

spaces formed by subsets of the original dimensions only. Given a subspace and its

2.4 Labeling Complex Data 15

corresponding data projection, these algorithms operate similarly to traditional clustering

algorithms, partitioning the data into disjoint sets of elements, named subspace clusters,

and a set of outliers. A data point can belong to more than one subspace cluster, as long

as the clusters exist in different subspaces. Therefore, subspace clusters are not necessarily

disjoint. Examples of subspace clustering algorithms are: CLIQUE [Agrawal et al., 1998,

2005], ENCLUS [Cheng et al., 1999], SUBCLU [Kailing et al., 2004], FIRES [Kriegel et al.,

2005], P3C [Moise et al., 2006, 2008] and STATPC [Moise and Sander, 2008].

Projected clustering algorithms aim at partitioning the dataset into disjoint sets

of elements, named projected clusters, and a set of outliers. A subspace formed by

the original dimensions is assigned to each cluster, and the cluster elements are densely

grouped, when projected into the respective subspace. Examples of projected clustering

algorithms in literature are: PROCLUS [Aggarwal et al., 1999], DOC/FASTDOC

[Procopiuc et al., 2002], PreDeCon [Bohm et al., 2004], COSA [Friedman and Meulman,

2004], FINDIT [Woo et al., 2004], HARP [Yip and Ng, 2004], EPCH [Ng and Fu, 2002, Ng

et al., 2005], SSPC [Yip et al., 2005], P3C [Moise et al., 2006, 2008] and LAC [Al-Razgan

and Domeniconi, 2006, Domeniconi et al., 2004, 2007].

Correlation clustering algorithms aim at partitioning the database in a manner

analogous to what occurs with projected clustering techniques - to identify disjoint clusters

and a set of outliers. However, the clusters identified by such methods, named correlation

clusters, are composed of densely grouped elements in subspaces formed by the original

dimensions of the database, or by their linear combinations. Examples of correlation

clustering algorithms found in literature are: ORCLUS [Aggarwal and Yu, 2002, 2000],

4C [Bohm et al., 2004], CURLER [Tung et al., 2005], COPAC [Achtert et al., 2007]

and CASH [Achtert et al., 2008]. Notice that, to the best of our knowledge, CURLER

is the only method found in literature that spots clusters formed by non-linear, local

correlations, besides the ones formed by linear, local-correlations.

2.4 Labeling Complex Data

In this section, we assume that the clustering algorithms aimed at analyzing complex data,

such as the ones cited in the previous section, can also serve as a basis to perform one

distinct data mining task – the task of labeling large sets of complex objects, as we will

discuss in the upcoming Chapter 6. For that reason, the following paragraphs introduce

some background knowledge related to the task of labeling complex data, i.e., the task

of analyzing a given collection of complex objects, in which a few objects have labels, in

order to spot appropriate labels for the remaining majority.

Specifically, the task of labeling is one predictive data mining task that considers the

existence of a training set containing records labeled with keywords and a test set, in which

the labels of each record are unknown. Its main goal is to assign appropriate keywords to

16 2. Related Work and Concepts

the database records to be labeled. Unlike other data mining tasks, the task of labeling

is not completely defined in the literature and slight conceptual divergences exist in the

definitions provided by distinct authors, while some authors consider that labeling is one

type of classification or use other names to refer to it (e.g., captioning). In this Ph.D.

work, we consider that labeling refers to a generalized version of the classification task, in

which the restriction of mandatorily assigning one and only one label to every data object

does not exist. Specifically, we assume that labeling generalizes the task of classification

with regard to at most three aspects: (i) it may consider that the dataset commonly

contains objects that differ too much from the labeled training examples, which should

be returned to the user as outliers that potentially deserve a new label of their own; (ii)

it may allow any object to receive more than one appropriate label; and (iii) it may use

hierarchies of labels, in a way that each object can be assigned to entire paths in the

hierarchy, instead of being linked to individual labels only.

Regarding complex data, labeling has been mostly applied to image datasets and also

to sets of image regions segmented or arbitrarily extracted from larger images. There is

an extensive body of work on the labeling of unlabeled regions extracted from partially

labeled images in the computer vision field, such as image segmentation and region

classification [Lazebnik and Raginsky, 2009, Shotton et al., 2006, Torralba et al., 2008].

The Conditional Random Fields (CRF) and boosting approach [Shotton et al., 2006] shows

a competitive accuracy for multi-label labeling and segmentation, but it is relatively slow

and requires many training examples. The KNN classifier [Torralba et al., 2008] may be

the fastest way for image region labeling, but it is not robust against outliers. Also, the

Empirical Bayes approach [Lazebnik and Raginsky, 2009] proposes to learn contextual

information from unlabeled data. However, it may be difficult to learn the context from

several types of complex data, such as from satellite images.

The Random Walk with Restart (RWR) [Tong et al., 2008] algorithm has served as

a basis to other labeling methods. The idea is to perform labeling by creating a graph

to represent the input complex objects to be labeled, the given example labels and the

similarities existing between the objects. Then, random walks in this graph allow spotting

the most appropriate labels for the remaining unlabeled objects. In general, RWR consists

into performing walks in a graph according to the following strategy: a random walker

starts a walk from a vertex V of the graph, and, at each time step, the walker either goes

back to the initial vertex V , with a user-defined probability c, or it goes to a randomly

chosen vertex that shares an edge with the current vertex, with probability 1 − c. The

intuition is that this procedure provides an appropriate relevance score between two graph

nodes, since the steady state probability that a random walker will find itself in a vertex

V ′, always restarting the walk from a vertex V , is a way to measure the closeness between

V and V ′. For labeling, RWR is commonly used to measure the closeness between the

graph nodes that represent data objects and the ones that represent keywords.

2.5 MapReduce 17

GCap [Pan et al., 2004] is one of the most famous labeling methods that uses random

walks with restarts as a basis. GCap proposes a graph-based strategy for automatic

image labeling, which can also be applied to any set of multimedia objects. It represents

images and label keywords by multiple layers of nodes in a graph and captures the

similarities between pairs of images by creating edges to link the nodes that refer to similar

images. The known labels become links between the respective images and keywords.

This procedure creates a tri-partite graph that represents the input images and labels,

besides the existing similarities between the images. Given an image node of interest,

random walks with restarts (RWR) are used to perform proximity queries in this graph,

allowing GCap to automatically find the best annotation keyword for the respective image.

Unfortunately, GCap remains rather inefficient, since it searches for the nearest neighbors

of every image in the image feature space to create edges between similar image nodes,

and this operation is super-linear even with the speed up offered by many approximate

nearest-neighbor finding algorithms (e.g., the ANN Library [Mount and Arya]).

2.5 MapReduce

The large amounts of data collected by the enterprises are accumulating data, and today

it is already feasible to have Terabyte- or even Petabyte-scale datasets that must be

submitted for data mining processes (e.g., Twitter crawl: > 12 TB, Yahoo! operational

data: 5 Petabytes [Fayyad, 2007a]), such as the processes of clustering and labeling

complex data. However, the use of serial data mining algorithms, like the ones described

in the previous sections, to analyze such huge amounts of data is clearly an impractical

task. Just to read a single Terabyte of data (at 5GB/min on a single modern eSATA

disk) one takes more than 3 hours. Therefore, to improve the existing serial data mining

methods in order to make them run efficiently in parallel is nowadays extremely desirable.

With that in mind, this section describes the MapReduce framework, a promising tool for

large-scale, parallel data analysis, which has been proving to offer a valuable support to

the execution of data mining algorithms in a parallel processing environment.

MapReduce is a programming framework [Dean and Ghemawat, 2004] fostered by

Google1 to process large-scale data in a massively parallel way. MapReduce has two

major advantages: the programmer is oblivious of the details related to the data storage,

distribution, replication, load balancing, etc.; and furthermore, it adopts the familiar

concept of functional programming. The programmer needs to specify only two functions,

a map and a reduce. The typical framework is as follows [Lämmel, 2008]: (a) the map

stage passes over the input file and outputs (key, value) pairs; (b) the shuffling stage

transfers the mappers output to the reducers based on the key; (c) the reduce stage

processes the received pairs and outputs the final result. Due to its scalability, simplicity

1 www.google.com

18 2. Related Work and Concepts

and the low cost to build large clouds of computers, MapReduce is a very promising tool

for large scale, parallel data analysis, which has already being reflected in the academia

(e.g., [Papadimitriou and Sun, 2008] [Kang et al., 2009] [Kang et al., 2010]).

Hadoop is the open source implementation of MapReduce. Hadoop provides the Hadoop

Distributed File System (HDFS) [Had], HBase [Wiki], which is a way to efficiently store

and handle semi-structured data as Google’s BigTable storage system [Chang et al., 2006],

and PIG, a high level language for data analysis [Olston et al., 2008].

2.6 Conclusions

In this chapter we presented an overview of the concepts that are the basis for the

development of this Doctoral dissertation. We described the research areas of processing

complex data and knowledge discovery in traditional databases, besides the main factors

that distinguish the tasks of traditional clustering and clustering complex data. The task

of labeling large sets of complex objects was also discussed. Finally, we introduced the

MapReduce framework, a promising tool for large scale data analysis, which has been

proving to offer a valuable support to the execution of data mining algorithms in a

parallel processing environment. The next chapter describes some of the most relevant

clustering methods available in literature for multi-dimensional data with more than five

or so dimensions, which look for clusters formed by local correlations.

Chapter

3

Clustering Methods for

Moderate-to-High Dimensionality Data

Traditional clustering methods are usually inefficient and ineffective over data with more

than five or so dimensions. In Section 2.3, we discuss the main reasons that lead to

this fact. It is also mentioned that the use of dimensionality reduction methods does

not solve the problem, since it allows one to treat only the global correlations in the

data. Correlations local to subsets of the data cannot be identified without the prior

identification of the data clusters where they occur. Thus, algorithms that combine

dimensionality reduction and clustering into a single task have been developed to look

for clusters together with the subspaces of the original space where they exist. Some of

these algorithms are described in this chapter. Specifically, we first present a brief survey

on the existing algorithms, and later we detail four of the most relevant ones. Then, in

order to help one to evaluate and to compare the algorithms, we conclude the chapter by

presenting a table to link some of the most relevant techniques with the main desirable

properties that any clustering technique for moderate-to-high dimensionality data should

have. The general goal of the chapter is to identify the main strategies already used to

deal with the problem, besides the key limitations of the existing techniques.

Remark: the concepts considered by each technique are not equal, in spite of being

similar in several cases, and thus, slight conceptual divergences are contemplated by the

original notation. To avoid conflicts in the concepts, this chapter describes each algorithm

following the original notation used by its authors. Consequently, the list of symbols shown

at the beginning of this Doctoral dissertation should be disregarded in this chapter.

19

20 3. Clustering Methods for Moderate-to-High Dimensionality Data

3.1 Brief Survey

CLIQUE [Agrawal et al., 1998, 2005] was probably the first technique aimed at finding

clusters in subspaces of multi-dimensional data. It uses a bottom-up approach, dividing

1-dimensional data projections into a user-defined number of partitions and merging

dense partitions to spot clusters in subspaces of higher dimensionality. CLIQUE scales

exponentially regarding the cluster dimensionality and it relies on a fixed density threshold

that assumes high-dimensional clusters to be as dense as low-dimensional ones, an

assumption that is often unrealistic. Several posterior works, such as ENCLUS [Cheng

et al., 1999], EPCH [Ng et al., 2005], P3C [Moise et al., 2006, 2008], SUBCLU [Kröger

et al., 2004] and FIRES [Kriegel et al., 2005] improve the ideas of CLIQUE to reduce its

drawbacks, but they are still typically super-linear in space or in running time.

PROCLUS [Aggarwal et al., 1999] proposed a top-down clustering strategy, assuming

what is known in the literature as the locality assumption: the analysis of the space with all

dimensions is sufficient to find patterns that lead to clusters that only exist in subspaces.

PROCLUS is a k-medoid method that assigns to each medoid a subspace of the original

axes. Each point is assigned to the closest medoid in its subspace. An iterative process

analyzes the points distribution of each cluster in each axis and the axes in which the

cluster is denser form its subspace. PROCLUS scales super-linearly on the number of

points and axes and it only finds clusters in subspaces formed by the original axes.

ORCLUS [Aggarwal and Yu, 2002, 2000] and CURLER [Tung et al., 2005] improve

the ideas of PROCLUS to find arbitrarily oriented correlation clusters. They analyze each

cluster’s orientation, based on the data attributes eigenvector with the biggest eigenvalue,

in an iterative process that merges close clusters with similar orientations. CURLER spots

even non-linear, local correlations, but it has a quadratic time complexity regarding the

number of clusters and their dimensionalities, and its complexity is cubic with respect

to the data dimensionality. Other well-known, top-down methods are: DOC/FASTDOC

[Procopiuc et al., 2002], PkM [Agarwal and Mustafa, 2004], LAC [Domeniconi et al., 2007],

RIC [Böhm et al., 2006], LWC/CLWC [Cheng et al., 2008], PreDeCon [Bohm et al., 2004],

OCI [Böhm et al., 2008], FPC/CFPC [Yiu and Mamoulis, 2005], COSA [Friedman and

Meulman, 2004], HARP [Yip et al., 2004] and STATPC [Moise and Sander, 2008].

Density-based strategies have also been used for correlation clustering. 4C [Böhm

et al., 2004] finds arbitrarily oriented clusters, by extending each cluster from a seed as

long as a density-criterion is fulfilled. Otherwise, it picks another seed, until all points

are classified. The density criterion used is a minimal required number of points in the

neighborhood of each point, and the neighborhood is defined with a distance function

that uses as a basis the eigensystems of its input points. 4C tends to uncover clusters

of a single, user-defined dimensionality at each run, but the algorithm COPAC [Achtert

et al., 2007] improves the ideas of 4C to fix this issue.

3.2 CLIQUE 21

CASH [Achtert et al., 2008] uses a novel idea that does not rely on the locality

assumption. Based on the Hough transform [Hough, 1962], it proposes to map the data

space into a parameter space defining the set of all possible arbitrarily oriented subspaces.

Then, it analyzes the parameter space to find those among all the possible subspaces that

accommodate many database objects, leading to the identification of correlation clusters.

Unfortunately, CASH remains rather inefficient, as it has a cubic average time complexity

regarding the data dimensionality d and its worst case time complexity is O
(
2d
)
.

CARE [Zhang et al., 2008] formalizes the correlation clustering problem as the problem

of finding feature subsets strongly correlated with regard to large portions of the input

dataset. It uses the Spectrum Theory to study the monotonicity properties of the problem,

which allows the proposal of heuristics to prune the problem’s search space. However,

CARE has four user-defined input parameters and it usually scales quadratically on the

data dimensionality, with an exponential, theoretical worst case time complexity.

This section presented a brief survey on the existing algorithms well-suited to analyze

moderate-to-high dimensionality data. A recent survey on this area is given by [Kriegel

et al., 2009]. In the next sections, four of the most relevant algorithms are detailed.

3.2 CLIQUE

The method CLIQUE [Agrawal et al., 1998, 2005] was probably the first method aimed

at finding clusters in subspaces of multi-dimensional data. It proposes a bottom-up search

strategy, to identify subspace clusters.

The process starts by analyzing the input data projected into the 1-dimensional

subspaces formed by each of the original dimensions. In this step, a data scan is performed

to partition each projection into ξ equal sized intervals, which enables the creation of

histograms that represent the points distribution regarding each interval and dimension.

An interval is considered to be a dense unit when the percentage of elements inside it, with

regard to the total number of elements, is greater than or equal to a density threshold τ .

The values of ξ and τ are user-defined input parameters.

Examples of dense units are illustrated in Figure 3.1, which was adapted from [Agrawal

et al., 2005]. Figures 3.1a, 3.1b and 3.1c respectively present an example dataset over the

set of dimensions A = {x, y} and its projections in the 1-dimensional subspaces formed by

dimensions x and y. The database contains a total of 14 elements and each 1-dimensional

projection is partitioned into ξ = 10 equal sized intervals. Given a density threshold

τ = 20% and one of these intervals, CLIQUE assumes that the interval is a dense unit if

and only if it has at least 3 points. Consequently, after a data scan, the algorithm finds

that there are three dense units in our toy dataset with regard to the projection in x and

one dense unit in the projection in y. These are identified as (2 ≤ x < 3), (5 ≤ x < 6),

(6 ≤ x < 7) and (55 ≤ y < 60), according to their respective ranges of values in x or in y.

22 3. Clustering Methods for Moderate-to-High Dimensionality Data

y

x x

(a) (b)
y

(c)

one dense unit}

one dense unit}
one dense unit}

one dense unit

}

one
cluster{

one
cluster {

one
cluster{

Figure 3.1: Examples of 1-dimensional dense units and clusters existing in a toy
database over the dimensions A = {x, y}. The figure was adapted from
[Agrawal et al., 2005].

Once the 1-dimensional dense units are identified, the process continues in order to

find k-dimensional dense units, for k > 1. A pair of dense units in subspaces with k − 1

dimensions generates a candidate k-dimensional dense unit if and only if the respective

subspaces share exactly k−2 dimensions and both units are in the same positions regarding

the shared dimensions. After identifying all candidate k-dimensional dense units, a data

scan allows the algorithm to verify if the candidates are actually dense units. A candidate

is said to be a dense unit if the number of points that fall into it is enough with regard

to the threshold τ . The process continues recursively and it ends when, in an iteration:

new dense units are not found, or; the space with all dimensions is analyzed.

In our running example from Figure 3.1, the 1-dimensional dense units identified lead

to the existence of three candidates, 2-dimensional dense units, filled in gray in Figure

3.1a. These are described as (2 ≤ x < 3) ∧ (55 ≤ y < 60), (5 ≤ x < 6) ∧ (55 ≤ y < 60)

and (6 ≤ x < 7)∧ (55 ≤ y < 60). However, after a data scan, it is possible to notice that

none of the candidates has three or more points, which is the minimum number of points

needed to spot a dense unit in this example. Thus, the recursive process is terminated.

CLIQUE also proposes an algorithm to prune subspaces in order to minimize its

computational costs. It considers that the larger the sum of points in the dense units of

a subspace analyzed, the more likely that this subspace will be useful in the next steps

of the process. Thus, some subspaces analyzed by the method that have small sums of

points in their dense units may be ignored in follow-up steps. For example, consider the

dense units in our toy dataset from Figure 3.1. The sums of points in the dense units

of the 1-dimensional subspaces formed by dimensions x and y are 13 and 3 respectively.

3.3 P3C 23

Thus, CLIQUE considers that, if needed, it is better to prune the subspace formed by

dimension y than the one formed by x.

Pruning is performed as follows: at each iteration of the process, the dense units

found are grouped according to their respective subspaces. The subspaces are then put

into a list, sorted in descending order regarding the sum of points in their dense units.

The principle Minimum Description Length (MDL) [Grunwald et al., 2005, Rissanen,

1989] is then used to partition this list, creating two sublists: interesting subspaces and

uninteresting subspaces. The MDL principle allows maximizing the homogeneity of the

values in the sublists regarding the sum of points in the dense units of each subspace.

After this step is finished, the dense units that belong to the uninteresting subspaces are

discarded and the recursive process continues, considering only the remaining dense units.

Once the recursive process is completed, the dense units identified are merged so

that maximum sets of dense units adjacent in one subspace indicate clusters in that

subspace. The problem of finding maximum sets of adjacent, dense units is equivalent

to a well-known problem in the Graph Theory, the search for connected subgraphs. This

is verified considering a graph whose vertices correspond to dense units in one subspace

and edges connect two vertices related to adjacent, dense units, i.e., the ones that have a

common face in the respective subspace. Thus, a depth-first search algorithm [Aho et al.,

1974] is applied to find the maximum sets of adjacent, dense units defining the clusters and

their corresponding subspaces. In our example, the dense units found in Figure 3.1b form

two clusters in the subspace defined by dimension x. One cluster is related to the dense

unit (2 ≤ x < 3) while the other refers to the pair of adjacent dense units (5 ≤ x < 6) and

(6 ≤ x < 7). Finally, the subspace of dimension y contains a single cluster, represented

by the dense unit (55 ≤ y < 60), and no cluster exists in the 2-dimensional space.

The main shortcomings of CLIQUE are: (i) even considering the pruning of subspaces

proposed, the time complexity of the algorithm is still exponential with regard to the

dimensionality of the clusters found; (ii) due to the pruning technique used, there is

no guarantee that all clusters will be found; (iii) there is no policy suggested to define

appropriate values to the parameters ξ and τ , and; (iv) the density parameter τ assumes

that clusters in subspaces of high dimensionality should be as dense as clusters in

subspaces of lower dimensionality, a fact which is often unrealistic.

3.3 P3C

P3C [Moise et al., 2006, 2008] is a well-known method for clustering moderate-to-high

dimensional data. It uses a bottom-up search strategy that allows finding subspace clusters

or projected clusters. The method assumes that the initial analysis of only attributes with

non-uniform distribution is enough to identify clusters that exist in subspaces of the

original space, and the first step of the process is the identification of such attributes.

24 3. Clustering Methods for Moderate-to-High Dimensionality Data

Therefore, based on well-known statistical principles, projections of the data in each of

the original axes are partitioned into b1 + log2nc equal-sized intervals each, where n is the

total number of data elements. The statistical test Chi-square goodness-of-fit [Snedecor

and Cochran, 1989] is then applied on each axis in order to identify and discard, with

confidence level α = 0.001, the axes that have uniform data distribution.

The non-discarded axes are then processed as follows: given one of such axes, its

intervals are again tested by the Chi-square test, this time ignoring the interval with the

largest number of elements. If the test indicates a non-uniform distribution in the intervals

analyzed, the same statistical test is applied once more to all intervals, except to the ones

with the first and the second largest numbers of points. This process continues recursively,

ignoring the intervals with the largest numbers of points as needed, until the test indicates

one uniform distribution in the intervals analyzed. After that, the intervals ignored in

the last test performed are called 1-signatures. Notice two remarks: the number one in

the 1-signatures refers to the fact that the corresponding intervals are 1-dimensional, and;

adjacent intervals are said to form a single 1-signature.

After the recursive procedure is finished, the 1-signatures identified serve as a basis to

spot p-signatures, for p > 1. In other words, P3C analyzes sets of dense, 1-dimensional

intervals to identify sets of dense intervals of higher dimensionality. As an example, the

toy dataset shown in previous illustrations is used once more, this time to illustrate P3C.

Figure 3.2, adapted from [Agrawal et al., 2005], illustrates this dataset. It contains 14

elements over the set of dimensions A = {x, y}. Figures 3.2a, 3.2b and 3.2c respectively

show the dataset and its projections in dimensions x and y. In this example, P3C would

probably find the 1-signatures S1, S2 and S3. Note that the 1-signatures identify possible

2-signatures in the example data, i.e., possible dense 2-dimensional intervals. In our

running example, there are identified those formed by the sets of 1-signatures {S1,S3} and

{S2,S3}, which delimit the search space into two parts, filled in gray in our illustration.

In order to find p-signatures, for p > 1, P3C analyzes pairs (S, Sp′), where S is a

(p − 1)-signature that contains intervals in p − 1 distinct dimensions, and Sp′ represents

an interval in dimension j, such that none of the intervals in S refer to dimension j.

Specifically, P3C analyzes the distribution of the points within the intervals of S regarding

dimension j to confirm a possible p-signature formed by S ∪ {Sp′}. Let us consider that

there are Supp(S) elements within the intervals of S and that the interval Sp′ represents

width(Sp′) percent of the domain of attribute j. For the uniform distribution, the expected

number of elements that are within the intervals of S and are also within the interval Sp′

is given by ESupp(S ∪ {Sp′} |S) = Supp(S) ∗ (width(Sp′)/100). That is, for the case

where the points within the intervals of S are randomly distributed through dimension j,

ESupp(S∪{Sp′} |S) defines the number of points expected by chance to be also within the

interval Sp′ . P3C assumes that the union S∪ {Sp′} forms a p-signature, if and only if the

number of data elements within the intervals of the possible p-signature, Supp(S∪{Sp′}),

3.3 P3C 25

y

x x

(a) (b)
y

(c)

S1

S3

S2

}
}

}

Figure 3.2: Examples of p-signatures in a database over the dimensions A = {x, y}. The
figure was adapted from [Agrawal et al., 2005].

is sufficiently greater than ESupp(S ∪ {Sp′} |S), the number expected for the uniform

distribution. For this task, the Poisson distribution [Snedecor and Cochran, 1989] is used

to measure the probability of observing Supp(S∪{Sp′}) elements in a given space region,

when the expected number of elements for the region is ESupp(S ∪ {Sp′} |S), under the

uniform distribution. If Supp(S∪{Sp′}) > ESupp(S∪{Sp′} |S) and the probability is small

enough, smaller than or equal to one user-defined threshold named PoissonThreshold,

P3C considers that the number of elements Supp(S∪{Sp′}) is sufficiently greater than the

number expected by chance ESupp(S∪{Sp′} |S) and thus the union S∪{Sp′} is considered

to be a p-signature. Otherwise, the union S ∪ {Sp′} does not form a p-signature.

In the subsequent step, each p-signature S, together with the set of data elements

delimited by its intervals, may be considered as a first draft of a cluster, thus being

named a cluster core. S defines a cluster core if and only if there is no interval Sp′ , not

already included in S, whose union with S allows the creation of a (p+ 1)-signature.

After all cluster cores had been identified, the dataset is projected into the subspace

formed by the axes not discarded in the first stage, i.e., the axes considered to have

non-uniform data distributions. In this subspace, any data element not yet belonging

to a cluster core is inserted into the set of elements of its nearest cluster core, the one

with the nearest centroid considering the Mahalanobis distance function. Then, P3C

identifies outliers by using a traditional method [Rousseeuw and van Zomeren, 1990], still

considering the same subspace and distance function.

26 3. Clustering Methods for Moderate-to-High Dimensionality Data

Finally, P3C mounts a matrix M with n rows and k columns, where n is the number

of elements in the database and k is the number of cluster cores found. M [i][l] receives the

value 0 if the data element i does not belong to the cluster core l. Otherwise, the value

in M [i][l] indicates the fraction of cluster cores that contain the element i. This matrix is

used as input for the algorithm Expectation/Maximization (EM) [Dempster et al., 1977] to

compute the probability of each data element to belong to each of the cluster cores found.

In this way, P3C is able to find: projected clusters, by naming each data element after its

cluster core of maximum likelihood, or; subspace clusters, by considering the cluster cores

to be the final clustering result, and thus, ignoring the probability computation.

The main shortcomings of P3C are: (i) its computational cost is exponential with

regard to the dimensionality of the clusters found; (ii) it does not find clusters that exist

in subspaces whose all dimensions, individually have uniform data distributions; and

(iii) the method is highly sensitive to rotation, because the clusters found must exist in

subspaces formed by the original dimensions only.

3.4 LAC

LAC [Al-Razgan and Domeniconi, 2006, Domeniconi et al., 2004, 2007] is a k-means-based

method aimed at clustering moderate-to-high dimensionality data. Given a user-defined

number of clusters k, the algorithm partitions the dataset into k disjoint sets of elements,

disregarding the possible existence of outliers. Its main difference from the traditional

k-means method is to consider that any original dimension can be more relevant or less

relevant than the other ones to characterize each cluster. The more the points of a cluster

are densely grouped when projected into a dimension, the highest is the relevance of that

dimension to the cluster. In this way, one dimension may be highly relevant to one cluster

and, at the same time, it may have a lower relevance with regard to other clusters.

The final clustering result is a set of k data clusters and k weighting vectors. The

weighting vectors represent the relevance of each original dimension with regard to each

cluster found, in a way that the elements in each cluster are densely grouped into

the space with all dimensions according to the L2 distance function, weighted by the

corresponding vector. Provided that LAC defines a dataset partition by only analyzing

original dimensions, most authors from the literature consider that it finds clusters similar

to projected clusters, besides the fact that LAC does not clearly define the subspaces where

the clusters found exist.

Given a database S with N points on an Euclidean D-dimensional space, the algorithm

computes a set of k centroids {c1, c2, . . . ck}, for cj ∈ RD and 1 ≤ j ≤ k, together with

a set of weighting vectors {w1, w2, . . . wk}, for wj ∈ RD and 1 ≤ j ≤ k. The centroids

and their weighting vectors define k clusters {S1, S2, . . . Sk} in a way that the clusters

minimize the sum of the squared L2 weighted distances between each data point and the

3.4 LAC 27

centroid of its cluster, according to the corresponding weighting vector. The proposed

procedure ensures that S = S1 ∪ S2 ∪ . . . Sk will always be true, and it also guarantees

that, given any two clusters, Sa and Sb, the expression Sa ∩ Sb = ∅ will always apply,

for 1 ≤ a ≤ k, 1 ≤ b ≤ k and a 6= b.

LAC uses a top-down clustering strategy that starts with the choice of k centroids.

The first centroid is chosen at random. The second one maximizes the L2 distance to

the first centroid. The third centroid maximizes the L2 distances to the two centroids

chosen before, and so on. Equal weights are initially defined for all centroids regarding all

dimensions. Therefore, the initial dataset partition is performed by assigning each data

point to the cluster of its nearest centroid, based on the unweighted L2 distance function.

After the initial clusters are defined, LAC improves the centroids and the weighting

vectors, by minimizing the sum of the squared L2 distances between each data point

and the centroid of its cluster, weighted by the corresponding weighting vector. At first,

the weighting vectors are updated by analyzing the distribution of the points of each

cluster projected into each original dimension individually. The more the points of a

cluster are densely grouped when projected into a dimension, the biggest is the weight of

that dimension to the cluster. During this process, LAC uses a user-defined parameter

h, 0 ≤ h ≤ ∞, to control how much the distribution of the values in each weighting vector

will deviate from the uniform distribution. Setting h = 0, concentrates all the weight that

refers to a cluster j on a single axis (the axis i in which the points of j projected into

i are best clustered, compared to when these points are projected into each one of the

other axes), whereas setting h =∞ forces all axes to be given equal weights for cluster j.

Values of h between 0 and ∞ lead to intermediate results.

Once the weighting vectors are updated for the first time, the data is partitioned again

by assigning each point to the cluster of its closest centroid according to the L2 distance

function, weighted by the updated centroid’s weighting vector. This process defines new

centroids, and thus, it creates new clusters, whose point distribution must be analyzed

for each dimension to update the weighting vectors one more time. It leads to a recursive

process that stops when, after one iteration, none of the weighting vectors change.

The main shortcomings of LAC are: (i) the number of clusters k is user-defined; (ii) the

algorithm is non-deterministic, since the first centroid is randomly chosen at the beginning

of the process; (iii) although the authors present a formal proof of convergence for LAC,

there is no guarantee that the convergence will occur in feasible time for all cases, and;

(iv) LAC disregards the possible existence of outliers in the data, which is considered to

be a shortcoming, since traditional methods for outlier detection do not treat the case

where clusters exist in subspaces of the original space.

28 3. Clustering Methods for Moderate-to-High Dimensionality Data

3.5 CURLER

CURLER [Tung et al., 2005] is a correlation clustering algorithm that looks for clusters

using a top-down strategy. To the best of our knowledge, it is the only method found

in literature that spots clusters formed by local, non-linear correlations, besides clusters

formed by local, linear correlations. Although the positive aspects of the method are

relevant, CURLER cannot be fully automated, depending on a semi-automatic process

where the user visualizes unrefined clusters found by the algorithm to produce the final

result. As well as other correlation clustering algorithms, CURLER starts the clustering

procedure by analyzing the space with all original axes to find tiny sets of points densely

grouped, which are named microclusters. Then, some of the microclusters are merged to

form correlation clusters.

In general, microclusters that are close to each other in specific subspaces and

have similar orientations should be merged, where the orientation of a microcluster is

the eigenvector with the biggest eigenvalue found for the corresponding data objects.

However, CURLER points out that the microclusters to be merged must be carefully

identified, especially when analyzing data with clusters formed by non-linear, local

correlations, since these clusters usually have one global orientation and several distinct

local orientations. The global orientation is the eigenvector with the biggest eigenvalue

obtained when analyzing all points in the cluster, while the local orientations are obtained

when considering specific subsets of these points. Figure 3.3 [Tung et al., 2005] exemplifies

this fact for a toy 2-dimensional database that contains a cluster following a sinusoidal

curve. As it can be seen, when considering specific parts of the cluster, one can find

considerably distinct local orientations, as in the cases of the small neighborhoods centered

at points r and q. The global orientation is found only when larger parts of the cluster

are analyzed, as in the case of the large neighborhood centered at the point p.

Therefore, pairs of microclusters that belong to the same correlation cluster and have

very distinct orientations are likely to exist, despite of the fact that they are close to each

other in one subspace. It is also possible that two microclusters of a single cluster have

similar orientations, although they are far apart in all subspaces. Thus, the specification

of levels of importance for the analyses of proximity and orientation in the merging

process is a complex task and, at the same time, it is a vital task for the definition

of what microclusters should be merged in order to generate an accurate clustering result.

CURLER defines a novel similarity measure for pairs of microclusters, named co-sharing

level, to tackle this difficult problem.

The algorithm searches for microclusters based on the Fuzzy Logic and on the

Expectation/Maximization (EM) technique [Banfield and Raftery, 1993]. Similarly to the

k-means method, the proposed strategy finds k0 clusters, in this case named microclusters,

through an iterative process that aims at maximizing the quality of the microclusters

3.5 CURLER 29

CURLER: Finding and Visualizing Nonlinear Correlation
Clusters ∗

Anthony K. H. Tung Xin Xu Beng Chin Ooi
School of Computing

National University of Singapore
{atung,xuxin,ooibc}@comp.nus.edu.sg

ABSTRACT
While much work has been done in finding linear correlation
among subsets of features in high-dimensional data, work
on detecting nonlinear correlation has been left largely un-
touched. In this paper, we present an algorithm for finding
and visualizing nonlinear correlation clusters in the subspace
of high-dimensional databases.

Unlike the detection of linear correlation in which clus-
ters are of unique orientations, finding nonlinear correla-
tion clusters of varying orientations requires merging clus-
ters of possibly very different orientations. Combined with
the fact that spatial proximity must be judged based on a
subset of features that are not originally known, deciding
which clusters to be merged during the clustering process
becomes a challenge. To avoid this problem, we propose a
novel concept called co-sharing level which captures both
spatial proximity and cluster orientation when judging sim-
ilarity between clusters. Based on this concept, we develop
an algorithm which not only detects nonlinear correlation
clusters but also provides a way to visualize them. Exper-
iments on both synthetic and real-life datasets are done to
show the effectiveness of our method.

1. INTRODUCTION
In recent years, large amounts of high-dimensional data,

such as images, handwriting and gene expression profiles
have been generated. Analyzing and handling such kinds of
data have become an issue of keen interest. Elucidating the
patterns hidden in high-dimensional data imposes an even
greater challenge on cluster analysis.

Data objects of high dimensionality are NOT globally cor-
related in all the features because of the inherent sparsity of
the data. Instead, a cluster of data objects may be strongly
correlated only in a subset of features. Furthermore, the na-

∗Dedicated to the late Prof. Hongjun Lu, our mentor, col-
league and friend who will always be remembered.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005 June 14-16, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06 $5.00.

X1

X
2

q

p

small neighborhood

large neighborhood

global orientation

local orientation
r

Figure 1: Global vs Local Orientation

ture of such correlation is usually local to a subset of the data
objects, and it is possible for another subset of the objects
to be correlated in a different subset of features. Traditional
methods of detecting correlations like GDR [20] and PCA
[16] are not applicable in this case since they can detect only
global correlations in whole databases.

To handle the above problem, several subspace cluster-
ing algorithms such as ORCLUS [3] and 4C [7] have been
proposed to identify local correlation clusters with arbitrary
orientations, assuming each cluster has a fixed orientation.
They identify clusters of data objects which are linearly cor-
related in some subset of the features.

In real-life datasets, correlation between features could
however be nonlinear, depending on how the dimensions are
normalized and scaled [14]. For example, physical studies
have shown that the pressure, volume and temperature of
an ideal gas exhibit nonlinear relationships. In biology, it
is also known that the co-expression patterns of genes in a
gene network can be nonlinear [12]. Without any detailed
domain knowledge of a dataset, it is difficult to scale and
normalize the dataset such that all nonlinear relationships
become linear. It is even possible that the scaling and nor-
malization themselves cause linear relationships to become
nonlinear in some subset of the features.

Detecting nonlinear correlation clusters is challenging be-
cause the clusters can have both local and global orien-
tations, depending on the size of the neighborhood being
considered. As an example, consider Figure 1, which shows
a 2D sinusoidal curve oriented at 45 degrees to the two axes.

467

Figure 3.3: Examples of global and local orientation in a toy 2-dimensional database
[Tung et al., 2005].

found. The value of k0 is user-defined and the microclusters found are not necessarily

disjoint. Quality is measured based on the adequacy of the microclusters found with

regard to a predefined clustering model. The clustering model used is a Gaussian mixture

model in which each microcluster Mi is represented by a probability distribution with

density parameters θi = {µi,
∑

i}, where µi and
∑

i represent respectively the centroid

and the covariance matrix of the data elements that belong to Mi. A vector W is also

defined, where each value Wi represents the fraction of the database that belongs to each

microcluster Mi.

The iterative process starts with the creation of k0 microclusters using identity

matrices and random vectors to represent their covariance matrices and centroids

respectively. The vector W is initially built by setting Wi = 1
k0

for each microcluster

Mi created. Similarly to any method based on the Expectation/Maximization (EM)

technique, the iterative process has two steps per iteration: the Expectation step and

the Maximization step. The first one computes the probabilities of each data element

to belong to each microcluster. In the second step, the density parameters of each

microcluster are updated. The process stops when, after one iteration, the increase in

the clustering quality is smaller than the parameter εlikelihood or the maximum number

of iterations MaxLoopNum is reached. The values for εlikelihood and MaxLoopNum

are user-defined. The clustering quality obtained after one iteration is computed by

E (θ1, θ2, . . . θk0 | D) =
∑

x∈D
log[

k0∑
i=1

Wi.PR (Mi|x)], where x is an element of the database

D and PR (Mi|x) is the probability of an element x to belong to microclusterMi. The final

result of the iterative process is a set of k0 microclusters, defined by their corresponding

30 3. Clustering Methods for Moderate-to-High Dimensionality Data

centroids and covariance matrices, as well as the probabilities of each data element to

belong to each microcluster.

Once the iterative process is finished, the resulting microclusters are analyzed to define

the ones that should be merged. For this task, CURLER proposes to use a novel similarity

measure for pairs of microclusters, named co-sharing level. It is computed by the function

coshare(Mi,Mj) =
∑

x∈D
[PR (Mi|x) .PR (Mj|x)], where x is an element of the database D,

PR (Mi|x) is the probability of element x to belong to microcluster Mi and PR (Mj|x) is

the probability of element x to belong to the microcluster Mj. Based on the coshare()

function, a recursive process merges pairs of microclusters to form clusters, including

merged clusters in further mergers. Specifically, a pair of microclusters (Mi,Mj) is merged

if and only if coshare(Mi,Mj) ≥ εcoshare, where the value of εcoshare is user-defined.

After the merging step is completed, the resulting clusters are refined in one

semi-automatic process that involves their visualization. This step is motivated by the

fact that the automatic process may tend to spot only the global orientations of the

clusters and the visualization step allows the user to find clusters that need to be further

explored. We shall omit the details of this process here, as this Doctoral dissertation focus

on automatic knowledge discovery methods only.

The main shortcomings of CURLER are: (i) the process is not fully automated; (ii) the

method disregards the possible existence of outliers in the data, which is considered to be

a drawback, since traditional methods for outlier detection do not analyze subspaces of the

original space; (iii) there is no guarantee that the iterative process will converge in feasible

time for all cases. Notice that the user-defined maximum number of iterations does not

actually solves the problem; and (iv) the automatic part of the process has a quadratic

time complexity regarding the number of microclusters and their dimensionalities, and

the complexity is cubic with respect to the data dimensionality.

3.6 Conclusions

In this chapter we analyzed some of the well-known methods found in literature that search

for clusters in multi-dimensional data with more than five or so dimensions. This analysis

aimed at identifying the strategies already used to tackle the problem, as well as the major

limitations of the existing, state-of-the-art techniques. Specifically, several well-known

methods were briefly described and four of the most relevant ones were detailed. A recent

survey on this area is found in [Kriegel et al., 2009].

We conclude the chapter by summarizing in Table 3.1 some of the most relevant

techniques with regard to the main desirable properties that any clustering technique for

moderate-to-high dimensionality data should have. Specifically, Table 3.1 uses checkmarks

to link techniques with their desirable properties in order to help one to evaluate and to

3.6 Conclusions 31

compare the techniques listed. That table was partially1 obtained from [Kriegel et al.,

2009]. In general, the more checkmarks an algorithm features, the better and/or the more

general is the algorithm. The properties considered in the table are described as follows:

• Arbitrarily oriented clusters: the ability to spot clusters that exist in subspaces

formed by linear combinations of the original dimensions, besides the ones existing

in subspaces that refer to subsets of the original dimensions;

• Not relying on the locality assumption: the ability to be independent of the

locality assumption [Kriegel et al., 2009], i.e., not to assume that the analysis of the

space with all dimensions is sufficient to identify patterns that lead to clusters that

only exist in subspaces;

• Adaptive density threshold: the ability to be independent of a fixed den-

sity threshold, i.e., not to assume high-dimensional clusters to be as dense as

low-dimensional ones;

• Independent wrt the order of the attributes: the ability to generate the exact

same clustering result for a given dataset, regardless of the order of its attributes;

• Independent wrt the order of the objects: the ability to generate the exact

same clustering result for a given dataset, regardless of the order of its objects;

• Deterministic: the ability generate the exact same clustering result for a given

dataset every time that the algorithm is executed;

• Arbitrary number of clusters: the ability to automatically identify the number

of clusters existing in the input dataset, i.e., not to take the number of clusters as

an user-defined input parameter;

• Overlapping clusters (soft clustering): the ability to identify data objects that

belong to two or more overlapping clusters;

• Arbitrary subspace dimensionality: the ability to automatically spot clusters

in subspaces of distinct dimensionalities in a single run of the algorithm, without

taking the dimensionality of the clusters as an user-defined input parameter;

• Avoiding complete enumeration: the ability to avoid the analysis of all possible

subspaces of a d-dimensional space, even for the worst case scenario;

• Robust to noise: the ability to obtain accurate clustering results from noisy data;

1 Table 3.1 includes a summary of the table found in [Kriegel et al., 2009], i.e., Table 3.1 includes
a selection of most relevant desirable properties and most closely related works from the original table.
Table 3.1 also includes two novel desirable properties not found in [Kriegel et al., 2009] – Linear or
quasi-linear complexity and Terabyte-scale data analysis.

32 3. Clustering Methods for Moderate-to-High Dimensionality Data

• Linear or quasi-linear complexity: the ability to scale linearly or quasi-linearly

in terms of memory requirement and execution time with regard to increasing

numbers of points and axes, besides increasing clusters’ dimensionalities;

• Terabyte-scale data analysis: the ability to handle datasets of Terabyte-scale in

feasible time.

Clustering Algorithm A
r
b
it
r
a
r
il
y

o
r
ie
n
te

d
c
lu

st
e
r
s

N
o
t
r
e
ly
in

g
o
n

th
e
lo
ca
li
ty

a
ss
u
m
p
ti
o
n

A
d
a
p
ti
v
e
d
e
n
si
ty

th
r
e
sh

o
ld

In
d
e
p
e
n
d
e
n
t
w
r
t
th

e
o
r
d
e
r
o
f
th

e
a
tt
r
ib

u
te

s

In
d
e
p
e
n
d
e
n
t
w
r
t
th

e
o
r
d
e
r
o
f
th

e
o
b
je
c
ts

D
e
te

r
m

in
is
ti
c

A
r
b
it
r
a
r
y

n
u
m
b
e
r
o
f
c
lu

st
e
r
s

O
v
e
r
la
p
p
in

g
c
lu

st
e
r
s
(s
o
ft

c
lu

st
e
r
in

g
)

A
r
b
it
r
a
r
y

su
b
sp

a
c
e
d
im

e
n
si
o
n
a
li
ty

A
v
o
id

in
g

c
o
m

p
le
te

e
n
u
m

e
r
a
ti
o
n

R
o
b
u
st

to
n
o
is
e

L
in

e
a
r
o
r
q
u
a
si
-l
in

e
a
r
c
o
m

p
le
x
it
y

T
e
r
a
b
y
te

-s
c
a
le

d
a
ta

a
n
a
ly
si
s

Axes parallel clustering

CLIQUE [Agrawal et al., 1998, 2005] X X X X X X X X

ENCLUS [Cheng et al., 1999] X X X X X X X X

SUBCLU [Kröger et al., 2004] X X X X X X X X

PROCLUS [Aggarwal et al., 1999] X X

PreDeCon [Bohm et al., 2004] X X X X X X

P3C [Moise et al., 2006, 2008] X X X X X X X X X

COSA [Friedman and Meulman, 2004] X X X X X X

DOC/FASTDOC [Procopiuc et al., 2002] X X X X X X

FIRES [Kriegel et al., 2005] X X X X X X X X X

Correlation clustering

ORCLUS [Aggarwal and Yu, 2002, 2000] X X X

4C [Böhm et al., 2004] X X X X X X X

COPAC [Achtert et al., 2007] X X X X X X X X

CASH [Achtert et al., 2008] X X n a X X X X X

Table 3.1: Properties of clustering algorithms well-suited to analyze moderate-to-high
dimensional data. The table was partially obtained from [Kriegel et al., 2009].
n a: not applicable.

In spite of the several qualities found in the existing works, the analysis of the literature

summarized in Table 3.1 led us to identify one important problem. To the best of our

knowledge, among the methods published in the literature and designed to look for clusters

in subspaces, no one has any of the following desirable properties:

3.6 Conclusions 33

• Linear or quasi-linear complexity;

• Terabyte-scale data analysis.

A complete justification for this statement is found in the descriptions provided during

this chapter and also in the previous Chapter 2. Especially, please note that the existing

techniques are unable to cluster datasets of Terabyte-scale in feasible time mainly because

they propose serial processing strategies, besides the fact that they do not provide linear

or quasi-linear scalability. Details on this topic are found in Section 2.5 from Chapter 2.

The next three chapters contain the central part of this Doctoral dissertation, which

includes our contributions aimed at tackling the aforementioned problem. Specifically, we

present the three knowledge discovery methods developed during this Ph.D. work.

34 3. Clustering Methods for Moderate-to-High Dimensionality Data

Chapter

4

Halite

In the previous chapter, we provide a brief description of representative methods

for clustering moderate-to-high-dimensional data, and summarize our analysis of the

literature in Table 3.1. It allows us to identify two main desirable properties that are

still missing from the existing techniques – (i) Linear or quasi-linear complexity,

and; (ii) Terabyte-scale data analysis. Here we focus on tackling the former problem.

Specifically, this chapter presents the new method Halite for correlation clustering,

the first knowledge discovery algorithm designed in this Ph.D. work. Halite is a novel

correlation clustering method for multi-dimensional data, whose main strengths are that

it is fast and scalable with regard to increasing numbers of objects and axes, besides

increasing dimensionalities of the clusters. The following sections describe our new method

in detail.

4.1 Introduction

The method Halite for correlation clustering is a fast and scalable algorithm that

looks for correlation clusters in multi-dimensional data using a top-down, multi-resolution

strategy. It analyzes the distribution of points in the space with all dimensions

by performing a multi-resolution, recursive partitioning of that space, which helps

distinguishing clusters covering regions with varying sizes, density, correlated axes and

number of points. Existing methods are typically super-linear in either space or execution

time. Halite is fast and scalable, and gives highly accurate results. In details, the main

contributions of Halite are:

1. Scalability: it is linear in running time and in memory usage with regard to the

data size and to the dimensionality of the subspaces where clusters exist. Halite is

35

36 4. Halite

also linear in memory usage and quasi-linear in running time regarding the space

dimensionality;

2. Usability: it is deterministic, robust to noise, does not have the number of clusters

as a parameter and finds clusters in subspaces generated by the original axes or by

their linear combinations, including space rotation;

3. Effectiveness: it is accurate, providing results with equal or better quality

compared to top related works;

4. Generality: it includes a soft clustering approach, which allows points to be part

of two or more clusters that overlap in the data space.

The proposed method is named after the mineral Halite. Halite, or rock salt, is the

mineral form of sodium chloride (NaCl). One specimen of naturally crystallized Halite

is shown in Figure 4.11. Halite forms isometric crystals, i.e., crystal systems of any shape

and size formed from the union of overlapping, rectangular unit cells. In this chapter, we

propose to generalize the structure of these systems to the d-dimensional case in order to

describe correlation clusters of any shape and size, hence the name of our method Halite.

Figure 4.1: Example of an isometric crystal system commonly found in the nature – one
specimen of the mineral Halite that was naturally crystallized.

The method Halite uses spatial convolution masks in a novel way to efficiently detect

density variations in a multi-scale grid structure that represents the input data, thus

1 The image is publicly available at ‘http://en.wikipedia.org/wiki/Halite’. Notice that this specimen
was obtained from the Stassfurt Potash deposit, Saxony-Anhalt, Germany.

4.2 General Proposal 37

spotting clusters. These masks are extensively used in digital image processing to detect

patterns in images. However, to the best of our knowledge, this is the first work to apply

such masks over data in five or more axes. Halite also uses the Minimum Description

Length (MDL) principle in a novel way. The main idea is to encode an input dataset,

selecting a minimal code length. Specifically, Halite uses MDL to automatically tune a

density threshold with regard to the data distribution, which helps spotting the clusters’

subspaces. Finally, Halite includes a compression-based analysis to spot points that most

likely belong to two or more clusters that overlap in the space. It allows soft clustering

results, i.e., points can be part of two or more overlapping clusters.

We present a theoretical study on the time and space complexity of Halite and

report an extensive experimental evaluation performed over synthetic and real data

spanning up to 1 million elements to corroborate the desirable properties of our method

regarding its Scalability, Usability, Effectiveness and Generality. Specifically, we report

experiments comparing Halite with seven representative works. On synthetic data, Halite

was consistently the fastest method, always presenting highly accurate results. Regarding

real data, Halite analyzed 25-dimensional data for breast cancer diagnosis (KDD Cup

2008) at least 11 times faster than five previous works, increasing their accuracy in up to

35, while the last two related works failed. Details are found in the upcoming Section 4.7.

Remark: Halite is well-suited to analyze data in the range of 5 to 30 axes. In our

experience, the intrinsic dimensionalities of real datasets are frequently smaller than

30, mainly due to the existence of several global correlations [Traina Jr. et al., 2002].

Therefore, if one dataset has more than 30 or so axes, it is possible to apply some distance

preserving dimensionality reduction or feature selection algorithm to remove the global

correlations, such as PCA or FDR, and then apply Halite to treat the correlations local

to specific data clusters.

4.2 General Proposal

In this chapter, we tackle the problem of correlation clustering based on the following fact:

clusters of any shape, existing only in subspaces of a d-dimensional space, create bumps

(spikes) in the point density of their respective subspaces, but, commonly, these bumps

still exist in the space with all dimensions, besides being weakened or diluted by the

dimensions that do not belong to the respective clusters’ subspaces. To find the clusters,

in the same way as most related works do (see Chapter 3 for details), we assume what is

known in literature as the locality assumption: one can still spot such diluted bumps by

analyzing the space with all dimensions.

Assuming locality, and inspired by the structure of isometric crystal systems, such as

the specimen of the mineral Halite shown in Figure 4.1, our general proposal for correlation

clustering is twofold:

38 4. Halite

• Bump Hunting: to spot bumps in the point density of the space with all

axes, defining each bump as a d-dimensional, axes-aligned hyper-rectangle that is

considerably denser than its neighboring space regions (local neighborhood). We

name each bump as a β-cluster;

• Correlation Clustering: to describe correlation clusters of any shape, existing

in subspaces of a d-dimensional space, axis-aligned or not, as maximal sets of

overlapping β-clusters.

Let us illustrate these concepts on the 3-dimensional toy datasets that were previously

introduced in Section 2.3 from Chapter 2. Figure 4.2 reprints the same datasets in

this chapter, this time including dotted rectangles into the illustration to represent

β-clusters. Remember: the datasets contain clusters of several shapes (i.e., elliptical

clusters, ‘star-shaped’ clusters and ‘triangle-shaped’ clusters) existing only in subspaces

that are formed by subsets of the axes {x, y, z}, or by linear combinations of these axes,

and we plot x-y and x-z projections of the toy data in the illustration. Notice that a single

axes-aligned, 3-dimensional hyper-rectangle embodies each cluster in some cases, but

certain clusters, especially the ones not aligned to the original axes, need more than one

overlapping hyper-rectangle to be covered. Thus, maximal sets of overlapping β-clusters

properly describe the clusters, even the ones not aligned to the axes {x, y, z}.

x

y

C1

(a)

C2

x

z

(b)

C1

C2
Example Dataset 1

x

y

(e)
x

z

(f)

C5
C6

C5

C6

Example Dataset 3

x

z

(d)
x

y

(c)

C3

C4 C3

C4

Example Dataset 2

x

z

(h)

C7

C8

x

y

(g)

C7

C8

Example Dataset 4

Figure 4.2: x-y and x-z projections of four 3-dimensional datasets over axes {x, y, z}.
From (a) to (f): clusters in the subspaces {x, y} and {x, z}. (g) and (h):
clusters in subspaces formed by linear combinations of {x, y, z}.

4.2 General Proposal 39

According to the general proposal presented, we provide formal definitions for the

β-clusters and for the correlation clusters.

Definition 7 Let dS be a multi-dimensional dataset on the axes E. Then a β-cluster

in dS, δ
βCk =

〈
βEk,

δ
βSk
〉

is a set βEk ⊆ E of δ axes together with a set of points δ
βSk ⊆

dS that, in a statistical sense, form one bump (one spike) in the point density of the

d-dimensional space. The axes in βEk, relevant to the β-cluster, are the original axes

that cause the bump, i.e., δ
βSk is densely clustered in the axes-aligned subspace formed by

βEk. The axes in E −β Ek are irrelevant to δ
βCk. δ

βSk must be within an axes-aligned,

d-dimensional hyper-rectangle, with the upper and lower bounds at each axis ej being

U [k][j] and L[k][j] respectively.

Definition 8 – β-cluster overlapping: Given any two β-clusters δ′
βCk′ and δ′′

β Ck′′, one

can say that the β-clusters overlap to each other if U [k′][j] ≥ L[k′′][j]∧L[k′][j] ≤ U [k′′][j]

is valid for every original axis ej.

Definition 9 Let dS be a multi-dimensional dataset on the axes E. Then a correlation

cluster in dS, δγCk =
〈
γEk,

δ
γSk
〉

is defined as one maximally connected component in the

graph, whose nodes are the β-clusters that exist in dS, and there is an edge between two

nodes, if the respective β-clusters overlap. For the β-clusters referring to the nodes of this

component, δγSk =
⋃

δ′
β Sk′ and γEk =

⋃
βEk′. The axes in γEk are said to be relevant to

the cluster, and the axes in E −γ Ek are irrelevant to the cluster. The cardinality

δ = |γEk| is the dimensionality of the cluster.

Notice one important remark: as it can be seen in Definition 9, we assume that the

axes irrelevant to a cluster δ
γCk =

〈
γEk,

δ
γSk
〉

are the original axes in which δ
γCk spreads

parallel to. The axes relevant to δ
γCk are the remaining original axes. Thus, if δ

γCk does

not spread parallel to any original axis, all original axes are relevant to the cluster, i.e.,

γEk = E. Finally, once a cluster δ
γCk is found, and thus its corresponding local correlation

was already detected, the subspace in which the cluster exists can be easily defined by

using a traditional feature extraction method, such as PCA, applied over the points δ
γSk

projected onto the axes γEk. γEk defines the subspace of a cluster only for axes-aligned

clusters. As an example, cluster C6 in Figure 4.2 spreads parallel to z, while both its

relevant axes and subspace are given by the axes {x, y}. On the other hand, cluster C8 in

Figure 4.2 does not spread parallel to any original axis, thus its relevant axes are {x, y, z}.
The subspace of C8 is found by feature extraction applied only on the points of the cluster,

projected into its relevant axes {x, y, z}.

40 4. Halite

4.3 Proposed Method – Basics

This section presents the basic implementation of our clustering method2, which we shall

refer to as Halite0 . We start with Halite0 for clarity of description; in later sections, we

present the additional improvements, that lead to our optimized, and finally proposed

method Halite.

The main idea in our approach is to identify clusters based on the variation of the data

density over the space in a multi-resolution way, dynamically changing the partitioning size

of the analyzed regions. Multi-resolution is explored applying d-dimensional hyper-grids

with cells of several side sizes over the data space and counting the points in each grid

cell. Theoretically, the number of cells increases exponentially to the dimensionality as the

cell size shrinks, so the grid sizes dividing each region are carefully chosen in a way that

only the cells that hold at least one data element are stored, limiting this number to the

dataset cardinality. The grid densities are stored in a quad-tree-like data structure, the

Counting-tree, where each level represents the data as a hyper-grid in a specific resolution.

Spatial convolution masks are applied over each level of the Counting-tree, to identify

bumps in the data distribution regarding each resolution. Applying the masks to the

needed tree levels allows spotting clusters with different sizes. Given a tree level, Halite0

applies a mask to find the regions of the space with all dimensions that refer to the largest

changes in the point density. The regions found may indicate clusters that only exist in

subspaces of the analyzed data space. The neighborhoods of these regions are analyzed

to define if they stand out in the data in a statistical sense, thus indicating clusters. The

axes in which the points in an analyzed neighborhood are close to each other are said

to be relevant to the respective cluster, while the axes in which these points are sparsely

distributed are said to be irrelevant to the cluster. The Minimum Description Length

(MDL) principle is used in this process to automatically tune a threshold able to define

relevant and irrelevant axes, based on the data distribution. The following subsections

detail the method.

4.3.1 Building the Counting-tree

The first phase of Halite0 builds the Counting-tree, representing a dataset dS with d axes

and η points as a set of hyper-grids of d-dimensional cells in several resolutions. The tree

root (level zero) corresponds to a hyper-cube embodying the full dataset. The next level

divides the space into a set of 2d hyper-cubes, each of which fulfilling a “hyper-quadrant”

whose side size is equal to half the size of the previous level. The resulting hyper-cubes are

divided again, generating the tree structure. Therefore, each level h of the Counting-tree

2 A first implementation of Halite
0

was initially named as the method MrCC (after Multi-resolution
Correlation Clustering) in [Cordeiro et al., 2010b], an earlier conference publication of the work presented
in this chapter. Latter, it was renamed to Halite

0
for clarity, since several improvements on the basic

implementation were included into a journal paper [Cordeiro et al., 2011a].

4.3 Proposed Method – Basics 41

represents dS as a hyper-grid of d-dimensional cells of side size ξh = 1/2h, h = 0, 1, ..., H−
1, where H is the number of resolutions. Each cell can either be refined in the next level or

not, according to the presence or to the absence of points in the cell, so the Counting-tree

can be unbalanced.

Without loss of generality, we assume in the following description that the dataset
dS is in a unitary hyper-cube [0, 1)d. Thus, we refer to each cell in the Counting-tree as

a hyper-cube. However, for data not scaled between 0 and 1, as long as we know the

minimum and the maximum bounds of the axes, the Counting-tree can still be built by

dividing each axis in half, through a recursive procedure that creates cells referring to

hyper-rectangles and all our proposed strategies still apply.

The structure of each tree cell is defined as < loc, n, P [d], usedCell, ptr >, where loc is

the cell spatial position inside its parent cell, n is the number of points in the cell, P [] is a

d-dimensional array of half-space counts, usedCell is a boolean flag and ptr is a pointer to

the next tree level. The cell position loc locates the cell inside its parent cell. It is a binary

number with d bits of the form [bb . . . b], where the j-bit sets the cell in the lower (0) or

upper (1) half of axis ej relative to its immediate parent cell. Each half-space count P [j]

counts the number of points in the lower half of the cell with regard to axis ej. The flag

usedCell determines whether or not the cell’s density of points has already been analyzed

in the clustering procedure. This analysis occurs only in the second phase of Halite0 , and

thus, every usedCell flag is initially set to false. Figure 4.3a shows 2-dimensional grids

in up to five resolutions, while Figures 4.3b and 4.3c respectively illustrate a grid over a

2-dimensional dataset in four resolutions and the respective Counting-tree. The usedCell

flags are not shown to reduce cluttering in the figure.

In a Counting-tree, a given cell a at level h is referred to as ah. The immediate parent

of ah is ah−1 and so on. The cell position loc of ah corresponds to the relative position

regarding its immediate parent cell, and it is referred to as ah.loc. The parent cell is at

relative position ah−1.loc and so on. Hence, the absolute position of cell ah is obtained by

following the sequence of positions [a1.loc ↓ a2.loc ↓ . . . ↓ ah−1.loc ↓ ah.loc]. For example,

the cell marked as A2 in level 2 of Figure 4.3c has relative position A2.loc = [00] and

absolute position up to level 2 as [11 ↓ 00]. A similar notation is used to refer to the other

cells’ attributes, n, P [], usedCell and ptr. As an example, given the cell ah, its number

of points is ah.n, the number of points in its parent cell is ah−1.n and so on.

The Counting-tree is created in main memory, and an efficient implementation to deal

with the case when memory is not enough is presented in Section 4.4. Each tree node is

implemented as a linked list of cells. Thus, although the number of regions to divide the

space grows exponentially at O(2dH), we only store the regions where there is at least one

point and each tree level has in fact at most η cells. However, without loss of generality,

this section describes each node as an array of cells for clarity.

42 4. Halite

Figure 4.3: Examples of Laplacian Masks, 2-dimensional hyper-grid cells and the
corresponding Counting-tree. Grids of several resolutions are applied over
the dataset in (b) and the tree in (c) stores the resulting point counts. A
convolution mask helps spotting correlation clusters.

Algorithm 1 shows how to build a Counting-tree. It receives the dataset normalized to

a d-dimensional hyper-cube [0, 1)d and the desired number of resolutions H. This number

must be greater than or equal to 3, as the tree contains H − 1 levels and at least 2 levels

are required to look for clusters (see details in Algorithms 1 and 2). Halite0 performs a

single data scan, counting each point in every corresponding cell at each tree level as it is

read. Each point is also counted in each half-space count P [j] for every axis ej when it is

at the lower half of a cell in ej.

Time and Space Complexity: Algorithm 1 reads each of the η data points once.

When a point is read, it is counted in all the H − 1 tree levels, based on its position in all

the d axes. Thus, the time complexity of Algorithm 1 is O(η H d). The tree has H − 1

levels. Each level has at most η cells, which contain an array with d positions each. Thus,

the space complexity of Algorithm 1 is O(H η d).

4.3 Proposed Method – Basics 43

Algorithm 1 : Building the Counting-tree.

Input: normalized dataset dS,
number of distinct resolutions H

Output: Counting-tree T
1: for each point si ∈ dS do
2: start at the root node;
3: for h = 1, 2, ..., H − 1 do
4: decide which hyper-grid cell in the current node of the Counting-tree covers si

(let it be the cell ah);
5: ah.n = ah.n+ 1;
6: ah.usedCell = false;
7: if h > 1, update the half-space counts in ah−1;
8: access the tree node pointed by ah.ptr;
9: end for

10: update the half-space counts in ah;
11: end for

4.3.2 Finding β-clusters

The second phase of Halite0 uses the counts in the tree to spot bumps in the space with all

axes that indicate β-clusters. A β-cluster δ
βCk =

〈
βEk,

δ
βSk
〉

follows Definition 7. Halite0

uses three matrices L, U and V to describe β-clusters. Let βk be the number of β-clusters

found so far. Each matrix has βk lines and d columns, and the description of a β-cluster
δ
βCk is in arrays L[k], U [k] and V [k]. L[k] and U [k] respectively store the lower and the

upper bounds of β-cluster δ
βCk in each axis, while V [k] has the value true in V [k][j] if axis

ej belongs to βEk, and the value false otherwise.

Halite0 looks for β-clusters by applying convolution masks over each level of the

Counting-tree. We name this task “Bump Hunting”. The masks are integer approxi-

mations of the Laplacian filter, a second-derivative operator that reacts to transitions

in density. Figures 4.3d and 4.3e show examples of 1- and 2-dimensional Laplacian

masks respectively. In a nutshell, the “Bump Hunting” task refers to: to apply for each

level of the Counting-tree one d-dimensional Laplacian mask over the respective grid to

spot bumps in the respective resolution. Figure 4.4a illustrates the process on a toy

1-dimensional dataset with grids in four resolutions. To spot bumps, for each cell of each

resolution, the 1-dimensional mask from Figure 4.3d is applied as follows: multiply the

count of points of the cell by the center value in the mask; multiply the point count of

each neighbor of the cell by the respective mask value, and; get the convoluted value

for the cell by summing the results of the multiplications. After visiting all cells in one

resolution, the cell with the largest convoluted value represents the clearest bump in that

resolution, i.e., the largest positive magnitude of the density gradient. In Figure 4.4a, for

each resolution, one dark-gray arrow points to this cell.

44 4. Halite

X

X

3 5 39 3

X

2 1 3 2 20 19 2 1

X

(a)

1 1 2 0 1 0 1 2 9 0 2 0 1

70 = 39*2 - 5 - 3

19 = 20*2 - 2 - 19

8 = 9*2 - 10

X
8 42

-26 = 8*2 - 42 76 = 42*2 - 8

X

Y

+

- -

- - - -

-
-

-
- +

+
-

-
-

-

-
-

0
0 +

(b)

3x3

6x6

12x12

11 10

Best resolution

9

Toy dataset
with 50 points

Bump

Example of space region ignored in a fine
resolution, but considered in a coarser resolution

largest convoluted value,
ignoring the bump’s region

largest convoluted value

Figure 4.4: (a) one mask applied to 1-dimensional data. An statistical test finds the best
resolution for a bump, and the time to stop spotting bumps; (b) intuition on
the success of the used masks. The multi-resolution allows using 3d masks
to “simulate” larger masks, while the space regions ignored by the mask
borders in a resolution tend to be considered in coarser resolutions.

For performance purposes, Halite0 uses only masks of order 3, that is, matrices of

sizes 3d. In such masks, regardless of their dimensionality, there is always one center

element (the convolution pivot), 2d center-faces elements (or just face elements, for short)

and 3d − 2d− 1 corner elements. Applying a mask over all cells at a Counting-tree level

can become prohibitively expensive in datasets with several dimensions – for example, a

10-dimensional cell has 59,028 corner elements. However, Halite0 uses Laplacian masks

having non-zero values only at the center and the facing elements, that is 2d for the

center and −1 for the face elements, as in the examples in Figures 4.3d and 4.3e. A

10-dimensional cell has only 20 face elements. Therefore, it is possible to convolute each

level of a Counting-tree with linear complexity regarding the dataset dimensionality d.

Notice one important remark: we chose to use masks of order 3, as they are the

smallest available for convolution. Experimentally we found that the clustering accuracy

of Halite0 improves a little (at most 5 percent when applied over the datasets from the

upcoming Section 4.7.1) when we use masks of order φ, φ > 3, having non-zero values at

all elements (center, face and corner elements), but the time required increases too much

– in the order of O(φd) as compared to O(d) when using masks of order 3 having non-zero

values only at the center and the facing elements. Thus, we always use masks of order

φ = 3. To explain the success of the used masks, we point to a fact: the multi-resolution

allows Halite0 to use masks of a low order to efficiently “simulate” masks of higher orders.

Figure 4.4b gives an intuition on this fact by illustrating masks applied to grids in distinct

resolutions over a 2-dimensional space. As it can be seen, one mask of order 3 applied

to a coarse resolution “simulates” masks of higher orders (i.e., 6, 12, ...) applied to finer

4.3 Proposed Method – Basics 45

resolutions. Furthermore, Figure 4.4b also shows that, in our multi-resolution setting,

the space regions ignored in fine resolutions due to the mask’s zero values are commonly

considered in coarser resolutions.

Bump Hunting: As it can be seen in Algorithm 2, phase two starts applying the

mask to level two of the Counting-tree, starting at a coarse resolution and refining as

needed. It allows Halite0 to find β-clusters of different sizes. When analyzing a resolution

level h, the mask is convoluted over every cell at this level, excluding those already used for

a β-cluster found before. The cell with the largest convoluted value refers to the clearest

bump in the data space analyzed regarding level h, i.e., the largest positive magnitude of

the density gradient. Thus, it may indicate a new β-cluster.

Applying a convolution mask to level h requires a partial walk over the Counting-tree,

but no node deeper than h is visited. The walk starts going down from the root until

reaching a cell bh at level h that may need to be convoluted. The neighbors of this cell

are named after the convolution matrix: face and corner neighbors. The center element

corresponds to the cell itself. If the bh.usedCell flag is true or the cell shares the data

space with a previously found β-cluster, the cell is skipped. Otherwise, Halite0 finds the

face neighbors of bh and applies the mask centered at bh. After visiting all cells in level

h, the cell with the largest convoluted value has the usedCell flag set to true.

Each cell bh at resolution level h is itself a d-dimensional hyper-cube and it can be

divided into other 2d cells in the next level, splitting each axis in half. Therefore, from the

two face neighbors at axis ej, one is stored in the same node of cell bh, while the other is in

a sibling node of cell bh. We call the face neighbor stored at the same node as the internal

neighbor of cell bh, and the other as its external neighbor regarding axis ej. For example,

cell A2 in resolution level 2 of the Counting-tree in Figure 4.3c has the internal neighbor

B2 and the external neighbor D2 regarding axis e1. The internal neighbor of a cell bh

in axis ej at resolution level h and its point count are respectively referred as NI(bh, ej)

and NI(bh, ej).n. Similarly, for the same axis and resolution, the external neighbor of bh

and its points count are NE(bh, ej) and NE(bh, ej).n respectively. Halite0 analyzes the

absolute cell positions in a Counting-tree to spot external and internal neighbors.

Confirming the β-cluster: The “Bump Hunting” task allows to efficiently spot

the clearest bumps in a dataset. However, two open questions still prevent its use for

clustering: (i) what is the best resolution to spot each bump? and (ii) when should

the “Bump Hunting” stop? To give an intuition on both questions, we use again the

1-dimensional data with grids in four resolutions from Figure 4.4a. In the illustration, a

dark-gray arrow points to the cell with the largest convoluted value, which describes the

clearest bump in the data for each resolution. Notice: we did not show yet a procedure

to automatically identify the best resolution to spot a bump, which refers to question

one. In the example, the bump is best described in the second coarsest resolution, as its

bounds are overestimated in the coarsest resolution and only its borders are spotted in

46 4. Halite

Algorithm 2 : Finding the β-clusters.

Input: Counting-tree T , significance level α
Output: matrices of β-clusters L, U and V ,

number of β-clusters βk
1: βk = 0;
2: repeat
3: h = 1;
4: repeat
5: h = h+ 1;
6: for each cell bh in level h of T do
7: if bh.usedCell = false ∧ bh does not overlap with a previously found

β-cluster then
8: find the face neighbors of bh in all axes;
9: apply the Laplacian mask centered in bh, using the point counts of bh and of

the found neighbors;
10: ah = bh, if the resulting convoluted value is the largest one found in the

current iteration;
11: end if
12: end for
13: ah.usedCell = true;
14: centered on ah and based on α, compute cPj, nPj and θαj for every axis ej;
15: if cPj > θαj for at least one axis ej then
16: βk =β k + 1; {a new β-cluster was found}
17: end if
18: until a new β-cluster is found ∨ h = H − 1
19: if a new β-cluster was found then
20: compute r[] and cThreshold;
21: for j = 1, 2, ..., d do
22: V [βk][j] = r [j] ≥ cThreshold;
23: if V [βk][j] = true then
24: compute L[βk][j] and U [βk][j] based on the lower and upper bounds of ah

and of its face neighbors regarding axis ej;
25: else L[βk][j] = 0; U [βk][j] = 1;
26: end if
27: end for
28: end if
29: until no new β-cluster was found

4.3 Proposed Method – Basics 47

the two finest resolutions. Now, we refer to question two. Assuming that the exemplified

bump was properly described in its best resolution, should we keep looking for bumps or

should we stop? A procedure to automatically answer this question, after spotting each

bump, is also missing. In the example, ignoring the bump’s region, a white arrow points

to the cell with the largest convoluted value for each resolution, which, clearly, does not

lead to a cluster. Thus, the “Bump Hunting” should stop.

Notice that the “Bump Hunting” spots cells on the “positive” side of the largest,

local density changes, but it does not guarantee that these changes are statistically

significant - some of them could have been created by chance. Even when analyzing

only points randomly distributed through a d-dimensional space, the mask will return

bumps. Therefore, we propose to automatically answer both questions previously posed by

ignoring bumps that, potentially, were created by chance, assuming that only statistically

significant bumps lead to β-clusters. This strategy allows Halite0 to identify the best

resolution to spot each bump, since this resolution is the one in which the corresponding

local density change is more intense, thus, it avoids overestimating the clusters bounds

and spotting only clusters’ borders. The proposed strategy also spots the correct moment

to stop the “Bump Hunting” - it stops once the clearest bump was potentially created by

chance in all resolutions.

To state if a new β-cluster exists in level h, Halite0 searches for the cell ah with the

largest convoluted value and analyzes its neighbors. The intuition is to use an statistical

test to verify if the possible cluster, represented by cell ah, is significantly denser than

its neighboring data space regions, thus confirming or not the cluster existence. The

Counting-tree structure gives us a single feasible option for the analysis of the neighboring

regions: to analyze the data distribution in one predecessor of cell ah and in the face

neighbors of that predecessor. Our experiments reported in the upcoming Section 4.7

show that top clustering accuracy is obtained by choosing the first (direct) predecessor of

ah, cell ah−1, which gives us at most six regions to analyze per axis. Thus, Halite0 uses

this option. Other options are: to analyze 12 regions per axis, by choosing predecessor

ah−2; to analyze 24 regions per axis, by choosing predecessor ah−3; and so on. But, these

options would force Halite0 to require more than two levels in the tree, the minimum

requirement when choosing ah−1, which would make the method slower.

For axis ej, the neighbor cells to be analyzed are the predecessor ah−1 of ah, its

internal neighbor NI(ah−1, ej) and its external neighbor NE(ah−1, ej). Together, they

have nPj = ah−1.n + NI(ah−1, ej).n + NE(ah−1, ej).n points. The half-space counts in

these three cells show how the points are distributed in at most six consecutive, equal-sized

regions in axis ej, whose densities we shall analyze. The point count in the center region,

the one containing ah, is given by: cPj = ah−1.P [j], if the j-bit in ah.loc is 0, or by

cPj = ah−1.n− ah−1.P [j] otherwise. For example, wrt cell A3 in Figure 4.3b and axis e1,

the six analyzed regions are presented in distinct texture, cP1 = 1 and nP1 = 6.

48 4. Halite

If at least one axis ej of cell ah has cPj significantly greater than the expected average

number of points
nPj

6
, Halite0 assumes that a new β-cluster was found. Thus, for each axis

ej, the null hypothesis test is applied to compute the probability that the central region

contains cPj points if nPj points are uniformly distributed in the six analyzed regions.

The critical value for the test is a threshold to which cPj must be compared to determine

whether or not it is statistically significant to reject the null hypothesis. The statistic

significance is a user-defined probability α of wrongly rejecting the null hypothesis. For

a one-sided test, the critical value θαj is computed as α = Probability(cPj ≥ θαj). The

probability is computed assuming the Binomial distribution with the parameters nPj and
1
6
, since cPj ∼ Binomial(nPj,

1
6
), under the null hypothesis and 1

6
is the probability that

one point falls into the central region, when it is randomly assigned to one of the six

analyzed regions. If cPj > θαj for at least one axis ej, we assume ah to be the center cell

of a new β-cluster and increment βk. Otherwise, the next tree level is processed.

Describing the β-cluster: Once a new β-cluster was found, Halite0 generates the

relevances array r = [r1, r2, . . . rd], where r [j] is a real value in (0, 100] representing the

relevance of axis ej regarding the β-cluster centered in ah. The relevance r [j] is given

by (100 ∗ cPj)/nPj. Then, Halite0 automatically tunes a threshold to mark each axis

as relevant or irrelevant to the β-cluster. The relevances in r[] are sorted in ascending

order into array o = [o1, o2, . . . od], which is analyzed to find the best cut position p,

1 ≤ p ≤ d that maximizes the homogeneity of values in the partitions of o[], [o1, . . . op−1]

and [op, . . . od]. The value cThreshold = o[p] defines axis ej as relevant or irrelevant, by

setting V [βk][j] = true if r [j] ≥ cThreshold, and false otherwise.

In order to identify the value of p, based on the MDL principle, Halite0 analyzes the

homogeneity of values in partitions of o[], [o1, . . . op′−1] and [op′ , . . . od], for all possible

cut positions p′, integer values between 1 and d. The idea is to compress each possible

partition, representing it by its mean value and the differences of each of its elements to

the mean. A partition with high homogeneity tends to allow good compression, since its

variance is small and small numbers need less bits to be represented than large ones do.

Thus, the best cut position p is the one that creates the partitions that compress best.

For a given p′, we compute the number of bits required to represent the respective

compressed partitions of o[] using the following equation.

size (p′) = b (µ
L
) +

∑
1≤j<p′

b (o[j]− µ
L
) + b (µ

R
) +

∑
p′≤j≤d

b (o[j]− µ
R

) (4.1)

In Equation 4.1, b () is a function that returns the number of bits required to represent the

value received as input, µ
L

is the mean of [o1, . . . op′−1] and µ
R

is the mean of [op′ , . . . od].

We assume b (µ
L
) = 0 for p′ = 1. Minimizing size(), through all possible cut positions

p′, integer values between 1 and d, leads Halite0 to find the best cut position p.

4.3 Proposed Method – Basics 49

The last step required to identify the new β-cluster finds its lower and upper bounds

in each axis. These bounds are respectively set to L[βk][j] = 0 and U [βk][j] = 1 for every

axis ej, having V [βk][j] = false. For the other axes, the relevant ones, these bounds are

first set equal to the lower and upper bounds of ah in these axes. Then, they are refined

analyzing the neighbors of ah. Considering a relevant axis ej, if there exists a non-empty

face neighbor of ah whose lower bound is smaller than the lower bound of ah, then L[βk][j]

is decreased by 1/2h. In the same way, if there exists a non-empty face neighbor of ah

whose upper bound is bigger than the upper bound of ah, then U [βk][j] is increased by

1/2h. In this way, Halite0 completes the description of the β-cluster and restarts applying

the mask from level two of the tree to find another β-cluster. The process stops when the

mask is applied to every tree level and no new β-cluster is found.

Time and Space Complexity: Algorithm 2 identifies βk β-clusters. When looking

for each β-cluster, at most H − 2 tree levels are analyzed, which have at most η cells

each. For each tree level, the cells that do not belong to a previously found β-cluster

are the convolution pivots to apply the mask. Finally, the neighborhood of the cell with

the largest convoluted value is analyzed to find if it is the center of a new β-cluster.

Thus, the time complexity of this part of Algorithm 2 (lines 3-18) is O(βk
2 H2 η d).

After finding each new β-cluster, the relevance level array with d real values in (0, 100]

is built in O(d) time and sorted in O(d log d) time, the method MDL is used in O(d)

time and the new β-cluster is described in O(d H) time. Thus, the time complexity of

this part of Algorithm 2 (lines 19-28) is O(d βk(log d+H)). However, each iteration step

of the first part of Algorithm 2 consumes a time t1 that is much larger than the time t2

consumed by each iteration step of the second part. Thus, the total time of Algorithm 2

is O(βk
2 H2 η d) t1 +O(d βk(log d+H)) t2. Given that t1 and t2 are constant values and

t1 � t2, we argue that Halite0 is quasi-linear in d and our experiments corroborate this

claim. See Section 4.7 for details. The space complexity of Algorithm 2 is O(d βk+ d+ H),

as it builds the matrices L, U and V and it uses arrays with either d or H positions each.

4.3.3 Building the Correlation Clusters

The final phase of Halite0 builds γk correlation clusters based on the β-clusters found

before. According to Definition 9, Halite0 analyzes pairs of β-clusters and those that

overlap are merged into a single cluster, including merged clusters in further mergers.

Algorithm 3 details this phase.

Time and Space Complexity: Algorithm 3 analyzes, at cost dβk
2, all the βk

β-clusters found before to identify and to merge, among all possible pairs, the ones that

overlap in the d-dimensional space. Then, it defines, at cost dγk βk, the axes relevant to

each of the γk merged clusters, based on the relevant axes of the βk β-clusters. Thus,

the time complexity of Algorithm 3 is O(d (βk
2 +γ k βk)). During the process, an array

with βk positions links β-clusters to correlation clusters, while a matrix with γk lines

50 4. Halite

Algorithm 3 : Building the correlation clusters.

Input: matrices of β-clusters L, U and V ,
number of β-clusters βk

Output: set of correlation clusters C,
number of correlation clusters γk

1: identify all pairs of β-clusters that overlap;
2: merge each pair of overlapping β-clusters into a single cluster, including merged

clusters in further mergers;
3: define the points that belong to each merged cluster, as the ones that belong to at

least one of its β-clusters;
4: define the dimensions relevant to each merged cluster, as those relevant to at least

one of its β-clusters;
5: C = the merged clusters;
6: γk = the number of merged clusters;

and d columns indicates the relevant axes to the clusters. Thus, the space complexity of

Algorithm 3 is O(βk + γk d).

4.4 Proposed Method – The Algorithm Halite

In this section we propose the Halite method for correlation clustering. It improves

the basic Halite0 by providing an optimized implementation strategy for the Counting-tree,

even for the case when it does not fit in main memory. The Halite0 algorithm has linear

space complexity with regard to the number of points, axes and clusters. However, using

the recommended configuration, the amount of memory required by it in our experiments

(see Section 4.7.1 for details) varied between 25 and 50 percent of the data size, depending

on the points distribution. Thus, for large datasets, the use of Operational System’s disk

cache may become a considerable bottleneck. In order to overcome this problem, Halite

has a table-based implementation that never uses disk cache, regardless of the input

dataset. Therefore, it allows us to efficiently analyze large amounts of data.

The idea is to represent the Counting-tree by tables stored in main memory and/or

disk. Each table represents one tree level, by storing in key/value entries the data related

to all non-empty cells of that level. Remember that Halite0 uses cells with the structure

< loc, n, P [d], usedCell, ptr >, where loc is the cell spatial position inside its parent cell,

n is the number of points in the cell, P [] is an array of half-space counts, usedCell is a

boolean flag and ptr is a pointer to the next tree level. For Halite, this cell structure was

slightly modified. Here, the pointer ptr does not exist and loc has the absolute position

for the cell. In each key/value pair, loc is the key, and the other attributes form the value.

Figure 4.5 exemplifies the data storage for Halite. The tables shown consist in a

different way of storing the Counting-tree of Figure 4.3c. Both approaches represent the

same data, the 2-dimensional dataset from Figure 4.3b, the one used in our examples of

4.5 Proposed Method – Soft Clustering 51

Section 4.3. To reduce cluttering in the figure, the usedCell flags are not shown. Notice,

as an example, that the cell A3 from Figure 4.3b has a single point. This information is

stored in both versions of the tree as A3.n = 1. The data space position of A3 is given

by A3.loc = [11 ↓ 00 ↓ 01] in Figure 4.5. The same information is found in Figure 4.3c as

[A1.loc ↓ A2.loc ↓ A3.loc] = [11 ↓ 00 ↓ 01]. Finally, the half-space counts are represented

by A3.P [1] = 1 and A3.P [2] = 0 in both data structures.

level 1

loc
PP

nloc
P[1] P[2]

n

[01] 1 4 6

[11] 1 3 3

level 3

loc
PP

nloc
P[1] P[2]

n

............

[11↓00↓01] 1 0 1

............

level 2

loc
PP

nloc
P[1] P[2]

n

[01↓00] 0 0 1

[01↓10] 1 1 3

[01↓11] 1 1 2

[11↓00] 1 0 1

[11↓10] 2 2 2

Counting-tree

A2

A3
D2

B2

Friday, June 18, 2010

Figure 4.5: The Counting-tree by tables of key/value pairs in main memory and/or disk.
It allows Halite to efficiently cluster large datasets, even when the tree does
not fit in main memory. Notice that, both this tree and the one in Figure
4.3c represent our example dataset from Figure 4.3b.

Provided the Halite0 algorithm and the fact that the tree can be stored in tables with

key/value entries, the implementation of Halite is done as follows: we use a traditional

approach to store tables with key/value entries in main memory and/or disk for the tree

storage, and the same strategies used by Halite0 , described in Algorithms 1, 2 and 3, are

applied to Halite. Notice that, between the used data structures, the Counting-tree is

the only one that may have large changes in size with regard to the input dataset. Thus,

considering our table-based implementation, it is possible to affirm that Halite never uses

disk cache, regardless of the input dataset.

Our current implementation for Halite stores the Counting-tree by using the Oracle

Berkeley DB 11g3, configured for simple data storage to avoid data locks. The cache size

is set according to the available main memory. Finally, we currently have hash tables

storing the key/value pairs, but other structures could also be used, such as B-trees.

4.5 Proposed Method – Soft Clustering

The Halite algorithm is a hard clustering method, i.e., it defines a dataset partition by

ensuring that each point belongs to at most one cluster. Hard clustering methods lead to

high quality results for most datasets. Also, several applications require the definition of a

3 www.oracle.com/technology/products/berkeley-db/

52 4. Halite

dataset partition. However, hard clustering is not the best solution for some specific cases,

in which the clusters have high probability to overlap. Consider the 2-dimensional dataset

in Figure 4.6a. The data contains a pair of clusters that overlap, making any dataset

partition not a good choice, provided that the points in light-gray should belong to both

clusters. In cases like that, the so-called soft clustering methods are more appropriate,

since they allow points in the overlapping spaces to belong to more than one cluster. For

that reason, this section proposes the Halites method for soft correlation clustering,

a soft clustering approach for Halite.

X

Y

X

Y

X

Y

(d)

(a)

(e) (f)

(c) (b)

X

Y

X

Y

X

Y

!"#$%&'()*+,-.#*/01+203,*+'4,1$,!"#$%&'!()*+,-$

-.#*/01+20,15'1,%/01,)+,#$%)6"+4,

Figure 4.6: Illustration of our soft clustering method Halites: β-clusters (dotted rect-
angles) may stay apart (top) if they are incompatible, resulting in soft
clustering (light-gray circles in (a)); or merged together (bottom). The
compression-based formulas of Halites automatically make the right choice.
In all cases, a ‘star’ indicates the center of the respective clusters.

As a real example, let us consider the clustering analysis of satellite images. In this

scenario, a topographer wants to analyze terrains in a set of images, usually assuming that

each image is split into tiles (say, 32x32 pixels), from which features are extracted. The

topographer expects to find clusters of ‘water’ tiles, ‘concrete’ tiles, ‘forest’ tiles, etc., but

the used procedure may create many hybrid tiles, as a bridge (both ‘water’ and ‘concrete’)

or a park (‘water’, ‘forest’ and ‘concrete’), which should belong to more than one cluster.

In other words, there is a high probability that the clusters overlap in the data space.

Therefore, a hard clustering method is semantically inappropriate to the case.

Halites is a fast and scalable algorithm carefully designed to spot points that should

belong to two or more clusters, being recommended to scenarios where the probability of

4.5 Proposed Method – Soft Clustering 53

cluster overlap is high, as in our previous example with satellite imagery. The algorithm

has three phases. The first two are the same ones used for hard clustering: Algorithms 1

and 2, including the improvements presented in Section 4.4. The third phase is new. It

takes β-clusters as input and uses a compression-based analysis to combine some of the

ones that overlap into a soft clustering result. Figure 4.6 illustrates the problem. Distinct

2-dimensional datasets are shown in Figures 4.6a and 4.6d. Each dataset contains a pair

of overlapping β-clusters, described by dotted rectangles. The β-clusters in Figure 4.6a

clearly form two clusters and, thus they should remain apart. However, the ones in Figure

4.6d should be combined into a single cluster. Halites automatically makes the right choice

in both cases.

The full pseudo-code for the new phase three is shown in Algorithm 4. The idea is to

use the Minimum Description Length (MDL) principle and to analyze the compression

ratio of pairs of overlapping β-clusters, where the clusters in each pair can be compressed

apart or combined. Halites picks the option that compresses best. If the combined cluster

allows better compression than the β-clusters do in separate, the β-clusters are merged;

otherwise, the β-clusters remain apart, allowing points in the overlapping spaces to belong

to both clusters.

Algorithm 4 : Building soft clusters.

Input: matrices of β-clusters L, U and V ,
number of β-clusters βk

Output: set of correlation clusters C,
number of correlation clusters γk

1: for k′ = 1, 2, ...,β k do
2: for k′′ = k′ + 1, k′ + 2, ...,β k do
3: if β-clusters δ′

βCk′ and δ′′
β Ck′′ overlap then

4: sizek′ = compress(δ
′
β Sk′), if not done yet;

5: sizek′′ = compress(δ
′′
β Sk′′), if not done yet;

6: sizek′∪k′′ = compress(δ
′
β Sk′ ∪ δ′′

β Sk′′);
7: if (sizek′ + sizek′′) > sizek′∪k′′ then
8: // the combined cluster compresses best
9: merge β-clusters δ′

βCk′ and δ′′
β Ck′′ into a single cluster, including merged

clusters in further mergers, as it is done in Algorithm 3;
10: end if
11: end if
12: end for
13: end for

The strategy used for compression is described in Algorithm 5, which refers to the

function compress() used in Algorithm 4. The function receives a set of points δ
γSk,

related to a possible cluster δ
γCk and returns the size of the input data in bits, after

compression. Notice: in order to avoid additional disk accesses, δγSk is approximated by

the tree level where the respective β-clusters were found, assuming points in the center of

54 4. Halite

the cluster’s cells. The compression is performed as follows. The principal components of
δ
γSk are computed, and the points of δ

γSk are projected into all d principal components.

Let the projected points be in a set δ
γPk and the d principal components computed be in

a set γAk. Notice that this step states that δ
γPk and γAk define the possible cluster δ

γCk

as δ
γCk =

〈
γAk,

δ
γPk
〉

after its projection into the principal components of δγSk. Then, the

maximum maxj and minimum minj values of δγPk in each principal component aj ∈ γAk

are found. After that, we are able to represent the input data δ
γSk in a compressed way

by storing: the descriptions of each principal component aj, besides their related values

for maxj and minj, and; the differences to the center, pij − (((maxj −minj)/2) +minj),

for each projected point pi ∈ δ
γPk, with regard to each principal component aj ∈ γAk.

The size in bits needed to store these items is the output. Large numbers need more bits

to be stored than small numbers do. Thus, a set of points in which the stored differences

to the center are small tend to lead to a good compression.

Algorithm 5 : Function compress().

Input: set of points δ
γSk for a possible cluster δ

γCk
Output: compressed size for δ

γSk
1: compute the principal components of δγSk;
2: δ

γPk = δ
γSk, projected into all d principal components computed;

3: γAk = the set of d principal components computed;
// Notice that Lines 2 and 3 state that δ

γPk and γAk define the possible cluster δ
γCk

as δ
γCk =

〈
γAk,

δ
γPk
〉

after its projection into the principal components of δγSk.
4: maxj,minj = the maximum and the minimum values of δ

γPk, in each principal
component aj ∈ γAk;

5: size = the number of bits needed to store the descriptions of each principal component
aj ∈ γAk, besides its related values for maxj and minj;

6: for every projected point pi ∈ δ
γPk do

7: for j = 1, 2, ..., d do
8: // difference to the center wrt principal component aj ∈ γAk
9: size = size + number of bits needed to store (pij−(((maxj−minj)/2)+minj));

10: end for
11: end for
12: return size;

Let us illustrate how the compression idea works, by using the example datasets

in Figure 4.6. Dotted rectangles, gray arrows and stars refer to β-clusters, principal

components and cluster centers respectively. First, consider the data in Figure 4.6a. For

the β-clusters apart, Figure 4.6b shows that we have ‘medium compression’, since the

differences to the centers are small in one principal component of each cluster and large

in the other. However, Figure 4.6c shows that the compression is worse for the combined

cluster, since the differences to the center are large in both principal components. Thus,

Halites keeps the β-clusters apart. Notice that this step defines that the points in gray will

belong to both clusters in the final result. For the data in Figure 4.6d, the Figures 4.6e

4.6 Implementation Discussion 55

and 4.6f respectively show that the differences to the centers are small in one principal

component and large in the other, both with the β-clusters in separate and combined.

However, in the first case, we store the descriptions of two sets of principal components

and the related values of maxj and minj for each component. A single set is stored for

the combined cluster, which leads to better compression. Therefore, Halites decides to

combine the β-clusters into a single correlation cluster.

4.6 Implementation Discussion

A possible bottleneck in our algorithms is related to computing the critical value θαj

for the statistical test, line 14 of Algorithm 2. As shown in Section 4.3, we carefully

identify data space regions that refer to bumps in the point density and verify if these

regions stand out in the data in a statistical sense, thus spotting clusters. The Binomial

distribution Binomial(n, p) is the base for our statistical test. But, computing the critical

value with the exact Binomial distribution may become a bottleneck for large values of

n. Fortunately, an efficient approximation to the Binomial(n, p) is given by the Normal

distribution Normal(n.p, n.p.(1 − p)). Also, it is common sense in statistics that the

approximation quality is excellent when n.p > 5 ∧ n.(1− p) > 5. Thus, we compute θαj

for both Halite and Halites using the normal approximation to the Binomial distribution

whenever this rule applies. The exact computation is very efficient in all other cases.

4.7 Experimental Results

This section presents the experiments performed to test the algorithms proposed in this

chapter. We intend to answer the following questions:

1. Compared with seven of the recent and related works, how good is the clustering

method Halite?

2. How do the proposed techniques scale up?

3. How sensitive to the input parameters are our techniques?

4. What are the effects of soft clustering in data with high probability of cluster overlap

and, compared with a well-known, soft clustering algorithm, how good is Halites?

All experiments were made in a machine with 8.00GB of RAM using a 2.33GHz core.

Our methods were tuned with a fixed configuration in all experiments, i.e., default values

for α = 1.0E− 10 and H = 4. The justification for this choice is in Section 4.7.3. Finally,

notice that results on memory usage are not reported neither for Halite nor for Halites,

since both allow the efficient use of data partially stored in disk, as described in Section

56 4. Halite

4.4. Note however that we do compare here the memory needs of the related works with

those of Halite0 . Moreover, remember that Halite0 , Halite and Halites have similar space

complexity, the difference being that Halite and Halites do manage the memory in disk if

the Counting-tree does not fit in main memory.

4.7.1 Comparing hard clustering approaches

This section compares Halite with seven of the top related works over synthetic and real

data. The techniques are: ORCLUS, COPAC, CFPC, HARP, LAC, EPCH and P3C. All

methods were tuned to find disjoint clusters. The code of ORCLUS was kindly provided

by Kevin Y. Yip and the project Biosphere. The source codes for all other methods were

kindly provided by their original authors (i.e., Arthur Zimek and Elke Achtert provided

COPAC; Man Lung Yiu and Nikos Mamoulis provided CFPC; Kevin Y. Yip provided

HARP; Carlotta Domeniconi provided LAC; Raymond Chi-Wing Wong provided EPCH,

and; Gabriela Moise provided P3C.). We also report results for Halite0 , which allows us

to evaluate the improvements proposed on our basic algorithm.

Evaluating the Results: the quality of each result given by each technique was

measured based on the well-known precision and recall measurements. We distinguish

between the clusters known to exist in a dataset dS, which we call real clusters, and those

that a technique found, which we call found clusters. A real cluster δ
rCk =

〈
rAk,

δ
rSk
〉

is

defined as a set rAk of δ axes, aligned or not to the original axes, together with a set of

points δ
rSk densely clustered when projected into the subspace formed by rAk. Notice that

the symbol A is used here in place of the symbol E to represent a set of axes, since the

axes in rAk can be original axes, but they can also be linear combinations of the original

axes, i.e., rAk is not necessarily a subset of E. A found cluster δ
fCk =

〈
fAk,

δ
fSk
〉

follows

the same structure of a real cluster, using the symbol f instead of r. Finally, fk and rk

respectively refer to the numbers of found and real clusters existing in dataset dS.

For each found cluster δ
fCk, its most dominant real cluster δ′

r Ck′ is identified by the

following equation.

δ′
r Ck′ | |δfSk ∩ δ′

r Sk′ | = max(|δfSk ∩ δ′′
r Sk′′|), 1 ≤ k′′ ≤ rk (4.2)

Similarly, for each real cluster δ′
r Ck′ , its most dominant found cluster δ

fCk is identified

by the equation as follows.

δ
fCk | |δ

′
r Sk′ ∩ δ

fSk| = max(|δ′r Sk′ ∩ δ′′
f Sk′′|), 1 ≤ k′′ ≤ fk (4.3)

The precision and the recall between a found cluster δ
fCk and a real cluster δ′

r Ck′ are

computed as follows.

4.7 Experimental Results 57

precision =

∣∣δ
fSk ∩ δ′

r Sk′
∣∣∣∣δ

fSk
∣∣ (4.4)

recall =

∣∣δ
fSk ∩ δ′

r Sk′
∣∣

|δ′r Sk′|
(4.5)

To evaluate the quality of a clustering result, we averaged the precision (Equation 4.4)

for all found clusters and their respective most dominant real clusters. Also, we averaged

the recall (Equation 4.5) for all real clusters and their respective most dominant found

clusters. These two averaged values are closely related to well-known measurements. The

first one is directly proportional to the dominant ratio [Aggarwal and Yu, 2002, Ng et al.,

2005], while the second one is directly proportional to the coverage ratio [Ng et al., 2005].

We name as Quality the harmonic mean of these averaged values. The evaluation of

a clustering result with regard to the quality of the subspaces uncovered is similar. We

also computed the harmonic mean of the averaged precision for all found clusters and

the averaged recall for all real clusters, but we exchanged the sets of points (S sets) in

the two last equations, Equations 4.4 and 4.5, by sets of axes (A sets). We name this

harmonic mean as Subspaces Quality .

Finally, in the cases where a technique did not find clusters in a dataset, the value

zero was assumed for both qualities.

System Configuration: Halite uses fixed input parameter values, as defined in the

upcoming Section 4.7.3. Halite0 was tuned in the same way. The other algorithms were

tuned as follows. ORCLUS, LAC, EPCH, CFPC and HARP received as input the number

of clusters present in each dataset. Also, the known percent of noise for each dataset was

informed to HARP. The extra parameters of the previous works were tuned as in their

original authors’ instructions. LAC was tested with integer values from 1 to 11, for the

parameter 1/h. However, its run time differed considerably with distinct values of 1/h.

Thus, a time out of three hours was specified for LAC executions. All configurations that

exceeded this time limit were interrupted. EPCH was tuned with integer values from 1

to 5 for the dimensionalities of its histograms and several real values varying from 0 to 1

were tried for the outliers threshold. For the tests in P3C, the values 1.0E − 1, 1.0E − 2,

1.0E − 3, 1.0E − 4, 1.0E − 5, 1.0E − 7, 1.0E − 10 and 1.0E − 15 were tried for the

Poisson threshold. HARP was tested with the Conga line data structure. CFPC was

tuned with values 5, 10, 15, 20, 25, 30 and 35 for w, values 0.05, 0.10, 0.15, 0.20 and

0.25 for α, values 0.15, 0.20, 0.25, 0.30 and 0.35 for β and 50 for maxout. ORCLUS was

tested with its default values for α = 0.5 and k0 = 15k, where k is the known number

of clusters present in each dataset. It also received as input the known average cluster

dimensionality of each synthetic dataset, and all possible dimensionalities were tested for

the real data. COPAC was tuned with its default values for α = 0.85 and k = 3d and its

default distance function was used. Its parameter ε was defined as suggested in COPAC’s

58 4. Halite

original publication and µ received the smallest value between k and the known size of

the smallest cluster present in each dataset, since COPAC demands µ ≤ k.

Notice two remarks: (a) we ran each non-deterministic related work 5 times in each

possible configuration and averaged the results. The averaged values were taken as the

final result for each configuration; (b) all results reported for the methods we compare with

refer to the configurations that led to the best Quality value, over all possible parameters

tuning.

Synthetic Data Generation: we created synthetic data following standard proce-

dures used by most methods described in Chapter 3, including the tested methods. The

details are in Algorithm 6. In a nutshell: (i) we initially created axes-aligned, elliptical

clusters of random sizes that follow normal distributions with random means and random

variances in at least 50% of the axes (relevant axes), spreading through at most 15%

of these axes domains. In other axes, the irrelevant ones, all clusters follow the uniform

distribution, spreading through the whole axes domains; and (ii) an optional data rotation

allowed creating clusters not aligned to the original axes. In this step, each dataset was

rotated four times in random planes and random degrees.

Algorithm 6 was used to create synthetic datasets organized in several groups. A first

group of datasets was created to analyze each tested method with regard to increasing

numbers of points, axes and clusters. It contains 7 non-rotated datasets with d, η and γk

growing together from 6 to 18, 12k to 120k and 2 to 17 respectively. Noise percentile was

fixed at 15%. For identification purposes, the datasets are named 6d, 8d, 10d, 12d, 14d,

16d and 18d according to their dimensionalities. Rotated versions of these datasets were

also created to analyze each method over clusters not aligned to the original axes. These

datasets are named 6d r, 8d r, 10d r, 12d r, 14d r, 16d r and 18d r.

The strategy employed to create the 14d dataset (14 axes, 90k points, 17 clusters, 15%

noise and non-rotated) was the base for the creation of the other groups of datasets. Based

on it, 3 groups of datasets were created varying one of these characteristics: numbers of

points, axes or clusters. Each group has datasets, created by Algorithm 6, in which a

single characteristic changes, while all others remain the same as the ones in the 14d

dataset. The number of points grows from 50k to 250k, the dimensionality grows from 5

to 30 and the number of clusters grows from 5 to 25. The names Xk, Xc and Xd s refer

respectively to datasets in the groups changing numbers of points, clusters or axes. For

example, dataset 30d s differs from 14d only because it has 30 axes instead of 14.

Results on Synthetic Data: This section compares the methods on synthetic data.

We show results for clustering quality, memory consumption and run time. For easy

reading the graphs of the section, we linked the values obtained for each method and

plotted all vertical axes related to run time or to memory consumption in log scale. When

a method found no cluster in a dataset, despite it was ran several times for each possible

parameter configuration, the respective values measured for run time and also for memory

4.7 Experimental Results 59

Algorithm 6 : Function generate one dataset().

Input: dimensionality d,
cardinality η,
number of clusters γk,
percent of noise pN ,
choice between axes-aligned and arbitrarily oriented clusters rotate

Output: one synthetic dataset dS
1: // generates the noise points

dS = η ∗ (pN/100) random points in [0, 1)d;
2: // defines the sizes of the clusters
c[] = array of γk random integers, such that

∑
k c[k] = η ∗ ((100− pN)/100);

3: for k = 1, 2, ...,γ k do
4: // empty matrix (new cluster)

define cluster[c[k]][d];
5: // δ ≥ 50% of d

δ = random integer in [d
2
, d];

6: // relevant axes, at least 50%
randomly pick δ axes;

7: for j = 1, 2, ..., d do
8: if axis ej was picked then
9: // the cluster will spread through at most 15% of the domain of ej

choose random mean and variance, such that the Normal(mean, variance)
distribution generates values in [0, 1) that differ at most 0.15 from each other;

10: cluster[:][j] = c[k] real numbers following Normal(mean, variance);
11: else cluster[:][j] = c[k] random values in [0, 1);
12: end if
13: end for
14: insert each row of cluster[][] as a point in dS;
15: end for
16: if rotate then
17: // optional step of rotation

rotate dS four times in random planes and in random degrees, and then normalize
dS to [0, 1)d;

18: end if
19: return dS;

60 4. Halite

consumption were ignored, as in most cases each run led to different values measured due

to the distinct configurations used. When a method used disk cache, its run time was

ignored too. In these cases, no lines link the values obtained for the respective methods

in the graphs.

Figure 4.7 presents the results for run time and for clustering accuracy. Figure 4.7a

shows that Halite, Halite0 , EPCH, HARP and LAC presented similar high Quality values

for all the datasets in the first group. CFPC presented a clear decrease in Quality when

the dimensionality was higher than 12. P3C, ORCLUS and COPAC had worse Quality

results. Regarding run time, Figure 4.7b shows that Halite was in general the fastest

algorithm, loosing by little to Halite0 for small data. As an example, for the biggest

dataset 18d, Halite was respectively 6, 17, 54, 145, 515, 1, 440 and 10, 255 times faster

than Halite0 , CFPC, EPCH, LAC, P3C, ORCLUS and COPAC.

The results for data with individual changes in numbers of points, axes and clusters

are shown in Figure 4.7, from 4.7c up to 4.7h. Notice that, Halite, Halite0 , LAC and

EPCH performed well in Quality for all cases, exchanging positions but being in general

within 10 percent from each other with no one being prevalent. Notice also that Halite

and Halite0 always showed the same Quality. ORCLUS, COPAC, CFPC, HARP and P3C

performed worse than that. Halite was again the fastest method in almost all cases, only

tying with Halite0 for low dimensional datasets. As an example, for the dataset with the

highest dimensionality, 30d s, Halite ran respectively 9, 25, 36, 419, 1, 542, 3, 742 and

5, 891 times faster than Halite0 , CFPC, LAC, P3C, ORCLUS, HARP and COPAC.

Another experiment refers to the rotated data. It analyzes each method’s abilities

to find clusters in subspaces formed by linear combinations of original axes. The results

are in Figures 4.7i and 4.7j. Halite, Halite0 and LAC were only marginally affected by

rotation, varying at most 5% in their respective Quality values, compared to the results

of the same data without rotation. All others had considerable decreased or increased

Quality values for at least one case. Run time results were similar to those obtained for

non-rotated data.

The results on memory usage are presented in Figure 4.8. We report results for P3C,

LAC, EPCH, CFPC, HARP, and also for our method Halite0 . Figure 4.8 shows that,

in all cases, there was a huge discrepancy between HARP and EPCH face to the others

with regard to memory usage. Note the log scale in every Y-axis. As an example, for

dataset 18d, the biggest one into the first group of datasets, HARP used approximately

34.4GB of memory and EPCH used 7.7 percent of this amount, while Halite0 used only

0.3 percent of the memory required by HARP.

The quality of relevant axes was also evaluated. LAC, COPAC and ORCLUS were

not tested here, as they do not return a set of original axes to define the axes relevant to

each cluster. The results for the first group of datasets are in Figure 4.9. The Subspaces

4.7 Experimental Results 61

0

0.2

0.4

0.6

0.8

1

6d 8d 10d 12d 14d 16d 18d

Q
ua

lit
y

First group of datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

50k 100k 150k 200k 250k

Q
ua

lit
y

Number of points

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

5c 10c 15c 20c 25c

Q
ua

lit
y

Number of clusters

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

5d_s 10d_s 15d_s 20d_s 25d_s 30d_s

Q
ua

lit
y

Dimensionality

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

6d_r 8d_r 10d_r 12d_r 14d_r 16d_r 18d_r

Q
ua

lit
y

Rotated datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

6d 8d 10d 12d 14d 16d 18d

Se
co

nd
s

First group of datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

1
10

100
1,000

10,000
100,000

1,000,000

50k 100k 150k 200k 250k

Se
co

nd
s

Number of points

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

5d_s 10d_s 15d_s 20d_s 25d_s 30d_s

Se
co

nd
s

Dimensionality

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

6d_r 8d_r 10d_r 12d_r 14d_r 16d_r 18d_r

Se
co

nd
s

Rotated datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

1

10

100

1,000

10,000

100,000

5c 10c 15c 20c 25c

Se
co

nd
s

Number of clusters

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

0
0.2
0.4
0.6
0.8

1

Q
ua

lit
y

alpha

6d
8d
10d
12d
14d
16d
18d

0.1

1

10

100

Se
co

nd
s

alpha

6d
8d
10d
12d
14d
16d
18d

0.84

0.88

0.92

0.96

1

4 5 10 20 40 80

Q
ua

lit
y

H

6d
8d
10d
12d
14d
16d
18d

0.1

1

10

100

4 5 10 20 40 80

Se
co

nd
s

H

6d
8d
10d
12d
14d
16d
18d

Comparing hard clustering approaches

(a)

(c)

(b)

(d)

0

0.2

0.4

0.6

0.8

1

6d 8d 10d 12d 14d 16d 18d

Su
bs

pa
ce

s
Q

ua
lit

y

First group of datasets

P3C
EPCH
CFPC
HARP
CorCo
CorC

Halite0
Halite

Halite0
Halite

Halite0
Halite

Halite0
Halite

Halite0

Halite

Halite0
Halite

Halite0

Halite

Halite0
Halite

Halite0
Halite

Halite0
Halite

Halite0

Halite

Figure 4.7: Halite is shown in black vertical crossing lines. Left column: Quality; Right
column: wall-clock time in log scale. Comparison of approaches for hard
clustering – Halite was in average at least 12 times faster than seven top
related works, always providing high quality clusters.

Quality values are similar for Halite, Halite0 and EPCH. All others had worse results.

The same pattern was seen in the other datasets.

62 4. Halite

100

10,000

1,000,000

100,000,000

6d 8d 10d 12d 14d 16d 18d

K
B

First group of datasets

P3C
LAC
EPCH
CFPC
HARP
CorC

1,000
10,000

100,000
1,000,000

10,000,000
100,000,000

50k 100k 150k 200k 250k

K
B

Number of points

P3C
LAC
EPCH
CFPC
HARP
CorC

1,000
10,000

100,000
1,000,000

10,000,000
100,000,000

5c 10c 15c 20c 25c

K
B

Number of clusters

P3C
LAC
EPCH
CFPC
HARP
CorC

1,000
10,000

100,000
1,000,000

10,000,000
100,000,000

K
B

Dimensionality

P3C
LAC
EPCH
CFPC
HARP
CorC

(a) (b)

(p) (q) (r)

(c) (d)

(e)

(m) (n) (o)

1,000
10,000

100,000
1,000,000

10,000,000
100,000,000

K
B

Rotated datasets

P3C
LAC
EPCH
CFPC
HARP
CorC

(s) (t) (u)

Memory consumption results

0

0
0

0

0

Halite0

Halite0

Halite0

Halite0

Halite0

Figure 4.8: Results on memory consumption for synthetic data.

0

0.2

0.4

0.6

0.8

1

6d 8d 10d 12d 14d 16d 18d

Q
ua

lit
y

First group of datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

50k 100k 150k 200k 250k

Q
ua

lit
y

Number of points

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

5c 10c 15c 20c 25c

Q
ua

lit
y

Number of clusters

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

5d_s 10d_s 15d_s 20d_s 25d_s 30d_s

Q
ua

lit
y

Dimensionality

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

6d_r 8d_r 10d_r 12d_r 14d_r 16d_r 18d_r

Q
ua

lit
y

Rotated datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

6d 8d 10d 12d 14d 16d 18d

Se
co

nd
s

First group of datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

1
10

100
1,000

10,000
100,000

1,000,000

50k 100k 150k 200k 250k

Se
co

nd
s

Number of points

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

5d_s 10d_s 15d_s 20d_s 25d_s 30d_s

Se
co

nd
s

Dimensionality

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

6d_r 8d_r 10d_r 12d_r 14d_r 16d_r 18d_r

Se
co

nd
s

Rotated datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

1

10

100

1,000

10,000

100,000

5c 10c 15c 20c 25c

Se
co

nd
s

Number of clusters

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

0
0.2
0.4
0.6
0.8

1

Q
ua

lit
y

alpha

6d
8d
10d
12d
14d
16d
18d

0.1

1

10

100

Se
co

nd
s

alpha

6d
8d
10d
12d
14d
16d
18d

0.84

0.88

0.92

0.96

1

4 5 10 20 40 80

Q
ua

lit
y

H

6d
8d
10d
12d
14d
16d
18d

0.1

1

10

100

4 5 10 20 40 80

Se
co

nd
s

H

6d
8d
10d
12d
14d
16d
18d

Comparing hard clustering approaches

(a)

(c)

(b)

(d)

0

0.2

0.4

0.6

0.8

1

6d 8d 10d 12d 14d 16d 18d

Su
bs

pa
ce

s
Q

ua
lit

y

First group of datasets

P3C
EPCH
CFPC
HARP
CorCo
CorC

Halite0
Halite

Halite0
Halite

Halite0
Halite

Halite0
Halite

Halite0

Halite

Halite0
Halite

Halite0

Halite

Halite0
Halite

Halite0
Halite

Halite0
Halite

Halite0

Halite

Figure 4.9: Subspace Quality for synthetic data.

Concluding, P3C had the worst Quality values in most cases. HARP, CFPC, ORCLUS

and COPAC provided average Quality values for some datasets, but the results were

not good in several cases. Halite, Halite0 , LAC and EPCH had the best results, in

general tying with regard to Quality values. However, contrasting to Halite and also to

Halite0 , the methods LAC and EPCH demanded guessing the number of clusters and

required distinct threshold tuning to each dataset to obtain their best results reported.

Regarding memory needs, remember that Halite0 , Halite and Halites have similar space

4.7 Experimental Results 63

complexity, the difference being that Halite and Halites do manage the memory in disk

if the Counting-tree does not fit in main memory. With that in mind, we compared

the memory needs of the related works with those of Halite0 . This comparison shows

that CFPC in general required the least amount of memory, followed by LAC, Halite0 ,

P3C, EPCH and HARP which respectively required 1.2, 2.8, 6.5, 112 and 600 times

more memory than CFPC in average. Therefore, the memory consumption of Halite0 was

similar to those of top related works. Regarding run time, Halite was the fastest method in

almost all cases, only loosing by little to Halite0 in some small datasets. The improvements

on our basic implementation allowed Halite to be about one order of magnitude faster than

Halite0 for large data. Halite also avoids the use of disk cache. Finally, when comparing to

the other works, Halite was in average 12, 26, 32, 475, 756, 2, 704 and 7, 218 times faster

than CFPC, LAC, EPCH, P3C, ORCLUS, HARP and COPAC respectively. Notice that

Halite was in average at least 12 times faster than seven recent and related works, always

providing high quality clusters.

Real Data: the real dataset used to test the methods is the training data provided

for the Siemens KDD Cup 20084. It was created for automatic breast cancer diagnosis,

consisting of 25 of the most significant features extracted automatically from 102,294

Regions of Interest (ROIs) present in X-ray breast images of 118 malignant cases and

1,594 normal cases. Ground truth is also provided. The data was partitioned into four

datasets, each containing features extracted from homogeneous images, i.e., each dataset

has features extracted from ∼ 25, 000 ROIs related to images taken from one breast, left

or right, in one of the possible directions, CC or MLO. The Quality results were computed

based on the ground truth class label of each ROI.

Results on Real Data: all methods were tested with the real data. However, LAC

and P3C failed for all four datasets in all tested configurations. LAC always grouped all

points into a single cluster. P3C did not finish within a week for all cases. Thus, they

are not reported. The results for left breast images in one MLO view are shown in Figure

4.10. Halite was at least 11 times faster than the previous works, increasing their accuracy

in up to 35%. The other three real datasets led to similar results.

4.7.2 Scalability

This section analyzes the scalability of Halite and Halites with regard to increasing data

sizes and dimensionality. Synthetic datasets were created by Algorithm 6. The data sizes

and dimensionality vary from 100k to 1 million points and from 5 to 30 axes respectively.

The datasets have 10 axes-aligned clusters each and 15% of noise. Notice in Figure 4.11

that the proposed techniques scale as expected, according to the theoretical complexity

analysis, presented in Section 4.3.

4 http://www.kddcup2008.com

64 4. Halite

���������

��	���
�

���� ���� ���� �	�� �
��
� ����� ������

��
��
� ��
� ���� ���
 ���� ���� ��
� ����

�� ������
��� ������� ����� �����

������� ����� ���� ������� ���
 ��
� ������ �����

��� � �� ��� ���� �����
�

���

���

���

���

�

����
�	����	�
���

�
�� ���!�"##$%

����

����

����

������

�����

�����

!���"#�$#%
��&
'(#$�)(*

�
�+
(
�
,�
�
	

-
+
�
���
.

&��
�

�
��
�

''(
)
�
�	

��
��
�

Figure 4.10: Quality versus run time in linear-log scale over 25-dimensional data for
breast cancer diagnosis (KDD Cup 2008). Halite was at least 11 times
faster than 5 previous works (2 other failed), increasing their accuracy in
up to 35%. Similar behavior occurred in synthetic data.

4.7.3 Sensitivity Analysis

The behavior of our techniques varies based on two parameters: α and H. This section

analyzes how they affect our methods. We varied both parameters for Halite, Halite0

and Halites to maximize the Quality values obtained, defining the best configuration for

each of our datasets and techniques. Then, for each dataset and technique, we modified

the best configuration, changing one parameter at a time, and analyzed the technique’s

behavior. For example, when varying H for a dataset and technique, the value of α was

fixed at the value in the respective best configuration. The tested values of α and H

vary from 1.0E − 3 to 1.0E − 160 and from 4 to 80 respectively. Figure 4.12 reports

the results of Halite0 . Figures 4.12a and 4.12c present the results wrt α. Notice that,

the values of α that led to the best Quality vary from 1.0E − 5 to 1.0E − 20 and the

run time was barely affected by changes in α. Concerning H, Figures 4.12b and 4.12d

show that the Quality does not increase significantly for H higher than 4. However, the

run time increased as expected wrt H. Thus, small values for H, such as 4, are enough

for most datasets. Similar results were obtained by Halite and Halites for all synthetic

and real datasets. Therefore, we define the values α = 1.0E − 10 and H = 4 to be the

default configuration for our proposed techniques. These fixed values were used in all

other experiments reported here.

4.7 Experimental Results 65

CorC CorCs Slope 1 Slope 0
100000 3.096 4.891 1.1 1.1
200000 5.713 8.994 2.2 1.1
300000 8.983 13.68 3.3 1.1
400000 11.739 18.324 4.4 1.1
500000 14.461 21.374 5.5 1.1

1000000 27.558 41.188 11 1.1

CorC CorCs Slope 1 Slope 0
5 13.47 17.277 1.1 1.1

10 19.757 24.681 2.2 1.1
15 26.118 30.31 3.3 1.1
20 32.918 41.336 4.4 1.1
30 42.891 51.613 6.6 1.1

!"

!#"

!##"

!#####" !######"

!"
#$
%&

'(

)*+*(!,-"(

$%&$"

$%&$'"

!"

!#"

!##"

(" (#"

!"
#$
%&

'(

),."%',$%*/,+0(

$%&$"

$%&$'"

100k

(a) scalability wrt the Data Size

(b) scalability wrt the Dimensionality

1 million

1.0 slope

1.0 slope

Halite

Halites

Halite

Halites

Figure 4.11: Scalability of Halite and Halites on synthetic data of varying sizes and
dimensionality. Plots in log-log scale. Notice: both methods scale as
expected, according to the theoretical complexity analysis in Section 4.3.

0

0.2

0.4

0.6

0.8

1

6d 8d 10d 12d 14d 16d 18d

Q
ua

lit
y

First group of datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

50k 100k 150k 200k 250k

Q
ua

lit
y

Number of points

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

5c 10c 15c 20c 25c

Q
ua

lit
y

Number of clusters

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

5d_s 10d_s 15d_s 20d_s 25d_s 30d_s

Q
ua

lit
y

Dimensionality

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0

0.2

0.4

0.6

0.8

1

6d_r 8d_r 10d_r 12d_r 14d_r 16d_r 18d_r

Q
ua

lit
y

Rotated datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

6d 8d 10d 12d 14d 16d 18d

Se
co

nd
s

First group of datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

1
10

100
1,000

10,000
100,000

1,000,000

50k 100k 150k 200k 250k

Se
co

nd
s

Number of points

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

5d_s 10d_s 15d_s 20d_s 25d_s 30d_s
Se

co
nd

s
Dimensionality

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

0
1

10
100

1,000
10,000

100,000

6d_r 8d_r 10d_r 12d_r 14d_r 16d_r 18d_r

Se
co

nd
s

Rotated datasets

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

1

10

100

1,000

10,000

100,000

5c 10c 15c 20c 25c

Se
co

nd
s

Number of clusters

P3C
LAC
EPCH
CFPC
HARP
ORCLUS
COPAC
CorCo
CorC

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

0
0.2
0.4
0.6
0.8

1

Q
ua

lit
y

alpha

6d
8d
10d
12d
14d
16d
18d

0.1

1

10

100

Se
co

nd
s

alpha

6d
8d
10d
12d
14d
16d
18d

0.84

0.88

0.92

0.96

1

4 5 10 20 40 80

Q
ua

lit
y

H

6d
8d
10d
12d
14d
16d
18d

0.1

1

10

100

4 5 10 20 40 80

Se
co

nd
s

H

6d
8d
10d
12d
14d
16d
18d

Comparing hard clustering approaches

(a)

(c)

(b)

(d)

0

0.2

0.4

0.6

0.8

1

6d 8d 10d 12d 14d 16d 18d

Su
bs

pa
ce

s
Q

ua
lit

y

First group of datasets

P3C
EPCH
CFPC
HARP
CorCo
CorC

Figure 4.12: Sensitivity analysis. It led to the definition of our default configuration
α = 1E − 10 and H = 4.

66 4. Halite

4.7.4 Soft Clustering

This section compares Halites with STATPC, a well-known, state-of-the-art soft clustering

method. The original code for STATPC was used, which was gracefully provided by

Gabriela Moise. As suggested by the authors, the input parameter values used were the

default values, α0 = 1.0E − 10 and αK = αH = 0.001. Halites uses fixed input parameter

values, as defined in Section 4.7.3. The methods were compared in a scenario with high

probability of cluster overlap, our example scenario from Section 4.5. We analyzed 14 high

quality satellite images from famous cities, as the city of Hong Kong in Figure 4.13a. The

images, available at ‘geoeye.com’, have a combined size of 17MB. Each image was divided

into equal-sized rectangular tiles, from which Haar wavelets features were extracted. The

process led to a 10-dimensional dataset of 14, 336 points.

(a) Hong Kong
(b) STATPC

Water Concrete Sand

(c) Halites

Water Concrete Sand
(d) Halite

Water Land

Figure 4.13: Comparing Halite and Halites with STATPC on data with cluster overlap
(best viewed in color). As expected, hard clustering leads to correct, but
less detailed results: roughly speaking, Halites and STATPC found clusters
of ‘Water’ tiles (cyan), ‘Sand’ tiles (red) and ‘Concrete’ tiles (green); Halite
merged the last two clusters into a cluster of ‘Land’ tiles (red). The results
for Halites and STATPC are similar. Notice, however, that Halites found
the clusters in only two seconds, while STATPC took two days to perform
the same task. So, our solution can be used in real time applications.

Figures 4.13b and 4.13c respectively exemplify the results for STATPC and Halites

over this data by coloring each tile from the example image of Hong Kong according to

its cluster. As expected, some tiles belong to more than one cluster. These were colored

according to their first assigned clusters. Notice that both results are similar, with clusters

that represent the main patterns apparent in the example image. However, STATPC took

4.8 Discussion 67

two days to find the clusters, while Halites performed the same task in only two seconds.

Similar results were obtained for the other 13 images.

Notice that such results indicate that our solution allows the development of real time

applications that, potentially, could not be developed without it, like a software to aid on

the fly the diagnosis process in a worldwide Healthcare Information System, or a system

to look for deforestation within the Amazon Rainforest in real time.

Finally, we report results for Halite (Figure 4.13d), which, as expected, are still correct,

but provide less details compared to the soft clustering ones. Roughly speaking, Halites

and STATPC found clusters of ‘water’ tiles (cyan), ‘sand’ tiles (red) and ‘concrete’ tiles

(green), whereas Halite merged the last two clusters into a single cluster of ‘land’ tiles

(red). These results corroborate our conjecture from Section 4.5, that soft clustering is

more appropriate to this kind of data.

4.8 Discussion

This section provides a discussion on some specific characteristics of the clustering

methods proposed. As a first topic to discuss, notice that our method looks for dense

space regions, and thus it works for any data distribution. We illustrated it on rotated

Gaussians, as well as on real data of unknown distribution.

Also, we claim that the quadratic behavior on the number of β-clusters found is not

a crucial concern for our techniques. Experimental evaluation showed that this number

closely follows the ground truth number of clusters existing in the tested datasets. In our

experiments, the biggest number of β-clusters found over all synthetic and real datasets

was 33. Notice that, the biggest number of clusters present in these data is 25. The results

for the first group of synthetic datasets are in Figure 4.14, which shows a plot with the

Y-axis referring to each dataset tested, and horizontal bars representing the respective

number of β-clusters found by Halite, besides the ground-truth number of clusters. The

same pattern was seen in all of our other datasets. Furthermore, the analysis of data with

many clusters is usually meaningless, as it is very hard to the user to obtain semantic

interpretations from a large number of clusters.

We also claim that the quadratic behavior on H is not a relevant concern for Halite,

since very small values for H are commonly sufficient to obtain accurate clustering

results. Remember that a Counting-tree describes a d-dimensional dataset in H distinct

resolutions. Each cell in the first resolution level h = 0 is divided in 2d cells in level h+ 1,

which are divided again in 2d cells in level h+ 2 each, and so on. The process stops when

h = H−1. Thus, for moderate-to-high dimensionality data, the maximum count of points

in a cell of tree level h converges exponentially to 1, as the value of h increases to reach

H − 1. After the point of convergence, even for a skewed dataset, more levels tend to be

68 4. Halite

dataset number of -clusters found bynumber of clusters found by ground truth number of clusters
6d 2 2 2
8d 6 5 6
10d 11 6 10
12d 23 12 14
14d 19 8 17
16d 18 12 14
18d 14 13 14

ß

0 5 10 15 20 25

6d

8d

10d

12d

14d

16d

18d

Fi
rs

t g
ro

up
 o

f d
at

as
et

s
ground truth number of
clusters
number of -clusters
found by

4.8 Discussion 63

Finally, we report results for Halite (Figure 4.12d), which, as expected, are still correct,

but provide less details compared to the soft clustering ones. Roughly speaking, Halites

and STATPC found clusters of ‘water’ tiles (cyan), ‘sand’ tiles (red) and ‘concrete’ tiles

(green), whereas Halite merged the last two clusters into a single cluster of ‘land’ tiles

(red). These results corroborate our conjecture from Section 4.5, that soft clustering is

more appropriate to this kind of data.

4.8 Discussion

This section provides a discussion on some specific characteristics of the clustering

methods proposed. As a first topic to discuss, notice that our method looks for dense

space regions, and thus it works for any data distribution. We illustrated it on rotated

Gaussians, as well as on real data of unknown distribution.

Also, we claim that the quadratic behavior on the number of �-clusters found is not

a crucial concern for our techniques. Experimental evaluation showed that this number

closely follows the number of clusters found in the tested datasets. In our experiments,

the biggest number of �-clusters found over all synthetic and real datasets was 33. Notice

that, the biggest number of clusters present in these data is 25. The results for the first

group of synthetic datasets are in Figure ??, which shows a plot with the X-axis referring

to each dataset tested, and bars representing the respective number of �-clusters and

correlation clusters found by Halite, besides the ground-truth number of clusters. The

same pattern was seen in all of our other datasets. Furthermore, the analysis of data with

many clusters is usually meaningless, as it is very hard to the user to obtain semantic

interpretations from a large number of clusters.

We also claim that the quadratic behavior on H is not a relevant concern for

Halite, since very small values for H are commonly su�cient to obtain good clustering

results. Remember that a Counting-tree describes a d-dimensional dataset in H distinct

resolutions. Each cell in the first resolution level h = 0 is divided in 2d cells in level h+1,

which are divided again in 2d cells in level h + 2 each, and so on. The process stops when

h = H�1. Thus, for moderate-to-high dimensionality data, the maximum count of points

in a cell of tree level h converges exponentially to 1, as the value of h increases to reach

H � 1. After the point of convergence, even for a skewed dataset, more levels are useless,

since they would not help to better describe the data. The sensitivity analysis in Section

4.7.3 corroborate this claim.

Finally, notice that, Halite is limited to the size of the clusters that it finds. Our

method analyses the points distribution in specific regions of the data space with all

dimensions using an statistical hypothesis test to identify �-clusters, which lead to the

clusters. However, these regions must have a minimum amount of points to reject the null

hypothesis. In this way, Halite may miss clusters with small amount of points present in

Halite

Figure 4.14: Ground truth number of clusters versus the number of β-clusters found by
Halite over synthetic data.

useless, since they would not help to better describe the data. The sensitivity analysis in

Section 4.7.3 corroborate this claim.

Additionally, notice that, Halite is limited to the size of the clusters that it finds.

Our method analyses the points distribution in specific regions of the data space with all

dimensions using an statistical hypothesis test to identify β-clusters, which lead to the

clusters. However, these regions must have a minimum amount of points to reject the null

hypothesis. In this way, Halite may miss clusters with small amount of points present in

low-dimensional subspaces, since they tend to be extremely sparse in spaces with several

dimensions. On the other hand, the clustering results tend to be better as the number

of points in the clusters increase. Thus, Halite is suitable for large, multi-dimensional

datasets and as it scales linearly with the dataset size, it becomes better as the dataset

increases. In this way, Halite tends to be able to spot accurate clusters even from datasets

with more than 30 axes, when they are large enough.

Notice one last remark: the traditional clustering method STING [Wang et al., 1997]

is a basis to the work presented in this chapter. Similarly to Halite, STING also does

multi-resolution space division in a statistical approach for clustering. However, STING is

a traditional clustering method that proposes to only analyze two or very low dimensional

data. It is not suitable for moderate-to-high dimensionality data clustering, since STING

does not spot clusters that only exist in subspaces of the original data space. Also,

STING uses a fixed density threshold to find clusters, whereas Halite applies a novel spike

detection strategy based on convolution masks to find possible clusters, and then Halite

confirms the clusters by using a statistical test to identify the spikes that are significantly

denser than their neighboring space regions. Finally, STING does not include a soft

clustering approach.

4.9 Conclusions 69

4.9 Conclusions

This chapter presented the new Halite method for correlation clustering that we

developed as part of this Ph.D. work. Existing methods are typically super-linear in space

or execution time. The main strengths of Halite are that it is fast and scalable, while still

giving highly accurate results. In details, the main contributions of Halite are:

1. Scalability: it is linear in time and space with regard to the data size and to the

dimensionality of the clusters. Halite is also linear in memory usage and quasi-linear

in running time regarding the space dimensionality;

2. Usability: it is deterministic, robust to noise, does not have the number of clusters

as a parameter and finds clusters in subspaces formed by original axes or their linear

combinations, including space rotation;

3. Effectiveness: it is accurate, providing results with equal or better quality

compared to top related works;

4. Generality: it includes a soft clustering approach, which allows points to be

part of two or more clusters that overlap in the data space. Specifically, we

introduced: Halite0 , a basic implementation for our method; Halite, our optimized,

and finally proposed method for hard clustering, and; Halites, our recommended

implementation for soft clustering.

A theoretical study on the time and space complexity of Halite, presented in Section

4.3, as well as an extensive experimental evaluation performed over synthetic and real

data spanning up to 1 million elements corroborate these properties. Specifically, the

experiments compared Halite with seven representative works. On synthetic data, Halite

was consistently the fastest method, always presenting highly accurate results. Regarding

real data, Halite analyzed 25-dimensional data for breast cancer diagnosis (KDD Cup

2008) at least 11 times faster than five previous works, increasing their accuracy in up to

35, while the last two related works failed.

Halite is the first knowledge discovery algorithm designed in this Ph.D. work. The

next two chapters describe the other algorithms developed in this Ph.D. work.

70 4. Halite

Chapter

5

BoW

The large amounts of data collected by the enterprises are accumulating data, and

today it is already feasible to have Terabyte- or even Petabyte-scale datasets that must

be submitted for data mining processes. However, given a Terabyte-scale dataset of

moderate-to-high dimensionality, how could one cluster its points? Numerous successful,

serial clustering algorithms for data in five or more dimensions exist in literature,

including our own algorithm Halite. However, the existing algorithms are impractical

for datasets spanning Terabytes and Petabytes, and examples of applications with such

huge amounts of data in five or more dimensions abound (e.g., Twitter crawl: > 12 TB,

Yahoo! operational data: 5 Petabytes [Fayyad, 2007a]). This limitation was previously

summarized in Table 3.1 from Chapter 3. For datasets that do not even fit on a single disk,

parallelism is a first class option, and thus we must re-think, re-design and re-implement

existing serial algorithms in order to allow for parallel processing. In this chapter we

explore parallelism using MapReduce for clustering huge datasets. Specifically, we present

the second knowledge discovery algorithm designed in this Ph.D. work.

5.1 Introduction

Given a Terabyte-scale dataset of moderate-to-high dimensional elements, how could one

cluster them? Numerous successful, serial clustering algorithms for data in five or more

dimensions exist in literature, including our own algorithm Halite. However, the existing

algorithms are impractical for data spanning Terabytes and Petabytes (e.g., Twitter crawl:

> 12 TB, Yahoo! operational data: 5 Petabytes [Fayyad, 2007a]). In such cases, the data

are already stored on multiple disks, as the largest modern disks are 1-2TB. Just to

read a single Terabyte of data (at 5GB/min on a single modern eSATA disk) one takes

71

72 5. BoW

more than 3 hours. Thus, parallelism is not another option – it is by far the best choice.

Nevertheless, good, serial clustering algorithms and strategies are still extremely valuable,

because we can (and should) use them as ‘plug-ins’ for parallel clustering. Naturally, the

best algorithm is the one that combines (a) a fast, scalable serial algorithm and (b) makes

it run efficiently in parallel. This is exactly what our proposed method does.

Examples of applications with Terabytes of data in five or more dimensions abound:

weather monitoring systems and climate change models, where we want to record wind

speed, temperature, rain, humidity, pollutants, etc; social networks like Facebook TM,

with millions of nodes, and several attributes per node (gender, age, number of friends,

etc); astrophysics data, such as the SDSS (Sloan Digital Sky Survey), with billions of

galaxies and attributes like red-shift, diameter, spectrum, etc.

In this chapter we focus on the problem of finding clusters in subspaces of huge,

moderate-to-high dimensionality datasets. Our proposed method uses MapReduce, and can

treat as plug-in almost any of the serial clustering methods, including our own algorithm

Halite. The major research challenges addressed here are (a) how to minimize the I/O cost,

taking care of the already existing data partition (e.g., on disks), and (b) how to minimize

the network cost among processing nodes. Either of them may become the bottleneck.

Thus, we propose the Best of both W orlds – BoW method, that automatically spots the

bottleneck and chooses a good strategy. The main contributions of BoW are as follows:

1. Algorithm design and analysis: the BoW method is based on a novel, adaptive

algorithm that automatically picks the best of two strategies and good parameters

for it, hence its name Best of both W orlds. One of the strategies uses our proposed

sampling-and-ignore idea that reduces the network traffic;

2. Effectiveness, scalability and generality: we show that BoW can use most serial

clustering methods as plug-ins, including our own method Halite. BoW requires no

user defined parameters (due to our defaults) and it maintains the serial clustering

quality, with near-linear scale-up;

3. Experiments: we report experiments on real and synthetic data with billions of

elements, using hundreds of machines running in parallel.

We report results obtained from a combination of large real and synthetic datasets,

including the Yahoo! web one.1 To the best of our knowledge, the Yahoo! web is the

largest real dataset for which results have ever been reported in the database clustering

literature for data in five or more axes. Although spanning 0.2 TB of multi-dimensional

data, BoW took only 8 minutes to cluster it, using 128 cores. We also report experiments

that used 1, 024 cores, also the highest such number published in the clustering literature

for moderate-to-high dimensional data.

1 Provided by Yahoo! Research (www.yahoo.com).

5.2 Proposed Main Ideas – Reducing Bottlenecks 73

Notice one important remark: BoW is tailored to spot clusters in subspaces of

moderate-to-high dimensionality data and can handle most serial algorithms as plug-ins,

since the only required API is that the serial algorithm should return clusters of points

in hyper-rectangles, which we shall refer to as β-clusters, whose definition follows the

same one previously employed for the Halite algorithm, but which may also be provided

by many other existing algorithms. Overlapping β-clusters are then merged to form

clusters. Indeed, the intuition is to generalize the structure of isometric crystal systems

to the d-dimensional case in order to describe clusters of any shape and size, existing in

subspaces only, as it was extensively discussed in the previous Chapter 4. Remember that

the clustering methods well-suited to analyze moderate-to-high dimensionality data spot

clusters that exist only in subspaces of the original, d-dimensional space (i.e., spaces

formed by subsets of the original axes or linear combinations of them). Thus, the

natural shape of the clusters in the original space facilitates their representation with

hyper-rectangles, as the points of each cluster spread linearly through several axes (original

axes or linear combinations of them) in the original space. For that reason, many of the

existing serial, clustering methods (e.g., CLIQUE, FPC/CFPC, P3C, STATPC, and also

our method Halite) return clusters in hyper-rectangles, and adapting others to work with

BoW tends to be facilitated by the natural shape of the clusters. Nevertheless, besides

focusing on spotting clusters in subspaces of moderate-to-high dimensionality data, BoW

also works with traditional clustering methods and low dimensional data, if the plug-in

returns clusters in hyper-rectangles.

5.2 Proposed Main Ideas – Reducing Bottlenecks

The major research problems for clustering very large datasets with MapReduce are (a)

how to minimize the I/O cost, and (b) how to minimize the network cost among processing

nodes. Should we split the data points at random, across machines? What should each

node do, and how should we combine the results? Do we lose accuracy (if any), compared

to a serial algorithm on a huge-memory machine?

Our proposed method answers all of those questions, by careful design and by

adaptively trading-off disk delay and network delay. Specifically, we propose a novel,

adaptive algorithm named BoW that is a hybrid between two strategies presented in this

section: (i) the ParC method that does data partitioning and merges the results; and

(ii) the SnI method that does some sampling first, to reduce communication cost at the

expense of higher I/O cost. There is no universal winner between ParC and SnI, since it

depends on the environment used and also on the dataset characteristics (see Section 5.5

for details). BoW automatically picks the best option, and good parameters for it. The

reason for the success of BoW is our upcoming cost-estimation formulas (Equations 5.4

and 5.5), which help BoW to pick the best alternative and to set proper parameters for

74 5. BoW

the chosen environment, while requiring nimble computational effort. Next, we describe

the methods ParC and SnI in detail.

5.2.1 Parallel Clustering – ParC

The ParC algorithm has three steps: (1) appropriately partition the input data and

assign each data partition to one machine, (2) each machine finds clusters in its assigned

partition, named as β-clusters, and, (3) merge the β-clusters found to get the final clusters.

There are subtle issues on how to merge the results once we do clustering on each machine,

which are detailed in Section 5.4.

We give the details in Section 5.4, but in a nutshell, we consider three options for data

partitioning: (a) random data partitioning: elements are assigned to machines at random,

striving for load balance; (b) address-space data partitioning: eventually, nearby elements

in the data space often end up in the same machine, trading-off load balance to achieve

better merging of the β-clusters; and (c) arrival order or ‘file-based’ data partitioning: the

first several elements in the collection go to one machine, the next batch goes to the second,

and so on, achieving perfect load balance. The rationale is that it may also facilitate the

merging of the β-clusters, because data elements that are stored consecutively on the disk,

may also be nearby in address space, due to locality: For example, galaxy records from

the Sloan Digital Sky Survey (SDSS) are scanned every night with smooth moves of the

telescope, and thus galaxies close in (2-d) address space, often result in records that are

stored in nearby locations on the disk.

As described in Section 2.5 of Chapter 2, a MapReduce-based application has at least

two modules: the map and the reduce. Our ParC method partitions the data through

MapReduce mappers and does the clustering in MapReduce reducers. The final merging

is performed serially, since it only processes the clusters descriptions, which consist of a

tiny amount of data and processing. Figure 5.1a (5.1b will be explained latter) illustrates

the process. It starts in phase P1 with m mappers reading the data in parallel from the

MapReduce distributed file system. In this phase, each mapper receives a data element at

a time, computes its key, according to the data partition strategy used, and outputs a pair

〈key, point〉. All elements with the same key are forwarded in phase P2 to be processed

together, by the same reducer, and the elements with distinct keys are processed apart,

by distinct reducers.

In phase P3, each reducer receives its assigned set of elements and normalizes them to

a unitary hyper-cube. Each reducer then applies the plugged-in serial clustering algorithm

over the normalized elements, aiming to spot β-clusters. For each β-cluster found, the

reducer outputs, in phase P4, a pair 〈key, cluster description〉. The key concatenates the

reducer identification and a cluster identification. The reducer identification is the input

key. The cluster identification is a sequential number according to the order in which

5.2 Proposed Main Ideas – Reducing Bottlenecks 75

!"#$%%
&"'$%

()*%+),)&&$&%-,./$00"'1%2.,%!"#$%

3%

45% 46% 47% 4#%

3%

85% 86% 87% 8,%

09),9%

$':%

.'$%#)/;"'$%%

&%#)--$,0%%
,$):%:)9)%%
"'%-),)&&$&%

0;<=$%'(%
>?9$0%

#%,$:</$,0%
&..@%2.,%%
/&<09$,0%

.'$%#)/;"'$%%
:.$0%9;$%%
#$,1"'1%

0$':%/&<09$,0%%
:$0/,"-A.'0%

!

cos tM(m , Fs)
/.09B%

!

cos tS(r , Fs)
/.09B%

!

cos tR(r , Fs)
/.09B%

!

negligible
/.09B%

!

negligible
/.09B%

P1

P2

P3

P4

P5

!"#$%%
&"'$%

()*%+,-,&&$&%.-/0$11"'2%3/-%!"#$

4%

56% 57% 58% 5#% 19,-9%

$':%

;6%

%%#,..$-1%%
-$,:%:,9,%%
"'%.,-,&&$&%

1<=>$%&'(!)$
)?9$1%

*"+%-$:=0$-%%
&//@1%3/-%%
0&=19$-1%

!

cos tM(m , Fs)
0/19A%

!

cos tS(1, Fs • Sr)
0/19A%

!

cos tR(1, Fs • Sr)
0/19A%

/'$%#,0<"'$%%
/'$%#,0<"'$%%
:/$1%9<$%%
#$-2"'2%

1$':%0&=19$-1%
:$10-".B/'1%

!

negligible
0/19A%

!

negligible
0/19A%

4%

;6% ;7% ;8% ;-%

4%

56% 57% 58% 5#%

%%#,..$-1%%
-$,:%:,9,%%
"'%.,-,&&$&%

!

cos tM(m , Fs)
0/19A%

1<=>$%&'(,)$
)?9$1%

!

cos tS(r , Fs • Rr)
0/19A%

)%-$:=0$-1%&//@%%
3/-%0&=19$-1%

!

cos tR(r , Fs • Rr)
0/19A%

1$':%0&=19$-1%
:$10-".B/'1%

!

negligible
0/19A%

S1

S2

S3

S4

S5

S6

S7

S8

S9

Figure 5.1: Which one is best? Parallel run overview for ParC (left) and SnI (right -
with sampling). ParC executes the map (P1), shuffle (P2) and reduce (P3)
phases once, on the full dataset. SnI uses sampling (phases S1-S4) to get
rough cluster estimates and then uses phases S5-S9 to cluster the remaining
points (see Section 5.2.2 for details). Their clustering qualities are similar
(see Section 5.5). The winning approach depends on the environment; BoW
uses cost-based optimization to automatically pick the best.

the β-cluster was found in the corresponding reducer. A β-cluster description consists of

the unnormalized minimum/maximum limits of the cluster in each dimension, defining a

hyper-rectangle in the data space. Notice that this is a tiny amount of data, amounting

to two float values per axis, per β-cluster.

The last step is phase P5, that involves merging and/or stitching the β-clusters

provided by all the reducers to calculate the final answer. This step is performed serially,

as it processes only the tiny amount of data (the bounds of each β-cluster found) received

from phase P4, and not the data elements themselves. The best strategy to follow in this

step is highly dependent on the criteria used by the mapper to partition the data. Thus,

ParC uses distinct procedures for distinct data partitioning criteria. The procedures used

for each of the partitioning strategies that we studied are detailed in Section 5.4.

5.2.2 Sample and Ignore – SnI

Our initial implementation for parallel clustering, the ParC algorithm, reads the dataset

once, aiming at minimizing disk accesses, which is the most common strategy used by

serial algorithms to shrink computational costs. However, this strategy does not address

the issue of minimizing the network traffic: in the shuffle phase of the ParC algorithm

(phase P2 of Figure 5.1a), almost all of the records have to be shipped over the network,

76 5. BoW

to the appropriate reducer. It may become a considerable bottleneck. How can we reduce

this network traffic?

The main idea in this section is to minimize the network traffic for parallel clustering by

exploiting the skewed distribution of cluster sizes that typically appears in real datasets.

Most of the elements usually belong to a few large clusters, and these are exactly the

elements that we try to avoid processing. Thus, we propose SnI, a parallel clustering

algorithm that consists of: (a) a novel sample-and-ignore preprocessing step; and (b)

the ParC algorithm from Section 5.2.1. The sample-and-ignore step works on a small

dataset sample, spots the major clusters and ignores their members in the follow-up

steps. It significantly reduces the amount of data moved in the shuffling phases of SnI,

with consequent savings for the network traffic, as well as the I/O cost for the intermediate

results and processing cost for the receiving reduce tasks. Notice that the proposed

sample-and-ignore idea is an alternative general strategy that can improve many clustering

methods, and not only ParC.

The SnI method is defined in Algorithm 7 and the process is illustrated in Figure 5.1b.

At a high-level, in Phase I (steps S1-S4 in the figure, and lines 1-3 in the algorithm) the

method samples the input data and builds an initial set of clusters. In the second phase

(steps S5-S9 in the figure, and lines 4-8 in the algorithm), the input data is filtered, so

that we only include unclassified elements, that is, those that do not belong to any of the

clusters found in Phase I. These unclassified elements are then clustered using ParC.

Algorithm 7 : Multi-phase Sample-and-Ignore (SnI) Method.

Input: dataset dS
sampling ratio Sr

Output: clusters
1: // Phase 1 – Sample
2: m mappers read data and send elements to one reducer with probability Sr;
3: one reducer uses plug-in to find clusters in ∼ η.Sr received elements, and passes

clusters descriptions to m mappers;
4: // Phase 2 – Ignore
5: m mappers read data, ignore elements from clusters found in sample and send the

rest to r reducers, according to the Data Partition Approach;
6: r reducers use plug-in to find clusters in the received elements, and send clusters

descriptions to one machine;
7: one machine merges clusters received and the ones from sample, let the merged result

be clusters;
8: return clusters

Figure 5.2 illustrates the SnI approach over a toy dataset, assuming that we have

r = 2 reducers available for parallel processing. The top part of the figure shows Phase-I.

First, in Phase-I (a) the input dataset is read in parallel by m map tasks, each mapper

passes the input elements to the same reducer with some probability, for example, 0.5 for

the case shown in the figure. A single reducer builds clusters using the sample elements

5.3 Proposed Cost-based Optimization 77

in Phase-I (b). In this case two clusters were found and are denoted by the gray boxes

around the elements. The summary descriptors of the clusters found in Phase-I, i.e., the

minimum/maximum limits of the clusters wrt each dimension, are passed to Phase-II.

In Phase-II (a), m mappers perform a second pass over the data, this time filtering out

points that fall in the clusters found in Phase-I, which are denoted by the black boxes. The

elements that do not fall into clusters are passed to the two reducers available, as shown

in Phase-II (b) and (c), in which we assume that the used partitioning strategy divided

the elements into ‘black points’ and ‘white points’. Each reducer finds new clusters,

denoted by the points surrounded by dotted boxes. In Phase-II (d), the clusters found by

the reducers are merged with the clusters from the sampling phase using the upcoming

merging/stitching strategies described in Section 5.4. The global set of clusters, containing

three clusters represented in Phase-II (e) by distinct gray levels, is the final output.

The main benefit of the SnI approach is realized in the shuffle/reduce stages. In Phases

S2 and S3 of Figure 5.1b, only a small sample is shuffled and processed by a receiving

reducer. In Phases S6 and S7 of Figure 5.1b, only the non-ignored elements may need

to be shuffled through the network to other machines and processed. This means that

most elements belonging to the major clusters spotted in the sample are ignored, never

being shuffled through the network nor processed by a reducer. Compared to the ParC

algorithm, SnI significantly minimizes the network cost and the reducers processing, at

the cost of reading the whole dataset twice. In other words, ParC does a single pass over

the data, but almost all of the records have to be shipped over the network (in phase

P2 of Figure 5.1a), to be processed by the appropriate reducer. On the other hand, SnI

minimizes the shuffle/reduce cost, at the expense of reading the dataset one extra time.

What approach is the best? The answer is given in Section 5.3.

5.3 Proposed Cost-based Optimization

This section proposes an adaptive, hybrid method named BoW (Best of both W orlds)

that exploits the advantages of the previously described approaches, ParC and SnI, taking

the best of them. There is no universal winner, since it depends on the environment and

on the dataset characteristics. See Section 5.5 for a complete explanation. Therefore, the

main question here is: When should our sampling-and-ignore idea be used and when should

it be avoided? ParC executes the map, shuffle and reduce phases only once on the whole

dataset. SnI reduces the amount of data to be shipped to and processed by the reducers,

at the expense of a second pass on the input data (in the map phase). We propose a

cost-based optimization that uses simple analytics models to estimate the running time

of each clustering strategy. BoW picks the strategy with the lowest estimated cost.

The environmental parameters required by BoW are presented in Table 5.1. They

describe the hardware characteristics (i.e., the specs of the available MapReduce cluster),

78 5. BoW

!

Phase I – sampling

 (a) – input dataset (b) – clusters in sample

Phase II – look for the clusters not found in the sample

(a)

– input dataset,
 excluding the space
 of clusters from
 Phase I

(b) – reducer 1 (c) – reducer 2

(d) – merging (e) – final clusters

Figure 5.2: Overview of the Multi-phase Sample-and-Ignore (SnI) Method. Phase-I
finds clusters on a sample of the input data. Phase-II ignores elements that
fall within a previously found cluster and finds clusters using the remaining
elements only.

the total amount of data to be processed, and the cost estimate for the plugged-in serial

clustering method. Setting the value for Fs is straightforward. Ds, Ns and start up cost(t)

are inferred by analyzing the cloud of computers’ logs, while plug in cost(s) is defined

based on the plugged-in method’s original time complexity analysis and/or experiments,

or measured by the user in a simple experiment. Notice: each machine in the cloud may

run many MapReduce tasks (mappers and/or reducers) in parallel, sharing the machine’s

disks and network connection. Therefore, Ns and Ds are expected to be smaller than the

effective network bandwidth and disk transfer rate respectively.

Two other parameters are used, shown in Table 5.2. We provide reasonable default

values for them based on empirical evaluation. Notice one important remark: As is

the common knowledge in database query optimization, at the cross-over point of two

strategies, the wall-clock-time performances usually create flat plateaus, being not much

sensitive to parameter variations. This occurs in our setting, and the results in the

upcoming Figures 5.9a, 5.10a and 5.10d exemplify it (notice the log-log scale). Thus,

tuning exact values to our parameters barely affects BoW’s results and the suggested

values are expected to work well in most cases.

5.3 Proposed Cost-based Optimization 79

Parameter Meaning Explanation

Fs data file size Size of the dataset to be clustered.
(bytes)

Ds disk speed Average number of bytes per second that a
(bytes/sec.) MapReduce task (mapper or reducer) is able

to read from local disks, i.e. the average disk
transfer rate per MapReduce task.

Ns network speed Average bytes/sec. that a MapReduce task
(bytes/sec.) (mapper or reducer) is able to read from

other computers in the cloud, i.e. the average
network transfer rate per MapReduce task.

start up cost(t) start-up cost Average time to start-up t MapReduce tasks
(seconds) (mappers or reducers).

plug in cost(s) plug-in cost Average time to run the plugged-in serial
(seconds) method over s data bytes on a standard

computer in the cloud.

Table 5.1: Environmental parameters.

Parameter Meaning Explanation Our
defaults

Dr dispersion Ratio of data transferred in the 0.5
ratio shuffle phase through the network

(distinct machines) relative to the
total amount of data processed.

Rr reduction Ratio of data that do not belong 0.1
ratio to the major clusters found in the

sampling phase of SnI relative
to the full data size Fs.

Table 5.2: Other parameters.

The following lemmas and proofs define the equations of the cost-based optimization.

First, we describe the expected costs for complete map, shuffle and reduce phases relative

to the number of mappers and/or reducers available and to the amount of data involved.

Then, we infer the costs for: ParC, which minimizes disk accesses, and; SnI, which aims

at shrinking the network cost. For clarity, consider again Figure 5.1 that provides a

graphical overview of the parallel execution of both methods, including their expected

cost equations.

Lemma 1 Map Cost – the expected cost for the map phase of the parallel clustering

approaches is a function of the number of mappers m used and the involved data size s,

given by:

costM(m, s) = start up cost(m) +
s

m
· 1

Ds

(5.1)

80 5. BoW

Proof: In the map phase, m mappers are started-up at the cost of start up cost(m).

Additionally, the majority of the time spent is related to reading the input dataset from

disk. In our case, s bytes of data will be read in parallel by m mappers, which are able

to read Ds bytes per second each. Thus, the total reading time is given by: s
m
· 1
Ds

.

Lemma 2 Shuffle Cost – the expected shuffle cost of the parallel clustering approach is

a function of the number of reducers r to receive the data and the amount of data to be

shuffled s, which is given by:

costS(r, s) =
s ·Dr

r
· 1

Ns

(5.2)

Proof: The majority of the shuffling cost is related to shipping data between distinct

machines through the network. Whenever possible, MapReduce minimizes this cost by

assigning reduce tasks to the machines that already have the required data in local disks.

Dr is the ratio of data actually shipped between distinct machines relative to the total

amount of data processed. Thus, the total amount of data to be shipped is s ·Dr bytes.

The data will be received in parallel by r reducers, each one receiving in average Ns bytes

per second. Thus, the total cost is given by: s·Dr

r
· 1
Ns

.

Lemma 3 Reduce Cost – the expected cost for the reduce phase is a function of the number

of reducers r used for parallel processing and the size s of the data involved, which is:

costR(r, s) = start up cost(r) +
s

r
· 1

Ds

+

plug in cost(
s

r
) (5.3)

Proof: In the reduce phase, r reducers are started-up at cost start up cost(r). After

the start-up process, the reducers will read from disk s bytes in parallel at the individual

cost of Ds bytes per second. Thus, the total reading time is s
r
· 1
Ds

. Finally, the plugged-in

serial clustering method will be executed in parallel over partitions of the data, whose

average sizes are s
r
. Therefore, the approximate clustering cost is plug in cost(s

r
).

Lemma 4 ParC Cost – the expected cost of the ParC algorithm is given by:

costC = costM(m,Fs) + costS(r, Fs) + costR(r, Fs) (5.4)

Proof: The parallel processing for ParC is as follows: (i) Fs bytes of data are

processed in the map phase, by m mappers; (ii) Fs bytes of data are shuffled to r reducers

in the shuffling phase; (iii) Fs bytes of data are processed in the reduce phase by r reducers,

and; (iv) a single machine merges all the β-clusters found. The last step has a negligible

cost, since it performs simple computations over data amounting to two float values per

β-cluster, per dimension. Thus, summing the costs of the three initial phases leads to the

expected cost for ParC.

5.4 Finishing Touches – Partitioning the Dataset and Stitching the Clusters 81

Lemma 5 SnI Cost – the expected cost for the SnI algorithm is given by:

costCs = 2 · costM(m,Fs) +

costS(1, Fs · Sr) + costR(1, Fs · Sr) +

costS(r, Fs ·Rr) + costR(r, Fs ·Rr) (5.5)

Proof: SnI runs two complete map, shuffle and reduce phases. In both map phases,

the full dataset is processed by m mappers, at combined cost: 2 · costM(m,Fs). In the

first shuffle phase, a data sample of size Fs ·Sr bytes is shuffled to a single reducer, at cost

costS(1, Fs · Sr). The reduce cost to process this sample is: costR(1, Fs · Sr). Rr is the

ratio of data that does not belong to the major clusters, the ones found in the sampling

phase, relative to Fs. That is, Fs · (1−Rr) bytes are ignored in the Second Phase of SnI,

while Fs · Rr bytes of data are not ignored, being processed after clustering the sample.

Both second shuffle and reduce phases involve r reducers. Thus, their combined costs

are: costS(r, Fs ·Rr) + costR(r, Fs ·Rr). The costs for shipping and processing β-clusters

descriptions is negligible, since the involved amount of data and processing is tiny.

Remark: when our algorithms are executed, the number of distinct key values to be

sorted by the MapReduce framework is extremely small; it is always the number r of

reducers used only. Each reducer handles a single key, so it does not need to do sorting.

Thus, the sorting cost is negligible for our approaches. The I/O and network costs are

the real bottlenecks. The wall-clock time results measured in all of our experiments (see

Section 5.5) confirm this assertion.

Algorithm 8 describes the main steps of BoW. In summary, ParC executes the map,

shuffle and reduce phases once, involving the full dataset. SnI runs these phases twice,

but involving less data. What is the fastest approach? It depends on your environment.

BoW takes the environment description as input and uses cost-based optimization to

automatically choose the fastest, prior to the real execution. Provided that the clustering

accuracies are similar for both approaches (see Section 5.5 for a complete explanation),

BoW actually picks the ‘Best of both Worlds’.

5.4 Finishing Touches – Partitioning the Dataset and

Stitching the Clusters

This section describes three reasonable approaches proposed for data partitioning and

consequent merging and/or stitching of the clusters found in each partition. Notice that

BoW works with any of the three partitioning approaches described and, potentially, works

with any user-defined partitioning strategy.

82 5. BoW

Algorithm 8 : The Best of both W orlds – BoW Method.

Input: dataset dS
environmental parameters (Table 5.1),
other parameters (Table 5.2),
number of reducers r,
number of mappers m,
sampling ratio Sr

Output: clusters
1: compute costC from Equation 5.4;
2: compute costCs from Equation 5.5;
3: if costC > costCs then
4: // use the sampling-and-ignore idea

clusters = result of SnI over dS;
5: else
6: // no sampling

clusters = result of ParC over dS;
7: end if
8: return clusters

5.4.1 Random-Based Data Partition

The first alternative is the Random-Based Data Partition. Mappers randomly assign

data elements to reducers, striving for load balance. Each reducer receives a random

sample of the dataset, looks for β-clusters on it, and reports the β-clusters it finds, in

terms of their MBRs (Minimum Bounding Rectangles).

The final step of the computation merges every pair of β-clusters that overlap in the

data space. Notice that, to spot an overlap, we need only the descriptions of the β-clusters

(MBRs), and not the elements themselves. Two clusters overlap if they overlap in every

axis j: Let uij and lij represent respectively the upper and lower bounds of cluster i at axis

j. Similarly, let ui′j and li′j represent the bounds of cluster i′ at axis j. Two β-clusters i

and i′ overlap if uij ≥ li′j ∧ lij ≤ ui′j holds for every axis j.

Figure 5.3(I) illustrates a simulation of this process assuming that we have r = 2

reducers. The first reducer gets the nodes indicated as ‘white-circles’ and the second

one gets the ‘black-circles’; both reducers run a typical clustering algorithm, returning

the MBRs (Minimum Bounding Rectangles) of the β-clusters they discover (Figure

5.3(I)(b,c)). Then, we merge the overlapping β-clusters (Figure 5.3(I)(d)), and return

the results, indicated as the shaded areas of (Figure 5.3(I)(e)). Notice that some data

points may be left as outliers, which is a possibility for all the parallel methods that we

present, as well as for most serial clustering algorithms.

5.4 Finishing Touches – Partitioning the Dataset and Stitching the Clusters 83

(a) example dataset

(b) reducer 1

(d) merge input

(c) reducer 2

(e) final result

x

y

x

y

x

y

x

y

x

y

(a) example dataset

(b) reducer 1

(d) merge input

(c) reducer 2

(e) final result

(a) example dataset

(b) reducer 1

(d) merge input

(c) reducer 2

(e) final result

(I) Random-Based Data Partition (II) Location-Based Data Partition (III) File-Based Data Partition

x

y

x

y

x

y

x

y

x

y

Figure 5.3: ‘file-based’ wins. Clustering examples for the three data partitioning
approaches. We assume exactly the same 2-d input dataset, with r=2
reducers. (I–left) assigns elements at random to reducers, and merges the
resulting β-clusters that overlap. (II–middle) divides the address space in
disjoint regions, assigns each region to a reducer, and then either merges, or
stitches the appropriate β-clusters (see Section 5.4.2 for details). (III–right)
assigns elements to reducers according to their position in the data file, and
hopes that, due to locality, the resulting β-clusters will have little overlap.
As shown in Section 5.5, the ’file-based’ strategy outperforms the first two
alternatives.

5.4.2 Location-Based Data Partition

The second alternative is the Location-Based Data Partition. The idea here is

to divide the address space, trading-off load balance to achieve better merging of the

β-clusters. Specifically, we partition the address space into r disjoint regions (say,

hyper-rectangles, by bi-secting some coordinate axes), where r is the number of reducers.

The mappers are given the boundaries of every region, and direct each element accordingly.

In our current implementation, we have r to be a power of two, since the partitions are

created by dividing each dimension in half as needed.

Figure 5.3(II) illustrates a simulation of the process, using the same toy dataset of

Figure 5.3(I) that we used to illustrate the previous approach. The data elements are

assigned to reducers according to their location (vertical dashed line). Again, each of

the two reducers generates MBRs of the β-clusters it finds. Then we (a) merge those

that overlap and (b) stitch those that touch, like the two β-clusters on the top of Figure

5.3(II)(d).

The stitching step requires a careful design. We want to stitch together the clusters

that touch in partitioned positions with respect to one or more axes, and have “enough

84 5. BoW

Algorithm 9 : Stitching β-clusters i and i′.

Input: uij and lij, upper and lower bounds of β-cluster i in each axis j
ui′j and li′j, upper and lower bounds of β-cluster i′ in each axis j

Output: merge
1: merge = true;
2: for each axis j do
3: if (not (uij ≥ li′j ∧ lij ≤ ui′j)) ∧ (not (axis j was partitioned ∧

(uij = li′j = partitioned position ∨ lij = ui′j = partitioned position))) then
4: // do not overlap neither touch in a partitioned position in j
5: merge = false;
6: end if
7: end for
8: if merge then
9: for each axis j do

10: if (uij ≥ li′j ∧ lij ≤ ui′j) then
11: compute hi, hi′ and hi∩i′ wrt j;
12: if hi∩i′ ≤ (hi − hi∩i′) + (hi′ − hi∩i′) then
13: merge = false; // not “enough touching area” in j
14: end if
15: end if
16: end for
17: end if
18: return merge

touching area” with regard to all other axes. In our running example, Figure 5.4 shows

the input for this step. The β-clusters i and i′ touch in a partitioned position of axis

x. We propose to stitch two β-clusters if the area that they jointly touch is larger than

the disjoint areas. In more detail, in the example of Figure 5.4, their “touching area”

with regard to axis y is hi∩i′ . As in the illustration, let hi and hi′ be the individual

1-dimensional heights wrt axis y of the cluster i and i′, respectively. Our method consider

this “touching area” as being “large enough” for stitching if the common part is larger

than the union of the non-common parts, for each axis that do not touch in a partitioned

position. It is defined by the following equation.

hi∩i′ > (hi − hi∩i′) + (hi′ − hi∩i′) (5.6)

Notice that our “large enough” criterion is parameter-free. Algorithm 9 gives the

full pseudo-code. In our running example, Figure 5.3(II.e) shows the final output for the

merging / stitching procedure, assuming that the upper two β-clusters were stitched. The

intermediate set of six β-clusters is summarized into three clusters, represented in three

distinct gray levels in the illustration.

5.4 Finishing Touches – Partitioning the Dataset and Stitching the Clusters 85

Figure 5.4: Merging and Stitching for the Location-based approach. Merging: the
three lower-right β-clusters are merged, since they overlap. Stitching: the
β-clusters i and i′ are stitched to form a bigger cluster, since the height of the
“touching area is large enough” compared to the heights of the β-clusters.

5.4.3 File-Based Data Partition

The third approach is the File-Based Data Partition. This approach has perfect load

balance, assigning the first 1/r portion of the records to the first reducer, the second 1/r

portion to the second one, and so one. The rationale is that it may also facilitate the

merging of the β-clusters, because data elements that are stored consecutively on the disk,

may also be nearby in address space, due to locality.

The specific steps are as follows: we want to divide the input file into r pieces of nearly

equal sizes, whose elements are sequentially stored in the file. The MapReduce mappers

receive the total number of elements η and the total number of reducers r available for

parallel processing as input parameters. When an element is received, a mapper takes

into account the physical order o of the element in the input file to define its appropriate

key. The key is computed by the following equation: floor(o/ceil((η+1)/r)), assuring an

even amount of elements to each partition. Thus, each reducer receives a set of elements

sequentially stored in the input file, and then looks for β-clusters on it. The final step of

the computation is identical to the random-based data partitioning approach: we merge

every pair of β-clusters that overlap in the address space.

Figure 5.3(III) illustrates a simulation of the process assuming that we have r = 2

reducers. It follows the same process as in the random-based approach, except for the

first step, where the data elements are assigned to reducers according to their location in

the file. Assuming locality, we expect most of the black circles to be close in space, and

similarly for the white circles. Each reducer reports its MBRs, and then the β-clusters

with overlapping MBRs are merged. The hope is that, due to locality, there will be much

86 5. BoW

fewer pairs of overlapping β-clusters than in the random case, while enjoying even better

load balancing.

5.5 Experimental Results

In this section, we describe the experiments performed to test the algorithms proposed in

the chapter. We aimed at answering the following questions:

Q1 Among the reasonable choices proposed in Section 5.4, what is the best data

partitioning approach?

Q2 How much (if at all) does the parallelism affect the clustering quality?

Q3 How does our method scale-up?

Q4 How accurate are the equations used in our cost-based optimization?

All experiments were performed using the Hadoop2 implementation for the MapReduce

framework, on two Hadoop clusters: the M45 by Yahoo! and the DISC/Cloud by Parallel

Data Lab in the Carnegie Mellon University. The M45 is one of the top 50 supercomputers

in the world totaling 400 machines (3, 200 cores), 1.5 PB of storage and 3.5 TB of main

memory. The DISC/Cloud has 512 cores, distributed in 64 machines, 1TB of RAM and

256 TB of raw disk storage. We used our own algorithm Halite as the serial clustering

method for the plug-in for all experiments.

The methods were tested over the real and synthetic datasets listed in Table 5.3, which

are detailed as follows.

• YahooEig: The top 6 eigenvectors from the adjacency matrix of one of the largest

web graphs. The web graph was crawled by Yahoo!3 in 2002 and contains 1.4 billion

nodes and 6.6 billion edges. The eigenvectors amount to 0.2 TB.

• TwitterEig: The top 10 eigenvectors from the adjacency matrix of the Twitter4

graph, that represents 62 million users and their relationships. The eigenvectors

amount to 14 GB.

• Synthetic: A group of datasets with sizes varying from 100 thousand up to

100 million 15-dimensional points, containing 10 clusters each, and no noise.

Clusters in subspaces of the original 15-dimensional space were created following

standard procedures used by most of the clustering algorithms described in Chapter

3, including the plugged-in serial clustering method used in our experiments.

2 www.hadoop.com
3 www.yahoo.com
4 http://twitter.com/

5.5 Experimental Results 87

Specifically, Algorithm 6 from the previous Chapter 4 was used again to generate

the synthetic data. Axes-aligned clusters were created. Remember that the clusters

generated by Algorithm 6 follow normal distributions with random mean and

random standard deviation in at least 50% of the axes (relevant axes), spreading

through at most 15% of the axes domains. In the other axes, the irrelevant ones, all

clusters follow the uniform distribution, spreading through the whole axes domains.

Dataset Number of Points Number of Axes File Size

YahooEig 1.4 billion 6 0.2 TB
TwitterEig 62 million 10 14 GB
Synthetic up to 100 million 15 up to 14 GB

Table 5.3: Summary of datasets. TB: Terabytes; GB: Gigabytes.

Notice one remark: to evaluate how much (if at all) parallelism affects the serial

clustering quality, the ideal strategy is to use as ground truth the clustering results

obtained by running the plugged-in algorithm serially on any dataset, synthetic or real,

and to compare these results to the ones obtained with parallel processing. However, for

most of our large datasets, to run a serial algorithm (Halite or, potentially, any other

serial clustering method for moderate-to-high dimensionality data) is an impractical task

– it would require impractical amounts of main memory and/or take a very long time.

Thus, in practice, the Synthetic datasets are the only ones from which we have clustering

ground truth, and they were used to evaluate the quality of all tested techniques in all

experiments performed.

For a fair comparison with the plugged-in serial algorithm, the quality is computed

following the same procedure used in Section 4.7.1 of Chapter 4. That is, the quality

is computed by comparing the results provided by each technique to the ground truth,

based on the averaged precision and recall of all clusters.

The File-based Data Partitioning strategy may provide distinct quality results

according to the order in which the input data is physically stored. Obviously, the

best results appear when the data is totally ordered, i.e., the points of each cluster are

sequentially stored in the data file. On the other hand, when the points are randomly

distributed in the file, the qualities tend to be similar to those obtained by the approaches

that use the Random-based Data Partitioning. For a fair analysis, we created each dataset

from the Synthetic group considering an average case, i.e., 50% of the elements from the

totally ordered case were randomly repositioned throughout the data file.

All experiments involving BoW were performed at M45. The parameters used are

presented in Table 5.4. Fs refers to the data file size. Ds, Ns and start up cost(t) were

inferred by analyzing the logs of the M45 machines, while plug in cost(s) was defined

88 5. BoW

based on the time complexity analysis and experiments of the plugged-in method, which

were previously presented in Chapter 4.

Parameter Value

Fs data file size
Ds 40MB/sec
Ns 20MB/sec

start up cost(t) 0.1t
plug in cost(s) 1.4E−7s

Table 5.4: Environmental parameters for M45.

The results on quality and wall-clock time reported for all experiments are the average

of 10 distinct runs. We decided to use a sample size of nearly one million elements (i.e.,

Sr = 1 million
η

) in all experiments. Also, in every experiment the number of mappers m

used was automatically defined by Hadoop.

5.5.1 Comparing the Data Partitioning Strategies

This section compares the data partitioning approaches. Here we want to answer question

Q1: Among the reasonable choices in Section 5.4, what is the best data partitioning

approach? In order to answer it, we decided to use ParC, our most straightforward parallel

algorithm. This decision aims at avoiding that algorithmic characteristics influence the

results, which should be related to the pros and to the cons of the data partitioning

strategies only. That is, we want to avoid that the used algorithm leads to biased results.

Figures 5.5(a) and 5.5(b) show the quality of ParC using distinct data partitioning

approaches (ParC-F– file-based , ParC-R – random-based and ParC-L – location-based)

versus the wall-clock time over the Synthetic datasets, varying η and r respectively. The

data sizes vary from 100 thousand to 100 million elements, while the number of reducers

r starts at 2 and goes up to 16. The glyph sizes reflect the dataset size (Figure 5.5a) or

the number of reducers (Figure 5.5b). Obviously, the ideal elements are in the top left

of both plots, which represent 100% quality obtained in zero time. Thus, we compared

the strategies by analyzing how close they are to these elements in all cases. Notice

that the three strategies present good quality, with some few exceptions for the Location

and the Random-based ones. However, the File-based strategy consistently outperformed

the others, presenting top quality and being the fastest one in all cases. The other

Synthetic datasets generated very similar results. Thus, the File-based Data Partition

is the partitioning strategy that we recommend to be used with BoW. The experiments

presented in the rest of this chapter always employ this strategy.

We think that the main reason for the success of the ‘file-based’ approach is that,

when using this approach, the reducers process continuous pieces of the input file. This

5.5 Experimental Results 89

Planilha1

Página 1

Name Quality Time
ParC-R
ParC-R 71.02 30.3
ParC-R 67.25 41.3
ParC-R 86.76 107.9
ParC-R 89.51 127

ParC-L
ParC-L 70.89 75.2
ParC-L 87.48 45.2
ParC-L 94.72 113.9
ParC-L 95.24 605.9

ParC-F
ParC-F 81.6 27.5
ParC-F 86.5 49.2
ParC-F 94.73 60
ParC-F 94.74 120.7

Name Quality Time
ParC-R 93.04 327.8
ParC-R 92.75 195.6
ParC-R 92.2 158.9
ParC-R 92 123.5
ParC-L 94.73 267.4
ParC-L 94.73 181.9
ParC-L 94.73 136.9
ParC-L 94.73 124.8
ParC-F 94.74 239.1
ParC-F 94.74 144.8
ParC-F 94.74 108.6
ParC-F 94.74 84.3

0 50 100 150 200 250 300 350
0

20

40

60

80

100

Data Partition Strategies
varying r

ParC-F
ParC-L
ParC-R

Wall-clock time (seconds)

Q
ua

lit
y

0 100 200 300 400 500 600 700
0

20

40

60

80

100

Data Partition Strategies
varying !

ParC-F
ParC-L
ParC-R

Wall-clock time (seconds)

Q
ua

lit
y

(a) (b)

Ideal Ideal

Figure 5.5: File-based wins. Quality versus run time for ParC using distinct data
partitioning approaches (ParC-F– file-based: yellow triangles, ParC-R –
random-based: blue squares and ParC-L – location-based: orange dia-
monds). Left, 64 reducers, varying the data size η = 100K, 1M, 10M, 100M .
Right, 10 million elements dataset, varying the number of reducers r =
2, 4, 8, 16. The glyph sizes reflect the dataset size (a) or the number
of reducers (b). Top-left is the ideal element - notice that ParC-F is
consistently closer to it than the others. Thus, we recommend the File-based
data partitioning approach.

helps Hadoop to assign reduce tasks to the machines that already have the required data

in local disks, turning the ‘file-based’ approach into the fastest one. Also, we confirmed

in all of our experiments the hope that, due to locality, there will be much fewer pairs of

overlapping β-clusters than in the random case, while enjoying even better load balancing.

5.5.2 Quality of Results

This section intends to answer question Q2: How much (if at all) does the parallelism

affect the clustering quality? Figure 5.6 presents the quality results obtained by ParC,

SnI and BoW over our Synthetic dataset with 10 million elements. All tested methods

presented top quality, even for large numbers of reducers, like 1, 024. Notice, that the

serial execution quality of the plugged-in clustering method is the one obtained when

using a single reducer (r = 1, extreme left elements in the plot). Similar results were

observed with all Synthetic datasets.

An interesting observation is that the quality may decrease for small datasets, when

using a large number of reducers. The obvious reason is that, in those cases, we are

partitioning a small amount of data through a large number of reducers, which actually

receive too little data, not enough to represent the patterns existing in the dataset. This

fact was confirmed in all of our experiments, and they lead us to recommend at least

∼ 150k points per reducer in average. That is, we recommend to set r ≤ η
150k

.

According to our experiments, the answer to questionQ2 is: as long as you have enough

data, the clustering quality is barely affected by the parallelism, even for extremely large

90 5. BoW

Sheet1

Page 1

1 4 16 64 256 1,024
ParStitch-R 94.74 93.04 92.75 92.2 92 90.63 86.76 85.21 84.02 65.12 64.32
ParStitch-L 94.74 94.73 94.73 94.73 94.73 94.73 94.72 94.73 94.71 94.66 94.67
ParC 94.74 94.74 94.74 94.74 94.74 94.74 94.73 94.73 96.86 94.7 94.66
ParStitch-Rs 93.37 94.73 94.26 94.73 94.42 94.73 94.73 94.73 94.42 94.73 94.94
ParStitch-Ls 92.08 94.48 93.92 93.81 94.06 94.35 94.78 94.73 93.73 94.43 94.44
SnI 92.91 94.74 93.79 94.13 94.48 94.43 94.73 94.73 94.73 94.73 94.73
BoW 94.74 94.74 94.74 94.74 94.48 94.43 94.73 94.73 94.73 94.73 94.73

1 4 16 64 256 1,024
80

85

90

95

100
10 million dataset

ParC
SnI
BoW

Number of reducers

Q
ua

lit
y

(p
er

ce
nt

ag
e)

IdealSerial
clustering

Figure 5.6: All our variants give high quality results. 10 million dataset; quality versus
number r of reducers for ParC, SnI and BoW. All methods match the quality
of the serial clustering method (top left), for all values of r, like 1, 024. The
default, ‘file-based’ partitioning was used for all cases.

numbers of reducers, such as, 1, 024. Thus, our method BoW allowed us to obtain top

quality clusters in very little time from all of our very large datasets.

5.5.3 Scale-up Results

This section intends to answer question Q3: How does our method scale-up? Scale-up

results with different numbers of reducers are in Figure 5.7. Here we used the TwitterEig

eigenvectors and the Synthetic dataset with 100 million points. The plots show X-axes

as the number of reducers r, and the Y-axes as the relative performance with n reducers

compared to using 1 reducer (TwitterEig) or with 4 reducers (Synthetic). A fixed

number of mappers m =∼ 700 was used. The results reported are the average of 10

distinct runs. We picked 4 reducers for our Synthetic dataset, as the running time using

just one reducer was impractical. Note that our method exhibits the expected behavior: it

starts with near-linear scale-up, and then flattens. Similar scale-up results were obtained

for all other datasets.

The scale-up results with different data sizes are in Figure 5.8. The YahooEig dataset

is used. Random samples of the data with increasing sizes, up to the full dataset (1.4

billion elements) were generated to perform this experiment. We plot wall clock time

versus data size. The wall-clock time shown is the average time for 10 distinct runs.

Fixed numbers of reducers and mappers (r = 128 and m =∼ 700) were used. As shown,

our method has the expected scalability, scaling-up linearly with the data size.

It took only ∼ 8 minutes to cluster the full dataset, which amounts to 200 Gigabytes.

Let us provide some context to this result by characterizing the time taken at different

stages in the process: (a) the mappers took 47 seconds to read the data from disks; (b)

5.5 Experimental Results 91
Planilha1

Página 1

BoW ParCs-F ParC Ideal
4 1 1 1 1
8 8.84 8.84 2.22 2

16 7.73 7.73 4.03 4
32 7.41 6.41 7.41 8
64 11.12 8.05 11.12 16

128 14.41 7.71 14.41
256 13.4 6.84 13.4
512 15.6 7.16 15.6

1024 13.22 6.45 13.22
1

1412.2 1412.2 1412.2

BoW ParCs-F ParC Ideal
1 1 1 1 1
2 19.24 19.24 1.98 2
4 14 14 3.79 4
8 13.41 13.41 7.04 8

16 18.19 18.19 12.62 16
32 20.2 20.24 20.2 32
64 28.44 12.43 28.44

128 34.29 17.3 34.29
256 29.2 17.38 29.2
512 24.29 13.12 24.29

1024 32.5 12.86 32.5
1 2934.8 2934.8 2934.8

0 20 40 60 80 100 120 140
0
2
4
6
8

10
12
14
16
18

100 million dataset, using ~700 mappers

ParC
Ideal

Number of reducerstim
e

4
re

du
ce

rs
 /

tim
e

n
re

du
ce

rs

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

TwitterEig, using ~700 mappers

ParC
Ideal

Number of reducers

tim
e

on
e

re
du

ce
r /

 ti
m

e
n

re
du

ce
rs

(a) (b)

Figure 5.7: Near-linear scale-up. Scale-up results regarding the number of reducers
r. Our proposed method exhibits the expected behavior: it starts with
near-linear scale-up, and then flattens. Numbers are the average of 10
runs, for real and synthetic data. 100 million dataset (left); TwitterEig

(right). The X-axes show the number of reducers r, and the Y-axes the
relative performance with r reducers compared to using 1 reducer (right) or
4 reducers (left), in lin-lin scales. Using one reducer in the left case requires
prohibitively long time. Number of mappers: m =∼ 700. The default,
‘file-based’ partitioning was used for all cases.

Planilha1

Página 1

0 500,000,000 1,000,000,000 1,500,000,000
0

100

200

300

400

500

600
YahooEig

ParC

Dataset sizeW
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)

0.5 billion 1 billion 1.5 billion

Figure 5.8: Scale-up results: our method is linear on the dataset size. Wall-clock time
(average of 10 runs) versus data size in lin-lin scales. Random samples from
YahooEig, up to the full dataset (1.4 billion elements). Fixed number of
reducers and mappers (r = 128 and m =∼ 700). The default, ‘file-based’
partitioning was used.

65 seconds were taken to shuffle the data; and (c) the reduce stage took 330 seconds. To

estimate the time taken by the serial method in item (c), we clustered a random sample

of the YahooEig dataset, of size Fs

r
= 0.2 TB

128
, by running the plug-in on a single machine

(one core), similar to the ones of the used cloud of computes. The serial clustering time

92 5. BoW

was 192 seconds. This indicates that the plug-in took ∼ 43% of the total time. Similar

scale-up results were obtained for all other datasets.

5.5.4 Accuracy of our Cost Equations

Here we illustrate the accuracy of our cost formulas, (Equations 5.4 and 5.5) from Section

5.3, and the ability of BoW to choose the correct alternative.

���������

��	���
�

����
�� ��������� ��������� ��� ����
�� ��������� ��������� ���

� ������ ��� ������� ������ ��� � ������ ����� � ���� ������ �����

� ���� ����� ������� ������ ����� � ���� ����� ����� ����� �����

� ����� ���� ������ ������ ���� � ����� ����� �� ��� ����� �����

� ��� ����� ������ ������ ����� �� ����� ����� � ���� ������ �����

� ���� � ��� ������ ���� � ��� � ��� ����� ������ ����� ���

�� ����� ��� ���� � �� � ����� ��� �� ����� ������ ������ ��

 � ����� �� �� ����� ������ ����� �� ����� �� �� ������ ������ �����

��� ��� � �� ������ ����� ��� ��� ���� ����� ������ ������ ����

�� ����� � ��� �� ��� ������ ����� ���� �� �� ��� ���� � ������ �� ��

��� ����� ����� ����� �� ��� �����

���� ���� ����� ������ ������ ����

����

��

� �� ��� �!���
��

���

�!���

����������	
���
�
����
�������

���

��

����

"#$%��
�&
���#���'

�
�
��(
�
��
�
)

�
�$
�

*
'
�
�
�
�
�
'
+

� �� ��� �!���
��

���

�!���

����������	
���
�
����
�������

����

���������

"#$%��
�&
���#���'

�
�
��(
�
��
�
)

�
�$
�

*
'
�
�
�
�
�
'
+

� �� ��� �!���
��

���

�!���

����������	
���
�
����
�������

��

���������

"#$%��
�&
���#���'

�
�
��(
�
��
�
)

�
�$
�

*
'
�
�
�
�
�
'
+

� �� ��� �!���
��

���

�!���

����������	�
����
�����������	��

���

��

����

"#$%��
�&
���#���'

�
�
��(
�
��
�
)

�
�$
�

*
'
�
�
�
�
�
'
+

� �� ��� �!���
��

���

�!���

����������	�
����
�����������	��

����

���������

"#$%��
�&
���#���'

�
�
��(
�
��
�
)

�
�$
�

*
'
�
�
�
�
�
'
+

� �� ��� �!���
��

���

�!���

����������	�
����
�����������	��

��

���������

"#$%��
�&
���#���'

�
�
��(
�
��
�
)

�
�$
�

*
'
�
�
�
�
�
'
+

*�+ *�+

*�+

*&+

*%+

*�+

� �� ��� �!���
��

���

�!���

����������	
���
�
����
�������

��

����

"#$%��
�&
���#���'�
�
��(
�
��
�
)

�
�$
�

*
'
�
�
�
�
�
'
+

� �� ��� �!���
��

���

�!���

����������	
���
�
����
�������

���

��

����

"#$%��
�&
���#���'�
�
��(
�
��
�
)

�
�$
�

*
'
�
�
�
�
�
'
+

*�+ *%+

���

�	�� �	��
�	��

��� ���

Figure 5.9: BoW wins. Results for real data from Twitter. Wall-clock time versus
number of reducers in log-log scale. ∼ 700 MapReduce mappers were used
for all runs. Left: ParC (yellow down-triangles) and SnI (green butterflies).
The latter uses our sampling-and-ignore idea; Right: the same, including
our proposed BoW (in red up-triangles). BoW achieves the best of both
worlds, using cost-based optimization to pick the winning strategy and good
parameters for it, and thus practically over-writes the corresponding curve
on the graph.

Figure 5.9 shows an example of BoW’s results on the TwitterEig dataset. It plots

the wall-clock-time (average of 10 runs) versus the number of reducers, in log-log scales.

Figure 5.9(a) shows the results for ParC, in yellow down-triangles, and SnI, in green

’butterfly’ glyphs. The latter uses our proposed sampling-and-ignore idea. Notice that

there is no universal winner, with a cross-over point at about 30 machines for this setting.

Figure 5.9(b) shows exactly the same results, this time including the wall-clock time of

our proposed BoW, in red up-triangles. Notice that BoW locks onto the best of the two

alternatives. The reason for its success is our cost-estimation formulas (Eq. (5.4) and

(5.5)), which help BoW to pick the best alternative and set good parameters for the

chosen environment, while requiring nimble computational effort. Furthermore, notice

that the two curves in Figure 5.9(a) intersect at a narrow angle, which means that the

optimal curve has a smooth plateau, and thus the cost is rather robust with respect to

small variations of the environment parameters.

Figure 5.10 details the results for the Twitter data and also reports results for the

Synthetic (100 million points) dataset, in the left and right columns, respectively. The

six plots give the wall-clock times (average of 10 runs) versus the number of reducers r, in

5.5 Experimental Results 93

Planilha1

Página 1

ParC SnI predicted predicted BoW ParC SnI predicted predicted BoW
1 2934.8 178 2820.99 459.95 178 4 1412.2 224.7 769.41 239.29 224.7
2 1483 152.5 1445.89 322.53 152.5 8 637.2 159.8 420.56 204.76 159.8
4 775.1 209.6 758.49 253.97 209.6 16 350.5 182.8 246.73 188.1 182.8
8 417 218.9 415.09 219.99 218.9 32 190.5 220.2 161.01 180.97 190.5

16 232.6 161.3 243.99 203.6 161.3 64 127 175.5 120.55 179.8 127
32 145.3 145 159.64 196.6 145.3 128 98 183.1 105.13 184.02 98
64 103.2 236.2 119.86 195.51 103.2 256 105.4 206.4 107.01 195.73 105.4

128 85.6 169.6 104.78 199.76 85.6 512 90.5 197.2 127.15 220.78 90.5
256 100.5 168.9 106.83 211.48 100.5 1024 106.8 219 175.63 271.71 106.8
512 120.8 223.7 127.06 236.55 120.8

1024 90.3 228.2 175.58 287.48 90.3

Shrink disk accesses
Shrink network cost

1 10 100 1,000
30

300

3,000
TwitterEig, using ~700 mappers

BoW
SnI
ParC

Number of reducers

W
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)

1 10 100 1,000
30

300

3,000
TwitterEig, using ~700 mappers

ParC
predicted

Number of reducers

W
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)

1 10 100 1,000
30

300

3,000
TwitterEig, using ~700 mappers

SnI
predicted

Number of reducers

W
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)

1 10 100 1,000
30

300

3,000
100m dataset, using ~700 mappers

BoW
SnI
ParC

Number of reducers

W
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)
1 10 100 1,000

30

300

3,000
100m dataset, using ~700 mappers

ParC
predicted

Number of reducers
W

al
l-c

lo
ck

 ti
m

e
(s

ec
on

ds
)

1 10 100 1,000
30

300

3,000
100m dataset, using ~700 mappers

SnI
predicted

Number of reducers

W
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)

(a) (d)

(e)

(f)

(b)

(c)

1 10 100 1,000
30

300

3,000
Twitter dataset, using ~700 mappers

Shrink
network cost
Shrink disk
accesses

Number of reducersW
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)

1 10 100 1,000
30

300

3,000
Twitter dataset, using ~700 mappers

BoW
Shrink
network cost
Shrink disk
accesses

Number of reducersW
al

l-c
lo

ck
 ti

m
e

(s
ec

on
ds

)

(a) (b)

BoW
best best

best
BoW BoW

Figure 5.10: BoW indeed achieves the Best of both Worlds. BoW’s results on the
TwitterEig (left) and on the Synthetic 100 million (right) datasets. Time
(average of 10 runs) versus number of reducers in log-log scale. m is ∼ 700
for all runs. Top line: illustration of BoW’s ability to pick the winner.
Results for ParC (yellow down-triangles), for SnI (green butterflies) and
for our proposed BoW (red up-triangles). Notice that BoW achieves the
best of both worlds, consistengly choosing the winning strategy, and thus
practically over-writing the corresponding curve on those graphs. Bottom
two rows: illustration of the accuracy of our Equations 5.4 and 5.5 for
ParC and SnI respectively. In all cases, the green hour-glass shapes stand
for our formulas; notice how close they are to the actual measurements
(yellow triangles, and dark-green butterfly shapes, respectively).

log-log scales. The top row ((a) and (d)) shows that BoW, in red up-triangles, consistently

picks the winning strategy among the two options: ParC (yellow down-triangles) and SnI

(dark-green butterflies). For both datasets, BoW gives results so close to the winner, that

its curve practically overwrites the winner’s curve; the only overhead of BoW is the CPU

time required to run the cost equations, which is obviously negligible.

94 5. BoW

The next two rows of Figure 5.10 illustrate the accuracy of our cost formulas.

Light-green hour-glasses indicate our theoretical prediction; yellow triangles stand for

ParC in the middle row, and dark-green butterflies stand for SnI in the bottom row.

Notice that the theory and the measurements usually agree very well. All other datasets

provided similar results.

5.6 Conclusions

Given a very large moderate-to-high dimensionality dataset, how could one cluster its

points? For data that do not fit even on a single disk, parallelism is mandatory. In this

chapter we explored it using MapReduce for clustering huge datasets. Specifically, we

presented BoW, the second knowledge discovery algorithm designed in this Ph.D. work.

The main contributions of BoW are:

1. Algorithm design and analysis: We proposed BoW and carefully derived its cost

functions, which allow to perform the automatic, dynamic trade-off between disk

delay and network delay;

2. Effectiveness, scalability and generality: We showed that BoW has many desirable

features: it can use almost any serial method as a plug-in (the only requirement:

clusters described by hyper-rectangles), it uses no user defined parameters (due to

our defaults), it matches the clustering quality of the serial algorithm, and it has

near-linear scale-up;

3. Experiments: We report experiments on both real and synthetic data including

billions of points, using up to 1, 024 cores in parallel. To the best of our

knowledge, the Yahoo! web is the largest real dataset ever reported in the database

clustering literature for moderate-to-high dimensionality data. BoW clustered its

200 Gigabytes in only 8 minutes, using 128 cores. We also report experiments that

used 1, 024 cores, also the highest such number published in the clustering literature

for moderate-to-high dimensionality data.

The next chapter introduces the third and last data mining algorithm developed during

this Ph.D. work.

Chapter

6

QMAS

In this chapter, we use the background knowledge provided by the clustering algorithms

designed in this Ph.D. work to focus on two distinct data mining tasks – the tasks of

labeling and summarizing large sets of complex data. Given a large collection of complex

objects, very few of which have labels, how can we guess the labels of the remaining

majority, and how can we spot those objects that may need brand new labels, different

from the existing ones? This chapter provides answers to these questions. Specifically,

we present QMAS, the third and last algorithm designed in this Ph.D. work, which is

one fast and scalable solution to the problem of automatically analyzing, labeling and

understanding large collections of complex objects.

6.1 Introduction

The problem of automatically analyzing, labeling and understanding large collections of

complex objects appears in numerous fields. One example application is related to satellite

imagery, involving a scenario in which a topographer wants to analyze the terrains in a

collection of satellite images. We assume that each image is divided into tiles (say, 16x16

pixels). Such a user would like to label a small number of tiles (’Water’, ’Concrete’ etc),

and then the ideal system would automatically find labels for all the rest. The user would

also like to know what strange pieces of land exist in the analyzed regions, since they

may indicate anomalies (e.g., de-forested areas, potential environmental hazards, etc.), or

errors in the data collection process. Finally, the user would like to have a few tiles that

best represent each kind of terrain.

95

96 6. QMAS

Figure 6.1 illustrates the problem on the example application of satellite images. It

shows an example image from the city of Annapolis, MD, USA1, decomposed into 1, 024

(32x32) tiles, very few (4) of which were manually labeled as “City” (red), “Water” (cyan),

“Urban Trees” (green) or “Forest” (black). With this input set, we want to automatically

assign the most appropriate labels to the unlabeled tiles, and provide a summarized

description of the data by finding clusters of tiles, the NR best representatives for the

data patterns and the top-NO outlier tiles.

Forest

Figure 6.1: One example satellite image of Annapolis (MD, USA), divided into 1, 024
(32x32) tiles, only 4 of which are labeled with keywords, “City” (red),
“Water” (cyan), “Urban Trees” (green) or “Forest” (black) (best viewed
in color).

Similar requirements appear in several other settings that involve distinct types

of complex data, such as, social networks, and medical image or biological image

applications. In a social network, one user wants to find other users that share similar

interests with himself/herself or with his/her contacts, while the network administrator

wants to spot a few example users that best represent both the most typical and the most

strange types of users. In medicine, a doctor wants to find tomographies or x-rays similar

to the images of his/her patient’s as well as a few examples that best represent both the

most typical and the most strange image patterns. In biology, given a collection of fly

1 The image is publicly available at ‘geoeye.com’.

6.2 Proposed Method 97

embryos or protein localization patterns or cat retina images and their labels, we want a

system to answer the same types of questions.

Our goals are summarized in two research problems:

Problem 1 low-labor labeling (L3) – Given an input set I = {I1, I2, I3, ..., INI
} of NI

complex objects, very few of which are labeled with keywords, find the most appropriate

labels for the remaining ones.

Remark: we have coined the term “low-labor labeling (L3)” in this Ph.D. work.

Problem 2 mining and attention routing – Given an input set I = {I1, I2, I3, ..., INI
}

of NI partially labeled complex objects, find clusters, the NR objects from I that best

represent the data patterns and the top-NO outlier objects.

In this chapter we propose QMAS: Querying, M ining And Summarizing

Multi-dimensional Databases. Our method is a fast (O(N)) solution to the aforementioned

problems. Its main contributions, supported by experiments on real satellite images,

spanning up to more than 2.25 Gigabytes, are summarized as follows:

1. Speed: QMAS is fast and it scales linearly on the database size, being up to 40

times faster than top related works on the same subject;

2. Quality: It can do low-labor labeling (L3), providing results with better or equal

quality when compared to top related works;

3. Non-labor intensive: It works even when we are given very few labels – it can

still extrapolate from tiny sets of pre-labeled data;

4. Functionality: Contrasting to other methods, QMAS encompasses extra mining

tasks such as clustering and outlier and representatives detection as well as

summarization. It also spots data objects that potentially require new labels;

6.2 Proposed Method

This section describes QMAS, our proposed solution to the problems of low-labor labeling

(L3) (Problem 1) and mining and attention routing (Problem 2). It assumes that a feature

extraction process is first applied over the input set of complex objects I, turning the set

into a multi-dimensional dataset. Next, we describe our proposal in detail.

6.2.1 Mining and Attention Routing

In this section we present our solution to the problem of mining and attention routing

(Problem 2). The general idea is as follows: First we do clustering on the input set of

98 6. QMAS

complex objects I; then we find (a) the subset of objects R = {R1, R2, R3, ..., RNR
} | R ⊆

I that best represent I, and (b) the array with the top-NO outlier objects O =

(O1, O2, O3, ..., ONO
) | Oo ∈ I,∀ 1 ≤ o ≤ NO, sorted according to the confidence degree

of each object Oo be an outlier. Algorithm 10 provides a general view of our solution to

Problem 2. The details are described as follows.

Algorithm 10 : QMAS-mining.

Input: input set of complex objects I;
desired number of representatives NR;
desired number of top outliers NO.

Output: clustering result C;
set of representatives R = {R1, R2, R3, ..., RNR

} | R ⊆ I;
top-NO outliers O = (O1, O2, O3, ..., ONO

) | Oo ∈ I,∀ 1 ≤ o ≤ NO,
in sorted order.

1: do clustering on I, let the result be C;
2: R = random NR complex objects from I;
3: error = EQMAS(I, R); // from Equation 6.2
4: repeat
5: improve the representatives in R;
6: old error = error;
7: error = EQMAS(I, R); // from Equation 6.2
8: until error == old error
9: O = the NO complex objects from I worst represented by R, sorted according to the

confidence degree of each object Oo in O be an outlier;
10: return C, R and O;

Clustering

The clustering step over the input set of objects I is performed using our algorithm Halite.

As described in Chapter 4, Halite is a fast and scalable clustering algorithm well-suited

to spot clusters in large collections of complex data. Here, we ignore the merging step

of Halite (Algorithm 3 from Chapter 4) and use the β-clusters found so far as the final

clustering result, considering that each object can belong to one or more clusters with

equal probabilities. This strategy is used by QMAS to find clusters in the input set of

complex objects I.

Finding Representatives

Now we focus on the problem of selecting a set R = {R1, R2, R3, ..., RNR
} | R ⊆ I of

objects with cardinality NR = |R| to represent the input set of complex objects I. First,

we discuss the desirable properties for a set of representatives, then we work on two

possible approaches to actually find the representatives.

An appropriate set of representatives R for the objects in I must have the following

property: there is a large similarity between every object Ii ∈ I and its most similar

6.2 Proposed Method 99

representative Rr. Obviously, the set of representatives that best represent I is the full

set of complex objects, NR = NI ⇒ R = I. In this case, the similarity is maximal between

each object Ii and its most similar representative Rr, which is the complex object itself,

Ii = Rr. However, for NR < NI , how should one evaluate the quality of a given set of

representatives?

A simple way to evaluate the quality of a collection of representatives is to sum the

squared distances between each object Ii and its closest representative Rr. This gives us an

error function that should be minimized in order to achieve the best set of representatives

R for the input set of complex objects I. It is not a coincidence that this is the same

error function minimized by the classic clustering algorithm K-Means, which is formally

defined by the following equation.

EKM(I, R) =
∑
Ii∈I

MIN{‖Ii −Rr‖2 | Rr ∈ R} (6.1)

In the equation, ‖Ii − Rr‖ is the distance between the objects Ii and Rr, and MIN

is a function that returns the minimum value within its input set of values. Without loss

of generality, the Euclidean distance L2 is considered here.

Based on this idea, when we ask K-Means for NR clusters, the centroids of the clusters

are good indicators of the data space positions where we should look for representatives.

Then, we have a set of representatives for K-Means by: (i) finding, for each centroid, the

data object Ii from I that is the closest one to the respective centroid, and; (ii) defining

R to be the complete set of objects found.

Figure 6.2a shows a synthetic dataset containing three clusters. The clusters and their

sizes follow skewed distributions. The sizes are 30, 000, 3, 000 and 1, 000 for the clusters

in the bottom left, bottom right and top of the data space respectively. Additionally, 500

points are uniformly distributed through the data space in order to represent noise.

Figure 6.2b shows the representatives selected for our example dataset by using

K-Means and considering NR as 10 (top) and 20 (bottom). The presented results are the

best ones over 50 runs, i.e., the ones with the smallest error, computed by Equation 6.1.

Notice that, in all cases, the representatives selected are excessively concentrated in the

bottom right cluster, the biggest one, while the other two clusters are poorly represented,

having only a few representatives each. These results indicate that K-Means is sensitive

to the data distribution, commonly presenting unsatisfactory results for representative

picking, especially for skewed data distributions.

We propose to use the traditional K-Harmonic Means clustering algorithm in QMAS,

since it is almost insensitive to skewed distributions, data imbalance, and bad seed

initialization. Thus, it provides to us a robust way to look for representatives, again

by asking for NR clusters and, for each cluster, picking as a representative the object Ii

100 6. QMAS

b) K-Means representatives c) QMAS representatives

a) example dataset

Figure 6.2: Examples of representatives spotted in synthetic data. Center: example
dataset with 3 clusters following skewed distributions; Borders: representa-
tives selected by K-Means (left) and QMAS (right), for NR = 10 (top) and
20 (bottom). These are the results with the smallest error over 50 runs.

from I that is the closest object to the respective cluster’s centroid. The minimization

error function is presented as follows.

EQMAS(I, R) =
∑
Ii∈I

HAR{‖Ii −Rr‖2 | Rr ∈ R} (6.2)

=
∑
Ii∈I

NR∑
Rr∈R

1

‖Ii −Rr‖2

In the equation, ‖Ii − Rr‖ is the distance between the data objects Ii and Rr, and

HAR is a function that returns the harmonic mean of its input values. The Euclidean

distance L2 is used once more, without loss of generality.

Figure 6.2c shows the representatives selected by QMAS for our example dataset,

again considering NR as 10 (top) and 20 (bottom). Once more, the presented results

are the best ones over 50 runs, this time considering the error function in Equation 6.2.

Notice that the representatives chosen are now well distributed among the three clusters,

providing to the user a summary that better describes the data patterns.

Finding the Top-NO Outliers

The final task related to the problem of mining and attention routing is to find the top-NO

outliers O = (O1, O2, O3, ..., ONO
) | Oo ∈ I,∀ 1 ≤ o ≤ NO, for the input set of complex

objects I. In other words, O contains the NO objects of I that diverge the most from the

6.2 Proposed Method 101

main data patterns. The outliers must be sorted in such a way that we identify the top

1st outlier, the top 2nd outlier and so on, according to the confidence degree of each one

being an outlier.

In order to achieve this goal, we take the representatives found in the previous section

as a base for the outliers definition. Assuming that a set of representatives R is a good

summary for I, the NO objects from I that are the worst represented by R are said to

be the top-NO outliers. Let us consider again the error function in Equation 6.2. Notice

that the minimized error is the summation of the individual errors for each object Ii ∈ I,

where the individual error with respect to Ii is given by the following equation.

IEQMAS(Ii, R) =
NR∑

Rr∈R

1

‖Ii −Rr‖2
(6.3)

This equation is the harmonic mean of the squared distances between one object Ii

and each one of the representative objects in R. The object Ii ∈ I with the greatest

individual error is the one that is worst represented by R, which is the object considered

to be the top 1st outlier of I. The top 2nd outlier is the object with the second greatest

individual error, and so on. In this way, QMAS defines the array O containing the top-NO

outliers, in sorted order.

Figure 6.3 shows the top-10 outliers that QMAS found for the example dataset in

Figure 6.2a, considering NO = 10 and NR = 10. As we can see, the top outliers are

actually the most extreme cases for this data.

Figure 6.3: Top-10 outliers for the example dataset in Figure 6.2a, considering the
QMAS representatives from Figure 6.2c (top). As we can see, the top
outliers are actually the most extreme cases for this data.

102 6. QMAS

6.2.2 Low-labor Labeling (L3)

In this section we discuss our solution to the problem of low-labor labeling (L3)

(Problem 1). That is, given the input set I = {I1, I2, I3, ..., INI
} of NI complex objects,

very few of which are labeled with keywords, we want to find the most appropriate labels

for the remaining ones. In order to solve this problem, we first represent the input complex

objects and labels as a graph G, which we name as the Knowledge Graph. Then, random

walks with restarts over G allow us to find the most suitable labels for each unlabeled

object. Algorithm 11 provides a general view of our solution to Problem 1. The details

are described as follows.

Algorithm 11 : QMAS-labeling.

Input: input collection of complex objects I;
collection of known labels L;
restart probability c;
clustering result C. // from Algorithm 10

Output: full set of labels LF .
1: use I, L and C to build the Knowledge Graph G;
2: for each unlabeled object Ii ∈ I do
3: do random walks with restarts in G, using c and always restarting the walk from

vertex V (Ii);
4: compute the affinity between each label in the collection L and the object Ii. Let

Ll be the label with the biggest affinity to Ii;
5: set in LF : Ll is the appropriate label for object Ii;
6: end for
7: return LF ;

G is a tri-partite graph composed of a set of vertexes V and a set of edges X, i.e.,

G = (V,X). To build the graph, the input sets of complex objects I and known labels

L are used, as well as the clustering results obtained in Section 6.2.1. V consists of one

vertex for each data object, for each cluster, and for each label. The edges link complex

objects to their respective clusters and labels. In our notation, V (Ii) and V (Ll) represent

the vertexes of G related to object Ii and to label Ll respectively. Provided the clustering

results for the objects in I, the process of building G is very simple, having linear time

and memory complexities relative to the number of objects, labels and clusters.

Figure 6.4 shows the Knowledge Graph G for a small example dataset with seven

complex objects, two labels, and three clusters. In this figure, data objects, labels, and

clusters are represented by nodes with shape of squares, circles, and triangles, respectively.

The graph indicates, for example, that cluster C1 contains the objects I1, I2, and I3.

Object I3 also belongs to cluster C2 in this setting. In addition, the graph shows that

object I1 has the known label L1, while the objects I4 and I7 have the known label L2.

In order to look for the most suitable label for an unlabeled complex object Ii, we use

random walks with restarts over graph G. This process is described as follows: a random

6.2 Proposed Method 103

!
C1! C2! C3!

I1! I2! I3! I4! I5! I6! I7!

L1! L2!

Clusters

Data objects

Labels

Figure 6.4: The Knowledge Graph G for a toy dataset. Nodes with shape of squares,
circles, and triangles represent data objects, labels, and clusters respectively.
The edges link objects to their corresponding clusters and known labels.

walker starts from vertex V (Ii). At each step, the walker either goes back to the initial

vertex V (Ii), with probability c, or to a randomly chosen vertex that shares an edge with

the current vertex, with probability 1 − c. The value of c is user defined, and may be

determined by cross validation. It is set to 0.15 in our experiments. The probability of

choosing a neighboring vertex is proportional to the degree of that vertex, i.e., the walker

favors smaller clusters and more specific labels in this process. The affinity between Ii

and a label Ll is given by the steady state probability that our random walker will find

itself at vertex V (Ll), always restarting from V (Ii). Finally, the label Ll with the largest

affinity with object Ii is considered to be the most suitable label for Ii.

The intuition behind this procedure is that the steady state probability that a random

walker will find itself in vertex V (Ll), always restarting the walk from vertex V (Ii), is a

way to measure the closeness between V (Ii) and V (Ll). If the computed probability is

high, the vertexes are probably linked by short paths. On the other hand, if the probability

is low, it is likely that no short path links them.

This idea can be better understood through our example in Figure 6.4. Let us assume

that we want to find the most appropriate label for object I2. There is a high probability

that a random walker will reach L1, always restarting the walk from I2, mainly because

there exists a three-step path linking I2 to L1. On the other hand, there is a lower

probability that the walker will find itself at L2, always restarting the walk from I2,

especially because the shortest path between I2 and L2 has seven steps. This fact leads

us to conclude that, in our example, the most appropriate label for I2 is L1.

104 6. QMAS

6.3 Experimental Results

This section presents the experiments performed to test the QMAS algorithm. To validate

our method, we decided to analyze large collections of satellite images. First we report

QMAS results on our initial example from the introductory Section 6.1. Then we report

the experiments performed to support our contributions stated in that section, regarding

Speed, Quality, Non-labor intensive capability, and Functionality.

Three sets of real satellite images were used in the experiments. They are summarized

in Table 6.1 and described as follows:

• GeoEye2 – this public dataset contains 14 high-quality satellite images in the jpeg

format extracted from famous cities around the world, such as the city of Annapolis

(MD, USA), illustrated in Figure 6.1. The total data size is about 17 MB. We

divided each image into equal-sized rectangular tiles and the entire dataset contains

14, 336 tiles, from which Haar wavelets features in 2 resolution levels were extracted,

plus the mean value of each band of the tiles;

• SAT1.5GB – this proprietary dataset contains 3 large satellite images of around

500 MB each in the GeoTIFF lossless data format. The total data size is about

1.5 Gigabytes. Each image was divided into equal-sized rectangular tiles. The 3

images combined form a set of 721, 408 tiles, from which Haar wavelets features in

2 resolution levels were extracted, plus the mean value of each band of the tiles;

• SATLARGE – this proprietary dataset contains a pan QuickBird image of size 1.8

Gigabytes, and its matching 4-band multispectral image of size 450 MB. These

images were combined and 2,570,055 hexagonal tiles generated, from which we

extracted features. Mean, variance, moments and GBT texture features [Gibson

and Lucas, 1982] were extracted from each tile. The final feature set of a tile

comprises a 30-dimensional vector. The details about this process are found at

[Cordeiro et al., 2010a].

Dataset Number of Tiles Data Size

GeoEye 14, 336 17 MB
SAT1.5GB 721, 409 1.5 GB

SATLARGE 2,570,055 2.25 GB

Table 6.1: Summary of datasets. MB: Megabytes; GB: Gigabytes.

The experimental environment is a server with Fedora R© Core 7 (Red Hat, Inc.), a 2.8

GHz core and 4GB of RAM. We compared QMAS with one of the best competitors: the

2 The data is publicly available at: ‘geoeye.com’.

6.3 Experimental Results 105

GCap method that we described in Section 2.4 from Chapter 2. GCap was implemented in

two versions with different nearest neighbor finding algorithms: one version uses the basic

quadratic algorithm (GCap) and one other version spots approximate nearest neighbors

(GCap-ANN), using the ANN Library3. The number of nearest neighbors is set to seven

in all experiments. All three approaches share the same implementation of the random

walks algorithm using the power iteration method [Golub and Van Loan, 1996], with the

restart parameter set as c = 0.15.

6.3.1 Results on our Initial Example

This section reports the results obtained for our example satellite image from Figure 6.1,

presented in the introductory Section 6.1. The image, also shown in Figure 6.5(a), refers

to the city of Annapolis, MD, USA. As in the introductory example, we decomposed

it into 1, 024 (32x32) tiles, only four of which were manually labeled as “City” (red),

“Water” (cyan), “Urban Trees” (green) or “Forest” (black). From each tile Haar wavelets

features in 2 resolution levels were extracted, plus the mean value of each band of the tile.

Figure 6.5(b) shows the solution proposed by QMAS to the problem of low-labor

labeling (L3) (Problem 1) on the example satellite image. Notice two remarks: (a) the

vast majority of the tiles were correctly labeled and (b) there are few outlier tiles marked

in yellow that QMAS judges as too different from the labeled ones (i.e., there is no path

linking the image and one label in the Knowledge Graph), and thus are returned to the

user as outliers that potentially deserve a new label of their own. Closer inspection shows

that the outlier tiles tend to be on the border of, say, “Water” and “City” (because they

contain a bridge).

Our solution to the problem of mining and attention routing (Problem 2) on the

example image is presented in Figure 6.5c and Figure 6.5d. QMAS pointed out the

3 tiles that best represent the data patterns and the top-2 outliers. Notice that

the representatives actually cover the 3 major keywords (“City”, “Urban Trees”, and

“Water”), while the top outliers are hybrid tiles, like the bottom right which is a bridge

(both “Water” and “City”).

Note that QMAS goes even further by summarizing the results: besides the representa-

tives and top outliers, QMAS found clusters in the data, ignoring the user-provided labels.

This has two advantages. The first is that it indicates to the user what, if any, changes

have to be done to the labels: new labels may need to be created (to handle some clusters

or outliers), and/or labels may need to be merged (e.g., “Forest” and “Urban trees”),

and/or labels that are too general may need to be divided in two or more (“Shallow

Water” and “Deep Sea”, instead of just “Water”). The second advantage is that these

3 http://www.cs.umd.edu/m̃ount/ANN/

106 6. QMAS

Figure 6.5: Our solution to Problem 1 – low-labor labeling and to Problem 2 – mining
and attention routing on an example satellite image (best viewed in color).
Top Left: the input satellite image of Annapolis (MD, USA), divided into
1, 024 (32x32) tiles, only 4 of which are labeled with keywords (“City” in
red, etc). Top Right: the labels that QMAS proposes; yellow indicates
outliers. Bottom Left: the 3 tiles that best represent the data, which actually
cover the 3 major keywords. Bottom Right: the top-2 outlier tiles, where
appropriate labels do not exist (hybrid tiles, like the bottom right which is
a bridge = both “Water” and “City”).

results can also be used for group labeling, since the user can decide to assign labels to

entire clusters rather than labeling individual tiles one at a time.

6.3.2 Speed

This section supports the following claim: QMAS is a fast solution to the problems

investigated, scaling linearly on the data size, and being several times faster than top

related works. Figure 6.6 shows how the tested methods scale with increasing data sizes.

Random samples from our SAT1.5GB dataset were used. As it can be seen, the log-log

curve for QMAS has the slope equal to one, so QMAS scales linearly with the input

data size, while the slope of log-log curves are 2.1 and 1.5 for GCap and GCap-ANN,

6.3 Experimental Results 107

respectively. For the full SAT1.5GB dataset, QMAS is 40 times faster than GCap-ANN,

while running GCap would take hours long (not shown in the figure).

Figure 6.6: Time versus number of tiles for random samples of the SAT1.5GB dataset.
QMAS: red circles; GCap: blue crosses; GCap-ANN: green diamonds.
Wall-clock time results are averaged over 10 runs; error bars are too small
to be shown.

Notice one important remark: as stated in Section 2.4 of Chapter 2, most previous

works, including GCap, searches for nearest neighbors in the feature space. This operation

is super-linear even with the use of approximate nearest-neighbor finding algorithms. On

the other hand, QMAS avoids the nearest neighbor searches by using clusters to connect

similar image nodes in the Knowledge Graph. This approach allows QMAS to scale linearly

on the data size, being up to 40 times faster than the top competitors.

6.3.3 Quality and Non-labor Intensive

We labeled 256 tiles in the SAT1.5GB dataset via manual curation. Some few ground

truth labels were randomly selected from each class as the input labels and the remaining

ones were used for the quality test. Figure 6.7 illustrates the labeling accuracy for the

GCap-ANN and for the QMAS approaches in box plots obtained from 10 repetitive runs.

As it can be seen, QMAS does not sacrifice quality for speed compared with GCap-ANN

and it performs even better when the pre-labeled data size is limited. Note that the

accuracy of QMAS is barely affected by the number of the pre-labeled examples in

each label class, when the number of examples given goes above 2, while the quality

of GCap-ANN was considerably worse with small sets of pre-labeled examples. The fact

that QMAS can still extrapolate from tiny sets of pre-labeled data ensures its non-labor

intensive capability.

108 6. QMAS

Figure 6.7: Comparison of approaches in box plots – quality versus size of the pre-labeled
data. Top left is the ideal point. QMAS: red circles; GCap-ANN: green
diamonds. Accuracy values of QMAS are barely affected by the size of the
pre-labeled data. Results are obtained over 10 runs.

6.3.4 Functionality

This section evaluates the following claim: in contrast to the related works, QMAS in-

cludes other mining tasks such as clustering, detection of top outliers and representatives,

besides summarization. In other words, QMAS tackles both the problem of low-labor

labeling (L3) (Problem 1) and the problem of mining and attention routing (Problem 2),

while the related works address only the former. To evaluate this claim, we analyzed the

functionality of our method regarding its ability to spot clusters, representatives and top

outliers. The GeoEye dataset was used in all experiments reported in this section.

Figure 6.8 shows some screenshots of the clustering results obtained with QMAS.

Yellow tiles represent outliers. Closer inspection shows that these outlier tiles tend to

be on the border of areas like “Water” and “City” (because they contain a bridge). The

remaining tiles are colored according to its cluster. As expected, a few tiles belong to

more than one cluster, since we do soft clustering in QMAS. These tiles were colored

according to their first assigned clusters. Notice: the clustering results reported indeed

represent the main patterns apparent in the analyzed images.

Finally, Figure 6.9 reports the results obtained by QMAS with respect to representa-

tives. NR = 6 representatives are shown, colored according to their clusters. Notice that

these few representatives cover the main clusters previously presented in Figure 6.8. Also,

these 6 representatives were used as a basis to the detection of top outliers. Figure 6.10

shows the top-3 outliers spotted. By comparing these results with the clusters presented in

Figure 6.8, one can notice that the 3 outliers spotted, together with the 6 representatives

6.3 Experimental Results 109

Figure 6.8: Clustering results provided by QMAS for the GeoEye dataset (best viewed
in color). Top: the real satellite images; Bottom: the corresponding results,
shown by coloring each tile after its cluster. Yellow tiles represent outliers.
Notice that the clusters actually represent the main data patterns.

found (only 9 tiles in total) properly summarize the GeoEye dataset, which has more than

14 thousand tiles. This fact illustrates the functionality of our method.

6.3.5 Experiments on the SATLARGE dataset

Here we present results for the SATLARGE dataset, related to query by examples

experiments; i.e., given a small set of tiles (examples), manually labeled with one keyword,

query the unlabeled tiles to find the ones most likely related to that keyword. Figures 6.11,

6.12, 6.13, 6.14, 6.15, 6.16 and 6.17 illustrate the results obtained for several categories

(“Water”, “Houses”, “Trees”, etc) to show that QMAS returns high-quality results, being

almost insensitive to the kind of tile given as input. Additionally, notice that Figures

6.14 and 6.15 show that the results provided by QMAS are good even for tiny sets of

pre-labeled data. The number of examples provided vary from as many as ∼ 50 examples

to as few as two examples. Varying the amount of labeled data allowed us to observe

how the system responds to these changes. In general, labeling only a small number of

examples (even less than five) still leads to pretty accurate results. Finally, notice that

correct results often look very different from the given examples, i.e., QMAS is able to

extrapolate from the given examples to other, correct tiles that do not have significant

resemblance to the pre-labeled set.

110 6. QMAS

Figure 6.9: NR = 6 representatives found by QMAS for the GeoEye dataset, colored
after their clusters (best viewed in color). By comparing the representatives
to the clusters presented in Figure 6.8, it is easy to see that these few
representatives nicely cover the main clusters.

6.4 Conclusions

In this chapter we proposed QMAS: Querying, M ining And Summarizing

Multi-dimensional Databases, the third and last algorithm designed in this Ph.D.

work, which is a fast solution to the problem of automatically analyzing, labeling and

understanding large collections of complex objects. The main contributions of the method

QMAS, supported by experiments on real satellite images spanning up to 2.25 Gigabytes,

are presented as follows:

1. Speed: QMAS is a fast solution to the presented problems, and it scales linearly

on the database size. It is up to 40 times faster than top related works (GCap) on

the same subject;

6.4 Conclusions 111

Figure 6.10: Top-3 outliers found by QMAS for the GeoEye dataset based on the 6
representatives of Figure 6.9 (best viewed in color). The outlier tiles tend
to be on the border of areas like “Water” and “City” (because they contain
a bridge). Notice that these 3 outliers together with the 6 representatives
of Figure 6.9, only 9 tiles in total, nicely summarize the GeoEye dataset,
which contains more than 14 thousand tiles.

Figure 6.11: Example with water: labeled data and the corresponding results of a query
for “Water” tiles (best viewed in color).

2. Quality: It can do low-labor labeling (L3), providing results with accuracy better

than or equal to the accuracy of the related works;

3. Non-labor intensive: It works even when we are given very few labels – it can

still extrapolate from tiny sets of pre-labeled data;

4. Functionality: In contrast to the other methods, QMAS spots data objects

that potentially require new labels, and encompasses other mining tasks such as

clustering, outlier and representatives detection, as well as summarization;

The next chapter presents the conclusions of this Doctoral dissertation and ideas for

future works.

112 6. QMAS

Figure 6.12: Example with houses: labeled data and the corresponding results of a
query for “House” tiles (best viewed in color).

Figure 6.13: Example with trees: labeled data and the corresponding results of a query
for “Trees” tiles (best viewed in color).

Figure 6.14: Example with docks: labeled data and the corresponding results of a query
for “Dock” tiles (best viewed in color).

6.4 Conclusions 113

Figure 6.15: Example with boats: labeled data and the corresponding results of a query
for “Boat” tiles (best viewed in color).

Figure 6.16: Example with roads: labeled data and the corresponding results of a query
for “Roads” tiles (best viewed in color).

Figure 6.17: Example with buildings: labeled data and the corresponding results of a
query for “Buildings” tiles (best viewed in color).

114 6. QMAS

Chapter

7

Conclusion

This Ph.D. work was motivated by the increasing amount and complexity of the dada

collected by digital systems in several areas, which turns the task of knowledge discovery

out to an essential step in businesses’ strategic decisions. The mining techniques used in

the process usually have high computational costs and force the analyst to make complex

choices. The complexity stems from the diversity of tasks that may be used in the analysis

and from the large amount of alternatives to execute each task. The most common data

mining tasks include data classification, labeling and clustering, outlier detection and

missing data prediction. The large computational cost comes from the need to explore

several alternative solutions, in different combinations, to obtain the desired information.

Although the same tasks applied to traditional data are also necessary for more

complex data, such as images, graphs, audio and long texts, the complexity and the

computational costs associated to handling large amounts of these complex data increase

considerably, making the traditional techniques impractical. Therefore, especial data

mining techniques for this kind of data need to be developed. This Ph.D. work focused

on the development of new data mining techniques for large sets of complex data,

especially for the clustering task tightly associated to other data mining tasks that are

performed together. Specifically, this Doctoral dissertation presented three novel data

mining algorithms well-suited to analyze large sets of complex data: the method Halite

for correlation clustering; the method BoW for clustering Terabyte-scale datasets; and

the method QMAS for labeling and summarization.

115

116 7. Conclusion

7.1 Main Contributions of this Ph.D. Work

Three data mining techniques were developed during this Ph.D. work. These techniques

were evaluated on real, very large datasets with up to billions of complex elements, and

they always presented highly accurate results, being at least one order of magnitude faster

than the fastest related works in almost all cases. The real life data used come from the

following applications: automatic breast cancer diagnosis, satellite imagery analysis, and

graph mining on a large web graph crawled by Yahoo!1 and also on the graph with

all users and their connections from the Twitter2 social network. The three techniques

developed are briefly described as follows.

7.1.1 The Method Halite for Correlation Clustering

The algorithm Halite is a fast and scalable density-based clustering algorithm for data

of medium dimensionality able to analyze large collections of complex data elements. It

creates a multi-dimensional grid all over the data space and counts the number of points

lying at each hyper-cubic cell provided by the grid. A hyper-quad-tree-like structure,

called the Counting-tree, is used to store the counts. The tree is thereafter submitted to

a filtering process able to identify regions that are, in a statistical sense, denser than its

neighboring regions regarding at least one dimension, which leads to the final clustering

result. The algorithm is fast and has linear or quasi-linear time and space complexity

regarding both the data size and the dimensionality.

7.1.2 The Method BoW for Clustering Terabyte-scale Datasets

The method BoW focuses on the problem of finding clusters in Terabytes of

moderate-to-high dimensionality data, such as features extracted from billions of complex

data elements. In these cases, a serial processing strategy is usually impractical. Just

to read a single Terabyte of data (at 5GB/min on a single modern eSATA disk) one

takes more than 3 hours. BoW explores parallelism through MapReduce and can treat as

plug-in almost any of the serial clustering methods, including our own algorithm Halite.

The major research challenges addressed are (a) how to minimize the I/O cost, taking

care of the already existing data partition (e.g., on disks), and (b) how to minimize the

network cost among processing nodes. Either of them may become the bottleneck. Our

method automatically spots the bottleneck and chooses a good strategy, one of them uses

our proposed sampling-and-ignore idea to reduce the network traffic.

1 www.yahoo.com
2 twitter.com

7.2 Discussion 117

7.1.3 The Method QMAS for Labeling and Summarization

QMAS is a fast and scalable solution to the following problems:

1. Low-labor labeling: given a large collection of complex objects, very few of which

are labeled with keywords, find the most suitable labels for the remaining ones;

2. Mining and attention routing: in the same setting, find clusters, the top-NO

outlier objects, and the top-NR representative objects.

The algorithm is fast and it scales linearly with the data size, besides working even

with tiny initial label sets.

7.2 Discussion

In the previous Chapter 3 we provide a brief description of representative methods found

in the literature, which are aimed at spotting clusters in moderate-to-high dimensionality

data. Then, we conclude Chapter 3 by summarizing in Table 3.1 some of the most relevant

methods with regard to the main desirable properties that any clustering technique

designed to analyze such kind of data should have. That table was partially obtained from

[Kriegel et al., 2009]. In this section, we reprint in Table 7.1 the same table presented in

Chapter 3, now including the methods developed in this Ph.D. work.

Remember that the initial analysis of the literature provided in Chapter 3 led us to

come to one main conclusion. In spite of the several qualities found in the existing works,

to the best of our knowledge, there is no method published in the literature, and designed

to look for clusters in subspaces, that has any of the following desirable properties: (i)

to scale linearly or quasi-linearly in terms of memory requirement and execution

time with regard to increasing numbers of points and axes, besides increasing clusters’

dimensionalities, and; (ii) to be able to handle data of Terabyte-scale in feasible time.

One of the main goals of the work performed in this Ph.D. work is to overcome

these two limitations. Specifically, in Chapter 4, we focused on tackling the former

problem identified – linear or quasi-linear complexity. We presented the method

Halite, a novel correlation clustering algorithm for multi-dimensional data, whose main

strengths are that it is fast and it has linear or quasi-linear scalability in time and

space with regard to increasing numbers of objects and axes, besides increasing clusters

dimensionalities. Therefore, the proposed method Halite tackles the problem of linear

or quasi-linear complexity. A theoretical study on the time and space complexity of

Halite, presented in Section 4.3, as well as an extensive experimental evaluation performed

over synthetic and real data spanning up to 1 million elements and comparing Halite with

seven representative works corroborate this claim.

118 7. Conclusion

In Chapter 5, we focused on the later problem – Terabyte-scale data analysis.

In order to tackle this problem, we presented the method BoW, a novel, adaptive

clustering method that explores parallelism using MapReduce for clustering huge datasets.

It combines (a) potentially any serial algorithm used as a plug-in and (b) makes the plug-in

run efficiently in parallel, by adaptively balancing the cost for disk accesses and network

accesses, which allows BoW to achieve a very good tradeoff between these two possible

bottlenecks. Therefore, BoW tackles the problem of Terabyte-scale data analysis.

Experiments reported on both real and synthetic data with billions of points, and using

up to 1, 024 cores in parallel corroborate this claim.

Clustering Algorithm A
r
b
it
r
a
r
il
y

o
r
ie
n
te

d
c
lu

st
e
r
s

N
o
t
r
e
ly
in

g
o
n

th
e
lo
ca
li
ty

a
ss
u
m
p
ti
o
n

A
d
a
p
ti
v
e
d
e
n
si
ty

th
r
e
sh

o
ld

In
d
e
p
e
n
d
e
n
t
w
r
t
th

e
o
r
d
e
r
o
f
th

e
a
tt
r
ib

u
te

s

In
d
e
p
e
n
d
e
n
t
w
r
t
th

e
o
r
d
e
r
o
f
th

e
o
b
je
c
ts

D
e
te

r
m

in
is
ti
c

A
r
b
it
r
a
r
y

n
u
m
b
e
r
o
f
c
lu

st
e
r
s

O
v
e
r
la
p
p
in

g
c
lu

st
e
r
s
(s
o
ft

c
lu

st
e
r
in

g
)

A
r
b
it
r
a
r
y

su
b
sp

a
c
e
d
im

e
n
si
o
n
a
li
ty

A
v
o
id

in
g

c
o
m

p
le
te

e
n
u
m

e
r
a
ti
o
n

R
o
b
u
st

to
n
o
is
e

L
in

e
a
r
o
r
q
u
a
si
-l
in

e
a
r
c
o
m

p
le
x
it
y

T
e
r
a
b
y
te

-s
c
a
le

d
a
ta

a
n
a
ly
si
s

Axes parallel clustering

CLIQUE [Agrawal et al., 1998, 2005] X X X X X X X X

ENCLUS [Cheng et al., 1999] X X X X X X X X

SUBCLU [Kröger et al., 2004] X X X X X X X X

PROCLUS [Aggarwal et al., 1999] X X

PreDeCon [Bohm et al., 2004] X X X X X X

P3C [Moise et al., 2006, 2008] X X X X X X X X X

COSA [Friedman and Meulman, 2004] X X X X X X

DOC/FASTDOC [Procopiuc et al., 2002] X X X X X X

FIRES [Kriegel et al., 2005] X X X X X X X X X

Correlation clustering

ORCLUS [Aggarwal and Yu, 2002, 2000] X X X

4C [Böhm et al., 2004] X X X X X X X

COPAC [Achtert et al., 2007] X X X X X X X X

CASH [Achtert et al., 2008] X X n a X X X X X

Halite [Cordeiro et al., 2011a] X X X X X X X X X X X

BoW [Cordeiro et al., 2011b] X X X X X X X X X X X

Table 7.1: Properties of methods aimed at clustering moderate-to-high dimensionality
data, including our methods Halite and BoW (using Halite as plug-in). The
table was partially obtained from [Kriegel et al., 2009]. n a: not applicable.

7.3 Difficulties Tackled 119

Finally, notice in Table 7.1 that, the use of the Halite algorithm as a plug-in for the

BoW method leads to the creation of a powerful tool for clustering moderate-to-high

dimensionality data of large scale – this configuration has both the desirable properties

sought, linear or quasi-linear complexity and Terabyte-scale data analysis, still

having most of the other properties that any clustering technique designed to analyze

moderate-to-high dimensionality data should have.

7.3 Difficulties Tackled

The main difficulty encountered during this Ph.D. work was the lack of large sets of

real, complex objects, classified, preferably manually, by experts in the corresponding

application area, in order to have a sound ground truth. Experiments with various real

datasets are essential, given that they illustrate the practical usability of the mining

methods developed.

Fortunately, this Ph.D. work included a visiting sandwich period of one year at the

Carnegie Mellon University - USA, under the local supervision of the Ph.D. co-advisor,

Prof. Dr. Christos Faloutsos. This activity was of great value for several reasons. Among

them, it is important to mention that it provided us with access to large, real databases

that were used to test the algorithms developed. In this way, the former difficulty was

considerably reduced.

7.4 Future Work

The work performed in this Ph.D. work provides support to future works regarding

numerous topics. Some of them are already being targeted by the Ph.D. candidate and

his academic peers. The central topics for future works are briefly described as follows.

7.4.1 Using the Fractal Theory and Clustering Techniques to Im-

prove the Climate Change Forecast

One interesting idea for future work is to use the mining techniques designed in this Ph.D.

work, as well as Fractal Theory concepts [Schroeder, 1991], to improve the climate change

forecast. Climate change forecast allows us to understand, to prevent and to mitigate bad

consequences of the human activities to the future weather [Intergovernmental Panel on

Climate Change – IPCC, 2007, The National Academies, 2008]. It uses numerical models,

known as climate change models, that describe the main physical and dynamical processes

of the climate system to simulate future climates as response to changes in external forces

[Marengo, 2006].

120 7. Conclusion

The climate models are usually evaluated by starting the simulation in a given instant

in the past, and using statistical comparison of trend analyses to compare the simulated

results to the real recorded data. Today, the analyses of statistical significance indicate

that the simulated results closely follow the recorded data, thus giving a strong evidence of

the models’ correctness. However, at GBdI we have been performing such kind of analysis

using Fractal Theory techniques, and we have found that those techniques can clearly

differentiate the simulated from the real data [Nunes et al., 2010, 2011, Traina et al., 2010].

Thus, although the current climate change models are appropriate from the statistical

point of view, the Fractal Theory shows that they can be improved. Further studies

lead us to believe that the clustering techniques for moderate-to-high dimensional data

are promising tools to help improving such models. Therefore, one interesting question

that we intend to answer in future works is: How to use Fractal Theory concepts and

clustering techniques to improve the climate change models? In fact, we have already

wrote a post-doctoral project on this topic and we will focus on it after this Ph.D. work.

7.4.2 Parallel Clustering

The method BoW automatically chooses to use the best of two strategies for parallel

clustering, according to the environment in which it is used. Both strategies were carefully

designed to allow BoW to work with potentially any serial clustering technique and data

partitioning strategy. However, if the user is willing to abandon this desirable property,

other algorithmic strategies become feasible, providing alternative properties. Specifically

we have been working with two possibilities:

• Map-only clustering: when we restrict the data partitioning strategy to the

File-Based option, described in Section 5.4.3 of Chapter 5, one map-only clustering

algorithm becomes possible. The general idea is as follows. The MapReduce

Framework automatically assigns to the mappers consecutive parts of the input

data file. Thus, for the File-Based data partition, we can do clustering directly

in the mappers and avoid the large cost of shuffling the data to reducers. This

strategy can speed-up the process considerably in many cases. On the other hand,

it forces us to limit the number of mappers to be used, also limiting the number of

machines that will read the data in parallel from the disks and slowing down the

overall process. This is necessary since the clustering quality tends to decrease when

the data is partitioned into too many pieces for parallel processing. Therefore, this

strategy may be good for some cases and bad for others and thus, one interesting

future work is to derive the expected cost formulas and the estimation of the optimal

number of machines for the Map-only clustering strategy and to include this option

into BoW, in a way that, for the File-Based data partitioning, it starts choosing

7.4 Future Work 121

automatically between three clustering strategies, instead of choosing the best of

two strategies;

• Grid-based clustering: when we restrict BoW to work with grid-based, serial

clustering algorithms only, such as our own Halite method, another algorithmic

strategy becomes possible. The idea is to apply the hyper-grids to the data space

directly in the mappers, in such a way that each mapper generates partial counts

of points for the cells in the grids regarding its own subset of the dataset elements.

Then, the counts of points can be shuffled to the reducers instead of the data

elements themselves, minimizing considerably the total shuffling cost. This strategy

allows a potentially large speed-up in the parallel clustering process, at the price of

limiting the choice of the plug-in, serial algorithm to be used. Therefore, it is an

interesting topic for future work.

7.4.3 Feature Selection by Clustering

A novel idea for dimensionality reduction is based on the fact that existing approaches

usually rely on the identification of attribute correlations. The traditional strategy to

reduce the data dimensionality is to identify and to eliminate most of the correlations,

minimizing the effects of the dimensionality curse by finding a new set of orthogonal axes,

of reduced cardinality, containing non-correlated dimensions relevant to characterize the

data. Notice however that the correlations identified by most existing methods are global

correlations, since they must occur for all dataset elements regarding a set of dimensions

[Cordeiro et al., 2010b, Domeniconi et al., 2007, Kriegel et al., 2009]. Nevertheless, as

described in Section 2.3 of Chapter 2, data in more than ten or so dimensions often

present local correlations that refer only to subsets of the data elements and dimensions.

In fact, distinct clusters may be correlated with different sets of dimensions. Therefore,

it is clear that traditional dimensionality reduction techniques do not identify all possible

correlations, as they only evaluate correlations valid for the entire dataset [Cordeiro et al.,

2010b, Domeniconi et al., 2007, Kriegel et al., 2009]. A promising strategy to improve the

results is to take into account the local correlations as well as the global ones.

The clustering algorithms for moderate-to-high dimensional data may represent a

step forward into this idea, since they can be seen as a non-traditional approach to

perform feature selection [Traina et al., 2011]. These methods identify local correlations

by spotting clusters noticeable only when the data is projected into subspaces. Although,

they have been extensively used for clustering multi-dimensional data in more than ten

or so dimensions, as in the case of features extracted from complex data elements,

feature selection is yet a very recent application for such methods. The general idea

is that, instead of eliminating global correlations, one may use clustering to identify local

correlations related to specific subsets of the data and assume the dimensions in which

122 7. Conclusion

these correlations occur as the most relevant ones, since they are the ones that allow

differentiating the distinct categories inside the dataset. In other words, the dimensions

participating in at least one of the local correlations spotted must not be discarded,

since these dimensions have the highest discrimination power, behaving particularly for

elements of one or more given clusters. The other features present uniform behavior to

every element in the dataset, do not contributing to categorize the data, and thus they

can be eliminated. Consequently, the use of clustering algorithms to select features from

data in more than five or so dimensions is a promising, novel strategy to minimize the

effects of the dimensionality curse for several data mining tasks.

7.4.4 Multi-labeling and Hierarchical Labeling

The QMAS algorithm proposes to find appropriate labels for the elements of a large

collection of complex objects. The set of labels is previously defined by the user through

examples and each unlabeled object of the collection is assigned to at most one label.

Spotting a single label for each object is desirable for several applications, as we described

in Chapter 6, but allowing each object to receive more than one appropriate label may

be better in some situations. For example, when labeling the tiles generated by dividing

satellite images into rectangular, equal-sized pieces, hybrid tiles may exist, as a bridge

(both “Water” and “Concrete”) or a park (“Water”, “Forest” and “Concrete”), which

ideally should receive more than one label.

Adding this functionality to the QMAS algorithm is an interesting idea for future

work. The current algorithm allows sorting the labels according to their appropriateness

with regard to each analyzed object. However, how many labels should be assigned for

each given object? Some objects should receive a single label, while others should receive

two, three or more labels. Thus, defining the correct number of labels to be assigned for

each object is not a trivial task and this topic can be explored to extend the functionality

of QMAS.

Finally, treating hierarchies of labels is another interesting extension for QMAS.

Today, our algorithm considers the labels to be independent from each other, but the

use of labeling hierarchies is desirable for some applications. Considering again the tiles

extracted from satellite images, one may desire to define hierarchies of labels to be assigned

to the tiles, containing, for example, several types and subtypes of forest, urban areas,

and the like, in a way that each tile should be assigned to entire paths in the hierarchy,

instead of being linked to individual labels only.

7.5 Publications Generated in this Ph.D. Work 123

7.5 Publications Generated in this Ph.D. Work

The algorithm Halite is described in [Cordeiro et al., 2010b] and in [Cordeiro et al.,

2011a]. The first publication refers to a full paper published at the IEEE International

Conference on Data Engineering – ICDE (Qualis A2), one of the top quality conferences in

the databases research area. The latter publication refers to an extended journal version

of the conference paper, which is already accepted for publication as a regular paper at the

IEEE Transactions on Knowledge and Data Engineering – TKDE journal (Qualis A1).

The journal TKDE is one of the leading journals in the databases research area.

The method BoW is described in [Cordeiro et al., 2011b], a full paper published at the

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, one of the leading

conferences in the research areas of data mining and knowledge discovery from data. An

extended journal version of the paper is being written.

The algorithm QMAS is described in [Cordeiro et al., 2010a], a paper published at

the IEEE International Conference on Data Mining – ICDM (Qualis A2), one of the top

quality conferences in the data mining and knowledge discovery field. An extended journal

version of the paper is being written.

In summary, this Ph.D. work generated four main papers – one of them [Cordeiro

et al., 2011a] is accepted for publication as a regular paper at the IEEE Transactions on

Knowledge and Data Engineering – TKDE journal (Qualis A1). The journal TKDE is

one of the leading journals in the databases research area; and the other three papers

[Cordeiro et al., 2010b],[Cordeiro et al., 2011b] and [Cordeiro et al., 2010a] were accepted

and published at top quality conferences, IEEE ICDE Conference (Qualis A2), ACM

SIGKDD Conference and IEEE ICDM Conference (Qualis A2). Also, extended journal

versions of the papers [Cordeiro et al., 2011b] and [Cordeiro et al., 2010a] are being

written. Finally, additional works were conducted in parallel with the main topic of this

Doctoral dissertation aimed at corroborating the applicability of the techniques developed

during this Ph.D. work to real-life problems, such as mining data from Healthcare

Information Systems and Agrometeorological data. These additional works generated

one book chapter [Traina et al., 2011], one paper in an international conference [Traina

et al., 2010] and the following other publications [Kaster et al., 2007], [Romani et al.,

2010] and [Coltri et al., 2010].

124 7. Conclusion

Bibliography

Hadoop information. http://hadoop.apache.org/.

E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger, and A. Zimek. Robust, complete, and

efficient correlation clustering. In SDM, USA, 2007.

E. Achtert, C. Böhm, J. David, P. Kröger, and A. Zimek. Global correlation clustering

based on the hough transform. Stat. Anal. Data Min., 1:111–127, November 2008. ISSN

1932-1864. doi: 10.1002/sam.v1:3.

P. K. Agarwal and N. H. Mustafa. k-means projective clustering. In

PODS, pages 155–165, Paris, France, 2004. ACM. ISBN 158113858X. doi:

http://doi.acm.org/10.1145/1055558.1055581.

C. Aggarwal and P. Yu. Redefining clustering for high-dimensional appli-

cations. IEEE TKDE, 14(2):210–225, 2002. ISSN 1041-4347. doi:

http://doi.ieeecomputersociety.org/10.1109/69.991713.

C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high di-

mensional spaces. SIGMOD Rec., 29(2):70–81, 2000. ISSN 0163-5808. doi:

http://doi.acm.org/10.1145/335191.335383.

C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park. Fast algorithms

for projected clustering. SIGMOD Rec., 28(2):61–72, 1999. ISSN 0163-5808. doi:

http://doi.acm.org/10.1145/304181.304188.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering

of high dimensional data for data mining applications. SIGMOD Rec., 27(2):94–105,

1998. ISSN 0163-5808. doi: http://doi.acm.org/10.1145/276305.276314.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of

high dimensional data. Data Min. Knowl. Discov., 11(1):5–33, 2005. ISSN 1384-5810.

doi: http://dx.doi.org/10.1007/s10618-005-1396-1.

A. V. Aho, J. E. Hopcroft, and J. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1974.

ISBN 0201000296.

125

126 BIBLIOGRAPHY

M. Al-Razgan and C. Domeniconi. Weighted clustering ensembles. In J. Ghosh,

D. Lambert, D. B. Skillicorn, and J. Srivastava, editors, SDM. SIAM, 2006. ISBN

0-89871-611-X.

S. Ando and H. Iba. Classification of gene expression profile using

combinatory method of evolutionary computation and machine learning.

Genetic Programming and Evolvable Machines, 5:145–156, 2004. ISSN

1389-2576. URL http://dx.doi.org/10.1023/B:GENP.0000023685.83861.69.

10.1023/B:GENP.0000023685.83861.69.

J. D. Banfield and A. E. Raftery. Model-based gaussian and non-gaussian clustering.

Biometrics, 49(3):803–821, 1993.

K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”nearest neighbor”

meaningful? In ICDT, pages 217–235, UK, 1999. ISBN 3-540-65452-6.

A. P. Blicher. Edge detection and geometric methods in computer vision (differential

topology, perception, artificial intelligence, low-level). PhD thesis, University of

California, Berkeley, 1984. AAI8512758.

C. Bohm, K. Kailing, H.-P. Kriegel, and P. Kroger. Density connected clustering

with local subspace preferences. In ICDM ’04: Proceedings of the Fourth IEEE

International Conference on Data Mining, pages 27–34, Washington, DC, USA, 2004.

IEEE Computer Society. ISBN 0-7695-2142-8.

C. Böhm, K. Kailing, P. Kröger, and A. Zimek. Computing clusters of correlation

connected objects. In SIGMOD, pages 455–466, NY, USA, 2004. ISBN 1-58113-859-8.

doi: http://doi.acm.org/10.1145/1007568.1007620.

C. Böhm, C. Faloutsos, J.-Y. Pan, and C. Plant. Robust information-theoretic

clustering. In KDD, pages 65–75, NY, USA, 2006. ISBN 1-59593-339-5. doi:

http://doi.acm.org/10.1145/1150402.1150414.

C. Böhm, C. Faloutsos, and C. Plant. Outlier-robust clustering using independent

components. In SIGMOD, pages 185–198, USA, 2008. ISBN 978-1-60558-102-6. doi:

http://doi.acm.org/10.1145/1376616.1376638.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Wadsworth, 1984. ISBN 0-534-98053-8.

T. F. Chan and J. Shen. Image processing and analysis - variational, PDE, wavelet, and

stochastic methods. SIAM, 2005. ISBN 978-0-89871-589-7.

BIBLIOGRAPHY 127

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber. Bigtable: a distributed storage system for structured data.

In USENIX’06, Berkeley, CA, USA, 2006.

C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining

numerical data. In KDD, pages 84–93, NY, USA, 1999. ISBN 1-58113-143-7. doi:

http://doi.acm.org/10.1145/312129.312199.

H. Cheng, K. A. Hua, and K. Vu. Constrained locally weighted clustering. PVLDB, 1(1):

90–101, 2008. doi: http://doi.acm.org/10.1145/1453856.1453871.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity

search in metric spaces. In The VLDB Journal, pages 426–435, 1997.

P. P. Coltri, R. L. F. Cordeiro, T. T. de Souza, L. A. S. Romani, J. Zullo Jr., C. Traina

Jr., and A. J. M. Traina. Classificação de áreas de café em minas gerais por meio do

novo algoritmo qmas em imagem espectral geoeye-1. In XV Simpósio Brasileiro de

Sensoriamento Remoto - SBSR, 2010. 8 pages (in Portuguese).

R. L. F. Cordeiro, F. Guo, D. S. Haverkamp, J. H. Horne, E. K. Hughes, G. Kim, A. J. M.

Traina, C. Traina Jr., and C. Faloutsos. Qmas: Querying, mining and summarization

of multi-modal databases. In G. I. Webb, B. Liu, C. Zhang, D. Gunopulos, and X. Wu,

editors, ICDM, pages 785–790. IEEE Computer Society, 2010a.

R. L. F. Cordeiro, A. J. M. Traina, C. Faloutsos, and C. Traina Jr. Finding clusters

in subspaces of very large, multi-dimensional datasets. In F. Li, M. M. Moro,

S. Ghandeharizadeh, J. R. Haritsa, G. Weikum, M. J. Carey, F. Casati, E. Y. Chang,

I. Manolescu, S. Mehrotra, U. Dayal, and V. J. Tsotras, editors, ICDE, pages 625–636.

IEEE, 2010b. ISBN 978-1-4244-5444-0.

R. L. F. Cordeiro, A. J. M. Traina, C. Faloutsos, and C. Traina Jr. Halite: Fast and

scalable multi-resolution local-correlation clustering. IEEE Trans. Knowl. Data Eng.,

2011a. 15 pages (to appear).

R. L. F. Cordeiro, C. Traina Jr., A. J. M. Traina, J. López, U. Kang, and C. Faloutsos.

Clustering very large multi-dimensional datasets with mapreduce. In C. Apté, J. Ghosh,

and P. Smyth, editors, KDD, pages 690–698. ACM, 2011b. ISBN 978-1-4503-0813-7.

M. Dash, H. Liu, and J. Yao. Dimensionality reduction for unsupervised data. In

Proceedings of the Ninth IEEE International Conference on Tools with Artificial

Intelligence (ICTAI’97), pages 532–539, November 1997.

128 BIBLIOGRAPHY

J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and

orientation optimized by two-dimensional visual cortical filters. Journal of the Optical

Society of America A, 2:1160–1169, July 1985. doi: 10.1364/JOSAA.2.001160.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

OSDI, 2004.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological),

39(1):1–38, 1977. doi: 10.2307/2984875.

C. Domeniconi, D. Papadopoulos, D. Gunopulos, and S. Ma. Subspace clustering of high

dimensional data. In M. W. Berry, U. Dayal, C. Kamath, and D. B. Skillicorn, editors,

SDM, 2004. ISBN 0-89871-568-7.

C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, and D. Papadopoulos. Lo-

cally adaptive metrics for clustering high dimensional data. Data Min. Knowl. Discov.,

14(1):63–97, 2007. ISSN 1384-5810. doi: http://dx.doi.org/10.1007/s10618-006-0060-8.

R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley, 2001. Second Edition.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition).

Wiley-Interscience, 2000. ISBN 0471056693.

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. In KDD, pages 226–231, 1996.

U. Fayyad. A data miner’s story – getting to know the grand chal-

lenges. In Invited Innovation Talk, KDD, 2007a. Slide 61. Available at:

http://videolectures.net/kdd07 fayyad dms/.

U. Fayyad. A data miner’s story – getting to know the grand challenges. In Invited Inno-

vation Talk, KDD, 2007b. Available at: http://videolectures.net/kdd07 fayyad dms/.

U. M. Fayyad. Editorial. ACM SIGKDD Explorations, 5(2):1–3, 2003.

U. M. Fayyad and R. Uthurusamy. Data mining and knowledge discovery in databases

(introduction to the special section). Communications of the ACM, 39(11):24–26, 1996.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge

discovery: An overview. In Advances in Knowledge Discovery and Data Mining, pages

1–34. 1996.

J. H. Friedman and J. J. Meulman. Clustering objects on subsets of attributes (with

discussion). Journal Of The Royal Statistical Society Series B, 66(4):815–849, 2004.

URL http://ideas.repec.org/a/bla/jorssb/v66y2004i4p815-849.html.

BIBLIOGRAPHY 129

L. Gibson and D. Lucas. Spatial Data Processing Using Generalized Balanced Ternary.

In IEEE Conference on Pattern Recognition and Image Analysis, June 1982.

G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University

Press, Baltimore, USA, 3 edition, 1996. ISBN 0-8018-5413-X.

P. D. Grunwald, I. J. Myung, and M. A. Pitt. Advances in Minimum Description Length:

Theory and Applications (Neural Information Processing). The MIT Press, 2005. ISBN

0262072629.

J. Han and M. Kamber. Data mining: Concepts and techniques. Morgan Kaufmann, San

Francisco, CA, 2 edition, 2006.

R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification.

Systems, Man and Cybernetics, IEEE Transactions on, 3(6):610 –621, nov. 1973. ISSN

0018-9472. doi: 10.1109/TSMC.1973.4309314.

P. Hough. Method and Means for Recognizing Complex Patterns. U.S. Patent 3.069.654,

Dec. 1962.

J. Huang, S. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih. Image indexing using

color correlograms. In Computer Vision and Pattern Recognition, 1997. Proceed-

ings., 1997 IEEE Computer Society Conference on, pages 762 –768, jun 1997. doi:

10.1109/CVPR.1997.609412.

Intergovernmental Panel on Climate Change – IPCC. Climate Change 2007: Summary for

Policymakers. Cambridge Univ. Press., 2007. Formally agreed statement of the IPCC

concerning key findings and uncertainties contained in the Working Group contributions

to the Fourth Assessment Report.

K. Kailing, H. Kriegel, and P. Kroger. Density-connected subspace clustering for

highdimensional data, 2004.

U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus: A peta-scale graph mining system

- implementation and observations. ICDM, 2009.

U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Radius plots for

mining tera-byte scale graphs: Algorithms, patterns, and observations. SDM, 2010.

K. V. R. Kanth, D. Agrawal, and A. K. Singh. Dimensionality reduction for similarity

searching in dynamic databases. In L. M. Haas and A. Tiwary, editors, ACM SIGMOD

International Conference on Management of Data, pages 166–176, Seattle, Washington,

USA, 1998. ACM Press. Elaine Josiel.

130 BIBLIOGRAPHY

D. S. Kaster, R. L. F. Cordeiro, and R. P. de Mattos Fortes. Um framework web

colaborativo baseado em ontologias para recuperação e descoberta de conhecimento

em imagens médicas. In XIII Simpósio Brasileiro de Sistemas Multimı́dia e Web -

WebMedia, 2007. 8 pages. (in Portuguese).

F. Korn, B.-U. Pagel, and C. Faloutsos. On the ’dimensionality curse’

and the ’self-similarity blessing’. IEEE Transactions on Knowledge and

Data Engineering (TKDE), 13(1):96–111, 2001. ISSN 1041-4347. doi:

http://dx.doi.org/10.1109/69.908983.

H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst. A generic framework for efficient

subspace clustering of high-dimensional data. In ICDM, pages 250–257, Washington,

USA, 2005. ISBN 0-7695-2278-5. doi: http://dx.doi.org/10.1109/ICDM.2005.5.

H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering high-dimensional data: A survey on

subspace clustering, pattern-based clustering, and correlation clustering. ACM TKDD,

3(1):1–58, 2009. ISSN 1556-4681. doi: http://doi.acm.org/10.1145/1497577.1497578.

P. Kröger, H.-P. Kriegel, and K. Kailing. Density-connected subspace clustering for

high-dimensional data. In SDM, USA, 2004.

R. Lämmel. Google’s mapreduce programming model – revisited. Science of Computer

Programming, 70:1–30, 2008.

S. Lazebnik and M. Raginsky. An empirical bayes approach to contextual region

classification. In CVPR, pages 2380–2387. IEEE, 2009. ISBN 978-1-4244-3992-8.

S. Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions

on, 28(2):129 – 137, mar 1982. ISSN 0018-9448. doi: 10.1109/TIT.1982.1056489.

F. Long, H. Zhang, and D. D. Feng. Fundamentals of content-based image retrieval.

Multimedia Information Retrieval and Management, Springer, 2002.

J. B. MacQueen. Some methods for classification and analysis of multivariate observations.

In L. M. L. Cam and J. Neyman, editors, Proc. of the fifth Berkeley Symposium

on Mathematical Statistics and Probability, volume 1, pages 281–297. University of

California Press, 1967.

J. A. Marengo. Mudanças climáticas globais e seus efeitos sobre a biodiversidade:

caracterização do clima atual e definição das alterações climáticas para o território

brasileiro ao longo do século XXI. Ministério do Meio Ambiente, Secretaria de

Biodiversidade e Florestas, Braśılia, DF, 2006. (in Portuguese).

BIBLIOGRAPHY 131

S. Mehrotra, Y. Rui, K. Chakrabarti, M. Ortega, and T. S. Huang. Multimedia analysis

and retrieval system. In Multimedia Information Systems, 1997. Proceedings., Third

International Workshop on, pages 25–27, September 1997.

G. Moise and J. Sander. Finding non-redundant, statistically significant regions in high

dimensional data: a novel approach to projected and subspace clustering. In KDD,

pages 533–541, 2008.

G. Moise, J. Sander, and M. Ester. P3C: A robust projected clustering algorithm. In

ICDM, pages 414–425. IEEE Computer Society, 2006.

G. Moise, J. Sander, and M. Ester. Robust projected clustering. Knowl. Inf. Syst., 14(3):

273–298, 2008. ISSN 0219-1377. doi: http://dx.doi.org/10.1007/s10115-007-0090-6.

G. Moise, A. Zimek, P. Kröger, H.-P. Kriegel, and J. Sander. Subspace and projected

clustering: experimental evaluation and analysis. Knowl. Inf. Syst., 21(3):299–326,

2009.

D. M. Mount and S. Arya. Ann: A library for approximate nearest neighbor searching.

URL http://www.cs.umd.edu/ mount/ANN/.

E. K. K. Ng and A. W. Fu. Efficient algorithm for projected clustering. In ICDE

’02: Proceedings of the 18th International Conference on Data Engineering, page 273,

Washington, DC, USA, 2002. IEEE Computer Society.

E. K. K. Ng, A. W. chee Fu, and R. C.-W. Wong. Projective cluster-

ing by histograms. TKDE, 17(3):369–383, 2005. ISSN 1041-4347. doi:

http://dx.doi.org/10.1109/TKDE.2005.47.

S. Nunes, L. A. S. Romani, A. A. M. H. d. Ávila, C. Traina Jr., E. P. M. d. Sousa,

and A. J. M. Traina. Análise baseada em fractais para identificação de mudanças de

tendências em múltiplas séries climáticas. In 25 Simpósio Brasileiro de Bases de Dados

(SBBD2010) - Short Papers, volume 1, page 8 pag., Belo Horizonte, MG, 2010. SBC.

(in Portuguese).

S. A. Nunes, L. A. S. Romani, A. M. H. Avila, C. Traina Jr., E. P. M. de Sousa, and

A. J. M. Traina. Fractal-based analysis to identify trend changes in multiple climate

time series. Journal of Information and Data Management - JIDM, 2:1–7, 2011. to

appear.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign

language for data processing. In SIGMOD ’08, pages 1099–1110, 2008.

132 BIBLIOGRAPHY

B.-U. Pagel, F. Korn, and C. Faloutsos. Deflating the dimensionality curse using multiple

fractal dimensions. In IEEE International Conference on Data Engineering (ICDE),

pages 589–598, San Diego, CA, 2000. IEEE Computer Society.

J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Gcap: Graph-based automatic

image captioning. In CVPRW ’04: Proceedings of the 2004 Conference on Computer

Vision and Pattern Recognition Workshop (CVPRW’04) Volume 9, page 146, 2004.

S. Papadimitriou and J. Sun. Disco: Distributed co-clustering with map-reduce. ICDM,

2008.

L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data:

a review. SIGKDD Explor. Newsl., 6(1):90–105, 2004. ISSN 1931-0145. doi:

http://doi.acm.org/10.1145/1007730.1007731.

G. Pass, R. Zabih, and J. Miller. Comparing images using color coherence vectors. In

ACM Multimedia, pages 65–73, 1996.

A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Tools for content-based

manipulation of image databases. In Storage and Retrieval for Image and Video

Databases (SPIE), pages 34–47, 1994.

C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. A monte carlo algorithm for

fast projective clustering. In SIGMOD, pages 418–427, USA, 2002. ISBN 1-58113-497-5.

doi: http://doi.acm.org/10.1145/564691.564739.

R. M. Rangayyan. Biomedical Image Analysis. CRC Press, Boca Raton, FL, 2005. ISBN

9780849396953.

S. O. Rezende. Sistemas Inteligentes Fundamentos e Aplicações. Editora Manole Ltda,

2002.

J. Rissanen. Stochastic Complexity in Statistical Inquiry Theory. World Scientific

Publishing Co., Inc., River Edge, NJ, USA, 1989. ISBN 9971508591.

L. Romani, H. L. Razente, D. Y. T. Chino, E. P. M. Sousa, M. C. N. Barioni, M. X.

Ribeiro, R. Gonçalves, A. M. Avila, J. Zullo, R. L. F. Cordeiro, S. A. Nunes, C. Traina

Jr., J. F. Rodrigues Jr., W. D. Oliveira, and A. J. M. Traina. Agrodatamine: Integrating

analysis of climate time series and remote sensing images. In Microsoft Research

eScience Workshop, pages 134–136, 2010.

P. J. Rousseeuw and B. C. van Zomeren. Unmasking multivariate outliers and leverage

points. J. Amer. Stat. Assoc., 85(411):633–639, Sept. 1990. ISSN 0162-1459.

M. Schroeder. Fractals, Chaos, Power Laws. W. H. Freeman, New York, 6 edition, 1991.

BIBLIOGRAPHY 133

J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance,

shape and context modeling for multi-class object recognition and segmentation. In

A. Leonardis, H. Bischof, and A. Pinz, editors, ECCV (1), volume 3951 of Lecture

Notes in Computer Science, pages 1–15. Springer, 2006. ISBN 3-540-33832-2.

G. W. Snedecor and W. G. Cochran. Statistical Methods. Iowa State University Press,

Iowa, USA, 1989.

M. Sonka, V. Hlavac, and R. Boyle. Image Processing: Analysis and Machine Vision.

Brooks/Cole Pub Co, 2 edition, 1998.

E. P. Sousa, J. Caetano Traina, A. J. Traina, L. Wu, and C. Faloutsos. A

fast and effective method to find correlations among attributes in databases.

Data Min. Knowl. Discov., 14(3):367–407, 2007. ISSN 1384-5810. doi:

http://dx.doi.org/10.1007/s10618-006-0056-4.

E. P. M. Sousa. Identificação de correlações usando a teoria dos fractais. Tese de

Doutorado, ICMC/USP, São Carlos, 2006.

R. O. Stehling, M. A. Nascimento, and A. X. Falcão. Cell histograms versus

color histograms for image representation and retrieval. Knowl. Inf. Syst., 5:

315–336, September 2003. ISSN 0219-1377. doi: 10.1007/s10115-003-0084-y. URL

http://portal.acm.org/citation.cfm?id=959128.959131.

H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci, 1:

801–804, 1956. (in French).

The National Academies. Understanding and Responding to Climate Change: Highlights

of National Academies Reports. The National Academies, 2008.

H. Tong, C. Faloutsos, and J.-Y. Pan. Random walk with restart:

fast solutions and applications. Knowl. Inf. Syst., 14:327–346, March

2008. ISSN 0219-1377. doi: 10.1007/s10115-007-0094-2. URL

http://portal.acm.org/citation.cfm?id=1357641.1357646.

A. B. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny images: A large data

set for non-parametric object and scene recognition. IEEE Trans. Pattern Anal. Mach.

Intell., 30(11):1958–1970, 2008.

A. J. M. Traina, C. Traina, J. M. Bueno, F. J. T. Chino, and P. Azevedo-Marques. Efficient

content-based image retrieval through metric histograms. World Wide Web, 6:157–185,

2003. ISSN 1386-145X. URL http://dx.doi.org/10.1023/A:1023670521530.

10.1023/A:1023670521530.

134 BIBLIOGRAPHY

A. J. M. Traina, L. A. Romani, R. L. F. Cordeiro, E. P. M. d. Sousa, M. X. Ribeiro, A. A.

M. H. d. Ávila, J. Zullo Jr., J. F. Rodrigues Jr., and J. Traina, Caetano. How to find

relevant patterns in climate data: an efficient and effective framework to mine climate

time series and remote sensing images. In B. L. Keyfitz and L. N. Trefethen, editors,

SIAM Annual Meeting 2010, page 6 pags., Pittsburgh, PA, 2010. SIAM.

A. J. M. Traina, C. Traina Jr., R. L. F. Cordeiro, M. X. Ribeiro, and P. M.

Azevedo-Marques. Issues and techniques to mitigate the performance gap in

content-based image retrieval systems. Journal of Healthcare Information Systems and

Informatics - IJHISI, special issue on New Technologies for Advancing Healthcare and

Clinical Practices, pages 60–83, 2011.

C. Traina Jr., A. J. M. Traina, B. Seeger, and C. Faloutsos. Slim-trees: High performance

metric trees minimizing overlap between nodes. In C. Zaniolo, P. C. Lockemann,

M. H. Scholl, and T. Grust, editors, International Conference on Extending Database

Technology (EDBT), volume 1777 of Lecture Notes in Computer Science, pages 51–65,

Konstanz, Germany, 2000. Springer Verlag.

C. Traina Jr., A. J. M. Traina, C. Faloutsos, and B. Seeger. Fast indexing and visualization

of metric data sets using slim-trees. IEEE Trans. Knowl. Data Eng., 14(2):244–260,

2002.

C. Traina Jr., A. J. M. Traina, R. F. Santos Filho, and C. Faloutsos. How to improve

the pruning ability of dynamic metric access methods. In International Conference on

Information and Knowledge Management (CIKM), pages 219–226, McLean, VA, USA,

2002. ACM Press.

A. K. H. Tung, X. Xu, and B. C. Ooi. Curler: finding and visualizing nonlinear

correlation clusters. In SIGMOD, pages 467–478, 2005. ISBN 1-59593-060-4. doi:

http://doi.acm.org/10.1145/1066157.1066211.

M. R. Vieira, C. Traina Jr., A. J. M. Traina, and F. J. T. Chino. Dbm-tree: A dynamic

metric access method sensitive to local density data. In S. Lifschitz, editor, Brazilian

Symposium on Databases (SBBD), volume 1, pages 33–47, Braśılia, DF, 2004. SBC.

W. Wang, J. Yang, and R. Muntz. Sting: A statistical information grid approach to

spatial data mining. In VLDB, pages 186–195, 1997. ISBN 1-55860-470-7.

Wiki. http://wiki.apache.org/hadoop/hbase. URL

http://wiki.apache.org/hadoop/Hbase. Hadoop’s Bigtable-like structure.

K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee. Findit: a fast and intelligent subspace

clustering algorithm using dimension voting. Information & Software Technology, 46

(4):255–271, 2004.

BIBLIOGRAPHY 135

K. Yip, D. Cheung, and M. Ng. Harp: a practical projected clustering algorithm. TKDE,

16(11):1387–1397, 2004. ISSN 1041-4347. doi: 10.1109/TKDE.2004.74.

K. Y. Yip and M. K. Ng. Harp: A practical projected clustering algorithm. IEEE

Trans. on Knowl. and Data Eng., 16(11):1387–1397, 2004. ISSN 1041-4347. doi:

http://dx.doi.org/10.1109/TKDE.2004.74. Member-David W. Cheung.

K. Y. Yip, D. W. Cheung, and M. K. Ng. On discovery of extremely low-dimensional clus-

ters using semi-supervised projected clustering. In ICDE, pages 329–340, Washington,

USA, 2005. ISBN 0-7695-2285-8. doi: http://dx.doi.org/10.1109/ICDE.2005.96.

M. L. Yiu and N. Mamoulis. Iterative projected clustering by subspace mining. TKDE,

17(2):176–189, 2005. ISSN 1041-4347. doi: 10.1109/TKDE.2005.29.

B. Zhang, M. Hsu, and U. Dayal. K-harmonic means - a spatial clustering algorithm with

boosting. In J. F. Roddick and K. Hornsby, editors, TSDM, volume 2007 of Lecture

Notes in Computer Science, pages 31–45. Springer, 2000. ISBN 3-540-41773-7.

H. Zhang. The Optimality of Naive Bayes. In V. Barr and

Z. Markov, editors, FLAIRS Conference. AAAI Press, 2004. URL

http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf.

X. Zhang, F. Pan, and W. Wang. Care: Finding local linear correlations in high

dimensional data. In ICDE, pages 130–139, 2008.

C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson. Evolving accurate and compact clas-

sification rules with gene expression programming. IEEE Transactions on Evolutionary

Computation, 7(6):519–531, 2003.

	capa
	thesis_revised
	capa
	ficha_catalografica
	tese

