• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2018.tde-22012018-151606
Documento
Autor
Nome completo
Juliano José Guimarães Junqueira
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2001
Orientador
Banca examinadora
Achcar, Jorge Alberto (Presidente)
Bolfarine, Heleno
Louzada Neto, Francisco
Título em português
Variabilidade extra-binomial: uso de métodos Bayesianos
Palavras-chave em português
Não disponível
Resumo em português
A distribuição Binomial é freqüentemente usada quando estamos interessados em ajustar dados de contagens de y sucessos em n ensaios de um mesmo experimento aleatório, onde cada ensaio admite duas respostas: sucesso ou fracasso. Contudo, em muitas aplicações, podemos ter uma variabilidade observada dos dados maior ou menor do que a variabilidade esperada a partir de uma suposição Binomial com parâmetros n e p. Essa variabilidade superior ou inferior dos dados observados em relação a variabilidade do modelo Binomial é chamada variabilidade extra-Binomial e ela pode ser provocada por várias fontes. Alguns modelos tem sido propostos na literatura para ajustar a variabilidade extra- Binomial. Entre eles se destacam os modelos Beta-Binomial, Binomial Correlacionado e Mistura de duas distribuições Binomiais. Nesta dissertação, analisamos esses modelos sob o enfoque Bayesiano utilizando os métodos de Monte Cano em Cadeia de Markov (MCMC). Em particular utilizamos os algoritmos Gibbs Sampling e Metropolis-Hastings para obter estimadores de Monte Carlo das quantidades a posteriori de interesse dos parâmetros. Outro importante objetivo do trabalho é o estudo da variabilidade extra-Binomial na presença de covariáveis. Apresentamos exemplos com dados reais assumindo os diferentes modelos propostos e uma discriminação dos modelos via Fator de Bayes.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
The Binornial distribution is often used for counts y of successes in ti repetitions of a randoni experiment where each result is a success or a fai!ure. 1-lowever, in rnany app!ications, we can have a larger or smal!er variability as expected with the Binomial suposition with parameters ti and p. This variability is cafled extra-Binomial variability and it can be obtained from different sources. Some different modeis are introduced in the literature to tit the extra-Binomial variability. Among these modeis, we have the Beta-Binomial model, the correlated Binomial model and the mixture of Binomial distributions. in this dissertation, we analyse these mode!s under the Bayesian approach and usin MCMC (Markov Chain Monte Cano) methods to get the posterior summaries ofinterest. Other irnportant point in this dissertation: the presence ofcovariates in the extra-Binomial variability. We iliustrate the proposed methodology with sarne numerical examples. We also introduce some Bayesian discrimination procedures.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-01-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.