• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-21062018-081358
Document
Author
Full name
Neyva Maria Lopes Romeiro
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1994
Supervisor
Committee
Castelo Filho, Antonio (President)
Franco, Neide Maria Bertoldi
Silva, Heloisa Helena Marino
Title in Portuguese
ANALISE COMPARATIVA DE METODOS NUMERICOS DE EQUACOES ALGEBRICO-DIFERENCIAIS
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Este trabalho aborda, apenas, sistemas de Equações Algébrico-Diferenciais(EAD) de índice zero ou um. Estudaremos as propriedades de ordem e convergência do método diferenças para trás (BDF) e principalmente do método de Runge-Kutta Implícito (RKI), Também, descreveremos os algoritmos provenientes destes métodos, quando aplicados em sistemas de EAD de índice zero ou um. Por último, faremos uma comparação numérica entre os método BDF e método de Runge-Kutta Implícito usando dois códigos representativos, sendo eles DAS SL e RADAUS, respectivamente.
Title in English
Comparative analysis of numerical methods of algebraic-differential equations
Keywords in English
Not available
Abstract in English
This work is concerned With the numerical solution of DifferentialAlgebraic Equations (DAE) of index zero and one. Among the numerical methods for solving DAE's we give special attention to Backward DifferentiationFormulas (BDF) and Implicit Runge- Kutta (IRK) methods. A defailed study of order of convergence for these methods is presented. A description of the algorithms employed for solving DAE's of index zero and one is also considered. Finally we compare the performance of the two methods by using two known codes: DAS SL and RADAUS. Numerical results are presented.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-06-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.