
Model based testing of service oriented
applications

André Takeshi Endo

Model based testing of service oriented
applications

André Takeshi Endo

Advisor: Prof. Dr. Adenilso da Silva Simão

Doctoral dissertation submitted to the Instituto de
Ciências Matemáticas e de Computação - ICMC-USP,
in partial fulfillment of the requirements for the degree
of the Doctorate Program in Computer Science and
Computational Mathematics. FINAL VERSION.

USP – São Carlos
June 2013

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito: 12 de junho de 2013

Assinatura:_________________________

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados fornecidos pelo(a) autor(a)

E56m
Endo, André Takeshi
 Model based testing of service oriented
applications / André Takeshi Endo; orientador
Adenilso da Silva Simão. -- São Carlos, 2013.
 143 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2013.

 1. model based testing. 2. service oriented
architecture. 3. web services. 4. finite state
machine. 5. test case generation. I. Simão, Adenilso
da Silva, orient. II. Título.

Teste baseado em modelo de aplicações
orientadas a serviço

André Takeshi Endo

Orientador: Prof. Dr. Adenilso da Silva Simão

Tese apresentada ao Instituto de Ciências Matemáticas
e de Computação - ICMC-USP, como parte dos
requisitos para obtenção do título de Doutor em
Ciências - Ciências de Computação e Matemática
Computacional. VERSÃO REVISADA.

USP – São Carlos
Junho de 2013

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito: 12 de junho de 2013

Assinatura:________________________

Acknowledgments

Numerous people contributed to achieve this dissertation. Without them, I would not be able
to carry out this work during four years of study. Particularly, I would like to thank:

God for giving me opportunity, skills, and desire to achieve this work.
My family, in particular, my parents Angelina and José and my brother Gustavo. Words are not

enough to express how much I love, admire, and feel proud of you. This dissertation is dedicated
to you!

My girlfriend Flávia for loving♥, understanding, and inspiring me along four years. This work
is as mine as yours.

Prof. Adenilso da Silva Simão for the friendship, knowledge, and trustworthiness in advising
this work.

My friends that worked in LabES from 2006 to 2013, for the partnership, funny talks, and the
coffee time. They are so many and I do not want to make a huge mistake leaving somebody out.
Therefore, I am not risking listing all of them here. Special thanks for reviewing this dissertation
to: prof. Angela Giampedro, Fabiano Ferrari, Faimison Porto, Marcelo Eler, Marco Graciotto,
Paulo Nardi, Rafael Oliveira, Sofia Costa, and Vinicius Durelli. Yeah yeah ,!

The professors of ICMC, in particular, Simone Souza, Paulo Souza, Masiero and Maldonado.
The people that welcomed me with open arms in Universität Paderborn, Germany. In particu-

lar, Prof. Fevzi Belli, Michael Linschulte, Mutlu Beyazit, Sascha Padberg, and Benedikt Krüger.
Vielen Dank!

The colleagues of PUCRS that received me in Porto Alegre during that cold July tchê. In
particular, Prof. Avelino Zorzo, Prof. Flávio Oliveira, Maicon Silveira, Leandro Costa and Elder
Rodrigues. I also appreciate the cooperation of Dell Brazil.

The examining committee (Adenilso Simão, Eliane Martins, Itana Gimenes, Rohit Gheyi, and
Silvia Vergilio) for valuable counsel on both research and writing.

The ICMC and its employees for the continuous support.
All my friends, in particular, the “malacabados”, the seinenkai of Álvares Machado, and my

flatmates.
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grant 2009/01486-9) for

financially supporting this doctoral project and Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES) (grant PDEE 0332-11-9) for funding the time I spent abroad.

i

Agradecimentos

Inúmeras pessoas contribuíram de diversas formas para a realização desta tese. Sem elas eu
não teria sido capaz de terminar esse trabalho ao longo de quatro anos de estudos. Particularmente,
eu gostaria de agradecer:

A Deus, por me dar oportunidade, capacidade e vontade para realizar este trabalho.
A toda minha família, em especial, meus pais Angelina e José e meu irmão Gustavo. Palavras

não são suficientes para expressar o quanto amo, admiro e tenho orgulho de vocês. Esta tese é
dedicada a vocês!

A minha namorada Flávia, pelo amor ♥, compreensão e inspiração durante esses quatro anos
de caminhada. Este trabalho é tão meu quanto seu.

Ao Prof. Adenilso da Silva Simão, pela amizade, conhecimento e confiança na orientação deste
trabalho.

A todos meus amigos que passaram pelo LabES de 2006 a 2013, pelo companheirismo, bate-
bapos descontraídos e pela hora do café. Foram tantos que nem me arrisco a listar aqui e cometer
o grave erro de esquecer alguém. Um agradecimento especial pela revisão do texto para: profa.
Angela Giampedro, Fabiano Ferrari, Faimison Porto, Marcelo Eler, Marco Graciotto, Paulo Nardi,
Rafael Oliveira, Sofia Costa e Vinicius Durelli. Yeah yeah ,!

Aos professores do ICMC, em especial, Simone Souza, Paulo Souza, Masiero e Maldonado.
Às pessoas que me receberam de braços abertos na Universität Paderborn, Alemanha. Em

especial, Prof. Fevzi Belli, Michael Linschulte, Mutlu Beyazit, Sascha Padberg e Benedikt Krüger.
Vielen Dank!

Aos colegas da PUCRS que me receberam em Porto Alegre no gelado mês de julho tchê. Em
especial, Prof. Avelino Zorzo, Prof. Flávio Oliveira, Maicon Silveira, Leandro Costa e Elder
Rodrigues. Agradeço também à Dell Brasil pela cooperação.

A comissão julgadora desta tese (Adenilso Simão, Eliane Martins, Itana Gimenes, Rohit Gheyi
e Silvia Vergilio) pelos valiosos conselhos em ambos pesquisa e escrita.

Ao ICMC, bem como seus funcionários, pelo constante auxílio.
A todos os meus amigos, em especial aos “malacabados”, ao seinenkai Álvares Machado e aos

companheiros de república.
À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (processo 2009/01486-

9) pelo apoio financeiro no decorrer do doutorado e à Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES) (processo PDEE 0332-11-9) pelo financiamento do estágio no exterior.

iii

Declaration of Original Authorship and
List of Publications

I confirm that this dissertation has not been submitted in support of an application for another
degree at this or any other teaching or research institution. It is the result of my own work and the
use of all material from other sources has been properly and fully acknowledged. Research done
in collaboration is also clearly indicated.

Excerpts of this dissertation have been either published or submitted for the appreciation of
editorial boards of journals, conferences and workshops, according to the list of publications pre-
sented as follows. My contributions to each publication are listed as well.

Journal Papers

• Belli, F.; Endo, A. T.; Linschulte, M.; Simao, A.: “A Holistic Approach to Model-based
Testing of Web Service Compositions” (Belli et al., 2013).

– Journal: Software: Practice and Experience.

– DOI: http://dx.doi.org/10.1002/spe.2161

– Level of Contribution: High – The PhD candidate is one of the main investigators and
conducted the work together with his contributors.

• Endo, A. T.; Simao, A.: “Evaluating Test Suite Characteristics, Cost, and Effectiveness of
FSM-based Testing Methods” (Endo and Simao, 2013).

– Journal: Information and Software Technology.

– DOI: http://dx.doi.org/10.1016/j.infsof.2013.01.001

– Level of Contribution: High – The PhD candidate is the main investigator and con-
ducted the work together with his advisor.

Conference and Workshop Papers

• Endo, A. T.; Simao, A.: “A Systematic Review on Formal Testing Approaches for Web
Services” (Endo and Simao, 2010b).

v

– Event: 4th Brazilian Workshop on Systematic and Automated Software Testing (SAST’
10).

– Level of Contribution: High – The PhD candidate is the main investigator and con-
ducted the work together with his advisor.

• Endo, A. T.; Linschulte, M.; Simao, A.; Souza, S. R. S.: “Event- and Coverage-Based
Testing of Web Services” (Endo et al., 2010).

– Event: 2nd Workshop on Model-Based Verification & Validation From Research to
Practice (MVV’10).

– DOI: http://dx.doi.org/10.1109/SSIRI-C.2010.24

– Level of Contribution: High – The PhD candidate is the main investigator and con-
ducted the work together with his contributors.

• Endo, A. T.; Simao, A.: “Model-Based Testing of Service-Oriented Applications via State
Models” (Endo and Simao, 2011).

– Event: 8th IEEE International Conference on Services Computing (SCC’11).

– DOI: http://dx.doi.org/10.1109/SCC.2011.77

– Level of Contribution: High – The PhD candidate is the main investigator and con-
ducted the work together with his advisor.

• Belli, F.; Endo, A. T.; Linschulte, M.; Simao, A.: “Model-based Testing of Web Service
Compositions” (Belli et al., 2011a).

– Event: 6th IEEE International Symposium on Service-Oriented System Engineering
(SOSE’11) – selected for the journal special issue.

– DOI: http://dx.doi.org/10.1109/SOSE.2011.6139107

– Level of Contribution: High – The PhD candidate is is one of the main investigators
and conducted the work together with his contributors.

• Endo, A. T.; Simao, A.: “Experimental Comparison of Test Case Generation Methods for
Finite State Machines” (Endo and Simao, 2012a).

– Event: 8th Workshop on Advances in Model Based Testing (A-MOST’12) – selected
as the best paper.

– DOI: http://dx.doi.org/10.1109/ICST.2012.140

– Level of Contribution: High – The PhD candidate is the main investigator and con-
ducted the work together with his advisor.

• Capellari, M. L.; Gimenes, I. M. S.; Simao, A.; Endo, A. T.: “Towards Incremental FSM-
based Testing of Software Product Lines” (Capellari et al., 2012).

– Event: XI Brazilian Symposium on Software Quality (SBQS’12) – selected as the best
paper in the technical track.

– Level of Contribution: Medium – The PhD candidate helped in the definition of a
testing approach as well as in the paper writing.

vi

Technical Reports

• Endo, A. T.; Simao, A.: “Formal Testing Approaches for Service-Oriented Architectures
and Web Services: a Systematic Review” (Endo and Simao, 2010a).

– Institution: ICMC – Universidade de São Paulo.

– Level of Contribution: High – The PhD candidate is the main investigator and con-
ducted the work together with his advisor.

• Endo, A. T.; Simao, A.: “An Experimental Study on Test Suite Characteristics, Cost, and
Effectiveness of FSM-based Testing Methods” (Endo and Simao, 2012b).

– Institution: ICMC – Universidade de São Paulo.

– Level of Contribution: High – The PhD candidate is the main investigator and con-
ducted the work together with his advisor.

• Endo, A. T.; Silveira, M. B.; Rodrigues, E. M.; Simao A.; Oliveira, F. M.; Zorzo, A. F.:
“Using Models to Test Web Service-Oriented Applications: an Experience Report” (Endo et
al., 2012).

– Institution: FACIM – Pontifícia Universidade Católica do Rio Grande do Sul.

– Level of Contribution: High – The PhD candidate is the main investigator and con-
ducted the work together with his contributors.

Other Related Publications

• Eler, M. M.; Endo, A. T.; Masiero, P. C.; Delamaro, M. E.; Maldonado, J. C.; Vincenzi, A.
M. R.; Chaim, M. L. ; Beder, D. M.: “JaBUTiService: A Web Service for Structural Testing
of Java Programs” (Eler et al., 2009).

– Event: 33rd Annual IEEE Software Engineering Workshop (SEW’09).

– DOI: http://dx.doi.org/10.1109/SEW.2009.10

– Level of Contribution: High – The PhD candidate developed the proposed Web ser-
vice and helped in the paper writing.

• Estrella, J. C.; Endo, A. T.; Toyohara, R. K. T.; Santana, R. H. C.; Santana, M. J.; Bruschi, S.
M.: “A Performance Evaluation Study for Web Services Attachments” (Estrella et al., 2009).

– Event: 7th IEEE International Conference on Web Services (ICWS’09).

– DOI: http://dx.doi.org/10.1109/ICWS.2009.48

– Level of Contribution: Medium – The PhD candidate helped in the experiments plan-
ning and implementation, as well as in the paper writing.

• Simao, A.; Endo, A. T.: “Model based Testing” (short course in Portuguese) (Simao and
Endo, 2010).

– Event: Brazilian Conference on Software: Theory and Practice (CBSoft’10).

vii

– Level of Contribution: High – The PhD candidate prepared the slides of the presen-
tation together with his advisor.

• Durelli, V. H. S.; Endo, A. T.; Simao, A.; Delamaro, M. E.: “Towards Envisaging Software
Testing in a Pervasive Computing World” (Durelli et al., 2012).

– Event: XXVI Brazilian Symposium on Software Engineering (SBES’12) – Special
track on Grand Challenges in Software/System Engineering.

– DOI: http://dx.doi.org/10.1109/SBES.2012.21

– Level of Contribution: High – The PhD candidate helped in the proposal of the paper
as well as in the writing.

viii

Abstract

SERVICE oriented architecture (SOA) is an architectural style to struc-
ture software systems, fostering loose coupling and dynamic integra-
tion among the applications. The use of SOA and Web services to de-

velop complex and large business processes demands more formal and sys-
tematic testing. In addition, characteristics of this type of software limit the
straightforward application of traditional testing techniques. Model-based
testing (MBT) is a promising approach to deal with these problems. This
dissertation investigates how two modeling techniques, namely Finite State
Machine (FSM) and Event Sequence Graph (ESG), can be used to support
MBT of service-oriented applications. Both techniques model different as-
pects and can be applied in a complementary way. Initially, we define an
MBT process for service-oriented applications that employs FSMs. Based
on previous experience, we propose a model-based approach to test com-
posite services using ESGs. This approach is holistic, once test suites are
generated to cover both desired situations (positive testing) and unexpected
behaviors (negative testing). Three experimental studies evaluate the pro-
posed approach: (i) a case study, (ii) a cost analysis, and (iii) a study in
industry. Testing tools are also presented to support its practical use.

Keywords: model based testing, service oriented architecture, web ser-
vices, finite state machine, event sequence graph, test case generation, auto-
mated tests.

ix

Resumo

AArquitetura orientada a serviço (SOA) é um estilo arquitetural para
estruturar sistemas de software de modo que exista um baixo grau
de acoplamento entre as aplicações e essas possam ser facilmente

integradas de forma dinâmica. A incorporação de SOA e serviços Web em
sistemas que modelam processos de negócios grandes e complexos contribui
para a necessidade de testes mais formais e sistemáticos. Além disso, carac-
terísticas próprias dessa nova classe de software fazem com que técnicas de
teste tradicionais não possam ser diretamente aplicadas. O teste baseado em
modelo (TBM) apresenta-se como uma abordagem promissora que busca
a resolução desses problemas. Esta tese investiga como duas técnicas de
modelagem, Máquina de Estados Finitos (MEF) e Grafo de Sequência de
Eventos (GSE), podem ser utilizadas para apoiar o TBM de aplicações ori-
entadas a serviço. Essas técnicas modelam diferentes aspectos e podem ser
aplicadas de forma complementar. Inicialmente, é definido um processo de
TBM para aplicações orientadas a serviço que emprega MEFs. Com base na
experiência adquirida, é proposta uma abordagem baseada em modelo para
o teste de serviços compostos usando GSEs. Essa abordagem é holística
uma vez que conjuntos de teste são gerados para cobrir tanto situações dese-
jadas (teste positivo) quanto comportamentos inesperados (teste negativo).
Três estudos experimentais avaliam a abordagem proposta: (i) um estudo de
caso, (ii) uma análise de custo e (ii) um estudo na indústria. Ferramentas
de teste também são apresentadas para apoiar o uso prático da abordagem
proposta.

Palavras-chave: teste baseado em modelo, arquitetura orientada a servi-
ço, serviços web, máquina de estados finitos, grafo de sequência de eventos,
geração de casos de teste, testes automatizados.

xi

Contents

Abstract ix

Resumo xi

1 Introduction 1
1.1 Problem Statement and Justification for the Research 3
1.2 Objectives . 5
1.3 Summary of Contributions and Dissertation Outline 6

2 Background 9
2.1 Overview . 9
2.2 Service-Oriented Architecture . 9

2.2.1 Web Services . 12
2.2.2 Service Composition . 14

2.3 Software Testing . 16
2.3.1 Testing Techniques . 17

2.4 Model-Based Testing . 19
2.4.1 MBT Steps . 19
2.4.2 Modeling Techniques . 21
2.4.3 Advantages and Disadvantages . 23

2.5 Service Testing . 25
2.5.1 Formal Approaches to Test Services . 28
2.5.2 MBT of Service-oriented Applications . 32

2.6 Final Remarks . 35

3 Comparing FSM-based Test Methods 37
3.1 Overview . 37
3.2 Preliminaries . 38
3.3 Test Generation Methods . 40
3.4 Experimental Study . 42
3.5 Analysis of Results . 43

3.5.1 RQ1: Test Suite Characteristics . 43
3.5.2 RQ2: Test Suite Length . 45
3.5.3 RQ3: Fault Detection . 48
3.5.4 RQ4: Correlations . 49

xiii

3.6 Discussion of Results and Limitations . 50
3.7 Final Remarks . 51

4 MBT Process of Service-Oriented Applications 53
4.1 Overview . 53
4.2 Motivating Example . 54
4.3 Testing Process . 56

4.3.1 Artifacts . 56
4.3.2 Supporting Tools . 57
4.3.3 Steps of the Process . 58

4.4 Exploratory Study . 59
4.4.1 JStateModelTest . 60
4.4.2 Case Study . 61

4.5 Final Remarks . 63

5 Holistic Testing of Service Compositions 65
5.1 Overview . 65
5.2 Introducing the ESG4WSC Approach . 66

5.2.1 Running Example . 66
5.2.2 The ESG4WSC Model . 67

5.3 Positive Testing . 72
5.3.1 Fault Model . 72
5.3.2 Test Case Generation . 73
5.3.3 Generating CESs using Event Tree’s . 76

5.4 Negative Testing . 78
5.4.1 Negative Testing of Public Events . 78
5.4.2 Negative Testing of Private Events . 80

5.5 Tool Support . 83
5.5.1 Test Generation . 83
5.5.2 Test Execution . 87

5.6 Final Remarks . 90

6 Evaluation of the Proposed Approach 91
6.1 Overview . 91
6.2 Case Study: xTripHandling . 92

6.2.1 System Under Test . 92
6.2.2 Configuration and Results . 93

6.3 Cost Analysis . 97
6.3.1 Test Generation and Execution . 97
6.3.2 Test Modeling and Concretization . 100

6.4 Experience on Industrial Setting . 102
6.4.1 Part 1: Test Modeling and Generation . 103
6.4.2 Part 2: Test Concretization and Execution 107

6.5 Lessons Learned . 109
6.6 Discussion of Results and Limitations . 110
6.7 Final Remarks . 113

xiv

7 Conclusion 115
7.1 Revisiting the Dissertation Contributions . 115
7.2 Limitations and Future Directions . 117

7.2.1 Possible extensions . 118

A Algorithms 139

xv

List of Figures

2.1 Entities in a SOA. 10
2.2 Service interaction with an ESB. 12
2.3 Service orchestration – adapted from (Peltz, 2003). 14
2.4 Service choreography. 15
2.5 Concretization mechanism – adapted from (Pretschner and Philipps, 2004). 21
2.6 Example of an FSM – adapted from (Chow, 1978). 22
2.7 Example of an ESG for a “copy-cut-paste” procedure. 23
2.8 Relation between levels and testing approaches – adapted from (Tsai et al., 2006). . 26
2.9 Classification of service testing approaches. 27
2.10 Types of evaluation. 32

3.1 Example of an FSM – extracted from (Endo and Simao, 2013). 39
3.2 Number of resets varying the number of states – extracted from (Endo and Simao,

2013). 44
3.3 Average test case length varying the number of states – extracted from (Endo and

Simao, 2013). 44
3.4 Test suite length varying the number of states – extracted from (Endo and Simao,

2013). 46
3.5 Boxplots for the test suite length varying the number of states (four, 18, and 30

states) – extracted from (Endo and Simao, 2013). 47
3.6 FDR varying the number of states – extracted from (Endo and Simao, 2013). . . . 48

4.1 The ThirdPartyCall-SOA application – adapted from (Endo and Simao, 2011). 55
4.2 State-based testing process for service-oriented applications – extracted from (Endo

and Simao, 2011). 56
4.3 FSM for the number of participants test scenario (SC-1-1) – extracted from (Endo

and Simao, 2011). 61
4.4 FSM for profile and group access control (SC-2-3) – adapted from (Endo and

Simao, 2011). 62

5.1 ESG4WSC for the xLoan example – adapted from (Belli et al., 2013). 71
5.2 ESG4WSC for the xLoan example extended by additional edges – adapted from

(Belli et al., 2013). 74
5.3 Complete event tree for the model in Figure 5.2. 77
5.4 ESG4WS for the xLoan public interface – adapted from (Belli et al., 2013). 80
5.5 An ESG4WSC model in TSD – extracted from (Belli et al., 2013). 84

xvii

5.6 DTs in TSD – extracted from (Belli et al., 2013). 85
5.7 An XML file for a test case – extracted from (Belli et al., 2013). 86
5.8 Architecture to execute the tests. 88
5.9 Sample code for PublicEventAdaptor – extracted from (Belli et al., 2013). . 89
5.10 Sample code for MessageCheckingAdaptor – extracted from (Belli et al.,

2013). 89

6.1 Service interfaces in xTripHandling – adapted from (Belli et al., 2013). 93
6.2 Generation time in seconds (sec) varying the number of events. 98
6.3 Test suite size varying the number of events. 99
6.4 Number of CESs varying the number of events. 99
6.5 Average test case length varying the number of events. 100
6.6 Model snippets for the event branch issue. 106
6.7 Model snippets for the forEach in parallel issue. 106
6.8 Model snippets for the loop issue. 106
6.9 Model snippets for the variables issue. 107
6.10 ESG4WSC model for the ABC application – adapted from (Endo et al., 2012). . . . 108

xviii

List of Tables

2.1 A decision table for operation “insert card”. 22
2.2 Studies and steps of MBT. 34

3.1 Pairwise comparison among the methods with respect to the average test case
length – extracted from (Endo and Simao, 2013). 45

3.2 Pairwise comparison among the methods with respect to the test suite length using
reduction ratio over W – extracted from (Endo and Simao, 2013). 47

3.3 Pairwise comparison among the methods with respect to the FDR – extracted from
(Endo and Simao, 2013). 49

3.4 Correlations between the variables analyzed – adapted from (Endo and Simao, 2013). 49

4.1 Data about test scenarios of ThirdPartyCall-SOA and QualiPSo-Factory
– adapted from (Endo and Simao, 2011). 63

5.1 A DT for operation checkBL of BLIS – adapted from (Belli et al., 2013). 68
5.2 DT for vertex check of Figure 5.1 – extracted from (Belli et al., 2013). 74
5.3 Fault classes and their relation to events – extracted from (Belli et al., 2013). 81
5.4 Metrics for ESG4WSC. 85

6.1 Test model information – extracted from (Belli et al., 2013). 94
6.2 Test suite information – extracted from (Belli et al., 2013). 95
6.3 Detected faults information – extracted from (Belli et al., 2013). 96
6.4 Model metrics for the xTripHandling case study. 101
6.5 Model metrics related to concretization. 101
6.6 Source code metrics for adaptors. 101
6.7 Test model information – adapted from (Endo et al., 2012). 104
6.8 Test suite information – adapted from (Endo et al., 2012). 105
6.9 Information about services – adapted from (Endo et al., 2012). 107
6.10 Number of positive and negative test cases – adapted from (Endo et al., 2012). . . . 108
6.11 Code metrics for the test project (adaptors, setup code) – adapted from (Endo et

al., 2012). 109

7.1 Classification and structure of the dissertation contributions. 117

A.1 Notations used in the algorithms. 139

xix

Abbreviations and Acronyms

CC - Cyclomatic Complexity
CES - Complete Event Sequence
CFG - Control Flow Graph
CPP - Chinese Postman Problem
DT - Decision Table

EP, ES - Event Pair, Event Sequence
ERunTE - Event Runner for Test Execution

ESB - Enterprise Service Bus
ESG - Event Sequence Graph

ESG4WS - Event Sequence Graph for Web Services
ESG4WSC - Event Sequence Graph for Web Service Composition

ETA - Event Tree Algorithm
FDR - Fault Detection Ratio
FSM - Finite State Machine
MBT - Model-Based Testing

OASIS - Organization for the Advancement of Structured Information Standards
OO - Object Oriented / Orientation

OWL - Ontology Web Language
OWL-S - Ontology Web Language for Services

PES - Partial Event Sequence
PriFES - Private Faulty Event Sequence

PubFES - Public Faulty Event Sequence
RDF - Resource Description Framework
SLA - Service Level Agreement
SOA - Service Oriented Architecture
SUT - System Under Test
TSD - Test Suite Designer

UDDI - Universal, Discovery, Description and Integration
V&V - Verification and Validation
W3C - World Wide Web Consortium

WS-BPEL - Web Services Business Process Execution Language
WS-CDL - Web Services Choreography Description Language

WSDL - Web Services Description Language
XML - eXtensible Markup Language

xxi

xxii

CHAPTER

1
Introduction

Over the past decades, enterprises have evolved from stable, monolithic and centralized hier-
archical structures to distributed and dynamically federated organizations. Such federations have
been increasingly supported through the integration and composition of business services individ-
ually provided by each organization (Di Nitto et al., 2008). Presently, the Information Technology
(IT) environments adopted by these companies are mostly heterogeneous, hampering the integra-
tion of systems implemented by different technologies. Service-Oriented Architecture (SOA) has
been introduced to fill this gap, providing a de facto standard that enables communication among
those systems. SOA is an architectural style, so that functionalities are decomposed into distinct
units (services) to reach loose coupling among the systems (MacKenzie et al., 2006). In a SOA,
software capabilities are encapsulated as services, which are well-defined and self-contained mod-
ules capable of providing business functionalities independently of states or contexts of other ser-
vices (Papazoglou and Heuvel, 2007). SOA fosters a collection of principles that include loosely
coupled services, high granularity of interfaces, dynamic discovery and binding of services, inter-
operability, and protocol independence (Erl, 2005; Josuttis, 2007).

Web Services (W3C, 2002) have been used as the main technology to implement the con-
cepts of SOA. They allow applications deployed in different platforms and developed in several
languages to communicate with each other through the Internet. This communication is per-
formed with XML protocols that standardize the message format (SOAP), the interface description
(WSDL), and the service discovery (UDDI) (W3C, 2002). These three standards represent the first
generation of Web services. The evolution of Web services to the second generation occurred by
the inclusion of new standards, referred to as WS-* (Erl, 2005). Among them, WS-BPEL and WS-
CDL have drawn special attention as standards to describe service compositions. To solve more

1

2

complex problems, many services can be combined in a collaborative way, following a workflow
to create a new service. In this process, the so-called service composition, many services can be
combined in a workflow to model and execute complex business processes. The services involved
in a service composition are usually called partner services. Service compositions can be devel-
oped as either orchestration or choreography (Peltz, 2003). In service orchestration, there is a main
entity responsible for coordinating the partner services. Currently, the most widespread language
to implement a service orchestration is the Web Service Business Process Execution Language
(WS-BPEL) (Jordan et al., 2007). In service choreography, there is no control entity and all part-
ner services work cooperatively to achieve an agreed objective. Among the languages used to
describe service choreography, the Web Services Choreography Description Language (WS-CDL)
(Kavantzas et al., 2005) is the most used. Service composition is also a service (referred to as com-
posite service) and can be reused by other services. A service that is not a composition is usually
called single service.

Software systems developed applying the principles of SOA and using the Web services tech-
nologies are usually called service-oriented applications1. As it occurs in traditional software, the
development of these applications should be conducted in a rigorous and systematic way, aiming
at meeting quality standards from both users’ and developers’ points of view. Along the software
development process, many activities of Verification and Validation (V&V) should be performed
for quality assurance. Among these activities, testing is the primary activity used in industry to
identify faults in the System Under Test (SUT) and verify its conformity with respect to software
requirements (Ammann and Offutt, 2008). In general, testing is the process of executing an SUT
to find faults (Myers et al., 2004). As it is one of the most costly activities in the development pro-
cess, theoretical and experimental studies were conducted to identify efficient and effective ways
of applying software testing techniques.

A tester commonly creates a mental model of the SUT to guide the tests. When this model is
made explicit as an artifact, it can be shared with other team members and used to generate tests.
According to Hierons et al. (2009), the use of formal models and specifications can make the testing
activity more effective and ease the automation process. In this context, Model-Based Testing
(MBT) is an approach to derive test cases from a formal model designed to support the testing
activity. An MBT process can be divided into four main steps: (i) modeling, in which the tester
uses its knowledge of the SUT and test purposes to design a test model; (ii) test generation, which
consists in generating abstract test cases from the test model; (iii) concretization, which fills the gap
between the model and the SUT to provide executable test cases; and (iv) test execution, in which
concrete test cases derived from the model are executed in the SUT. To increase the automation
level in these steps, the test model should be syntactically and semantically well-defined through
the use of a formal modeling technique. In the context of MBT, two modeling techniques, namely
Finite State Machine (FSM) and Event Sequence Graph (ESG), have been particularly investigated.

1In this dissertation, this term refers to any type of application that is developed using SOA and Web services,
including both single and composite services.

CHAPTER 1. INTRODUCTION 3

FSM is a formal modeling technique widely adopted due to its simplicity and rigor. Although
it has been used mainly in test case generation for protocols (Lee and Yannakakis, 1996), this
technique has been successfully applied to other software classes, like reactive systems (Broy et
al., 2005) and Web applications (Andrews et al., 2005a). FSM focuses on modeling four elements
of the SUT: states, inputs, outputs, and transitions among states. In an FSM, a transition consumes
an input and produces an output while connecting states. FSM-based testing has a solid theoretical
background and, although it has been studied for over 50 years (Moore, 1956; Gill, 1962), it has
recent contributions to the definition and improvement of test methods (Hierons and Ural, 2010;
Ipate, 2010; Simao and Petrenko, 2010a). Testing from FSMs has been recognized mainly by the
methods capable of generating test suites that, under some assumptions, cover all faults within
a given domain. Among such methods are W (Vasilevskii, 1973; Chow, 1978), HSI (Luo et al.,
1995), H (Dorofeeva et al., 2005b), SPY (Simao et al., 2009b), and P (Simao and Petrenko, 2010b).

Event-driven models have been used to support verification and testing (van der Aalst, 1999;
Belli et al., 2006; Yuan et al., 2011), since events are essential for many different classes of sys-
tems, such as Web applications and embedded systems. One of these classes of model is the ESG,
originally introduced to test graphical user interfaces (Belli et al., 2006). ESGs use a graph repre-
sentation so that the events of the SUT are modeled as nodes and their valid orders as edges. ESG
modeling is known to be learned in a short period, requires little manual work, and is supported by
specific tools (Belli et al., 2006).

1.1 Problem Statement and Justification for the Research

The use of SOA concepts and Web services technologies in IT companies has been constantly
growing. In a report called “SOA Applications Middleware Market Shares and Forecasts World-

wide, 2010-2016”, Research and Markets2 estimates that the global market in SOA generated
around 3.5 billion dollars in 2009. Furthermore, according to Gartner Inc.3, during the Gartner

Symposium/ITxpo: Emerging Trends, SOA was used in more than 50% of the mission critical ap-
plications and business process designed in 2007 around the world and would exceed 80% in 2010.
As a consequence of the industry adoption, a growing interest from the academia has also been no-
ticed. Many research events on SOA and Web services, such as IEEE International Conference on
Web Services, IEEE International Conference on Services Computing, International Conference
on Service Oriented Computing, and IEEE International Conference on Service-Oriented Com-
puting and Applications have been promoted. Journals about this topic have also been published,
such as IEEE Transactions on Services Computing, Service Oriented Computing and Applications
Journal, and International Journal of Web Services Research.

Engineering high-quality and robust service-oriented applications is essential for the involved
enterprises and demands interest from both industry and academia. Therefore, activities of soft-

2http://www.researchandmarkets.com/reportinfo.asp?report_id=1212101 – last accessed on 20/02/2013.
3http://www.gartner.com/it/page.jsp?id=503864 – last accessed on 20/02/2013.

4 1.1. PROBLEM STATEMENT AND JUSTIFICATION FOR THE RESEARCH

ware quality assurance have been found in the main service lifecycle models (Andrikopoulos et al.,
2010). In the literature on the development process of SOA-based software, testing is one of the
activities to assure that requirements are correctly implemented (Erl, 2005; Josuttis, 2007). The
considerable effort on investigating service testing is surveyed by Canfora and Di Penta (2009) and
by Bozkurt et al. (2012). SOA has posed new factors, such as distribution, lack of observability
and control, dynamic integration with other applications, complex message exchange in service
compositions, and presence of XML standards, which need to be considered during the testing ac-
tivity. These factors increase the complexity of tests and prevent most of the consolidated testing
approaches from being applied directly (Canfora and Di Penta, 2006a). Moreover, agile test case
generation and high level of reliability are required, since service-oriented applications usually
implement solutions for flexible and mission critical business processes.

Among the existing testing techniques, MBT is a promising candidate to be applied in the
context of SOA and Web services. Besides the automatic test case generation, another relevant
characteristic for testing services is the adoption of formal and black-box models. Black-box mod-
els are appropriate for service-oriented applications because internal details of services are usually
not observable, the complexity of interactions and test harness can be abstracted, and the formality
of the model contributes to more reliable tests. Moreover, MBT is generally more efficient when
the execution of tests can also be automated (Utting and Legeard, 2006), as in service-oriented ap-
plications. Another characteristic of MBT that can be adequate for service-oriented applications is
the support for requirement evolution. Changes in some requirements can be easily incorporated;
when the tester updates the model, the test suite is automatically generated again, avoiding error-
prone manual changes (Dalal et al., 1999; Utting and Legeard, 2006). Moreover, the appropriate
application of MBT to software projects brings several benefits, such as high fault detection rate,
reduced cost and time for testing, and high level of automation (Dalal et al., 1999; Broy et al.,
2005; Utting and Legeard, 2006; Grieskamp et al., 2011; Zander et al., 2011).

Formal testing approaches have been proposed for service-oriented applications (for a sys-
tematic mapping of those approaches, see (Endo and Simao, 2010b,a)) and some of them are
characterized as MBT approaches for single services (Heckel and Mariani, 2005; Keum et al.,
2006; Frantzen et al., 2006; Dranidis et al., 2007; Bertolino et al., 2008) and service composi-
tions (Wieczorek et al., 2009; Mei et al., 2009a; Wieczorek et al., 2010). Although these studies
provide means to test single and composite services, they are not concerned with establishing a
process and describing the necessary steps in detail. Moreover, the systematic testing of service
compositions remains an open topic. The behavior of the composite services depends not only on
the composition itself, but also on the partner services. Service compositions may establish com-
plex communications among the integrated services, in which missing or unexpected messages can
lead to a failure. Furthermore, the composition may fail due to undesirable behaviors of partner
services, such as corrupted messages, unavailable servers, and long response time.

An orthogonal issue on applying MBT to service-oriented applications is which technique
will be employed to describe the test model. Among several modeling techniques, FSM and ESG

CHAPTER 1. INTRODUCTION 5

emerge as strong candidates to enable the MBT of service-oriented applications. FSM is a powerful
technique, applied to many types of software (Lee and Yannakakis, 1996; Hierons et al., 2009) and
which contains several test case generation methods (e.g., W, HSI, SPY, H, and P). Ideally, the
adoption of these methods to test any type of software, as well as service-oriented applications
should be based on experimental comparisons. On the other hand, ESG can be used in the context
of SOA and Web services, once message exchanges in a service composition can be viewed as
events that follow an order. Thus, FSMs and ESGs capture different aspects of the application and
can be both used in a complementary way.

1.2 Objectives

Since SOA and Web services have been used in complex business processes and mission criti-
cal systems, the development of service-oriented applications demands quality assurance and high
level of reliability. Software testing can be certainly employed to fulfill these requirements. Al-
though the testing of SOA and Web services has been investigated by the scientific community,
more contributions can be achieved by the application of MBT, as well as formal modeling tech-
niques, like FSM and ESG.

In this context, this dissertation investigates the general research question: “Is MBT applicable

to test service-oriented applications so that test cases are generated to verify the SUT formally in

a holistic way?”. Based on this question, the main objectives of the work are described as follows:

• Proposal of an MBT process for service-oriented applications: we aim at revisiting the MBT
process in the context of service-oriented applications, identifying steps, artifacts, and tools,
and investigating the MBT process and its level of automation and practical application. In
this study, test models are designed using FSMs and test cases are generated using one of
the existing FSM-based test methods.

• Comparison of FSM-based test methods: we aim at conducting an experimental comparison
of the FSM-based test methods. The adequate selection of a given method implies assessing
the generated test suites with respect to their characteristics, overall cost, and effectiveness.

• Definition of a model-based approach to test service compositions: enriched from accumu-
lated experience on MBT and FSM-based testing, we aim at proposing a formal approach to
test composite services, involving a modeling technique and algorithms to generate holistic
test suites. Furthermore, we expect the testing approach to be automated by supporting tools.

• Evaluation of the proposed testing approach: we aim at evaluating the proposed testing
approach using data collected from three sources. First, the applicability of the approach
will be evaluated in a case study. Second, the cost of applying the approach, measured by
the manual effort and computational time spent will be analyzed. Third, the approach will
be experimented in an industrial context with real-world applications.

6 1.3. SUMMARY OF CONTRIBUTIONS AND DISSERTATION OUTLINE

The next section addresses the contributions of the dissertation in accordance with the proposed
objectives, following its chapter structure.

1.3 Summary of Contributions and Dissertation Outline

Chapter 2 brings an overview of the background information that supports the topics investi-
gated in this dissertation. Initially, the concepts of SOA and Web services technologies used in the
development of service-oriented applications are reviewed. Then, foundations of software testing
and its terminology are presented. The MBT approach is discussed with respect to its definitions,
testing steps, modeling techniques adopted in the dissertation, and advantages/disadvantages. The
chapter also describes the concepts of service testing and summarizes the results of a systematic
mapping on formal approaches to test services. This systematic mapping study was published
(Endo and Simao, 2010a,b) and updated for inclusion in the dissertation. Finally, the MBT of
service-oriented applications is discussed in detail.

The contributions of this dissertation are described in Chapters 3, 4, 5, and 6. Chapter 3 presents
an experimental evaluation of test case generation from FSMs, comparing the W (Vasilevskii,
1973; Chow, 1978), HSI (Luo et al., 1995), SPY (Simao et al., 2009b), H (Dorofeeva et al., 2005b),
and P (Simao and Petrenko, 2010b) methods. The evaluation allows the tester to choose the gen-
eration method which is more adequate to test a particular SOA. The test case generation methods
are analyzed with respect to different dimensions, such as test suite characteristics (number of test
cases and test case length), overall cost of the test suite, and fault detection ratio. The results show
that, on average, the recent methods (H, SPY, and P) produced longer test cases, but smaller test
suites than the traditional methods (W, HSI). The recent methods generated test suites of similar
length, though P produced slightly smaller test suites. The SPY and P methods achieved the high-
est fault detection ratios and HSI had the lowest. For all methods, there was a positive correlation
between the number of test cases and the test suite length and between the test case length and the
fault detection ratio. The chapter is based on results published in (Endo and Simao, 2013).

Chapter 4 introduces an MBT process that identifies steps, artifacts, and tools to verify service-
oriented applications. To evaluate the process instantiation, we conducted an exploratory study so
that FSM was employed as the modeling technique and the P method (Simao and Petrenko, 2010b)
as the test case generation method. The P method was one which provided better overall perfor-
mance, according to the study summarized in Chapter 3. We analyzed the process automation and
its practical usage by developing a prototype tool and conducting a case study with two applica-
tions. The preliminary results show that the MBT process can be employed to service-oriented
applications with reasonable effort and complexity and a high level of automation is achievable
through the use of tools. The chapter is a summary of results published in (Endo and Simao,
2011).

CHAPTER 1. INTRODUCTION 7

Chapter 5 describes a holistic and event-driven approach to test Web service compositions de-
veloped from our previous studies with classical MBT (Chapter 3) and testing of service-oriented
applications (Chapter 4). This approach, named Event Sequence Graphs for Web Service Compo-
sition (ESG4WSC), extends ESGs to model the behavior of composite services through a sequence
of messages (events). It is holistic in the sense that test cases can be generated from a test model to
verify the service composition behavior under regular circumstances (positive testing) and undesir-
able situations (negative testing). The model and the test case generation algorithms are formally
defined for the ESG4WSC approach. Tools were developed to support the main steps of MBT,
such as modeling, test generation, concretization, and test execution. The chapter is a summary of
results published in (Belli et al., 2013).

Chapter 6 describes three experimental studies conducted to evaluate the ESG4WSC approach
proposed in Chapter 5.

1. First, a case study was conducted to verify the applicability of the ESG4WSC approach
and its tools to complex and large composite services. The results show evidences that the
approach scales well with larger compositions. Faults were detected not only in the SUT,
but also in the specification of a non-trivial service-oriented application. The case study was
reported in (Belli et al., 2013).

2. Second, a cost analysis was performed to evaluate the computational cost and human effort
involved in the use of the approach. The analysis of two algorithms to generate test cases
revealed trade-offs in the execution time and cost of test execution. The human effort to
modeling and concretization was also evaluated. The preliminary results have supported
ESG4WSC as an intuitive technique to test composite services. Testers devoted reasonable,
but usually straightforward effort in the test concretization, as observed by the collected
metrics.

3. Third, an experience of the ESG4WSC use in an industrial environment using real-world
applications is reported. The study provides preliminary evidences that MBT, specifically the
analyzed approach, is feasible to test service-oriented applications in real and less controlled
situations within an IT corporation. The results revealed a set of issues that impacts on the
approach and tools and showed how they can be overcome. The experience was reported in
(Endo et al., 2012).

Finally, Chapter 7 concludes the dissertation, revisiting the achieved contributions, summarizing
limitations, and sketching future directions.

CHAPTER

2
Background

2.1 Overview

This chapter brings an overview of the subjects that underlie the research conducted in this
dissertation. The organization of the chapter is as follows. Section 2.2 introduces the concepts
of SOA and the technologies involved. Section 2.3 describes the foundations and terminology of
software testing. Section 2.4 presents the model-based testing approach. Section 2.5 characterizes
the related work on service testing. Particularly, Section 2.5.1 presents the results of a systematic
mapping on formal approaches to test Web services. Previous versions of this systematic mapping
were published in (Endo and Simao, 2010a,b).

2.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is an architectural style that fosters scalability and flex-
ibility, being appropriate for complex and heterogeneous distributed systems (Josuttis, 2007). It
provides a standardized, distributed, and protocol-independent computing paradigm to develop
loosely coupled applications. MacKenzie et al. (2006) define SOA as a paradigm to organize and
use distributed competences that can be controlled by different owners. It provides a uniform way
to offer, discover, interact and use these competences to produce desired effects. Josuttis (2007)
defines SOA as a paradigm to realize and maintain business process developed as large distributed
systems. These systems are usually heterogeneous and SOA aims at connecting them easily pro-
viding high interoperability.

9

10 2.2. SERVICE-ORIENTED ARCHITECTURE

In SOAs, software resources are wrapped as “services”; they are well-defined and self-contained
modules that provide business functionality and are independent from other service states or con-
texts (Papazoglou and Heuvel, 2007). A service can be viewed as a black box since its imple-
mentation details are hidden and only its interface is available. According to MacKenzie et al.
(2006), a service is a mechanism to enable the access to one or more competences by means of an
interface. Along the development of service-oriented applications, all functionalities are provided
as services, such as business functions, transactions composed of low level functions, and system
service functions (Papazoglou and Heuvel, 2007).

The interaction in a SOA is represented by three entities (Figure 2.1) (Huhns and Singh, 2005;
Papazoglou and Heuvel, 2007):

Service provider represents the entity responsible for creating a service. The provider should de-
scribe the created services in a standardized way and publish them in public and centralized
registries. These tasks assure that a service might be understood and found by search engines
or anyone that wants to use it;

Service consumer represents the entity that uses a service created by a provider. The descriptions
supplied by the provider should give the necessary information for a consumer to interact
with a service. The required information can be obtained from a service registry; and

Service registry represents the entity which both provider and consumer interact with. Providers
publish their services in a registry and, as a consequence, consumers can find and use them.
Therefore, an interaction may occur by dynamic binding so that a service-oriented applica-
tion discovers and interacts with a service at runtime.

Service
Registry

Service
Consumer

Service
Provider

Figure 2.1: Entities in a SOA.

Services can be classified with respect to their purposes and different roles performed. Josuttis
(2007) describes a technical classification usually adopted by the community:

CHAPTER 2. BACKGROUND 11

Single/Basic/Atomic services: provide basic business functionalities that are meaningless if di-
vided in multiple services. The role of these services is to encapsulate the backend1 for
consumers (and higher level services) to access the backend using the SOA infrastructure.
There are two types of single services: data and logic. Data services read and write pieces of
data in a backend system. Logic services represent fundamental business rules, processing
input data and returning correspondent results.

Composite/Composed services: represent the first category of services that are composed of
other services (single and/or other composite services). These services operate in a level
higher than single services and represent workflows that execute in a short period of time
(so-called short-running).

Process services: represent workflows that execute in a long period of time (so-called long-

running) and involve human intervention. Although there are differences with respect to
composite services, the process services are also assembled by the composition of other ser-
vices. Thus, process services are also referred to as composite services in this dissertation.
Section 2.2.2 presents further details on the composition process.

The adoption of an Enterprise Service Bus (ESB) has been considered essential for companies
to fully achieve the advantages of SOAs (Josuttis, 2007). The ESB works as a backbone that
supports many communication patterns over different transport protocols and provides interesting
capabilities for service-oriented applications, such as routing, provisioning, service management,
integrity, and security (Papazoglou and Heuvel, 2007). Figure 2.2 illustrates how the ESB acts as an
intermediate layer between providers and consumers and all their communication passes through
it. It provides a set of features by receiving, operating or mediating on the service messages, as
they flow through the bus. Schmidt et al. (2005) describe a set of mediation patterns for ESBs,
such as:

• Monitor pattern establishes the observation of messages that pass through the ESB, without
modifying the messages. This pattern can be applied to logging, audition, monitoring of
service levels, measurement of consumer usages, and so on.

• Aggregator pattern establishes the monitoring of messages from different services over a
period of time and the generation of new messages or events. This pattern can be useful for
realizing complex scenarios so that, e.g., a set of events that should be observed to trigger a
certain event.

Several ESB applications are available from proprietary vendors to open source solutions2. In
this dissertation, we adopted the open source version of a lightweight Java-based ESB application
called Mule-ESB (MuleSoft, 2012).

1A backend may be any software application responsible for a specific group of data or functionalities, e.g.,
databases, hosts, mainframes, a group of servers, and so on.

2http://en.wikipedia.org/wiki/Enterprise_service_bus – last accessed on 20/02/2013.

12 2.2. SERVICE-ORIENTED ARCHITECTURE

Consumer 1

Service
Provider 1

Service
description

Service
Provider 2

Service
description

Service
Provider n

Service
description

ESB

...

Consumer nConsumer 2

...

Figure 2.2: Service interaction with an ESB.

2.2.1 Web Services

Web services, the most adopted technology to implement the concepts of SOA, refer to a col-
lection of standards that aim at interoperability (Josuttis, 2007). It allows that applications in
different platforms and developed in various languages communicate with each other by means
of standardized Web protocols. Moreover, it supports the development of services that are easily
integrated with other applications using the Internet as their communication channel.

Web services standards are based on the Extensible Markup Language (XML) (W3C, 2003).
XML is a general purpose markup language to describe models, formats, and data types. A well-
formed XML document can be verified by validation rules using XML Schema (W3C, 2004d). It
is possible to extract data from an XML document using queries in XPath (Berglund et al., 2010)
or XQuery (Boag et al., 2010) and even perform transformations to other types of documents using
XSLT (W3C, 1999). The most popular programming languages have supported the basic features
of Web services, e.g., Java3, C++4, C#5, and Ruby6.

First Generation The first generation of Web services is based on three standards: SOAP,
WSDL and UDDI (Erl, 2005), described as follows.

SOAP 7 (W3C, 2004b) is a W3C8 protocol used to structure the pieces of information ex-
changed in a decentralized and/or distributed environment, allowing communication in a simple
and platform/programming language independent way. In service-oriented applications, SOAP de-
fines the structure of messages exchanged among the services. A SOAP message usually consists
of the following parts: (i) an envelope that defines the begin and the end of a message; (ii) a header

3http://jax-ws.java.net/ – last accessed on 20/02/2013.
4http://axis.apache.org/axis2/c/core/index.html – last accessed on 20/02/2013.
5http://msdn.microsoft.com/en-us/library/ms950421.aspx – last accessed on 20/02/2013.
6http://wso2.org/projects/wsf/ruby – last accessed on 20/02/2013.
7SOAP was acronym for Simple Object Access Protocol in version 1.1; this is no longer the case in version 1.2.
8World Wide Web Consortium (W3C) – http://www.w3c.org

http://www.w3c.org

CHAPTER 2. BACKGROUND 13

that contains optional attributes; (iii) a body that contains the XML data included in the message;
and (iv) attachments that are files bound to the message. SOAP also provides structure fault to
specify error messages. A SOAP-fault is expected (by the consumer) if described in the interface
and used to map exceptions that happen within the service; otherwise, it is unexpected.

Web Service Description Language (WSDL) (W3C, 2001, 2007) is a W3C standard to describe
the service interface. WSDL specifies three basic components (Newcomer, 2002; Curbera et al.,
2002):

• Data types: WSDL includes an abstract container to record the definitions of data types used
in the service interface. These data types are encoded with XML Schema within the own
WSDL document or in an external referred file.

• Operations: each operation describes an abstract interface for a behavior or action offered
by the service. Inside each operation, input and output messages are specified and correlated
with data types defined. An operation can be request-only (it receives a message) or request-
response (it receives a message and sends a message back).

• Binding protocols: WSDL allows to specify protocols of lower layers. For instance, the
developer can define the protocols of the message and transport layers. In Web services,
these protocols are usually SOAP and HTTP.

Universal, Discovery, Description and Integration (UDDI) (OASIS, 2004) is an OASIS9 standard
that defines functionalities to support the description and discovery of business, organizations, and
other service providers. The service capabilities are defined using keywords and small descriptive
tags. Thus, UDDI becomes a powerful tool for consumers to find out service providers that meet
their needs (Newcomer, 2002; Cerami, 2002).

Second Generation The second generation of Web services, also known as ’WS-*’, refers to
standards proposed after the first generation (Erl, 2005). They were established to complement
and enhance the infrastructure provided by the initial standards (SOAP, WSDL, and UDDI). Some
examples of these standards are as follows.

WS-Addressing (W3C, 2004c) defines mechanisms to address services and messages. It intro-
duces two important concepts: references to endpoints and information headers inside the message.
WS-Security (OASIS, 2006) defines how to apply security techniques for authorization, integrity,
and privacy to Web services. It describes a standardized way to embed security information, such
as tokens, cryptography, and signatures. WS-Agreement (OGF, 2007) defines mechanisms to spec-
ify domain-independent elements of an agreement process between two parties. It is used to es-
tablish Service Level Agreement (SLA) contracts that include Quality of Service (QoS) properties
like response time, latency, and reliability.

9Organization for the Advancement of Structured Information Standards (OASIS) – http://www.
oasis-open.org

http://www.oasis-open.org
http://www.oasis-open.org

14 2.2. SERVICE-ORIENTED ARCHITECTURE

Other standards, like WS-BPEL and WS-CDL, developed to support service compositions are
discussed in the next section.

2.2.2 Service Composition

One of the principles proposed by Erl (2005) says that services are composable, i.e., they
are designed to participate in a service composition. A composition combines several services
(called partner services) in a workflow to model and execute complex business process. Thus, new
functionalities are defined and implemented by combining and interacting with existing services.
The outcome of a composition process is a service itself that is referred to as composite service
(Josuttis, 2007). Service composition allows speeding up the application development, improv-
ing service reuse, and easing the interaction with complex services (Milanovic and Malek, 2004;
Kazhamiakin et al., 2006).

Composite services can be static or dynamic (Shen et al., 2007). Static compositions define and
bind the partner services and their endpoints (addresses) at design time. Dynamic compositions
discover and bind the partner services at runtime. A dynamic composition queries a service registry
to select the appropriate services and then assigns their endpoints.

Developers can design service compositions using two approaches: orchestration and choreog-
raphy (Peltz, 2003; Josuttis, 2007). These approaches are explained as follows.

Service Orchestration In orchestrations, a central entity controls the partner services and
coordinates the execution of different operations, taking into account pre-defined requirements.
The partner services are not aware (and do not need to be aware) of their integration and of being
part of a high level business process. The central entity (coordinator) centralizes all tasks, including
the business logic and the invocation order of the services. In orchestration, a business process
interacts with partner services by means of messages, besides including the business logic and
execution order of tasks. Figure 2.3 illustrates the service orchestration.

Central
Coordinator

Service

Web
Service

Web
Service

Service
consumer

Web
Service

invoke

receive

respond

Service
Consumer

Service

Service

invoke

invoke

receive

respond

Figure 2.3: Service orchestration – adapted from (Peltz, 2003).

Web Services Business Process Execution Language (WS-BPEL) is an XML-based language
that supports the orchestration of services; it was initially developed by BEA, IBM, Microsoft,

CHAPTER 2. BACKGROUND 15

SAP and Siebel and is currently standardized by OASIS (Jordan et al., 2007). The language pro-
vides a set of instructions (so-called activities) that allows the developer to implement executable
orchestrations. The activities are basic or structured. A basic activity is an instruction that does not
interfere in the execution flow and executes a single procedure, such as invocation of a service or
manipulation of data messages. A structured activity manages the process flow, specifying the exe-
cution order, e.g., loops and conditional branches. WS-BPEL based orchestrations are executed in
engines, such as ActiveVOS (ActiveVOS, 2013), Oracle BPEL (Oracle, 2013), and Apache ODE
(ASF, 2010). For each available composition, the engine requires a WS-BPEL file that describes
the orchestration, WSDL interfaces of partner services, and a configuration file. The engine also
monitors the persistence, message queues, alarms, and many other execution details.

Service Choreography Service choreographies follow an approach different from orchestra-
tions and do not use a central coordinator. Each service involved in the choreography knows when
executing its operations and who interacts with, i.e., each service has a protocol. All partner ser-
vices are aware of the business process, operations to execute, and messages to be exchanged.
According to Peltz (2003), the choreography is more collaborative and allows that each part de-
scribes its own participation. The choreography tracks the message sequence among the multiple
parts and sources. Figure 2.4 illustrates the service choreography. As choreographies avoid a cen-
tralized control, it can have better scalability than orchestration. However, tracking the current state
of a composition and finding the cause of an unexpected behavior can be complex tasks (Josuttis,
2007).

Service

Collaboration

Web
Service

WSCI

Web
Service

WSCI

Web
Service

WSCI

Service
Service

Service Service

Service

Figure 2.4: Service choreography.

Web Services Choreography Description Language (WS-CDL) (Kavantzas et al., 2005) is an
XML-based language that describes pairwise collaborations of participants (service choreography)
by defining a global view of their common observable behavior. It aims at describing the ordered
message exchange that results in the achievement of a business goal. The language focuses on
the composition of interoperable collaborations between participants, without connection with the

16 2.3. SOFTWARE TESTING

platform or programming model used. The description of a choreography is a contract with mul-
tiple participants that models the composition from a global point of view. WS-CDL is the mean
used to specify this technical contract (Kavantzas et al., 2005).

2.3 Software Testing

The software development process involves a set of activities in which, in spite of techniques,
methods, and tools employed, faults in the final product can still occur. To minimize faults and
risks associated, software testing is one of the main activities of V&V applied by practitioners. It
is a process in which an SUT is executed with the aim of finding its faults. Software testing is a
critical element in the quality assurance and represents the final review of specifications, designs,
and source code (Myers et al., 2004; Pressman, 2005). The testing activity is one of the elements
that provides evidences of software reliability in addition to other activities, such as formal reviews
and rigorous techniques of specification and verification (Maldonado, 1991).

In the context of software testing, we use the IEEE standard 610.12 (IEEE, 1990) to define
the following terms: fault – step, process, or data definition that is incorrect (instruction or com-
mand); mistake – human action that produces an incorrect result (an incorrect action made by a
programmer); error – the difference between the actual value and the expected value, i.e., any
intermediate incorrect state or an unexpected result in the execution; and failure – production of
an output incorrect with respect to the specification.

This standard also defines test case as a set of test inputs, execution conditions, and expected
outputs, developed for a particular goal, such as to exercise a given path in a program or to verify
a given requirement. In some systems, a test case can be a sequence of events or actions to be
applied and/or observed. This test case is also referred to as test sequence. A collection of test
cases is named test suite.

The tests can be applied in three phases, described as follows:

Unit testing: focuses on testing the smallest modules (units) implemented in the source code of
a software application. It is limited to the logic and data structures within the unit limits.
An unit can be a function in the procedural paradigm, or a method or a class in the Object
Orientation (OO) paradigm (Binder, 1999; Vincenzi, 2004).

Integration testing: occurs in parallel with the software integration phase and aims at revealing
faults associated with the unit interfaces. As the integration testing involves the verification
of parts which are not fully developed, drivers and stubs need to be used (Ammann and
Offutt, 2008). The driver is a module that emulates the call for a unit under test, and the stub
is a module that simulates the behavior of a called unit.

System testing: aims at exercising the system as a whole by means of several types of testing,
such as recovery, security, and performance testing (Pressman, 2005). Recovery testing

CHAPTER 2. BACKGROUND 17

forces system failures in many ways, verifying if the recovery process is executed correctly.
Security testing verifies the protection mechanisms of a system by means of attacks to the
SUT. Performance testing evaluates how well the SUT performs at runtime under a given
workload.

2.3.1 Testing Techniques

The tester needs a measure that indicates if the software has been tested enough. A testing
criterion defines which properties or requirements should be tested in order to evaluate the quality
of a test suite (Zhu et al., 1997). Given an SUT P , a test suite TS (that contains a subset of
the inputs of P) and a testing criterion C, TS is C-adequate to test P if TS satisfies the test
requirements established by C. Testing criteria can be used to decide the end of the testing phase,
characterizing the test adequacy criteria. The criteria are useful to support test generation, guiding
the tester during the selection of test cases. When the criteria are used in this task, they are referred
to as test selection criteria.

Using the sources of information to derive test cases as basis, the testing criteria can be classi-
fied in three techniques: functional, structural and fault-based (Maldonado, 1991).

Functional Testing Functional testing, also known as black-box testing, is a technique so that
the tester does not have knowledge on the internal behavior and the program structure (Myers et
al., 2004). The test cases are derived from requirement specifications. Some testing criteria of the
functional technique are presented as follows:

Equivalence Partitioning: divides the input domain of the SUT in a finite number of equivalence
classes used to derive test cases. The equivalence classes are divided into valid and invalid
groups. The tester selects test cases to cover the maximum number of valid classes. On the
other hand, only one test case is selected to cover each invalid class (Myers et al., 2004).
This criterion is motivated by the assumption that testing one representative value of each
class is equivalent to test any other value within the same class.

Boundary-Value Analysis: is usually used together with the equivalence partitioning class, em-
phasizing the limits associated with input conditions (Mathur, 2008). The tester selects test
cases from the class limits since it may occur more faults in these points (Pressman, 2005).
The same procedure is done with the output domain, that is divided into classes and test
cases are designed to produce outputs in these classes’ limits (Myers et al., 2004).

Cause-Effect Graphing: establishes testing requirements based on combinations of input condi-
tions. First, the possible input conditions (causes) and actions (effects) are elicited. Then,
the elicited causes and effects are connected in a graph. The graph is usually transformed
into a decision table which is efficient to model combinations of input conditions (Myers et
al., 2004). Finally, test cases are derived from the decision table.

18 2.3. SOFTWARE TESTING

Structural Testing Structural testing, also known as white-box testing, is a technique so that
the tester bases the test cases on the internal logic of an SUT (Myers et al., 2004). Most of the
structural criteria use an SUT representation called Control Flow Graph (CFG). The CFG consists
of establishing a relation between nodes and blocks and of indicating possible control flow between
the blocks through edges. Therefore, a CFG is a directed graph in which each vertex represents an
indivisible command block and each edge is a possible branch from a block to another.

Rapps and Weyuker (1985) propose an extension of the CFG named Def-Use Graph. The ex-
tension adds pieces of information about the data flow, characterizing associations between points
where a variable is defined (variable definition) and points where this value is used (reference or
variable use). The testing requirements are determined based on these associations. Two types of
use are defined: c-use and p-use. C-use directly affects a computation being performed or allows
that the result of a previous definition can be observed; and p-use directly affects the control flow
of the SUT.

The most widespread criteria of this technique are the following:

All-Nodes: this criterion requires that an adequate test suite executes, at least, once each node in
the CFG, i.e., each program command is executed at least once.

All-Edges: this criterion requires that an adequate test suite execute, at least, once each edge in
the CFG, i.e., each branch in the control flow.

All-Definitions: requires that each variable definition in the def-use graph should be covered, at
least, once by a p-use or a c-use.

All-Uses: requires that all associations between a definition and its subsequent uses in the Def-
Use Graph are executed, at least once, through a path where the considered variable is not
redefined (a definition-clear path).

Fault-Based Testing Fault-based testing uses the knowledge about common faults in the de-
velopment process to define testing requirements. Two criteria of this technique are Error Seeding
and Mutation Analysis.

Error seeding introduces a known amount of faults in the SUT. After the test execution, the
total number of found faults is analyzed, verifying which are natural or artificial. Using statistical
methods, the number of natural faults still existing in the program can be estimated (Budd, 1981;
Ramamoorthy and Bastani, 1982). Error seeding can also be used to measure the effectiveness of
a testing criterion (Ramamoorthy and Bastani, 1982). Different types of faults can be manually
seeded in a program and, after applying a test suite adequate for a given criterion, the results show
the criterion’s effectiveness for each type of fault.

Mutation analysis (DeMillo, 1978) is a testing criterion that evaluates the adequacy of a test
suite to reveal specific faults. To do so, a set of mutation operators are used to automatically gen-
erate programs (similar to the original SUT), but containing some fault. These modified programs

CHAPTER 2. BACKGROUND 19

are called “mutants”. A mutant is “killed” when for some test case its outputs are different from
the original; otherwise it is “alive”. If there is not test case that distinguishes the mutant and the
original program, this mutant is called “equivalent”. The test suite adequacy to the mutation anal-
ysis criterion is measured by the mutation score that relates the number of killed mutants with the
number of generated mutants less the equivalent ones.

2.4 Model-Based Testing

Software testing can be automated through the generation of test cases from a structural or
behavioral model of the SUT, so-called test model. These approaches are collectively known as
Model-Based Testing (MBT) (Sinha and Smidts, 2006). Although some authors claim that test-
ing is always model-based since implicit mental models guide the tests (Binder, 1999), the idea
of MBT is to apply explicit models (Pretschner and Philipps, 2004). Utting and Legeard (2006,
p. 8) define MBT as the automation of black-box testing design in which, given an appropriate
test model, test sequences can be generated and transformed into executable scripts. The literature
usually classifies MBT as functional testing because there is a predominance of modeling tech-
niques that considers the SUT as a black box. MBT can also be applied in any testing phase (unit,
integration, and system) (Utting and Legeard, 2006).

In this dissertation, we distinguish the terms modeling technique and test model. Test model
refers to the artifact generated by the modeling activity during MBT. Modeling technique refers to
the notation (language) adopted to express, in a well defined way, a test model.

2.4.1 MBT Steps

An MBT approach can be divided into four main steps (El-Far and Whittaker, 2001; Pretschner
and Philipps, 2004; Utting and Legeard, 2006; Bouquet et al., 2006) described as follows.

1. Modeling: As in traditional software testing, the requirements are information sources for
understanding the SUT functionalities. Moreover, the software is in an environment that involves
different factors like operational systems, other applications, different types of libraries, and so
on. Thus, the tester needs to learn about both software and its environment (El-Far and Whittaker,
2001). Utting and Legeard (2006) recommend the creation of test models using the requirements
to maximize the independence between the test model and the SUT. Artifacts from the analysis
and design phases can also be used as basis for understanding and constructing the test model.

Test models should be smaller than the SUT to reduce their costs. Furthermore, models should
have enough details to describe accurately the parts of the SUT being tested (Aydal et al., 2009).
Since the model is designed aiming at the tests, it is not necessary to specify all the overall system’s
behavior. Several small, partial models are usually more useful than one single big and complex

20 2.4. MODEL-BASED TESTING

model. For instance, the tester designs models for each subsystem or component and, after testing
each of them, builds a higher level model for the entire system (Utting and Legeard, 2006).

Models are simplifications of the concrete world. Pretschner and Philipps (2004) discuss the
simplification by (1) detail omission and (2) detail encapsulation. In the detail omission, the tester
discards irrelevant parts to show only the fundamental ideas, keeping the model in a higher level
of abstraction. As other modeling tasks, selecting the pieces of information discarded and the ones
described is a challenge. In the detail encapsulation, the tester labels parts of the SUT but does
not describe them. This concept is used in OO modeling, where all code needed to implement a
behavior is encapsulated in a reference that is a method’s name.

2. Test generation: The test generation depends on the modeling technique chosen to describe
the test model. In general, modeling techniques have properties that make the generation less
costly and ease the automation (El-Far and Whittaker, 2001). Moreover, test selection criteria are
required to limit the number of test cases derived from the test model. Structural testing criteria,
such as control flow and data flow (shown in Section 2.3.1), can be reused to cover models. The
fault-based technique can also be applied considering faults in the test model.

In this step, the aid of a tool is essential to support the automatic generation of test cases. The
tool receives as input the test model and the test selection criterion and generates as output a test
suite. The generated test cases are abstract because they are in an abstraction level different from
the SUT and cannot be directly executed. The algorithms for test case generation are dependent
on the modeling technique and test selection criteria.

3. Concretization: Concretization involves transforming abstract test cases into ones exe-
cutable in the SUT. This step assures that the entire process will be automated (Utting and Leg-
eard, 2006). Test cases derived from the model (abstract) need to be concretized before applied to
the SUT by using adaptors (Pretschner and Philipps, 2004). An adaptor is a software component
capable of translating inputs and outputs in two levels of abstraction, the test model and the SUT.
Basically, the adaptor has to implement two functions: a concretization function conc() and an
abstraction function abst().

Figure 2.5 illustrates the operation of an adaptor for abstract test case 〈in; out〉 derived from
test model M . in represents an input that, when applied to the SUT, produces output out. The
concretization function transforms in (i.e., conc(in)) and is then applied. The SUT produces out-
put out′ that is abstracted to the same abstraction level of model M using the abstraction function,
i.e., abst(out′). Finally, the output of the system is compared to expected output out and a verdict
is given.

4. Test execution: This step is the execution of abstract test cases that, after passing through
concretization, can be executed in the SUT. If the execution is performed separated from gen-
eration, the testing is offline; otherwise it is online. In other words, a test input is generated and

CHAPTER 2. BACKGROUND 21

Model

SUT

Input in Output out

conc(in) Output out'

abst(out')

veredict

M

Figure 2.5: Concretization mechanism – adapted from (Pretschner and Philipps, 2004).

applied to the SUT and, based on the current output, the next procedure is decided online (Hartman
et al., 2007).

The results of test execution are analyzed and corrective actions are made. If the test model
specifies inputs and outputs, automatic verdicts can be given. In other words, the model works as
a test oracle. The verdict can be pass, failed, or inconclusive (Tretmans, 1992). Pass indicates that
the test case was successfully executed and the expressed goal was fulfilled. Failed indicates that
the result is not in conformance with the goal expressed in the test case. Inconclusive indicates that
an evidence of nonconformance was not found, but the test goal was not fulfilled.

2.4.2 Modeling Techniques

In MBT, the tester designs a test model of the SUT using a modeling technique. The modeling
technique should be formal (i.e., well-defined syntactic and semantically) since the presence of
formal models or specifications can lead to more efficient and effective tests (Hierons et al., 2009).
According to Utting and Legeard (2006), a model is formal if it has a precise and unambiguous
meaning and represents the behavior in a format manageable by software tools. As the model
needs to be validated, it should be simpler than the SUT, or, at least, easier to verify, modify, and
maintain (Utting et al., 2006). Nevertheless, the model should be sufficiently accurate to support
the generation of meaningful test cases. In this section, we briefly introduce the three modeling
techniques employed along this work.

Finite State Machines are used in several areas, such as circuits, program analysis, and com-
munication protocols. In this dissertation, an FSM is a Mealy machine composed by states and
transitions (Gill, 1962; Lee and Yannakakis, 1996). For each transition, an input symbol is con-
sumed and an output symbol is produced. An FSM can be represented by a state diagram, which is
a directed graph so that nodes are states and edges are transitions. The edges are annotated with in-
puts and outputs associated with the transition. Figure 2.6 illustrates an FSM for a comment printer

22 2.4. MODEL-BASED TESTING

(Chow, 1978); in the transitions, symbol ‘:’ separates inputs from outputs. Further references on
FSMs are made in Chapters 3 and 4.

1 2 3 4

*, ɸ:ignore

ɸ, /:ignore

/:ignore *:empty-bf *:acc-bf

ɸ,/:acc-bf

*:acc-bf

ɸ:acc-bf

/:deacc-bf;print-bf

Figure 2.6: Example of an FSM – adapted from (Chow, 1978).

Decision Tables are used to represent constraints on test inputs and expected effects (outputs),
as well as to model their possible combinations (Sharma and Chandra B., 2010; Feng et al., 2011).
Decision Tables (DTs) have been associated to cause-effect graphs (Section 2.3.1), though they
can be directly applied for testing (Binder, 1999; Myers et al., 2004; Mathur, 2008). Table 2.1
illustrates a DT that models constraints and possible effects for an operation “insert card” in an
ATM. Combinations of true (T), false (F), and don’t care (‘-’) for the constraints produce different
effects. Notice that each combination may represent a test case. Further references on DTs are
made in Chapters 5 and 6.

Table 2.1: A decision table for operation “insert card”.
Combinations

C1 C2 C3 C4

Constraints
chipcard T F T T
valid bank card T - F T
Active bank account T - - F

Effects
display the menu �
show an error message � � �

Event Sequence Graphs are directed graphs in which nodes are events and edges repre-
sent valid sequences of events. ESGs, also known as event-flow graphs (Yuan et al., 2011), have
been used to test and verify event-driven systems (van der Aalst, 1999; Belli et al., 2006; Yuan
et al., 2011). Figure 2.7 illustrates an ESG that models the events and their sequence in a “copy-
cut-paste” procedure. The test generation from ESGs can be reduced to the well-know Chinese
Postman Problem (CPP) on directed graphs (Aho et al., 1995). An algorithm for CPP aims to find
an optimal (minimal cost) path that contains all edges. Further references on ESGs are made in
Chapters 5 and 6.

CHAPTER 2. BACKGROUND 23

Figure 2.7: Example of an ESG for a “copy-cut-paste” procedure.

2.4.3 Advantages and Disadvantages

This section elicits the advantages and disadvantages of MBT. First, a set of benefits has been
reported when MBT is correctly applied during the development process (Blackburn et al., 2004;
Utting and Legeard, 2006; Grieskamp et al., 2011):

• Automatic generation of test cases: the adoption of test models and supporting tools allows
the test case generation in an automatic and systematic way. An MBT tool can become the
test generation process faster and less error-prone since costly and repetitive tasks will be
automated.

• Fault detection: studies conducted by the industry and the academia have shown the ef-
fectiveness of model-based approaches in comparison with traditional testing (Utting and
Legeard, 2006).

• Reduced time and cost for testing: most of the studies that compare MBT with manual
testing provide results that favor MBT (Dalal et al., 1999; Farchi et al., 2002; Pretschner
et al., 2005). On the other hand, an Intrasoft International study shows that the company’s
testing process was faster than MBT (Utting and Legeard, 2006). However, the same study
concludes that other benefits balance against the greater time for MBT.

• Improvement of testing quality: when the testing is carried out manually, the quality of tests
is more dependent on the tester’ skills, the process is not repeatable, and correlating test
cases with system requirements is hard. An MBT process is more systematic and repeatable
(Sinha and Smidts, 2006) and allows the test case generation using rigorous test selection
criteria and the easier reexecution of a test case.

• Fault detection in requirements: the test modeling during the first stages can support the
requirements’ refinement as well as the identification of specification problems. The fault
detection at early phases fosters more software quality and cost savings than in advanced
development periods (Pressman, 2005). MBT can be used as an additional step to validate
the software requirements.

24 2.4. MODEL-BASED TESTING

• Requirement/system evolution: during the development process, changes occur and the soft-
ware system evolves. In MBT, functional changes are easily handled by modifying the test
model and regenerating the tests. Thus, the costs of testing maintenance are reduced. The
tester also handles changes in test environments since only modifications in the adaptor are
necessary.

• Traceability: it is the capacity of relating each test case with the model, the test selection
criteria, or the system requirement (Utting and Legeard, 2006). MBT allows justifying a
given test case, selecting only a subset of tests for a given change in the model, as well as
identifying requirements that were already tested or not.

According to Utting and Legeard (2006), a fundamental limitation of MBT is the impossibility
of assuring that all differences between the model and the SUT will be found. Although the
MBT approach aggregates several benefits, there exist possible disadvantages involved (El-Far
and Whittaker, 2001; Utting and Legeard, 2006):

• Inappropriate use: some parts of the SUT might be hard or unsuitable for MBT and manual
test cases would be more effective. However, the tester may not have the experience to make
this decision.

• Time to analyze a failed test case: when a test case fails, the tester needs to identify where
the fault is, in the SUT, in the model, or in the adaptor. Moreover, the test sequence can be
complex and less intuitive, hindering the fault localization.

• Meaningless metrics: many test cases can be easily generated in MBT. Hence, traditional
metrics based on the number of test cases are useless, being necessary to select other metrics,
such as code coverage, requirement coverage, and model coverage (Utting and Legeard,
2006).

• Tester’s skill: MBT requires more skilled testers with abilities on modeling and proficiency
in the modeling technique chosen. This fact poses more costs with training and a high initial
effort on learning.

• State explosion: the use of state-based modeling techniques can cause a state explosion
problem. The state explosion may happen during modeling and leads the tester to design
complex models that are hard to maintain. It also occurs with algorithms that traverse the
test model. The algorithm can search exhaustively the state space causing an exponential
cost (McMillan, 1992).

Although these disadvantages can hinder or even prevent the adoption of MBT, there are practical
solutions to deal with these disadvantages. For instance, the company can overcome most of them
by adopting appropriate supporting tools, establishing a well-defined testing process, and providing
proper training.

CHAPTER 2. BACKGROUND 25

2.5 Service Testing

The development of service-oriented applications has received attention from researchers due
to the industrial adoption of SOA concepts and technologies (Section 2.2). SOA and Web services
have been used to develop mission critical applications for different domains, such as enterprise
software, embedded systems, robotics, and pervasive applications (Deugd et al., 2006; Remy and
Blake, 2011). As a high level of reliability is demanded in these domains, software testing is a
fundamental activity that should be performed.

Service testing has been researched in the last years; comprehensive surveys on this topic can
be found in the literature (Canfora and Di Penta, 2009; Rusli et al., 2011; Palacios et al., 2011;
Bozkurt et al., 2012). The research on service testing has been motivated by factors that affect the
testing of this kind of applications. The following factors are identified (Canfora and Di Penta,
2006a,b, 2009):

• Lack of observability: the service is viewed as a black box accessed through its interface,
preventing, e.g., the use of structural testing. Moreover, a WSDL document is often the
unique artifact available for consumers, i.e., a syntactical description of the service interface.
Nevertheless, a behavioral description is necessary for more complex services. The existence
of a service model would ease not only the interaction, but also the test case generation;

• Distribution and lack of control: services are not physically integrated because they are
deployed in different hosts (by different providers). Thus, issues involving the network,
synchronization, message passing, and availability are recurring problems. Providers do not
have a standardized way to notify the consumers about changes and corrections performed
in the service. This implies that the consumer cannot decide a strategy to migrate to a new
service version and, as a consequence, to perform regression testing (Bruno et al., 2005)10;

• Dynamicity and adaptability: while it is possible to determine which components will be
used in traditional systems, the same does not occur in SOAs. Dynamic compositions can
be described as a workflow of abstract services that becomes concrete at runtime by means
of data retrieved from one or more registries (Canfora and Di Penta, 2006a). Furthermore,
service-oriented applications are adaptable so that services are replaced by others with the
same functionalities;

• XML standards: services are designed over a set of standards defined using XML (Sec-
tion 2.2.1). These standards are essential for the correct operation of service-oriented appli-
cations. In this context, generated tests should be capable of dealing with artifacts defined
with these standards, such as SOAP messages and interface descriptions in WSDL;

10In regression testing, a subset of already performed test cases is reexecuted to provide confidence that modifica-
tions do not harm the existing behavior of the SUT.

26 2.5. SERVICE TESTING

• Nonfunctional properties: QoS attributes are important since SLA contracts need to be de-
fined between consumers and providers. The testing activity also needs to consider recurring
and demanding QoS attributes, such as performance, availability, and reliability; and

• Service composition: Although testing techniques can be reused, service composition testing
is still immature with many aspects to be treated (Bucchiarone et al., 2007). The adoption
of composition languages, like WS-BPEL and WS-CDL, poses new characteristics and lan-
guage constructions that should be tested.

The factor “lack of observability” is related to the service testability. According to Tsai et al.
(2006), the service testability has two meanings. First, it refers to the degree (of testability) in
which the service is developed to (i) ease the establishment of quality criteria and (ii) execute the
tests that meet these criteria. Second, it refers to how testable and measurable the service require-
ments are given to allow the establishment of testing criteria and execution. One of the factors
that impacts in the testability is the levels of access to the service (Tsai et al., 2006), described as
follows:

• Level 1: source code of the service is accessible;

• Level 2: binary code of the service is accessible;

• Level 3: model (WS-BPEL, OWL-S, formal specification, etc) is accessible; and

• Level 4: signature (WSDL interface) is accessible.

The accessible artifacts are essential to choose the testing approach that will be applied, since the
testing capacity is strongly related to the available information (Bertolino et al., 2004). Therefore,
the tester should know the relation between the proposed levels and potential testing approaches,
as exemplified in Figure 2.8.

Core

Services

Structural Testing

Binary Code Testing

Model-Based Testing

Functional Testing

Source code available

Binary code available

Model available

Signature available

Figure 2.8: Relation between levels and testing approaches – adapted from (Tsai et al., 2006).

In service testing, there are different stakeholders and each one has its own testing goals. Can-
fora and Di Penta (2006b) define the following five perspectives for testers:

• The service developer has more resources to test. However, testing nonfunctional properties
is not realistic because it takes into account neither the provider’s and consumer’s infrastruc-
tures, nor the configuration and network load.

CHAPTER 2. BACKGROUND 27

• The service provider aims to test the SLA properties promised to the consumers. Struc-
tural testing cannot be applied and the nonfunctional testing does not reflect the execution
environment of the consumer.

• The service integrator needs tests to gain confidence in services that will be integrated in
his/her composition. To do so, the integrator has to check both functional and nonfunctional
properties. Moreover, the dynamic binding adds more challenges since the integrator does
not know which service will be selected and used.

• The certifier attests formally the quality of a service by performing specific tests. This is
helpful for the integrator and the provider that can save testing resources since only the
certifier performs the tests. Nevertheless, the certifier performs the tests in his/her own
infrastructure and the results cannot be replicated in the integrator’s infrastructure.

• The user interacts with a service-oriented application through a GUI and the main threats
are nonfunctional properties like response time and availability.

Approaches to test services can be classified based on different contexts of a service-oriented
application. Figure 2.9 shows a possible classification of service testing approaches. Initially, we
divide service testing approaches into: (i) testing services individually (single); and (ii) testing the
integration with other services and applications (service composition).

Figure 2.9: Classification of service testing approaches.

Testing of single services involves the testing of a given service without any kind of integra-
tion. It is similar to unit testing so that a given software module is tested without considering the
integration with other units. If we assume that a service is a self-contained and independent soft-
ware module, there is no need for stubs. The testing aims at simulating scenarios of interaction
between the consumer and the service.

A fact that should be considered during the testing of single services is whether the service
operations are capable of changing some state or not. If the service does not keep states and
its operations only process data, this service is stateless. A service is stateful when, using its
operations, it is possible to change some state, being the own service states or states from its
backend system. Hence, the testing of single services in Figure 2.9 is also divided into (i) testing
of stateless services and (ii) testing of stateful services.

28 2.5. SERVICE TESTING

Testing of composite services involves the integration between two or more services to imple-
ment a more complex service. According to Bucchiarone et al. (2007), more research on V&V for
service composition should be conducted. Besides the characteristics common to the traditional
software, service composition has a distributed nature and asynchronous behavior (García-Fanjul
et al., 2006). The testing of composite services poses challenges for testing and was previously
discussed in factor “service composition”. In this context, the testing needs to adapt to the type
of compositions: orchestration or choreography. The testing of composite services is, therefore,
divided in Figure 2.9.

2.5.1 Formal Approaches to Test Services

In this section, we describe a systematic mapping conducted to identify formal approaches to
test service-oriented applications. Systematic mapping is a methodology that provides a structure
to categorize the research published in a given topic. It aims at giving an overview of a research
area, identifying the quantity, the type of research, and available results (Petersen et al., 2008).
Further details on the planning and the conduction of this systematic mapping can be found in
(Endo and Simao, 2010a). We updated this systematic mapping and the last search was performed
on February 2013. We analyzed 53 studies with respect to the classification of service testing, the
modeling technique, and the experimental evaluation. The results are presented as follows.

Classification of Service Testing Approaches We divided the studies in accordance with
the classification shown in Figure 2.9. There is research interest in both contexts, though we
identified more studies for service composition testing: 21 studies in single services and 32 in
composite services. We also note that there is no approach that fits for both single services and
service compositions. We believe that the current approaches can be combined to provide a more
complete testing strategy. However, we could not identify any research effort in this direction.

Single Service Testing: the testing approaches for single services can be classified based on
service state, characterizing stateless and stateful services. We also identified approaches that are
applicable for both types.

In stateless services, the studies focus on test case generation. The work of Tsai et al.
(2005b,c,a) is based on the Swiss Cheese model derived from semantic specifications in Ontology
Web Language for Service (OWL-S) (W3C, 2004a). Ma et al. (2008) use available WSDL and
XML Schema specifications to support the tests. Using a different approach, Chan et al. (2007)
use metamorphic relations to deal with the oracle problem and generate new test cases.

In stateful services, the studies focus on conformance testing supported by test case genera-
tion (Bertolino et al., 2004; Frantzen et al., 2008; Belli and Linschulte, 2008; Keum et al., 2006;
Dranidis et al., 2007; Ramollari et al., 2009; Paradkar et al., 2007; Kourtesis et al., 2010; Dranidis
et al., 2010). Bertolino et al. (2008) propose on the generation of stubs using a state model and

CHAPTER 2. BACKGROUND 29

QoS properties. Li et al. (2008a) employ CFGs to model the valid sequence of operation invoca-
tions. Chakrabarti and Rodriquez (2010) present a formal approach to test RESTful web services.
Dranidis et al. (2010) propose an automated technique for just-in-time testing of stateful services.

In stateless and stateful services, most studies are based on Graph Transformation rules (GT
rules), enabling the applicability for stateless and stateful services (Heckel and Mariani, 2005;
Lohmann et al., 2007; Park et al., 2009). Moreover, these papers support the process of service
discovery. On the other hand, Eler et al. (2010) propose a built-in approach so that any service
(stateful or stateless) is augmented with structural testing information like coverage analysis and
metadata that helps the tester to improve the tests.

We notice more interest in stateful services (12 studies) than stateless services (five studies).
A group of studies focuses on automating the process of test case generation mainly as conse-
quence of the dynamic nature of Web services. Some studies consider that the syntactic specifica-
tion (WSDL) was augmented with semantic descriptions (e.g., OWL-S, RDF) (Tsai et al., 2005b;
Ramollari et al., 2009). Although the approaches can be applied to any type of service, only one
study considers the RESTful Web services (Chakrabarti and Rodriquez, 2010). There are few
approaches that can be applied to both stateless and stateful services (only four studies).

Service Composition Testing: the testing approaches for service compositions are divided
based on the used paradigms: orchestration and choreography.

In orchestration testing, WS-BPEL is the main language used to describe the composition (19

studies). There is a particular effort on researching test case generation handling different aspects,
such as WS-BPEL specific structures (Zheng et al., 2007; Liu et al., 2008; Hou et al., 2009; Bentak-
ouk et al., 2009; Ni et al., 2011), concurrency (Yan et al., 2006; Li et al., 2008b), timing properties
(Lallali et al., 2008; Cavalli et al., 2010; Gao and Li, 2011), run-time composition (Corradini et al.,
2008), and testing architecture (Escobedo et al., 2010). Test generation has also been supported
by using model checking (De Angelis et al., 2010; Dong et al., 2010). There are studies related to
structural coverage criteria that: use workflow modeling (Karam et al., 2007), handle communica-
tion among processes (Endo et al., 2008), consider XPath artifacts (Mei et al., 2008), and evaluate
traditional data flow criteria (Mei et al., 2009b). Regression testing is approached considering min-
imization (Li et al., 2008b) and prioritization (Mei et al., 2009c). Approaches have been proposed
to support passive testing (Benharref et al., 2006; Morales et al., 2010; Cavalli et al., 2010). There
is also an initial interest in testing dynamic orchestrations (Kattepur et al., 2011; Hummer et al.,
2011, 2013).

In choreography testing, we identified six studies that deal with conformance testing (Baldoni
et al., 2005; Nguyen et al., 2012), test generation (Wieczorek et al., 2009, 2010; Zhou et al., 2010),
and coverage criteria (Mei et al., 2009a). Baldoni et al. (2005) propose a framework inspired in
multi-agent systems for conformance testing between the peer (single service) behavior and the
global behavior (choreography). Nguyen et al. (2012) adopt passive testing to support the verifica-
tion of local and global conformance. Wieczorek et al. (2009) apply model checking to generate
model-based integration tests for choreography models. The authors also report a case study in

30 2.5. SERVICE TESTING

an industrial context (Wieczorek et al., 2010). Zhou et al. (2010) apply dynamic symbolic execu-
tion to generate test inputs and assertions to test WS-CDL programs. Mei et al. (2009a) propose
some test adequacy criteria for service choreography specified in WS-CDL that manipulates XPath
queries.

We identified only two studies that handle composition in a generic way, i.e., there is no dis-
tinction between orchestration and choreography. Ruth et al. (2007) propose an approach for safe
regression testing through the usage of CFGs to identify the changes. Rabhi (2012) proposes the
robustness testing of operations called within a composition by using sub-specifications augmented
with rules.

There is a large difference between the number of studies based on orchestration (24 studies)
and on choreography (six studies). The composition languages cited in the analyzed work are WS-
BPEL (orchestration) and WS-CDL (choreography). A high number of studies in orchestration
testing can be consequence of the maturity level of the composition languages. WS-BPEL has
been accepted as a standard language for orchestration and business process. In contrast, there is
no consensus on a choreography language. Currently, WS-CDL is the most cited one. Only the
works of Ruth et al. (2007); Rabhi (2012) address the service composition in a generic way.

Modeling Techniques We discuss and group the main modeling techniques used to support
the formal testing of service-oriented applications.

State Models: In this group, the studies use state-based modeling techniques to support the
testing activity, ranging from simple to complex ones. These techniques are: Labeled Transition
System (LTS) and extensions (Mei et al., 2009a; Bertolino et al., 2004, 2008; Frantzen et al.,
2008; Bentakouk et al., 2009; Wieczorek et al., 2009, 2010; Rabhi, 2012; Escobedo et al., 2010;
De Angelis et al., 2010), timed automaton and extensions (Lallali et al., 2008; Morales et al., 2010;
Cavalli et al., 2010; Gao and Li, 2011), Stream X-Machine (SXM) (Dranidis et al., 2007; Ramollari
et al., 2009; Kourtesis et al., 2010; Dranidis et al., 2010), extensions of FSMs (Benharref et al.,
2006; Keum et al., 2006; Dong et al., 2010), finite state automaton (Baldoni et al., 2005), and Web
Service Automaton (WSA) (Zheng et al., 2007). The modeling techniques are used to describe the
control flow, data flow, timing, and stochastic properties. While most of the studies reuse or adapt
established techniques, Zheng et al. (2007) propose the WSA to represent the semantic operation
of the WS-BPEL language.

CFG and extensions: CFGs and well-known extensions like Def-Use Graphs (Section 2.3.1)
have been constantly used to support structural testing. They have been mainly used to test WS-
BPEL based service composition (Liu et al., 2008; Karam et al., 2007; Yan et al., 2006; Endo et al.,
2008; Mei et al., 2008, 2009b; Li et al., 2008b; Eler et al., 2010). However, some studies employ
CFGs to other test purposes. Li et al. (2008a) use CFGs to model the sequences of operations for
testing stateful services. Ruth et al. (2007) and Mei et al. (2009c) apply CFGs and coverage criteria
to support regression testing. Zhou et al. (2010) use CFGs to support the generation of test inputs
and assertions to test WS-CDL programs.

CHAPTER 2. BACKGROUND 31

GT rules: GT rules are used to augment the service specification with pre-conditions, effects,
and a notion of states. A GT rule refines the service operation, adding information about the pa-
rameters and internal data. The service state can be recorded as a graph attribute, though GT rules
is not a technique that models explicit states. As a consequence, GT rules based approaches are
adequate for stateless and stateful services, supporting discovery, monitoring, automatic testing,
and regression testing (Heckel and Mariani, 2005; Lohmann et al., 2007; Park et al., 2009).

Swiss Cheese model: Swiss cheese model is the basis for the work of Tsai et al. (2005b,c,a).
It is a modeling technique based on Boolean expressions, extracted from semantic specifications
(OWL-S), that are represented by Karnaugh maps and finally a Swiss Cheese map. The model is
used to generate positive and negative test cases.

Other modeling techniques: We identified 12 studies which use modeling techniques that
were not classified into the previous groups. In this context, we found: service composition model
(Hummer et al., 2011, 2013), message sequence graphs (Hou et al., 2009; Ni et al., 2011), meta-
morphic relations (Chan et al., 2007), input element type model (Ma et al., 2008), ESGs (Belli
and Linschulte, 2008), IOPE (Paradkar et al., 2007), BIR model (Corradini et al., 2008), POST
Class graph (Chakrabarti and Rodriquez, 2010), feature diagram (Kattepur et al., 2011), and Chor
(Nguyen et al., 2012).

Each study addresses the model construction in a specific form. There are two common strate-
gies: (i) supposing that there exists a formal model and (ii) generating a model from existing ser-
vice specifications. The first strategy is common in single service testing due to the fact that only
syntactic specifications (WSDL, XML Schema) are frequently available. The second approach is
predominant in service composition testing, since supposing that there are WS-BPEL or WS-CDL
specifications in this context is reasonable. Semantic specifications are also considered in this way,
albeit they are not commonly available.

Evaluation of the proposed approaches All the analyzed papers report some kind of study
to evaluate the proposed approach. We opted by a generic classification defined by Do et al.
(2005) in which the evaluations are divided into three types: controlled experiments, case studies,
and examples. Figure 2.10 shows the percentage for each type of evaluation. Notice that a high
number of studies were classified as example (49%) and case study (32%). It implies that few
controlled experiments (19%) have been carried out. This fact indicates that more experimental
research, mainly controlled experiments, should be conducted to evaluate the proposed approaches
for formal testing of services.

Among the selected set, only two studies reported quantitative comparisons with similar testing
approaches (Keum et al., 2006; Ni et al., 2011). We believe that two main facts hinder the execu-
tion of comparative studies: benchmarks and tools. First, the primary studies report experimental
evaluation with their own programs and configuration. This fact hampers possible comparisons
among the approaches. It would be interesting to establish a common benchmark containing a

32 2.5. SERVICE TESTING

19%

32%

49%

controlled
experiment

case study

example

Figure 2.10: Types of evaluation.

set of services and necessary artifacts to overcome this limitation. Second, the existence of sup-
porting tools would facilitate the execution of experiments, making this activity less manual and
error-prone. However, few tools are reported in the papers and we found only three tools available
for download: Jambition (Frantzen et al., 2008)11, PUPPET (Bertolino et al., 2008)11, and BPT
(De Angelis et al., 2010)12.

The literature on service testing also reports the issues aforementioned. Bozkurt et al. (2012)
survey previous work on testing and verification of service-oriented applications, analyzing 177

papers. Their results show that 71% of the studies have no experimental validation, 18% use
synthetic services, and 11% apply the approaches in real-world services. The authors conclude
that one of the main problems in the topic is the lack of real-world case studies. We can argue that
the high number of papers without experimental validation (71%) is also a major problem.

2.5.2 MBT of Service-oriented Applications

Based on studies selected in the systematic mapping, this section analyzes the MBT approaches
for service-oriented applications.

Heckel and Mariani (2005) propose a high quality service registry that incorporates automated
Web service testing before the registration. They use GT rules to specify the service behavior at
the conceptual level (not the implementation level). The testing conformance is defined in terms
of completeness (inside the input domain) and soundness (outside the input domain). The test case
generation uses a domain-based strategy called partition testing.

Keum et al. (2006) propose the use of Extended Finite State Machines (EFSMs) to model Web
services. They define a procedure to derive an EFSM by means of a WSDL specification. The
procedure is based on forms filling and no tool is provided. The algorithm proposed by Bourhfir
et al. (1997) is used to generate test cases, covering control flow and data flow of the model.

Dranidis et al. (2007) introduce a new approach to verify the conformance between the service
implementation and a formal specification. The authors adopt SXMs to model the service behavior

11http://plastic.isti.cnr.it/wiki/tools – last accessed on 20/02/2013.
12http://bptesting.sourceforge.net – last accessed on 20/02/2013.

CHAPTER 2. BACKGROUND 33

and generate test cases. The transitions in an SXM are labeled with processing functions, modeling
the request, response, pre-conditions, and effects. The SXM testing method generates a complete
suite of input sequences to verify the implementation.

Frantzen et al. (2008) present a tool, called Jambition, that generates on-the-fly test cases for
Web services. The authors use the Symbolic Transition System (STS) technique to specify the
functional aspects of a service. A service operation is related to a transition in the STS. There
are three types of transitions: input (a message sent to the service), output (a message sent from
the service), and unobservable. Variables and guard conditions can also be included. The testing
approach implemented is random and online. The input data is generated based on constraints
(guard transitions) using the constraint solver of GNU prolog. This data is executed and the tool
selects randomly a new operation on-the-fly. Although these works are based on formal modeling
techniques (Heckel and Mariani, 2005; Keum et al., 2006; Dranidis et al., 2007; Frantzen et al.,
2008), they are only focused on single services that have complex and stateful functionalities and
do not take into account composite services.

Benharref et al. (2006) propose a multi-observer architecture to detect and locate faults in Web
service compositions. The architecture is composed of a global observer and local observers that
cooperate to collect and manage faults found in the composite service. The authors use the concept
of passive testing which is based on collecting and analyzing traces.

Zheng et al. (2007) propose a modeling technique called WSA to represent the operational
semantics of the WS-BPEL. A WSA model is a finite state machine with signature, data struc-
tures, and message storage schema. As WSA has no hierarchy, the hierarchical dependencies are
modeled using parent and child relationships among machines. Three models capture the data de-
pendencies: (i) internal (a single WS-BPEL process), (ii) external (one process to another process),
and (iii) global (union of internal and external). Control flow and data flow structural criteria are
encoded using the temporal logics like Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL). Using the WSA, inputs for the model checkers SPIN and NuSMV are generated. The
model checking application for test case generation is based on recovering test cases by counter-
examples.

Mei et al. (2009a) propose a modeling technique to describe a service choreography that ma-
nipulates the data flow using XPath queries. In a choreography, XPath queries can handle differ-
ent XML schema files. XPath expressions are represented using XPath Rewriting Graph (XRG),
which is a data structure that models the different paths defined in an XPath expression over a
schema. Based on LTSs, the LTS-based Choreography model (C-LTS) is proposed with XRGs
attached in transitions that represent service invocations. New types of definition-use associations
are proposed and test adequacy criteria are presented.

Transforming composition specifications (such as WS-BPEL and WS-CDL) into formal mod-
els to support test generation has also been researched. Bentakouk et al. (2009) propose a mapping
from WS-BPEL to STSs. Test cases are generated using symbolic execution and applied to the
SUT using online testing. Hou et al. (2009) model a WS-BPEL program using message sequence

34 2.5. SERVICE TESTING

graphs to generate test sequences. In an extended version (Ni et al., 2011), the authors formalize
the approach and make an experimental comparison with two other approaches.

Wieczorek et al. (2009) present a model-based integration testing for service choreography
using a proprietary model, called Message Choreography Model (MCM). MCM models are trans-
lated to Event-B (Abrial and Hallerstede, 2007) and test cases are generated using model checking.
In (Wieczorek et al., 2010), the authors describe a case study about the application of this MBT
approach to test service choreographies in a real-world project. MCM models were designed to
support the tests.

Table 2.2 relates the approaches presented in this section with the four main steps of MBT
(Section 2.4), showing which steps are mentioned by each work. Notice that most of the papers
focus on the test generation step, which includes testing criteria, algorithms and tools. The test
execution is the second most cited, which usually includes tools and software frameworks used to
run the test suites into the SUT. We observed that the modeling and concretization steps, which
require more manual effort from testers, are neglected in these works.

Table 2.2: Studies and steps of MBT.

1-
m

od
el

in
g

2-
te

st
ge

ne
ra

tio
n

3-
co

nc
re

tiz
at

io
n

4-
te

st
ex

ec
ut

io
n

(Heckel and Mariani, 2005) � �
(Keum et al., 2006) � �

(Dranidis et al., 2007) �
(Frantzen et al., 2008) � �
(Benharref et al., 2006) �

(Zheng et al., 2007) � � �
(Mei et al., 2009a) � �

(Bentakouk et al., 2009) � � � �
(Hou et al., 2009; Ni et al., 2011) � �

(Wieczorek et al., 2009, 2010) � � � �

The experimental evaluation of a testing approach should take into account two cost dimen-
sions: human effort and CPU time (Briand, 2007). The cost reflects the effort necessary to apply
a given testing approach. Classical studies in software testing have measured the cost using the
number of test cases (Briand, 2007; Juristo et al., 2004). However, in MBT, much of the manual
effort spent is concentrated in the modeling and concretization steps. The discussed approaches
for service testing have shown case studies and experiments to evaluate their practical application,
as well as the fault detection capability. However, we could not identify a detailed analysis of costs
involved in applying these approaches, from modeling to test execution. These works provide the
number of test cases as a cost measure which, as previously discussed, is not enough to infer the
devoted effort. Moreover, the concretization is usually left out, hindering the complexity and costs
to perform this step.

CHAPTER 2. BACKGROUND 35

2.6 Final Remarks

This chapter has introduced the necessary background for the dissertation contributions de-
scribed in remaining chapters. It has started with the concepts of SOA, as well as the Web service
technologies. In the sequence, an overview of software testing and its terminology have been
shown. We have focused on MBT because it is the main testing approach employed in this disser-
tation.

This chapter has also reviewed the literature on service testing. Initially, foundations of service
testing have been discussed, considering main factors, levels of testability, and perspectives. Then,
a systematic mapping on formal testing of services has been presented. We analyzed a set of
studies that propose testing approaches for single and composite services, grouping them with
respect to the adopted modeling technique and the type of evaluation. Finally, MBT approaches
for service-oriented applications have been described in detail.

In this dissertation, we assume that the level of access to the service is the most common in
practice, i.e., level 4: only the WSDL is accessible (Tsai et al., 2006). Moreover, we also consider
that all (single and composite) services are black boxes, benefiting the testers’ perspectives as
provider, integrator, and certifier. The contributions we present in Chapters 3, 4, 5, and 6 aim
at advancing the research on service testing and contribute to overcome some of the limitations
discussed in this chapter.

We aim at applying MBT in service-oriented applications. When we take into account the
application of MBT in any type of software, the selection of an appropriate modeling technique
and its test generation algorithm is crucial. The next chapter describes an experimental comparison
so that five FSM-based test generation methods are analyzed. The evaluation takes into account
several dimensions relevant in practice, such as number of test cases, test case length, overall test
suite length, and fault detection ratio.

CHAPTER

3
Comparing FSM-based Test Methods

3.1 Overview

In MBT, one of the crucial issues is to choose the modeling technique to describe the test
models (Hartman et al., 2007). As discussed in Chapter 2, Section 2.5.1, several types of mod-
eling technique have been applied in service-oriented applications. Although most of them are
techniques based on states and transitions, FSMs have not been particularly investigated.

FSM-based testing is a topic studied for several decades (Moore, 1956; Gill, 1962), yet with
recent advances (Simao and Petrenko, 2010b,a; Dorofeeva et al., 2010; Hierons and Ural, 2010;
Pedrosa and Moura, 2012). Great effort has been spent on the development of methods that gener-
ate effective test suites, i.e., methods that detect as many faults as possible. A so-called complete

test suite, capable of revealing all faults from a given fault domain in an implementation, can be
generated from a specification if some assumptions are made. One of them is to assume that the
maximum number of states in the implementation is known. When both specification and imple-
mentation have the same number of states, the generated test suite is called n-complete (Dorofeeva
et al., 2005b). There are several methods in the literature that generate n-complete test suites, such
as W, HSI, H, SPY, and P. These methods produce test suites with different characteristics that can
only be experimentally compared. Few experimental studies on comparing different FSM-based
test methods can be found in the literature (Dorofeeva et al., 2005a; Simao et al., 2009a; Dorofeeva
et al., 2010). Moreover, they fall short when it comes down to considering recent contributions and
analyzing different aspects relevant to the practical application of these methods in service-oriented
applications.

37

38 3.2. PRELIMINARIES

This chapter presents an experimental study that compares five FSM-based test generation
methods. We compare the test suites generated automatically using the traditional (W, HSI) and
recent (SPY, H, P) methods. First, for test suites derived using the compared methods, we analyze
the test suite characteristics: number of test cases (resets) and their length. Second, the total cost
(i.e., the length) of each test suite is compared. Third, the effectiveness of the methods is analyzed
using the mutation testing. Finally, we verify the correlations between the different dimensions
analyzed.

This chapter summarizes the main results of paper “Evaluating Test Suite Characteristics,

Cost, and Effectiveness of FSM-based Testing Methods”, Endo, A. T., Simao, A., published in
the Information and Software Technology journal, DOI: 10.1016/j.infsof.2013.01.001 (Endo and
Simao, 2013).

3.2 Preliminaries

A Finite State Machine (FSM) is a deterministic (Mealy) machine, defined as follows (Simao
and Petrenko, 2010a). An FSM M is a 7-tuple (S, s0, I, O,D, δ, λ), where:

• S is a finite set of states with initial state s0,

• I is a finite set of inputs,

• O is a finite set of outputs,

• D ⊆ S × I is a specification domain,

• δ : D → S is a transition function, and

• λ : D → O is an output function.

The tuple (s, x) ∈ D is a defined transition in state s that consumes input symbol x. An FSM
which has defined transitions for each input symbol in all states, i.e., D = S × I , is complete.
Otherwise, the FSM is partial. A sequence α = x1...xk ∈ I∗ is an input sequence defined for state
s ∈ S, if there exist s1, ..., sk+1 such that s = s1 and δ(si, xi) = si+1 for all 1 ≤ i ≤ k; we say
that α is a transfer sequence from s to sk+1 and that sk+1 is reachable from s. An FSM is strongly
connected if every state is reachable from all states. An FSM is initially connected if every state is
reachable from initial state s0. Figure 3.1 shows an example of a state diagram representation of
an FSM.

Notation Ω(s) is used to denote all input sequences defined for state s and ΩM as an abbrevia-
tion for Ω(s0). Therefore, ΩM represents all defined sequences for the FSMM . In this dissertation,
we assume that the FSM has a reset operation that brings the machine to its initial state. The reset
operation is denoted by r. Notation αω represents the concatenation of the two sequences, α and

CHAPTER 3. COMPARING FSM-BASED TEST METHODS 39

Figure 3.1: Example of an FSM – extracted from (Endo and Simao, 2013).

ω. Sequence α is prefix of sequence β, denoted by α ≤ β, if β = αω, for some sequence ω.
Sequence α is proper prefix of β, denoted by α < β, if β = αω for some ω 6= ε. Given two sets
of sequences D1 and D2, D1.D2 is the set of sequences obtained by concatenating all sequences in
D1 with all sequences in D2, i.e., D1.D2 = {αβ | α ∈ D1 and β ∈ D2}.

The transition and output functions are extended for defined input sequences, including the
empty sequence ε, as follows. For a state si ∈ S, δ(si, ε) = si and λ(si, ε) = ε, given an input
sequence αx ∈ Ω(si), we have δ(si, αx) = δ(δ(si, α), x) and λ(si, αx) = λ(si, α)λ(δ(si, α), x).

Two states si, sj ∈ S are distinguishable if there exists a separating sequence γ ∈ Ω(si) ∩
Ω(sj), such that λ(si, γ) 6= λ(sj, γ). An FSMM is reduced (or minimal) if all states are pairwisely
distinguishable. Given a different FSM N = (Q, q0, I, O,∆,Λ) with the same sets of inputs
and outputs, we say that two machines M and N are distinguishable if there exists a sequence
γ ∈ ΩM ∩ ΩN , such that λ(s0, γ) 6= Λ(q0, γ).

A test case of M is an input sequence α ∈ ΩM starting with symbol r. A test suite of M is
a finite set of test cases of M , such that there are no two test cases α and β, such that α < β. In
fact, if a test case α is a proper prefix of a test case β, the execution of β will always imply the
execution of α, and can thus be removed without altering the test result. The number of symbols
(length) of a sequence α is represented by |α|. This notation is extended for a test suite T , |T |,
which is the sum of the length of its test cases.

Assuming a specification M , we denote by = the set of all deterministic FSMs with the same
input alphabet as M for which all sequences in ΩM are defined, i.e., for each N ∈ =, ΩM ⊆ ΩN .
Set = is called a fault domain for M . Let m ≥ 1 be an integer, =m denotes all FSMs of = with at
most m states. Given a specification M with n states, a test suite T ⊆ ΩM is m-complete, m ≥ n,
if, for each N ∈ =m distinguishable from M , there exists a test in T that distinguishes M from
N . An m-complete test suite has full fault coverage for the defined domain and is able to detect
all faults in any implementation with at most m states. In this work, we consider n-complete test
suites that represent the case in which m = n.

A set of input sequences Q is a state cover of M if, for each state si ∈ S, there exists a
sequence αi ∈ Q that transfers the FSM from the initial state to si. This set includes sequence ε

40 3.3. TEST GENERATION METHODS

to reach the initial state. A set of input sequences P is a transition cover of M if, P includes the
empty sequence ε and for each transition (s, x) ∈ D there exist the sequences α, αx ∈ P such that
δ(s0, α) = s.

To identify states and check transitions, traditional methods use predefined sets, such as char-
acterization sets and separating families. A characterization set, also known as W set, is a set of
defined input sequences that contains at least a separating sequence for each pair of states in the
FSM. A separating family is a set of state identifiers Hi for a state si ∈ S that satisfies the follow-
ing condition (Luo et al., 1995): for any two different states si, sj , there exist sequences β ∈ Hi

and γ ∈ Hj that have a common prefix α, i.e., α ≤ β and α ≤ γ, such that α ∈ Ω(si) ∩ Ω(sj) and
λ(si, α) 6= λ(sj, α).

Recent methods, such as H, SPY, and P rely on sufficient conditions to support test case gener-
ation. The sufficient conditions provide mechanisms to check if a given test suite is m-complete.
However, a test suite that does not satisfy these conditions may be m-complete, i.e., these con-
ditions are not necessary. The sufficient conditions for the test suites found in the literature are
described in (Dorofeeva et al., 2005b), (Simao and Petrenko, 2010a), and (Simao and Petrenko,
2010b) and used by the H, SPY, and P methods, respectively.

3.3 Test Generation Methods

In this section, we briefly introduce the W, HSI, H, SPY, and P methods used in the experi-
ments. For each method, an overview of the test suite construction for the example in Figure 3.1
is also provided. All these methods are applicable to initially connected, reduced, complete, and
deterministic machines. The HSI, H and P methods are also applicable to partial FSMs.

W The works of Vasilevskii (1973) and Chow (1978) are the seminal papers in test case gener-
ation methods for FSMs, proposing the W method. The method uses the transition cover set P to
reach states and transitions and the characterization set W for state identification. If m = n, a test
suite is generated by the concatenation of sets P and W and removal of the proper prefixes.

For the example in Figure 3.1, given that P = {ε, a, b, aa, ab, ba, bb, aaa, aab, aaaa, aaab} and
W = {a, bb}, after P.W and removing the sequences which are prefixes of other tests, we ob-
tained the test suite TSW = {raba, rabbb, rbaa rbabb, rbba, rbbbb, raaba, raabbb, raaaaa,raaaabb,
raaaba, raaabbb}, |TSW|= 64.

HSI The HSI method (Luo et al., 1995) uses the separating family to check states in both state
identification and transition testing. The separating family can be obtained from a characterization
set W , which, in the worst case, will be the W set itself.

Given the same P and the harmonized state identifiers H0 = {a, b}, H1 = {a, b}, H2 =

{a, b}, H3 = {ab}, H4 = {ab}, the test suite is obtained by concatenating all sequences α ∈

CHAPTER 3. COMPARING FSM-BASED TEST METHODS 41

P with Hi such that δ(s0, α) = si. After removing proper prefixes, we obtained the test suite
TSHSI = {raba, rabb, rbab, rbba, rbbb, raabb, rbaab, raaaab, raaabb, raabab, raaaaab, raa abab},
|TSHSI| = 62.

H Similarly to the HSI method, the H method (Dorofeeva et al., 2005b) also adopts separating
families and can be seen as an improved method. The difference is that the H method selects
state identifiers on-the-fly during the transition testing phase (Dorofeeva et al., 2005b). Using this
strategy, the method is able to reduce the length of the test suites produced.

The first part of the method adds sequences that distinguish reached states for each pair of
sequence in Q. Given the state cover Q = {ε, a, b, aa, aa a} and the separating family H0 =

{a, b}, H1 = {a, b}, H2 = {a, b}, H3 = {a, ba}, H4 = {a, ba}, the first part is equiva-
lent to Q.Hi = {ba, bba, aba, aab, aaaa, aaab}, after removing prefixes. Notice that the sep-
arating family used here is different from the one used in the HSI method. The second part
verifies transitions with respect to the sufficient conditions. If transitions are not verified, ade-
quate state identifiers are selected on-the-fly. For instance, to check transition (s3, a) we have
sequence ba such that δ(s0, ba) = s4. We can apply the previously defined state identifier H4,
but sequence aaa has been chosen for this task. The resulting test suite for H method is TSH =

{rbba, rbbb, rabaa, rbaaaa, raaabaaa, raabaaa, raaaaaaa}, |TSH| = 42.

SPY The SPY method (Simao et al., 2009b) was proposed to reduce the length of the test cases,
using a strategy that shortens the number of test cases by avoiding creating new branches in the
test suite. Thus, the SPY method also chooses state identifiers on-the-fly so that it avoids creating
new branches by the extension of existing test cases. Using SPY, we obtained the test suites
TSSPY = {raaaaab, raaaab, raaabab,raaabb, raabab, raba, rbabb, rbba, rbbbaabb}, |TSSPY| = 53.

P The P method (Simao and Petrenko, 2010b) was initially proposed to obtain an n-complete
test suite by incrementing a user-defined test suite provided. However, if we consider that the
user-defined test suite contains only the empty sequence, the P method can be used to generate
n-complete test suites in the traditional way. The P method is also able to choose sequences on-
the-fly to distinguish states. The method iteratively checks sufficient conditions and applies defined
rules to derive the test suite.

The P method basically works in two steps. First, it builds a test suite so that the n states are
distinguished. In the second step, the method checks the transitions not confirmed by the sufficient
conditions. For each new test added to the test suite, rules can be triggered and other transitions
can be checked. At the end, after removing prefixes and adding resets, we have the final test suite
TSP = {rababba, raabba, rabaaab, rabba, rbabb, rbbb}, |TSP| = 34.

42 3.4. EXPERIMENTAL STUDY

3.4 Experimental Study

We conducted experiments to evaluate test suites generated by different methods, from tradi-
tional (W, HSI) to recent ones (H, SPY, and P). We aimed at answering the following research
questions:

• RQ1: What are the characteristics of test suites generated by different methods, concerning
number of resets and test case length?

• RQ2: Which method has the lowest cost, i.e., test suite length? Are their cost differences
significant?

• RQ3: Which method is more effective (higher fault detection) when the implementation has
more states than estimated?

• RQ4: How are test case characteristics, test suite length and fault detection ratio correlated?

As there are various generation methods in literature, the tester needs to consider different variables
when choosing one of them. RQ1 addresses the number of test cases and what expects from the
length of test cases generated. RQ2 addresses the overall cost of the test suites, when the number of
inputs applied to the SUT is the most important measure. RQ3 addresses cases where estimations
about the implementation’s states are not accurate. Finally, RQ4 addresses if these variables can
be analyzed solely or they are dependent.

Reduced and deterministic FSMs were randomly generated, varying the number of states, in-
puts, outputs, and transitions. For each FSM configuration (#states, #inputs, #outputs, and #tran-
sitions), 100 machines were generated and the average measures were calculated. In total, 5200

FSMs were used in this experiment. The raw data collected and analyzed in this dissertation are
available on the Internet (Endo and Simao, 2012c). For each test suite, the number of resets (or
test cases) and the average test case length were calculated. For a given configuration, the average
for these data was also calculated.

We compared the cost of the methods with respect to the test suite length (with resets and no
proper prefixes). The reduction and reduction ratio were calculated comparing the test suite length
with the W method. Given a method κ, the reduction ratio was calculated using the W method as
a reference, i.e., |TSκ|/|TSW|, where |TSκ| is the average test suite length produced by method κ.

All compared methods are able to generate n-complete test suites. To evaluate the fault detec-
tion, we consider a scenario such that n-complete test suites will not detect all faults, i.e., when the
implementation is not in fault domain =n. We use a strategy based on high order mutation testing
(Jia and Harman, 2008). First, a mutantm1 with n+1 states was generated. Second, other mutants
were produced applying other operators to m1. Thus, second order mutants were used to evaluate
the fault detection of test suites generated by the methods.

CHAPTER 3. COMPARING FSM-BASED TEST METHODS 43

Using the measures collected, we employed the nonparametric Wilcoxon matched-pairs signed
ranks test to verify if two methods are different for a significance level of 0.05. As alternative hy-
pothesis, we consider that test suites generated by one method is greater than the ones generated by
other. Moreover, we provide measures to analyze the effect size, which are applied to complement
hypothesis tests, indicating practical significance, importance, or meaningfulness (Kampenes et
al., 2007). To calculate the effect size, we employed (i) unstandardized measures represented by
median and mean differences; and (ii) standardized measures represented by standard mean dif-
ference (SMD) d and Hedges’ g (Kampenes et al., 2007). To analyze the dependence/relationship
between two variables, we employed the Spearman rank order correlation coefficient.

3.5 Analysis of Results

3.5.1 RQ1: Test Suite Characteristics

In this section, we analyze two measures concerning the test suites generated for each method.
Given a method κ, we define:

• Number of resets (NRκ) as the number of resets in a test suite. It also represents the number
of test cases since there exists a reset before each test case.

• Length of test case (Lκ) as the average length of test cases in a test suite. We also analyze
the minimum and maximum test case lengths.

Number of Resets Figure 3.2 shows how the number of resets varies as a function of the
number of states1. All methods present an approximated linear growth, having W the highest
number of resets and P the lowest. The SPY and H methods have a quite similar number of resets,
becoming different only after 20 states. There exists a strong positive correlation between the
number of resets and number of states (over 0.98); thus, the methods tend to generate test suites
with more resets when adding more states to the machine.

Minimizing the number of resets is a known strategy to reduce the final length of a test suite.
It can be obtained, e.g., by reducing the number of branches in the test suite (see (Simao et al.,
2009b) for more details). The SPY, H, and P methods clearly show the lowest numbers of resets,
presenting small differences among them that can be explained by properties of their algorithms
and sufficient conditions. HSI has a smaller number of resets in comparison with W, since the
characterization set is usually greater than individual separation families. As a consequence, the
concatenation with the transition cover will produce more test cases (resets).

1The machines have four inputs and four outputs, and the number of states varies from four to 30 states. This
configuration is repeated in the following graphs.

44 3.5. ANALYSIS OF RESULTS

4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

50

100

150

200

250

300

350

400

450

W
HSI
H
SPY
P

Number of states

N
u

m
b

e
r

o
f r

e
se

ts

Figure 3.2: Number of resets varying the number of states – extracted from (Endo and Simao,
2013).

Test Case Length Figure 3.3 shows how the average test case length varies as a function of
the number of states. Although a wide range of states was used, the variation in the test case length
was not high. The minimum test case length ranges from 2 to 3.1; the average test case length
ranges from 3.1 to 6.2; and the maximum test case length ranges from 3.8 to 12.3. There is a high
positive correlation between the average test case length and the number of states (over 0.78); thus,
the methods tend to generate longer test cases when adding more states to the machine.

4 6 8 10 12 14 16 18 20 22 24 26 28 30

0

1

2

3

4

5

6

7

W

HSI

H

SPY

P

Number of states

A
ve

ra
g

e
 te

st
 c

a
se

 le
n

g
th

Figure 3.3: Average test case length varying the number of states – extracted from (Endo and
Simao, 2013).

As the FSMs have more states, long sequences are necessary to reach and verify these states.
However, this increase was not so accentuated. The HSI and W methods have the shortest test

CHAPTER 3. COMPARING FSM-BASED TEST METHODS 45

cases. H has an intermediate position when analyzing minimum, maximum, and average test case
lengths. In minimum and average test case lengths, we observe that SPY and P have similar results.
For maximum lengths, SPY shows the longest test cases with constant difference of over two inputs
symbols with respect to the P method.

In general, W and HSI methods present similar test case lengths, with the shortest test cases
among the methods. On average, HSI generates slightly shorter test case lengths than W. The
SPY method presents the longest test cases in all configurations, followed by P and H. Table 3.1
shows the pairwise comparison between the average test case length of each method using 3200

complete FSMs. Each pair of different methods is compared, showing the alternative hypothesis
which was considered (the null hypothesis was rejected), median and mean differences, SMD d,
and Hedges’ g. By the comparisons, the following order is observed and statistically supported
LSPY > LP > LH > LW > LHSI . The difference between W and HSI is small and they produce
test cases that have virtually the same length on average. The SPY method has the longest test
cases, though in practice this represents an average of ≈ 1.1 more input symbols than W and HSI.

Table 3.1: Pairwise comparison among the methods with respect to the average test case length –
extracted from (Endo and Simao, 2013).

W HSI SPY H

HSI

alt. hypothesis LW > LHSI - - -
median diff 0.035 - - -
mean diff 0.081 - - -
SMD d 0.141 - - -

Hedges’ g 0.141 - - -

SPY

alt. hypothesis LSPY > LW LSPY > LHSI - -
median diff 1.2 1.234 - -
mean diff 1.1 1.173 - -
SMD d 1.88 2.19 - -

Hedges’ g 1.88 2.19 - -

H

alt. hypothesis LH > LW LH > LHSI LSPY > LH -
median diff 0.544 0.579 0.655 -
mean diff 0.507 0.588 0.585 -
SMD d 0.801 0.997 0.987 -

Hedges’ g 0.801 0.997 0.987 -

P

alt. hypothesis LP > LW LP > LHSI LSPY > LP LP > LH

median diff 0.817 0.852 0.381 0.273
mean diff 0.812 0.893 0.280 0.304
SMD d 1.196 1.398 0.436 0.442

Hedges’ g 1.196 1.398 0.436 0.442

3.5.2 RQ2: Test Suite Length

This section presents graphs and observations about the overall cost of the methods which is
measured by the test suite length. Figure 3.4 shows how the test suite length varies as a function of
the number of states. We observed that the test suite length grows as the number of states increases.
This is shown by a strong positive correlation between the number of states and the test suite length
(over 0.98). We also observed the order |TSW| > |TSHSI| > |TSSPY| > |TSH| > |TSP|. The
difference among SPY, H, and P is small from four to 20 states, but becomes larger and constant
after 22 states. We also analyzed the same data using the reduction ratio as the Y-axis. It varies
until 12 states and presents a constant difference after 14 states. This constant difference represents

46 3.5. ANALYSIS OF RESULTS

a reduction of circa 30% for HSI, 50% for SPY, 55% for H, and 60% for P, in comparison with the
test suites generated by the W method.

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

250

500

750

1000

1250

1500

1750

2000

2250

W
HSI
SPY
H
P

Number of states

T
e

st
 s

u
ite

 le
n

g
th

Figure 3.4: Test suite length varying the number of states – extracted from (Endo and Simao,
2013).

Figure 3.5 shows boxplots for each method in three configurations (four, 18, and 30 states);
notice that the range of boxplots for FSMs with different numbers of states varies. In the configu-
ration with four states, the recent methods present shorter test suites than W and HSI. However, the
interquartile ranges of SPY, H, and P are quite similar. These method performances are to some
extent discriminated with more states (18 and 30). Moreover, the method distributions seem to be
more symmetric with the increase of states, except for the W method that has a skewed distribu-
tion in machines with 30 states. The W method also shows the highest number of outliers for the
presented distributions.

Table 3.2 shows the pairwise comparison of the test suite length for each method using 3200

complete FSMs. Each pair of different methods is compared, showing the alternative hypothesis
which was considered (the null hypothesis was rejected), median and mean differences, SMD d,
and Hedges’ g. The standardized effect sizes d and g are not defined when comparing the methods
with W because this method was used to calculate the reduction ratio. Given that two methods
κ1 and κ2, the notation κ1 >a(b) κ2 means that κ1 produces test suite lengths significantly longer
than κ2, a and b represent the median difference and the mean difference, respectively. Thus, we
can observe the following expression W >0.3(0.28) HSI >0.17(0.16) SPY >0.05(0.04) H >0.04(0.03)

P . Notice that the standardized effect size measures SMD d and Hedges’ g are provided as an
alternative measure. Although there is no reference values for them, the values presented here can
be used in future research. For instance, a reasonable improvement from SPY over HSI (median
difference of 0.17) has values for d and g of over 1.0, while small improvements, e.g., 0.04 for P
over H, have values of around 0.3.

CHAPTER 3. COMPARING FSM-BASED TEST METHODS 47

Figure 3.5: Boxplots for the test suite length varying the number of states (four, 18, and 30
states) – extracted from (Endo and Simao, 2013).

Table 3.2: Pairwise comparison among the methods with respect to the test suite length using
reduction ratio over W – extracted from (Endo and Simao, 2013).

W HSI SPY H

HSI

alt. hypothesis |TSW| > |TSHSI| - - -
median diff 0.30 - - -
mean diff 0.28 - - -
SMD d - - - -

Hedges’ g - - - -

SPY

alt. hypothesis |TSW| > |TSSPY| |TSHSI| > |TSSPY| - -
median diff 0.47 0.17 - -
mean diff 0.45 0.16 - -
SMD d - 1.11 - -

Hedges’ g - 1.11 - -

H

alt. hypothesis |TSW| > |TSH| |TSHSI| > |TSH| |TSSPY| > |TSH| -
median diff 0.52 0.22 0.05 -
mean diff 0.50 0.21 0.05 -
SMD d - 1.51 0.40 -

Hedges’ g - 1.51 0.40 -

P

alt. hypothesis |TSW| > |TSP| |TSHSI| > |TSP| |TSSPY| > |TSP| |TSH| > |TSP|
median diff 0.56 0.26 0.09 0.04
mean diff 0.54 0.25 0.08 0.03
SMD d - 1.78 0.69 0.30

Hedges’ g - 1.78 0.69 0.30

48 3.5. ANALYSIS OF RESULTS

3.5.3 RQ3: Fault Detection

Let TS be a test suite, #tm be the total of mutants, #km be the number of mutants killed
by TS, and #em be the number of equivalent mutants, the fault detection ratio (FDR) of TS is
calculated by FDRTS = #km/(#tm−#em), also known as mutation score.

Figure 3.6 shows the FDR as a function of the number of states. All methods present a growth
that is higher until 12 states and smaller afterwards. This is shown by a strong positive correlation
between the number of states and the FDR for all methods (over 0.97); thus, the test suites tend
to detect more faults (mutants) in machines with more states. All FDRs are superior to 0.9 for
more than ten states. SPY has the highest FDR and HSI the lowest one. The P, H, and W methods
present similar FDRs between HSI and SPY.

4 6 8 10 12 14 16 18 20 22 24 26 28 30
0,83

0,85

0,87

0,89

0,91

0,93

0,95

0,97

0,99

W

HSI

H

SPY

P

Number of states

F
a

u
lt

d
e

te
ct

io
n

 r
a

tio

Figure 3.6: FDR varying the number of states – extracted from (Endo and Simao, 2013).

Table 3.3 shows the pairwise comparison of the FDR for each method using 3200 complete
FSMs. Each pair of different methods is compared, showing the alternative hypothesis which was
considered (the null hypothesis was rejected), median and mean differences, SMD d, and Hedges’
g. By using the pairwise comparison, the following order is observed FDRSPY > FDRP >

FDRW > FDRH > FDRHSI .

All methods have a high average FDR in the interval [0.9295, 0.9418]. It means that most of
the faults inserted by the mutation operators, even with a wrong estimation (−1) of number of
states, are detected by n-complete test suites. Although it is statistically shown that the methods
have different FDRs, the differences between them are quite small. For instance, the difference
between the two methods in the limits, SPY and HSI, is around 0.01. In other words, SPY detects
an average of 1% more faults (mutants) than HSI.

These differences between the methods’ FDRs are relevant and can represent many undetected
faults since the universe of faults is huge. For example, an average of 484, 871 mutants was pro-

CHAPTER 3. COMPARING FSM-BASED TEST METHODS 49

duced for FSMs with 30 states, four inputs, and four outputs. This means that it is likely that by
using SPY instead of HSI, 4849 more faults can be detected.

Table 3.3: Pairwise comparison among the methods with respect to the FDR – extracted from
(Endo and Simao, 2013).

W HSI SPY H

HSI

alt. hypothesis FDRW > FDRHSI - - -
median diff 0.007 - - -
mean diff 0.007 - - -
SMD d 0.27 - - -

Hedges’ g 0.27 - - -

SPY

alt. hypothesis FDRSPY > FDRW FDRSPY > FDRHSI - -
median diff 0.006 0.01 - -
mean diff 0.005 0.01 - -
SMD d 0.20 0.49 - -

Hedges’ g 0.20 0.49 - -

H

alt. hypothesis FDRW > FDRH FDRH > FDRHSI FDRSPY > FDRH -
median diff 0.003 0.003 0.01 -
mean diff 0.002 0.004 0.008 -
SMD d 0.10 0.16 0.31 -

Hedges’ g 0.10 0.16 0.31 -

P

alt. hypothesis FDRP > FDRW FDRP > FDRHSI FDRSPY > FDRP FDRP > FDRH

median diff 0.0006 0.006 0.007 0.003
mean diff 0.0002 0.006 0.005 0.002
SMD d 0.01 0.26 0.21 0.09

Hedges’ g 0.01 0.26 0.21 0.09

3.5.4 RQ4: Correlations

In this section, we show the correlations between the aspects analyzed in the questions RQ1,
RQ2, and RQ3. Hence, we analyze the correlations between number of resets (RQ1), test case
length (RQ1), test suite length (RQ2), and FDR (RQ3) for each method. Table 3.4 shows the
correlations between the variables analyzed in this study for each method in complete machines.

Table 3.4: Correlations between the variables analyzed – adapted from (Endo and Simao, 2013).
Line Variable 1 Variable 2 W HSI SPY H P

1 avg test case length #resets 0.24 0.24 0.36 0.24 0.32
2 avg test case length test suite length 0.35 0.33 0.45 0.35 0.45
3 # resets FDR 0.40 0.41 0.48 0.42 0.42
4 test suite length FDR 0.48 0.47 0.53 0.51 0.52
5 # resets test suite length 0.99 0.99 0.99 0.99 0.98
6 avg test case length FDR 0.88 0.85 0.74 0.87 0.89

Line 1 shows the correlations between the average test case length and the number of resets.
We observe a weak positive correlation for all methods. Line 2 shows the correlations between the
average test case length and the test suite length. We observe a moderate positive correlation.

Line 3 shows the correlations between the number of resets and the FDR. Notice a moderate
positive correlation. Intuitively, adding more test cases (resets) will likely increase the FDR. How-
ever, this is not so evident for the observed results. Line 4 shows the correlations between the test
suite length and the FDR. The results are quite similar to the correlation between number of resets
and FDR (Line 3). More test cases do not necessarily guarantee that more faults will be detected.

50 3.6. DISCUSSION OF RESULTS AND LIMITATIONS

Observe that the four correlations analyzed (Lines 1-4) do not show a consistent behavior, since
the correlations are weak or moderate. Notice that this is not the case for the next two analyses.

Line 5 shows the correlations between the number of resets and the test suite length. There
exists a strong positive correlation for all methods (over 0.98). As there are more resets (test cases)
in an n-complete test suite, the test suite length tends to be greater. Although this is obvious for
test suites in general, we are analyzing specific n-complete test suites.

Line 6 shows the correlations between the average test case length and the FDR. We observe a
high positive correlation (over 0.74). These results support that n-complete test suites with longer
test cases tend to detect more faults in the considered scenario.

3.6 Discussion of Results and Limitations

As aforementioned, the FSMs were randomly generated. In this case, the similarity between
these FSMs and the ones used in practice is unclear. Another issue is that a randomly generated
FSM can represent a very rare and special case in which one of the methods does not perform
well. To overcome this threat, we use a high number of different FSMs for each configuration and
calculate average measures, aiming to reduce the influence of this factor on the results.

A limitation of this study is that we did not compare all existing methods (in the literature) able
to generate n-complete test suites. As we selected a subset of the existing methods, other methods
like DS, UIO, and Wp were left out. However, we believe that a representative set was selected,
from the traditional methods to recent advances in the topic. Moreover, all the experiment data is
available to facilitate the comparison with other test case generation methods (Endo and Simao,
2012c).

We have also adopted mutation testing to simulate the faults in the experiments. There is no
consensus on the representativeness of mutants with respect to actual faults, albeit some studies
give evidences that results using mutation operators are trustworthy (Andrews et al., 2005b; Do
and Rothermel, 2006). Particularly, the employed operators represent common faults in FSM
specifications and were exhaustively applied in the machines. Moreover, all equivalent mutants
were removed, reducing the inconsistent data.

As stated by Arcuri (2010), there has been little research on the impact of the length of test
cases. In this study, we provided a set of measures that can be used to shed light on this topic
in the context of FSM-based testing. The recent methods tend to produce test suites with longer
test cases, while traditional methods produce more (by the resets’ data) and shorter test cases.
This information can be useful for testers to support decision making during the MBT process.
In general, shorter test cases are easier to execute and debug and can be more appropriate if they
are executed by hand. However, if tests are automated and the cost is more important, the overall
length of the test suite should be considered.

CHAPTER 3. COMPARING FSM-BASED TEST METHODS 51

The results presented have some practical implications. There is a significant cost difference
among the traditional and recent methods (around 50%). Even if we consider only recent methods,
their reduction ratio varies from 50 to 60%. For instance, the mean difference between P’s and
H’s test suite lengths (in FSMs with 30 states, 4 inputs, and 4 outputs) is 103.6. In other words,
the tester using H will execute a test suite with around 103 more inputs (system’s events) than one
using P. This difference can be significant for models with many states, an SUT with an expensive
test execution environment, or projects in which test sequences are executed by hand.

The fault detection ratios of test suites generated by the methods are quite close, though they
are statistically different when pairwisely compared. A small percentage of undetected faults can
represent a large number of faults since the fault domain is huge. Moreover, MBT has been applied
in safety-critical software with special attention to embedded systems (Zander et al., 2011). In this
scenario, a small optimization of the fault detection ratio might be of high practical importance for
safety-critical software (Kampenes et al., 2007).

The set of analyses about the methods’ behavior in different configurations can support the
choice of the best method to fit a given project. The tester can identify the tradeoffs between test
case characteristics, test suite length, and fault detection ratio. For instance, the tester may want
a method that produces n-complete test suites with shorter test case lengths and generated from
partial FSMs. In this case, the HSI method would be the best choice. On the other hand, the SPY
method would be better to detect faults when the estimated number of states of the implementation
is likely wrong. Other decisions can be supported by the results presented in this dissertation.
Moreover, the data used in the experiments is available on the Internet (Endo and Simao, 2012c)
and can be used to replicate this study or support the comparison with a new method proposed.

3.7 Final Remarks

This chapter has presented an experimental evaluation of test case generation methods for
FSMs. The W, HSI, SPY, H, and P methods have been compared. On average, SPY produced the
longest test cases and HSI has the shortest ones. The recent methods resulted in shorter test suites
compared with traditional methods. The P method generated the shortest test suites, although
the difference was smaller in comparison with H and SPY. In the analyzed scenario, all methods
showed a high average fault detection ratio of over 92%. The SPY and P methods presented the
highest fault detection and H and HSI had the lowest ratio. Different correlations have also been
identified, especially the positive correlations between the number of test cases and the test suite
length, and between the test case length and the fault detection ratio.

The results presented in this chapter can support the choice of an FSM-based test method to
be applied in a given context. We select the P method as the more appropriate for service-oriented
applications. P has the shortest test suite length, and although it is the second most effective, P
is also applicable to partial machines (which are commoner in practical scenarios). While the

52 3.7. FINAL REMARKS

modeling technique and the test generation method are worth from an MBT point of view, the
testing process should also be researched for applications developed using SOA and Web services.
The next chapter describes an MBT process for service-oriented applications so that FSMs are
used for modeling and test case generation.

CHAPTER

4
MBT Process of Service-Oriented

Applications

4.1 Overview

As discussed in Section 2.5, the testing activity is essential for ensuring the quality of services
(Canfora and Di Penta, 2009; Bozkurt et al., 2012). There are several studies that propose the
formal testing of services by using different types of modeling techniques, such as state models
(Keum et al., 2006; Mei et al., 2009a), CFG and extensions (Li et al., 2008b; Mei et al., 2008),
GT rules (Heckel and Mariani, 2005; Lohmann et al., 2007), and others (Chan et al., 2007; Hou
et al., 2009); see a systematic mapping on this topic in Section 2.5.1 (Endo and Simao, 2010a,b).
In particular, MBT has been researched to test service-oriented applications, as shown in Sec-
tion 2.5.2. Although those studies provide approaches to test service-oriented applications, they
are not concerned about establishing a process and describing the necessary steps in detail.

These approaches also use state models mostly to describe complex interactions among the
services, albeit FSMs have not been researched in depth. FSMs have been widely studied by the
software testing community and applied to various software domains (Lee and Yannakakis, 1996;
Hierons et al., 2009), and several test generation methods have been proposed and experimentally
compared, as shown in Chapter 3.

This chapter describes an MBT process for service-oriented applications using state models. In
this study, the adopted modeling technique is FSM and the test case generation method is P (Simao
and Petrenko, 2010b). The foundations of FSM-based testing and the rationale for selecting the

53

54 4.2. MOTIVATING EXAMPLE

P method are described in Chapter 3. We also evaluate the process instantiation by means of the
development of prototype tools and the conduction of a case study.

This chapter is a summary of paper “Model-based Testing of Service-Oriented Applications

via State Models”, Endo, A. T., Simao, A., published in the Proceedings of the 8th IEEE Interna-
tional Conference on Service Computing (SCC’11), DOI: 10.1109/SCC.2011.77 (Endo and Simao,
2011).

4.2 Motivating Example

In this section, we introduce an example to illustrate the issues we address in this chapter.
ThirdPartyCall-SOA is an application based on the third party call service proposed by
the Parlay-X services (Open Service Access, 2009). We have extended it with extra functional-
ities and modules to consider more SOA concepts. Figure 4.1 presents the communication in the
ThirdPartyCall-SOA application. It is composed of three services:

• Third Party Call Service (TPCS): this service contains the main functionalities for a third
party application to manage call sessions among different participants. Seven operations are
available in the WSDL interface of this service. TPCS provides an extra operation to receive
notifications about the participants connected in a call.

• Call Monitor Service (CMS): this service represents an instance of a monitor that observes
the participant’s status in a call. CMS provides two operations to respectively subscribe and
unsubscribe in a monitoring process of a participant’s status. This status can be connected,
hang up, not reached, and busy.

• Service Registry (SR): this service is a registry specific to provide information on the avail-
able CMS services. SR was implemented as an instance of the Apache jUDDI (Apache.org,
2013), an open-source Java implementation for the UDDI standard.

A typical interaction with ThirdPartyCall-SOA is as follows. Initially, some client ap-
plication starts a call session with one or two participants. For instance, a stock quote monitoring
application starts a call session between a stockbroker and a customer because some stocks reach
a threshold value (Open Service Access, 2009). TPCS invokes an SR operation that searches for
available CMS services. TPCS selects an instance of CMS and subscribes for each participant
using CMS operations. At this point, CMS dynamically creates a stub to access the notification
operation of TPCS. Thus, if some participant’s status changes, CMS uses this stub to notify TPCS.
CMS was implemented to simulate the possible status’ changes using random choices. When a
call is established, different actions can be made via TPCS operations, such as add/remove/trans-
fer participants, query the call/participant’s status, and end the call session.

The application of MBT in service-oriented applications, such as ThirdPartyCall-SOA,
is motivated by the potential for automation. In the adaptive and dynamic context of SOAs, it is

CHAPTER 4. MBT PROCESS OF SERVICE-ORIENTED APPLICATIONS 55

Third Party Call
Service
(TPCS)

Call Monitor
Service
(CMS)

Client
Application

Service
Registry

(SR)

<<interface>>

● makeCallSession()
● addCallParticipant()
● deleteCallParticipant()
● getCallParticipantInformation()
● getCallSessionInformation()
● transferCallParticipant()
● endCallSession()

<<interface>>

● notifyParticipantStatus()

<<interface>>

● subscribeConnection()
● unsubscribe()

<<interface>>

● searchServices()

1:

2:

3:

Figure 4.1: The ThirdPartyCall-SOA application – adapted from (Endo and Simao, 2011).

important that tests are automated and can be easily changed. MBT usually reacts promptly to
changing requirements and can be an interesting solution in this context. However, the distribution
of services over the Internet and the usage of XML standards hinder the information gathering
during the tests and the establishment of a test harness. For instance, in a SOA environment it is
difficult to monitor other integrated services, besides the service under test.

TPCS provides a set of operations that can change the service state. Moreover, there are in-
teractions with other services, such as SR and CMS. These interactions can be modeled by using
state models. Generating tests that cover state models and check their states is an accurate way
to verify these interactions. In ThirdPartyCall-SOA, there are different aspects that should
be tested, such as individual services and their interaction. Considering all these aspects in one
state model would increase its complexity and size. In MBT, it is particularly necessary to manage
the complexity and size of the models to avoid the state space explosion, while meaningful tests
can still be generated. As noted in the example, we can build complex models even for simple
service-oriented applications. For instance, ThirdPartyCall-SOA has different contexts that
should be tested, e.g., the participant’s status, number of participants in a call session, and the
communication between TPCS and CMS.

There are also issues on using MBT and state models to test a service-oriented application
like ThirdPartyCall-SOA. The test harness is complex due to the distributed nature of SOAs
and the adoption of XML standards. The order of invocations and the state of the services are
important to assure the reliability of service-oriented applications. This results in complex and
large state models and, thus, limits the tests and the model maintainability.

56 4.3. TESTING PROCESS

4.3 Testing Process

Motivated by the issues discussed in the previous section, we propose a model-based process to
test service-oriented applications with state models. We add elements to the process that were nec-
essary in a SOA context. Elements present in generic MBT processes (Utting and Legeard, 2006;
Pretschner and Philipps, 2004) are revisited, highlighting the differences whenever necessary. Fig-
ure 4.2 represents the elements of the process as artifacts (Section 4.3.1), tools (Section 4.3.2),
and the services under test. We also discuss the steps of MBT in service-oriented applications in
Section 4.3.3.

Figure 4.2: State-based testing process for service-oriented applications – extracted from (Endo
and Simao, 2011).

4.3.1 Artifacts

There are three types of artifacts in the proposed testing process: (i) legacy, (ii) manual, and
(iii) generated artifacts. Legacy artifacts are resources produced during the development of service-
oriented applications. In Figure 4.2, we refer to them as service artifacts, consisting of interface
descriptions (e.g., WSDL), composition specifications (e.g., WS-BPEL, WS-CDL), and semantic
information (e.g., documents in Web Ontology Language for Web Services – OWL-S).

Manual artifacts are produced during the process by the testers. In Figure 4.2, the manual
artifacts are the state model, the test selection criteria, the concrete adaptor, and the linking in-
formation. Linking information is an artifact that connects elements of the test model with the
service artifacts. This artifact is important during the testing process because it includes mecha-

CHAPTER 4. MBT PROCESS OF SERVICE-ORIENTED APPLICATIONS 57

nisms that enhance the automation, providing information to automatically generate code used in
the test harness.

Generated artifacts are automatically produced by the supporting tools. In Figure 4.2, they
include the abstract test suite, the abstract adaptor, and the tests report. The idea of the abstract
adaptor artifact is to provide the necessary infrastructure for the tester to implement the concrete
adaptor.

4.3.2 Supporting Tools

In the process, artifacts are processed by tools that produce new artifacts. Figure 4.2 presents
the software tools needed to automate some tasks of the process. We describe each of them as
follows.

State Model-based Test Generator: this tool receives as input the state model and test selec-
tion criteria and generates abstract test cases. It is desirable that test selection criteria are
already implemented in the tool in order to automate the test case generation. The linking
information artifact can also be considered during the test case generation. In this case, the
algorithms and test criteria should be adapted to use the information included in this artifact.

State Model-to-SOA Adaptor Generator: this tool aims at decreasing the effort to develop the
adaptor. It also reduces the complexity of the test harness, generating as much test code as
possible. Thus, the tester can focus only on the implementation of the concrete adaptor, leav-
ing the tedious and error-prone work to the tool. The state model, linking information, and
service artifacts are received as input to generate an abstract adaptor that can be realized in a
flexible way. However, the abstract adaptor should contain pre-defined and fixed structures
used to enable the test execution by State Model-based Test Runner.

State Model-based Test Runner: this tool is responsible for mapping the abstract test cases to
executable ones using the concrete adaptor. It is able to invoke operations of single and
composite services under test. As output, it produces a tests report detailing the execution
of each test case. In complex test scenarios involving integration with other services, it
communicates with ESB-based Test Mediator to obtain more information and analyze the
results.

ESB-based Test Mediator: this tool is essential when the service-oriented application involves
a service composition. It can be used in two modes: monitoring and simulating. In the
monitoring mode, it can be used to observe and record SOAP messages and to provide the
necessary data for the State Model-based Test Runner tool evaluates the tests. In the
simulating mode, the mediator works as stubs for services that are unavailable or under
development. This tool is integrated with an ESB, using its capabilities to monitor and sim-
ulate the involved services. If the service-oriented application is already based on an ESB,

58 4.3. TESTING PROCESS

the mediator can be included in the bus as a component. Otherwise, more configurations for
deploying the SUT in the ESB are needed, though this task can also be automated. Scripts
may be used to deploy the services under test in the ESB.

4.3.3 Steps of the Process

After describing artifacts and tools, we discuss each step of the MBT process for service-
oriented applications using state models.

1. Selection of a test scenario: It is usually infeasible to create and maintain only one test
model for the entire application. In order to circumvent such limitation, a specific part or feature
of the SUT should be selected, i.e., to define a test scenario. Thus, the tester should identify test
scenarios that are complex enough to create a model and that are reasonably simple to avoid too
many states and transitions. As consequences of these scenarios, meaningful tests can be generated
and the state space explosion problem is controlled.

Identifying and specifying test scenarios are helpful for SOAs since the tester can divide the
tests into less complex contexts. For instance, a test scenario can be initially defined for each
service. If a single service is too complex, two or more scenarios can be selected for this service.
In a later step, more scenarios can be selected for the service composition. Moreover, the tester can
use the available artifacts, such as interface specifications (WSDL) and composition descriptions
(WS-BPEL, WS-CDL), as sources of information to define test scenarios.

2. Building of the test model: The tester designs a state model to represent the behavior
observed in the test scenario. In this context, we assume that the model is created exclusively
to support the tests. This assumption will guarantee a redundancy necessary to the testing: the
intended and the actual behavior (Pretschner and Philipps, 2004). Moreover, reusing analysis
and design models may not be possible since some service-oriented applications are defined and
assembled dynamically in an agile context. This step should be performed by a tester with more
skills in modeling (we refer to as test designer in Figure 4.2).

Considering the SUT as a black box, a state model can be designed by controlling inputs and
observing outputs. Thus, the model abstracts away the complexity and the tester can focus on
states and transitions that compose the test scenario. Thus, the tester can concentrate exclusively
on the modeling activity. Although there are a couple of differences between single services and
compositions, state models are applicable to both contexts (Keum et al., 2006; Mei et al., 2009a).
State models also help in testing dynamical services since, even though the real services that will
be integrated are unknown, it is possible to model its abstract behavior.

At this step, the linking information artifact is produced connecting test models and service
artifacts. The service artifacts are used as supporting resources. In a composite service, the pres-
ence of the composition description can help in the modeling process. A model can be partially
or completely derived from these descriptions. Another possibility is to use these descriptions to
verify the models built by the tester.

CHAPTER 4. MBT PROCESS OF SERVICE-ORIENTED APPLICATIONS 59

3. Definition of test selection criteria: Usually, an infinite number of test cases can be gener-
ated from a model. Thus, it is necessary to restrict the size of the test suite by defining test selection
criteria. These criteria are usually related to model coverage and are implemented by algorithms
that traverse the model. Examples of these algorithms (methods) are shown in Chapter 3. This step
can be completely automated if standard test selection criteria are adopted and implemented in the
State Model-based Test Generator tool.

4. Generation of abstract tests: This step is automated using the State Model-based Test
Generator and State Model-to-SOA Adaptor Generator tools. These tools produce a set of
abstract test cases and an abstract adaptor. Abstract test cases are derived from state models as in-
put/output sequences. Possible changes in the SUT are handled by regenerating tests for a updated
test model. This step and the following ones can be performed by testers with other skills (we refer
to as test developer in Figure 4.2).

5. Concretization of tests: In this step, the abstract test cases are transformed into executable
ones. An adaptor that mediates the level of abstraction between the model and the SUT is devel-
oped. The tester uses the abstract adaptor as the initial point to concretize the tests. As interface
descriptions (WSDL) are common in Web services, much effort is saved since the source code
used to interact with the service can be automatically generated. If the tester connects test models
and service artifacts using the linking information artifact, more effort can be saved.

6. Execution of tests: This step uses the abstract test suite and the concrete adaptor to execute
the tests on the SUT. The State Model-based Test Runner and ESB-based Test Mediator
tools perform this step automatically.

7. Analysis of results: The State Model-based Test Runner tool also automates this step.
If some fault is detected, the tester can use a set of resources/artifacts to identify and correct it,
such as abstract and concrete test cases, recorded SOAP messages, and the state model.

8. Verification and validation of produced artifacts: This orthogonal step verifies and val-
idates artifacts produced along the process. State models and concrete adaptors are the main ar-
tifacts that need verification and validation in this step. The state model needs to be validated
with respect to the requirements of the service-oriented application. As an advantage of MBT, the
model can be built in initial stages of the development process and faults can be revealed earlier.
If there exist semantic or composition descriptions, these artifacts are an additional information to
verify the test model. The concrete adaptor should be also verified since, as a program, it can also
include faults. The execution of the tests (Step 6) can be used as a test for the adaptor.

4.4 Exploratory Study

We conducted an exploratory study to analyze the MBT process for service-oriented applica-
tions. The goal is to provide an initial evaluation of the testing process concerning the level of
automation and its practical usage in service-oriented applications. We divided the study into two

60 4.4. EXPLORATORY STUDY

parts: (i) we developed a prototype tool, named JStateModelTest, to instantiate the tools pro-
posed in the process; and (ii) a case study was performed using two service-oriented applications.

4.4.1 JStateModelTest

The JStateModelTest tool is composed of four modules, namely test-generator,
adaptor-generator, runner, and mediator, following the tools proposed in the testing
process shown in Section 4.3.2. The tool, with its four modules, has around 3500 Lines of Code
(LoC). We developed the tool using the programming language Java and its available frameworks
for Web services. We also assume that Java is the programming language used to write the tests.
The modeling technique supported by the tool is the Mealy FSM presented in Chapter 3. Each
module is described in detail as follows.

test-generator: This module implements the P-method (Simao and Petrenko, 2010b)
for test case generation from FSMs. The method is able to generate a full fault coverage test suite
and also includes optimizations to generate shorter test sequences. It is also able to increment
user-defined test suites, enhancing their fault detection capability. An example for this method can
be found in Section 3.3. Although we chose the fault coverage, it is not difficult to implement
other test selection criteria or integrate external tools. The only restriction is to generate abstract
test suites in a format readable by the runner.

adaptor-generator: The basic idea to implement adaptors is to associate the adaptor
with a Java class and input/output symbols with its methods. These associations are done with
Java annotations. The annotation information is kept at runtime by the JVM, because the runner
module needs to access this information to run the tests. As a consequence, we have a simple and
flexible way of creating concrete adaptors. Moreover, adaptor-generator is able to create
an abstract adaptor (template) from the test model. The necessary structure is generated and the
tester just needs to implement the input and output events. Another possibility is to use the adaptor
class as a facade for developing complex interactions with the SUT.

runner: This module uses Java reflection mechanisms to call the corresponding method for
each input or output being tested. This information is retrieved by the usage of Java annotations.
Each input and output of a test case is called in sequence and if, in the end, all respective methods
returned true, the test case passed. Otherwise, runner stops the test case execution and shows
a fail message with the problematic input or output. Another functionality is a timeout threshold
that can be assigned, limiting the execution time of each input and output.

mediator: This module was based on Mule-ESB (MuleSoft, 2012). To use the mediator
module, it is necessary that all services whose messages will be monitored be routed by ESB,
i.e., all the communication with these services will first pass through the bus. We developed this
module as a Web service integrated with the Mule ESB, providing operations to retrieve messages
(monitoring). It is also possible to intercept and produce different messages to simulate certain
situations (simulation), such as timeout occurrences and emulating unavailable services.

CHAPTER 4. MBT PROCESS OF SERVICE-ORIENTED APPLICATIONS 61

A Java interface can be added to an adaptor class through dependency injection (the runner
module is responsible for adding the dependency at runtime). Thus, specific messages can be
accessed and checked inside the adaptor written by the tester. Another characteristic is that other
ESBs can be used without changing the developed adaptors. A new mediator may be developed
for a different ESB by implementing the standard mediator interface and configuring the runner
module.

4.4.2 Case Study

In this section, we present a case study aiming at evaluating the feasibility of the testing pro-
cess. We used the JStateModelTest tool to support the case study conduction. In this study, two
service-oriented applications were tested: ThirdPartyCall-SOA, a small application shown
in Section 4.2; and QualiPSo-Factory (QualiPSo, 2010), a more complex and real-world
application.

ThirdPartyCall-SOA We selected two scenarios: number of participants and participant’s sta-

tus. The former verifies the number of participants in a call session of the TPCS service. This sce-
nario involves different ways to increase/decrease the number of participants, besides restrictions
like a maximum number of participants and session termination after removing all participants.
The latter models the possible participant’s status during a call session. Figure 4.3 depicts the
FSM test model for the number of participants scenario.

Figure 4.3: FSM for the number of participants test scenario (SC-1-1) – extracted from (Endo
and Simao, 2011).

QualiPSo-Factory QualiPSo-Factory is a collaborative environment to support the de-
velopment of open source software (QualiPSo, 2010). It was developed as a service-oriented ap-

62 4.4. EXPLORATORY STUDY

plication by different partners from industry and academia in the context of the Quality Platform

for Open Source Software (QualiPSo) project1.

QualiPSo-Factory is composed of services which include functionalities concerning
project management, issue tracking, version control, coverage testing, calendar, VOIP, and so on.
The services are integrated with the core module that provides essential functionalities, such as
security, notification, and semantics. The core implements two types of services, internal and
external. The internal services are invoked only by other trusted services deployed inside the fac-
tory. The external services are visible for the Factory users and can be accessed by them as Web
services. We applied the proposed process to test external services provided by the core mod-
ule (QualiPSo-Factory 0.6). In this context, four test scenarios were selected. Figure 4.4 depicts
an FSM model for a test scenario involving access control. To conduct this study, we needed to
integrate the JStateModelTest tool with JUnit (JUnit, 2011) and Maven (ASF, 2011).

Figure 4.4: FSM for profile and group access control (SC-2-3) – adapted from (Endo and Simao,
2011).

Analysis of Results Table 4.1 summarizes the data collected for the two applications.
We selected two test scenarios for ThirdPartyCall-SOA (SC-1-1, SC-1-2) and four for
QualiPSo-Factory (SC-2-1, ..., SC-2-4). For each test scenario, Table 4.1 shows data about
the FSM test model, the concrete adaptor, and the test suite.

The FSM models have from four to seven states, loops and an infinite number of possible
paths. FSMs were partially specified and, as seen in Figures 4.3 and 4.4, presented a manageable
size to be manipulated by graphical tools. We measured the effort necessary to implement the
concrete adaptors using LoC. The total LoC for each adaptor depends on the test model size, more
specifically the number of inputs and outputs. Some developed code was automatically gener-
ated and reused. Moreover, the annotation-based structure of the abstract adaptor (produced by the
adaptor-generatormodule) fosters code of low complexity (≈ 2.2 CC). It produced an aver-

1http://www.qualipso.org – last accessed on 20/02/2013.

CHAPTER 4. MBT PROCESS OF SERVICE-ORIENTED APPLICATIONS 63

Table 4.1: Data about test scenarios of ThirdPartyCall-SOA and QualiPSo-Factory –
adapted from (Endo and Simao, 2011).

ThirdPartyCall-SOA QualiPSo-Factory
Measure SC-1-1 SC-1-2 SC-2-1 SC-2-2 SC-2-3 SC-2-4

FSM Test Model
states 7 5 4 5 5 5

transitions 26 20 13 28 33 22
input symbols 12 10 8 10 13 9

output symbols 10 7 3 6 6 3

Concrete Adaptor
LoC 487 334 206 216 368 199

methods 31 22 13 18 23 14
average # LoC for input

symbol
11.9 9.5 13.8 8.7 9.6 10.8

average # LoC for output
symbol

14.4 15.3 1.6 2.3 7.3 1.6

average Cyclomatic
Complexity (CC)

2.4 2.2 2.2 1.8 2.3 2.0

Test Suite
test cases 41 31 12 28 33 30

average test length 4.4 3.6 4.6 4.0 4.6 5.3

age of≈10.7 LoC and≈7.1 LoC to implement each input symbol and each output symbol, respec-
tively. Data about the concrete adaptors were collected using Eclipse Metrics (SourceForge.net,
2005). test-generator and runner were essential to automate the generation and execution
of test suites. mediator was used to observe and verify messages exchanged during the tests.
The test suites have an average length of 4.4 input symbols per test case. The number of test cases
varies according to the model complexity (number of states, transitions, inputs, and outputs).

Although the two applications have different sizes and domains, the data considering isolated
test scenarios are similar. The key difference is the number of test scenarios that will increase
according to the application complexity and size. We identify four main results of the case study.
First, the selection of test scenarios restricts the test model size, keeping the model manageable
and meaningful. Moreover, it shows that FSMs can be applied to test service-oriented applications.
Second, a reasonable effort for developing adaptors can be reached by using adequate structures
and source code generation. Third, test cases are automatically generated and more tests can be
included by adopting alternative test methods. Fourth, the JStateModelTest tool was helpful to
support the testing process usage.

4.5 Final Remarks

This chapter has presented an MBT process for service-oriented applications that uses state
models. The process has been described discussing improvements to overcome issues on testing
service-oriented applications. Finally, we have presented an exploratory study of the process,
evaluating its feasibility and aspects of implementation.

64 4.5. FINAL REMARKS

The contributions of this chapter are twofold: (i) an MBT process for service-oriented ap-
plications that adds additional steps, tools, and artifacts, to tackle specific characteristics of this
software class; and (ii) an exploratory evaluation of the process, considering its automation (tools)
and practical usage (case study). Our proposal advances toward providing a formal, flexible and
automated process to test service-oriented applications. We do not differ between single services
and service composition during the process description, being applied for the both contexts. Thus,
the tester does not need to change the strategy when testing different levels of integration. We
have achieved some practical results in the case study, presenting reasonable development effort
and complexity. Regarding the tools, the development of prototypes has provided evidences that a
high level of automation can be reached.

In this study, we have used the modeling technique (FSMs) and a related generation method
(P) to support modeling and test generation during the process instantiation. No further extensions
were proposed to the modeling technique and the test generation. It characterizes a limitation
since specific features of SOAs and Web services are not considered in these steps. The use of
FSMs is quite intuitive with single services since it is direct for testers to relate requests and
responses with inputs and outputs, respectively. On the other hand, abstracting states and obtaining
a reduced model remain a challenge for testers. Although state models have been applied in service
compositions as shown in Section 2.5.1, their application has some limitations and event-driven
techniques like ESGs seem promising to support MBT of composite services. In the next chapter,
we elaborate a novel approach using the gained experience in Chapter 3 and being inspired by
steps, artifacts, and tools described in this chapter.

CHAPTER

5
Holistic Testing of Service

Compositions

5.1 Overview

To assure the delivery of high quality and robust service-oriented applications, service testing
has received much attention (as shown in Section 2.5). In Chapter 4, we have proposed a process
that identifies steps, tools, and artifacts to support the MBT of service-oriented applications. Al-
though the exploratory study gives evidences of the process’ practical use, specific mechanisms
are still necessary when testing service compositions. First, the behavior of the composite services
is highly dependent on the partner services. In service compositions, there exist complex com-
munications among the integrated services in which missing or unexpected messages can lead to
a failure. Furthermore, the composition may also fail due to an undesirable behavior of partner
services, such as unavailable servers, corrupted messages, and long response time. Testing those
cases systematically is a challenging task (Ilieva et al., 2011).

An ESG-based approach is promising due to several reasons. First, message exchanges in a
service composition can be viewed as an ordered sequence of events. Second, ESG modeling can
be learned in a short period, demands little manual work, and has supporting tools (Belli et al.,
2006). Furthermore, artifacts (e.g., standardized service descriptions in WS-BPEL or WS-CDL)
are not necessary to create an ESG or any other model for a service composition. That is, an ESG
can be constructed in an ad-hoc way by the tester wherever no model is available.

This chapter introduces a holistic approach, called ESG for Web Service Compositions
(ESG4WSC), we propose to generate cost-effective test cases for composite services. It is assumed

65

66 5.2. INTRODUCING THE ESG4WSC APPROACH

that the tester can observe and modify the exchanged messages using an ESB, i.e., the service com-
position is considered as a black box, but the tester has control over messages exchanged by the
partner services. The novelties and merits of this chapter are summarized as follows:

• An event-based approach is proposed to support service composition testing by: (i) extend-
ing the basic notions of ESG (Belli et al., 2006), referred to as ESG4WSC, for testing the
service composition behavior under regular circumstances (positive testing) and undesirable
situations (negative testing); and (ii) introducing algorithms to generate positive and negative
test cases from an ESG4WSC model.

• Two tools are introduced to support automation: (i) Test Suite Designer (TSD) provides a
graphical user interface which allows to model the SUT and to generate test cases; and (ii)

Event Runner for Test Execution (ERunTE) automates test execution by composing three
modules: a Web service, a test runner, and an ESB component.

This chapter is a summary of paper “A Holistic Approach to Model-based Testing of Web Service

Compositions”, Belli, F., Endo, A. T., Linschulte, M. and Simao, A., published in the Software:
Practice and Experience journal, DOI: 10.1002/spe.2161 (Belli et al., 2013); the authors’ names
are alphabetically ordered in this paper. The algorithm and its definitions concerning the event
tree, and the model metrics are proposed in this dissertation.

5.2 Introducing the ESG4WSC Approach

To facilitate the description and understanding of the approach, a “running example” is intro-
duced first. Then, the ESG4WSC model is described in detail.

5.2.1 Running Example

The business process to grant loans called xLoan, proposed in (Bentakouk et al., 2009), is the
running example used to illustrate the approach. The example involves three services: LoanService

(LS), BankService (BS), and BlackListInformationService (BLIS). LoanService represents the own
business process xLoan whose workflow is implemented using WS-BPEL. It contains three oper-
ations: request, cancel, and select. BankService represents the financial agency that approves (or
not) loans, providing offers to its clients when a loan is approved. The operations used in the ex-
ample are approve, offer, confirm and cancel. BlackListInformationService provides an operation
checkBL to check if a client has debits with some financial organization.

The example presented in (Bentakouk et al., 2009) is extended to add parallel flow (a common
entity of service compositions) in the process by including a new service called CommercialAsso-

ciationService (CAS). Similar to BlackListInformationService, CAS provides operations to check

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 67

whether a client has debits with some commercial organization. In the extension, both services are
supposed to be called in parallel. If the client has debit according to one of them, the client needs
the bank approval.

5.2.2 The ESG4WSC Model

This section introduces an event driven modeling technique, named ESG4WSC, that repre-
sents the request and response messages exchanged between services involved in a service com-
position. When a given event is refined by input parameters that determine the next events, de-
cision tables are associated to augment the representation. A Decision Table (DT) logically links
constraints ("if") with events ("then") that are to be triggered, depending on combinations of con-
straints ("rules"). DTs are powerful mechanisms for handling sequences of events which depend
on constraints, and refining data modeling of calls to invoked services (Belli and Linschulte, 2010).
DTs are formally defined as follows.

Definition 1. A (simple/binary) decision table DT = {C,E,R} represents events that depend on
certain constraints, where:

• C is the nonempty finite set of constraints (conditions), that can be evaluated as either true

or false,

• E is the nonempty finite set of events, and

• R is the nonempty finite set of rules each of which forms a Boolean expression connecting
the truth/false configurations of constraints and determines the executable or awaited event.

Definition 2. Let R be a set of rules as in Definition 1. Then a rule ri ∈ R is defined as ri =

(CTrue, CFalse, Ex) where:

• CTrue, CFalse ⊆ C are the disjoint sets of constraints that have to be evaluated as true and as
false, respectively,

• Ex ⊆ E is the set of events that should be executable if all constraints ct ∈ CTrue are
resolved to true and all constraints cf ∈ CFalse are resolved to false. In this work, |Ex| = 1

for all rules to avoid nondeterminism.

Note that, under regular circumstances, CTrue and CFalse partition C, i.e., CTrue ∪CFalse = C

and CTrue ∩ CFalse = ∅ . In certain cases, it is inevitable to have constraints with a don’t care

(noted as ‘-’ in a DT). In this case, such a constraint is not considered in a rule and is neither in
CTrue nor in CFalse.

68 5.2. INTRODUCING THE ESG4WSC APPROACH

Table 5.1 presents a DT that models the invoking process of operation checkBL of BLIS. It
contains two constraints on input parameter uniqueID, three successor events (inBList, notInBList,
SOAPFault), and three rules (R1, R2, R3). Rules are used to determine the successor event of
operation checkBL. For instance, R1 means that if uniqueID is valid and also in the blacklist (i.e.,
both constraints are true), then the next event (namely, event inBList standing for uniqueID being
in the blacklist) should be completed. In R3, if uniqueID is not valid, then the other constraint does
not matter (namely, ‘-’) and the next event is SOAPFault.

Table 5.1: A DT for operation checkBL of BLIS – adapted from (Belli et al., 2013).
Rules

checkBL(uniqueID) R1 R2 R3

Constraints
uniqueID is valid T T F
uniqueID in Blacklist T F -
inBList �

Events notinBList �
SOAPFault - invalid identification �

DTs are useful to describe constraints, but they are not appropriate for describing service com-
position interactions. Hence, the ESG notion is extended and combined with DTs in order to
consider additional aspects, such as communication, parallel flow and conditional activities.

Definition 3. An event sequence graph for web service compositions ESG4WSC = (V,E,M,R,

DT, f,Ξ,Γ) is a directed graph, where

• V is a nonempty finite set of vertices (representing events),

• E ⊆ V × V is a finite set of arcs (edges),

• M is a finite set of refining ESG4WSC models,

• R ⊆ V ×M is a relation that specifies which ESG4WSCs are connected to a refined vertex,

• DT is a set of DTs that refine events according to function f ,

• f : V → DT ∪ {ε} is a function that maps a vertex v ∈ V to a decision table dt ∈ DT . If
v ∈ V is not associated with a DT, then f(v) = ε,

• Ξ ⊆ V is a finite set of distinguished vertices with ξ ∈ Ξ called entry nodes, wherein for
each v ∈ V \ Ξ there exists at least one sequence of vertices 〈ξ, v0, . . . , vk〉 from ξ ∈ Ξ to
vk = v, for i = 0, . . . , k − 1 and (ξ, v0) ∈ E, and

• Γ ⊆ V is a finite set of distinguished vertices with γ ∈ Γ called exit nodes, wherein for each
v ∈ V \ Γ there exists at least one sequence of vertices 〈v0, . . . , vk, γ〉 from v0 = v to γ ∈ Γ

with (vi, vi+1) ∈ E, for i = 0, . . . , k − 1 and (vk, γ) ∈ E.

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 69

Definitions 4 and 5 elaborate Definition 3, formalizing the set of vertices and the set of DTs,
respectively.

Definition 4. Let V be as in Definition 3. Then, the set of vertices V is partitioned into Ve, Vrefined,
Vreq and Vresp, i.e., V = Ve ∪ Vrefined ∪ Vreq ∪ Vresp and Ve, Vrefined, Vreq and Vresp are pairwise
disjoint, where

• Ve is a set of generic events,

• Vrefined = {v ∈ V | ∃m ∈ M ∧ (v,m) ∈ R} is a set of vertices refined by one or more
ESG4WSCs. A refinement with more than one ESG4WSC represents behavior running in
parallel,

• Vreq is a set of vertices modeling a request to its own interface/operations (public) or an
invoked service (private), and

• Vresp is a set of responses to a public or private request. Therefore, it is also remarked as
public or private.

Definition 5. Let DT be defined as in Definition 3. Then, the set of decision tables DT is parti-
tioned into DTseq and DTinput, where

• DTseq is the set of decision tables that model the execution restrictions for following events,
and

• DTinput is the set of decision tables that model constraints for input parameter of invoked
operations.

Since service compositions always initiate with one or more request events, set Ξ contains only
vertices v ∈ Vreq. To mark the entry and exit of an ESG4WSC, all ξ ∈ Ξ are preceded by a pseudo
vertex [/∈ V and all γ ∈ Γ are followed by another pseudo vertex] /∈ V . For two events v, v′ ∈ V ,
event v′ can follow the execution of v if and only if (v, v′) ∈ E. In this case v′ is also called
successor of v and v is called predecessor of v′. If vertex v ∈ V has more than one successor, then
v can be refined by a DT.

The semantics of an ESG4WSC model is as follows: Any v ∈ V represents an event, e.g., a
request or a response which occurs during the invocation of another service. Request and response
events can be divided into public and private. A public request is controlled by the tester, i.e.,
it is an operation call to the composition itself which is supposed to be done by a consumer or
a tester. A public response is expected to be an answer of the composition to a public request
and therefore should be observable by the consumer/tester. Private requests and responses, which
represent events of the partner services, are usually not observable by a consumer; however, it is
assumed that they are observable by the tester. Private requests are to be observed by the tester and
the tester should control and (if necessary) send back the appropriate response.

70 5.2. INTRODUCING THE ESG4WSC APPROACH

Example 6. Figure 5.1 shows an ESG4WSC model for xLoan. Requests are represented by gray
vertices in circle shapes; responses are represented by gray vertices in ellipse shapes. Vertices
with a bold line represent public requests and responses. Vertices refined by DTs are double-
circled. Event check (dashed box) is a refined event with two refining ESG4WSCs which represent
operations checkBL (for service BLIS) and inDebtorsList (for service CAS) that are to be executed
concurrently. The corresponding ESG4WSC using the defined sets and functions looks like this:

ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ) with

• Ve = {Timeout>2h},

• Vrefined = {check},

• Vreq = {LS:requestLoan, BS:approveBank, BS:offer, LS:cancel, LS:SelectOffer,
BS:cancelBank, BS:confirmBank}

• Vresp = {BS:approved, BS:notApproved, LS:notApprovedMSG, BS:Offers, LS:replyOffers,
LS:wrongOffer, LS:replySelect}

• E = {(LS:requestLoan, BS:approveBank), (LS:requestLoan, check), . . .},

• M = {MBLIS,MCAS},

• R = {(check,MBLIS), (check,MCAS)},

• DT = DTseq ∪DTinput = {dtcheck}∪ {dtLS:requestLoan,dtLS:cancel,dtLS:SelectOffer},

• f(check) = dtcheck,
f(LS:requestLoan) = dtLS:requestLoan,
f(LS:cancel) = dtLS:cancel,
and f(LS:SelectOffer) = dtLS:SelectOffer.

• Ξ = {LS:requestLoan},

• Γ = {LS:notApprovedMSG, BS:cancelBank, LS:replySelect}

The ESG4WSC model can be seen as a simplified representation of possible and expected execu-
tions of a service composition. It aggregates sequences of events which describe walks of execution
and message exchanges along the execution.

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 71

Figure 5.1: ESG4WSC for the xLoan example – adapted from (Belli et al., 2013).

72 5.3. POSITIVE TESTING

Definition 7. Let V andE be defined as in Definition 3. Then any sequence of vertices 〈v0, . . . , vk〉
is called an event sequence (ES) if (vi, vi+1) ∈ E, for i = 0, . . . , k − 1. The length l of an ES
〈v0, . . . , vk〉 is defined as the number of vertices | 〈v0, . . . , vk〉 |, that is, l(ES) = | 〈v0, . . . , vk〉 | =
k+ 1. An ES = 〈vi, vk〉 of length 2 is called an event pair (EP). Furthermore, an ES is partial (or,
it is called a partial event sequence, PES), if v0 ∈ Ξ. An ES is complete (or, it is called a complete

event sequence, CES), if v0 ∈ Ξ and vk ∈ Γ.

Definition 8. Two events or ESs a and b that are to be executed in parallel are denoted as a||b. The
operator || is commutative, i.e., a||b = b||a, and associative, i.e., (a||b) ||c = a|| (b||c).

Example 9. For the xLoan example given in Figure 5.1, services CAS and BLIS are to be exe-
cuted in parallel, e.g., following sequence might hold:

〈BLIS:checkBL, BLIS:inBList 〉 || 〈CAS:inDebtorsList,CAS:debtorsTrue 〉

Based on Definitions 7 and 8, sequences of events can be derived from the ESG4WSC and may
represent parallel execution. A PES represents a sequence of events that starts with an entry node;
a CES represents an event sequence that starts with an entry node and ends with an exit node.

5.3 Positive Testing

This section introduces the underlying fault model and explains how test cases are generated
for positive testing a composite service.

5.3.1 Fault Model

A CES (Definition 7) describes a specific execution of a service composition that has to be
enforced during testing. Thus, it is expected that exactly those events in the specified order are
executed. According to this, the following faults might occur during the execution:

• there are calls to services which are not defined in the CES,

• there are missing calls to services which are defined in the CES,

• the sequence of calls is different from the sequence given by the CES, and

• the parameter of calls to the invoked services do not correspond to the expected ones.

In order to cause and control a specific CES of the composite service, we need to take control of
partner services’ messages, since they communicate with the SUT and the flow of the composition
might depend on a returned response. The modeled constraints of DTs enable to validate the data
passed to the service operations. If the passed data values do not fit to the constraints, we have an
irregular behavior.

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 73

5.3.2 Test Case Generation

To detect faults in the service composition (due to the fault model described in previous sec-
tion), a test suite that covers all EPs is generated. Covering EPs is related to criterion all-edges
as in structural testing (Section 2.3.1) and transition cover as in FSMs (Section 3.2). If possible,
the cost should be minimized when generating CESs to cover all EPs. The problem of generating
minimal CESs is related to the Chinese Postman Problem (CPP), as in (Belli and Budnik, 2004).
The algorithm for deriving CESs from an ESG4WSC model is described in following steps:

1. Generate CESs for the refined vertices first (recursive call)

2. Add multiple edges (representing EPs) to the ESG4WSC

(a) If a refined vertex has a DT restricting the ongoing execution

i. identify the valid successor for each CES with respect to the DT

ii. add an edge from the refined vertex to the allowed successor

(b) If a refined vertex has not a DT

i. add an edge from the refined vertex to the successor (there should be only one) for
each CES

3. Generate CESs according to the CPP algorithm (i.e., cover all EPs by CESs of minimal total
length)

4. Replace refined vertices in the resulting CES set of Step 3 with the CESs derived in Step 1
with respect to their allowed successors

Note that Step 2 adds multiple edges to the underlying ESG4WSC, that is, every edge represents a
CES of the refined vertex and its valid successor. The benefit of this approach is that the resulting
CES set derived in Step 3 contains the refined vertex and its corresponding successor as much as
needed so that the CESs of Step 1 can be combined completely with the CESs of Step 3 (recall that
every EP/edge is to be covered in Step 3). After generating CESs, a DT for the initial composition
call is to be defined and evaluated. Therefore, constraints that are associated to the initial input
data are selected and added to the initial request event. If a constraint set cannot be fulfilled, CESs
can be deleted, e.g., when two contradicting constraints are to be satisfied. A formal description of
the CES generation process can be found in Appendix A, Algorithm 1. Example 10 shows the test
generation process for the running example.

Example 10. According to Figure 5.1, the test generation algorithm looks as follows:

Step 1 - generate CESs for refined vertices: the CPP algorithm is applied to the two refining
ESG4WSCs in event check (Figure 5.1). The event sequences of each ESG4WSC are combined
with operator ||. The following sequences for refined vertex check have been generated:

74 5.3. POSITIVE TESTING

S1: 〈 〈BLIS:checkBL, BLIS:inBList 〉 || 〈CAS:inDebtorsList,CAS:debtorsTrue 〉 〉

S2: 〈 〈BLIS:checkBL, BLIS:inBList 〉 || 〈CAS:inDebtorsList,CAS:debtorsFalse 〉 〉

S3: 〈 〈BLIS:checkBL,BLIS:NotinBList 〉 || 〈CAS:inDebtorsList,CAS:debtorsTrue 〉 〉

S4: 〈 〈BLIS:checkBL,BLIS:NotinBList 〉 || 〈CAS:inDebtorsList,CAS:debtorsFalse 〉 〉

Step 2 - add edges: event check has a DT that restricts the execution of next events BS:offer and
BS:approveBank, in Table 5.2. To cover all rules in this table, event pair (check, BS:approveBank)

needs to be covered three times (R1, R2, R3) and event pair (check, BS:offer) once (R4). Thus,
the algorithm adds the following edges according to Table 5.2:

• 3 edges (check, BS:approveBank) for sequences S1 to S3

• 1 edge (check, BS:offer) for sequence S4

An intermediate ESG4WSC is produced with extra edges added, as illustrated in Figure 5.2.

Table 5.2: DT for vertex check of Figure 5.1 – extracted from (Belli et al., 2013).
dtcheck R1 R2 R3 R4
event: BLIS:inBList happens T T F F
event: BLIS:NotInBList happens F F T T
event: CAS:DebtorsTrue happens T F T F
event: CAS:DebtorsFalse happens F T F T
BS:offer �
BS:approveBank � � �

Figure 5.2: ESG4WSC for the xLoan example extended by additional edges – adapted from
(Belli et al., 2013).

Step 3 - generate CESs: The CPP algorithm is applied on the intermediate ESG4WSC (pro-
duced in Step 2) to generate CESs. In this step, the refined events (e.g., check) are considered as
simple vertices (Figure 5.2). The following CESs have been generated (refined vertices and their
successor are emphasized with a bold font):

CES1: 〈LS:requestLoan, BS:approveBank, BS:Notapproved, LS:notApprovedMSG 〉

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 75

CES2: 〈LS:requestLoan, check, BS:approveBank, BS:approved, BS:offer,

BS:Offers, LS:replyOffers, LS:cancel, BS:cancelBank 〉

CES3: 〈LS:requestLoan, check, BS:approveBank, BS:approved, BS:offer,

BS:Offers, LS:replyOffers, LS:SelectOffer, LS:wrongOffer, LS:cancel,

BS:cancelBank 〉

CES4: 〈LS:requestLoan, check, BS:approveBank, BS:approved, BS:offer,

BS:Offers, LS:replyOffers, LS:SelectOffer, LS:wrongOffer,

LS:SelectOffer, LS:wrongOffer, Timeout > 2h, BS:cancelBank 〉

CES5: 〈LS:requestLoan, check, BS:offer, BS:Offers, LS:replyOffers,

LS:SelectOffer, BS:confirmBank, LS:replySelect 〉

CES6: 〈LS:requestLoan, check, BS:offer, BS:Offers, LS:replyOffers,

Timeout > 2h, BS:cancelBank 〉
Step 4 - replace refined vertices by sequences of Step 1: Refined events are searched in the

CES set generated in Step 3 and are replaced by the corresponding CESs derived from the refining
ESG4WSCs in Step 1. In the final test suite, event pair (check, BS:approveBank) is covered
exactly three times in CES2, CES3, CES4 using S1, S2, S3, respectively, to replace check. Event
pair (check, BS:offer) is covered twice in CES5 and CES6, S4 is used in both CESs to replace
check.

CES1: 〈LS:requestLoan, BS:approveBank, BS:Notapproved, LS:notApprovedMSG 〉

CES2: 〈LS:requestLoan, 〈 〈BLIS:checkBL, BLIS:inBList 〉 ||

〈CAS:inDebtorsList,CAS:debtorsTrue 〉 〉, BS:approveBank, BS:approved,

BS:offer, BS:Offers, LS:replyOffers, LS:cancel, BS:cancelBank 〉

CES3: 〈LS:requestLoan, 〈 〈BLIS:checkBL, BLIS:inBList 〉 ||

〈CAS:inDebtorsList,CAS:debtorsFalse 〉 〉, BS:approveBank, BS:approved,

BS:offer, BS:Offers, LS:replyOffers, LS:SelectOffer, LS:wrongOffer,

LS:cancel, BS:cancelBank 〉

CES4: 〈LS:requestLoan, 〈 〈BLIS:checkBL,BLIS:NotinBList 〉 ||

〈CAS:inDebtorsList,CAS:debtorsTrue 〉 〉, BS:approveBank, BS:approved,

BS:offer, BS:Offers, LS:replyOffers, LS:SelectOffer, LS:wrongOffer,

LS:SelectOffer, LS:wrongOffer, Timeout > 2h, BS:cancelBank 〉

CES5: 〈LS:requestLoan, 〈 〈BLIS:checkBL,BLIS:NotinBList 〉 ||

〈CAS:inDebtorsList,CAS:debtorsFalse 〉 〉, BS:offer, BS:Offers,

LS:replyOffers, LS:SelectOffer, BS:confirmBank, LS:replySelect 〉

CES6: 〈LS:requestLoan, 〈 〈BLIS:checkBL,BLIS:NotinBList 〉 ||

〈CAS:inDebtorsList,CAS:debtorsFalse 〉 〉, BS:offer, BS:Offers,

LS:replyOffers, Timeout > 2h, BS:cancelBank 〉

The generation of data based on the initial DT is related to the constraint satisfaction problem

(CSP). A CSP is defined by a set of variables X1, X2,...,Xn and a set of constraints, C1,C2,...,Cm.

76 5.3. POSITIVE TESTING

Each variable Xi has a nonempty domain Di of possible values. Each constraint Ci involves
some subset of the variables and specifies the allowable combinations of values for that subset (see
(Russell and Norvig, 2003)). Each rule of the DT under consideration represents a CSP.

The described algorithm is used to generate a test suite that covers all edges, namely EPs.
In other words, the test suite covers all ESs with length 2. Similar processes can be performed to
cover ESs with higher length k. For this purpose, it is necessary to transform the ESG4WSC model
after Step 1 (see (Belli et al., 2011b) for further details on the transformation). The coverage of
this graph will deliver the desired test suite.

5.3.3 Generating CESs using Event Tree’s

In this section, we propose an algorithm to generate CESs that cover all EPs. It is an alternative
option to the CPP algorithm. As a consequence, this algorithm does not produce a minimum-cost
solution for test execution. This algorithm is based on a tree structure called event tree which is
built using the ESG4WSC model.

Definition 11. Let ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ) be an ESG4WSC, as in Definition 3.
Then T = (VT , ET , root) is an event tree of ESG4WSC iff:

• T is a tree,

• VT is a set of tree nodes that are pairs 〈v, i〉 such that v ∈ V and i ∈ Z+,

• ET ⊆ VT × VT is a set of edges (〈v, j〉, 〈u, k〉) ∈ ET connecting parent node 〈v, j〉 to child
node 〈u, k〉, such that (v, u) ∈ E and j, k ∈ Z+, and

• root is the pseudo-vertex [and its child nodes are composed by entry vertices in the
ESG4WSC. In other words, given a node 〈v, i〉 that is child of root, then v ∈ Ξ.

Tree nodes are defined as pairs since an event of the ESG4WSC model can appear zero, one or
more times in the tree. The positive integer is used to enumerate and identify the occurrences of a
given event, as an index.

Definition 12. An event tree T of ESG4WSC is complete (or, it is called a complete event tree)
if all its leaf nodes contain exit nodes.

As the steps to deal with DTs and refined events are equal to the algorithm described in Sec-
tion 5.3.2, we focus on describing the steps to generate CESs out of an ESG4WSC model (Step 3).
The algorithm is divided into the three following steps:

1. Building the event tree: in this step, vertex [is labeled as the tree root. For all nodes, the
event is expanded and its successors (in the ESG4WSC) are added in the tree as child nodes.

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 77

This process is repeated until all events are expanded exactly once following a breadth-first
search. Thus, it guarantees that all edges (EPs) are covered once in the tree. This procedure is
similar to build a testing tree from an FSM, more details in (Chow, 1978). For the ESG4WSC
in Figure 5.2, the event tree built in this step is shown in Figure 5.3 (part above the black
horizontal lines). The index of each tree node is represented by the number within a small
box near the event vertex.

2. Completing the tree: for all leaf nodes in tree that do not contain an exit node, append the
shortest path (event sequence) to an exit node. This process is represented in Figure 5.3 by
bold dashed edges (part below the black horizontal lines). This step ensures that the event
tree is complete.

3. Deriving CESs: CESs are generated using the complete event tree built in the previous steps
(as exemplified in Figure 5.3). CESs are derived by a breadth-first search that traverses the
entire tree, i.e., each path from the root to a leaf node is a CES. After this process, the set of
CESs covers all EPs in the ESG4WSC model.

Figure 5.3: Complete event tree for the model in Figure 5.2.

78 5.4. NEGATIVE TESTING

Using this algorithm, 11 CESs are generated, while the CPP-based algorithm produces six
CESs, as shown in Section 5.3.2. As a consequence, more events need to be executed to cover all
EPs. A detailed analysis of the trade-offs between these two algorithms is presented in Chapter 6,
Section 6.3.

5.4 Negative Testing

Section 5.3 described the testing process for expected/desired behaviors. However, it is also
important to test undesired situations where partner services do not work as expected. Thus, a
holistic approach is worthwhile that generates positive (desired) and negative (undesired) tests.

The negative testing checks separately unexpected behavior in public events and private events.
These two situations are represented by public faulty event sequences (PubFESs) and private faulty

event sequences (PriFESs). Sections 5.4.1 and 5.4.2 present the definitions and algorithms to
generate PubFESs and PriFESs from an ESG4WSC model.

5.4.1 Negative Testing of Public Events

The negative testing for public events involves generating sequences that cover unspecified
event pairs for public events, i.e., request and response messages of the service composition inter-
face. This part considers that a composition can be viewed and tested as a single service. First, the
ESG4WSC is used to derive an ESG4WS1 representing only public events of the service composi-
tion interface. Second, faulty pairs are derived from this ESG4WS using the algorithm proposed in
(Belli and Linschulte, 2010). Finally, each faulty pair is covered by an event sequence that contains
a faulty edge at the end (a negative test case). Given an ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ),
let z be a special event used to represent any faulty event, such that z /∈ V .

Definition 13. The ordered pair (pes;z), such that pes is a PES 〈v0, . . . , vk, vk+1〉 (Definition 7),
is a public faulty event sequence (PubFES), if the last two events of pes are public and there is no
edge connecting both, i.e., vk and vk+1 are public events and (vk, vk+1) /∈ V . In a PubFES, pes is
expected to produce a faulty event z.

Example 14. For the xLoan example given in Figure 5.1, the following pair is a PubFES:

(〈LS:requestLoan, BS:approveBank, BS:approved, BS:offer, BS:offers,

LS:replyOffers, LS:cancel, LS:SelectOffer 〉; z)

As there is no edge between the last two events LS:cancel and LS:SelectOffer, they were
selected as a faulty pair. For this undesired case, it is expected that the composition produces a
faulty event z. If no faulty event is produced, this test sequence fails; otherwise it passes. The
algorithm for deriving PubFESs from an ESG4WSC is as follows:

1ESG4WS is a modeling technique defined in (Belli and Linschulte, 2010) that represent the behavior of singles
services.

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 79

1. Transformation from ESG4WSC to ESG4WS: an ESG4WS is a model that contains only
the (public) request and response events for a single service. It can be obtained from an
ESG4WSC by removing the private events and keeping edges between any public events vi
and vj when there exists an ES from vi to vj . Thus, the obtained ESG4WS will contain only
events related to the composition itself and there is no private event. A formal description of
this transformation is shown in Appendix A, Algorithm 3.

2. Inclusion of faulty edges: in the produced ESG4WS, faulty edges are added between pairs
of events with no edges. The formal description of this step is also shown in Appendix A,
Algorithm 3.

3. Generation of test sequences: for each faulty edge (vi, vj) in the ESG4WS, find a PES pes
that leads to vi in the ESG4WSC. The algorithm to find a PES is implemented by a breadth-
first search, from the start event [to vi, that considers the refining ESG4WSCs involved. A
formal description of this procedure is shown in Appendix A, Algorithm 2. Then, append vj
to pes referred to as pes⊕ vj . Finally, create the PubFES (pes⊕ vj;z).

The formal description of this algorithm for generating PubFESs can be found in Appendix A,
Algorithm 4.

Example 15. Using xLoan, the ESG4WS in Figure 5.4 is obtained after the transformation. The
faulty edges are represented by gray dashed lines. The faulty edges are created by:

• connecting all response events with request events,

• connecting the start event [with all request events, and

• connecting request events with request events,

in case that there is no edge connecting them. The self-loop from LS:cancel to LS:cancel was
also considered since it represents a one-way operation.

After obtaining the ESG4WS, test cases have to be generated to cover the all faulty edges.
Then, for each faulty edge (vi, vj), a PES from the ESG4WSC (Figure 5.1) is derived to reach the
event vi. The event vj is included after vi and the faulty event z is added to the tuple. For the
faulty edge (LS:replySelect, LS:cancel), the following PubFES is obtained:

(〈LS:requestLoan, 〈 〈BLIS:checkBL,BLIS:NotinBList 〉 || 〈CAS:inDebtorsList,
CAS:debtorsFalse 〉 〉, BS:offer, BS:Offers, LS:replyOffers, LS:SelectOffer,

BS:confirmBank, LS:replySelect, LS:cancel 〉; z)

This PubFES tests a scenario in which the client successfully selects an offer (event
LS:replySelect is a confirmation message) and tries to cancel it afterwards (event LS:cancel).
This is not allowed by the composition and a fault should be produced. To generate the final test
suite of public negative tests, the same procedure is repeated for each faulty edge in the ESG4WS
(Figure 5.4).

80 5.4. NEGATIVE TESTING

Figure 5.4: ESG4WS for the xLoan public interface – adapted from (Belli et al., 2013).

5.4.2 Negative Testing of Private Events

It is often not clearly defined what happens with a composition if an partner service is not
working as expected. In this section, we propose an algorithm to generate test cases that cover
unexpected behavior of partner services. Event sequences are produced to reach private request
and response events and create undesirable situations according to some predefined fault classes.
The concept of sensitive events is also proposed in this section to deal with the oracle problem in
negative testing of private events.

In this work, seven fault classes are defined based on fault taxonomy and fault injection litera-
ture (Chan et al., 2009; Cavalli et al., 2010; Ilieva et al., 2011). The fault classes are the following:

No response: the invoked service does not send back a response for a request-response opera-
tion, e.g., due to internal problems or modified behaviors.

Long time response: the invoked service needs inappropriate long time to send a response
back.

Missing service: the service is missing, e.g., the server hosting the service is not available or
the service address (URL) has changed.

Unexpected fault: it can be an unexpected SOAP-fault returned by the invoked service or a
fault produced by the environment, e.g., a fault caused by pre/post-processing in the ESB.

Wrong XML schema: the invoked service sends back a message that is invalid for the known
XML Schema, e.g., due to some (untold) changes of the service by the provider.

Wrong XML syntax: the response of the invoked service contains a corrupted XML file, e.g.,
due to some noise in the network.

Right schema, wrong data: the response is a well-formed message that contains invalid data,
e.g., an invalid date.

Testing these undesirable situations is important to the robustness of the composite service
under test. Fault classes “no response”, “missing service” and “unexpected fault” can be tested for

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 81

every private request event of an ESG4WSC model. Fault classes “longtime response”, “wrong
XML schema”, “wrong XML syntax” and “right schema, wrong data” can be tested for every
private response event of an ESG4WSC. Table 5.3 summarizes this information and also includes
the symbols we use to represent each class in PriFESs.

Table 5.3: Fault classes and their relation to events – extracted from (Belli et al., 2013).
event of ESG4WSC

symbol request response
fa

ul
tc

la
ss

no response zNR �
long time response zLR �

missing service zMS �
unexpected fault zUF �

wrong XML schema zWSc �
wrong XML syntax zWSy �

right schema, wrong data zWD �

When one of the fault classes is provoked, an automated test oracle needs to be established to
verify the expected test outputs. A tester can decide to evaluate and define the expected behavior
for every single situation by hand. However, this would mean a lot of manual work and does not
scale well. A more straightforward approach we introduce is to mark events of the ESG4WSC
model as sensitive, i.e., these events are not allowed to show up after provoking one of the faulty
situations. In this case, the sensitive events are used as an oracle to automatically evaluate the
test cases. If after the execution of a PriFES no sensitive event is observed, the test case passes;
otherwise, it fails.

The tester should identify and highlight the sensitive events in the ESG4WSC. From a theo-
retical point of view, any event can be marked as sensitive. However, assuming that the sensitive
event is caused by the composition under test, public response events and private request events
are the main candidates. Among them, the tester needs to analyze which of these events are critical
according to the domain of the SUT. The tester should check which events cannot be observed in
the SUT if some faulty situation occurs.

Definition 16. Given an ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ), the nonempty set S ⊂ V

represents the events marked as sensitive. The sensitive events are not allowed to ocurr after
provoking a faulty situation.

Definition 17. Given that pes is a PES 〈v0, . . . , vk〉, z is any faulty event, and s ⊆ S is a set of
sensitive events, the triple (pes;z; s) is a private faulty event sequence (PriFES) if vk ∈ Vreq∪Vresp
is a private event and s is not empty.

Example 18. For the xLoan example given in Figure 5.1, let LS:replyOffers be a sensitive
event; the following triple is a PriFES:

(〈LS:requestLoan, 〈 〈BLIS:checkBL 〉 || 〈CAS:inDebtorsList, CAS:debtorsFalse 〉 〉;

zMS; {LS:replyOffers})

82 5.4. NEGATIVE TESTING

In this example, response event LS:replyOffers represents the approved loan and its offers.
Thus, event LS:replyOffers is selected as sensitive because the loan must not be granted if any
unexpected behavior happens in the process. zMS represents the fault class “missing service” that
must be provoked, i.e., service BLIS is not available. This sequence passes if no sensitive event
(LS:replyOffers) is produced by the composition after executing the PES and provoking zMS;
otherwise it fails.

The negative testing for private events generates sequences that cause some unexpected behav-
ior in the partner services, i.e., in the private events, and check the service composition in these
cases. The algorithm for deriving PriFESs from an ESG4WSC is as follows:

1. Let VRR be the set of all private request and response events in the ESG4WSC model. Then,
for each e ∈ VRR, find the shortest PES pes that reaches e (Algorithm in Appendix A,
Algorithm 2);

2. If e is a private request event,

(a) Copy pes and mark e with zNR to provoke the “no response” fault.

(b) Copy pes and mark e with zMS to provoke the “missing service” fault.

(c) Copy pes and mark e with zUF to provoke the “unexpected fault” fault.

3. If e is a private response event,

(a) Copy pes and mark e with zLR to provoke the “longtime response” fault.

(b) Copy pes and mark e with zWSc to provoke the “wrong XML schema” fault.

(c) Copy pes and mark e with zWSy to provoke the “wrong XML syntax” fault.

(d) Copy pes and mark e with zWD to provoke the “right schema, wrong data” fault.

4. For all sequences produced in previous steps, add the set of sensitive events s that is not
covered by pes to the PriFES, i.e., (pes; z; s).

The formal description of this algorithm can be found in Appendix A, Algorithm 5.

Example 19. Consider private request event CAS:inDebtorsList of the xLoan example. The
first step is to find the shortest PES that reaches CAS:inDebtorsList, i.e., pes=〈LS:requestLoan,
〈 〈BLIS:checkBL,BLIS:NotinBList 〉 || 〈CAS:inDebtorsList 〉 〉 〉.

Notice that CAS:inDebtorsList is part of refined event check. In this case, CESs
must be generated for the other parallel ESG4WSCs so that there is no influence on
event CAS:inDebtorsList and the provoked fault. Next, pes is copied to pes1 and event
CAS:inDebtorsList is marked with zNR. This PriFES tests the scenario in which the service
composition calls operation inDebtorsList and no answer/response is sent back. The same proce-
dure is performed for zMS and zUF, with the copies pes2 and pes3, respectively.

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 83

Let s = {LS:replyOffers} be the set of sensitive events, the resulting PriFESs are as follows:
(pes1; zNR; s), (pes2; zMS; s), and (pes3; zUF; s). As the client reputation must be good in both
services, BLIS and CAS, any fault in event CAS:inDebtorsList must not produce a successful
approval represented by LS:replyOffers, marked as sensitive. The same steps are repeated for
all other private request and response events.

5.5 Tool Support

For large models, test generation and execution can hardly be done by hand. Therefore, two
tools have been developed and used to support test case generation and test execution for the
ESG4WSC approach2. The tools described in this section were developed in cooperation with re-
searchers from Paderborn Universität, Germany. Particularly, the candidate implemented the event
tree algorithm (Section 5.3.3) and the model metrics for the tool described in Section 5.5.1. The
tool described in Section 5.5.2 was fully developed by the candidate. It is important to emphasize
that the two tools were inspired by the supporting tools of the MBT process defined in Chapter 4,
Section 4.3.2.

5.5.1 Test Generation

A tool called Test Suite Designer (TSD) provides a graphical user interface for the tester to
model all features of an ESG4WSC that are necessary for test generation. Figure 5.5 shows a
screenshot of this tool. The TSD tool implements the algorithms described in Sections 5.3.2,
5.3.3, 5.4.1, and 5.4.2 for generating positive and negative test suites. It also allows generating test
data out of DTs. Figure 5.6 shows a screenshot of how DTs are manipulated in TSD.

An XML format was defined to describe test cases generated by TSD. The resulting XML
files are used as input to the test execution environment. This integrates the test generation and
test execution and reduces the dependency between both environments. Thus, new tests can be
generated and no extra effort is necessary for concretization, except for the adaptors.

Figure 5.7 presents an example of a test case in the XML format. The file starts with an element
<TestCase>, followed by an element <CompleteEventSequence> that represents a CES.
Events are represented by the element <Event> with attributes to label and classify (type and
public) the event. Events with associated DT (Line 03) have an attribute to define which rule must
be tested and may include child elements <Param> to provide input data (Lines 04 and 05). A
refined event is represented by the element <RefinedEvent> (Line 07) and can include one
or more CESs. In the example, there are two CESs in parallel, the first in Lines 08-15 and the
second in Lines 16-21. When a private response event is supposed to answer a specific message,
the element <Message> can be used within the event, like in Line 31. A pre-defined SOAP

2The tools and a guide for their use can be found at http://adt.uni-paderborn.de/en/test-tools.
html

http://adt.uni-paderborn.de/en/test-tools.html
http://adt.uni-paderborn.de/en/test-tools.html

84 5.5. TOOL SUPPORT

Figure 5.5: An ESG4WSC model in TSD – extracted from (Belli et al., 2013).

message can be provided in TSD and will be available within a CDATA section3. The negative test
cases are also represented with special elements and attributes for sensitive events, faulty edges,
and fault classes.

Finally, the TSD tool is able to measure a set of model metrics that can be used by the testers to
support decisions on manual effort during the MBT process. Table 5.4 shows the proposed metrics
and their descriptions. They are all based on defined elements of the ESG4WSC model, as defined
in Section 5.2.2. We provide further information about the metrics in Chapter 6, Section 6.3.

3All text within a CDATA section is ignored by the XML parser.

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 85

Figure 5.6: DTs in TSD – extracted from (Belli et al., 2013).

Table 5.4: Metrics for ESG4WSC.
Name Description

NPubReqE Number of public request events.
NPrivReqE Number of private request events.

NReqE Number of request events, summing public and private ones.
NPubRespE Number of public response events.
NPrivRespE Number of private response events.

NRespE Number of response events, summing public and private ones.
NRefE Number of refined events.
NGenE Number of generic events.

NE Number of events (sum of all previous metrics).
NEdges Number of edges.
NREsgs Number of refining ESGs.

NEsgsInPar Number of ESGs in parallel.
NDTs Number of decision tables associated with events.

NConst Number of constraints in DTs.
NAct Number of actions in DTs.

NRules Number of rules in DTs.
NUnPrivRespE Number of distinct private response events.
NUnPubReqE Number of distinct public request events and, if it is the case, their rules. If the

public request event has an associated DT, it counts the number of rules for this
event, and one, otherwise.

NUnPubRespE Number of distinct public response events.
NUnMsgE Number of distinct message events which includes public request and response

events and private request and response events.

86 5.5. TOOL SUPPORT

01:<TestCase>
02: <CompleteEventSequence>
03: <Event label="TA:queryTrip" type="request" public="true" rule="R1" >
04: <Param name="departureDate">31.12.2011</Param>
05: <Param name="toCity">Sao Carlos</Param>
 ...
06: </Event>
07: <RefinedEvent>
08: <CompleteEventSequence>
09: <Event label="IS:login" type="request" public="false"/>
10: <Event label="IS:login_Response" type="response" public="false" />
11: <Event label="IS:search" type="request" public="false"/>
12: <Event label="IS:searchResults_greaterEqThanOne" type="response" public="false" >
13: <Message><![CDATA[...]]></Message>
14: </Event>
15: </CompleteEventSequence>
16: <CompleteEventSequence>
17: <Event label="FL:search" type="request" public="false"/>
18: <Event label="FL:searchResults_greaterEqThanOne" type="response" public="false" >
19: <Message><![CDATA[...]]></Message>
20: </Event>
21: </CompleteEventSequence>
22: </RefinedEvent>
23: <Event label="TA:queryTrip_Response" type="response" public="true" />
24: <Event label="TA:book" type="request" public="true" rule="R1" >
25: <Param> ... </Param>
26: </Event>
27: <RefinedEvent>
28: <CompleteEventSequence>
29: <Event label="FL:book" type="request" public="false"/>
30: <Event label="FL:bookingSuccess" type="response" public="false" >
31: <Message><![CDATA[<soap:Envelope><soap:Body> ... </soap:Envelope>]]></Message>
32: </Event>
33: </CompleteEventSequence>
34: <CompleteEventSequence>
35: <Event label="IS:login" type="request" public="false"/>
36: <Event label="IS:login_Response" type="response" public="false" />
37: <Event label="IS:search" type="request" public="false"/>
38: <Event label="IS:searchResults_sameHotelPrice" type="response" public="false" >
39: <Message><![CDATA[...]]></Message>
40: </Event>
41: <Event label="IS:book" type="request" public="false"/>
42: <Event label="IS:bookingSuccess" type="response" public="false" >
43: <Message><![CDATA[...]]></Message>
44: </Event>
45: </CompleteEventSequence>
46: </RefinedEvent>
47: <Event label="TA:bookingConfirmation" type="response" public="true" />
48: <Event label="TA:getAllOptions" type="request" public="true" rule="R1" >
49: <Param name="searchCode">[$validSearchCode$]</Param>
50: </Event>
51: <Event label="TA:TripInputException" type="response" public="true" />
52: </CompleteEventSequence>
53:</TestCase>

Figure 5.7: An XML file for a test case – extracted from (Belli et al., 2013).

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 87

5.5.2 Test Execution

Mule-ESB (MuleSoft, 2012) was used as the infrastructure software that provides ESB capa-
bilities (more details on the ESB in Chapter 2, Section 2.2). Initially, all services involved in the
composition (including the composite service) are deployed in the bus, i.e., the entire communica-
tion (SOAP messages) passes through the ESB before reaching the destination service.

The test execution is supported by a tool named Event Runner for Test Execution (ERunTE),
which is composed of three modules, a Web service (ERunTE-service), an ESB component
(ERunTE-esbcomp), and an event runner (ERunTE-runner). ERunTE-service contains four main
operations:

• startObservation: prepares the test execution and identifies the start of a new test
case. The partner services whose messages will be modified are passed as parameters.

• modifyMessage: sets the response message for a certain service. This operation is useful
to force an event and test a specific scenario. Besides the expected events (positive tests), this
operation also provokes the fault classes “unexpected fault”, “wrong XML schema”, “wrong
XML syntax”, “right schema, wrong data”, and “missing service”. In the “missing service”
class, this operation turns off the proxy of the service, i.e., it simulates an unavailable service.

• modifyMessageWithTimeout: is similar to the previous operation, but it is possible
to set up a delay to answer the response. This operation is used to support the fault classes
“longtime response” and “no response”.

• getAllMessages: retrieves all messages that pass through the ESB after the last star-

tObservation call.

ERunTE-service can be used directly in the test code. In the test environment, it has been inte-
grated in ERunTE-runner. The second module, ERunTE-esbcomp, is the ESB component that
implements the monitor and aggregator patterns (Section 2.2). This component is integrated with
Mule-ESB and is able to interact with ERunTE-service. The component records all messages
that pass through the ESB and also modifies messages according to operation modifyMessage.
Figure 5.8 summarizes the architecture adopted to execute the tests in this case study.

The test cases are implemented using Java/JUnit and executed with ERunTE-runner. Two
adaptors are necessary to execute a test sequence like the one presented in Figure 5.7:
PublicEventAdaptor and MessageCheckingAdaptor. The former is responsible for
invoking and checking the messages of the composition interface, i.e., the public request and re-
sponse events. The latter is responsible for checking SOAP messages produced during the test
case execution. The adaptors were developed as classes with specific Java annotations for allow-
ing ERunTE-runner to map methods to events in the test model. ERunTE-runner uses these two
adaptors and the test sequence in XML generated by TSD to execute the tests. It works in three
phases:

88 5.5. TOOL SUPPORT

Figure 5.8: Architecture to execute the tests.

1. Setting up private messages: the runner parses the test sequence in XML and traverses the
event sequence. It calls ERunTE-service to set up the messages for each private response.
The message that must be returned is retrieved from the test case file, as presented in Fig-
ure 5.7 Line 31. The order is defined by counting previous response events of the same
service. After this phase, the ERunTE tool has the configuration for executing the test case.

2. Calling the public interface: the test execution starts with requests for the service compo-
sition. Thus, PublicEventAdaptor is used to call the public events and check their
responses. The test sequence is traversed and public events are executed by calling the
respective methods in PublicEventAdaptor. If some response of the composition in-
terface is different from the expected in the test sequence, the test case fails. Figure 5.9
presents a code snippet for PublicEventAdaptor. Line 03 presents annotation @Event

for event “TA:queryTrip”. It defines that the marked method should be called for event
“TA:queryTrip”. This event has an associated DT and this method (Lines 04-17) is specific
for rule “R2”. Internal variables (starting with “S_”) are used to store temporary values used
by the methods. All methods return a Boolean value to represent a successful/failed execu-
tion. For instance, the method in Lines 20-28 returns true if event “TA:queryTrip_Response”
is correctly executed and false, otherwise.

3. Checking messages: the runner retrieves all SOAP messages produced during the
test case execution using ERunTE-service. The messages are checked using
MessageCheckingAdaptor. The sequence of events is also expected to be fol-
lowed. If the number of messages, the messages, or the event order are not in accor-
dance with the test sequence, the test case fails. Figure 5.10 presents a code snippet for
MessageCheckingAdaptor. The methods are also marked with annotation @Event.
The methods return a Boolean value and have a string as parameter. The string represents
the message to be checked. The method returns true if the message represents the labeled

CHAPTER 5. HOLISTIC TESTING OF SERVICE COMPOSITIONS 89

event and false, otherwise. In this case study, XPath (Berglund et al., 2010) expressions are
used to check whether the messages are correct or not. Lines 04-13 and 16-25 check if a
message is event “TA:queryTrip” and “TA:queryTrip_response”, respectively.

01:public class PublicEventsAdaptor {
02: ...
03: @Event(label="TA:queryTrip", rule="R2")
04: public boolean m01() {
05: S_exception = null;
06: TripSearchData tripSearchData = new TripSearchData();
07: tripSearchData.setFromCity("Paderborn");
08: tripSearchData.setToCity("Sao Paulo");
09: tripSearchData.setDepartureDate(2012, 07, 19);
10: tripSearchData.setReturnDate(2012, 07, 13);
11: try {
12: travelAgentService.queryTrip(tripSearchData);
13: }catch (Exception e) {
14: S_exception = e;
15: }
16: return true;
17: }
18: ...
19: @Event(label="TA:queryTrip_Response")
20: public boolean m11() {
21: if(S_tripOptions == null)
22: return false;
23: if(S_tripOptions.getFlightInfos().size() != 5)
24: return false;
25: if(S_tripOptions.getHotelInfos().size() != 5)
26: return false;
27: return true;
28: }
29: ...
30:}

Figure 5.9: Sample code for PublicEventAdaptor – extracted from (Belli et al., 2013).

01:public class EventCheckerAdaptor {
02: ...
03: @Event(label="TA:queryTrip")
04: public boolean isTA_queryTrip(String message) {
05: try {
06: NamespaceContext context = new NameSpaceContextMap("soap", "http://./soap/envelope/",
 "serv", "http://TravelAgent.service.triphandling.cs/");
07: xpath.setNamespaceContext(context);
08: Node node = xpath.evaluate("/soap:Envelope/soap:Body/serv:queryTrip",
 new InputSource(new StringReader(message)), XPathConstants.NODE);
09: return node != null;
10: }
11: catch (XPathExpressionException e) { }
12: return false;
13: }
14: ...
15: @Event(label="TA:queryTrip_Response")
16: public boolean isTA_queryTripResponse(String message) {
17: try {
18: NamespaceContext context = new NameSpaceContextMap("soap", "http://./soap/envelope/",
 "serv", "http://TravelAgent.service.triphandling.cs/");
19: xpath.setNamespaceContext(context);
20: Node node = xpath.evaluate("/soap:Envelope/soap:Body/serv:queryTripResponse",
 new InputSource(new StringReader(message)), XPathConstants.NODE);
21: return node != null;
22: }
23: catch (XPathExpressionException e) { }
24: return false;
25: }
26: ...
27:}

Figure 5.10: Sample code for MessageCheckingAdaptor – extracted from (Belli et al.,
2013).

Negative testing also requires special configurations of the test execution environment.
ERunTE-esbcomp implements a configurable delay for fault classes “no response” and “long-

90 5.6. FINAL REMARKS

time response”. ERunTE-service has an operation to shut down service proxies, helping to repro-
duce fault class “missing service”. For fault class “unexpected fault”, possible unexpected fault
messages have been identified and simulated. For example, SOAP-Faults thrown by Web ser-
vice frameworks when exceptions are not correctly handled in the application. For fault classes
“wrong XML syntax” and “wrong XML schema”, ERunTE-runner makes small modifications in
the original messages to reproduce these faults.

The test generation and execution is fully supported by the TSD and ERunTE tools, albeit
improvements are required in the adaptor development. The version control between model and
adaptors is needed and repeated code can be generated for the adaptors.

5.6 Final Remarks

In this chapter, we have proposed an event driven approach, named ESG4WSC, for MBT of
service compositions. Test cases are generated based on an ESG4WSC model verifying desired
scenarios (positive testing) and unexpected situations (negative testing). To support the test gener-
ation and execution, two tools have been developed, TSD and ERunTE.

ESG4WSC brings the benefits of black box-oriented MBT to service compositions, providing
a holistic approach for positive and negative testing. Black-box tests can be generated by modeling
an ESG4WSC and observing/modifying messages exchanged in the composition. Thus, faults are
detected by observing the exchanged messages. The approach can be applied to many different
scenarios. However, its strength stems from its potential to fit well for cases where WS-BPEL
or WS-CDL specifications are not available. Thus, it is independent of the type of composition,
either orchestration or choreography, and therefore allows to simultaneously performing the steps
for implementation and testing of the SUT. Other testing approaches strictly require the availability
of the artifacts, such as WS-BPEL codes and WS-CDL specifications.

Based on the literature review presented in Section 2.5, we can state that: (i) there is no compa-
rable work that supports the holistic testing of composite services by modeling and testing not only
the published composition interface, but also the internal communication with partner services; (ii)

no other approach has solved the oracle problem using sensitive events for negative testing of ser-
vice compositions; and (iii) it has been described how an ESB can support the test execution. In
our case, the ESB is used to perform the observations and modifications of exchanged messages
as well as to provoke the unexpected situations for negative testing.

When a testing approach is proposed, it is important to have evidences about its practical ap-
plication. However, the research on service testing falls short on experimental studies as discussed
in Section 2.5.1. In this context, the next chapter presents the experimental evaluation of the
ESG4WSC approach.

CHAPTER

6
Evaluation of the Proposed Approach

6.1 Overview

The type of knowledge in software testing and, widely in software engineering, can be consid-
ered as of relatively low maturity (Juristo et al., 2004). In this context, the conduction of experi-
mental studies has been a constantly researched topic in the last years (Kitchenham et al., 2002;
Briand, 2007). This fact occurs not only for software testing in general, but also for specific areas
as service testing (Bozkurt et al., 2012). As for existing approaches to test service-oriented ap-
plications, there is a need for more detailed experimental studies and industrial experiences using
real-world systems, as discussed in Section 2.5.1.

This chapter presents three experimental studies conducted to evaluate the ESG4WSC ap-
proach introduced in Chapter 5. Section 6.2 summarizes a case study presented in paper “A

Holistic Approach to Model-based Testing of Web Service Compositions”, Belli, F., Endo, A. T.,

Linschulte, M. and Simao, A., published in the Software: Practice and Experience journal (Belli
et al., 2013). In this case study, we aim at evaluating the applicability of the aforementioned ap-
proach. The ESG4WSC was applied to generate positive and negative test suites for a large and
complex application, named xTripHandling.

Section 6.3 reproduces a cost analysis that aims to evaluate the machine CPU time and the hu-
man effort during the steps of the approach. The two algorithms for generating positive test suites
(proposed in Chapter 5) are compared in order to identify trade-offs concerning test generation and
execution. Model metrics to support modeling and test concretization are also analyzed.

Section 6.4 partially extends an industrial experience described in technical report “Using

Models to Test Web Service-Oriented Applications: an Experience Report”, Endo, A. T., Silveira,

91

92 6.2. CASE STUDY: XTRIPHANDLING

M. B., Rodrigues, E. M., Simao A., Oliveira, F. M., Zorzo, A. F. (Endo et al., 2012). In this in-
dustrial experience, we aim at evaluating the proposed approach in the context of an IT company.
Initially, we used a set of composite services specified in WS-BPEL to analyze the modeling and
test generation steps. Then, we report the use of the ESG4WSC approach in an ongoing project,
focusing on concretization and test execution.

Finally, Section 6.5 describes the lessons learned during the experimental evaluation, and Sec-
tion 6.6 concludes by discussing the results and analyzing the limitations of the three studies.

6.2 Case Study: xTripHandling

This section describes a case study carried out to evaluate of the proposed approach for positive
and negative testing of service compositions. It describes the application used as subject in the case
study, as well as its configuration and results.

6.2.1 System Under Test

The case study was conducted using the xTripHandling application, which is based on
different scenarios proposed in technical and research literature (Mei et al., 2009a; Sourceforge.net,
2012; NetBeans.org, 2009). The application was developed using SOA concepts and Web services
and provides a set of facilities to query and book trips. It also includes facilities to book trains,
rent cars, book sightseeing, and order maps. The application consists of eight services, of which
six are single services and two are composite services. The single services are the following:

1. ISELTA-hotel Service: is a Web service provided by commercial system ISELTA that enables
travel and touristic enterprises to create their individual search and service offering masks
(Belli and Linschulte, 2010). It provides operations to query hotels and manage bookings.

2. Airlines Service: provides a set of operations to manage flight tickets, which are similar to
ISELTA-hotel service.

3. Map Service: provides operations to locate places (e.g., airports, train stations) close to a
city and order maps for certain cities.

4. Car Rental Service: provides operations to search and rent vehicles to be used in a pre-
defined city.

5. Train Service: provides operations to check train lines between cities and buy train tickets.

6. Sightseeing Service: provides operations to list available cities in which the service operates
and to buy tickets for sightseeing.

The composite services are the following:

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 93

1. Travel Agent Service: provides a set of facilities to query and book a trip. Travel Agent

Service interacts with two services, ISELTA-hotel and Airlines services. It combines these
two services, providing operations to search and book a travel involving flight and hotel
reservation. As the flight ticket and hotel reservation are essential in any travel, a successful
booking using this service guarantees hotel and flight reservations.

2. Customer Service: combines the services Travel Agent, Airlines, Map, Car Rental, Sightsee-

ing, and Train to provide a centralized resource for customers to manage various aspects of
a trip, including hotels, flights, maps, trains, cars, and sightseeing.

Figure 6.1 illustrates the services, their interfaces, and the interactions of composite services. The
figure presents a summarized version of the WSDL interfaces. The dashed lines represent the
interaction between composite services and partner services.

Figure 6.1: Service interfaces in xTripHandling – adapted from (Belli et al., 2013).

The complete workflow specification for the composite services (Customer Service and Travel

Agent Service), as well as the interface descriptions (WSDL and Java interfaces), can be found on
http://www.labes.icmc.usp.br/~aendo/esg4wsc.

6.2.2 Configuration and Results

The ESG4WSC approach was applied to test the composite services during the development
of the xTripHandling application. The case study involved a developer and a tester. The

http://www.labes.icmc.usp.br/~aendo/esg4wsc

94 6.2. CASE STUDY: XTRIPHANDLING

developer described a functional specification which was used to implement the services. The
specification and service interfaces were provided to the tester that created ESG4WSC models and
associated DTs. Since the approach is black box-oriented, the tester had no access to the source
code. Test cases were derived according to the ESG4WSC approach. The tester also performed
the concretization and execution of the test cases.

The correction of faults in the case study was based on the following scheme: when the tester
finds a fault (some test case fails), the testing process is interrupted. The tester analyzes the origin
of the fault. If both the specification and the model are correct with respect to the test case, the tester
concludes that the fault is in the implementation. (i) If the fault is in the specification, developer
and tester update the specification and the tester updates the model based on the new version of
the specification. (ii) If the fault is in the model, the tester updates the model to fix the mistake. In
case of a change in the model, test cases are regenerated and the tester resumes the testing process.
(iii) If the fault is in the implementation, the developer executes the test case and fixes the fault
with the restriction that all previously executed test cases, including the failed test case, must also
pass. This scheme is followed until all positive and negative test cases are successfully executed.

The ESG4WSC approach was applied to test the two composite services in xTripHandling,
Travel Agent Service and Customer Service. First, Travel Agent Service was tested, since its partner
services are just single ones. Then, the approach was applied to Customer Service. The testing
process based on the established fault correction scheme had several iterations, producing different
versions of models and test suites.

Table 6.1 summarizes the information about the ESG4WSC models. Lines 1-4 refer to the
number of each type of event. Lines 5 and 6 show the total number of events and edges, respec-
tively. Line 7 refers to the number of refining ESG4WSCs and those that are to be executed in
parallel in Line 8. Lines 9-11 show the number of DTs, constraints, and rules, respectively.

Table 6.1: Test model information – extracted from (Belli et al., 2013).
Travel Agent Customer Service

1: # request events 15 204
2: # response events 34 449
3: # generic events 1 13
4: # refined events 2 34
5: # events (total) 52 700
6: # edges (total) 75 947
7: # refining ESG4WSCs 4 68
8: # ESGs in parallel 4 44
9: # DTs 7 108

10: # constraints 32 197
11: # rules 46 300

Refining ESG4WSCs in Travel Agent Service were used exclusively to represent parallel ex-
ecution, i.e., the four refining ESG4WSCs are in parallel. In Customer Service, the model con-
tains 34 refined events and 68 refining ESG4WSCs, being 44 in parallel. Notice that 24 refining

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 95

ESG4WSCs are not in parallel and were used to modularize the model. Thus, refined events and re-
fining ESG4WSCs were used not only to represent parallelism, but also to manage the complexity
through hierarchy. For instance, after booking a basic trip (hotel + flight), the client can search and
book a car. This workflow can be abstracted as a refined event “rentCar” and its details expressed
in an associated refining ESG4WSC. Similar refined events were defined for maps, sightseeing,
and trains, using the hierarchy of refining ESG4WSCs to organize the model.

In both models, since a request message can have several relevant instances of response mes-
sages, there are more response events than request events. For example, a search request can
return one of the following responses: (i) a message with zero items, (ii) a message with one or
more items, or (iii) an expected fault. Generic events facilitate the description of time constraints
or changing points. DTs mainly supplement public request events for which input data must be
generated. The constraints are defined over request parameters and rules test different combina-
tions of these constraints. In addition, DTs were also used to prune extra edges in refined events
with parallel execution.

Using the designed test models, the TSD tool generated test suites according to the holistic
ESG4WSC approach. Table 6.2 summarizes the information about the test suites, divided into
positive and negative testing. The number of executed events for each test suite is also provided.
Positive test suites are divided by the length of covered ESs (k = 2, k = 3, and k = 4). Negative
test suites are divided into public and private cases.

Table 6.2: Test suite information – extracted from (Belli et al., 2013).
Travel Agent Customer Service

Positive testing
#test cases (k = 2) 25 1,054

#executed events (k = 2) 388 89,536
#test cases (k = 3) 33 998

#executed events (k = 3) 540 139,388
#test cases (k = 4) 49 20,537

#executed events (k = 4) 922 3,406,148
#test cases (total) 107 (25+33+49) 22,589 (1,054+998+20,537)
#executed events 1,850 3,635,072

Negative testing
#PubFESs 181 6,535

#executed events PUBFESs 1,706 152,125
#PriFES (zNR) 10 95
#PriFES (zMS) 10 95
#PriFES (zUF) 10 95
#PriFES (zLR) 24 194
#PriFES (zWSc) 24 194
#PriFES (zWSy) 24 194
#PriFES (zWD) 24 194

#PriFESs 126 1,061
#executed events PriFESs 1,544 22,486

#test cases (total) 307 (181+126) 7,596 (6,535+1,061)
#executed events 3,250 174,611

96 6.2. CASE STUDY: XTRIPHANDLING

Since the intended coverage is dependent on the model characteristics, the size difference ob-
served in Table 6.1 is also observed in the number of test cases. For the Travel Agent Service

model, 107 positive test cases and 307 negative test cases were generated. For the Customer Ser-

vice model, 22, 589 positive test cases and 7, 596 negative test cases were generated.

In positive testing, the increase of k causes a higher number of executed events. However,
these test suites do not need to be applied one-by-one. For instance, if the tester chooses test suites
with k = 4, test suites with lengths 2 and 3 can be skipped since the test requirements for smaller
lengths are contained in k = 4 as well (in terms of coverage).

In negative testing, the number of test cases for a given fault class is equal to the number of
private request or response events (as shown in Table 5.3). That is why zNR, zMS, and zUF have
the same number of test cases. Similarly, zLR, zWSc, zWSy, and zWD also have the same amount
of test cases.

It is important to emphasize that the number of test cases is only used to show the computational
effort in this study. Since the test suites are automatically generated from the model, the manual
effort is mainly measured by the modeling and concretization steps.

Table 6.3 presents the information about faults detected using positive and negative test suites.
Faults are also divided by the artifact, specification (Spec) or implementation (Impl). After several
iterations, the tester found 18 faults in Travel Agent Service, 12 in the implementation and six in
the specification. The six faults were related to some behavior not described in the specification
and have been observed during the test case execution. Faults related to missing and unexpected
messages have been detected for both specification and implementation.

Table 6.3: Detected faults information – extracted from (Belli et al., 2013).
Test Suites Travel Agent Customer Service

Spec Impl Spec Impl
positive test suites

k=2 4 11 16 12
k=3 0 0 0 1
k=4 0 0 0 0
Total 4 11 16 13

negative test suites
PriFES (zNR) 1 0 1 0
PriFES (zLR) 0 0 0 0
PriFES (zMS) 0 0 0 0
PriFES (zUF) 0 0 0 0
PriFES (zWSc) 0 0 0 0
PriFES (zWSy) 0 0 0 3
PriFES (zWD) 0 0 0 0

PubFES (resp-req) 0 0 0 1
PubFES ([-req) 0 0 0 0

PubFES (req-req) 1 1 1 2
Total 2 1 2 6

positive and negative test suites
Total 6 12 18 19

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 97

Customer Service presents a higher number of specification faults because its initial specifica-
tion was very incomplete. The tester found 12 specification faults while designing the first version
of the model and six other faults afterwards. Although Customer Service had a high number of ex-
ecuted test cases, the faults in the implementation were mainly identified during the first executed
positive and negative test cases. In the end, 37 faults were detected using positive and negative test
suites.

Table 6.3 also shows the order in which the test suites were executed. Thus, all positive test
suites were first applied using the established fault correction scheme. As a consequence, this order
obviously reduced the number of faults to be detected by subsequent test suites. Note that most
of the faults were detected by the positive test suites covering sequences of length k = 2. This
result corresponds to experimental results achieved in previous studies for testing graphical user
interfaces (Belli et al., 2010). Although longer test sequences facilitate the detection of critical
faults that can only be detected in specific contexts, test suites with length 2 detected most of the
faults (Belli et al., 2010). The negative test suites uncovered less faults for both compositions due
to the fact that several exceptions were properly handled in the implementation when the developer
fixed the detected faults.

The faults in the implementation were mainly identified by testing different rules (from the
DTs) and checking expected events and their order. The correction of these faults was not critical
and was performed only in the implementation. The specification faults were identified by check-
ing expected event sequences. The specification faults were more critical since the tester needed
to modify the ESG4WSC and regenerate the test cases. Moreover, the specification and, conse-
quently, the implementation were corrected as well. As the modeling task is a learning activity,
faults were also introduced and identified in the test models. However, an accurate number of these
faults is not available since they were directly and dynamically corrected by the tester.

6.3 Cost Analysis

This section presents a cost analysis of the ESG4WSC approach while considering the different
steps of MBT. First, we compare the two algorithms that can be used to generate CESs that cover all
EPs: (i) the Chinese postman problem presented in Section 5.3.2 and (ii) the event tree algorithm
presented in Section 5.3.3. We aim to compare their performance with respect to the costs of
generation and execution. Then, we analyze the model metrics introduced in Section 5.5.1, as well
as their relationship with test modeling and concretization.

6.3.1 Test Generation and Execution

Setup To conduct this experiment, we adopted random models which were generated in accor-
dance with the formal definitions of the ESG4WSC model described in Chapter 5, Section 5.2.2.

98 6.3. COST ANALYSIS

The generation of random models was performed as follows. First, the algorithm creates the num-
ber of events specified as input. Then, event pairs are randomly connected. Finally, the produced
model is validated against Definition 3. If the model is not valid, it is discarded and a new model
is generated.

ESG4WSC models were randomly generated with different sizes, ranging from 50 to 1000

events. For each model size (e.g., 250 events), 100 different models were generated and average
values were calculated for the analyzed variables. Since the test generation step in the ESG4WSC
approach is automated by TSD, we measured the CPU time to analyze the cost of test generation.
The measured time represents how long the given algorithm takes to produce the test suite from
the model used as input. In order to analyze the cost of test execution, the size of the test suite, that
is, the number of events to be executed was used as the main measure. Moreover, we also collected
additional measures of the generated test suites, such as the number of CESs (test cases) and the
average length of test cases.

The results were computed using a computer with AMD Turion 64x2 2.0 GHz with 2 GB
RAM running Windows XP. The two algorithms were implemented in the TSD tool. In the rest of
this section, we refer to the Chinese postman problem based algorithm as CPP and the event tree
algorithm as ETA.

Results Figure 6.2 shows how the generation time (in seconds) varies with respect to the num-
ber of events. Notice that ETA is much faster than CPP in all cases; this is more evident with large
models. The ETA algorithm shows approximately a linear growth, taking less than one second to
produce test suites for models until 750 events and below two seconds for larger models. In the
CPP algorithm, the generation time increases in large models, mainly those with over 500 events,
though it is below 20 seconds. However, for models with up to 400 events, CPP is able to produce
test suites in less than one second.

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
0

2

4

6

8

10

12

14

16

18

20

CPP

ETA

Number of events

G
e

n
e

ra
ti

o
n

 t
im

e
 (

s
e

c
)

Figure 6.2: Generation time in seconds (sec) varying the number of events.

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 99

Figure 6.3 shows how the test suite size varies with respect to the number of events. Notice that
CPP produces test suite lengths smaller than ETA, though both algorithms seem to generate test
suites that increase linearly. The CPP algorithm produces a minimum-cost solution to cover each
edge (Aho et al., 1995) and for the ESG4WSC models used in the experiment, it means around
twice the number of events in the model.

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

CPP ETA

Number of events

T
o

ta
l n

u
m

b
e

r
o

f
e

v
e

n
ts

 o
f

a
 t

e
s

t
s

u
it

e

Figure 6.3: Test suite size varying the number of events.

Figure 6.4 shows how the number of CESs (test cases) varies with respect to the number of
events. Notice that the number of CESs grows linearly in test suites generated by ETA, while CPP

produces nearly constant number of CESs even in models with higher number of events. In models
with over 250 events, the number of CESs varies between 30 and 39 test cases. The ETA algorithm
produces test suites with a higher number of test cases, which increases proportionally in large
models.

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
0

100

200

300

400

500

600

700

CPP ETA

Number of events

N
u

m
b

e
r

o
f

C
E

S
s

Figure 6.4: Number of CESs varying the number of events.

100 6.3. COST ANALYSIS

Figure 6.5 shows how the average test case length varies with respect to the number of events.
Notice that CPP produces test suites with average test case lengths that are longer than ETA. The
ETA algorithm generates test suites with shorter test cases and that have a slight growth in models
with more events. In models with over 200 events, the average test case length varies between 11

and 15 events. The CPP algorithm produces average test case lengths that, albeit showing some
variation, grow in models with more events. For instance, in models with 1000 events, CPP shows
an average length of 82.04, while ETA shows an average length of 14.69.

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
0

10

20

30

40

50

60

70

80

90

CPP

ETA

Number of events

A
v

e
ra

g
e

 t
e

s
t

c
a

s
e

 le
n

g
th

Figure 6.5: Average test case length varying the number of events.

6.3.2 Test Modeling and Concretization

To complement the previous analysis on automated parts of the ESG4WC approach, we herein
discuss the two steps that require manual effort: modeling and concretization. We revisit the case
study previously described in Section 6.2, collecting and analyzing data about the manual effort
spent.

Table 6.4 shows the model metrics (Section 5.5.1) that give an overview of the two models de-
signed in the xTripHandling case study. The two models have different size and complexity.
On one hand, the model for Travel Agent Service is smaller since it involves two partner services.
On the other hand, the model for Customer Service is considerably more complex and larger in-
volving a great number of events and edges. Although the ESG4WSC model provides the feature
of refining events and hiding complexity in a given layer, the Customer Service model required
much more manual effort to handle. The initial modeling time was around eight hours for the
Travel Agent Service and around 20 hours for Customer Service. The overall time spent by the
tester to perform improvements on the models during the test sessions was not measured. We ob-
served during the tests that the MBT process results in many iterations which hinders a detailed

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 101

analysis of the modeling step. However, we roughly estimate that it took about the same amount
of time to improve the model as the initial modeling time.

Table 6.4: Model metrics for the xTripHandling case study.
Metric Name Description Travel Agent Service Customer Service

NPubReqE N. of public request events. 5 64
NPrivReqE N. of private request events. 10 57

NReqE N. of publ. and priv. req. events. 15 121
NPubRespE N. of public response events. 10 171
NPrivRespE N. of private response events. 24 116

NRespE N. of publ. and priv. resp. events. 34 287
NRefE N. of refined events. 2 31
NGenE N. of generic events. 1 17

NE N. of all events. 52 456
NEdges N. of edges. 95 812
NREsgs N. of refining ESGs. 4 65

NEsgsInPar N. of ESGs in parallel. 4 44
NDTs N. of DTs associated with events. 7 72

NConst N. of constraints in DTs. 32 145
NAct N. of actions in DTs. 15 155

NRules N. of rules in DTs. 46 212

To perform the concretization in the ESG4WSC approach, the tester deals with two artifacts,
the test model and the adaptor code. The analyzed metrics for both model and adaptor code are
shown in Tables 6.5 and 6.6, respectively. Table 6.5 shows the model metrics that are more related
to the concretization step. These metrics differ from the previous ones by removing duplicate
events from the final value. Table 6.6 shows source code metrics for the two required adaptors
defined in Section 5.5: MessageCheckingAdaptor (MCA) and PublicEventAdaptor

(PEA). The metrics are divided by the two composite services under test. For each implemented
adaptor, it shows the total LoC, the number of methods, the average LoC per method, and the CC.

Table 6.5: Model metrics related to concretization.
Metric Name Description Travel Agent Service Customer Service

NUnMsgE N. of distinct message events. 34 85
NUnPubReqE N. of distinct pub. request events. 14 36
NUnPubRespE N. of distinct pub. response events. 6 17
NUnPrivRespE N. of distinct priv. response events. 18 38

Table 6.6: Source code metrics for adaptors.
Travel Agent Service Customer Service

Metric Name MCA PEA MCA PEA
number of methods 37 22 87 51
avg LoC per method 6.2 14.1 7.3 12.9

CC 1.7 2.3 1.9 3.2
total LoC 392 416 1004 893

The NUnMsgE metric can be used to count how many different SOAP messages are produced
during the tests. This metric gives an idea on the number of XPath queries to be produced in

102 6.4. EXPERIENCE ON INDUSTRIAL SETTING

order to validate the SOAP messages observed during a test case execution. Thus, NUnMsgE is
related to the MessageCheckingAdaptor adaptors since they are responsible for checking
whether a given message is the right event. Note that the number of methods (column MCA) in
Table 6.6 is quite similar to the value of NUnMsgE in Table 6.5. On the other hand, the complexity
of implementing methods of MessageCheckingAdaptor adaptors can only be measured by
source code metrics. Using the current versions of the tools, each method that checks if a SOAP
message is a given event has around 6.2-7.3 LoC and around 1.7-1.9 CC.

The NUnPubReqER metric can be used to show the number of pieces of code to be imple-
mented in order to invoke the composite service. Moreover, the NUnPubRespE metric can be
used to show the number of pieces of code to be implemented in order to perform the valida-
tion/assertion of the response sent back by the composite service. Thus, the NUnPubReqER and
NUnPubRespE metrics are related to PublicEventAdaptor adaptors. Observe that the num-
ber of methods (column PEA) in Table 6.6 is quite similar to the sum of NUnPubReqER and
NUnPubRespE in Table 6.5, i.e., 22-22 for Travel Agent Service and 51-53 for Customer Ser-

vice. As in MessageCheckingAdaptor adaptors, the complexity of implementing methods
of PublicEventAdaptor adaptors can only be measured by source code metrics. Using the
current versions of the tools, each method has around 12.9-14.1 LoC and about 2.3-3.2 CC.

The association between a private response event and its respective SOAP message file (to be
returned during the test execution) is performed through the TSD tool. Thus, the NUnPrivRespE
metric can be used to show how many SOAP messages should be created by hand. It requires a
manual effort to produce these messages and associate them using the tool. In the case study, the
messages were generated using the SoapUI tool. Since these activities are carried out using TSD,
this metric has no relation with any of the source code metrics presented.

6.4 Experience on Industrial Setting

This section reports an industrial experience with the ESG4WSC approach. This study was
conducted in cooperation with a multinational IT company and with the Pontifícia Universidade
Católica do Rio Grande do Sul. The company provided access to its applications, as well as
technological support and documentation. The communication with the IT company happened
through online means (e-mail, instant messaging) and meetings with the development team. All
data presented herein was produced and collected using service-oriented applications developed
and used internally by the company.

This study was divided into two parts. First, we focused on the modeling and test genera-
tion over WS-BPEL based composite services. Second, we analyzed the full application of the
ESG4WSC approach in the context of the ABC project1, emphasizing the concretization and test
execution.

1For the sake of confidentiality, we replace the original labels by generic ones for all services along the text.

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 103

6.4.1 Part 1: Test Modeling and Generation

In this part, we used 23 composite services specified in WS-BPEL to evaluate the ESG4WSC’s
modeling capabilities. Then, we evaluated the test suites generated from these models. The sources
of information about the services were the WS-BPEL specification itself, WSDL files, logs of the
WS-BPEL engine, and talks to the developers.

Table 6.7 shows the test model’s characteristics for each of the modeled services. Observe
that all services are asynchronous (request-only) since the number of public response events is
zero in all lines. The number of public request events is low, most of them with one or two
requests. Only services BCS-03 and BCS-20 have more public requests. The number of private
request and response events reflects the complexity of communication with the partner services.
The overall complexity of the test models can be summarized by the number of events and edges.
Clearly, BCS-11 has the large test model with 447 events and 501 edges, followed by BCS-22,
BCS-09, and BCS-20. In services BCS-11, BCS-20, and BCS-22, refined events and refining
ESG4WSCs were adopted to deal with the complexity of many events and edges. ESG4WSCs
in parallel were not needed in these models. Most of the branches in the models are caused by
different types of responses, instead of input parameters. This is observed by the number of DTs
and their elements (constraints, actions, and rules) that is low. BCS-20 has the highest number
of DTs which is consistent with its public request events; BCS-10 has the highest number of
constraints for one DT. Ten out of 23 services do not have associated DTs.

For the test models, positive and negative test suites were generated. Table 6.8 shows the
test suite’s information divided by the type of testing. For each type of test suite, the number of
executed events is also shown as a measure of cost. All test suites were automatically generated
using the TSD tool. The cost of positive test cases is highly dependent on number of events and
edges in the model. BCS-11 has the highest number of test cases (40) and BCS-01, BCS-15,
and BCS-17 has the lowest number of test cases (2).

For PubFESs, the cost is related to the number of public request and response events. BCS-03
and BCS-20 have the highest number of test cases and cost, 49 test cases executing 98 events and
25 test cases executing 222 events, respectively. Sixteen out of 23 services have only one test case.

The PriFESs are divided in accordance with the fault classes described in Table 5.3 (Sec-
tion 5.4). The test suites for the fault classes NR, MS, and UF are dependent on the number of
private request events. They have different costs because each fault class has its own character-
istics during the execution. For instance, in class NR, the affected request event happens and no
response is produced, while in class UF a response event is triggered. BCS-11, BCS-09, and
BCS-22 have the highest number of test cases.

The test suites for the fault classes LR, WSc, WSy, and WD are dependent on the number of
private response events. BCS-11, BCS-09, and BCS-22 also have the highest number of test
cases. BCS-03, BCS-08, and BCS-23 have no test case for these fault classes since their models
do not contain private response events (as shown in Table 6.7).

104 6.4. EXPERIENCE ON INDUSTRIAL SETTING

Table 6.7: Test model information – adapted from (Endo et al., 2012).

The last two columns show the total number of PriFESs, including all seven fault classes. As
the negative testing for private events produces test suites that cover all request and response events
in combination with the fault classes, a high number of negative test cases is generated. For all
models, its cost exceeds the cost of positive testing.

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 105

Table 6.8: Test suite information – adapted from (Endo et al., 2012).

The cost of generating the test suites is low since it is automatically performed by the tool. For
the largest model, the tool took less than 11 seconds to produce the positive and negative tests. We
have provided the test suite information as an additional measure to predict the cost of execution.

During the modeling of the 23 services, limitations were identified on the ESG4WSC modeling
technique and tool. We describe these limitations and practical solutions for each of them as
follows.

Event branch: it happens when some event branch is solved by some event or input param-
eter (in a DT) that happens previously in the workflow. In Figure 6.6(a), events resp01_1 and
resp01_2 are used to select the branch in event req03. Although this design is acceptable in
the exploratory modeling, Figure 6.6(b) shows a solution to support test generation. The event se-
quence between the solving events (resp01_1 and resp01_2) and the branch (req03) needs
to be replicated. A drawback is that the replicated piece of model can be large and difficult to
manipulate.

ForEach in parallel: the activity ForEach in parallel from WS-BPEL 2.0 and the flowN ex-
tension of Oracle BPEL engine introduce the possibility of executing n request events in parallel.
As the parallelism is implicitly introduced and the number of threads is only decided in runtime,
ESG4WSCs in parallel are not able to directly represent this case in the proposed model. Fig-
ure 6.7(a) shows an example so that the graph within the box can be executed n times in parallel.
Figure 6.7(b) outlines a solution assuming that there will be two instances (threads). Thus, the

106 6.4. EXPERIENCE ON INDUSTRIAL SETTING

Figure 6.6: Model snippets for the event branch issue.

tester defines the number of instances before the test generation and replicates the ESG4WSCs in
parallel in a refined event. The tester needs to know and define the number of instances (threads)
in modeling time, which is a disadvantage.

Figure 6.7: Model snippets for the forEach in parallel issue.

Private events within loops: this case is similar to the previous one, as the number of iterations
in a loop is decided in runtime. Figure 6.8(a) shows a model snippet usually obtained during the
exploratory modeling (events req01 and resp01_1 are within a loop). Figure 6.8(b) depicts a
solution so that the loop is extended in three iterations. The tester should identify the number of
iterations and repeat the instances in the model before generating the tests. The drawback here is
also to have some previous knowledge on the runtime execution of the composite service.

Figure 6.8: Model snippets for the loop issue.

Global/internal variables: WS-BPEL engines have the concept of global variables that are
independent and assigned outside the scope of the composition. However, they can be referred

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 107

within the WS-BPEL and define different branches. Internal variables are more common in com-
posite services implemented in traditional programming languages, instead of WS-BPEL. These
composite services tend to interact with databases and modify the workflow depending on internal
variables. These global and internal variables cannot be represented in the ESG4WSC model. Fig-
ure 6.9(a) illustrates a case in which the branch after event resp01_1 is solved by global variable
var. A practical solution is to establish preconditions to the model or to the test cases. Fig-
ure 6.9(b) depicts the splitting in two models with preconditions (var=true and var=false).
These preconditions have to be handled during the test execution which entails an extra effort from
testers.

Figure 6.9: Model snippets for the variables issue.

6.4.2 Part 2: Test Concretization and Execution

In this part, we applied the ESG4WSC approach in the ABC application, specifically in its
composite service ABCService (ABCS). This service interacts with three other services: Part-

nerService01 (PS01), PartnerService02 (PS02), and PartnerService03 (PS03). Table 6.9 shows
the tested services, whether they are composite or not, their total number of operations, and num-
ber of operations involved in the tests.

Table 6.9: Information about services – adapted from (Endo et al., 2012).
Service Name composite service? #operations #involved operations

ABCService yes 8 2
PartnerService01 no 26 2
PartnerService02 no 12 1
PartnerService03 no 10 1

Based on performance test scripts and on meetings with the development team, the test model
shown in Figure 6.10 was designed. It focuses on the flow of messages triggered by operations
operation01 and operation02 of ABCService. This model was augmented with SOAP messages
for the public request events and private response events.

The four services involved in the tests were deployed in Mule-ESB. As services PartnerSer-

vice01, PartnerService02, and PartnerService03 have some security issues, we used SoapUI to
mock them. A simple modification was performed in ABCService, the original service endpoints
were changed to the ones provided by the ESB. Thus, all messages produced during the tests passed
through the bus and were controlled by the module esbcomp of the ERunTE tool.

108 6.4. EXPERIENCE ON INDUSTRIAL SETTING

Figure 6.10: ESG4WSC model for the ABC application – adapted from (Endo et al., 2012).

Using the model in Figure 6.10, test cases were generated using the TSD tool. Table 6.10
summarizes the test suites generated for positive and negative testing. In total, 68 test cases were
generated.

Table 6.10: Number of positive and negative test cases – adapted from (Endo et al., 2012).
Positive testing

Test Suite #Test cases Execution time
#CESs 7 ≈ 13s

Negative testing
Test Suite #Test cases Execution time
#PubFESs 4 ≈ 5s

#PriFESs (NR) 7 ≈ 75s
#PriFESs (MS) 7 ≈ 515s
#PriFESs (UF) 7 ≈ 13s
#PriFESs (LR) 9 ≈ 96s

#PriFESs (WSc) 9 ≈ 12s
#PriFESs (WSy) 9 ≈ 5s
#PriFESs (WD) 9 ≈ 12s

The next step was the concretization of the tests. By doing so, two adaptors were imple-
mented, PublicEventAdaptor and MessageCheckingAdaptor. Moreover, a couple of
additional classes were implemented to configure and run the tests. Modules runner and service of
ERunTE were used to support the test execution with the developed adaptors. Table 6.11 shows
the number of LoC and the CC for the two adaptors and the entire project. The metrics were
collected using Eclipse Metrics (SourceForge.net, 2005).

All test cases were successfully executed; the approximate execution time is also presented in
Table 6.10. The test suite for fault class MS took more time than the others (around 515 seconds).
This happened due to a limitation in the ERunTE tool that requires more time to simulate a missing
service. The test suites for fault classes NR and LR also took more time since the ERunTE tool
simulates timeouts for these PriFESs.

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 109

Table 6.11: Code metrics for the test project (adaptors, setup code) – adapted from (Endo et al.,
2012).

LoC average CC
PublicEventAdaptor 94 1.5

MessageCheckingAdaptor 231 1.8
Entire test project 900 1.6

During the tests, no fault was detected in the SUT. This can be explained by the application’s
stability. The application has been released for more than two years and many cycles of testing/
maintenance were performed.

6.5 Lessons Learned

In the case study described in Section 6.2, the tester designed the entire models before im-
plementing the adaptors for test execution. This strategy fits for cases in which the development
phase is ongoing and the implementation is not yet available. However, it takes some time to
have test cases executing in the implementation. If the implementation has a preliminary version,
the test model and adaptors can be built partially and iteratively to obtain some executable test
cases sooner. We followed this strategy in the industrial experience (Section 6.4) since the ABC
application had an up-and-running version.

Depending on the modeling strategy, the number of test cases can increase very rapidly since
the applied methods intend to cover event sequences of a given length in the ESG4WSC model.
Eliminating irrelevant edges was a strategy used in the case study (Section 6.2) to reduce the test
cases. For instance, for the Customer Service model, several edges to and from special vertices ‘[’
and ‘]’ were removed. This simple change eliminated a considerable number of test cases.

The current version of the ESG4WSC approach addresses seven fault classes for negative test-
ing of private events (Section 5.4.2). Additional classes can be defined and implemented using the
current infrastructure. Notice that covering all fault classes generates a high number of negative
test cases (as shown in Tables 6.2 and 6.8). If the cost of test execution is critical in the current
project, a subset of the negative test suite can be selected. Based on the case study experience, a
strategy is to concentrate on the fault classes “longtime response” and “unexpected fault”. They
are usually enough to test the service composition robustness, since the fault correction for those
classes indirectly handles other fault classes.

The evaluation of negative test results should be performed carefully. The information used
in negative testing (undesired situations) is usually misleading, scarce, and even missing. For
instance, the “longtime response” class can expose unplanned issues that must be handled by
the composition, such as timeouts in the implementation, missing specification, and incomplete
workflows. This fact hinders an accurate and automatic evaluation of test sequences. Therefore,
a mechanism was presented to handle this issue by using sensitive events (Section 5.4.2). This

110 6.6. DISCUSSION OF RESULTS AND LIMITATIONS

strategy avoids false positives, but faults can be missed by the test cases. Thus, it is recommended
that the tester inspects a subset of each fault class to avoid false negatives.

During the first part of the industrial experience (Section 6.4), we noticed that the ESG4WSC
modeling was more effective when divided into two steps. This configuration of steps was intu-
itively performed during the modeling of the first four services. After a phase of identification,
all WS-BPEL based composite services were modeled in two steps and therefore with two model
versions. The two steps are detailed as follows:

1. Exploratory modeling: an initial ESG4WSC model was designed, identifying request and
response events. The order among them was also modeled. During this step, the global com-
munication is prioritized and branches and DTs are put aside. Generic events and comments
were used to recall that these issues need to be handled in future.

2. Test-driven modeling: using the model designed in the previous step, a more detailed anal-
ysis was conducted to identify and model DTs (constraints, rules, and actions). Generic
events and comments were removed and branches along the model were solved. The goal
of this step is to set up a model that is adequate to generate test cases. During this step, we
identified the limitations and solutions described at the end of Section 6.4.1.

6.6 Discussion of Results and Limitations

The case study in Section 6.2 demonstrated that the approach is applicable to a non-trivial
service-oriented application. Numerous faults were revealed, not only in the implementation but
also in the specification. Thus, the approach helped to keep implementation and specification
synchronized. Moreover, the specification has been set up first and the implementation and test
model creation has been done in tandem by two different people. Hence, the tester does not need
to wait for the implementation to set up a model and derive tests since the proposed approach is not
based on artifacts like WS-BPEL or WS-CDL as in (Mei et al., 2009a; Hou et al., 2009; Bentakouk
et al., 2009).

Orchestration and choreography have not been distinguished since the approach can be ap-
plied in both contexts. The only restriction is that the tester should have control over messages
exchanged by the partner services. The use of the ERunTe tool requires that all messages pass
through an ESB, as described in Section 5.5.2. Although ESBs may not be part of the service-
oriented application under test, deploying the services in an ESB is a simple task.

The proposed approach assumes that ESG4WSCs in a refined event are independent. This
enables a simple way to model some parallelism and, during the experimental studies, this was
enough. It is possible that more complex scenarios occur in service compositions and the tester
might also want to test combinations of message interleaving. Although the approach can be
adapted to test these scenarios, it is recommended to use specific modeling and testing techniques
for concurrent programs (Hoare, 2004; Lei and Carver, 2006).

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 111

The studies were conducted to evaluate the approach with regard to its applicability to the de-
velopment of a service-oriented application, involving composite services of very different sizes.
Although it has been noticed that the approach could systematically detect faults (as in Sec-
tion 6.2), further experimental research is necessary considering alternative application areas and
sizes. Moreover, investigating in which scenarios MBT is not cost-effective remains an open topic,
e.g., when the costs of maintaining a model and generating tests are higher than the costs of main-
taining a traditional test suite.

In Chapter 5, we presented the target fault classes for both positive and negative testing. During
the case study, the results evinced that these faults can be revealed by the approach. Besides, dif-
ferent faults were also identified in the specification as observed in the MBT literature (Pretschner
et al., 2005; Utting and Legeard, 2006). However, we do not compare the proposed approach with
other techniques, e.g., structural testing. In other domains, experimental results on this topic have
shown that MBT approaches tends to complement the structural testing technique (Mouchawrab
et al., 2007). Further research on this comparison will be carried out in future work.

The high number of test cases and events executed might be a limitation in some contexts.
Thus, a smaller but still effective test suite is desirable. In Section 6.5, we discussed a strategy to
reduce the test suite by modifying the model. Another strategy would be to modify the test case
generation algorithms. Intuitively, this seems to be a promising candidate for further research since
most of the faults were detected by the first test cases executed.

While using MBT, very often the users assume that the underlying model is correct from the
beginning. This assumption is a potential threat to the validity since it cannot hold in practice.
From a practical point of view, this is a critical assumption since a (formal) model set up on
an (informal) specification regularly needs some time to reflect the specification correctly. The
tester should always consider that a mistake might be made in the test model and not only in the
specification or in the implementation when a fault is detected.

Requirements evolution is also one of the main benefits of MBT (Utting and Legeard, 2006)
and is also shown in the case study (Section 6.2). This is particularly relevant for dynamical and
loosely coupled environments based on SOAs (Josuttis, 2007; Papazoglou and Heuvel, 2007). As
the model is usually smaller and easier to maintain than a large test suite, it is faster to modify the
model and regenerate the test suite when the requirements (specification) change (Utting and Leg-
eard, 2006). If no event is added to test model, the cost of regenerating the test suite is equivalent to
the cost of executing the test generation algorithms. This process can be systematically controlled
by tracking the changes between the specification and the tests. Nevertheless, the requirement-test
traceability was not handled in this dissertation.

The ESG4WSC approach, and MBT approaches in general, can be divided into four main
steps: (i) modeling, (ii) test case generation, (iii) concretization, and (iv) test execution (Chapter 2,
Section 2.4). Each step has its own cost which may include human effort and/or machine CPU
time.

112 6.6. DISCUSSION OF RESULTS AND LIMITATIONS

Test model information gives an idea on the human effort that would be spent since the tester is
supposed to design it manually. Although the modeling effort is directly related to the application’s
size and complexity, we observed in the industrial experience (Section 6.4) that other factors may
also influence it. The restricted access to sources of information and unclear test purposes may
increase the cost during the modeling. In the performed studies, the TSD tool was essential since
the models were constantly manipulated. Large models remain complex to manipulate, motivating
the investigation of different reduced models instead of only one. The scope of the presented data
on test modeling for service-oriented applications is limited and more experimental evaluation
is required. Future work is also necessary to deal with limitations in the ESG4WSC modeling
technique described at the end of Section 6.4.1.

Concerning the test generation, we have proposed two different algorithms for positive test gen-
eration (Section 5.3). Based on the experiment we conducted with random models (Section 6.3),
CPP and ETA have both advantages and disadvantages. They have shown different performance
with respect to the test suite size (which impacts on the test execution). Furthermore, test suites are
generated all the time and a fast algorithm for test generation is essential. The results have shown
that with models until 500 events (relatively large), the generation time is acceptable for both algo-
rithms (below two seconds). While ETA executes faster, CPP produces shorter test suites. Another
key difference is the quantity and length of test cases generated by each algorithm. ETA generates
many short test cases, where CPP generates a few, but longer, test cases. The use of random mod-
els, albeit posing a limitation on extrapolation of the results to real projects, allows to investigating
the relationship between the model size and the test suites.

Although test concretization is essential in the proposed approach (also in MBT), there is a
lack of investigation into the cost of this step. Using the ESG4WSC approach, concretization
metrics and source code metrics have shown that this step demands a reasonable effort (Sec-
tions 6.3.2 and 6.4.2). However, the current effort on concretization can be reduced by further
improvements in the tools. We also note that the proposed model metrics can be helpful to esti-
mate manual effort and support decisions by the testers.

During the second part of the industrial experience (Section 6.4.2), discussions with the devel-
opment team suggested that most of the functionalities tested by the ESG4WSC approach were
likely covered by previous tests. Nevertheless, we noticed a lack of automated solutions for testing
Web services. Our impressions are that the MBT approach can be useful in scenarios, similar to
the presented ones, that have complex workflows and mocking different services and sequences of
messages are too complex and error-prone. However, more robust and automated tools would be
essential to a large scale adoption.

We observed that there is still room for improvements in the approach automation. Concerning
the tools’ evolution, the main goal is to increase the automation and reduce the manual effort by,
for instance, reducing the LoC necessary to develop adaptors. There are a couple of options that
requires further investigation and experimentation. The generation of SOAP messages that are
associated with private responses may be eased by integrating the SoapUI tool (Eviware, 2012).

CHAPTER 6. EVALUATION OF THE PROPOSED APPROACH 113

In the adaptors development, MessageCheckingAdaptor may use the XML schema in the
WSDL files to support automatic verification of messages. Most of the written code can be gener-
ated automatically. Moreover, XPath queries that currently are evaluated in the adaptor code can be
included directly in the model (and in the XML test cases as well). Thus, ERunTE-runner would
be in charge of reading XPath queries and evaluated them, working as a test oracle. ESB config-
urations may also be automatically performed and integrated with the development environment.
Finally, the PublicEventAdaptor adaptors can be evolved for automatic driver construction
and input data generation.

6.7 Final Remarks

This chapter has presented three experimental studies that were conducted to evaluate the
ESG4WSC proposed in Chapter 5. Section 6.2 has described a case study so that the ESG4WSC
approach was employed during the development of the xTripHandling application. The results
of this case study suggested that the approach scales well with larger compositions. Moreover,
faults were detected not only in the SUT, but also in the specification of a non-trivial service-
oriented application for managing trips.

Section 6.3 has described the results obtained by carrying out a cost analysis of the ESG4WSC
approach. As for test generation and execution, advantages and disadvantages for the two algo-
rithms have been identified using random models. ETA is faster and produces shorter test cases,
which favor scenarios with bigger models and that require test cases easier to debug. CPP gener-
ates smaller test suites with few test cases, being adequate for scenarios where the test execution
cost should be minimized. As for modeling, the obtained experience has supported ESG4WSC
as an intuitive technique to test composite services. Regarding test concretization, testers devoted
a reasonable effort, but straightforward use, in test concretization as observed in the source code
metrics.

Section 6.4 has described an experience report on applying the proposed approach in a set of
real-world applications of a multinational IT company. The results on modeling and test generation
of 23 WS-BPEL based composite services have been described. We have also provided more
details on the concretization and test execution for the ABC application. The experience reported
has provided preliminary evidences that the ESG4WSC approach is applicable to test service-
oriented applications in real and less controlled scenarios within an IT corporation. From the
results, we have analyzed issues that impact the approach and tools, discussing how they can be
overcome.

The lessons learned, discussion of results, and limitations of these three experimental studies
are presented in Sections 6.5 and 6.6. All in all, we have recognized the threats and limitations
of each study and general conclusions cannot be drawn from the results presented in this chap-
ter. However, the three studies have provided evidences that at least MBT, more specifically the

114 6.7. FINAL REMARKS

ESG4WSC approach, is worth to be applied in service-oriented applications from both academic
and industrial points of view. We can also conclude that the automation capability is also promising
based on the use of the supporting tools.

The next chapter concludes this dissertation, summarizing the main contributions, discussing
general limitations, and mentioning future work.

CHAPTER

7
Conclusion

Software testing is a key factor to successfully implement projects that develop applications
using SOA and Web services. Nevertheless, these service-oriented applications pose challenges
that cannot be overcome by the use of traditional software testing techniques. Service testing has
been widely researched over the past years, though the systematic and formal testing of this class
of software and its appropriate automated support have been still motivating topics.

In this context, this dissertation has contributed with theoretical and experimental studies to
advance the service testing area by applying MBT. The results have provided a positive answer
to the general research question proposed in Chapter 1, i.e., “Is MBT applicable to test service-

oriented applications so that test cases are generated to verify the SUT formally in a holistic

way?”.

The contributions that support answering such a question are revisited in Section 7.1. Sec-
tion 7.2 summarizes the limitations of the work and discusses how they can be overcome.

7.1 Revisiting the Dissertation Contributions

This section revisits the achievements of this dissertation as follows.

Experimental comparison of FSM-based test methods: we conducted an experimental study to
compare five methods, namely W, HSI, SPY, H, and P, capable of generating test suites from
FSMs, and the results are provided in Chapter 3. For each method, we analyzed the test suite
characteristics regarding number of resets and test case length (Section 3.5.1). The overall
cost of each method, i.e., the test suite length was analyzed in Section 3.5.2. We applied

115

116 7.1. REVISITING THE DISSERTATION CONTRIBUTIONS

mutation testing to simulate a domain so that the fault detection ratio could be evaluated
(Section 3.5.3). Results of the correlations among the analyzed dimensions: number of
resets, test case length, test suite length, and fault detection ratio are provided (Section 3.5.4).

MBT process for service-oriented applications: we introduced a testing process for service-
oriented applications, revisiting the MBT literature. By doing so, a set of steps, tools, and
artifacts was identified and described in Section 4.3. We carried out an exploratory study,
described in Section 4.4, to provide an initial evaluation of the process. This study consisted
of (i) the development of a tool called JStateModelBasedTest (Section 4.4.1) and (ii) a
case study with two applications: ThirdPartyCall-SOA and QualiPSo-Factory

(Section 4.4.2).

Holistic testing of service compositions: we proposed an MBT approach, named ESG4WSC, to
test service compositions in a holistic and formal way. The approach, presented in Chapter 5,
involves a modeling technique that represents the communication of a composite service
with its partner services, formally defined in Section 5.2.2. We also proposed algorithms
to generate positive and negative test suites from an ESG4WSC model. Positive test suites
cover expected (or desirable) situations in the test model (more details in Section 5.3) and
negative test suites cover public and private events to verify unexpected (or undesirable)
situations in the test model (more details in Section 5.4).

Mechanisms to support the test automation: prototype tools were implemented and evaluated
along the development of this doctoral work. As for the ESG4WSC approach, we cooperated
with researchers from Paderborn Universität to develop the tools described in Section 5.5 of
Chapter 5. To deal with modeling and test generation, the TSD tool was augmented to
support definitions and algorithms of the ESG4WSC approach (Section 5.5.1). Regarding
concretization and test execution, we developed the ERunTE tool, whose main task is the
integration with an ESB to monitor and control the message flow (Section 5.5.2).

Experimental evaluations of the proposed approach: we evaluated the ESG4WSC approach
and its supporting tools in the three experimental studies reported in Chapter 6. Initially,
the approach was employed in the xTripHandling application. The results provided ev-
idences that the approach can be applied to larger and complex compositions and faults can
be revealed in both specification and SUT (more details in Section 6.2). A cost analysis was
also conducted and preliminary results identified trade-offs between the two algorithms for
positive test generation and suggested reasonable manual effort on modeling and concretiza-
tion (more details in Section 6.3). Finally, an experience with real-world applications within
an IT corporation was reported. The study identified limitations in the modeling technique
and provided evidences that the approach is feasible in real and less controlled contexts
(more details in Section 6.4).

CHAPTER 7. CONCLUSION 117

Table 7.1 connects the reported achievements with three types of contributions: (i) theoretical
definitions, (ii) experimental studies, and (iii) supporting tools (Maldonado, 1997). The table also
provides the section in which the contribution was described and associated publication.

Table 7.1: Classification and structure of the dissertation contributions.

Chapter Description Location (i)
th

eo
re

tic
al

de
fin

iti
on

s

(ii
)e

xp
er

im
en

ta
ls

tu
di

es

(ii
i)

su
pp

or
tin

g
to

ol
s

Publication

3

Experimental results from the
comparison among FSM-based test
methods w.r.t. test suite characteristics

Section 3.5.1 �

(Endo and Simao, 2013)Experimental results from the
comparison among FSM-based test
methods w.r.t. the overall test suite
length

Section 3.5.2 �

Experimental results from the
comparison among FSM-based test
methods w.r.t. fault detection ratio

Section 3.5.3 �

Correlations of analyzed variables when
comparing FSM-based test methods Section 3.5.4 �

4

MBT process for service-oriented
applications Section 4.3 �

(Endo and Simao, 2011)Exploratory study –
JStateModelBasedTest tool Section 4.4.1 �

Exploratory study – case study Section 4.4.2 �

5

Proposal of the ESG4WSC approach –
model Section 5.2.2 �

(Belli et al., 2013)
Proposal of the ESG4WSC approach –
positive test case generation Section 5.3 �

Proposal of the ESG4WSC approach –
negative test case generation Section 5.4 �

Tool support for modeling and test
generation (TSD) Section 5.5.1 �

Tool support for concretization and test
execution (ERunTE) Section 5.5.2 �

6
Case study: xTripHandling Section 6.2 � (Belli et al., 2013)
Cost analysis Section 6.3 �
Industrial experience Section 6.4 � (Endo et al., 2012)

7.2 Limitations and Future Directions

This section describes limitations of the dissertation contributions and how they can be dealt
with in the future. Notice that specific limitations have already been discussed in previous chap-
ters, therefore we herein concentrate on broader limitations to be overcome as well as possible
improvements that can be made during short- and medium-term research.

118 7.2. LIMITATIONS AND FUTURE DIRECTIONS

Comparison of FSM-based test methods: five methods able to generate n-complete test suites
were considered for the comparison of the FSM-based test methods described in Chapter 3.
The study does not take into account all methods existing in the literature, though replications
can include others, like DS (Hennie, 1964), UIOv (Vuong et al., 1989), and Wp (Fujiwara
et al., 1991). The adoption of random FSMs is another limitation that might be overcome
by replications using real-world models as subjects. The experimental investigation into test
methods for partial and nondeterministic machines also requires further studies.

Limitations of the ESG4WSC approach: during the experience with real-world applications
shown in Section 6.4, limitations on the modeling technique were identified. In future work,
elements of the ESG4WSC model defined in Chapter 5 should be revisited and extended to
handle these limitations. Concerning the test generation, a high number of test cases was ob-
served for positive and negative testing. In this case, the tester might need to either execute
only a subset of the test cases or order the test case execution. Further investigations into
strategies for test suite minimization and prioritization can shed some light on this topic.

Experimental studies: the ESG4WSC approach was evaluated by three experimental studies de-
scribed in Chapter 6. Their results provide encouraging evidences, but the scope was limited
and opportunities for future experiments are manifold. First, an experiment can be conducted
to compare the proposed approach with other approaches, like structural testing. In these ex-
periments, the most interesting dimensions are the effort devoted by the testers (cost) and
the fault detection ratio (effectiveness). It is also worth conducting controlled experiments
with human subjects to assess the manual efforts involved, such as modeling time, ease of
use and learning curve, and mistakes made.

Tool support: the tools described in Chapters 4 and 5 are prototypes and several improvements,
such as version control of test models and generated test suites in TSD and mechanisms
to reduce the development effort of adaptors in ERunTE may be incorporated to increase
the level of automation. The overall approach automation and its MBT steps can benefit
from increasing the synergy between tools and service artifacts specified in Web service
standards. Another extension to be assessed in the future is the integration of TSD and
ERunTE with IDEs (e.g., Eclipse) since parts of the testing process are performed within
those environments.

7.2.1 Possible extensions

Some of the possible extensions to the contributions of this dissertation include:

• Research into the automatic generation of partial event-driven models out of WS-BPEL
specifications, reducing the initial effort to produce test models and keeping an updating
traceability between models and SUTs.

CHAPTER 7. CONCLUSION 119

• Opportunities for supporting performance testing. For instance, the esbcomp (integrated
with the ESB) module of ERunTE could be extended to capture metrics used to evaluate
and monitor performance, such as response time and throughput. Extensions could also be
proposed in the modeling technique to introduce performance testing information that guides
the generation of model-based performance tests.

• Improvements in the test modeling capabilities. FSMs and ESGs have been applied indepen-
dently along this research project. We plan to investigate how to evolve an ESG4WSC model
to a state machine that explicitly represents not only events, but also states, coping with the
stateful behavior of composite services. This may also require a considerable increase in the
automation power of the presented tools.

• Other topics to be exploited, such as online testing and dynamic compositions. Extensions
can be proposed to generate on-the-fly (online) tests based on observed outputs of the com-
position. Although dynamic service compositions have not been widely adopted by practi-
tioners yet, the ESG4WSC can also be investigated in the context of dynamically assembled
services.

Bibliography

AALST, W. M. P. Formalization and verification of event-driven process chains. Information &

Software Technology, v. 41, n. 10, p. 639–650, 1999.

ABRIAL, J.-R.; HALLERSTEDE, S. Refinement, decomposition, and instantiation of discrete
models: Application to event-b. Fundamenta Informaticae, v. 77, n. 1-2, p. 1–28, 2007.

ACTIVEVOS Activevos overview. Available on: http://www.activevos.com/

products/activevos/overview. Last access: 13/02/2013, 2013.

AHO, A. V.; DAHBURA, A. T.; LEE, D.; UYAR, M. U. Conformance testing methodologies
and architectures for osi protocols. chap. An optimization technique for protocol conformance
test generation based on UIO sequences and rural Chinese postman tours, Los Alamitos, CA,
USA: IEEE Computer Society Press, p. 427–438, 1995.

AMMANN, P.; OFFUTT, J. Introduction to software testing. New York, NY, USA: Cambridge
University Press, 2008.

ANDREWS, A. A.; OFFUTT, J.; ALEXANDER, R. T. Testing web applications by modeling with
FSMs. Software and System Modeling, v. 4, n. 3, p. 326–345, 2005a.

ANDREWS, J. H.; BRIAND, L. C.; LABICHE, Y. Is mutation an appropriate tool for testing
experiments? In: ICSE ’05: Proceedings of the 27th international conference on Software

engineering, St. Louis, MO, USA: ACM, 2005b, p. 402–411.

ANDRIKOPOULOS, V.; BUCCHIARONE, A.; NITTO, E.; KAZHAMIAKIN, R.; LANE, S.;
MAZZA, V.; RICHARDSON, I. Service engineering. In: Service Research Challenges and

Solutions for the Future Internet, Springer Berlin Heidelberg, p. 271–337, 2010.

APACHE.ORG Apache jUDDI. Available on: http://ws.apache.org/juddi/index.
html. Last access: 13/02/2013, 2013.

121

http://www.activevos.com/products/activevos/overview
http://www.activevos.com/products/activevos/overview
http://ws.apache.org/juddi/index.html
http://ws.apache.org/juddi/index.html

122 BIBLIOGRAPHY

ARCURI, A. Longer is better: On the role of test sequence length in software testing. In:
International Conference on Software Testing, Verification, and Validation (ICST), Paris, France:
IEEE Computer Society, 2010, p. 469–478.

ASF Apache ode. Available on: http://ode.apache.org/. Last access: 13/02/2013,
2010.

ASF Apache maven project. Available on: http://maven.apache.org. Last access:
13/02/2013, 2011.

AYDAL, E. G.; PAIGE, R. F.; UTTING, M.; WOODCOCK, J. Putting formal specifications under
the magnifying glass: Model-based testing for validation. In: ICST ’09: Proceedings of the

2009 International Conference on Software Testing Verification and Validation, Denver, CO,
USA: IEEE Computer Society, 2009, p. 131–140.

BALDONI, M.; BAROGLIO, C.; MARTELLI, A.; PATTI, V.; SCHIFANELLA, C. Verifying the
conformance of web services to global interaction protocols: A first step. In: International

Workshop on Web Services and Formal Methods (WS-FM), Versailles, France: Springer, 2005,
p. 257–271.

BELLI, F.; BUDNIK, C. J. Minimal spanning set for coverage testing of interactive systems.
In: First International Colloquium on Theoretical Aspects and Computing (ICTAC), Guiyang,
China: Springer Verlag, 2004, p. 220–234.

BELLI, F.; BUDNIK, C. J.; WHITE, L. Event-based modelling, analysis and testing of user
interactions: approach and case study. Software Testing, Verification & Reliability, v. 16, n. 1,
p. 3–32, 2006.

BELLI, F.; ENDO, A. T.; LINSCHULTE, M.; SIMAO, A. Model-based testing of web service
compositions. In: The 6th IEEE International Symposium on Service-Oriented System Engi-

neering (SOSE 2011), Irvine, CA, USA, 2011a, p. 181–192.

BELLI, F.; ENDO, A. T.; LINSCHULTE, M.; SIMAO, A. A holistic approach to model-based
testing of web service compositions. Software: Practice and Experience, p. n/a–n/a, 2013.
Available on: http://dx.doi.org/10.1002/spe.2161

BELLI, F.; GÜLER, N.; LINSCHULTE, M. Are longer test sequences always better? - a reliability
theoretical analysis. In: Fourth International Conference on Secure Software Integration and

Reliability Improvement (SSIRI), Singapore, Singapore, 2010, p. 78–85.

BELLI, F.; GÜLER, N.; LINSCHULTE, M. Does "depth" really matter? on the role of model re-
finement for testing and reliability. In: IEEE 35th Annual Computer Software and Applications

Conference (COMPSAC), Munich, Germany, 2011b, p. 630–639.

http://ode.apache.org/
http://maven.apache.org
http://dx.doi.org/10.1002/spe.2161

BIBLIOGRAPHY 123

BELLI, F.; LINSCHULTE, M. Event-driven modeling and testing of web services. In: IEEE

International Computer Software and Applications Conference (COMPSAC), Turku, Finland,
2008, p. 1168–1173.

BELLI, F.; LINSCHULTE, M. Event-driven modeling and testing of real-time web services. Ser-

vice Oriented Computing and Applications Journal, v. 4, n. 1, p. 3–15, 2010.

BENHARREF, A.; DSSOULI, R.; GLITHO, R.; SERHANI, M. A. Towards the testing of com-
posed web services in 3rd generation networks. In: IFIP International Conference on Testing

of Communicating Systems (TESTCOM), New York City, USA, 2006, p. 118–133.

BENTAKOUK, L.; POIZAT, P.; ZAÏDI, F. A formal framework for service orchestration testing
based on symbolic transition systems. In: International Conference on Testing of Software and

Communication Systems (TESTCOM), Eindhoven, the Netherlands: Springer-Verlag, 2009, p.
16–32.

BERGLUND, A.; BOAG, S.; CHAMBERLIN, D.; FERNANDEZ, M. F.; KAY, M.; ROBIE, J.;
SIMEON, J. XML path language (XPath) 2.0 (second edition). Available on: http://www.
w3.org/TR/xpath20. Last access: 13/02/2013, 2010.

BERTOLINO, A.; ANGELIS, G. D.; FRANTZEN, L.; POLINI, A. Model-based generation of
testbeds for web services. In: IFIP International Conference on Testing of Communicating

Systems (TESTCOM), Tokyo, Japan, 2008, p. 266–282 (Lecture Notes in Computer Science,
v.5047).

BERTOLINO, A.; FRANTZEN, L.; POLINI, A.; TRETMANS, J. Audition of web services for
testing conformance to open specified protocols. In: Architecting Systems with Trustworthy

Components International Seminar, Dagstuhl Castle, Germany, 2004, p. 1–25.

BINDER, R. V. Testing object-oriented systems: Models, patterns, and tools, v. 1. Addison
Wesley Longman, Inc., 1999.

BLACKBURN, M.; BUSSER, R.; NAUMAN, A. Why model-based test automation is different

and what you should know to get started. Technical Report, Software Productivity Consortium,
2004.

BOAG, S.; CHAMBERLIN, D.; FERNANDEZ, M. F.; FLORESCU, D.; ROBIE, J.; SIMEON, J.
XQuery 1.0: An XML query language (second edition). Available on: http://www.w3.
org/TR/xquery/. Last access: 13/02/2013, 2010.

BOUQUET, F.; DEBRICON, S.; LEGEARD, B.; NICOLET, J.-B. Extending the unified process
with model-based testing. In: MoDeVa’06, 3rd Int. Workshop on Model Development, Valida-

tion and Verification, Genova, Italy, 2006, p. 2–15.

http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xpath20
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

124 BIBLIOGRAPHY

BOURHFIR, C.; DSSOULI, R.; E.ABOULHAMID; N.RICO Automatic executable test case gener-
ation for EFSM specified protocols. In: International Workshop on Testing of Communicating

Systems (IWTCS’97), Cheju Island, Korea, 1997, p. 75–90.

BOZKURT, M.; HARMAN, M.; HASSOUN, Y. Testing and verification in service-oriented archi-
tecture: a survey. Software Testing, Verification and Reliability, p. n/a–n/a, 2012.
Available on: http://dx.doi.org/10.1002/stvr.1470

BRIAND, L. C. A critical analysis of empirical research in software testing. In: International

Symposium on Empirical Software Engineering and Measurement (ESEM), Madrid, Spain:
IEEE Computer Society, 2007, p. 1–8.

BROY, M.; JONSSON, B.; KATOEN, J.-P.; LEUCKER, M.; PRETSCHNER, A. Model-based

testing of reactive systems: advanced lectures. 1st ed. Springer, 2005.

BRUNO, M.; CANFORA, G.; PENTA, M. D.; ESPOSITO, G.; MAZZA, V. Using test cases as
contract to ensure service compliance across releases. In: International Conference on Service-

Oriented Computing (ICSOC), Amsterdam, The Netherlands, 2005, p. 87–100.

BUCCHIARONE, A.; MELGRATTI, H.; SEVERONI, F. Testing service composition. In: 8th

Argentine Symposium on Software Engineering (ASSE’07), Mar del Plata, Argentina, 2007.

BUDD, T. A. Mutation analysis: Ideas, example, problems and prospects. Computer Program

Testing, p. 129–148, 1981.

CANFORA, G.; DI PENTA, M. SOA: Testing and self-checking. In: International Workshop on

Web Services - Modeling and Testing (WS-MaTE), Palermo, Italy, 2006a, p. 3–12.

CANFORA, G.; DI PENTA, M. Testing services and service-centric systems: Challenges and
opportunities. IT Professional, v. 8, n. 2, p. 10–17, 2006b.

CANFORA, G.; DI PENTA, M. Service-oriented architectures testing: A survey. In: Software En-

gineering: International Summer Schools (ISSSE), Berlin, Heidelberg: Springer-Verlag, 2009,
p. 78–105.

CAPELLARI, M. L.; GIMENES, I. M. S.; SIMAO, A.; ENDO, A. T. Towards incremental fsm-
based testing of software product lines. In: XI Simposio Brasileiro de Qualidade de Software

(SBQS 2012), Fortaleza, Brazil, 2012, p. 9–23.

CAVALLI, A.; CAO, T.-D.; MALLOULI, W.; MARTINS, E.; SADOVYKH, A.; SALVA, S.; ZAIDI,
F. Webmov: A dedicated framework for the modelling and testing of web services composition.
In: IEEE International Conference on Web Services (ICWS), Miami, FL, USA, 2010, p. 377–
384.

CERAMI, E. Web services essentials. 1st ed. O’Reilly, 2002.

http://dx.doi.org/10.1002/stvr.1470

BIBLIOGRAPHY 125

CHAKRABARTI, S. K.; RODRIQUEZ, R. Connectedness testing of restful web-services. In:
India software engineering conference (ISEC), New York, NY, USA: ACM, 2010, p. 143–152.

CHAN, K. S.; BISHOP, J.; STEYN, J.; BARESI, L.; GUINEA, S. Service-oriented comput-
ing - icsoc 2007 workshops. chap. A Fault Taxonomy for Web Service Composition, Berlin,
Heidelberg: Springer-Verlag, p. 363–375, 2009.

CHAN, W.; CHEUNG, S.; LEUNG, K. A metamorphic testing approach for online testing of
service-oriented software applications. International Journal of Web Service Research, v. 4,
n. 2, p. 61–81, 2007.

CHOW, T. S. Testing software design modeled by finite-state machines. IEEE Transactions on

Software Engineering, v. 4, n. 3, p. 178–187, 1978.

CORRADINI, F.; ANGELIS, F.; POLINI, A.; POLZONETTI, A. Improving trust in composite eser-
vices via run-time participants testing. In: International conference on Electronic Government

(EGOV), Torino, Italy: Springer-Verlag, 2008, p. 279–290.

CURBERA, F.; DUFTLER, M.; KHALAF, R.; NAGY, W.; MUKHI, N.; WEERAWARANA, S.
Unraveling the web services: an introduction to soap, wsdl, and uddi. Internet Computing, v. 6,
n. 2, p. 86–93, 2002.

DALAL, S. R.; JAIN, A.; KARUNANITHI, N.; LEATON, J. M.; LOTT, C. M.; PATTON, G. C.;
HOROWITZ, B. M. Model-based testing in practice. In: International conference on Software

engineering (ICSE), Los Angeles, USA: ACM, 1999, p. 285–294.

DE ANGELIS, F.; POLINI, A.; ANGELIS, G. A counter-example testing approach for orches-
trated services. In: Third International Conference on Software Testing, Verification and Vali-

dation (ICST), Paris, France, 2010, p. 373 –382.

DEMILLO, R. A. Software testing and evaluation. The Benjamim/Commings Publishing Com-
pany, Inc, 1978.

DEUGD, S. D.; CARROLL, R.; KELLY, K.; MILLETT, B.; RICKER, J. Soda: Service oriented
device architecture. IEEE Pervasive Computing, v. 5, n. 3, p. 94–96, c3, 2006.

DI NITTO, E.; GHEZZI, C.; METZGER, A.; PAPAZOGLOU, M.; POHL, K. A journey to highly
dynamic, self-adaptive service-based applications. Automated Software Engineering Journal,
v. 15, n. 3-4, p. 313–341, 2008.

DO, H.; ELBAUM, S.; ROTHERMEL, G. Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering Jour-

nal, v. 10, n. 4, p. 405–435, 2005.

126 BIBLIOGRAPHY

DO, H.; ROTHERMEL, G. On the use of mutation faults in empirical assessments of test case
prioritization techniques. IEEE Transactions on Software Engineering, v. 32, n. 9, p. 733 –752,
2006.

DONG, R.; WEI, Z.; LUO, X.; LIU, F. Testing conformance of bpel business process based on
model checking. Journal of Software, v. 5, n. 9, 2010.

DOROFEEVA, R.; EL-FAKIH, K.; MAAG, S.; R.CAVALLI, A.; YEVTUSHENKO, N. Experi-
mental evaluation of FSM-based testing methods. In: International Conference on Software

Engineering and Formal Methods (SEFM), Koblenz, Germany, 2005a, p. 23–32.

DOROFEEVA, R.; EL-FAKIH, K.; MAAG, S.; R.CAVALLI, A.; YEVTUSHENKO, N. FSM-based
conformance testing methods: A survey annotated with experimental evaluation. Information

and Software Technology, v. 52, n. 12, p. 1286–1297, 2010.

DOROFEEVA, R.; EL-FAKIH, K.; YEVTUSHENKO, N. An improved conformance testing
method. In: IFIP International Conference on Formal Techniques for Networked and Dis-

tributed Systems (FORTE), Taipei, Taiwan: Springer, 2005b, p. 204–218 (Lecture Notes in

Computer Science, v.3731).

DRANIDIS, D.; KOURTESIS, D.; RAMOLLARI, E. Formal verification of web service be-
havioural conformance through testing. Annals of Mathematics, Computing & Teleinformatics,
v. 1, n. 5, p. 36–43, 2007.

DRANIDIS, D.; METZGER, A.; KOURTESIS, D. Enabling proactive adaptation through just-in-
time testing of conversational services. In: DI NITTO, E.; YAHYAPOUR, R., eds. Towards

a Service-Based Internet, v. 6481 de Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, p. 63–75, 2010.

DURELLI, V. H. S.; ENDO, A. T.; SIMAO, A.; DELAMARO, M. E. Towards envisaging software
testing in a pervasive computing world. In: XXVI Brazilian Symposium on Software Engineer-

ing (SBES 2012) - Special track on Grand Challenges in Softwar-System Engineering, Natal,
Brazil, 2012, p. 201–205.

EL-FAR, I. K.; WHITTAKER, J. A. Model-based software testing. In: Encyclopedia on Software

Engineering, Wiley, 2001, p. 825–837.

ELER, M. M.; DELAMARO, M. E.; MALDONADO, J. C.; MASIERO, P. C. Built-in structural
testing of web services. In: XXIV Brazilian Symposium on Software Engineering (SBES),
Salvador, Brazil, 2010, p. 70–79.

ELER, M. M.; ENDO, A. T.; MASIERO, P. C.; DELAMARO, M. E.; MALDONADO, J. C.; VIN-
CENZI, A. M. R.; CHAIM, M. L.; BEDER, D. M. JaBUTiService: A web service for struc-

BIBLIOGRAPHY 127

tural testing of java programs. In: Proceedings of the 33rd Annual IEEE Software Engineering

Workshop (SEW 2009), Skovde, Sweden, 2009, p. 69–76.

ENDO, A. T.; LINSCHULTE, M.; SIMÃO, A. S.; SOUZA, S. R. S. Event- and coverage-based
testing of web services. In: Workshop on Model-Based Verification & Validation From Research

to Practice (MVV) - in conjunction with the Fourth IEEE International Conference on Secure

Software Integration and Reliability Improvement (SSIRI), Singapore, Singapore, 2010, p. 1–8.

ENDO, A. T.; SILVEIRA, M. B.; RODRIGUES, E. M.; A., S.; OLIVEIRA, F. M.; ZORZO,
A. F. Using models to test web service-oriented applications: an experience report. Technical
Report 67, Pontifícia Universidade Católica do Rio Grande do Sul (FACIM-PUCRS), Porto
Alegre, RS, Brazil, 2012.

ENDO, A. T.; SIMÃO, A. S.; SOUZA, S. R. S.; SOUZA, P. S. L. Web services composition
testing: a strategy based on structural testing of parallel programs. In: Testing: Academic

and Industrial Conference Practice and Research Techniques (TAIC PART), Windsor, United
Kingdom, 2008, p. 3–12.

ENDO, A. T.; SIMAO, A. Formal testing approaches for service-oriented architectures and web

services: a systematic review. Technical Report 348, Universidade de São Paulo (USP), São
Carlos, SP, Brazil, 2010a.

ENDO, A. T.; SIMAO, A. A systematic review on formal testing approaches for web services. In:
4th Brazilian Workshop on Systematic and Automated Software Testing (SAST), Natal, Brazil,
2010b, p. 89–98.

ENDO, A. T.; SIMAO, A. Model-based testing of service-oriented applications via state models.
In: IEEE International Conference on Services Computing (SCC), Washington, DC, USA, 2011,
p. 432–439.

ENDO, A. T.; SIMAO, A. Experimental comparison of test case generation methods for finite
state machines. In: The 8th Workshop on Advances in Model Based Testing (A-MOST 2012),
Montreal, Canada, 2012a, p. 549–558.

ENDO, A. T.; SIMAO, A. An experimental study on test suite characteristics, cost, and effective-

ness of fsm-based testing methods. Technical Report 378, Universidade de São Paulo (USP),
São Carlos, SP, Brazil, 2012b.

ENDO, A. T.; SIMAO, A. Experiments with FSMs: LabES. 2012c.
Available on: http://www.labes.icmc.usp.br/~aendo/fsm-experiments

ENDO, A. T.; SIMAO, A. Evaluating test suite characteristics, cost, and effectiveness of FSM-
based testing methods. Information and Software Technology, v. 55, n. 6, p. 1045–1062, 2013.
Available on: http://dx.doi.org/10.1016/j.infsof.2013.01.001

http://www.labes.icmc.usp.br/~aendo/fsm-experiments
http://dx.doi.org/10.1016/j.infsof.2013.01.001

128 BIBLIOGRAPHY

ERL, T. Service-oriented architecture: Concepts, technology, and design. Upper Saddle River,
NJ, USA: Prentice Hall PTR, 2005.

ESCOBEDO, J.; GASTON, C.; LE GALL, P.; CAVALLI, A. Testing web service orchestrators in
context: A symbolic approach. In: 8th IEEE International Conference on Software Engineering

and Formal Methods (SEFM), Pisa, Italy, 2010, p. 257–267.

ESTRELLA, J. C.; ENDO, A. T.; TOYOHARA, R. K. T.; SANTANA, R. H.; SANTANA, M. J.;
BRUSCHI, S. M. A performance evaluation study for web services attachments. In: IEEE

International Conference on Web Services, Los Angeles, CA, USA, 2009, p. 799–806.

EVIWARE soapUI. Available on: http://www.soapui.org/. Last access: 13/02/2013,
2012.

FARCHI, E.; HARTMAN, A.; PINTER, S. S. Using a model-based test generator to test for
standard conformance. IBM Systems Journal, v. 41, n. 1, p. 89–110, 2002.

FENG, X.; PARNAS, D. L.; TSE, T.; O’CALLAGHAN, T. A comparison of tabular expression-
based testing strategies. IEEE Transactions on Software Engineering, v. 37, n. 5, p. 616–634,
2011.

FRANTZEN, L.; LAS NIEVES HUERTA, M.; KISS, Z. G.; WALLET, T. On-the-fly model-based
testing of web services with jambition. In: International Workshop on Web Services and Formal

Methods (WS-FM), Milan, Italy: Springer-Verlag, 2008, p. 143–157.

FRANTZEN, L.; TRETMANS, J.; VRIES, R. Towards model-based testing of web services. In:
POLINI, A., ed. International Workshop on Web Services - Modeling and Testing – WS-MaTe

2006, Palermo, Italy, 2006, p. 67–82.

FUJIWARA, S.; BOCHMANN, G. V.; KHENDEK, F.; AMALOU, M.; GHEDAMSI, A. Test se-
lection based on finite state models. IEEE Transactions on Software Engineering, v. 17, n. 6,
p. 591–603, 1991.

GAO, H.; LI, Y. Generating quantitative test cases for probabilistic timed web service composi-
tion. In: IEEE Asia Pacific Services Computing Conference (APSCC), Jeju, South Korea, 2011,
p. 275–283.

GARCÍA-FANJUL, J.; RIVA, C.; TUYA, J. Generation of conformance test suites for composi-
tions of web services using model checking. In: Testing: Academic & Industrial Conference -

Practice And Research Techniques (TAIC PART’06), Windsor, UK, 2006, p. 127–130.

GILL, A. Introduction to the theory of finite-state machines. McGraw-Hill, 1962.

http://www.soapui.org/

BIBLIOGRAPHY 129

GRIESKAMP, W.; KICILLOF, N.; STOBIE, K.; BRABERMAN, V. A. Model-based quality as-
surance of protocol documentation: tools and methodology. Software Testing, Verification and

Reliability, v. 21, n. 1, p. 55–71, 2011.

HARTMAN, A.; KATARA, M.; OLVOVSKY, S. Choosing a test modeling language: a survey. In:
HVC’06: Proceedings of the 2nd international Haifa verification conference on Hardware and

software, verification and testing, Haifa, Israel, 2007, p. 204–218.

HECKEL, R.; MARIANI, L. Automatic conformance testing of web services. In: International

Conference on Fundamental Approaches to Software Engineering (FASE), Lecture Notes in
Computer Science, Edinburgh, Scotland, 2005, p. 34–48 (Lecture Notes in Computer Science,).

HENNIE, F. C. Fault detecting experiments for sequential circuits. In: Fifth Annual Symposium

on Switching Circuit Theory and Logical Design, 1964, p. 95 –110.

HIERONS, R. M.; BOGDANOV, K.; BOWEN, J. P.; CLEAVELAND, R.; DERRICK, J.; DICK,
J.; GHEORGHE, M.; HARMAN, M.; KAPOOR, K.; KRAUSE, P.; LÜTTGEN, G.; SIMONS,
A. J. H.; VILKOMIR, S.; WOODWARD, M. R.; ZEDAN, H. Using formal specifications to
support testing. ACM Computing Surveys (CSUR), v. 41, n. 2, p. 1–76, 2009.

HIERONS, R. M.; URAL, H. Generating a checking sequence with a minimum number of reset
transitions. Automated Software Engineering Journal, v. 17, n. 3, p. 217–250, 2010.

HOARE, C. Communicating sequential processes. Prentice Hall International, 2004.
Available on: http://www.usingcsp.com/

HOU, S.-S.; ZHANG, L.; LAN, Q.; MEI, H.; SUN, J.-S. Generating effective test sequences for
BPEL testing. In: International Conference on Quality Software (QSIC), Jeju, Korea, 2009, p.
331–340.

HUHNS, M. N.; SINGH, M. P. Service-oriented computing: Key concepts and principles. IEEE

Internet Computing, v. 9, n. 1, p. 75–81, 2005.

HUMMER, W.; RAZ, O.; SHEHORY, O.; LEITNER, P.; DUSTDAR, S. Test coverage of data-
centric dynamic compositions in service-based systems. In: IEEE Fourth International Confer-

ence on Software Testing, Verification and Validation (ICST), Berlin, Germany, 2011, p. 40–49.

HUMMER, W.; RAZ, O.; SHEHORY, O.; LEITNER, P.; DUSTDAR, S. Testing of data-centric
and event-based dynamic service compositions. Software Testing, Verification and Reliability,
2013.

IEEE IEEE standard glossary of Software Engineering terminology. Standard 620.12, IEEE,
1990.

http://www.usingcsp.com/

130 BIBLIOGRAPHY

ILIEVA, S.; MANOVA, D.; MANOVA, I.; BARTOLINI, C.; BERTOLINO, A.; LONETTI, F. An
automated approach to robustness testing of BPEL orchestrations. In: The 6th IEEE Inter-

national Symposium on Service-Oriented System Engineering (SOSE 2011), Irvine, CA, USA,
2011, p. 193–203.

IPATE, F. Bounded sequence testing from deterministic finite state machines. Theorical Com-

puter Science, v. 411, n. 16-18, p. 1770–1784, 2010.

JIA, Y.; HARMAN, M. Constructing subtle faults using higher order mutation testing. In: Eighth

IEEE International Working Conference on Source Code Analysis and Manipulation, Beijing,
China, 2008, p. 249–258.

JORDAN, D.; EVDEMON, J.; ALVES, A.; ARKIN, A.; ASKARY, S.; BARRETO, C.; BLOCH, B.;
CURBERA, F.; FORD, M.; GOLAND, Y.; GUÍZAR, A.; KARTHA, N.; LIU, C. K.; KHALAF,
R.; KONIG, D.; MARIN, M.; MEHTA, V.; THATTE, S.; RIJN, D.; YENDLURI, P.; YIU,
A. OASIS web services business process execution language (WSBPEL) v2.0. Available on:
http://docs.oasis-open.org/wsbpel/2.0/. Last access: 13/02/2013, 2007.

JOSUTTIS, N. SOA in practice: The art of distributed system design. O’Reilly Media, Inc., 2007.

JUNIT Junit.org resources for test driven development. Available on: http://junit.

sourceforge.net/. Last access: 13/02/2013, 2011.

JURISTO, N.; MORENO, A. M.; VEGAS, S. Reviewing 25 years of testing technique experi-
ments. Empirical Software Engineering Journal, v. 9, n. 1-2, p. 7–44, 2004.

KAMPENES, V. B.; DYBÅ, T.; HANNAY, J. E.; SJØBERG, D. I. K. Systematic review: A
systematic review of effect size in software engineering experiments. Information & Software

Technology, v. 49, n. 11-12, p. 1073–1086, 2007.

KARAM, M.; SAFA, H.; ARTAIL, H. An abstract workflow-based framework for testing com-
posed web services. In: IEEE/ACS International Conference on Computer Systems and Appli-

cations (AICCSA), Amman, Jordan, 2007, p. 901–908.

KATTEPUR, A.; SEN, S.; BAUDRY, B.; BENVENISTE, A.; JARD, C. Pairwise testing of dynamic
composite services. In: The 6th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS), Waikiki, Honolulu, HI, USA: ACM, 2011, p. 138–147.

KAVANTZAS, N.; BURDETT, D.; RITZINGER, G.; FLETCHER, T.; LAFON, Y.; BARRETO, C.
Web services choreography description language version 1.0. Available on: http://www.
w3.org/TR/ws-cdl-10/. Last access: 13/02/2013, 2005.

KAZHAMIAKIN, R.; PISTORE, M.; SANTUARI, L. Analysis of communication models in web
service compositions. In: WWW ’06: Proceedings of the 15th international conference on

World Wide Web, Edinburgh, Scotland: ACM Press, 2006, p. 267–276.

http://docs.oasis-open.org/wsbpel/2.0/
http://junit.sourceforge.net/
http://junit.sourceforge.net/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

BIBLIOGRAPHY 131

KEUM, C.; KANG, S.; KO, I.-Y.; BAIK, J.; CHOI, Y.-I. Generating test cases for web ser-
vices using extended finite state machine. In: IFIP International Conference on Testing of

Communicating Systems (TESTCOM), New York, NY, USA: Springer, 2006, p. 103–117.

KITCHENHAM, B. A.; PFLEEGER, S. L.; PICKARD, L. M.; JONES, P. W.; HOAGLIN, D. C.;
EMAM, K. E.; ROSENBERG, J. Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, v. 28, n. 8, p. 721–734, 2002.

KOURTESIS, D.; RAMOLLARI, E.; DRANIDIS, D.; PARASKAKIS, I. Increased reliability in
soa environments through registry-based conformance testing of web services. Production

Planning & Control: The Management of Operations, v. 21, n. 2, p. 130–144, 2010.

LALLALI, M.; ZAIDI, F.; CAVALLI, A.; HWANG, I. Automatic timed test case generation
for web services composition. In: European Conference on Web Services (ECOWS), Dublin,
Ireland, 2008, p. 53–62.

LEE, D.; YANNAKAKIS, M. Principles and methods of testing finite state machines - a survey.
Proceedings of the IEEE, v. 84, n. 8, p. 1090–1123, 1996.

LEI, Y.; CARVER, R. Reachability testing of concurrent programs. IEEE Transactions on

Software Engineering, v. 32, n. 6, p. 382 –403, 2006.

LI, L.; CHOU, W.; GUO, W. Control flow analysis and coverage driven testing for web services.
In: IEEE International Conference on Web Services (ICWS), Beijing, China, 2008a, p. 473–480.

LI, Z. J.; TAN, H. F.; LIU, H. H.; ZHU, J.; MITSUMORI, N. M. Business-process-driven
gray-box soa testing. IBM Systems Journal, v. 47, n. 3, p. 457–472, 2008b.

LIU, C.-H.; CHEN, S.-L.; LI, X.-Y. A ws-bpel based structural testing approach for web service
compositions. In: IEEE International Symposium on Service-Oriented System Engineering

(SOSE), Jhongli, Taiwan, 2008, p. 135–141.

LOHMANN, M.; MARIANI, L.; HECKEL, R. A model-driven approach to discovery, testing and
monitoring of web services. In: Test and Analysis of Web Services, 2007, p. 173–204.

LUO, G.; PETRENKO, A.; BOCHMANN, G. Selecting test sequences for partially-specified non-
deterministic finite state machines. In: IWPTS ’94: 7th IFIP WG 6.1 international workshop

on Protocol test systems, London, UK: Chapman & Hall, Ltd., 1995, p. 95–110.

MA, C.; DU, C.; ZHANG, T.; HU, F.; CAI, X. WSDL-based automated test data generation
for web service. In: International Conference on Computer Science and Software Engineering

(CSSE), Wuhan, China, 2008, p. 731–737.

132 BIBLIOGRAPHY

MACKENZIE, C. M.; LASKEY, K.; MCCABE, F.; BROWN, P. F.; METZ, R.; HAMILTON, B. A.
OASIS reference model for service oriented architecture 1.0. Available on: http://docs.
oasis-open.org/soa-rm/v1.0/. Last access: 13/02/2013, 2006.

MALDONADO, J. C. Critérios potenciais usos: Uma contribuição ao teste estrutural de software.
Doctoral Dissertation, DCA/FEE/UNICAMP, Campinas, SP, 1991.

MALDONADO, J. C. Critérios de teste de software: Aspectos teóricos, empíricos e de automati-
zação. ICMC-USP, 1997.

MATHUR, A. P. Foundations of software testing: Fundamental algorithms and techniques.
Addison-Wesley Professional, 2008.

MCMILLAN, K. L. Symbolic model checking: an approach to the state explosion problem.
Doctoral Dissertation, Pittsburgh, PA, USA, 1992.

MEI, L.; CHAN, W.; TSE, T. Data flow testing of service-oriented workflow applications. In:
International Conference on Software Engineering (ICSE), Leipzig, Germany, 2008, p. 371–
380.

MEI, L.; CHAN, W. K.; TSE, T. H. Data flow testing of service choreography. In: Symposium

on the Foundations of Software Engineering (FSE), Amsterdam, The Netherlands, 2009a, p.
151–160.

MEI, L.; CHAN, W. K.; TSE, T. H.; KUO, F.-C. An empirical study of the use of frankl-weyuker
data flow testing criteria to test bpel web services. In: IEEE International Computer Software

and Applications Conference (COMPSAC), Seattle,Washington, USA, 2009b, p. 81–88.

MEI, L.; ZHANG, Z.; CHAN, W. K.; TSE, T. H. Test case prioritization for regression testing
of service-oriented business applications. In: International Conference on World Wide Web

(WWW), Madrid, Spain: ACM, 2009c, p. 901–910.

MILANOVIC, N.; MALEK, M. Current solutions for web service composition. IEEE Internet

Computing, v. 8, n. 6, p. 51–59, 2004.

MOORE, E. F. Gedanken-experiments on sequential machines. Automata Studies, Annals of

Mathematics Series, , n. 34, p. 129–153, 1956.

MORALES, G.; MAAG, S.; CAVALLI, A.; MALLOULI, W.; OCA, E.; WEHBI, B. Timed
extended invariants for the passive testing of web services. In: IEEE International Conference

on Web Services (ICWS), Miami, FL, USA, 2010, p. 592 –599.

MOUCHAWRAB, S.; BRIAND, L. C.; LABICHE, Y. Assessing, comparing, and combining
statechart- based testing and structural testing: An experiment. In: ESEM ’07: Proceedings

http://docs.oasis-open.org/soa-rm/v1.0/
http://docs.oasis-open.org/soa-rm/v1.0/

BIBLIOGRAPHY 133

of the First International Symposium on Empirical Software Engineering and Measurement,
Washington, DC, USA: IEEE Computer Society, 2007, p. 41–50.

MULESOFT Mule ESB: Open source ESB and integration platform. Available on: http:

//www.mulesoft.org/. Last access: 13/02/2013, 2012.

MYERS, G. J.; SANDLER, C.; BADGETT, T.; THOMAS, T. M. The art of software testing. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2004.

NETBEANS.ORG Netbeans SOA project home. Available on: http://soa.netbeans.
org/. Last access: 13/02/2013, 2009.

NEWCOMER, E. Understanding web services: XML, WSDL, SOAP and UDDI. 1st ed. Addison
Wesley, 2002.

NGUYEN, H. N.; POIZAT, P.; ZAÏDI, F. Passive conformance testing of service choreographies.
In: the 27th Annual ACM Symposium on Applied Computing (SAC 2012), Trento, Italy: ACM,
2012, p. 1528–1535.

NI, Y.; HOU, S.; ZHANG, L.; ZHU, J.; LI, Z.; LAN, Q.; MEI, H.; SUN, J. Effective message-
sequence generation for testing bpel programs. IEEE Transactions on Services Computing,
v. PP, n. 99, p. n/a–n/a, 2011.

OASIS UDDI specifications tc. Available on: http://www.oasis-open.org/

committees/uddi-spec/doc/tcspecs.htm. Last access: 13/02/2013, 2004.

OASIS Oasis web services security (wss) tc. Available on: http://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=wss. Last access: 13/02/2013, 2006.

OGF Open grid forum – web services agreement specification (ws-agreement). Available on:
http://www.ogf.org/documents/GFD.107.pdf. Last access: 13/02/2013, 2007.

OPEN SERVICE ACCESS Parlay x web services. Available on: http://www.3gpp.org/
ftp/Specs/html-info/29199-01.htm. Last access: 13/02/2013, 2009.

ORACLE Oracle BPEL process manager. Available on: http://www.oracle.

com/technetwork/middleware/bpel/overview/index.html. Last access:
13/02/2013, 2013.

PALACIOS, M.; GARCÍA-FANJUL, J.; TUYA, J. Testing in service oriented architectures with
dynamic binding: A mapping study. Information and Software Technology, v. 53, n. 3, p. 171–
189, 2011.

PAPAZOGLOU, M. P.; HEUVEL, W.-J. Service oriented architectures: approaches, technologies
and research issues. The International Journal on Very Large Databases (VLDB), v. 16, n. 3,
p. 389–415, 2007.

http://www.mulesoft.org/
http://www.mulesoft.org/
http://soa.netbeans.org/
http://soa.netbeans.org/
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ogf.org/documents/GFD.107.pdf
http://www.3gpp.org/ftp/Specs/html-info/29199-01.htm
http://www.3gpp.org/ftp/Specs/html-info/29199-01.htm
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html

134 BIBLIOGRAPHY

PARADKAR, A.; SINHA, A.; WILLIAMS, C.; JOHNSON, R.; OUTTERSON, S.; SHRIVER, C.;
LIANG, C. Automated functional conformance test generation for semantic web services. In:
IEEE International Conference on Web Services (ICWS), Salt Lake City, Utah, USA, 2007, p.
110–117.

PARK, Y.; JUNG, W.; LEE, B.; WU, C. Automatic discovery of web services based on dynamic
black-box testing. In: IEEE International Computer Software and Applications Conference

(COMPSAC), Seattle,Washington, USA, 2009, p. 107–114.

PEDROSA, L. L. C.; MOURA, A. V. Incremental testing of finite state machines. Software

Testing, Verification and Reliability, p. n/a–n/a, 2012.

PELTZ, C. Web services orchestration and choreography. Computer, v. 36, p. 46 – 52, 2003.

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping studies in
software engineering. In: The 12th international conference on Evaluation and Assessment in

Software Engineering (EASE), Bari, Italy, 2008, p. 68–77.

PRESSMAN, R. S. Software engineering: A practitioner’s approach. 6th ed. McGraw-Hill,
2005.

PRETSCHNER, A.; PHILIPPS, J. Methodological issues in model-based testing. In: Model-Based

Testing of Reactive Systems, Lecture Notes in Computer Science, 2004, p. 281–291 (Lecture

Notes in Computer Science,).

PRETSCHNER, A.; PRENNINGER, W.; WAGNER, S.; KÜHNEL, C.; BAUMGARTNER, M.;
SOSTAWA, B.; ZÖLCH, R.; STAUNER, T. One evaluation of model-based testing and its
automation. In: The 27th International Conference on Software Engineering (ICSE), St Louis,
USA: ACM, 2005, p. 392–401.

QUALIPSO Qualipso factory - next generation forge. Available on: http://qualipso.
gforge.inria.fr. Last access: 13/02/2013, 2010.

RABHI, I. Robustness testing of web services composition. In: IEEE 9th International Confer-

ence on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th International Con-

ference on High Performance Computing and Communication, Liverpool, United Kingdom,
2012, p. 631–638.

RAMAMOORTHY, C.; BASTANI, F. Software reliability - status and perspectives. IEEE Trans-

actions on Software Engineering, v. 8, n. 4, p. 354–371, 1982.

RAMOLLARI, E.; KOURTESIS, D.; DRANIDIS, D.; SIMONS, A. Leveraging semantic web
service descriptions for validation by automated functional testing. In: European Semantic

Web Conference (ESWC), Heraklion, Greece, 2009, p. 593–607.

http://qualipso.gforge.inria.fr
http://qualipso.gforge.inria.fr

BIBLIOGRAPHY 135

RAPPS, S.; WEYUKER, E. J. Selecting software test data using data flow information. IEEE

Transactions on Software Engineering, v. 11, n. 4, p. 367–375, 1985.

REMY, S. L.; BLAKE, M. B. Distributed service-oriented robotics. IEEE Internet Computing,
v. 15, n. 2, p. 70–74, 2011.

RUSLI, H. M.; PUTEH, M.; IBRAHIM, S.; TABATABAEI, S. G. H. A comparative evaluation
of state-of-the-art web service composition testing approaches. In: Proceedings of the 6th In-

ternational Workshop on Automation of Software Test (AST), Waikiki, Honolulu, Hawaii, USA:
ACM, 2011, p. 29–35.

RUSSELL, S.; NORVIG, P. Artificial intelligence: A modern approach, chap. Constraints Satis-
faction Problems. 2nd edition ed Prentice-Hall, Englewood Cliffs, NJ, p. 137–160, 2003.

RUTH, M.; OH, S.; LOUP, A.; HORTON, B.; GALLET, O.; MATA, M.; TU, S. Towards
automatic regression test selection for web services. In: IEEE International Computer Software

and Applications Conference (COMPSAC), Beijing, China, 2007, p. 729–736.

SCHMIDT, M.-T.; HUTCHISON, B.; LAMBROS, P.; PHIPPEN, R. The enterprise service bus:
making service-oriented architecture real. IBM Systems Journal, v. 44, p. 781–797, 2005.

SHARMA, M.; CHANDRA B., S. Automatic generation of test suites from decision table - theory
and implementation. In: The 2010 Fifth International Conference on Software Engineering

Advances (ICSEA), Nice, France: IEEE Computer Society, 2010, p. 459–464.

SHEN, L.; LI, F.; REN, S.; MU, Y. Dynamic composition of web service based on coordination
model. In: CHANG, K.-C.; WANG, W.; CHEN, L.; ELLIS, C.; HSU, C.-H.; TSOI, A.;
WANG, H., eds. Advances in Web and Network Technologies, and Information Management, v.
4537 de Lecture Notes in Computer Science, Vienna, Austria: Springer Berlin Heidelberg, p.
317–327, 2007.

SIMAO, A.; ENDO, A. T. Teste baseado em modelos. In: Minicurso no Congresso Brasileiro

de Software: Teoria e Pratica, available on: http://wiki.dcc.ufba.br/CBSOFT/

ShortCourseMC10Pt. Last access: 13/02/2013, 2010.

SIMAO, A.; PETRENKO, A. Checking completeness of tests for finite state machines. IEEE

Transactions on Computers, v. 59, p. 1023–1032, 2010a.

SIMAO, A.; PETRENKO, A. Fault coverage-driven incremental test generation. Computer Jour-

nal, v. 53, p. 1508–1522, 2010b.

SIMAO, A.; PETRENKO, A.; MALDONADO, J. C. Comparing finite state machine test coverage
criteria. IET Software, v. 3, n. 2, p. 91–105, 2009a.

http://wiki.dcc.ufba.br/CBSOFT/ShortCourseMC10Pt
http://wiki.dcc.ufba.br/CBSOFT/ShortCourseMC10Pt

136 BIBLIOGRAPHY

SIMAO, A.; PETRENKO, A.; YEVTUSHENKO, N. Generating reduced tests for FSMs with extra
states. In: IFIP WG 6.1 International Conference on Testing of Software and Communication

Systems (TESTCOM), Eindhoven, The Netherlands, 2009b, p. 129–145.

SINHA, A.; SMIDTS, C. HOTTest: A model-based test design technique for enhanced testing of
domain-specific applications. ACM Transactions on Software Engineering and Methodology

(TOSEM), v. 15, n. 3, p. 242–278, 2006.

SOURCEFORGE.NET Eclipse metrics 1.3.6. Available on: http://metrics.

sourceforge.net. Last access: 13/02/2013, 2005.

SOURCEFORGE.NET WS-CDL eclipse (with examples). Available on: http://

sourceforge.net/projects/wscdl-eclipse/. Last access: 13/02/2013, 2012.

TRETMANS, J. A formal approach to conformance testing. Doctoral Dissertation, University of
Twente, Enschede, Netherlands, 1992.

TSAI, W.; WEI, X.; CHEN, Y.; PAUL, R. A robust testing framework for verifying web services
by completeness and consistency analysis. In: IEEE International Symposium on Service-

Oriented System Engineering (SOSE), Beijing, China, 2005a, p. 151–158.

TSAI, W.; WEI, X.; CHEN, Y.; XIAO, B.; PAUL, R.; HUANG, H. Developing and assuring
trustworthy web services. In: International Symposium on Autonomous Decentralized Systems

(ISADS), Chengdu, China, 2005b, p. 43–50.

TSAI, W. T.; GAO, J.; WEI, X.; CHEN, Y. Testability of software in service-oriented archi-
tecture. In: The 30th Annual International Computer Software and Applications Conference

(COMPSAC’06), Chicago, USA: IEEE Computer Society, 2006, p. 163–170.

TSAI, W.-T.; WEI, X.; CHEN, Y.; PAUL, R.; XIAO, B. Swiss cheese test case generation for
web services testing. Transactions on Information and Systems, v. E88-D, n. 12, p. 2691–2698,
2005c.

UTTING, M.; LEGEARD, B. Practical model-based testing: A tools approach. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2006.

UTTING, M.; PRETSCHNER, A.; LEGEARD, B. A taxonomy of model-based testing. Technical
Report, Hamilton, New Zealand, 2006.

VASILEVSKII, M. P. Failure diagnosis of automata. Cybernetics and Systems Analysis, v. 9,
p. 653–665, 1973.

VINCENZI, A. M. R. Orientação a objeto: Definição e análise de recursos de teste e validação.
Doctoral Dissertation, ICMC/USP, São Carlos, SP, 2004.

http://metrics.sourceforge.net
http://metrics.sourceforge.net
http://sourceforge.net/projects/wscdl-eclipse/
http://sourceforge.net/projects/wscdl-eclipse/

BIBLIOGRAPHY 137

VUONG, S. T.; CHAN, W. Y. L.; ITO, M. R. The uiov-method for protocol test sequence
generation. In: IFIP Int. Workshop Protocol Test Systems, Berlin, Germany, 1989.

W3C XSL transformations (xslt). Available on: http://www.w3.org/TR/xslt. Last
access: 13/02/2013, 1999.

W3C Web services description language (WSDL). Available on: http://www.w3.org/
TR/wsdl. Last access: 13/02/2013, 2001.

W3C Web services activity statement. Available on: http://www.w3.org/2002/ws/
Activity. Last access: 13/02/2013, 2002.

W3C Extensible markup language (XML). Available on: http://www.w3.org/XML/. Last
access: 13/02/2013, 2003.

W3C OWL-S: Semantic markup for web services. Available on: http://www.w3.org/
Submission/OWL-S. Last access: 13/02/2013, 2004a.

W3C SOAP specifications. Available on: http://www.w3.org/TR/soap/. Last access:
13/02/2013, 2004b.

W3C Web services addressing (ws-addressing). Available on: http://www.w3.org/

Submission/ws-addressing/. Last access: 13/02/2013, 2004c.

W3C Xml schema. Available on: http://www.w3.org/XML/Schema. Last access:
13/02/2013, 2004d.

W3C Web services description language (WSDL) version 2.0. Available on: http://www.
w3.org/TR/wsdl20. Last access: 13/02/2013, 2007.

WIECZOREK, S.; KOZYURA, V.; ROTH, A.; LEUSCHEL, M.; BENDISPOSTO, J.; PLAGGE,
D.; SCHIEFERDECKER, I. Applying model checking to generate model-based integration
tests from choreography models. In: International Conference on Testing of Software and

Communication Systems (TESTCOM), Eindhoven, The Netherlands, 2009, p. 179–194.

WIECZOREK, S.; STEFANESCU, A.; ROTH, A. Model-driven service integration testing - a case
study. In: Seventh International Conference on the Quality of Information and Communications

Technology (QUATIC), Porto, Portugal, 2010, p. 292–297.

YAN, J.; LI, Z.; YUAN, Y.; SUN, W.; ZHANG, J. BPEL4WS unit testing: Test case generation
using a concurrent path analysis approach. In: International Symposium on Software Reliability

Engineering (ISSRE), Raleigh, North Carolina, USA, 2006, p. 75–84.

YUAN, X.; COHEN, M. B.; MEMON, A. M. Gui interaction testing: Incorporating event context.
IEEE Transactions on Software Engineering, v. 37, n. 4, p. 559–574, 2011.

http://www.w3.org/TR/xslt
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/2002/ws/Activity
http://www.w3.org/2002/ws/Activity
http://www.w3.org/XML/
http://www.w3.org/Submission/OWL-S
http://www.w3.org/Submission/OWL-S
http://www.w3.org/TR/soap/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/wsdl20

138 BIBLIOGRAPHY

ZANDER, J.; SCHIEFERDECKER, I.; MOSTERMAN, P. Model-based testing for embedded sys-

tems. Computational Analysis, Synthesis, and Design of Dynamic Systems. Taylor & Francis,
2011.

ZHENG, Y.; ZHOU, J.; KRAUSE, P. An automatic test case generation framework for web
services. Journal of Software, v. 2, n. 3, p. 64–77, 2007.

ZHOU, L.; PING, J.; XIAO, H.; WANG, Z.; PU, G.; DING, Z. Automatically testing web
services choreography with assertions. In: The 12th international conference on Formal engi-

neering methods and software engineering (ICFEM), Shanghai, China, 2010, p. 138–154.

ZHU, H.; HALL, P. A. V.; MAY, J. H. R. Software unit test coverage and adequacy. ACM

Computing Surveys (CSUR), v. 29, n. 4, p. 366–427, 1997.

APPENDIX

A
Algorithms

This appendix shows the formal descriptions of algorithms proposed in Chapter 5. Table A.1
shows notations used in the following algorithms.

Table A.1: Notations used in the algorithms.
Symbol Meaning Example
〈 〉 the empty sequence
〈a〉 the sequence containing only a
〈a, b, c〉 the sequence with three events, a then b, then c
α(s) the first event of sequence s α(〈a, b, c〉) = a

ω(s) the last event of sequence s ω(〈a, b, c〉) = c

s[i] the ith event of sequence s 〈a, b, c〉 [2] = b

s[i..j] the sequence from i to j 〈a, b, c〉 [1..2] = 〈a, b〉
s||t sequence s in parallel to sequence t
s⊕ t concatenate s and t 〈a, b〉 ⊕ 〈c〉 = 〈a, b, c〉
N+(v) successors of a vertex v in an

ESG4WSC/ESG4WS
N−(v) predecessors of a vertex v in an

ESG4WSC/ESG4WS

Algorithm 1 gives a formal description for the algorithm to generate CESs that cover all event
pairs (positive test cases) from an ESG4WSC. This algorithm is described in Section 5.3.2.

139

140

Algorithm 1: generateCESs()
function : generateCESs()
input : an ESG4WSC
output : CES

foreach re ∈ Vrefined do1

resCES ← ∅;2

foreach esg ∈ re do3

CES = generateCESs(esg);4

if resCES==∅ then5

resCES = resCES ∪ {(re× CES)};6

else7

foreach ces1 ∈ {ces|(re, ces) ∈ resCES} do8

foreach ces2 ∈ CES do9

resCES = resCES ∪ {(re, (ces1||ces2))};10

resCES = resCES \ {(re, ces1)};11

if f(re) 6= ε then12

DTseq = f(re);13

foreach ces ∈ {ces|(re, ces) ∈ resCES} do14

v = getAllowedSuccessor(ces,DTseq);15

E := E ∪ {(re, v)};16

// store a Mapping,i.e.,Map ⊆ E × ces
Map := Map ∪ {((re, v), ces)};17

resCES := resCES \ {(re, ces)};18

// add multiple edges for each dataset to be tested

foreach DTinput,public ∈ V do19

foreach a ∈ A do20

E := E \ {(DTinput, a)};21

foreach (Ctrue, Cfalse, Ex) ∈ R do22

E := E ∪ {(DTinput, Ex)};23

CES = solveCPP (ESG4WSC);24

foreach ces ∈ CES do25

for i = 1 to #ces do26

if ces[i] ∈ Vrefined then27

if |{ces|((ces[i], ces[i+ 1]), ces) ∈Map]}| > 0 then28

new = es with es ∈ {ces|((ces[i], ces[i+ 1]), ces) ∈Map};29

Map = Map \ {((ces[i], ces[i+ 1]), ces)};30

ces = ces[1..(i− 1)]⊕ new ⊕ ces[(i+ 1)..#ces];31

else if |{ces|(ces[i], ces) ∈ resCES}| > 0 then32

new = es with es ∈ {ces|(ces[i], ces) ∈ resCES};33

resCES = resCES \ {(ces[i], ces)};34

ces = ces[1..(i− 1)]⊕ new ⊕ ces[(i+ 1)..#ces];35

return CES;36

APPENDIX A. ALGORITHMS 141

Algorithm 2 gives a formal description for the algorithm that generates a PES to reach a given
event. Examples of PESs generated using this algorithm can be found in Sections 5.4.1 and 5.4.2.

Algorithm 2: Algorithm to generate a partial event sequence that covers an event ei.
function : generatePES()
input : an ESG4WSC, a non-refining event ei
output : PES

re = ε;1

if ei ∈ V then2

ek = ei;3

else4

Select re ∈ Vrefined such that ei is within re;5

ek = re;6

pes = getShortestPath(Ξ, ek);7

// solve the refined events in pes

foreach rei ∈ {rei | rei ∈ Vrefined \ {re} and rei ∈ pes} do8

// this procedure also handles DTs

pes = solveCESforRefinedEvent(pes, rei);9

if re 6= ε then10

par = {};11

foreach esg4wsc ∈ re do12

if ei ∈ esg4wsc then13

// recursive call

pesi = generatePES(esg4wsc, ei);14

else15

pesi = getShortestCES(esg4wsc);16

par = par||pesi;17

pes = replace(pes, re, par);18

return pes;19

142

Algorithm 3 gives a formal description for the algorithm that translates an ESG4WSC to an
ESG4WS and produces faulty event pairs from the latter. An example of this transformation and
faulty edges can be found in Section 5.4.1.

Algorithm 3: Algorithm to transform an ESG4WSC to an ESG4WS and obtain the faulty
edges.

function : transform()
input : an ESG4WSC = (V,E,M,R,DT, f,Ξ,Γ)

output : an ESG4WS = (V ′, E′,Ξ′,Γ′), faulty edges FE

ESG4WS = (V ′, E′,Ξ′,Γ′);1

foreach v ∈ V do2

if (v /∈ Vreq AND v /∈ Vresp) OR v is private then3

foreach pre ∈ N−(v) do //predecessors of v4

foreach post ∈ N+(v) do //successors of v5

if (pre, post) /∈ E then6

E := E ∪ {(pre, post)};7

E := E \ {(v, post)};8

E := E \ {(pre, v)};9

V := V \ v;10

if v ∈ Ξ then Ξ := Ξ \ {v};11

if v ∈ Γ then Γ := Γ \ {v};12

V ′ := V ; E′ := E; Ξ′ := Ξ; Γ′ := Γ;13

FE := {};14

foreach vreq ∈ V ′req do15

foreach vresp ∈ V ′resp do16

if (vresp, vreq) /∈ E′ then17

FE := FE ∪ {(vresp, vreq)};18

foreach vreq2 ∈ V ′req do19

if vreq2 6= vreq AND (vreq2, vreq) /∈ E′ then20

FE := FE ∪ {(vreq2, vreq)};21

if vreq /∈ Ξ′ then22

FE := FE ∪ {([, vreq)};23

return ESG4WS, FE;24

APPENDIX A. ALGORITHMS 143

Algorithm 4 gives a formal description for the algorithm to generate PubFESs from an ESG4WSC.
This algorithm is described along with an example in Section 5.4.1.

Algorithm 4: Algorithm to generate PubFESs.
function : generatePubFESs()
input : an ESG4WSC, faulty edges FE
output : the test suite PubFES

PubFES = {};1

foreach (ei, ej) ∈ FE do2

pesi = generatePES(ESG4WSC, ei);3

pesi = pesi ⊕ ej ;4

PubFES = PubFES ∪{(pesi;z)};5

return PubFES;6

Algorithm 5 gives a formal description for the algorithm to generate PriFESs from an ESG4WSC.
This algorithm is described along with an example in Section 5.4.2.

Algorithm 5: Algorithm to generate PriFESs.
function : generatePriFESs()
input : an ESG4WSC, set of sensitive events s
output : the test suite PriFES

PriFES = {};1

Let VREQ be the union of sets Vreq for the ESG4WSC and their refining ESG4WSCs;2

Let VRESP be the union of sets Vresp for the ESG4WSC and their refining ESG4WSCs;3

foreach private event ei ∈ VREQ do4

pesi = generatePES(ESG4WSC, ei);5

fes1 = (pesi;zNR; s);6

fes2 = (pesi;zMS; s);7

fes3 = (pesi;zUF; s);8

PriFES = PriFES ∪{fes1, fes2, fes3};9

foreach private event ej ∈ VRESP do10

pesj = generatePES(ESG4WSC, ej);11

fes1 = (pesj ;zLR; s);12

fes2 = (pesj ;zWSc; s);13

fes3 = (pesj ;zWSy; s);14

fes4 = (pesj ;zWD; s);15

PriFES = PriFES ∪{fes1, fes2, fes3, fes4};16

return PriFES;17

	Abstract
	Resumo
	Introduction
	Problem Statement and Justification for the Research
	Objectives
	Summary of Contributions and Dissertation Outline

	Background
	Overview
	Service-Oriented Architecture
	Web Services
	Service Composition

	Software Testing
	Testing Techniques

	Model-Based Testing
	MBT Steps
	Modeling Techniques
	Advantages and Disadvantages

	Service Testing
	Formal Approaches to Test Services
	MBT of Service-oriented Applications

	Final Remarks

	Comparing FSM-based Test Methods
	Overview
	Preliminaries
	Test Generation Methods
	Experimental Study
	Analysis of Results
	RQ1: Test Suite Characteristics
	RQ2: Test Suite Length
	RQ3: Fault Detection
	RQ4: Correlations

	Discussion of Results and Limitations
	Final Remarks

	MBT Process of Service-Oriented Applications
	Overview
	Motivating Example
	Testing Process
	Artifacts
	Supporting Tools
	Steps of the Process

	Exploratory Study
	JStateModelTest
	Case Study

	Final Remarks

	Holistic Testing of Service Compositions
	Overview
	Introducing the ESG4WSC Approach
	Running Example
	The ESG4WSC Model

	Positive Testing
	Fault Model
	Test Case Generation
	Generating CESs using Event Tree's

	Negative Testing
	Negative Testing of Public Events
	Negative Testing of Private Events

	Tool Support
	Test Generation
	Test Execution

	Final Remarks

	Evaluation of the Proposed Approach
	Overview
	Case Study: xTripHandling
	System Under Test
	Configuration and Results

	Cost Analysis
	Test Generation and Execution
	Test Modeling and Concretization

	Experience on Industrial Setting
	Part 1: Test Modeling and Generation
	Part 2: Test Concretization and Execution

	Lessons Learned
	Discussion of Results and Limitations
	Final Remarks

	Conclusion
	Revisiting the Dissertation Contributions
	Limitations and Future Directions
	Possible extensions

	Algorithms

